
Design and Implementation of a Social

Networking Architecture for Cloud Deployment

Specialists

Christos Papoulas

Thesis submitted in partial ful�llment of the requirements for the

Masters' of Science degree in Computer Science

University of Crete
School of Sciences and Engineering
Computer Science Department

Voutes University Campus, P.O. Box 2208, Heraklion, GR-70013, Greece

Thesis Advisor: Prof. Manolis G.H. Katevenis

This work has been performed at the University of Crete, School of Science and Engineering,
Computer Science Department and at the Institute of Computer Science (ICS) - Foundation for
Research and Technology - Hellas (FORTH), Heraklion, Crete, GREECE.
The work is partially supported by the PaaSage (FP7-317715) EU project.





University of Crete

Computer Science Department

Design and Implementation of a Social Networking Architecture for

Cloud Deployment Specialists

Thesis submitted by
Christos Papoulas

in partial ful�llment of the requirements for the
Masters' of Science degree in Computer Science

THESIS APPROVAL

Author:
Christos Papoulas

Committee approvals:
Manolis G.H. Katevenis
Professor, Thesis Advisor

Kostas Magoutis
Assistant Professor, University of Ioannina, Thesis Co-advisor

Dimitris Plexousakis
Professor, Committee Member

Departmental approval:
Antonis Argyros
Professor, Director of Graduate Studies

Heraklion, October 2015





Abstract

A new discipline at the intersection of the development and operation of soft-
ware systems known as DevOps has seen signi�cant growth recently. A class of
DevOps engineers that are experts in the con�guration and deployment of ap-
plications on cloud environments (also known as cloud deployment specialists),
increasingly use automated deployment and release-engineering tools like Chef and
IBM Bluemix to con�gure and deploy their applications. Despite the advent of
automated mechanisms, reasoning about good deployments still requires interac-
tion with experts, often through discussions on online technical forums and social
networks.

Within the DevOps community, communication on application structure and
cloud deployment tradeo�s could become more e�ective by bridging social network-
ing technologies with knowledge present in global community-sourced information
repositories. In this work we propose a social networking architecture (named after
the PaaSage EU project) where cloud deployment specialists can express applica-
tions and their requirements as software models (using the Cloud Application Mod-
eling and Execution Language or CAMEL), capture execution results from various
multi-cloud platforms into a speci�cally-created information repository, and com-
municate with their peers on design and deployment issues, including deployments
tradeo�s.

The implementation of the PaaSage social networking architecture provides
users with information mined from collected executions of distributed applications,
facilitating their choice of deployment platform based on various criteria (such as
cost e�ectiveness). Our investigation explores and evaluates several techniques to
improve the scalability of the platform. Finally, to better direct cloud deployment
specialists to possible answers to their questions we leverage topic-classi�cation
tools to associate user questions with related questions-and-answers (some of which
may contain the results of queries on the historical execution information). Our
implementation is in pilot use within the PaaSage project since March 2015.





Περίληψη

Μια νέα τάση που γεφυρώνει την ανάπτυξη με την λειτουργία των κατανεμημένων

εφαρμογών, γνωστή ως DevOps, έχει γνωρίσει σημαντική ανάπτυξη τα τελευταία
χρόνια. Μηχανικοί DevOps με εξειδίκευση στην προσαρμογή και εγκατάσταση εφαρ-
μογών σε περιβάλλοντα υπολογιστικού νέφους (γνωστοί και ως cloud deployment
specialists), χρησιμοποιούν όλο και περισσότερο συγκεκριμένα εργαλεία για την εγ-
κατάσταση και λειτουργία των εφαρμογών τους, όπως το Chef και το IBM Bluemix.
Παρά την σημαντική αυτοματοποίηση που προσφέρουν αυτά τα εργαλεία, η εύρεση των

χαρακτηριστικών μιας επιτυχούς εγκατάστασης κατά περίπτωση απαιτεί συζήτηση με

ειδικούς, συχνά σε διαδικτυακά τεχνικά φόρουμ και κοινωνικά δίκτυα.

Εντός της κοινότητας των μηχανικών DevOps, η συζήτηση γύρω από την δομή
των εφαρμογών και την επίδραση των διαφόρων παραμέτρων εγκατάστασης τους σε

υπολογιστικά νέφη μπορεί να γίνει πιο εποικοδομητική αν οι τεχνολογίες κοινωνικής

δικτύωσης εμπλουτιστούν με την γνώση που υπάρχει σε αποθετήρια δεδομένων χρη-

στών της κοινότητας DevOps (όπως π.χ. το Chef Supermarket). Σε αυτήν την ερ-
γασία προτείνουμε μια αρχιτεκτονική κοινωνικής δικτύωσης (που παίρνει το όνομά της

από το PaaSage EU project) όπου οι χρήστες μπορούν να περιγράψουν τις εφαρμογές
και τις απαιτήσεις τους ως μοντέλα εφαρμογών (χρησιμοποιώντας την Cloud Appli-
cation Modeling and Execution Language ή CAMEL). Η πλατφόρμα υποστηρίζει
την συλλογή αποτελεσμάτων εκτελέσεων των εφαρμογών σε πολλαπλά υπολογιστικά

νέφη και την αποθήκευσή τους σε ειδικά σχεδιασμένο αποθετήριο δεδομένων.

Η υλοποίηση της αρχιτεκτονικής κοινωνικής δικτύωσης PaaSage παρέχει στους
χρήστες πληροφορίες που έχουν προέλθει από ιστορικά δεδομένα εκτελέσεων κα-

τανεμημένων εφαρμογών, διευκολύνοντάς τους στην επιλογή εγκατάστασης (ποιές

υποδομές νέφους, ποιοί τύποι εικονικών μηχανών, κλπ) με βάση σύνθετα κριτήρια,

όπως η ανάλυση κόστους-αποτελεσματικότητας (cost e�ectiveness). Στην εργασία
διερευνούνται και αξιολογούνται τεχνικές για την βελτίωση της κλιμακωσιμότητας

της πλατφόρμας. Τέλος, για την καλύτερη καθοδήγηση των χρηστών που θέτουν

τεχνικές ερωτήσεις, στις βέλτιστες πιθανές απαντήσεις, αξιοποιούμε συστήματα κατη-

γοριοποίησης θεμάτων για την συσχέτιση ερωτήσεων των χρηστών με αποθηκευμένες

ερωτήσεις και απαντήσεις (μερικές από τις οποίες περιλαμβάνουν αποτελέσματα από

επερωτήσεις (queries) επί ιστορικών δεδομένων αποτελεσμάτων εκτελέσεων εφαρμο-
γών). Η υλοποίηση είναι σε πιλοτική λειτουργία εντός του έργου PaaSage από τον
Μάρτιο του 2015.





Acknowledgements

There are so many people that I would like to thank, each one helped me in
their own special way.

First of all, I would like to thank my co-advisor Professor Kostas Magoutis for
guiding and having trust in this work, but mainly I would like to thank him for
his continuous enthusiasm and willingness to help me at every stage of this thesis.
I would also like to thank my advisor Professor Manolis Katevenis.

I want to acknowledge Antonis Papaioannou, Emmanouil Papoutsakis, mem-
bers of PaaSage team for their valuable feedback on my work as well as Maria
Korozi, Asterios Leonidis and Stavroula Ntoa for the collaboration during the jisa
journal publication and the design of the user interface.

I need to express my gratitude to the University of Crete and the Department of
Computer Science; as well as the Institute of Computer Science of the Foundation
for Research and Technology for supporting me.

During my time in Heraklion, I have been fortunate to enjoy the friendship of
a number of special people. I would like to give my appreciation to my friends,
Theodoros Sfakianakis, John Bikouvarakis, Christos Mousamatas and Apostolis
Matthaiakis for the encouragement and the support during my undergraduate and
graduate studies as well as for the great moments we had together during these
years.

I would also to thank my partner, Natalia Athanasiadi, for all her love, support,
patience and encouragement. It was her continued encouragement that got me
through this process.

This thesis is dedicated to the memory of my mother Chariklia Laggourani who
passed away in 2015 at the age of 63. She passed away just two months before this
thesis was �nished and at the last of her days she was proud of my achievements
in completing my master's thesis.

Christos Papoulas





Contents

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related Work 7

2.1 Professional and social networks . . . . . . . . . . . . . . . . . . . . 7
2.2 Scalability in social networks . . . . . . . . . . . . . . . . . . . . . 10
2.3 Con�guration management and deployment . . . . . . . . . . . . . 11
2.4 Topic classi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Implementation 15

3.1 Social networking platform . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.1 Extending the core Elgg platform . . . . . . . . . . . . . . . 20
3.1.2 Communicating with CDO server . . . . . . . . . . . . . . . 21

3.2 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.1 Social networking engine . . . . . . . . . . . . . . . . . . . . 22
3.2.2 Memcached . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Topic classi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.1 Bayes classi�cation algorithm . . . . . . . . . . . . . . . . . 28
3.3.2 Automated answers . . . . . . . . . . . . . . . . . . . . . . 29

3.4 User interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.1 Design principles . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Generating application models . . . . . . . . . . . . . . . . . . . . . 33
3.5.1 Baseline models . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5.2 Graphical modeling . . . . . . . . . . . . . . . . . . . . . . . 37

4 Evaluation 39

4.1 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.1 Scaling the caching tier . . . . . . . . . . . . . . . . . . . . 40
4.1.2 Scaling the Elgg engine tier . . . . . . . . . . . . . . . . . . 42

4.2 Topic classi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Requirements and user interface . . . . . . . . . . . . . . . . . . . . 45

5 Conclusions and Future Work 49

I



II



List of Figures

1.1 CAMEL DSLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 An application model view from EMF editor . . . . . . . . . . . . . 4

3.1 The overall social networking architecture . . . . . . . . . . . . . . 16
3.2 Architecture of the Elgg social networking engine . . . . . . . . . . 17
3.3 The Elgg engine data model . . . . . . . . . . . . . . . . . . . . . . 18
3.4 The structure of the application description plug-in . . . . . . . . . 19
3.5 The scenario (a) depicts a request from memcached when the key

does not exist and scenario (b) depicts an updated operation of a
value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.6 A real example question from StackOver�ow . . . . . . . . . . . . . 26
3.7 Classi�cation of questions and automated feedback to user . . . . . 27
3.8 The main StackOver�ow users' actions and the topic classi�er . . . 28
3.9 Automated answer to user's question . . . . . . . . . . . . . . . . . 30
3.10 Engineering and social activities are seamlessly interweaved within

the social networking platform . . . . . . . . . . . . . . . . . . . . . 31
3.11 The application model home page . . . . . . . . . . . . . . . . . . . 32
3.12 Steps for automated creation of baseline model . . . . . . . . . . . 35
3.13 Final step of automated creation of baseline model. . . . . . . . . . 36
3.14 GMF editor composition of a sample application . . . . . . . . . . 37

4.1 The average response time for all con�gurations . . . . . . . . . . . 41
4.2 The average CPU utilization for all components . . . . . . . . . . . 42
4.3 The response time for two social network engines . . . . . . . . . . 43
4.4 The CPU utilization for two social network engines . . . . . . . . . 44
4.5 Features that were mostly liked by the users . . . . . . . . . . . . . 46

III



IV



List of Tables

2.1 Feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Training algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Number of queries from social network and CDO server repository 40
4.2 VM resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 Evaluation of topic classi�cation . . . . . . . . . . . . . . . . . . . 45

V



VI



Chapter 1

Introduction

A new discipline at the intersection of the development and operation of distributed
software systems, known as DevOps [1], has seen signi�cant growth recently. The
DevOps community comprises engineers from the development and operations
�elds, including programmers, testers, quality assurance sta� [2], system admin-
istrators, and others. These professionals require di�erent tools for carrying out
their daily tasks, such as building applications, testing, deploying routines, con-
�guration, automation of utilities, tracking and versioning in systems. With the
advent of cloud computing, a new breed of DevOps professionals, cloud deployment
specialists has emerged. Cloud deployment specialists are responsible for the con-
�guration, provisioning, deployment, testing, and lifecycle management of hosted
application solutions. They typically have thorough industry knowledge on all ar-
eas related to the secured hosting and lifecycle management of cloud applications.

A number of automated tools are available for cloud deployment specialists
today. One such tool is Chef and its associated repository, Chef Supermarket [3].
Chef is an application con�guration framework that makes it easy to deploy appli-
cations on servers on any physical, virtual, or cloud location. The representation
of the application resembles code using Chef cookbooks. Another such tool is IBM
Bluemix [4], a development and support platform for communities of DevOps users
wishing to compose distributed applications out of components drawn from libraries
and deploy them at IBM-provided and supported cloud infrastructure. Both tools
however provide only minimal community interaction facilities and do not collect
nor leverage any past (historical) experience on application deployments.

