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MOAUMETPLKN) NULUTOOOTLKN) KOl TTOOOTLKI) HLEAETN OYKWV MOAQKWVY HOPLWV ME

VEOTEPECG TEXVIKEG MayvnTKOU ZUVTOVIOHOU.
Zovoyn

Ol 6ykol paAakwv poplwv amoteAoUv pila eupeia katnyopia oykwv pe Stafabduion otov Baduo
KokonBelag. O akpBNG Kal €yKOLPOG XOPAKTNPLOUOG Ttailel TOAU ONUOVTIKO POAO OTnv
KaAUtepn Slaxeiplon Tou acBevn Kot oTNV MPOYVWon tg aoBévelag. H amelkovion payvntikou
ouvtoviopoU (AMZ) amoteAel Tnv HEBOSO €KAOYNG YL TNV TPO-EYXELPNTIKA EKTIUNON TWV
OYKwV HoAoKwv poplwv kaBwg mpoodepel 16k avtiBeon PETAEU TwWV OTWV HOAAKWY
popiwv, TpoodEpeL amelkovion os MOAMAAQ enineda kol gv evéxel Tnv Xpnon Lovtilouoag
OKTWVOPBOAIOG. ZNUAVTIKOTEPOG AOYOC OUWC eilval OtL n ToAU-ueBodiky AMI mpoodépel
mAnpodopia yla tnv maboloyia Tou anmelkovI{OPEVOU LOTOU HECW SLAPOPETIKWY UNXOVIOUWY
avtiBeong elkdveg, kabBévag amd toug omoioug avadelkvUel ol SlopopeTik oPn  Tou
HLKpoTEPLBAAAOVTOG TOu Oykou. Mapdha autd o0 TEALKOC XOPAKTNPLOUOC Tou Oykou Sivetatl
and tnv lotonaboloyikn e€€tacn mou amotelel amapaitnto PApa otnv Stadkaoia tng

Sdlayvwong.

H avtiBeon otig elkdveg AMZ Snulouvpyeitol mpooapuolovtag TI¢ MapAUETPOUS TIG ANYPNg wote
va avadelKVUOUV ETIAEKTIKA TNV eMBUPNTH W8LOTNTA Tou LoTtovu. ElSikotepa n avtiBeon oTig
ELKOVEC amelkoviong duaxuong (DWI) cuvdéetal pe tnv KuttapofpiBela kal Thv alpdtwon
OMwc auta amodidovral and tng aAAayeg otnv Suvatdtnta eAsUBgpng SLaxuong Twv popiwy
Tou vepou. H Suvaulk akoloubia HayvnTIKAG EMLOEKTIKOTNTAG AVASELKVUEL TIG TIEPLOXEG
QUENMEVNG OYYELOKNG Slamepatotntog HECW TWV SUVAUIKWY ELKOVWV KATA TNV SLAPKELD
xopnynong oklaypadikig mapapoyvntikng ouvoiac. Ehooov XopoKTNPLOTIKE TNG ALUATWONG
MMmopoUV va PBaclOTOUV O OTTELKOVLOTIKEG TEXVIKEGC TOOO avtiBeong didxuong oAAG Kot
Suvoapikng akohouBiag atpatikng Stnbnong, pe dtadopetikn Bewpntikn Bdon n kabe pia, pia
MEAETN TNG OUMPWVIOG TWV QMOTEAECUATWY amoteAel avrtikeipevo pe evbladépov. Me
Sebopévo otL n akohouBia avtiBeong Slaxuong eival emiong eVOELKTIKN TNS KuTtapoPpiBelag,
QUTO TNV KaBlotd éva Suvato epyaleio otnv HEAETN TNG €MOETIKOTNTACG TOU OYKOU. TNV
epyacia Il mapouoldletal pla PeAETn oUYKALONG HEeTafl Twv U0 SLadOPETIKWY TEXVIKWV
(DWI-DCE) 1600 o¢ emninedo cupdwviag Pe OTATIOTIKA LeEYEDN 600 Kal ot eminedo XWPLKNG
oupdwviag ota amoteAéopata evionmopol Twv Bécewv PEoA oTov OyKo TNG uPnAotepng
KakonOeLag, KataAyovtog o £vav omtikd odnyo yla thv avadelen toug omtikd. H gpyacia IV
avapEPETAL OE AVAYVWPLON VEKPWTLKWY, UTTOEKWYV I TIEPLOXWY LLE OVONTUCCOUEVO OYKO HE

Baon tnv KaumuAn evioxuong akolouBia DCE.



