UNIVERSITY OF CRETE

DEPARTMENT OF PHYSICS

UNDERGRADUATE THESIS
R.O.F.O.S.

Retrainable Object for Ocean
Sailing

AUTHOR: KARAVELAS PANAGIOTIS

SUPERVISORS: GIORGOS P.TSIRONIS , GEORGIOS D.BARMPARIS

Acknowledgments

I would like to express my gratitude to my supervisors, Prof. Giorgos P. Tsironis
and Dr. Georgios D. Barmparis for the opportunity to work on an interesting project
like this one and for their patience and guidance that have been invaluable.

Also, I want to give many thanks, to my family and to my friends for the emotional
support and courage that have given throughout this journey.

Contents

1 Introduction

2 Theory
2.1 Physics of Sailing
2.1.1 Forces s
2.1.2 Apparent Windo
2.1.3 Pointsof Sail
2.2 Q-Learning
2.2.1 Basic Concept
2.2.2 Q-Learning Algorithm
3 Methodology
3.1 Simulated Environment L
3.1.1 Sail Only Environment
3.1.2 Sail and rudder Environment
3.2 Electronic Setup
3.2.1 Micro-controller - Esp32 Dev Module
3.22 MPUO9250
3.2.3 GPS . .
3.2.4 Anemometer
3.2.5 Wind Direction Sensor
3.2.6 Servo Motor
3.2.7 Circult
3.3 Model Boat
4 Results
4.1 Simulated Environment o
4.1.1 Sail Only
412 Sailandrudder

5 Conclusion and future steps
References
Appendix A: Python Simulation Code

Appendix B: Hardware Codes

32

33

35

45

Abstract

Autonomous cars are starting to become a part of our life after their first appear-
ance in 1980s. Since then, several attempts have been tried both to improve them,
but also to create other types of autonomous vehicles like planes, drones and boats.
In this work we create a new version of an autonomous sailing boat. Where instead
of any path finding algorithms we use a basic reinforcement learning algorithm called
Q-Learning. We create two versions of an environment where is a sailing boat in the
sea with no obstacles. Under this approach we tried different types of rewards in order
to find the most appropriate. After all the simulations, we apply the trained model
to a prototype of a sailing boat which was built in the University. For the controller
of the sailing boat we use low-voltage electronic devises like Arduino, Esp32, several
types of sensors and servo motors. As expected the results of the simulation reveal
that going along the direction of the wind is much easier than going against it.

Chapter 1

Introduction

In order for the machine learning model to be able to take the best action in any
circumstance we have to create as much realistic environment as we can. In this
thesis we examine two different levels of difficulty for the agent to find the best
actions in each case. We create a simple environment where the sailboat has to sail
from a starting point to a specific target.

In Chapter 2, we introduce the basic concepts of the physics of sailing and how the
most important forces are generated on the boat. Also we analyze how the Q-Learning
algorithm works.

In Chapter 3, we present the methodology we followed throughout in this work.
The simulation we did, the combination of the electronic components and the idea of
the remote control system.

Finally in Chapter 4, we conclude with the results for each case and some future
steps.

Chapter 2

Theory

2.1 Physics of Sailing

»
Backstay
Headstay Spreader
Boom
Sidestay Topping Lift
(Shroud)
Mast —m

Bow Pulpit Boom
Main
—? Sheet

V ~=—— Boom Vang
Waterline
Keel

Figure 2.1: Sailboat parts [15].

There are some very interesting facts about sailboats that makes both sailors and
non-sailors wonder. For example the sailboat can move forward without the wind

6

blow it from behind (downwind), or that downwind is not the fastest direction. As
a result, people get more curious and when people get more curious they tend to
find the answers using science. In our case physics holds the answers we need to
understand the way sails react to the wind. Aerodynamics and hydrodynamics can
get very deep but in this thesis we will stay on some basic concepts. First we will
analyze the forces we have on our sail and we will introduce the keel as well. Then
we will go to the apparent wind and the points of sailing.

2.1.1 Forces

In order to understand how the boat reacts to the wind we will need to understand
two basic aerodynamic concepts, lift and drag. We will try to explain it with a basic
example. Lets assume that you are in car, and you put your hand out of the window.
If you tilt your hand clockwise, you will feel the air pushing you backwards and
upwards. The reason this is happening is that the force of the air has a sideways
component and upwards component. In the same way the aeroplane wings react to
the air and in our case the sails.

Figure 2.2: Sail total force (black Fr arrow) decomposed as Lift (red L arrow) and
Drag (red D arrow), generated from the apparent wind, V,, which comes with an
angle « to the sail chord line [3].

In Fig 2.2, we present the way the apparent wind, Vjy, affects the sail. The sail’s
angle of attack, a, is the angle between the sail chord line and the apparent wind
direction. Then we see that the apparent wind will affect the sail, the same way
it would have affected our hand in the car example. There are two forces that are

7

created from the apparent wind, the red D arrow in the same direction which is called
Drag and the perpendicular red L. arrow which is called Lift. To find how these forces
affect our boat we just have to add them to find the total force, Fir, or Fys. As a
result, our boat will start to take a course sideways, but this is not what we want.
When we are sailing we want our boat to sail forward, so considering only the sail
it is not enough. We need something to balance the side forces and leave only the
forces that move the sailboat forward.

This is where the keel comes in to the game. The keel shown in Fig 2.1 looks like
a small wing underneath the boat. In the first place it may not look so obvious how
this will help us, because usually we take into consideration only the wind and not
the water. Now let’s see the boats movement from a different perspective. While the
apparent wind affects the sailboat and makes it sailing mostly sideways and a little
forward, there is a relative to the sailboat water speed which is exactly opposite of
the boats speed. In Fig. 2.3 we present how the keel’s “lift” (black Fx arrow) and
Drag (black Fp arrow) are generated.

a (angle of attack)

Viater = -Vboat
(relative to boat)

Fx

keel

Figure 2.3: The keel’s total force decomposed as keel’s “lift” (black Fy arrow) and
Drag (black Fp arrow), generated by the relative to the boat water flow, Vi ater,which
comes from an angle o from the keel chord line[2].

Thus, it is clear that the keel will affect our sailboat’s course because of the relative
water speed, the same way the sail affects it because of the wind. So the keel works

by providing sideways lift, opposite to the sail’s lift, as the water flows around it. It
is very important to note that the keel must be symmetrical so the boat can go to
either direction, and the motion of the boat must not be exactly in the direction that
it heads, because then the keel can not generate lift.

The result of having both the sail and the keel is shown in Fig. 2.4, where we
can see how the two lifts cancel each other’s side forces and leave only the forces on
the axis of the boats heading. In our simulations we take the approximation a equals
ZEro.

il

Bl Fr,

Figure 2.4: a)The generation of both the Fj,; and the Fye., b) The final F,.; (sum
of the Fsail and the erel) and Fdrag [1}

2.1.2 Apparent Wind

Now that we have a basic understanding of how the movement of the sailboat is
produced we want to emphasize in two more aspects. We will start with the apparent
wind, which is a pretty easy concept to grasp but a very important to take under
consideration in our simulations. In Fig. 2.5 we present how we can calculate the
apparent wind (red arrow) from the true wind (blue arrow) and the boat’s velocity
(black arrow).