Today DevOps cloud deployment specialists exhibit the need to communicate
through traditional social networks and other online fora, to exchange views and
potential solutions on the cloud deployment of applications. The current status in
this space, however, can be improved. A motivation for this thesis was the need
to improve the e�ciency of the interaction and communication between cloud de-
ployment specialists, coupling human interaction with knowledge present in crowd-
sourced repositories of information, as that would provide them with expert advice
and input that is not currently available through the use of automated tooling.

1



2 CHAPTER 1. INTRODUCTION

The topic of this thesis is thus the design and implementation of a social net-
working architecture targeted for cloud deployment specialists engineers. This
social network architecture binds several social networking concepts such as per-
sonal messaging, groups, live feeds, etc. with software-engineering concepts such
as the composition, deployment, monitoring, and analysis of executions of appli-
cations. The architecture integrates social networking with knowledge present in
a repository of cloud applications and infrastructure description based on Cloud
Application Modelling and Execution Language (CAMEL) [5]. Among the range
of possible DevOps tasks, the design of the social network architecture puts special
focus on one of the most challenging tasks of cloud deployment specialists: selecting
the most appropriate deployment con�guration for an application. This is espe-
cially challenging in a multi-cloud setting due to the large diversity of deployment
possibilities and tradeo�s.

Currently DevOps users work with a small set of well-understood deployment
options, missing on opportunities for improving performance, reliability and/or
lower cost. Investigation of new options involves time consuming testing over new
infrastructures. Discussing those topics with the community in online social or
technical forums may provide insight over deployment options; however, the answer
to a hard question often needs to be backed by experimental data that is not readily
available.

An integrated environment such as proposed in this thesis, comes to solve the
above issues by enriching user interactions with structured references to appli-
cations and their components, execution data, and mined knowledge from real
deployments. Mined knowledge can be combined with user activity and pro�les
to provide personalized suggestions and hints. An improved mode of user inter-
action is expected to result in stronger incentives for DevOps users to contribute
information to the underlying repositories. Richer content should lead to better
quality of mined knowledge, bene�ting the DevOps community and providing fur-
ther incentive for contributions. The social networking platform is designed to be
closely integrated with a set of information repositories satisfying the following re-
quirements: (R1) handle entire applications rather than just software components;
(R2) abstract application structure through software modeling; (R3) capture and
analyze application runtime performance. Existing repositories used in this thesis
include Chef Supermarket and the PaaSage CAMEL repository.

Broadening the focus from individual software components to entire applica-
tions and analyzing their execution data, can provide answers to many interesting
questions and support community discussions and arguments with hard data. We
believe that these requirements can provide software developers with strong urge
to contribute, leading to the sustainability and growth of information and derived
knowledge in the repository.

This thesis is structured as follows: Section 1.1 provides background on ap-
plication models and the CAMEL repository developed in the context of PaaSage
EU project. Chapter 2 describes previous work on the scalability of social net-
working platforms through caching mechanisms and on topic classi�cation. In



1.1. BACKGROUND 3

Chapter 3, we describe the implementation of the social networking architecture1,
and in Chapter 4 we present our evaluation. Finally, in Chapter 5 we present our
conclusions.

1.1 Background

This section presents an overview of the descriptions of the application models that
are available on the social network platform and a summary of the technologies
that are used by the PaaSage in order to assist the cloud deployment specialists to
deploy the aforementioned application models.

Application models inside social network platform are described in CAMEL.
CAMEL integrates various domain-speci�c languages (DSLs). DSLs provide a
notation tailored towards an application domain and are based on the relevant
concepts and features of that domain. As such, a DSL is a means to describe
and generate members of a family of programs in the domain. These DSLs cover
a wealth of aspects of speci�cation and execution of multi-cloud applications like
CloudML, Scalability rules, WS Agreement, Saloon and Historical Execution Data.

CloudML [7] is a recent approach that focuses on the provisioning and deploy-
ment of multi-cloud applications, is built upon MDE techniques and methods, and
provides a models@run-time [8] environment for enacting the provisioning. WS
Agreement [9] is a Web Services protocol for establishing agreement between two
parties, such as between a service provider and customer. Saloon [10] is an ap-
proach that uses models to represent clouds variability, as well as ontologies to
describe the heterogeneous aspect of the cloud ecosystem. The CAMEL model
assembles all those DSLs as shown in Figure 1.1.

CAMEL is using the Eclipse Modelling Framework (EMF) [11] on top of the
Connected Data Objects (CDO) [12] [13]. Application Models are persisted on
the CDO repository. EMF is used as a building tool for the application mod-
els. CAMEL model speci�cation is written in XMI format (XML Metadata In-
terchange) which is a standard for exchanging metadata information via Exten-
sible Markup Language (XML). Thus, XMI consists the main describing system
of CAMEL and EMF provides tools that enable viewing and command-based or
tree-based editing of the application models.

A representation of a model using the EMF editor is shown in Figure 1.2.
The cloud deployment specialist can add all the information needed for the de-
ployment of the application. For example, the �gure 1.2 shows the �Deployment
Model�, which contain the con�guration of CloudML. This information is needed
for the application to be deployed. The �Provider Model� and the �Location Model�
contains information about the cloud providers that will be used for this speci�c
deployment of the application. This application has not any historical executions
yet, but after the deployment it will be populated with those data.

1The user interface (UI) design and usability evaluation was the result of a collaboration with
the Human-Computer Interaction (HCI) laboratory of ICS-FORTH [6].



4 CHAPTER 1. INTRODUCTION

Figure 1.1: CAMEL DSLs

The CAMEL repository is currently being populated with a wealth of informa-
tion from multi-cloud deployments of various distributed applications [14]. Also,
SNP performs analytics over the CAMEL repository to extract knowledge about
deployments characteristics that work best for certain applications and use it in
the context of the professional network.

Figure 1.2: An application model view from EMF editor

The social network platform proposed in this thesis is part of the PaaSage
EU Project [15]. The PaaSage perspective is to be a tool for a cloud deployment
Specialist to leverage the complex task of deploying an application to the clouds.
Usually, a cloud deployment specialist could easily learn the interface and features
of one Cloud provider, but it would be very costly and time consuming to lever-
age the development to many providers. It is a real challenge to orchestrate the
simultaneous deployment to many di�erent Clouds at the same time. The main
objective of PaaSage is to assist the developer to deal with di�cult deployment
scenarios through automatic cloud deployment. In order to satisfy this, several
components are included to the PaaSage ecosystem. The Pro�ler components read
the CAMEL models and convert them into a constraint programming model by
de�ning the variables of the model, their domains, and the constraints that must



1.1. BACKGROUND 5

be satis�ed by the deployment. Also, the Pro�ler checks all constraints of the
CAMEL model and sets the domains of the variables accordingly. The reasoning
component analyses the model and �nds how deployment candidates should be
evaluated. Once a solution has been found, the reasoning component converts the
model to Cloud Provider Speci�c Models (CPSM) for the providers involved in the
proposed deployment. The adapter component takes the CPSMs, produces and
validates a con�guration plan, and sends this plan to the execution ware. The
execution ware [16] receives the deployment plan from the adapter and enacts the
deployment of the application on the selected providers. Furthermore, the ex-
ecution ware interacts with the Cloud providers, acquires the virtual machines,
con�gures them and launches the user application on the set of those machines.
Once the machines are running, the execution ware collects sensor data for the
running application, triggering re-con�gurations if necessary.

The social network platform brings to the DevOps users a friendly interface to
browse, discover, view and discuss Application Models. Furthermore, it presents a
way to deploy and run these Application Models, by using the previously mentioned
components under the hood, and mines their execution history data.

The key contributions of this social network platform (SNP) are the following:

• The SNP binds all the Social Networking aspects such as friends, new feeds,
personal messages etc. with the engineering aspects of creating and deploying
application models.

• The SNP brings the execution histories of the CAMEL applications in the
light, providing the end users the ability to browse, discuss, point and �nd
essential information needed for other applications.

• The SNP uses the best known practices both for the front end viewing system
and the back end technology.

• The SNP runs on a horizontal scale architecture with memcached at the back
end to reach near real time interaction.



6 CHAPTER 1. INTRODUCTION



Chapter 2

Related Work

In this chapter the related work of other professional networks is presented in
Section 2.1 and their caching architecture is described in Section 2.2. In addition,
the Section 2.3 describes related tools and systems that the DevOps use in order
to make their deployment faster. Finally, an overview and related work of topic
classi�cation is presented in Section 2.4.

2.1 Professional and social networks

This section reviews the related work on other professional social networking plat-
forms and what they provide. Having the requirements of DevOps users as a prior-
ity, we compare those platforms with our proposed SNP, pointing their de�ciencies
and �lling in the gaps with our innovation.

Table 2.1 summarizes and categorizes the characteristics of the most impor-
tant related approaches along the following dimensions (depicted as columns of
Table 2.1):

• Which of the following key social features are supported by the platform:
follow users; news feeds; groups; Q&A; personal messages;

• Does the platform rely on one or more repositories to store the following type
of information: software code, software models, con�guration information,
execution histories; and whether these repositories are community sourced;

• Does the social networking platform leverage the repositories to provide users
with speci�c suggestions and hints;

• Does it support application deployment?

Information Technology (IT) [17] professionals use a variety of online sources as
aids in their daily tasks. Developers typically prefer community-moderated forums
over vendor-moderated sites [18]. Social networks focusing on software technology

7



8 CHAPTER 2. RELATED WORK

in particular provide developers with the opportunity to leverage the knowledge
and expertise of their peers.

One of the most popular such platforms is GitHub [19], a collaborative re-
vision control platform for developers launched in April 2008, and arguably the
largest code-hosting site in the world. GitHub provides social networking func-
tionality such as feeds, followers, wikis and a social network graph that captures
how developers work on versions of their repositories, which version is newest,
etc. Gitter [20] is a related service that facilitates discussions between members
of GitHub communities by providing a long-term chat integrated with code and
issues. Sourceforge [21] was the �rst code-hosting platform o�ered to open-source
projects. It was launched in 1999 and o�ered IT professionals the ability to de-
velop, download, review, and publish open-source software. Sourceforge is similar
to GitHub in its support for social features. Other similar code-hosting platforms
are Google Code [22] and Microsoft CodePlex [23]. None of those platforms collect,
analyze, or use information from executions of application deployments to improve
the level of technical discussion between users or abstract code structure through
modelling or enhance user interactions through the use of analytics over application
execution histories.

StackOver�ow [24] advances on earlier community-driven Q&A sites in which
users ask and answer questions. Users can vote up or down questions and an-
swers and earn reputation points and badges in return for their active participa-
tion. Although StackOver�ow and GitHub address di�erent aspects of software
development (StackOver�ow is not a code-hosting platform) there is a synergy and
correlation between the two [25]. The proposed social network platform extends
StackOver�ow through the use of social networking features that enable users in-
terested in reasoning about application deployments to use and share knowledge
drawn from analyses of information repositories.

IBM's BlueMix [4] is a key component of IBM's DevOps best practices [26]
for achieving rapid prototyping, automated deployment, and continuous testing of
software. BlueMix encourages its users to ask their questions to StackOver�ow but
also includes a community forum [4] with rating of answers contributes to even-
tually building a basic knowledge base, similar to traditional approaches such as
StackOver�ow. The proposed social network platform system di�ers from BlueMix
in its support for expressing applications as models (CloudML, CAMEL) and its
use of two information repositories, the PaaSage repository of models and execution
histories and Chef Supermarket, and the use of analytics over past executions to
enable users to reason about application deployments. A common feature between
the proposed social network platform and BlueMix is support for deployment of
distributed applications.

LinkedIn is widely adopted across a range of professional communities due to
its robust set of social features (and to some extent due to its use of extensive
analytics over collected information [27]), LinkedIn provides no speci�c support for
software engineering activities and thus more closely resembles traditional social
networking platforms such as Facebook.