‘Eval emiong onUAvVTLKO HEPOC TNG OMELKOVLOTIKAG Stadikaotag ivat ot T2 kot T2* relaxometry
TEXVIKEG KOBWGE TAPEXOUV LETPNOELG ELOIKEC YL TOV LOTO UTIO €€Taion Kal dev e€apTwvtal amd
TIC TTAPOUETPOUC ATELKOVIONG. MNa TtV Stadikaoia tng afloAdynong twv HeBoOdwy, o auto To
HEPOG TNG epyaoiag amelkoviobnkav kol acBeveic pe kahonBelg Aumwbdn veomAdopata ylo
petpnoslg avadopag. Aut n avaiuon adopoUce POVO Ot Oykoug He Amwdn cvuotoon N
TMPOoEAEUONG amo AMwdnN LoTo, KaBwe KaTd TV dlapkela TG cUAAoyNG dedopuévwy TpoEku e
OTL OTNV TAELOVOTNTA TOuG oL aoBevel¢ mou eyypadnkav otnv UEAETN va  €XOuv
AUTOCOPKWUOTA KOL EMOMEVWE QAUTO TO AVOLXTO TPoG £peuva Tnedlo pmopolos va
OVTLUETWTTILOTEL ATO TO CUYKEKPLUEVO ATIELKOVIOTIKO TMPWTOKOAAOD KAl TNV CUYKEKPLUEVN opada

aoBevwv. OL gpyaoiec Il kal IV cuvayouv CUUMEPACHA YLt TV TAUTOTNTO TOU QmEIKOVI{OUEVOU

loToU  Kal TNV oloTacn ToU ONnwG OUTh EUHECWG Topouclaletol otoug OelKTEC TIOU

TPOKUTITOUV ATt TI¢ T2 akoAouBieg mMOAATAWY NXWV.

H epyaocia Il swodyel tov 6po Spin Coupling ratio (SCratio) w¢ HETPIKO €VOELIKTIKO TNG
eA\ATWOoNG €vtaong onpatog oxetl{lopevne pe dpatvopeva oulevéng otpodopung omv (spin
coupling) to omoio amoteAel YyvwoTO ATMELKOVIOTIKO GALVOUEVO OTOV UYL Amwdn Lotd oe
€IKOVEG T2 avtiBeong aAAG dev €xel pehetnBel n atla tou cav BLodeiktng yla kKaAonBeleg n
OyKoUC AmWdoug apxng OmMwe AmMwuoTa 1 Autocopkwpata. Autog o Seiktng €xeL tnv
duvatotnTa va XpnolgomolnBel yla TNV ovayvwplon TIEPLOXWV QUENUEVNG N HELWUEVNG
KUTTOPLKNG Sladopomoinong HECOH OE ETEPOYEVH VEOTIAACUOTO TIPOKELUEVOU VO QTTOTEAECEL
TPO-EYXELPNTLKO £pyaleio kaBodriynong tng Plogiag. Auti n epyacia umootnpixBnke amd

OUUTIEPACHOTA O€ OUOLWUOTA TToU Snuoateltnkay othv epyaoia l.

H epyaoia V mpoteivel pia cuykekpluévn pebBodoloyia moAuekBeTIknG pooapuoyng (Mexp)
kot afloloysl ta amoteAéopota TNG UE QVTIMOPAPBOAN HE TA QAMOTEAEOUOTA TNC EUPEWC
XPNOLUOTIOLOUMEVNG TEXVIKNG ILT ©f oOpOlwpATO HE OKOTMO TNV oflomolomoincn tng
TPOTELVOUEVNG LEBGSoL oe Oykoug Atmwdoug apxng (epyaocia VI). H mpotelvopevn TeEXVIKN
€XEL TO TAEOVEKTNHA TOU XOPAKTNPLOMOU TOU LOTOU O OXEON LE TOV apLBUO Twv SLOKPLTWY
Slapeplopdtwv 6ocov adopd tnv yohdpwon T2 ot eninmedo elkovooTolyeiou Kal 000 o
eninedo eupltepnG MepLoyng evoladépovtog onwe n LEBodog avadopds, To omolo anoteAel
ONUOVTLKO oTolxelo yla etepoyevr] veomhdopota. Ot oykol Ammwdoucg apxng He dtadopetikd
Babuo kaxkonBelag epdavilovral pe diadopetikd potifo xaAdpwong cupmepldpopd otnv
TIPOTELVOLEVN TEXVLKA Mexp, Kol EMOUEVWE N TIPOTELWVOUEVN TEXVLKI UTTOPEL va XpnotpomnonBet
0€ OUVOUAOUO HE CUMPBATIKEG TEXVIKEG ATIEIKOVIONG YLAL TNV TIPO-EYXELPNTIKN EKTILNON AUTWV

TWV VEOTIAQCLATWV.