Boat Speed (V)

Figure 2.5: The apparent wind (red arrow) calculated by using true wind (blue arrow)
and the boat’s velocity (black arrow) [16].

In sailing the are two winds, the true and the apparent. The true wind is is the
wind we would feel it if we were not moving relative to the water, while the apparent
wind is the wind we feel by taking into account our sailboat’s velocity [4].

2.1.3 Points of Sail

An easy way to understand how the sailboat would react according to the true wind
direction is through the points of sail.

N2

\‘

g

<O

26

Figure 2.6: Points of Sail [5].
In this example we have a north true wind direction and we will explain some of

10

the courses the sailboat will take correspondingly to where it points. We will analyze
each course, A, B, C, D and E, as we present them in Fig. 2.6.

e A: The boat is heading directly against the wind (upwind). When a sailboat is
heading directly against the wind, it can not generate lift and as a result over
time it slows down till it stops and begin sailing backwards. This is happening
not only when the boat is heading directly against the wind but also within an
area of £45° of the winds direction. This area is called the no-go-zone.

e B: The boat is a little over the limit of £45° course relative to the winds direc-
tion. Called the close-hauled course, it is when the boat is heading as against
the wind as it could, just to generate enough lift so the boat will sail at that
direction.

e C: The boat’s direction has an angle of 90° with the true wind direction. This
course is called beam reach.

e D: The wind is blowing the sailing boat from behind with an angle, not down-
wind. This course is called broad reach and it contains all the angles between
the beam reach and the downwind.

e E: The sailing boat is getting blown directly from behind. This course is called
“running downwind” or else “Dead run”. The interesting fact about the running
downwind course, is that even most of the people would expect that this would
be the fastest course, most high-performance sailing craft achieve a higher ve-
locity when having an angle with the wind. For example sailing 45° angle to
the wind downwind direction, will conclude to 1.4 times the running downwind
speed.

2.2 Q-Learning

Q-Learning is part of the reinforcement learning group of algorithms, where an agent
learns an environment by making actions and receiving rewards like we learn in our
lives. “Good” actions conclude to positive rewards while “bad” actions to negative
rewards [6-10].

2.2.1 Basic Concept

To understand how Q-Learning operates we need to analyze more each of the com-
ponent in Fig. 2.7.

11

.

-

Environment

j Re Warg
Interpreter
% G

Agent

i

Action

Figure 2.7: The basic components of reinforcement learning [6].

In Fig. 2.7 we present the components of a RL algorithm:
e Environment: A place with specific regulations to be examined by the agent.
e Agent: The “brain” which will take actions and receive rewards.

e States: The observation of the environment that the agent will get and based
on that will decide the best action.

e Action: The action is the available moves over a specific strategy, that are
provided to the agent to select.

e Reward: A positive or negative value based on the agents actions.
We can break down reinforcement learning into five simple steps:

1. The agent is at state zero in an environment.

2. It will take an action based on a specific strategy.

3. It will receive a reward based on that action.

4. It will optimize the strategy by learning from previous rewards.

5. The process will repeat until an optimal strategy is found.

12

2.2.2 Q-Learning Algorithm

The basic Q-Learning algorithm is just a simple trial and error algorithm. The main
equation is the Bellman equation:

Q" (st 1) — (1 —) - Q(8¢, ar) + o+ (ry + v - maxy[Q(Si41, ar)]) (2.1)
e «: learning rate (0 < a < 1)
e : discount factor (0 <y < 1)
e 7, = 1(sy,a4) : reward received when moving from s, <— $;41
e s; : state at timestep t
e q, : actions at timestep t
e (Q(s4,ay): current Q-table value
o maz,[Q(si11,a)]: estimate of optimal future value

The main part of our algorithm is the quality table, Q-table. The Q-table consists
of all the available actions for each state. As we can see in Eq. (2.1) , the main
goal of the algorithm it to update the Q-table values. So after every step the agent
takes, the algorithm updates the Q-table value at that state. To be more precise, the
Q" (s, ar) is the sum of these three factors:

o (1 —a)-Q(s,a): aportion of the current value
e « -1y a portion of the reward r, if action a, is selected at state s;

o a-y-maxy[Q(si11,a:)]: aportion of the maximum reward that can be obtained
from the next state sy

where the first one is weighted by one minus the learning rate and the rest just by
the learning rate.

The learning rate controls how the new acquired information the agent gets, re-
places the old ones. If we select a learning rate equal to zero, a = 0, the agent will
learn nothing from the new information and will utilize the prior knowledge only. On
the other side, if we select it equals to one, a = 1, the agent will take account only the
most recent information. If we had a fully deterministic environment,learning rate
equal one, a = 1, would be the best choice, but in practice a relative small constant
learning rate is used, like in our case, a = 0.1.

Not only the learning rate affects the way our agents learn through time. The
discount factor v plays an important role, as it determines the significance of future

13

rewards. If the discount factor equals zero, v = 0, our agent will consider only
immediate rewards or in other words, it would be “myopic”. On the contrary, if
we select a discount factor equals one, v = 1, our agent would attempt to earn a
higher reward in the long term. Though the second case and also a discount factor
v > 1, may lead to some problems like divergence risk for not seeing at all the
current rewards, infinite rewards for not having a terminal state or in the use of
artificial neural networks may leads to instability during training. For these reasons
the optimal discount factor would be to start from a small value and gradually increase
it over time, during the learning process.

14

Chapter 3

Methodology

3.1 Simulated Environment

We create an environment with two levels of difficulty for our Q-learning algorithm,
an environment where we consider only the sail of the boat and another one with
the sail and the rudder. As the difficulty level increases, the agent would have more
calculations to do in order to determine the best actions for each state. The codes
can be found in Appendix A.

In order to understand exactly how the forces work on the sailboat, we created
some python scripts where we did vector projections and subtractions. For our simu-
lations we took the approximations that the angle between the sail boats acceleration
and the sailboats heading is zero.

Below we present two cases, in the first the boat is heading towards the no-go-zone
while in the second the course it shows a Close-hauled, meaning that we are at the
limit of the no-go-zone and we generate just enough lift to push the boat forward.

15

N~]/

I Wind direction Emm Wind direction
mmm Sail direction -0.751 mmm Sail direction
SailBoat Heading SailBoat Heading
EEm SailBoat New potision direction EEm SailBoat New potision direction

Figure 3.1: Left: No-go-zone case. Right: The close-hauled case.

For the Q-learning we use the following four different reward functions, é, d; —dy,
e~ , —dy, where the distance, d, is the Euclidean distance calculated as \/(zy — ;)% + (v — v;)?,
d; is the distance before the action, while dy is the distance after the action.

3.1.1 Sail Only Environment

The first level of difficulty is a simulation of having only a sail on the sailing boat.
Thus the boat has the ability to move only using the Lift force generated on the sail.
We do all the vector calculations and then the sailboat moves accordingly.

3.1.2 Sail and rudder Environment

The second level of difficulty has both a sail and a rudder. By using the rudder, the
boat can now change freely the direction where it heads. This makes it better in the
case we sail upwind and it needs to do more manoeuvres to reach the target location.