2.1. PROFESSIONAL AND SOCIAL NETWORKS 9

User Interaction Repository

S
o
ci
al
fe
at
u
re
s
a

G
ro
u
p
s

Q
&
A

P
er
so
n
al
m
es
sa
gi
n
g

S
of
tw
ar
e
co
d
e

S
of
tw
ar
e
m
o
d
el
s

S
of
tw
ar
e
co
n
�
g

E
x
ec
u
ti
on

h
is
to
ri
es

C
ro
w
d
so
u
rc
ed

Repo
assisted
hints b

Application
deployment

GitHub 3 7 7 7 3 7 7 7 3 7 7

Sourceforge 3 7 3 3 3 7 7 7 3 7 7

GoogleCode 7 7 3 7 3 7 7 7 3 7 7

CodePlex 3 7 3 3 3 7 7 7 3 7 7

StackOver�ow 7 7 3 7 7 7 7 7 7 7 7

BlueMix 7 7 3 7 7 7 3 7 7 7 3

Chef Supermarket 7 7 7 7 7 7 3 7 3 7 7

LinkedIn 3 3 3 3 7 7 7 7 7 7 7

geeklist 3 3 7 7 7 7 7 7 3 7 7

Snipplr 7 7 7 7 3 7 7 7 7 7 7

Masterbranch 7 7 7 7 3 7 7 7 7 7 7

Dzone 3 7 7 7 3 7 7 7 7 7 7

codeproject 3 7 3 7 3 7 7 7 3 7 7

PaaSage SN 3 3 3 3 7 3 3 3 3 3 3
a Features: follow and news feed
b User assistance based on data analysis of the repository

Table 2.1: Feature comparison



10 CHAPTER 2. RELATED WORK

The lack of social networking features of GitHub came to �ll the Geeklist plat-
form [28], where developers and IT companies can discover and share the work
they have done, connect with other companies in a social network manner or join
development communities. Another code hosting platform is Snipplr [29], where
developers can upload short code snippets but not full programs, in order to keep
all of their frequently used code in one place that is accessible from any computer
and any user. Masterbranch [30] is a new under development platform that allows
collating and sharing of projects within a user's pro�le. This pro�le works simi-
larly to LinkedIn and has an incentivisation scheme called DevScore, coupled with
unlockable achievements that add a gami�cation element. Dzone [31] is essentially
a link repository for developers allowing link sharing and incentivisation based on
voting for the popular links. The Code project [32] website and forum allow code-
speci�c discussion and share relevant articles and news, contains blogs, newsletter
and a questions and answers section.

The above systems can be further classi�ed based on whether they use a repos-
itory to store software-related information (code, models, con�guration, or execu-
tion histories) and whether this information is shared and raised through crowd
sourcing [33]. GitHub, GoogleCode, CodePlex, SourceForge, BlueMix, Chef super-
market, and our platform store at least one type of software-related information
and all systems but BlueMix are raising shared content in their software-related
repositories via crowd sourcing. Our social network platform is the only solution
that analyzes information in its software-related repositories in order to provide
users with assisting suggestions and hints. The platform targets the model of the
application and the Software code of the application is not stored inside the social
network platform.

2.2 Scalability in social networks

Arguably two of the largest existing networking platforms are LinkedIn and Face-
book. The caching technologies of these networks are of great interest for the way
they are managing and storing vast amounts of data.

LinkedIn, the largest professional network, stores hundreds of terabytes of data
to Project Voldemort [34], a key-value store, inspired by Amazon Dynamo [35],
another well-known key-value store. LinkedIn stores to Voldemort pre-computed
o�ine data. For example, it stores the results of data mining applications, such
as �People You May Know� feature, that are running on hundreds of terabytes
to make an estimation and are using Hadoop as the computational component of
those estimations. Voldemort and Dynamo have the same following requirements:
(1) a simple get/put application interface (2) A replication factor, the number of
replicas for each key-value tuble, implemented using vector clock, (3) a required
read factor to succeed a get request and (4) a required write factor to succeed a
put request.

Facebook, the largest social network, needs to handle large amounts of infor-



2.3. CONFIGURATION MANAGEMENT AND DEPLOYMENT 11

mation every second. An overview of its architecture is presented at [36]. Face-
book uses Linux Apache Memcached PHP (LAMP) website and communicate with
other services and components to achieve scalability and performance. Facebook
uses PHP, with an integrated compiler to optimize and turn PHP into C++ code.
It continues use MySQL as a simple key value store without the relational aspect
of the database. For the rendering of the web pages the BigPipe [37] is used.

Facebook serves billions of requests per second using memcached [38]. In this
magnitude of scale, Facebook has several pools of memcached servers (regional
pools) around the globe. A request for a single page can produce hundred of
requests to the back-end system. Memcached is used to store not only key-value
from MySQL queries but also pre-computed results from sophisticated algorithms.
In order to achieve a near real time communication experience to the end user,
memcached servers have to be e�cient, reducing latency to minimum.

The research question in such systems is when a particular key will be invali-
dated. This problem occurs according to [38] in two cases: (1) stale sets and (2)
thundering herds. A stale set occurs when a web server sets a value to the mem-
cached that does not re�ect the real value of the database. Thundering herds occur
when a speci�c key has a heavy read and write activity at the same time. Stale
sets are resolved by an N-bit token, that is bound to a speci�c key and sent from
the memcached to the web server that wants to update the key when a cache miss
occurs. If a delete request is received, the request for updating this value from the
client is rejected. The thundering herbs are solved by con�guring the memcached
servers to return an N-bit token only once every ten seconds per key.

Our social networking platform, inspired by Facebook, integrates memcached in
its back-end architecture and it is con�gured to properly interact with the caching
application.

2.3 Con�guration management and deployment

Another key component in a portfolio of DevOps tools is con�guration management
(CM) [39], the process of maintaining a detailed recording of software and hard-
ware components in an infrastructure. An e�ective CM process provides signi�cant
bene�ts including reduced complexity through abstraction, greater �exibility, faster
machine deployment, faster disaster recovery, etc. There are numerous con�gura-
tion management tools from which a system administrator can choose, however the
most widely known are: Bcfg2 [40], CFEngine [41], Chef [3] and Puppet [42]. Each
of these tools has its strengths and weaknesses [43], [44]. In a DevOps environment,
a CM solution is often combined with provisioning and deployment tooling [26].

The social network platform uses Chef as a CM and deployment automation
tool to support professional network users, and SNP integrates the Chef cookbooks
in its platform.

Furthermore, a recent trend in DevOps software development is continuous
integration (CI) [45] and automated code deployment and testing o� of online code



12 CHAPTER 2. RELATED WORK

repositories. Travis [46] is a CI tool that automatically detects when a commit
has been made and pushed to a GitHub repository, subsequently tries to build the
project, deploy and run tests, and notify the user of the status. Another popular
CI tool is Jenkins [47], an open-source software tool for testing and reporting on
isolated code changes in real time. Similar to Travis, Jenkins enables developers
to �nd and solve defects in their code rapidly and automates the testing of their
builds.

Although our social networking platform does not provide a complete CI solu-
tion because it is not a code hosting platform, but it automates the deployment of
complex applications through a model-driven process.

2.4 Topic classi�cation

Another technology that has been frequently used by networking platforms and we
have integrated to our SNP is Natural Language Processing (NLP) [48]. Speci�-
cally, we focus on social networking usage of NLP and how knowledge can be mined
from repositories of Q&A sites.

NLP has been used to process Twitter's messages and come to some results
according to the classi�cations. Twitter has a good pool of micro-blog text which
is suitable for NLP because of the small text sentences that users are allowed to
post. Those posts describe emotions, feelings, opinions or situations. So several
techniques [49] [50] [51] have been introduced to process and classify twitter posts
in several categories.

StackOver�ow (SO) is not left without NLP, because it can be seen as a repos-
itory of Q&A for programming questions. This means, that most of the questions
and answers in SO contain some kind of a description at �rst and some code af-
terwards. An autoComment tool [52] is proposed using NLP which maps the code
from developer projects and locates the same code somewhere in the SO Q&A, if
it exists. If autoComment matches a segment of the developer's code with a code
segment at SO, it performs NLP to the description of the code and inserts the
modi�ed description to the developer's code.

A trend in Social Networking sites is the ability of users to �tag� their posts.
Those tags describe the users' goals and interests. Tagging SO questions involves
askers selecting appropriate keywords to broadly identify the domains to which
their questions are related. There also exist mechanisms by which other users
can subscribe to tags, search via tags, mark tags as favorites, etc. This users'
classi�cation of context is used by PaaSage social network platform as described
in Section 3.3.

The social network platform uses those tags and the Natural Language Pro-
cessing to answer the following research questions:

• Can the platform identify the similarity of a given question with other ques-
tions already posted in the system.



2.4. TOPIC CLASSIFICATION 13

• Can the platform map a question with a relevant query to the repository in
order to provide the one who asks with an appropriate response.

• Can the platform paraphrase the queries according to the user's arbitrary
input in order to meet the previous objective.



14 CHAPTER 2. RELATED WORK



Chapter 3

Implementation

This chapter describes the implementation of our social networking site, the User
Interface and how the system scales.

The system architecture is consisting of the following components, as shown in
Figure 3.1:

• In the �rst layer, which is the front-end layer, lives (1) the social networking
engine, which runs all the PHP scripts, as described in Section 3.1 and (2) the
CDO client which is responsible for the communication with the repository
of the application models, as described in Section 3.1.2.

• In the second layer, which is the caching layer, lives the Memcached caching
system, which described in Section 3.2.2.

• In the third layer, which is the back-end of the system, lives the social net-
work MySQL database, the CDO server, as well as the CDO repository of
application models, which is a MySQL database.

In order to achieve the scalability of the system, two di�erent system archi-
tectures are examined at the �rst two layers: (1) We added more than one social
network engines at the �rst layer of the system. In this implementation, in order
to keep the �le system in consistent mode we integrated NFS server along with
Apache Zookeeper [53] as described in Section 3.2.1. (2) We added more than one
memcached nodes at the second layer in order to add more CPU capacity and
improve the system's response time.

3.1 Social networking platform

The social networking platform is implemented over the extensible Elgg social
network framework [54]. Elgg is an open source software written in PHP, that uses
MySQL for data persistence and supports jQuery [55] for client-side scripting.

The overall architecture of Elgg Social Network is shown in Figure 3.2. The
Elgg Social Network is structured following the key concepts of Model - View

15



16 CHAPTER 3. IMPLEMENTATION

Elgg

Social Networking 
Database

Repository of 
applications models 

& executions

CDO 
server

CDO 
client

Back – end 
layer

memcached 
node

memcached 
node

memcached 
node

Caching
 layer

Front – end 
layer Server

ZooKeeper

Elgg

CDO 
client

Figure 3.1: The overall social networking architecture

- Controller (MVC) known architectural pattern for User Interfaces. The MVC
system is analyzed here, depicting the most important aspects of it from the Elgg's
perspective. Explaining the Elgg's architecture by using MVC system will make
the understanding of Elgg less complex.

Figure 3.2 shows the model, view, and controller parts of Elgg's architecture.
In a typical scenario, a web client requests an HTML page (e.g., the description
of an application model). The request arrives at the Controller, which con�rms
that the application exists and instructs Model to increase the view counter on the
application model object. The controller dispatches the request to the appropriate
handler (e.g., application model, component handler, community handler) which
then turns the request to the view system. View pulls the information about the
application model and creates the HTML page that is returned to the web client.

The Model of the framework is structured around the following key concepts
as shown in Figure 3.3:



3.1. SOCIAL NETWORKING PLATFORM 17

• Entities, classes capturing social networking concepts: users, communities,
application models. Elgg Core comes with four basic objects: ElggObject,
ElggUser, ElggGroup, ElggSite, ElggSession, ElggCache and a lot of other
classes necessary for the proper engine operation.

• Metadata describing and extending entities (e.g., a response to a question, a
review of an application model, etc.).

• Relationships connect two entities (e.g., user A is a friend of user B, user C
is a contributor to an application model, etc.) and are persisted in the social
network database.

• Annotations are pieces of simple data attached to an entity that allow users
to leave ratings, or other relevant feedback.

Page Handler

Application

Model

Handler

Application

Component

Handler

Community

Handler

Controller

View

Model

MySQL

Request

...

Figure 3.2: Architecture of the Elgg social networking engine

All Elgg objects inherit from ElggEntity, which provides the general attributes
of an object. Elgg core comes with the following basic entities: ElggObject,
ElggUser, ElggGroup, ElggSite, ElggSession, ElggCache, as well as other classes
necessary for the operation of the engine.

The controller component of MVC model of Elgg consisting of the Actions of
the system which are the primary way the users interact with the Elgg site. An
action in Elgg Framework is the code that make changes to the database when a
user performs an action like logging in, posting a comment, or creating an applica-
tion model. The action script processes input, makes the appropriate modi�cations
to the database, and provides feedback to the user about the action. By default,
actions are only available to logged in users and include Cross-Site Request Forgery
(CSRF) Security token to overcome session �xation [56], Session Hijacking [57] and
Cross-site Scripting [58].