‘Eva veOTEPO OYKOAOYLKO TIPpWTOKOANO Ttou TepAapPavel OAeg TG poavadepOeioeg TEXVIKEC
aflomolBnke ota mMAaiola autAg TNG HEAETNG Kal Ta anmoteAéopata os emninedo Plodelktwv

aflohoyndnkav w¢ mMPOG TNV KOVOTNTA HUN EMeUPOTIKOU XOPAKTNPELOUOU TOU LOTOU ME
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emBeBaiwon amo tnv Lotonaboloyikn e€€taon wote va SnuwoupynBel éva cUVOAO KALVLKA
onuavtikwv  Blodelkktwyv. H  lotomaBoloylky avaAluon  xpnowlomolnbnke  ywo TNV
KOTNYOPLOTIONON TWV LOTWV TIOU ATOV OIMapaitnTn yla T aVAAUOEL( TWV OTTELKOVIOTIKWY
Sebopévwy. Ta QMOTEALCUATO TIOU TIAPOUGCLAOVTOL UIOPOUV Vol £X0UV XPNOLUOTNTA OTNV
umooTtApn TNG OKTWOoAOYlkAG OSldyvwong Kol HMmopouv  €miong va  amoteAEoouv

QTOTEAEOUATLKO £pYaAeio yLa TNV eMAEKTLKN Sladoyr) LOTOU Ao TV POo-eYXELPNTIKA Bloyia.
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Multi-parametric semi-quantitative and quantitative study of soft tissue tumors

with advanced MR techniques.

Abstract

Soft tissue tumors comprise a broad category of neoplasms with variable degree of
malignancy. Accurate and early tissue characterization vyields a vital role in patient
management and disease prognosis. MRI is the imaging modality of choice for preoperative
assessment of soft tissue tumors as it offers supreme soft tissue contrast, multi plane coverage
and does not involve exposure to ionizing radiation. More importantly, multi modal MRI
imaging offers insight into tissue pathology from a number of different contrast mechanisms
each one highlighting a different aspect of tumor microenvironment. However, histopathologic
correlation of MR findings is a necessary step for the validation of MR findings and definite

tissue characterization.

Contrast on MR images can indirectly characterise these properties by adjusting image
contrast to be dependent on a sought-after property of tissue. Specifically, contrast on DW
images is related to cell density and vascularity as derived from water mobility in tissue. DCE
dynamic protocol highlights areas of increased vascular permeability through dynamic imaging
during contrast medium administration. Since biomarkers related to vascularity can be derived
by both DCE and DWI methods based on different theoretical assumptions, a study of
agreement attracts great interest. As DWI is also indicative of tissue cellularity, which along
with vascularity/permeability, is a very powerful metric of tumor aggressiveness. In paper lll a
correlation study is presented between the two different methodologies (DWI-DCE) in terms of
statistical correlation and spatial agreement for increased tumor malignancy and conclude to a
visual guide of areas within the tumor with MR findings indicative of increased malignancy.
Paper IV is a study of the different DCE enhancement patterns that are indicative of viable

necrotic and hypoxic tumor sites.

Another robust quantitave MRI methodology dating from the early days of MR imaging is T2
and T2* relaxometry as it provides tissue specific metrics of magnetic properies, independent
of acquisition parameters and thus indicative of tissue properties. For this part of the study
benign lipoma patients were also enrolled and additionally phantoms were used for reference
measurements. This study focused selectively on tumors of adipocytic origin as liposarcomas
were the majority of soft tissue sarcomas in the patient cohort used in our study. Paper Il and
V inferred tissue identity and composition as manifested indirectly in multi echo T2

relaxometry measurements.
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Paper |l introduces Spin Coupling ratio (SCratio) metric indicative of signal loss related to the
spin coupling phenomenon which is a known phenomenon for healthy adipose tissue (bright
fat phenomenon) but has not been studied for other tissues of lipomatous origin, such as
lipomas or liposarcomas. This marker has the potential to be used for identification of areas of
increased / decreased tissue differentiation within a heterogeneous neoplasm and can be a
helpful tool for pre-operative tissue characterization for biopsy guiding. The study was

supported by preliminary phantom results published in paper I.