To use the rudder into our algorithm we create a vector at the opposite direction
of the heading and we let the agent rotate it right or left. For the rudder angles we
consider the opposite direction of the heading as the axis of reference and we allow
moves in +30°, £45°, and £60°. Then we just subtract the rotated vector from the
reference one to calculate the new direction of the boat.

3.2 Electronic Setup

For the hardware part of the sailboat controller, we selected low voltage electronics.
In this section we analyze each one of the electronic devices used in this project and

16

we provide a sample of how they work.

3.2.1 Micro-controller - Esp32 Dev Module

Figure 3.2: Esp32 Dev Board [11].

For the control of the sensors and the “brain” of our autopilot system, we select an
Esp32 Dev Module. Esp32 is used for a lot of Internet of Things (IoT) projects both
because it is relative cheap and for it’s quality. It gives you the capability to program
it in a version of C++ using the Arduino Compiler which is shown in Fig. 3.4 and
at the same time to combine it with other electronic devices. We provide the board
pinout in Fig. 3.3.

® o
og——- [E 2 @ IRl 3 Jf Mosi J Gri023 v sPi O |
Faoci af crioss [sensve J's SINNSOIN © o QCEAYETs I scr [cricaz | v seiwe J U0 iis |
[Roci] crios [scs s VSO © o\ R T
Fapcy 6] Griosd | U © o
A g -\ 0 [o [CEAYET:: [5ox [criot [v set o
Fisuchs Janct o criosz [Jiz AVl © o© IRV Juso J Gerois [v v o Jua cis)
[ochs faper 5] crioss [i s AVl © o [ECRAVE: § 5o [crors v 5 cin]
EEETs O v o QOEAYEh: I crios Jv sk csol
Jioc 5] crone s AV © - o QYR [o017 [o]
[Teuchs JA00 7] ooz e AVCN © - o WCEAVE": [6o s [z o)

[rouche [Hseicix e 6 crors 17 RAYSCEN © - o QAR I o7 Janca o] Hsei o] Toucho
[Touchs e @ fAnca s [6rior2 s WOl © o [ECEAVET: e] Grio JAcca 3] riser we] Teucha |
Fiouch Jisei o fADce s crots oo ANS O © = o QSRR ¥ cPio 15 JAnce 3] i c5o] Toueh |

caE——:- [F] —WET
oyw— [H] —aEm
R - ER o BN o BN o N O EN
B o0 B o B oo pac N war N\ pwm

[ESP32 Dev. Board JIION

Figure 3.3: Esp32 Dev Board Pinout [12].

17

© sketch_sep23a | Arduino 1.8.19 - o X
File Edit Sketch Tools Help

sketch_sep23a

woid setup() { ~
// put your setup code hers, to Tun once:

¥

woid leop() {
// put your main code here, to Tun repeatedly:

H

[F/5T), 010, BOMHz, 4MB (32Mb), 321601 %1, Core 1, Nong, Disablzd on COM7

Figure 3.4: Arduino compiler environment.

Another reason we select the Esp32 is because of the WiFi module that has already
build in. With this module we create an access point on the Esp32 where anybody
can log in like we log in to an internet rooter at our home and control the sailboat
remotely. This control system works also as a data display and give us the choice of
controlling the sailboat remotely. In Fig. 3.5, we present the control website.

Ruddder Angle : 0
Select New Rudder Angle :

Sail Angle : 0.00
Select New Sail Angle :

Rofos Controller

DATA FROM SENSORS 60
60
GPS - Location
45 45
Latitude : O
Longitude : 0
Altitude : 0.00 30 30
2ngle : 0.00
0 0
Wind Speed
Wind Speed : 0.00 -30 -30
wind Direction 45 -45
Wind Direction :0.00
-60 -60
Accelerometer
Acceleration : 0.00, 0.00, 0.00
90 -90
Gyroscope : 0.00, 0.00, 0.00

Figure 3.5: Remote Control website.

18

By opening the remote control, the user can see in their display, the data collected
by the sensors, as we present in the right picture in Fig. 3.5. Then the user can select
an angle to rotate either the sail or the rudder, based on the available angles we
present in the middle and left picture in Fig. 3.5. The code for the remote control
can be found in Appendix B.

3.2.2 MPU 9250

The MPU 9250 is a relative small electronic device which has the capabilities of
multiple sensors. It give information about the acceleration on the XYZ axes, works
as a gyroscope, temperature sensor and magnetometer.

Figure 3.6: MPU 9250 [17].

3.2.3 GPS

The Adafruit Ultimate GPS (Global Positioning System) was used for finding the
sailboats exact location in the first place but it has a lot of other uses. It can give
information about the speed of your object, the course (heading) as well as the time
and date.

19

PA16165
0070179

Figure 3.7: Ultimate GPS [18].

3.2.4 Anemometer

The Adafruit Anemometer GPS was selected for calculating the apparent winds speed
at the top of the vessel. An anemometer is a device used for measuring the wind speed,
and is a common weather station instrument. This well made anemometer is designed
to sit outside and measure wind speed with ease, it can measure wind speeds from 0
- 324 m/s.

Figure 3.8: Adafruit Anemometer [14].

3.2.5 Wind Direction Sensor

We used a wind direction sensor in order to identify the apparent wind on our sailing
boat. An anemoscope is a device used for measuring the wind direction, and is a
common weather station instrument as the anemometer we presented in the previous
paragraph. This specific wind direction sensor can return 16 different wind directions.

20

Figure 3.9: Wind Direction Sensor [13].

3.2.6 Servo Motor

We used two servo motors for the rotation of the rudder and the sail. These motors
are adjusting their rotation speed based on the input voltage (5V low speed, 6V high
speed) and can turn from an angle 0° to 180°.

Figure 3.10: Servo Motor [19].

21

3.2.7 Circuit

For the combination of the components it is important to separate the sensors based

on the input voltage they need. In Fig. 3.11, we present a prototype of the circuit of
the boats controller.

2

Figure 3.11: Setup - Circuit, In the top is the Esp32, then is the amplifier for the
anemoscope, then is the MPU 9250 and at the end the GPS.

In Fig. 3.12 we present the exact connections of the components. It is important
to separate the sensors based on the input voltage they need.

e Control->D2

Adafruit e Vin->5V Ginger
Ultimate GPS Servo Motor 2 Anemoscope
e TX->RX2 / e RO->RX1
e RX->TX2 e RE->D5
e Vin->5V Esp32 MCU e DE->D23
e DI->TX1
e Vin->12V
MPU 9250
Adafruit Accelerometer
S Mot
Anemometer rvo viotor e TX->RX2
e OQutput->D34 e Control->D5 e SCL->D22
e Vin->12V e Vin->5V e SDA->D21
e Vin->12V

Figure 3.12: Connections

22

3.3 Model Boat

The prototype sailboat was constructed in the University’s machine shop. In Fig.
3.13, we present the sailing boat without the sail and in Fig. 3.14 the sail.

Figure 3.13: Boat

INETITOYTO

OEQPHTIKHE

¢ YIOAOTIETIKHE
OYZIKHE

(ENMIOYdP)

TANEIETHMIO
KPHTHE

Figure 3.14: Sail

We have to point out that the sail and the boat were designed and manufactured
at the University’s machineshop. The sail was designed based on the undergraduate
thesis of Mr.Theofanis Gioumatzidis about the “Computational analysis of sail designs
for the efficient flow of autonomous sailboats” [21]. In Fig 3.15, we present a photo
of the prototype in the sea.