Additionally, the controller component includes the Events and the Plugin
Hooks, which are used in Elgg Plugins to interact with the Elgg engine. Events
and hooks are triggered at important times throughout Elgg's boot and execu-
tion process, and allows plugins to modify or cancel the default behaviour of Elgg.



18 CHAPTER 3. IMPLEMENTATION

Figure 3.3: The Elgg engine data model

When an event is triggered, a set of handlers is executed in order of priority. Each
handler passes the arguments and has the option to in�uence the process. When
the execution of the current handler is completed, the �trigger� function returns a
value based on the behaviour of the handlers.

The View component is responsible for creating the output. Generally, this
will be HTML sent to a web browser, but it could also be XML, JSON or any
other data formats. View handles everything from the layout of pages and chunks
of presentation output (like a topbar ) down to individual links and form inputs.

Elgg comprises a core system that can be extended through plugins (examples
are the Cart system and the handling of Application Models). Plugins add new
functionality, can customize aspects of the Elgg engine, or change the representation
of pages. A plugin can create new objects (e.g., ApplicationObject) characterized
(through inheritance of ElggEntity) by a numeric globally unique identi�er (GUID),
an owner GUID and an Access ID. Access ID encodes permissions ensuring that
when a page requests data it will not touch any data the current user does not
have permissions on. All plug-ins share a common structure of folders and PHP
�les, following the MVC model of Figure 3.2.

The hierarchy of a plug-in is shown in Figure 3.4. The folder actions includes
the actions applied on application models. Every active participation of the user
is performed via an action. Logging in, creating, updating or deleting content are
all general categories of actions. The views folder contains the php forms applied
on application models, river events (Elgg terminology for live feeds). Viewss are
responsible for creating the output for the client browser. Generally, this will be
HTML, but it can be also JSON or other format. Pages overrides elements of
core Elgg pages and can be from chunks of presentation output (like sidebars)
down to individual html code. The js and lib folder provides javascript and php
library functions. Finally, the vendors folders include third-party frameworks such
as Twitter's bootstrap front-end [59]. The most important �le of a plug-in is



3.1. SOCIAL NETWORKING PLATFORM 19

the start.php script, which contains the page handler. Page handler is a function
manages the plug-in pages enabling custom url redirect to a speci�c page. The
plug-in initialization is also de�ned in the start.php and registers actions, events
and determines the views.

Figure 3.4: The structure of the application description plug-in

Finally, as mentioned before, for client side scripting the jQuery is used. The
main reason why jQuery is preferred in this work over of pure JavaScript [60] is that
it's a light library which pushes content to the client machine, it therefore reduces
the wait time for server response. Plus, it's smaller than Flash, so it results in
smoother playbacks and less errors. Furthermore, jQuery works anywhere since
is cross-browser compatible with any browser, mobile phone or tablet, and Apple
devices. Finally, another hand-solving advantage of jQuery is its simple syntax.It is
designed to make it easier to navigate in a document, select HTML DOM elements,
create animations, handle events, and developing Ajax applications.

Thus, the jQuery is used by SNP for implementing client side scripting and for
the remaining of this chapter, when we refer to JavaScript, we actually refer to the
jQuery library. Furthermore, some other JavaScript libraries are used in order to
make the User Interface more powerful. One of those libraries is the Chart.js [61]
library which is used to generate the graphs and charts in execution's page.



20 CHAPTER 3. IMPLEMENTATION

3.1.1 Extending the core Elgg platform

As described in the previous section, the new functionality of Elgg social network-
ing platform can be introduced by new plugins. Since the modi�cation of the core
system is not a good practice, because it makes the system more di�cult to im-
plement and does not let it upgrade to the new versions of Elgg framework. The
following plugins are implemented:

ApplicationModel. The ApplicationModel plugin has a page handler to man-
age the application Model pages. Also, ApplicationModel has client side JavaScript
for manipulating User Interaction and dynamic pages. Furthermore, some php li-
braries are implemented, for example a library for interaction with CDO client or
a library for manipulating Application models.

Components. The Components plugin has a page handler to manage the
Components pages and their Categories and a PHP library to interact with Chef
supermarket.

CustomView. The CustomView plugin has all the necessary customization of
the PaaSage social networking platform (PSNP). All custom views of the system
are implemented in this plugin. This plugin overrides all the default views of the
Elgg that should be changed and contains client side JavaScript. Furthermore,
CustomView has the following seven page handlers: �pro�le responsible for pro�le
pages, �avatar responsible for the photos of user pages, �settings responsible for the
pages of user settings, �friends responsible for the friends of the user pages, �contact
responsible for the Contact Information of the PSNP, �review responsible for the
reviews of Application Models and �search responsible for the main search facility
of PSNP. Finally, CustomView has all the required Actions of the plugin such as
the vote up or down, the action to add a review etc.

Noti�cationSystem. This plugin is responsible for the noti�cations of the
Social Network which contains a relevant page handler, JavaScript for client side
scripting and a php server side library.

Tags. This plugin does not include any page handlers but only the necessary
actions for the Tags such as add or delete a Tag and a php library responsible for
those.

UserStatistics. This plugin is responsible for collecting and displaying the
information about the Users.

Memcached. This plugin has all the essential functionality for memcached
implementation as will be described in Section 3.2.2.

ZookeeperRecipes. This plugin has all the essential functionality for mem-
cached implementation as will be described in Section 3.2.1.

Groups. The Groups plugin is the default plugin of Elgg Framework modi�ed
to support the required functionality.

Messages. The Messages plugin is the default plugin of Elgg Framework mod-
i�ed to support the required functionality.



3.1. SOCIAL NETWORKING PLATFORM 21

Twitter bootstraping of Elgg

Responsive web design (RWD) [62] is a web design approach aiming at crafting
web application sites to provide an optimal viewing experience, which it provides
easy reading and navigation with a minimum of resizing, panning, and scrolling,
across a wide range of devices (from mobile phones to desktop computer monitors).
However, the default CSS of Elgg, which is part of the View component of archi-
tecture, does not o�er responsive web pages. Thus the ideal solution is to integrate
Twitter Bootstrap to Elgg viewing system.

Twitter Bootstrap [63] [64] is a free and open-source collection of tools for cre-
ating dynamic websites and web applications. It contains HTML and CSS-based
design templates for typography, forms, buttons, navigation and other interface
components, as well as optional JavaScript extensions. It aims to ease the devel-
opment of dynamic websites and web applications.

We customize the Elgg view inserting the Twitter Bootstrap view system. The
default view system of Elgg changed to support the Twitter Bootstrap responsive
grid.

3.1.2 Communicating with CDO server

As mentioned in 1.1, the execution history of deployments of application models
and the description of those models are stored in the CAMEL information repos-
itory, which is implemented as an Eclipse CDO server. In order to communicate
with the CDO server, a CDO Java client is needed. The CDO client stands be-
tween the social networking engine (Elgg server) and the CDO server, making the
exchange of information between those two possible, as shown in Figure 3.1.

Speci�cally, regarding the communication between the CDO server and the
client, the CDO client opens one or more sessions to the CDO server. Each session
represents a connection to the CDO repository and provides a broad API to inter-
act with it. A session does not provide direct access to model instances; views or
transactions are needed in order to navigate or modify the model instance graph.
The implemented CDO client exposes read/write access to the repository for ei-
ther viewing the execution histories or the model of the applications, or for storing
new execution models. For the communication between the social networking en-
gine and the CDO client, the CDO client exposes a RESTful API to the social
networking engine providing all the necessary methods.

For example, when a user from the social network platform requests the exe-
cution histories of an application, the engine sends a request to the CDO client
through the RESTful API, the CDO client receives the request and forwards an
appropriate request to the CDO server. The CDO server receives the request and
queries the repository of application models and executions. When the CDO server
receives the response, it forwards the response back to the CDO client, which for-
wards the response back to the social networking engine. The social networking
engine transforms the response to JSON format, in order for it to be readable by



22 CHAPTER 3. IMPLEMENTATION

the JavaScript. JavaScript plays the �nal role, by projecting the execution histories
in a proper table to the end user that requested the page of the executions of an
application.

As a future work, message queue techniques can be used for the communi-
cation between the CDO client and the social networking engine. One message
queue technique is ZeroMQ [65] which is a high-performance asynchronous messag-
ing library, aimed at use in scalable distributed applications. Another well-known
message queue system is RabbitMQ [66], which is a messaging broker and pro-
vides a common platform to send and receive messages. Those techniques achieve
communication between di�erent language components of an application.

3.2 Scalability

A lot of work has been made on the scalability of social networking platforms. The
scale of social networks is very important for platforms such as Facebook which
has one billion users. We integrate known practises to make the social networking
platform scalable and e�cient. From where the Elgg social networking engine was
implemented to run in only one single machine, in this work, we distribute and
design a scalable architecture. We replicated the social networking engine and we
introduced caching techniques into our architecture.

3.2.1 Social networking engine

This section describes how the horizontal scale of social network engine is achieved
by adding more than one Elgg servers. At the layer 1 of Figure 3.2 lives the Apache2
server, which as the stress test of the system indicates in Chapter 4, takes a heavy
load on CPU utilization.

The heavy load of Apache2 server occurs by the nature of Elgg framework.
Because the Elgg core system is implemented to be extensible and con�gurable,
every time a simple page or just an AJAX call is received by the Elgg, the Elgg
framework performs the following heavy tasks: it broadcasts an init system event;
this event is caught by all plugins of Elgg and at this initialization phase the plugins
register: (1) the page handlers, (2) the PHP libraries, (3) the actions, (4) the events
and hooks, (5) the JavaScript libraries and (6) the CSS scripts. Therefore, all those
actions generate a heavy load resulting in consuming CPU utilization and slowing
the response time of the system. We introduce more than one Apache2 servers
running the social networking engine of Elgg framework to overcome this.

The social networking engine keeps some information in the �le system instead
of in the social network database. This information includes the pro�le photos of
users and any other images such as photos that users add to the community groups.
Furthermore, the initial con�guration of social networking engine keeps in the �le
system some caching �les. Those �les represent some views of the web pages which
are independent of any speci�c users and remain unchanged among all users. This



3.2. SCALABILITY 23

�le system caching feature is removed from the social network engine because it is
more e�cient to use memcached for the caching instead of the slow �le system.

In order to all social networking engines have access to the same �le system, the
Network File System (NFS) [67] is used. NFS allows a server to share directories
and �les with clients over a network. With NFS, users and programs can access
�les on remote systems as if they were stored locally.

In our implementation, NFS is con�gured and used in order to allow all social
networking engines to gain access to the same �le system store. An NFS server is
installed in one of the SN engines and all the other SN engines have an NFS client
accessing the remote �le system.

Distributing social network engine was not an easy problem to solve, so Apache
ZooKeeper [53] is used in order to achieve synchronization. Apache ZooKeeper [68]
is a service for coordinating processes of distributed applications. Since ZooKeeper
is a part of a critical infrastructure, it aims to provide a simple and high perfor-
mance kernel for building more complex coordination primitives at the client. We
use this service in order to enable highly reliable distributed coordination among
the �le system and the social networking engine. Apache ZooKeeper provides a
tree abstraction where every node in that tree (or znode) is a �le on which a vari-
ety of simple operations can be performed. ZooKeeper orders operations on znodes
so that they occur atomically. Therefore there is no need to use complex locking
protocols to ensure that only one process can access a znode at a time. The tree
represents a hierarchical namespace, so that many distinct distributed systems can
use a single ZooKeeper instance without worrying about their �les.

Social networking engine uses Apache ZooKeeper in order to keep the �le system
consistent, in rare but possible scenarios like two users trying to upload a �le to the
same group simultaneously. When a social networking engine wants to write a �le
in �le system, it �rst locks the speci�c path and after �nishing the write operation
it releases the lock. Thus, a �le can never be corrupted.

For communication between the Apache ZooKeeper and the Elgg framework,
the php-zookeeper-recipes [69] are used by the ZookeeperRecipes plugin. Specif-
ically, the exclusive locks of Zookeeper are used to keep the system in consistent
mode.

3.2.2 Memcached

This section describes how we integrated memcached [70] to our system architec-
ture. Memcached is an open source, high-performance, distributed memory object
caching system. We chose memcached, because it is a generic simple in-memory
key-value store. It has a powerful API available for PHP. After memcached inte-
gration the system decreased its response time and its performance.

Memcached is added in layer 2 of the system architecture as shown in Figure 3.1
and is used for storing the key-value tuples. The following data are stored in
memcached:



24 CHAPTER 3. IMPLEMENTATION

1. MySQL responses, which are values from social network database such as
entities of social network engine, applications, components, users, group dis-
cussions. By storing those values, there is no need to query the social network
database, but SN Engine is getting the key-values directly from memcached.