Paper V introduces a proposed methodology for multi exponential T2 relaxometry (Mexp) and
validates the results also in comparison with the well-established ILT method on a phantom as
a preliminary stage for the application of the proposed methodology to adipocytic tumors
(paper VI). The proposed technique has the added advantage over the gold standard ILT
method of producing voxel based parametric maps rather than ROl based T2 distributions,
which is essential taking into account tissue heterogeneity. Lipomatous tumors with different
degree of malignancy exhibit distinct behavior patterns as measured with Mexp, and thus the
proposed method can be used along with conventional imaging methods for preoperative

radiological assessment.

An advanced oncologic protocol hosting all abovementioned imaging techniques was deployed
in this study and resulting biomarkers were validated with histopathologic assessment in order
to constitute a set of robust and clinically relevant biomarkers for the characterization of soft
tissue neoplasms. Histopathologic analysis results were used for final tissue classification,
necessary for the analysis of MR findings. The results presented in this thesis are useful for
supporting radiological diagnosis and can also be a useful tool for optimizing imaging-driven

biopsies.
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Acronyms

CPMG: Car Purcell Meiboom Gill

DCE: Dynamic Contrast Enhanced

DDLS: dedifferentiated Liposarcomas
DWI: Diffusion Weighted Imaging

ESP: Echo Spacing

ETM: Extended Tofts model

FNCLCC: Fédération Nationale des Centres de Lutte Contre Le Cancer
GCTT: Gamma Capillary Transit Time

GE: Gradient Echo

Hct: Hematocrit

ILT: Inverse Laplace Transform

IVIM: Intra-Voxel Incoherent Motion
MEGRE: Multi Echo Gradient Echo
MESE: Multi Echo Spin Echo

MLS: Myxoid Liposarcomas

PDLS: Poorly Differentiated Liposarcomas
PHAPS: Phase Alternating Phase Shift
SCr: Spin Coupling ratio

SE: Spin Echo

SNR: Signal to Noise

STT: Soft tissue tumors

WDLS: Well Differentiated Liposarcomas
WHO: World Health Organization

Vp: plasma volume

21



Background Knowledge

Chapter 1 Introduction

1.1 Epidemiology

Soft tissue can be defined as extraskeletal non-epithelial tissue of the body, represented by the
voluntary muscles, fat, and fibrous tissue, the vessels serving these tissues and also the
peripheral nervous system. Soft tissue sarcomas are relatively rare and constitute less than
1.5% of all cancers with an annual incidence of about 6 per 100,000 persons. Tumors arising
from the soft tissue are classified by the line of differentiation, according to the adult tissue
type that they resemble. Malignant tumors are also called sarcomas and, as opposed to benign
soft tissue entities, are locally aggressive and are capable of invasive or destructive growth,

recurrence, and also distant metastasis.

Sarcomas of adipocytic origin comprise the largest subtype of all sarcomas with a frequency of
1 in 5 sarcomas approximately. The degree of malignancy among liposarcomas ranges from
low to high, and is assessed by applying by applying a set of criteria during histopathologic
analysis. Patients with a suspicion for a malignant soft tissue mass are referred for MR imaging
as this is the modality of choice for supreme soft tissue contrast and imaging capabilities in
multiplane planes. Moreover, advanced oncologic techniques offer the ability to adjust image
contrast to a specific property of the tissue of interest and thus the MR acquisition can be
tailored to the specific diagnostic needs of the patient for an individualized well targeted

imaging acquisition.