23

INETITOYTO [
GEQPHTIKHS &
= | ONONETIRHS

B OYIIKHE

Figure 3.15: Prototype sailboat in the sea.

24

Chapter 4

Results

4.1 Simulated Environment

We decided to compare these two simulations based on two criteria, the cumulative
average (CA) of the rewards over the episodes, and the final distance from the sailboat
to the target. We consider two radiuses, 1 and 5 unit lengths, to calculate the accuracy
of the learning phase. The accuracy is defined as the number of times the boat
managed to be in these two radiuses over the total number of tries to reach the target
position.

4.1.1 Sail Only

In Fig. 4.1, we present the CA of the four reward functions when the boats course is
almost downwind.

25

C.A of Rewards over Episodes

1.0

0.8 1

0.6 1

0.4

C.A. of Rewards

0.2

0.01

T T T T T y
0 200 400 600 800 1000

Episodes
Figure 4.1: CA of the rewards, “Sail Only” case

We see that for all the reward functions the CA converges, demonstrating that
agent found the optimal strategy for each reward function.

In Fig. 4.2 we present on the left a diagram of the CA of the rewards when the
sailboat goes upwind with a reward function e=% and on the right the case of the
boat when it goes almost downwind. The difference is clear when we compare the
highest value of the CA of the rewards.

1e-19

0.020

0.015

22 0010

18 0005

0.000

0 200 400 600 800 1000 o 200 400 600 800 1000

Figure 4.2: Left CA of the rewards upwind, Right CA of the rewards almost downwind

In the case the boat goes almost downwind the agent is learning, in the case where
the boat is going against the wind the agent seems to barely learn anything.

Now that we confirmed that the agent is learning, we want to compare the results
of each reward function. In Fig. 4.3, we present the accuracies (left) and the corre-

26

sponding CA (right) for the case radius equals

information but for radius equals five.

Successes per episode - Radius 1

one.

C.A Successes - Radius 1

Successes

N

d;—ds
e—d
—d

C.A. Successes

0.8

0.7 1

o
o

=4
@

o
FS

Qe
\

di—df

Figure 4.3: Left: Successes over the episodes d < 1. Right: CA of successes over the

episodes d < 1.

400 600
Episodes

800

Successes per episode - Radius 5

1000

0 200 400 600

Episodes

800 1000

C.A Successes - Radius 5

800

600

Successes

200

Q-

dj—df
e-d
-d

C.A. Successes

0.87

0.6 4

0.21

0.0 4

Figure 4.4: Left: Successes over the episodes d < 5. Right: CA of successes over the

episodes d < 5.

In Table 4.1, we present the statistical analysis of the accuracy for radius one and

400 600
Episodes

800

1000

0 200 400 600

Episodes

800 1000

radius five for each one of the rewards functions.

27

In Fig. 4.4, we present the same

Accuracy d < 1 | Accuracy d < 5
d; —dy 75.6 +5.7 86.0 £ 2.6
e 65+ 14 79.0 £ 6.2
1/dy 56 + 14 7T7.5+£5.6
—dy 41+ 12 64.1 + 8.8

Table 4.1: Accuracies of “Sail Only” case.

In Fig. 4.5 we present two trajectories, one (left) when it sails almost downwind
and another one (right) where it should sail upwind in order to find the target.

30

20

-30

30

y@mﬁg

EEm Wind direction
mmm Heading
mmm Sail Direction 20

\ // 10

1000, 21, 0.000

EE Wind direction
B Heading
mmm Sail Direction

-30

-20 -10

0

10 20 30

Figure 4.5: Sail Only trajectories. Left: Almost Downwind. Right: Upwind

It is now clear that if we aim to sail downwind to find the target the “Sail Only”
case is satisfactory, on the other hand if we need to sail upwind, the only sail case is

not enough to help the sailboat find the target.

4.1.2 Sail and rudder

In Fig. 4.6, we present the CA of the rewards of the four reward functions, in the
case the boat travels almost downwind.

28

C.A of Rewards over Episodes

104

0.8

0.6 1

0.4 4

C.A. of Rewards

0.2 4

0.0 1

400 600 800

Episodes

0 200

Figure 4.6: CA of the rewards, “Sail and rudder” case

In Fig. 4.7, we present the accuracies (left) and the corresponding CA (right)
for the case radius equals one. In Fig. 4.8, we present the same information but for
radius equals five.

Successes per episode - Radius 1

C.A Successes - Radius 1

500

400 1 ——

Successes
w
8
g

~
o
3

100

1
d
d;—ds
e—d

—d

0.5 1

o
W

C.A. Successes
o
S

0.19

0.0 1

049 ——

1
d
di—df
ed

—d

Figure 4.7: Left: Successes over the episodes d < 1. Right: CA of successes over the

episodes d < 1.

200 400 600 800
Episodes

1000 0

29

200

400 600 800 1000

Episodes

Successes per episode - Radius 5 C.A Successes - Radius 5

— 1 104

700 d
di—dr
e-d

— -d

600 0.8 1

500

2
]
C.A. Successes
o
3

Successes
o
=

w
=1
S

w
=1
3

0.2

-
°
S

o

0.0 1

0 200 400 600 800 1000 0 200 400 600 800 1000
Episodes Episodes

Figure 4.8: Left: Successes over the episodes d < 5. Right: CA of successes over the
episodes d < 5.

In Table 4.2, we present the statistical analysis of the accuracy for radius one and
radius five for each one of the rewards functions.

Accuracy d < 1 | Accuracy d < 5
e~ s 46.6 +£ 7.5 72.9+4.3
1/dy 43.5 £ 6.7 73.3+£3.6

d; — dy 38.2+3.9 64.3 + 2.6
—dy 31.2+4.0 62.6 + 3.8

Table 4.2: Accuracies of “Sail and rudder” case.

In Fig. 4.9, we present two trajectories, one (left) when it sails almost downwind
and another one (right) where it sails upwind in order to find the target.

30

mmm Heading
Helm
I Sail Direction

Helm
2 mm Sail Direction 20

30
mEm Wind direction o
70.74 ———
M mm Heading 1000, 40, 24.572 EEm \Wind direction

-30 -30

Figure 4.9: Sail and rudder trajectories. Left: Almost Downwind. Right: Upwind

On the contrary with the “Sail only” case, here the boat manages to find the
target position even when it needs to sail upwind. In Fig. 4.10, we present the CA
of the rewards, and in Fig. 4.11, the successes over the episodes for the upwind case.

C.A of Rewards over Episodes

0.5
0.4 1
n 4
L
2
©
= 02
)
<
s o014
<
U 007
-0.1
-0.2
[200 400 600 800 1000
Episodes

Figure 4.10: CA of the rewards against the wind

31

Successes per episode - Radius 1

Successes per episode - Radius 5

800

600

400

Successes

200

successes

800

Figure 4.11: Left: Successes over the episodes d < 1.

episodes d < 5.