2. Views of the web pages which are independent of any speci�c users and
remain unchanged among all users, and werte previously were stored in the
�le system.

3. JavaScript code results. Some JavaScript code is time consuming to be gen-
erated. For example, PHP sends the execution data to JavaScript and then it
iterates the data in order to generate the tables and the graphs of execution
histories.

4. Executions histories from repository of application models. By storing the ex-
ecutions of applications at memcached, the system's response time decreases.
That is due to the PHP modules not needing to go through the heavy CDO
client-server communication but them getting the executions of applications
directly from memcached.

The keys stored in memcached must be unique. This is implemented using as
a pre�x of the key the globally unique identi�er (GUID), generated by Elgg, and a
string value which is describing the data. So, the execution data of an application
model with QUID 1000 is stored in memcached with key 1000:execution-data and
the value is the json representation of those data. All tuples at memcached are
inserted with the maximum key expiration time of thirty days.

The basic actions of memcached are the get, set and delete of a tuple, as shown
in Figure 3.5. In the �rst scenario, when a value from SNP is requested for a
particular key k, �rst a query will be send to memcached requesting the tuple with
that key k, if k not found or it has expired, the SNP will request that key from the
social network database. Finally, when SNP gets in touch with the data of the key,
it will send those data to be cached in memcached, as shown in the Figure 3.5a. In
the other scenario, when a value in the SNP is updated, the memcached key will
be deleted(invalidated) as shown in the Figure 3.5b.

The Elgg framework comes with the potential use of memcached but is re-
stricted to the fact that a memcached node must be in the same machine as the
Elgg framework. Plus, it makes it more di�cult to con�gure when an insertion
in memcached node will take place. Therefore, a new Elgg plugin is implemented
calledMemcached using the memcached PHP library [71]. The basic memcached
functions o�ered by this plugin are: (1) Add memcached nodes, (2) add a key to a
node, (3) get a value of a key and (4) delete a key-value item.

The Apache JMeter [72] was used to measure the response time of the system
and the sysstat tool [73] was used to measure the CPU usage. Section 4.1.1 shows
the performance results of this implementation.



3.3. TOPIC CLASSIFICATION 25

Social 

Network

DB

Memcache

Node

Social Network

Back-end

Social 

Network

DB

Memcache

Node

Social Network

Back-end

Scenario a)
(1) Request a key k from Memcached node, (2) the k not found in 
memcached and the SN back-end (3) requests the value v from SN DB. 
When the SN back-end receive the v, (4) stores it to memcached node

Scenario b)
 When (1) a value updated to SN DB, (2)the corresponding memcached 
key will invalidated.

Figure 3.5: The scenario (a) depicts a request from memcached when the key does
not exist and scenario (b) depicts an updated operation of a value

3.3 Topic classi�cation

Topic classi�cation, using Natural Language Processing (NLP) [48], is a feature
added to the social network platform. NLP is used in the interactions between
the users and the SNP, in the way the platform can understand and determine the
type of user input and provide helpful possible answers.

For example, one real question from the StackOver�ow is shown in Figure 3.6,
which asks the community about the scalability of SQLite and MySQL. From this
speci�c question several important outcomes can be mined. First, this question is
very di�cult to be answered without using targeted analyses of execution histories
of those applications. Second, similar questions can be asked to our own social
networking community and would be helpful to use it as a training set to our topic
classi�cation tool presented in this section. Finally, many questions of this type
exist in the StackOver�ow community and we would like to use them in realizing
topic classi�cation.

As the Figure 3.7 shows, a user of SNP poses a question to our platform. The
platform can process the user's input and classify it into: (1) a similar question that
exists in our community or (2) an automatically generated query to the CAMEL
repository. In the �rst scenario, a list of answers from the pre-existing question can
be provided as feedback to the new question. In the second scenario, the question
can be further processed and a query to CAMEL repository be automatically gen-
erated. An automated mechanism can be implement for the second scenario but
this is out of the scope of this thesis.



26 CHAPTER 3. IMPLEMENTATION

Figure 3.6: A real example question from StackOver�ow

Our implementation lies in between those two scenarios. Some queries to the
CAMEL repository are implemented and if a question is asked that in a way re-
sembles a speci�c query, the platform will provide this query's results as an answer
to the user's question. Furthermore, if this question has a similar question and
that last question has an answer from a sophisticated user, who had created an
hand-crafted query to the repository and had provided the results back to the user,
those results can be used as a feedback to the new question.

We added the Naivy Bayes Natural Language Understanding algorithm to the
SN using the Natural framework [74], which is implemented with node.js. In gen-
eral, machine learning algorithms such as Naivy Bayes require an input of training
data, called data set. This training data is pulled from questions users post in
StackOver�ow (SO). Those questions are an excellent repository to train the NB
algorithm, because they are categorised by tags (this helps our classi�er) and are
real questions that our social network community may be interested. This was
also a necessity since by the time that this implementation took place, the social
network platform did not include a su�ciently large amount of questions in its
repository.

In general, the main actions that SO users is shown in Figure 3.8. When users
ask questions in SO, they must specify some tags describing their questions. A
tag is a keyword or a label that places their question in a category with other,
similar questions. SO users usually try to add as many tags as possible in order
to make their questions popular and get them answered. SO permits users to add
up to only �ve tags in each of their questions. After a question is posed, the whole
community of SO can vote the question up or down and the privileged users can
�ag the question as duplicate, o�-topic, unclear, too broad or primarily opinion-
based. This way, low quality questions will be removed from the site resulting in
keeping the questions repository clear and helpful for other potential developers to
use.

For the training sets, the data to train the NB algorithm, the most voted
questions of the SO community are used. Those questions have emerged as the
best questions in their �eld and surely, we avoid the case of using a training set
with miss-tagged questions that would result a miss-guided NLP classi�cation. The



3.3. TOPIC CLASSIFICATION 27

Related 
question

Related 
query

Execution 
Data

Classify question
External 

Questions

Question to SNP 
community

User

Asks

Automated Answer

Training

Figure 3.7: Classi�cation of questions and automated feedback to user

NLP training set is retrieved from SO site using the stack exchange(SE) API [75].
The SE API is a powerful API, which allows us to take the questions, the answers,
the users and all the information that exists in SO site through a programming
interface.

The �rst training set of our Natural Processing Tool consisted of �ve tags, rel-
ative to our platform. Those tags were: scalability, reliability, design, performance
and optimization and we got thirty questions per tag. For each of the tags, the
thirty most up-voted questions from StackOver�ow were retrieved and classi�ed to
each speci�c tag. Those exact tags, after classi�cation, are transformed in classes
in NLP classi�cation, as shows the Figure 3.8

Every time a user asks a question to one of the platform's communities, the
classi�er determines the class of the question. After the class is found, and if the
platform is able to determine a heuristic answer, it will post then the answer to the
user's question automatically. All the users of the platform can vote this answer
up or down, depending on its accuracy, or provide their own answers.

The second training set of Natural Processing Tool was retrieved by automat-



28 CHAPTER 3. IMPLEMENTATION

Users

questions

Tag 1 Tag 2 Tag 3

 post 

 answer 

 vote 

 flag 

Pool of 
Tags

Tags 
from

 create 
tags 

Get questions
 with tag 2

Class 
1

Class 
2

Class 
n

Classifier

St
ac

kO
ve

rf
lo

w
  U

I

St
ac

kE
xc

h
an

ge
 A

P
I

questions

Tag 1 Tag 2 Tag 3

Figure 3.8: The main StackOver�ow users' actions and the topic classi�er

ically discovering tags. NB is trained with 10,000 questions from StackOver�ow
Q&A site, �fty questions per each discovered tag. The general algorithm is shown
in Table 3.1. Firstly, the algorithm starts with a tag that is relevant to the social
network platform such as scalability at line 01. Afterwards, using the SE API the
algorithm gets the 5 most voted questions tagged with scalability. For each ques-
tion (line 04), the populateClassi�er clears the body from any html tags inserted
by the StackOver�ow users to beatify their questions (line 05) and classi�es this
question's body with each tag. Automatically, the populateClassi�er proceeds to
the next tag of this question. When the populateClassi�er is �nished the NB is
trained. It should be noted that a question may have more than one tags, so a
question can be classi�ed to up to �ve tags / classes. Changing the threshold
parameter at the following algorithm, the populateClassi�er can classify questions
with an arbitrary number of tags. At the following section the process to Bayes
classi�cation is described in more details.

3.3.1 Bayes classi�cation algorithm

This section describes the Bayes classi�cation algorithm. As the above code snippet
shows at line 08, the algorithm classi�es a document named body into the class t.
This body is the content of the question that will be classi�ed into the class t,
which is the tag of the question. Diving in this function, the body is transformed
to lower case and the Porter Stemming Algorithm [76] is used for su�x stripping,
so the plural form of the words and the su�xes are removed (such as -ing and s).
For example, the following words: connected, connection, connections, connecting,
connectionless will all be transformed to the single word �connect�. The Porter
Stemming Algorithm does not use any dictionary but a simple list of su�xes. This



3.3. TOPIC CLASSIFICATION 29

01 :var tags = [ 'scalability' ]
02 : p o pu l a t eC l a s s i f i e r (0 )
03 : function p opu l a t eC l a s s i f i e r ( i ) {
04 : var qs = stackexchange . ap i . getQuestionsByTag ( tags [ i ] )
05 : foreach ( qs as q )
06 : body = c l e a r ( q . body )
07 : foreach ( q . tags as t )
08 : c l a s s i f y ( body , t )
09 : i f (not tags . e x i s t ( t ) and tags . l ength ( ) < thre sho ld )
10 : tags . push ( t )
11 : p o pu l a t eC l a s s i f i e r ( tags . indexOf ( t ) )
12 :}

Table 3.1: Training algorithm

practise, makes the algorithm fast (10.000 di�erent words in 8.1 seconds). After
this process a table of words of this body is kept.

After the populateClassi�er has �nished, the trainClassi�er is called (for sim-
plicity the classi�er is not shown in the above code snippet). The objective of
trainClassi�er is to make the document body ready for Bayes Classi�cation. The
purpose of trainClassi�er is to count the number of occurrences of each word in
each class.

After the above process is done, the classi�er is ready, so when a future request
for classi�cation comes, the classi�er returns the probability of a document being
part of a class. This probability is calculated with the following formula:

prob(d/c) = log

(
countedTerms(d, c)

totalsTerms(c)

)
Where the probability of a document d to be in a class c is the logarithmic value of
the division of the words(terms) of d found in class c by the total number of terms
in c.

3.3.2 Automated answers

As described in Section 3.3 Natural Language Processing is used to determine the
users' input question in groups.

When a user asks a question, the body of the question classi�ed into categories
and when the NLP classi�es the question to a speci�c category, an approximate
answer can be given in response. As the example shows in Figure 3.9, after the
user's question, the classi�er process the body and if the question is about the
JEnterprise and the cost e�ectivess the approxiame answer �The most cost e�ec-
tiveness con�guration of SPEC JEntreprise2010 is: jEnterprise18F . . . � is given.
The users of the PaaSage social network platform can vote up or down the answer



30 CHAPTER 3. IMPLEMENTATION

Figure 3.9: Automated answer to user's question

and/or provide their own answers.

The automated replies provide the user with a direct possible answer to the
question. So, it reduces the time waiting for an answer and provides a �rst helping
hint about the user's question. If the answer is not e�cient, other potential user
of SNP can provide answers to the question and down-vote the automated reply.

Finally, a relevant question can be asked to the platform as �Which deployments
of JEnterprise provide the best performance for the lowest cost in a multi-cloud
setup?�. This question is a paraphrased question of the previous one, talking about
the same thing. The platform can �nd this similarity and provide the same auto-
mated answer.

3.4 User interface

This part of the thesis describes the User Interface of the social network platform
that is implemented based on 104 mock-ups created by HCI expert team. A mockup
is a realistic representation of what the product will look like, in our case the social
network platform. The design of look & feel of SNP is made by HCI expert team in
order to follow the modern trends in Web Applications design. In order to support
those look & feel and the functionality of those mock-ups 25K lines of php, js and
css code is written. The key design objective of the social network platform is to
create a strong bond between (i) software engineering services for managing and
deploying cloud-targeted application models; and (ii) community-oriented facilities
for communication and collaboration between users. The interconnections between
the two in the design of the user interface are depicted in Figure 3.10. The prototype
implementation is publicly accessible on-line at http://socialnetwork.paasage.eu.