1.2 MRI contribution

In the frame of this work, a prospective imaging protocol was set in order to examine a
number of clinically relevant metrics for the characterization of soft tissue sarcomas based on
imaging methods. Conventional T1 and fat suppressed T2 sequences in coronal and axial
planes are usually used for the localization and the complete coverage of the lesion as a first
step before proceeding to the sequences tailored for the quantitative part of the MR. In the
frame of an advanced protocol, sequences tailored to be selectively sensitive to a specific
tissue property are deployed, in order to highlight pathophysiological processes of clinical

importance for diagnosis. Most common oncologic imaging targets are cellularity, vascular
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permeability and tissue characterization on a sub-imaging scale. Apart from diagnosis, this
information is very important for other subsequent diagnostic procedures, such as biopsy or
for assessing tumor response to theprapeutic interventions. The contribution of the imaging

protocol utilized in this study are described in the sections below:

1.2.1 Assessment of cellularity

The MR sequence that is sensitive to the displacement of water molecules (diffusion) is based
on T2-w sequence modified by the addition of two dephasing gradients symmetrically before
and after the RF refocusing pulse serving to obscure the signal contribution from freely moving
protons and highlight restricted motion. The degree of sensitivity to proton motion (b value) is
adjusted by the proper choice of diffusion gradient amplitude and duration. Our diffusion
imaging protocol comprised eight different diffusion weightings in order to comply with
recommendations for imaging perfusion and thermal diffusion phenomena with the aim to
decompose information from these two concurrent phenomena at a later post processing
stage. B values where not chosen to be equidistant but they were chosen to sample the low b
value area with higher frequency in order to capture the breaking point between the faster
and slower decaying exponential signal and were more sparsely located at the higher b value
area, with a maximum b of 1500. Such a protocol is suitable for almost all existing proposed
models for biomarker extraction and thus it can serve for the purposes described within this

work, but also can be suitable for further exploitation in the future.

1.2.2 Assessment of vascularity

Vascular properties of tissue can be visualized by perfusion sequences, which are sensitive to
bulk blood flow and/or to the blood circulation at the level of the capillaries. Most widely used
perfusion approaches entail the use of a gadolinium-based contrast medium that is
intravenously administrated to the patient. A sequential acquisition of consecutive dynamic
T1-w phases before during and after the administration allow for the determination of the
enhancement pattern of the contrast uptake. The resulting raw data, when combined with
other imaging and clinical information allowed for the quantification of flow related

parameters that are indicative of the vascular characteristics of the tumor.
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1.2.3 Response to treatment

We also examined DWI and DCE combined results for the purposes of evaluation of response
to treatment in a case report of a patient with an aggressive sarcoma of the foot who
underwent administration of aggressive chemotherapy agent under conditions of isolated limb
perfusion. The results showed that changes in tumor microenvironment following locally
aggressive chemotherapy are evident in the parametric maps derived by both DWI and DCE
techniques showing an overall shift in histogram based analysis to values representing non
aggressive characteristics (viable tumor). At this case report we also briefly studied markers of
hypoxia based on DCE enhancement curves and T2* relaxometry confirming the value of
quantitative MRI to depict changes in tissue microenvironment concerning oxygen
consumption. T2* histogram was accordingly shifted. This frame of analysis eloquently
described changes happening at a microscopic scale that are manifested in metrics derived

from imaging techniques with a multi-parametric protocol.

1.2.4 Pre-operative biopsy planning

The use of DWI derived information on tissue cellularity as well as the use of DCE derived
information on tissue vascularity are very frequently used as surrogate markers of tumor
aggressiveness. However, when examining a heterogeneous extensive mass it is important to
examine if the two methods can reveal a common spatial component that exhibits
characteristics of increased malignancy by both methods. This can serve as a guide for
preoperative biopsy, reducing the possibility for sampling errors and tumor grade
underestimation. To this end, we combined DCE and DWI data to serve a twofold purpose:
firstly to identify possible correlations between biomarkers from the two different
methodologies and secondly to localize voxels within the tumor area that have characteristics
of increased malignancy based on both assumptions of increased cellularity based on
restricted diffusion pattern and increased vascular permeability as indicated by DCE derived
high Ktrans values. The pair of biomarkers that exhibit the most statistically significant
correlation was vp from the GCTT model on the part of DCE and f-IVIM from the DWI
acquisition, expressing vascular tissue density within a voxel. Concerning the latter, for the
majority of neoplasms voxels of both increased cellularity and permeability were not dispersed
over the whole tumor volume but rather formed sub-areas within the tumor that could serve

as indicative regions for optimal biopsy targets.
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1.2.5 Assessment of microenvironment — phantom studies

Among the oldest and best established methods for examining tissue properties is T2
relaxometry as it attempts identification of tissue properties at a molecular level. By capturing
the echo train evolution of transverse magnetization of a certain volume, suitable
mathematical methods can attribute different relaxation patterns to distinct tissue
compartments with an appropriate percentage, providing thus a description of tissue content
Moreover, a T2* sequence in selected echo times was used to acquire multiple in-phase and
opposed phased images were collected to permit evaluation of T2* values and highlight areas

of locally perturbed magnetic field.