200

400 600
Episodes

800

1000

32

400 600 800 1000
Episodes

Right: Successes over the

Chapter 5

Conclusion and future steps

In conclusion, based on the results of the “Sail Only” case and the “Sail and rudder”
case, it is clear that in order to sail in any direction we need to use the rudder. In
the next bulleted list, we present some of the future steps.

e To place all the sensors we have in the sailing boat and see how they work while
the boat is in the sea.

e To implement the Q-table we got from the simulation on the Esp32 controller
and let it control the sailboat.

e To add more sensors like cameras, sonar or radar for the sailboat to avoid
obstacles.

e To use more advanced versions of QQ-learning like Double Q-Learning or Deep
Q-Learning to compare with our current results to further evaluate the simple
Q-table approach.

e To use aerodynamics and hydrodynamics to simulate the sailboat in the sea and
how it generates lift and drag.

33

References

[1] https://pubs.aip.org/physicstoday/article/61/2/38/413188

[2] https://www.real-world-physics-problems.com/physics-of-sailing.html

[3] https://en.wikipedia.org/wiki/Forces_on_sails

[4] https://en.wikipedia.org/wiki/Apparent_wind

[5] https://en.wikipedia.org/wiki/Point_of_sail

[6] https://en.wikipedia.org/wiki/Model-free_(reinforcement_learning)

[7] https://www.simplilearn.com/tutorials/machine-learning-tutorial/what-is-q-learnir
[8] https://en.wikipedia.org/wiki/Reinforcement_learning

[9] https://en.wikipedia.org/wiki/Q-learning

[10] https://www.datacamp.com/tutorial/introduction-q-learning-beginner-tutorial

[11] https://www.amazon. com/ESP-WROOM-32-Development-Microcontroller-Integrated-Compz
dp/B08D5ZD5287th=1

[12] https://circuitsdyou.com/2018/12/31/esp32-devkit-esp32-wroom-gpio-pinout/

[13] https://www.amazon.com/Jeffergarden-Garden-Signal-Aluminum-Alloyed-Direction/
dp/BO7RXKCJIMX

[14] https://www.adafruit.com/product/1733

34

https://pubs.aip.org/physicstoday/article/61/2/38/413188
https://www.real-world-physics-problems.com/physics-of-sailing.html
https://en.wikipedia.org/wiki/Forces_on_sails
https://en.wikipedia.org/wiki/Apparent_wind
https://en.wikipedia.org/wiki/Point_of_sail
https://en.wikipedia.org/wiki/Model-free_(reinforcement_learning)
https://www.simplilearn.com/tutorials/machine-learning-tutorial/what-is-q-learning
https://en.wikipedia.org/wiki/Reinforcement_learning
https://en.wikipedia.org/wiki/Q-learning
https://www.datacamp.com/tutorial/introduction-q-learning-beginner-tutorial
https://www.amazon.com/ESP-WROOM-32-Development-Microcontroller-Integrated-Compatible/dp/B08D5ZD528?th=1
https://www.amazon.com/ESP-WROOM-32-Development-Microcontroller-Integrated-Compatible/dp/B08D5ZD528?th=1
https://circuits4you.com/2018/12/31/esp32-devkit-esp32-wroom-gpio-pinout/
https://www.amazon.com/Jeffergarden-Garden-Signal-Aluminum-Alloyed-Direction/dp/B07RXKCJMX
https://www.amazon.com/Jeffergarden-Garden-Signal-Aluminum-Alloyed-Direction/dp/B07RXKCJMX
https://www.adafruit.com/product/1733

[15] https://www.pinterest.com/pin/300615343848061518/

[16] Knudsen, Stig. (2013). Sail Shape Optimization with CFD.

[17) https://wolles-elektronikkiste.de/en/mpu9250-9-axis-sensor-module-part-1
[18] https://www.adafruit.com/product/746

[19] https://www.amazon.in/MG995-Metal-Servo-Motor-180-degrees/dp/B098314MVM
[20] https://www.pinterest.com/pin/300615343848061518/

[21] Theofanis Gioumatzidis Thesis

35

https://www.pinterest.com/pin/300615343848061518/
https://www.researchgate.net/publication/257143505_Sail_Shape_Optimization_with_CFD/citations
https://wolles-elektronikkiste.de/en/mpu9250-9-axis-sensor-module-part-1
https://www.adafruit.com/product/746
https://www.amazon.in/MG995-Metal-Servo-Motor-180-degrees/dp/B098314MVM
https://www.pinterest.com/pin/300615343848061518/
https://elocus.lib.uoc.gr/hierarchy/collection/010/040/010/index.tkl?search_type=simple&search_help=&display_mode=overview&wf_step=init&show_hidden=0&number=10&keep_number=&cclterm1=&cclterm2=&cclterm3=&cclterm4=&cclterm5=&cclterm6=&cclterm7=&cclterm8=&cclterm9=&cclfield1=&cclfield2=&cclfield3=&cclfield4=&cclfield5=&cclfield6=&cclfield7=&cclfield8=&cclfield9=&cclop1=&cclop2=&cclop3=&cclop4=&cclop5=&cclop6=&cclop7=&cclop8=&display_help=0&offset=11&search_coll[metadata]=0&search_coll[dlib]=1&&stored_cclquery=&skin=&rss=0&show_form=&clone_file=&export_method=none&display_mode=detail&offset=18&number=1&keep_number=10&old_offset=11&search_help=detail

Appendix A: Python Codes

class SailBoat:

def __init__(self):
self .observation_space_n = 16 # 360//36

self

self
self

.action_space_n
.wing_range = np
.wing_angles = n

action_space_n, endpoint

self

self
self

observation_space_n,

self
self

self.

self

self.
self.
self.

self
direction

self.

self.

self

self.
self.
self.
self.

self

self.

.wing_actions =
.state_range = 2
.states = np.lin

.field_size = [-
.time_step = 1

_position = np.
._trajectory = [

_wing_direction

._true_wind_dire

]
e

_wind_speed

_iterations =1
._total_reward =
FRAMES = []
position = self
heading = self.
wing_direction
.target_position

= 16 # 360//36

.pi

p-linspace(np.pi, 2*np.pi, self.

= False)

self .wing_range/self.action_space_n

*np.pi
space (0, self.state_range, self.

endpoint = False)

30,30]

array ([-25.0, -15.0]) # starting point
self . _position]

_heading = np.array([0,1]) # boad heading

= np.array([-1,0]) # wing position

_target_position = np.array([25,25]) # target position

ction = np.array([3,1]) # initial wind

.0 # wind speed

._position

_heading

= self._wing_direction

= self._target_position

true_wind_direction = self._true_wind_direction

36

self .wind_speed = self._wind_speed
self .velocity = self.get_velocity_xy ()

self .direction = self.get_direction()
self .accuracy_1 = 0
self.accuracy_5 = 0
self.acc_1 = []
self.acc_5 = []
self.acc_b_counter = False

def reset(self):
self.acc_b_counter = False
self.iterations = self._iterations
self.total_reward = self._total_reward
self._position = np.array([np.random.uniform(low=-25, high