3.4. USER INTERFACE 31

Figure 3.10: Engineering and social activities are seamlessly interweaved within
the social networking platform

3.4.1 Design principles

The discrete entities, which bind together the Social Networking with the applica-
tion model aspects of platform are:

• Application Models. Application Models is a key entity of the platform. An
example is shown if Figure 3.11, consisting of a human friendly description
(label 1 in �g.3.11), the Camel Description of the model (label 2 in �g.3.11),
reviews about the model (label 3 in �g.3.11). An overview of engineering
aspects such as version and runs (label 4 in �g.3.11) and an overview of
social aspects such as share and watch (label 5 in �g.3.11). The share action
broadcast the model to the friends of the user that shares the model. The
watch action noti�es the user for future updates of the application model.

• Components. We have integrated the Chef supermarket components into
social network platform. The components help the DevOps users to generate
their application models as described in 3.5.1.



32 CHAPTER 3. IMPLEMENTATION

• Users. Users who basically are cloud deployment specialists and other users
who want to know which deployment con�guration they should use. Users
can exchange knowledge to groups and bene�t from the CAMEL repository.
They can create or join groups, ask and answer questions, follow application
models and create their own network of friends.

• Groups. As mentioned, every user of PaaSage social network platform can
create or join groups. Groups help users to interact with each other and gain
knowledge from experts.

Heading

(1) Description of 
Application model

(3) Reviews

(4) engineering 
aspects 

(5) social
 aspects 

(2) Model 
Description

Figure 3.11: The application model home page

Gami�cation

Following recent trends in social networks design and with the aim to motivate
users active and regular participation in the professional network, the design em-
ploys gami�cation features, meaning the use of video game elements in order to
improve user experience and user engagement in non-game services and applica-
tions [77]. One gami�cation feature in the social network design is the reward
system for active community members. As users contribute content (models, com-
ponents, ratings, reviews, questions, or answers) they receive experience points
leading to special badges visible to all community members. Other features are
the Pro�le completeness bar with suggestions on how to increase it. Finally, the
concept of Model badges awarded to application and component models in case
of excelling performance. Badges can serve among others as goal-setting devices,
status symbols, and indications of reputation assessment procedures [78].



3.5. GENERATING APPLICATION MODELS 33

3.5 Generating application models

The DevOps users of PaaSage social network platform can bene�t from the auto-
mated creation of CAMEL baseline models presented at Section 3.5.1 or upload
their own created models using external editors like EMF [12] tree based editor or
GMF [79] editor presented at Section 3.5.2.

3.5.1 Baseline models

In order for users to create automated generated baseline CAMEL models, they
can browse around the integrated Chef components inside the social networking
platform and �nd the appropriate components for their applications. The platform
has integrate a pointer for each Chef cookbook to the social network database
using the Chef Supermarket API [80]. A PHP command has implemented in order
to iterated through all Chef cookbooks and update the repository of SNP. This
command has been con�gured and runs one time every day.

Through the application model creation Page of the PaaSage social network
platform, the users can upload an external CAMEL model description of their ap-
plication or create a new one with the help of the platform in 4 simple steps as
shown in Figure 3.12. In the step zero 3.12a, the user is asked whether the new Ap-
plication model already has an CAMEL model or whether the user wants to create
a new application CAMEL model through automated generation. For automated
generation, the user must previously put the Chef cookbooks that he/she wants in
the user's cart. The selected Chef cookbooks will be shown as a list of components.
Then, in step one 3.12b, the user selects from this list which of the components
will be included in the application model. In the example shown, the user has
four components mysqld, apache2, nodejs and ruby_installer and selects three of
them. In the next step, shown in Figure 3.12c, the user provides the deployment
information (to which cloud provider the Application will run and which type of
VMs will be used). Also, some components can be collocated in the same VM.
In this example, the nodejs component will be collocated in the same VM as the
apache2. In step tree, shown in Figure 3.12d, the user provides the communication
information between the components, for example the nodejs communicates with
mysqld in the default mysql port 3306.

In the �nal step as shown in Figure 3.13, the user provides the �nal needed
information about the name of the Application model, a human friendly description
and the version of the model. In the bottom of the form of the Figure 3.13 the
user can �nd three actions: the Previous action, the Save as draft action and the
Finalize action. The Previous action can performed all around the steps and make
the user easily walk around the steps, giving him/her the opportunity to alter an
option. The Save as draft action creates the CAMEL model of the application but
the model is not publicly available and only the creator or the contributors of the
Application can see or edit the Model. The Finalize action creates the CAMEL
model of the application and makes it publicly available to the SNP users.



34 CHAPTER 3. IMPLEMENTATION

For the creation of the base line CAMEL model an AJAX request is sent to
a Java tool, that automatically creates the application model according to the
information that the user has already provided. When the Java tool generates the
CAMEL model, it sends it back to the SNP. So the SNP can store this model to
the repository. This tool is presented at [81].



3.5. GENERATING APPLICATION MODELS 35

(a) Step 0: Upload external or create baseline model

(b) Step 1: Choose the components from the users' list

(c) Step 2: Deployment information

(d) Step 3: Communication information

Figure 3.12: Steps for automated creation of baseline model



36 CHAPTER 3. IMPLEMENTATION

Figure 3.13: Final step of automated creation of baseline model.



3.5. GENERATING APPLICATION MODELS 37

Figure 3.14: GMF editor composition of a sample application

3.5.2 Graphical modeling

Advanced users of the PaaSage social network platform can compose application
models through Graphical Modeling Framework (GMF) [79] which is an external
Eclipse editor. GMF provides a set of generative components and runtime infras-
tructures for developing graphical editors based on Eclipse Modeling Framework
(EMF) and Graphical Editing Framework (GEF). The GMF editor is generated
from CAMEL ecore schema and provides the graphical palette to compose appli-
cations.

Figure 3.14 shows the composition of a sample application model with the
GMF editor. The palette in the right, contains all nodes and relationships needed
to describe an application model. In the center, the composition of a sample
application is shown, consisting of three VM types, the VM information about
these VMs and the owner/user of the application. The GMF editor generates two
�les, one responsible for the graphical representation and the XMI description of
the application model that can be uploaded to the social networking platform.



38 CHAPTER 3. IMPLEMENTATION



Chapter 4

Evaluation

This chapter describes the evaluation of the social networking platform focusing on
scalability, the topic classi�cation mechanism, and usability of its user interface.

4.1 Scalability

This section describes the evaluation of two di�erent implementations of our system
architecture. The �rst implementation adds more than one memcached instances
in layer 2 (Figure 3.1). The second implementation features more than one social
network engines in layer 1.

In order to measure the response time (RT) the Apache JMeter application [72]
is used. The Apache JMeter is an open source benchmark designed to test func-
tional behaviour and measure performance, targeting web applications. Notably,
the RT measured by JMeter may not be the real one, because the JMeter measures
the elapsed time from just before sending the request to just after the last response
from the server has been received. As a result, the time to render the web page to
the client web browser and the execution time of JavaScript code is not measured.
Because those two time intervals are client limited and depend on client perfor-
mance and on which web browser is used, they are excluded from the following
performance test benches. For the next experiments, a speci�c web page will be
used. This page does not use AJAX calls, so as not to interfere with the results.
Therefore, the RT measures the time from just before JMeter sends the request
to just after the last response is received. During this measured time interval, the
Social Network engine performs the following actions:

I The social network engine sends a request to CDO client for the application
execution model.

II The CDO client forwards this request to CDO server.

III The CDO server queries the MySQL repository of application models and
executions, and �nally gets the executions results.

39



40 CHAPTER 4. EVALUATION

IV CDO server forwards the results through the CDO client to the social network
engine.

V Finally, the social network engine sends queries to the social network database
in order to get all the necessary social features for this application page.

The presented system architecture was deployed on Amazon EC2 [82]. We
measured and present the system CPU utilization and response time of the SNP.

4.1.1 Scaling the caching tier

By adding a memcached node at the system architecture, the social network engine
�rst asks the memcached node if it has the tuples that the SN engine needs. So
steps (I to V ) are not carried out if the memcached node has cached the values
requested by the social network engine. The loop through CDO client - CDO server
and the repositories is bypassed.

State # of Queries

Fresh start 1938

Fresh Query 15182

Cached Query from CDO 251

Cached Query from memcached 147

Table 4.1: Number of queries from social network and CDO server repository

For the following experiments all the memcached nodes are warmed up and
have already cached all the needed CDO and Social entities information except for
some initialization queries of Elgg framework. Furthermore the CDO server has
been warmed up after a fresh restart. As the Table 4.1 shows, the starting process
of the CDO server produces 1938 queries to MySQL database. The fresh query
for an application model (both social information and executions) produces 15182
queries to MySQL database. The CDO server caches the results, so a second query
for this application model produces 251 queries, most of which are the queries for
the social information of the application. Introducing memcached, if the request for
the application model is cached, the queries to database are lowering to 147. Those
147 queries are basically queries about the con�guration of Elgg social networking
engine and the sessions of the users.

The test performed with the following loads: (L1) ten users request two appli-
cations, (L2) ten users request four applications and (L3) ten users request eight
applications. All three Loads run consecutively one hundred times each. Those
Loads request applications, which have ten execution rows pulled from the reposi-
tory of applications models and executions, and about one hundred queries to the
social network database. In this experiment we kept the following components
of the system constant: the Elgg front-end Apache2 server, the social network



4.1. SCALABILITY 41

631

1966

8836

601

1577 1764

521
892 992

L1 L2 L3 L1 L2 L3 L1 L2 L3

C1 C2 C3

0

1000

2000

3000

4000

5000

6000

7000

8000

9000
m
s

Figure 4.1: The average response time for all con�gurations

database, and the CDO server - client communication but we increased the num-
ber of memcached nodes. Figure 4.1 shows the average response time (RT) in
milliseconds (ms) with the following system con�guration(C): (C1) no memcached
node, (C2) one memcached node and (C3) two memcached nodes have added to
the system architecture.

Going from C1 to C3 and speci�cally for L3, the RT is reduced by 80,4% in
C2 and by 88,78% in C3. As the Figure 4.1 shows, in the �rst con�guration C1,
the L3 takes 8836 ms, an RT which is de�nitely prohibitive for web applications.
Introducing more memcached nodes at C2 and C3 the RT is decreased dramatically
at 1764 ms at L2 and at 992 ms at L3. Going from C1 to C2, the 80,4% reduction
of RT is due to the introduction of memcached node and bypassed the steps I - V,
which are mentioned previously. Going from C2 to C3, the RT reduced by a factor
of 43,77%. The reduction of RT is achieved by adding more memcached nodes,
which results to more CPU cores introduced to the system, as described below.

Component VM type

SN engine, CDO client t1.micro

memcached t1.micro

repositories, CDO Server m1.xlarge

jmeter m1.large

Table 4.2: VM resources



42 CHAPTER 4. EVALUATION

75,02

85,03
89,79

63,36
70,32

86,52

29,57 30,07

40,51

6,47 4,07 1,51 1,2 2,2 1,47 1 1,53 2,71

50,39

91,96 92,86

30,25
36,24 38,78

32,25

40,36

57,09

0

10

20

30

40

50

60

70

80

90

100

L1 L2 L3 L1 L2 L3 L1 L2 L3

C1 C2 C3

%

Memcached 1 Memcached 2 DB SN

Figure 4.2: The average CPU utilization for all components

The CPU utilization is measured using the sysstat tool [73]. We measured
the CPU utilization for all the VMs running the experiment. The information
about the VM resources is listed in Table 4.2. The social network engine and the
CDO Client were running at t1.micro instance. The MySQL (repositories) and the
CDO Server were running at m1.xlarge. The average CPU utilization is shown in
Figure 4.2. At the simple con�guration C1, even in small loads such as L1, the SN
engine reached 50,39% CPU utilization. In the medium load L2 and big load L3
the SN Engine is kneeled down to 91,96% and 92,86%. This big consumption of
CPU was due to all the initialization process that Elgg social network engine has
to do for each request and due to CDO server queries. Also, the CPU bottleneck
of Elgg engine is responsible for the slow response time.

Moving from con�guration C1 to C2, the CPU consumption went to memcached
node. Thus, the social network engine was de-congested and the RT improved.
However, for the big load L3 the memcached node reached 89,79%. To solve mem-
cached CPU overhead, one more memcached node was added at con�guration C3.
This second memcached node shared the CPU overhead with the �rst memcached
node and the RT improved furthermore.

For all three loads at C3, the �rst memcached node had more CPU utilization
from the second by an approximately factor of 2,2. This di�erence between the two
memcached nodes appeared due to the �rst node storing more popular key-value
pairs than the other.