Preliminary phantom studies were performed at two separate stages of the analysis process as
a necessary step to test our methods prior to applying them on the patient cohort. The first
phantom study aimed to approximate the most appropriate sequence setting in terms of echo
spacing for producing bright and dark fat images on a set of different vegetable oil samples.
The second stage where a phantom was necessary was for the application of multi-exponential
analysis method of T2 relaxometry data for fat containing samples, in order to compare the

results by the proposed method to the widely used method of inverse Laplace transform.

The first phantom used contained five different edible oil samples of different botanical origin
for the analysis of T2 decay curve when T2 relaxometry sequences differ solely in the time
interval between the successive RF refocusing pulses. Four sequences with echo spacing
ranging from 6.7 to 40 ms and identical other sequence parameters were deployed for
guantitative T2 relaxometry studies. The in-house built phantom contained liquid oil samples
of different botanical origin and thus different composition. As expected based on theoretical
calculations and earlier experimental studies, the results were similar among sequences with
echo spacing above the threshold of 20 ms and similar between the two sequences with echo
spacing below this threshold for all samples, but has significant differences among the two
groups, underpinning thus the modulation of the echo train when spin coupling phenomena
are allowed to evolve under the selected pulse sequence setting. Another interesting
observation was that the amount of signal loss differed among samples, which can be
explained on the basis of variable dependence of each fat resonance peak on the spin coupling
related signal modulation. The result of this work was then used to optimize the T2
relaxometry scheme used for the patient study, with a set of two different echo spacing, one

above and one below the verified threshold of 20 ms.

The second phantom used within the frame of this work was a phantom with aqueous, fatty an
mixed samples in order to analyze the transverse relaxation behavior of fat containing samples

and then use the results for T2 relaxometry for the analysis of similar data acquired from
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patients with adipocytic tumors. A proposed multi exponential method requiring no apriori
assumption on the number of exponential terms (limited to two) was implemented and
compared to the widely used method of Inverse Laplace Transform for acquiring T2 spectrum
of the sample verified the validity of the method. The advantage of the proposed method over
the gold standard ILT is the ability for voxel-wise mapping and consequently the extraction of
voxel based maps able to assess tumor micro-environment in terms of relaxation behavior and

T2 components.

The phantom studies were performed in parallel and were adjusted to serve the purposes of
validating and verifying results for extracting reliable information for the patient study. The
endpoint of these preliminary studies was to provide useful regarding tissue heterogeneity as

an indicative marker of malignancy.

1.2.6 Assessment of tissue microenvironment

Another quantitative MRl method deployed for the study of liposarcomas is the T2 and T2*
relaxation technique as sensitive probes to tissue identity and tumor microenvironment
characteristics. In particular, relaxometry was performed twice with a different ESP based on
the results of the aforementioned phantom study that dictates that bright fat appearance
requires ESP faster than 20ms. By keeping all other parameters identical between the two
multi echo acquisitions and changing only ESP above or below the bright fat threshold we were
able to measure the spin coupling effects on lipomatous tumors and introduce a new
biomarker named SCr, standing for Spin Coupling ratio. After performing T2* relaxometry with
a MEGRE sequence, we compared the classification performance of T2, T2* and SCr
biomarkers for the classification of fat containing tumors of different degree of malignancy.
Interestingly, SCr revealed potential to discriminate among almost all different adipocytic
tumor subtypes, even between those of very similar radiological appearance, such as lipoma
and well differentiated liposarcoma. In addition, another noteworthy finding was the
discriminate power of T2 relaxation constant for identifying benign lipoma or well
differentiated liposarcoma over subcutaneous fat. In conclusion this study evaluated the
diagnostic value of T2/T2* relaxometry for adipocytic entities and in addition proposed a novel

biomarker that specifically targets fat content of heterogeneous tumors.