=0) ,np.random.uniform(low=-25, high=0)])

self .position = self._position

self .trajectory = [self._position] #self._trajectory
self .heading = self._heading

self .wing_direction = self._wing_direction

self._target_position = np.array([np.random.uniform(low=0,
high=25) ,np.random.uniform(low=0, high=25)])

action = self.sample()
self._true_wind_direction = np.array([np.cos(action*self.
wing_actions), np.sin(action*self.wing_actions)])

self .target_position = self._target_position

self.true_wind_direction = self._true_wind_direction
self .wind_speed = self._wind_speed

self .velocity = self.get_velocity_xy ()

self.direction = self.get_direction()
self.state = self.get_state()
return self.state, {’velocity’: self.velocity}

def sample(self):
return np.random.randint (0, self.action_space_n)

def step(self, action):

self.iterations += 1

angle = self.get_angle(self.true_wind_direction, self.
direction)+np.pi/2

37

self .wing_direction = np.array([np.cos(action*self.
wing_actions+angle),
np.sin(actionx*self.
wing_actions+angle)])
self .velocity = self.get_velocity_xy ()
self .move ()
reward = self.reward
self.total_reward += reward
self .direction = self.get_direction()
next_state = self.get_state ()
done, truncated = self.game_over ()
if done == True:
self.acc_1.append(self.accuracy_1)
self.acc_5.append(self.accuracy_5)
return next_state, reward, done, truncated

def game_over (self):
if self.position[0] < self.field_size[0] or self.position [0]
> self.field_size[1]:
return True, False
if self.position[1] < self.field_size[0] or self.position([1]
> self.field_size[1]:
return True, False
if self.acc_b5_counter == False:
if self.distance_to_target(self.position) < 5:
self.accuracy_5 +=1
self.acc_5_counter = True
if self.distance_to_target (self.position) < 1:
self .accuracy_1 +=1
return True, False
if self.iterations > 500:
return True, False
return False, False

def get_true_wind_direction(self):
return self.true_wind_direction

def get_wind_speed(self):
return self.wind_speed

def move(self):
speed = self.get_wind_speed()
displacement = speed*self.velocity[1]
displacement = speed*self.norm(self.velocityl[1])
self .heading = self.velocity[1]
new_pos = self.position + displacement
self .trajectory.append(new_pos)

38

self .reward = self.distance_to_target(self.position) -
distance_to_target (new_pos)
self .position = new_pos

def distance_to_target(self, pos):
return np.linalg.norm(self.target_position - pos)

def get_direction(self):
return self.target_position - self.position

def get_velocity_xy(self):

u = self.get_projection(self.true_wind_direction, self.
wing_direction)

p = uxself .norm(self.wing_direction)

return [p, self.true_wind_direction - pl]

def get_state(self):

angle = self.get_angle(self.true_wind_direction, self.
direction)

return self.angle_to_state(angle)

def get_angle(self, vl, v2):
vl = self.norm(vl)
v2 = self.norm(v2)

a = np.inner(vl, v2)
if abs(a) < 1:

return np.arccos(a)
return O

def get_projection(self, vl, v2):
return np.inner(vl, v2)/np.linalg.norm(v2)

def norm(self, v):
if np.linalg.norm(v) < 0.00001:
return np.array([0,0])
return v/np.linalg.norm(v)

def render (self, episode):
traj_x = []
traj_y = []
for i in self.trajectory:
traj_x.append (i[0])
traj_y.append(i[1])

fig = plt.figure(figsize=(8, 8))

39

self.

plt.clf O

plt.cla()

plt.text (-25, 26, f"{episode}, {self.iterations}, {self.
total_reward:.3f}")

plt.xlim(self.field_size)

plt.ylim(self.field_size)

plt.grid)

origin = np.array([self.position]*5).T

plt.quiver (*np.array ([-25,25]).T, self.true_wind_direction
[0], self.true_wind_direction[1], color = [’k’], scale = 2,
scale_units = "inches", units = "inches",label = ’Wind direction’
)

plt.plot (*self.target_position, "r+", markersize = 15)

plt.scatter (*np.array(self.trajectory).T, s=15, ¢ = "pink")

plt.plot(traj_x,traj_y,color = ’b’)

plt.quiver (xorigin, self.heading([0],self.heading([1],color =
’gray’,scale = 2, scale_units = "inches", units = "inches",6label
= ’Heading’)

plt.quiver (xorigin, self.helm_turn[0],self.helm_turn[1],
color = ’y’,scale = 2, scale_units = "inches", units = "inches",
label = ’Helm?’)

plt.quiver (xorigin, self.wing_direction[0], self.
wing_direction[1],color = ’g’,scale = 2, scale_units = "inches",
units = "inches",label = ’Sail Direction’)

plt.legend ()

plt.savefig("env.png")
plt.show ()

Listing 5.1: “Sail Only” class

40

class SailBoat:

def __init__(self):

self.observation_space_n = 16 # 360//36

self.action_space_n = 16 # 360//36

self.sail_angles = np.linspace(np.pi, 2*np.pi, self.
action_space_n, endpoint = False)

self .helm_angles = np.array([211, 241., 271., 301., 331.])%*
np.pi/180

self .state_range = 2*np.pi

self.states = np.linspace(0, self.state_range, self.
observation_space_n, endpoint = False)

self.field_size = [-30,30] #environment size

self.time_step = 1 #the time step for decision of the boat

self. _position = np.array([0,-25.0]) # starting point

self. _trajectory = [self._position]

self._heading = np.array([0,1]) # boad heading (maybe faces
north)

self._sail_direction = np.array([-1,0]) # wing position (

and maybe faces west)
self . _target_position = np.array([0,20]) # target position
self._helm_diff = np.array([0,0])
self._true_wind_direction = np.array([0,-1]) # initial wind
direction
self. _wind_speed = 1.0 # wind speed

self._iterations = 1

self._total_reward = 0

self .position = self._position

self .heading = self._heading

self.sail_direction = self._sail_direction
self.target_position = self._target_position

self .true_wind_direction = self._true_wind_direction
self .wind_speed = self._wind_speed

self.velocity = self.get_velocity_xy()
self .direction self.get_direction()

self .helm_turn = -self._heading
self.helm_diff = self._helm_diff
self .accuracy_1 = 0
self .accuracy_5 = 0

self.acc_1 = []
self.acc_5b []

self.acc_5_counter = False
def reset(self):
self.acc_b_counter = False

41

self.iterations = self._iterations
self.total_reward = self._total_reward

self. _position = np.array([0, np.random.randint(-25, 0)])

self .position = self._position

self .trajectory = [self._position] #self._trajectory
self .heading = self._heading

self.sail_direction = self._sail_direction

self.helm_direction = self._helm_direction

self .helm_turn = -self._heading

self .helm_diff = self._helm_diff
self .state = self.get_state()

return self.state

def sample(self):
return [np.random.randint (0, self.action_space_n) ,np.random.
randint (0, int(self.action_space_n/4))]

def step(self, action):

self .iterations += 1

start_angle = np.arctan(self.heading[1]/self.heading[0]) -
np.pi/2

self.sail_direction = np.array([np.cos(self.sail_angles]|[
action[0]]+start_angle) ,np.sin(self.sail_angles[action[0]]+
start_angle)])

self .helm_turn = np.array([np.cos(self.helm_angles[action
[1]]+start_angle) ,np.sin(self.helm_angles[action[1]]l+start_angle)
D

self .helm_proj = self.get_projection(self.helm_turn,-self.
heading)*self .unitary(-self.heading)

self .helm_vel = np.array(self.helm_turn) - np.array(self.
helm_proj)

self .velocity = self.get_velocity_xy ()

self .move ()

reward = self.reward

self .direction = self.get_direction()

next_state = self.get_state()

done, truncated = self.game_over ()

self.total_reward += reward

if done == True:
self.acc_1.append(self.accuracy_1)
self.acc_5.append(self.accuracy_5)

return next_state, reward, done, truncated

42

def

game_over (self):
if self.position[0] < self.field_size[0] or self.position [0]