4.1.2 Scaling the Elgg engine tier

This section evaluates the horizontal scale of social network engine as described
in Section 3.2.1. A memcached node was living between the social networking
engines and the back end system. The VM resources were kept the same as in



4.1. SCALABILITY 43

502

270

610

0

100

200

300

400

500

600

AVG RT MIN RT MAX RT

m
s

Figure 4.3: The response time for two social network engines

the previous experiment and are shown in Table 4.2. One more social networking
engine instance was added with the same type as former SN engine.

So, the system architecture now consists of two social networking engines as
front-end. At the back-end of the system we have: (1) one memcached node and
(2) the CDO client - server, the social network database and the CDO repository.
The two SN engines are deployed to a dedicated VM each. Furthermore, each
SN engine has its own CDO client deployed with them. The memcached node is
deployed on its own VM and the CDO Server, the social network database and the
CDO repository are deployed on the same VM.

The Figure 4.4 shows the average CPU utilization for the memcached, the
MySQL database (db) and the two SN Engines (SN1, SN2). The load for this
experiment is the same as the previous load L3, which means we have ten users
that request eight applications for one hundred times consecutively. The �rst SN
engine has 43,2% CPU usage and the second one has 12,8% less. This di�erence is
due to the �rst instance being deployed together with the NFS server and Apache
Zookeeper on the same VM.

With only one SN engine the CPU utilization was 57,09% and now with two
SN engines the CPU utilization is reduced to 43,2%. This reduction is due to
the requests being distributed to two instances instead of the only one instance.
The CPU utilization of the memcached node increased, but this can be solved by
introducing more memcached nodes as the previous section describes. Furthermore,
we can introduce more SN engines to support more heavy loads.

Since the load from one SN engine is now distributed to two SN engines in-
stances, the response time improved for the Load 3, as shown in the Figure 4.3



44 CHAPTER 4. EVALUATION

Figure 4.4: The CPU utilization for two social network engines

compared to the previous test-bench. The best achieved RT of previous architec-
ture was 992 ms and with this architecture it reduced to 502 ms.

We can combine the two architectures together, meaning that we have more
than one SN Engine and more than one memcached to support as many loads as
we want.

4.2 Topic classi�cation

This section evaluates the topic classi�cation tool described in Section 3.3. The
evaluated topic classi�er had four di�erent classes or, according to StackOver�ow
(SO) dialect, six tags, as are shown in Table 4.3. Those classes are: (1) architecture
and design, (2) scalability, (3) performance and optimization and (4) deployment.
This means that a new question can be classi�ed in one of the previous four classes.

The architecture tag and the design tag comprised one class in our topic classi-
�er because those two tags have similar meaning for the users of SO. Also, the per-
formance and optimization tags de�ned another class for the same reason.

For the testing set, thirty questions from StackOver�ow were used per class, in
order to measure the topic classi�cation accuracy. Those questions were di�erent
from the training set and were the most up-voted questions during the speci�c
time period that this experiment was carried out. Each row in Table 4.3 shows a
class as classi�ed by StackOver�ow users, and each column shows how our classi�er
classi�es the question. For example, twenty nine questions about architecture and
design were classi�ed correctly, and only one was wrongly classi�ed as performance
& optimization. The misclassi�cation however, was not an error of our classi�er.

For the evaluation process, the title and the body of the questions are used to
determine their class. The title of the question is very helpful for the determination



4.3. REQUIREMENTS AND USER INTERFACE 45

class / class
architecture
& design

performance
& optimization

deployment scalability

architecture
& design

29 0 0 1

performance
& optimization

2 23 0 5

deployment 6 0 22 2

scalability 7 0 1 22

Table 4.3: Evaluation of topic classi�cation

of the class because in same cases the SO users ask their questions in the title of
the question and poses only code in the body of the question along with a small
explanation about the code. So, without the title of the question the topic classi�er
can not determine correctly the class of the question. Furthermore, the code which
was existing in the body of the questions was removed in order to not misguide our
topic classi�er.

Furthermore, the classes used in this evaluation have similar meaning to each
other. SO users sometimes use those tags without knowing their meaning. Also,
the scalability tag is too broad and can have keywords from the architecture and
design class.

This shows that our tool can further be used by StackOver�ow to mark new
questions that are wrongly tagged or misguided. There is a trend among Stack-
Over�ow users to add as many tags as they can in order to attract the attention
of other users, increase the views of their question and �nally get their answers.

The true positive, which means a document is recognized in the correct class,
according the Table 4.3 is 96. The false positive, which means a document is not
correctly recognized, of this topic classi�cation evaluation is 24. According to those
precision metrics the accuracy or sensitivity of our topic classi�er for this speci�c
experiment is 80%.

For future work, this evaluation can be extended by imported questions and
answers for other information repositories which have more similar terns to our
social networking platform and with classes with di�erent meaning to each other.

4.3 Requirements and user interface

The user interface (UI) of our social networking platform1 is designed through an
iterative process of several expert-based evaluations carried out in group sessions.
To obtain additional feedback from non-experts, three additional user-based eval-
uation experiments were designed and carried out involving potential users and
presented in detail in [6].

1The user interface (UI) design and usability evaluation was the result of a collaboration with
the Human-Computer Interaction (HCI) laboratory of ICS-FORTH [6].



46 CHAPTER 4. EVALUATION

The author collaborated in the expert-based evaluations sessions focusing on
the platform user interface design. He contributed in the UI usability evaluations
through the implementation of the platform, and took active part by interviewing
some of the participants in the third evaluation experiment.

The �rst experiment, carried out by Flexiant Ltd. aimed at assessing the overall
look and feel of the network, the navigation mechanisms, as well as the design of
fundamental functionality. The second evaluation experiment, carried out by a
FORTH team consisting of HCI and CARV laboratory members, aimed to collect
subjective results rather than performance metrics. It involved another set of 12
users who, after a brief introduction to the available facilities, were asked to use
the interactive prototype [83] using the free exploration method of the Thinking
Aloud protocol [84] and �ll-in a questionnaire in order to rate and comment their
experience.

The third evaluation experiment involved 15 participants guided through the in-
teractive prototype of our social networking platform using speci�c scenarios. They
were interviewed on their requirements and feedback following a semi-structured
interview approach [84]. The evaluation session was carried out via Skype. Partic-
ipants were recruited through European companies and organizations associated
with the PaaSage EU project [15]. They were either developers or operations sta�,
thus within the target user groups of our social networking platform. Participants
were not users of the platform; some however were familiar with the project's goals
and objectives. Before the experiment, each participant was requested to �ll-in a
background information form and was sent an informed consent form, explaining
all the recording and anonymity-ensuring procedures.

Figure 4.5: Features that were mostly liked by the users

Users in the third experiment were asked to identify up to three most-liked and
three most-disliked features. Most-liked features presented in Figure 4.5 included:
the employment of social features in a development environment; the use of charts



4.3. REQUIREMENTS AND USER INTERFACE 47

and statistical information to represent data; the detailed model information that
could be retrieved and the model execution histories; the automatically-generated
hints provided by the network as replies in discussion topics; the concept of sharing
one's models; the overall UI design; the direct connection between projects and
users, and the user pro�le tags that allowed them to �nd users that would be
interesting to connect with.

Those user interface evaluation experiments show that a platform that couples
social networking features in community-building activities with DevOps require-
ments for application deployment, analyses of the execution histories, and auto-
matically generated hints based on data analysis, is a helpful tool that people would
like to use. Furthermore, those evaluation experiments show that the design and
the implementation of our social networking platform was functional and easy to
use.



48 CHAPTER 4. EVALUATION



Chapter 5

Conclusions and Future Work

This thesis describes and evaluates a scalable social networking architecture for
DevOps engineers, with a special focus on cloud deployment specialists. The scal-
ability of the architecture relies on the provisioning of multiple social networking
engine instances at the front end, and/or several memcached nodes at the back
end of the system. Users of the social networking platform can bene�t from the
community knowledge and from the CAMEL repository of application models and
executions, to improve the con�guration, the deployment and the optimization of
distributed multi-cloud applications, tasks of major interest to cloud deployment
specialists. Furthermore, we explored topic classi�cation as a means to categorize
community input and to better link it with existing content (past questions and
answers, and the results of past queries over historical execution data).

The user evaluations and pilot use of our platform within the PaaSage project
has helped improve our implementation. As future work, we believe that extending
the integration of our social networking platform with more information repositories
such as GitHub, can provide additional bene�ts to the DevOps community. A
broader investigation of our topic classi�cation system with a large user base is
another promising avenue of future work.

49



50 CHAPTER 5. CONCLUSIONS AND FUTURE WORK



Bibliography

[1] M. Loukides, What is DevOps? " O'Reilly Media, Inc.", 2012.

[2] J. Rossberg, �Collaboration,� in Beginning Application Lifecycle Management.
Springer, 2014, pp. 135�143.

[3] Chef, https://www.chef.io/, 2015, [Online; accessed 12-Aug-2015].

[4] �Ibm blue mix for developers,� http://https://developer.ibm.com/bluemix/,
2015, [Online; accessed 24-May-2015].

[5] P. D. 2.1.2, �Model Based Cloud Platform Upperware,� http://www.paasage.
eu/images/documents/paasage_d2.1.2_�nal.pdf, 2014, [Online; accessed 18-
May-2015].

[6] K. Magoutis, C. Papoulas, A. Papaioannou, F. Karniavoura, D.-G.
Akestoridis, N. Parotsidis, M. Korozi, A. Leonidis, S. Ntoa, and C. Stephani-
dis, �Design and implementation of a social networking platform for cloud
deployment specialists,� Journal of Internet Services and Applications, vol. 6,
no. 1, pp. 1�27, 2015.

[7] N. Ferry, A. Rossini, F. Chauvel, B. Morin, and A. Solberg, �Towards model-
driven provisioning, deployment, monitoring, and adaptation of multi-cloud
systems,� in Proceedings of CLOUD 2013: 6th IEEE International Conference
on Cloud Computing, L. O'Conner, Ed. IEEE Computer Society, 2013, pp.
887�894.

[8] F. Chauvel, N. Ferry, B. Morin, A. Rossini, and A. Solberg, �Models@ runtime
to support the iterative and continuous design of autonomic reasoners.� in
MoDELS@ Run. time, 2013, pp. 26�38.

[9] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata,
J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu, �Web services agreement speci-
�cation (ws-agreement),� in Open Grid Forum, vol. 128, 2007, p. 216.

[10] C. Quinton, N. Haderer, R. Rouvoy, and L. Duchien, �Towards multi-cloud
con�gurations using feature models and ontologies,� in Proceedings of the
2013 international workshop on Multi-cloud applications and federated clouds.
ACM, 2013, pp. 21�26.

51

https://www.chef.io/
http://https://developer.ibm.com/bluemix/
http://www.paasage.eu/images/documents/paasage_d2.1.2_final.pdf
http://www.paasage.eu/images/documents/paasage_d2.1.2_final.pdf


52 BIBLIOGRAPHY

[11] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: eclipse mod-
eling framework. Pearson Education, 2008.

[12] Eclipse, �CDO Model Repository,� http://projects.eclipse.org/projects/
modeling.emf.cdo, 2015, [Online; accessed 29-July-2015].

[13] K. Kritikos, M. Korozi, B. Kryza, T. Kirkham, A. Leonidis, K. Magoutis,
P. Massonet, S. Ntoa, A. Papaioannou, C. Papoulas, C. Sheridan, and
C. Zeginis, �D4.1.1 � prototype metadata database and social network,�
Accessed 8/2015, available from http://www.paasage.eu/images/documents/
PaaSage-D4.1.1_�nal.pdf.

[14] A. Papaioannou and K. Magoutis, �An Architecture for Evaluating Dis-
tributed Application Deployments in Multi-Clouds,� in Proceedings of 5th
IEEE International Conference on Cloud Computing Technology and Sci-
ence(CloudCom'13). Bristol, UK: IEEE, 2013.

[15] PaaSage EU FP7 project, http://www.paasage.eu/, 2015, [Online; accessed
29-July-2015].

[16] D. Baur, S. Wesner, and J. Domaschka, �Towards a model-based execution-
ware for deploying multi-cloud applications,� in Advances in Service-Oriented
and Cloud Computing. Springer, 2014, pp. 124�138.

[17] D. W. Jorgenson and K. J. Stiroh, �Information technology and growth,�
American Economic Review, pp. 109�115, 1999.

[18] �Social networks popular among programmers,� http://www.informationweek.
com/wireless/social-networks-popular-among-programmers/d/d-id/1078472,
[Online; accessed 12-Aug-2015].