Following the same direction, we used T2 relaxometry for obtaining T2 distributions of
adipocytic tumors in order to identify the variable relaxation patterns of each subtype and
based on the results to draw conclusions on the different relaxing (fast and slow)
compartments of the tumors. The proposed method, as mentioned earlier, had been

previously tested on a phantom with materials containing pure fatty, aqueous and mixed
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samples in order to test the results in samples of known relaxation behavior as measures by
gold standard methods. T2 relaxation curves were obtained per voxel for the volume assigned
as tumor and a R2 based selection between one or two relaxation components was made in
order to measure up to three independent variables (amplitudes and T2 constants) for each
component. Benign neoplasms histopathologically identical to adipose tissue had a pure bi-
exponential behavior at the entire tumor volume, as expected by the known relaxation pattern
of fatty samples. Tumors of increased malignancy exhibited mixed mono- and bi- exponential
behavior showing that tissue heterogeneity requires more complex relaxation fitting methods
in order to account for myxoid, degenerative of fibrous components found within the
adipocytic neoplasms. Apart from the number of distinct relaxation components, the T2 values
themselves differed among the different tumor subtypes, with the myxoid group having the
highest T2 relaxation constants attributed to the abundancy of the gelatinous mucosal

component.

To summarize, a multi-parametric advanced oncologic protocol applied to a group of patients
with suspicion of tumor of the soft tissue was implemented in order to obtain information on
the specific characteristics of each tumor subtype for supporting radiological decision-making
and better preparation for needle core biopsy with the ultimate goal of accurate disease
characterization and optimal patient management. Accurate pre-operative characterization of
soft tissue tumors, embracing and addressing lesion heterogeneity, has been a long-lived
diagnostic challenge for selecting the optimal therapeutic strategy that ensures the best

possible outcome for the patient.

1.3 Thesis Roadmap

Firstly, in the following section (Chapter 2), a brief description of the pathological entities
encountered during patient enrollment is given, with an illustration of the most significant
radiological and histopathological findings that need to be identified in order to conclude on
the specific subtype of pathology. Chapter 3 revises the most important quantitative MR
methods used for clinical and research purposes that were used in order to extract information
and attribute the characteristics of interest to the imaged volume. Then, the aim of the study
is described in a concise manner based on the background and terminology described in
Chapters 2 and 3. Chapters 4, 5 and 6 address the specific clinical questions raised and present
the results and discussion related to them. Chapter 7 composes the final concluding aspect of
this work as an epilogue. The extensive literature supporting arguments presented in this

thesis is appended after the conclusions.
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Chapter 2 Soft Tissue Tumors

Sarcomas can arise from a variety of soft tissues including fibrous connective tissue, fat,
smooth or striated muscle, vascular tissue, peripheral neural tissue, and visceral tissue. Benign,
intermediate and malignant soft tissue tumors can be differentiated histologically based on
cell differentiation, mitotic activity and extent of necrosis. Rapid increase in current knowledge
of the genetics and the cell biology of soft tissue tumors has led to recent changes in World
Health Organization (WHO) classification of soft tissue tumors from 2013 relating to the
allocation of known entities (Doyle, 2014). They comprise a vast category with more than 100
morphological types and subtypes. Malignant soft tissue tumors only represent 1% of all
malignant tumors in adults with the largest subgroup of soft tissue tumors having adipocytic
origin. Tumors were divided by the WHO into nine groups: adipocytic tumors,
fibroblastic/myofibroblastic tumors, so-called fibrohistiocytic tumors, smooth muscle tumors,
pericytic (perivascular) tumors, skeletal muscle tumors, vascular tumors, chondro-osseous
tumors, and tumors of uncertain differentiation. The liposarcoma, which belongs to this

subgroup is one of the most common malignant soft tissue tumors in adults.

The cohort of the present study comprised mainly of adipocytic tumors and thus the study
focused on the unique imaging characteristics of this clinical entity as manifested in advanced
MR Imaging techniques. Other more rare soft tissue tumors (alveolar sarcoma, Ewing sarcoma,
malignant peripheral nerve sheath sarcoma, hibernoma) were imaged in the frame of this

study but the number of each specific subtype was not sufficient for an extensive study.
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2. 1 Tumors of adipocytic origin

Adipocytic tumors originate from mesenchymal cells and then differentiate to adipose tissue,
without necessarily depending on fat cell maturation for tumor growth. These tumors can be
highly heterogeneous, with the presence of non adipocytic components favoring a high-grade
tumor diagnosis. Tumors of adipocytic origin comprise the vastest group of soft tissue tumors
and can be both benign (lipomas) and malignant (liposarcomas). Liposarcomas, accounting for
approximately 20% of all sarcomas, consist of a heterogeneous group comprising tumors with
different degrees of adipocytic differentiation, ranging from well differentiated (well
differentiated liposarcoma), to poorly differentiated (pleomorphic, dedifferentiated and round
cell liposarcoma) as well as tumors with intermediate adipocytic differentiation (myxoid
liposarcomas). The wide spectrum of pathologic appearances is also reflected in their clinical

and biologic behavior, in terms of aggressiveness and metastatic potential.