> self.field_size[1]:

return True, False
if self.position[1] < self.field_size[0] or self.position[1]

> self.field_size[1]:

def

def

def

return True, False
if self.acc_b_counter == False:
if self.distance_to_target(self.position) < 5:
self.accuracy_5 +=1
self.acc_b5_counter = True
if self.distance_to_target (self.position) < 1:
self .accuracy_1 +=1
return True, False
if self.iterations > 500:
return True, False
return False, False

get_true_wind_direction(self):
return self.true_wind_direction

get_wind_speed (self):
return self.wind_speed

move (self):
speed = self.get_wind_speed()
displacement = speed*self.velocity[1]
new_dir = self.velocity + self.helm_vel
displacement = speed#*self.unitary(new_dir)
self .ex_heading = self.heading
self .heading = self.unitary(new_dir)
ex_pos = (self.distance_to_target(self.position))
new_pos = self.position + displacement

self .trajectory.append(new_pos)
self .position = new_pos
self .reward = ex_pos - (self.distance_to_target (self.

position))

def

def

def

distance_to_target (self, pos):
return np.linalg.norm(self.target_position - pos)

get_direction(self):
return self.target_position - self.position

get_velocity_xy(self):
u = self.get_projection(self.true_wind_direction, self.

43

sail_direction) #gets the projection in the direction of the wing

p = uxself.unitary(self.sail_direction) #it multiplies the
projection with the unitary vector?
diff = self.true_wind_direction - p #it returmns the force

direction that is applied from the sail

heading_vel = self.get_projection(diff, self.heading)*self.
unitary (self.heading)

we take though only the heading projection of the force

because of the opposite forces from the keel

return heading_vel

def target_vector (self):
return self.target_position - self.position

def get_state(self):

apparent_wind = self.true_wind_direction - self.heading
vector = self.target_vector ()
angle = self.get_angle (apparent_wind, vector)

return self.angle_to_state (angle)

def angle_to_state(self, angle):
if angle < 0.001: returmn O
return np.where(self.states < angle) [0][-1]

def get_angle(self, vl, v2):
vl self .unitary(vl)
v2 self .unitary(v2)
a = np.inner(vli, v2)
if abs(a) < 1:
return np.arccos(a)
return O

def get_projection(self, vl1, v2):
return np.inner(vl, v2)/np.linalg.norm(v2)

def unitary(self, v):
if np.linalg.norm(v) < 0.00001:
return np.array ([0,0])
return v/np.linalg.norm(v)

def render (self, episode):
traj_x = []

44

traj_y = []

for i in self.trajectory:
traj_x.append(i[0])
traj_y.append(il[1])

fig = plt.figure(figsize=(8, 8))

plt.clf ()

plt.claQ)

plt.text (-25, 26, f"{episode}, {self.iterations}, {self.
total_reward:.3f}")

plt.xlim(self.field_size)

plt.ylim(self.field_size)

plt.grid)

origin = np.array([self.position]*5).T

plt.quiver (*np.array ([-25,25]) .T, self.true_wind_direction
[0], self.true_wind_direction[1], color = [’k’], scale = 2,
scale_units = "inches", units = "inches",label = ’Wind direction’
)

plt.plot(xself.target_position, "r+", markersize = 15)

plt.scatter (*np.array(self.trajectory).T, s=15, ¢ = "pink")

plt.plot(traj_x,traj_y,color = ’b’)

plt.quiver (xorigin, self.headingl[0],self.heading[1],color =
’gray’,scale = 2, scale_units = "inches", units = "inches",label
= ’Heading’)

plt.quiver (xorigin, self.helm_turn[0],self.helm_turn[1],
color = ’y’,scale = 2, scale_units = "inches", units = "inches",
label = ’Helm’)

plt.quiver (xorigin, self.sail_direction[0], self.
sail_direction[1],color = ’g’,scale = 2, scale_units = "inches",
units = "inches",label = ’Sail Direction’)

plt.legend ()

plt.show ()

Listing 5.2: “Sail and rudder” class

45

Appendix B: Hardware Codes

In this chapter we will present the independent codes for each electronic device.

int sensorPin = 34;

int sensorValue = O0;

float sensorVoltage = O;

float windSpeed = 0;

int resolution = 12;

long resolutionRange = pow(2, resolution) - 1;

float conversion=3.3/resolutionRange;
int sensordelay = 1000;

float voltageMin = 0.52;

float windSpeedMin = 0;

float voltageMax = 2.0;

float windSpeedMax = 32.4;

void O A
Serial.begin (9600) ;
}

void O {

sensorValue = analogRead(sensorPin);
sensorVoltage = sensorValue *conversion;
(sensorVoltage <= voltageMin){
windSpeed = O0;
} {
windSpeed = (sensorVoltage - voltageMin)*windSpeedMax/(
voltageMax-voltageMin) ;

3

Serial.print("Voltage: ");
Serial.print(sensorVoltage);
Serial.print("\t");
Serial.print ("Wind speed: ");
Serial.println(windSpeed) ;

46

delay (sensordelay) ;

}
void readWindSpeed () A

float sensorValue = analogReadMilliVolts(sensorPin);
Serial.print("Analog Value = ");
Serial .print (sensorValue) ;

Serial.print (" ");
Serial.print(resolutionRange) ;

float voltage = (sensorValue / resolutionRange) * 3.3 ;
Serial.print (" Voltage = ");

Serial.print(voltage);

Serial.print (" V");

Serial.print (" ");
float wind_speed = mapWindSpeed(voltage, 0.5, 2.0, 0.0, 32.4)*3.6;
Serial.print ("Wind Speed =");
Serial.print(wind_speed) ;
Serial.println("km/h");
}

float mapWindSpeed(float v, float v_min, float v_max, float ws_min,
float ws_max) {

(v < v_min) {
0;

(v - v_min) * (ws_max - ws_min) / (v_max - v_min) + v_min

Listing 5.3: Wind Speed Program

47

#include <ModbusMaster.h>
#define MAX485_DE 23
#define MAX485_RE_NEG 5 // 22

ModbusMaster node;

void preTransmission ()

digitalWrite (MAX485_RE_NEG, 1);

digitalWrite (MAX485_RE_NEG, 0);

pinMode (MAX485_RE_NEG, OUTPUT);

digitalWrite (MAX485_RE_NEG, 0);

Serial);

node.preTransmission(preTransmission) ;
node.postTransmission(postTransmission);

node.readHoldingRegisters (0x0017, 1);

node . ku8MBSuccess)

int dir_value=node.getResponseBuffer (0x00);
Serial.println(dir_value);

{
digitalWrite (MAX485_DE, 1);
}
void postTransmission ()
{
digitalWrite (MAX485_DE, 0);
3
void O
{
pinMode (MAX485_DE, OUTPUT);
digitalWrite (MAX485_DE, 0);
Serial.begin (9600) ;
node.begin (1,
}
void O
{
uint8_t result;
(result ==
{
Serial.print("Vbatt: ");
}
delay (100) ;
}