[19] �Github,� http://github.com/, 2015, [Online; accessed 24-May-2015].

[20] �Gitter: The chat for github,� http://gitter.im/, 2015, [Online; accessed 24-
May-2015].

[21] �Sourceforge,� http://sourceforge.net, 2015, [Online; accessed 24-May-2015].

[22] �Google code,� https://code.google.com, 2015, [Online; accessed 24-May-
2015].

[23] �Codeplex: Project hosting for open source software,� https://www.codeplex.
com, 2015, [Online; accessed 24-May-2015].

[24] �Stackover�ow,� http://stackover�ow.com/, 2015, [Online; accessed 24-May-
2015].

http://projects.eclipse.org/projects/modeling.emf.cdo
http://projects.eclipse.org/projects/modeling.emf.cdo
http://www.paasage.eu/images/documents/PaaSage-D4.1.1_final.pdf
http://www.paasage.eu/images/documents/PaaSage-D4.1.1_final.pdf
http://www.paasage.eu/
http://www.informationweek.com/wireless/social-networks-popular-among-programmers/d/d-id/1078472
http://www.informationweek.com/wireless/social-networks-popular-among-programmers/d/d-id/1078472
http://github.com/
http://gitter.im/
http://sourceforge.net
https://code.google.com
https://www.codeplex.com
https://www.codeplex.com
http://stackoverflow.com/


BIBLIOGRAPHY 53

[25] B. Vasilescu, V. Filkov, and A. Serebrenik, �Stackover�ow and github: Associ-
ations between software development and crowdsourced knowledge,� in Social
Computing (SocialCom), 2013 International Conference on, Sept 2013, pp.
188�195.

[26] �Ibm devops best practices,� http://www.ibm.com/developerworks/devops/
practices.html, 2015, [Online; accessed 24-May-2015].

[27] R. Sumbaly, J. Kreps, and S. Shah, �The big data ecosystem at linkedin,� in
Proceedings of the 2013 ACM SIGMOD International Conference on Manage-
ment of Data. ACM, 2013, pp. 1125�1134.

[28] �Geeklist,� https://geekli.st/, 2015, [Online; accessed 10-June-2015].

[29] �Snipplr,� http://snipplr.com/, 2015, [Online; accessed 10-June-2015].

[30] �Masterbranch,� https://masterbranch.com/, 2015, [Online; accessed 10-June-
2015].

[31] �Dzone,� http://www.dzone.com/, 2015, [Online; accessed 10-June-2015].

[32] �The code project,� http://www.codeproject.com/, 2015, [Online; accessed
10-June-2015].

[33] J. Howe, �The rise of crowdsourcing,� Wired magazine, vol. 14, no. 6, pp. 1�4,
2006.

[34] R. Sumbaly, J. Kreps, L. Gao, A. Feinberg, C. Soman, and S. Shah, �Serving
large-scale batch computed data with project voldemort,� in Proceedings of
the 10th USENIX conference on File and Storage Technologies. USENIX
Association, 2012, pp. 18�18.

[35] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, �Dynamo: ama-
zon's highly available key-value store,� in ACM SIGOPS Operating Systems
Review, vol. 41, no. 6. ACM, 2007, pp. 205�220.

[36] H. Barrigas, D. Barrigas, M. Barata, P. Furtado, and J. Bernardino, �Overview
of facebook scalable architecture,� in Proceedings of the International Confer-
ence on Information Systems and Design of Communication. ACM, 2014,
pp. 173�176.

[37] �Bigpipe: Pipelining web pages for high performance,� 2008, [Online; accessed
19-July-2008].

[38] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li, R. McEl-
roy, M. Paleczny, D. Peek, P. Saab et al., �Scaling memcache at facebook.� in
nsdi, vol. 13, 2013, pp. 385�398.

http://www.ibm.com/developerworks/devops/practices.html
http://www.ibm.com/developerworks/devops/practices.html
https://geekli.st/
http://snipplr.com/
https://masterbranch.com/
http://www.dzone.com/
http://www.codeproject.com/


54 BIBLIOGRAPHY

[39] C. Lueninghoener, �Getting started with con�guration management,� 2011.

[40] Bcfg2, http://www.bcfg2.org/, 2015, [Online; accessed 12-Aug-2015].

[41] CFEngine, http://www.cfengine.com/, 2015, [Online; accessed 12-Aug-2015].

[42] Puppet, http://www.puppetlabs.com/, 2015, [Online; accessed 12-Aug-2015].

[43] A. Tsalolikhin, �Summary, con�guration management summit,� 2010.

[44] T. Delaet, W. Joosen, and B. Vanbrabant, �A survey of system con�guration
tools,� in Proceedings of the 24th International Conference on Large Instal-
lation System Administration(LISA'10). San Jose, CA: ACM, 11/2010, pp.
1�8.

[45] M. Fowler and M. Foemmel, �Continuous integration,� Thought-Works)
http://www.thoughtworks.com/continuous-integration, 2006.

[46] �Travis continuous integration,� https://travis-ci.org/, 2015, [Online; accessed
12-Aug-2015].

[47] �Jenkins continuous integration.�

[48] C. D. Manning and H. Schütze, Foundations of statistical natural language
processing. MIT press, 1999.

[49] A. Pak and P. Paroubek, �Twitter as a corpus for sentiment analysis and
opinion mining.� in LREC, vol. 10, 2010, pp. 1320�1326.

[50] S. Verma, S. Vieweg, W. J. Corvey, L. Palen, J. H. Martin, M. Palmer,
A. Schram, and K. M. Anderson, �Natural language processing to the res-
cue? extracting" situational awareness" tweets during mass emergency.� in
ICWSM. Citeseer, 2011.

[51] A. Go, R. Bhayani, and L. Huang, �Twitter sentiment classi�cation using
distant supervision,� CS224N Project Report, Stanford, vol. 1, p. 12, 2009.

[52] E. Wong, J. Yang, and L. Tan, �Autocomment: Mining question and answer
sites for automatic comment generation,� in Automated Software Engineering
(ASE), 2013 IEEE/ACM 28th International Conference on. IEEE, 2013, pp.
562�567.

[53] A. Zookeeper, �Apache zookeeper,� https://zookeeper.apache.org/, 2015, [On-
line; accessed 20-May-2015].

[54] E. S. N. Engine, �Elgg social networking engine,� http://elgg.org/, 2015, [On-
line; accessed 19-May-2015].

[55] jQuery, �jquery,� https://jquery.com/, 2015, [Online; accessed 19-May-2015].

http://www.bcfg2.org/
http://www.cfengine.com/
http://www.puppetlabs.com/
https://travis-ci.org/
https://zookeeper.apache.org/
http://elgg.org/
https://jquery.com/


BIBLIOGRAPHY 55

[56] M. Kol²ek, �Session �xation vulnerability in web-based applications,� Acros
Security, p. 7, 2002.

[57] W. Burgers, R. Verdult, and M. van Eekelen, �Poster: Prevent session hijack-
ing.�

[58] J. L. Thames, �Comparing cross-site scripting vulnerabilities.�

[59] �Bootstrap front-end framework,� http://getbootstrap.com/2.3.2/, [Online;
accessed 24-May-2015].

[60] E. McCormick and K. De Volder, �Jquery: �nding your way through tangled
code,� in Companion to the 19th annual ACM SIGPLAN conference on Object-
oriented programming systems, languages, and applications. ACM, 2004, pp.
9�10.

[61] �Chart.js, simple, clean and engaging charts for designers and developers,�
http://www.chartjs.org/, 2015, [Online; accessed 12-Aug-2015].

[62] K. V. Natda, �Responsive web design,� Eduvantage, vol. 1, no. 1, 2013.

[63] �Twitter Bootstrap,� http://getbootstrap.com/, 2015, [Online; accessed 12-
Aug-2015].

[64] D. Cochran, Twitter Bootstrap Web Development How-To. Packt Publishing
Ltd, 2012.

[65] �Zeromq, the guide,� http://zguide.zeromq.org/page:all, 2015, [Online; ac-
cessed 12-Aug-2015].

[66] �Rabbitmq, feature highlights,� https://www.rabbitmq.com, 2015, [Online;
accessed 12-Aug-2015].

[67] P. Sahni and A. Batra, �Network �le system,� International Journal of Re-
search, vol. 2, no. 4, pp. 894�896, 2015.

[68] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, �Zookeeper: Wait-free coor-
dination for internet-scale systems.� in USENIX Annual Technical Conference,
vol. 8, 2010, p. 9.

[69] �The Zookeeper recipes,� https://github.com/Gutza/php-zookeeper-recipes,
2015, [Online; accessed 12-Aug-2015].

[70] Memcache, �Memcache,� http://memcached.org/, 2015, [Online; accessed 18-
May-2015].

[71] �PHP Memcached library documentation,� http://php.net/manual/en/book.
memcached.php, 2015, [Online; accessed 12-Aug-2015].

http://getbootstrap.com/2.3.2/
http://www.chartjs.org/
http://getbootstrap.com/
http://zguide.zeromq.org/page:all
https://www.rabbitmq.com
https://github.com/Gutza/php-zookeeper-recipes
http://memcached.org/
http://php.net/manual/en/book.memcached.php
http://php.net/manual/en/book.memcached.php


56 BIBLIOGRAPHY

[72] A. jMeter, �Apache jmeter,� http://jmeter.apache.org/, 2015, [Online; ac-
cessed 19-May-2015].

[73] sysstat, �Performance monitoring tools for linux,� https://github.com/sysstat/
sysstat, 2015, [Online; accessed 19-May-2015].

[74] �Natural language processing with node.js,� https://github.com/
NaturalNode/natural/, 2015, [Online; accessed 1-July-2015].

[75] �Stack exchange application programming interface,� https://api.
stackexchange.com/, 2015, [Online; accessed 14-July-2015].

[76] M. F. Porter, �An algorithm for su�x stripping,� Program, vol. 14, no. 3, pp.
130�137, 1980.

[77] S. Deterding, M. Sicart, L. Nacke, K. O'Hara, and D. Dixon, �Gami�cation.
using game-design elements in non-gaming contexts,� in CHI'11 Extended Ab-
stracts on Human Factors in Computing Systems. ACM, 2011, pp. 2425�2428.

[78] J. Antin and E. F. Churchill, �Badges in social media: A social psychological
perspective,� in CHI 2011 Gami�cation Workshop Proceedings (Vancouver,
BC, Canada, 2011), 2011.

[79] �Graphical Modeling Framework,� https://wiki.eclipse.org/Graphical_
Modeling_Framework, 2015, [Online; accessed 30-July-2015].

[80] �Cookbooks Site API,� https://docs.chef.io/api_cookbooks_site.html, 2015,
[Online; accessed 30-July-2015].

[81] E. Papoutsakis, �Reducting the complexity of model-driven design and deploy-
ment of multi-cloud applications.� Master's thesis, Computer Science Dep. of
Un. of Crete, 2015.

[82] �Amazon elastic compute cloud,� https://aws.amazon.com/ec2/, 2015, [On-
line; accessed 12-Aug-2015].

[83] R. A. Virzi, J. L. Sokolov, and D. Karis, �Usability problem identi�cation
using both low- and high-�delity prototypes,� in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, ser. CHI '96.
New York, NY, USA: ACM, 4/1996, pp. 236�243. [Online]. Available:
http://doi.acm.org/10.1145/238386.238516

[84] P. Jordan, �An introduction to usability,� 1998.

http://jmeter.apache.org/
https://github.com/sysstat/sysstat
https://github.com/sysstat/sysstat
https://github.com/NaturalNode/natural/
https://github.com/NaturalNode/natural/
https://api.stackexchange.com/
https://api.stackexchange.com/
https://wiki.eclipse.org/Graphical_Modeling_Framework
https://wiki.eclipse.org/Graphical_Modeling_Framework
https://docs.chef.io/api_cookbooks_site.html
https://aws.amazon.com/ec2/
http://doi.acm.org/10.1145/238386.238516

	Introduction
	Background

	Related Work
	Professional and social networks
	Scalability in social networks
	Configuration management and deployment
	Topic classification

	Implementation
	Social networking platform
	Extending the core Elgg platform
	Communicating with CDO server

	Scalability
	Social networking engine
	Memcached

	Topic classification
	Bayes classification algorithm
	Automated answers

	User interface
	Design principles

	Generating application models
	Baseline models
	Graphical modeling


	Evaluation
	Scalability
	Scaling the caching tier
	Scaling the Elgg engine tier

	Topic classification
	Requirements and user interface

	Conclusions and Future Work