Listing 5.4: Wind Direction Program

48

#include <TinyGPS++.h>

#include <SoftwareSerial.h>

int TXPin = 17;//8 ; //17;

int RXPin = 16;//7 ; //16;

int GPSBaud = 9600;

TinyGPSPlus gps;

SoftwareSerial gpsSerial (TXPin, RXPin);

void O
{
Serial.begin (9600) ;
gpsSerial.begin (GPSBaud) ;
(!gpsSerial)A{

Serial.println("Invalid SoftwareSerial pin configuration,

config");
while (1) {
delay (1000);

}
}
{
Serial.println("GPS Serial is ready!");
}
}
void O
{
while (gpsSerial.available() > 0)
(gps.encode (gpsSerial.read()))
displayInfo();
(millis () > 5000 && gps.charsProcessed() < 10)
{
Serial.println("No GPS detected");
delay (5000) ; //while(true);
}
}
void displayInfo ()
{
(gps.location.isValid())
{
Serial.print("Latitude: ");

Serial.println(gps.location.lat(), 6);
Serial.print("Longitude: ");
Serial.println(gps.location.lng(), 6);
Serial.print("Altitude: ");
Serial.println(gps.altitude.meters());

49

check

{
Serial.println("Location: Not Available");
}
Serial.print("Date: ");
(gps.date.isValid ())
{
Serial.print(gps.date.month());
Serial.print("/");
Serial.print (gps.date.day());
Serial.print("/");
Serial.println(gps.date.year());

{
Serial.println("Not Available");
}

Serial.print ("GMT Time: ");
(gps.time.isValid (D)
{

(gps.time.hour () < 10) Serial.print(F("0"));
Serial.print (gps.time.hour());

Serial.print(":");

(gps.time.minute() < 10) Serial.print(F("0"));
Serial.print (gps.time.minute());
Serial.print(":");

(gps.time.second () < 10) Serial.print(F("0"));
Serial.print(gps.time.second());
Serial.print(".");

(gps.time.centisecond () < 10) Serial.print(F("0"));
Serial.println(gps.time.centisecond());

}

{

Serial.println("Not Available");
}
Serial.println();
Serial.println();
delay (10000) ;

Listing 5.5: GPS Program

20

#include <MPU9250_WE.h>

#include <Wire.h>

#define MPU9250_ADDR 0x68

MPU9250_WE myMPU9250 = MPU9250_WE (MPU9250_ADDR) ;

void O A

Serial.begin(115200) ;
Wire.begin () ;

(!myMPU9250.init ()){

Serial.println("MPU9250 does not respond");
}

{

Serial.println("MPU9250 is connected");
}

(!'myMPU9250.initMagnetometer ()){

Serial.println("Magnetometer does not respond");
}

{

Serial.println("Magnetometer is connected");
}
Serial.println("Position you MPU9250 flat and don’t move it -

calibrating...");
delay (5000) ;
myMPU9250 . auto0ffsets () ;
Serial.println("Done!");
myMPU9250 . enableGyrDLPF () ;
myMPU9250 . setGyrDLPF (MPU9250_DLPF_6) ;
myMPU9250 . setSampleRateDivider (5) ;
myMPU9250 . setGyrRange (MPU9250_GYRO_RANGE_250) ;
myMPU9250 .setAccRange (MPU9250_ACC_RANGE_2G) ;
myMPU9250 . enableAccDLPF (true) ;
myMPU9250 . setAccDLPF (MPU9250_DLPF_6) ;
myMPU9250 . setMagOpMode (AK8963_CONT_MODE_100HZ) ;
delay (200) ;

void O A
xyzFloat gValue = myMPU9250.getGValues () ;
xyzFloat gyr = myMPU9250.getGyrValues () ;
xyzFloat magValue = myMPU9250.getMagValues () ;
float temp = myMPU9250.getTemperature();
float resultantG = myMPU9250.getResultantG(gValue) ;

Serial.println("Acceleration in g (x,y,z):");
Serial.print(gValue.x);

Serial.print (" ")

Serial.print(gValue.y);

o1

Serial.print (" ")
Serial.println(gValue.z);
Serial.print("Resultant g: ");
Serial.println(resultantG);

Serial.println("Gyroscope data in degrees/s: ");
Serial.print(gyr.x);

Serial.print (" ")

Serial.print(gyr.y);

Serial.print (" ")

Serial.println(gyr.z);

Serial.print ("Temperature in C : ");
Serial.println(temp) ;

Serial . primtLm (" ks sk sk kok ok sk ok ok ok k ok ok K Kok ok o K Kok ok KK Kok ok KKKk KR Kok 1)
delay (5000) ;

Listing 5.6: Accelerometer Program

92

int sensorPin = 34;

int sensorValue = 0;

float sensorVoltage = O;

float windSpeed = O0;

int resolution = 12;

long resolutionRange = pow(2, resolution) - 1;
float conversion=3.3/resolutionRange;

int sensordelay = 1000;

float voltageMin = 0.52;

float windSpeedMin
float voltageMax =
float windSpeedMax

N
o

void O A
Serial.begin (9600) ;
}

void O {

sensorValue = analogRead(sensorPin);
sensorVoltage = sensorValue *conversion;
(sensorVoltage <= voltageMin){
windSpeed = 0;
} {
windSpeed = (sensorVoltage - voltageMin)*windSpeedMax/(
voltageMax-voltageMin) ;

}

Serial.print("Voltage: ");
Serial.print(sensorVoltage);
Serial.print ("\t");
Serial.print ("Wind speed: ");
Serial.println(windSpeed);

delay (sensordelay);

X

void readWindSpeed () A
float sensorValue = analogReadMilliVolts (sensorPin);
Serial.print ("Analog Value = ");

Serial.print(sensorValue);

Serial.print (" ");
Serial.print(resolutionRange);

23

float voltage = (sensorValue / resolutionRange) * 3.3
Serial.print (" Voltage = ");

Serial.print(voltage);

Serial.print (" V");

’

Serial.print (" ");

float wind_speed = mapWindSpeed(voltage, 0.5, 2.0, 0.0, 32.4)%*3.6;
Serial.print("Wind Speed =");
Serial.print(wind_speed) ;
Serial.println("km/h");
}

float mapWindSpeed(float v, float v_min, float v_max,

float ws_min,
float ws_max) {

(v < v_min) {
0;

(v - v_min) * (ws_max - ws_min) / (v_max - v_min) + v_min

Listing 5.7: Wind Speed Program

o4

	Introduction
	Theory
	Physics of Sailing
	Forces
	Apparent Wind
	Points of Sail

	Q-Learning
	Basic Concept
	Q-Learning Algorithm

	Methodology
	Simulated Environment
	Sail Only Environment
	Sail and rudder Environment

	Electronic Setup
	Micro-controller - Esp32 Dev Module
	MPU 9250
	GPS
	Anemometer
	Wind Direction Sensor
	Servo Motor
	Circuit

	Model Boat

	Results
	Simulated Environment
	Sail Only
	Sail and rudder

	Conclusion and future steps
	References
	Appendix A: Python Simulation Code
	Appendix B: Hardware Codes