Based on the FNCLCC scoring system (Table 1) evaluating tumor differentiation, mitotic count
and percentage of tumor necrosis, each liposarcoma is characterized by a histological grade of
malignancy which ranges from low (G1) to high (G3) (‘WHO Classification of Soft Tissue
Tumours’, 2006). Histological type and grade are the most significant parameters in order to
predict clinical behavior, i.e. rate of growth, possibility to metastasize, risk of recurrence and
survival rate. Accuracy of the preoperative diagnosis, by means of identification the correct
adipocytic tumor type, as well as the definition of its histological grade of malignancy, is

essential for patients management as well as treatment planning (Callegaro et al., 2018).

Table 1 FNCLCC Scoring system for soft tissue sarcomas

Factor FNCLCC Scoring system

Score 1 (close similarity to normal cells) to score 3

Differentiation
(abnormal cell morphology)

Score 1 (low mitotic activity) to score 3 (high mitotic

Mitotic Count .
activity)

Score 0 (very little dying tissue) to score 2 (larger area

Extent of Necrosis . .
of dying tissue)

29




In the case of a malignant soft tissue tumors (sarcomas), wide excision of the tumor together
with a rim of adjacent healthy structures is the surgical treatment of choice to reduce the risk
of local recurrence. Benign tumors on the other hand, are routinely treated by marginal
resection (Casali et al., 2018). Moreover, in sarcoma patients preoperative non-surgical
treatment might be indicated (Callegaro et al., 2018; Casali et al., 2018). Unfortunately,
nowadays accurate preoperative diagnosis is established only by tissue biopsy, usually core
needle biopsy. However, biopsy procedures may be associated with patient’s discomfort and
significant complications whereas in some cases the pathologist may not be able to determine
the type of soft tissue tumor after examination of the biopsy samples (Mankin, Mankin and
Simon, 1996). Hence precise non-invasive method for the differentiation between benign and

malignant soft tissue tumors and the classification of their histological type is warranted.

Although definite diagnosis is established by biopsy, imaging techniques can offer very
important information for their distinct characteristics in order to support diagnosis and
optimize treatment. MRI in particular is superior to other imaging modalities, since it has
multi-planar capabilities, a number of different contrast mechanisms for highlighting tumor
morphology or function and lacks the use of ionizing radiation. Moreover, MR techniques have
the ability to demonstrate even minute fatty tumor components and is able to stage soft tissue
tumors accurately. The imaging differential diagnosis of adipocytic lesions is often extensive

and includes non-neoplastic, benign and malignant entities, as presented in Table 2.

Table 2 Differential considerations in liposarcoma (adjusted from (Teniola et al., 2018))

Imaging features Differential Diagnosis (LPS)  Differential Diagnosis (non LPS)
Well defined fatty mass WDLS/DDLS Angiomyolipoma,
with non-fatty components extramedullary hematopoiesis,

fat necrosis, hemangioma,
hibernoma, mature cystic
teratoma, myelolipoma

heterogeneous mass with DDLS, Myxoid LS, Hibernoma

minimal fat Pleomorphic LS

Fatty mass with thin septae ~ WDLS Lipoblastoma, lipoma,
retroperitoneal lipomatosis

Fatty mass with WDLS, DDLS Fat necrosis, hemangioma,

calcifications heterotopic ossifications, lipoma,
mature cyst teratoma

Fatty mass without well WDLS, DDLS Angiolipoma, fat necrosis,

defined margins hemangioma, hibernoma,

lipoblastoma, lipomatosis of
nerve, massive localized
lymphedema, mesenteric
panniculitis, retroperitoneal
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lipomatosis

I v Surgical Excision Histopathologic Analysis

Figure 1 Diagnosis Workflow Steps followed during this study (images from dedifferentiated liposarcoma of the
abdomen, female patient of 65y) Specimen 1: Necrosis, 2: poorly differentiated, 3: well differentiated, 4: moderately

differentiated liposarcoma.
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2.1.1 Dedifferentiated Liposarcoma

Dedifferentiated liposarcomas (DDLS) are malignant adipocytic tumors showing transition from
atypical lipomatous tumor/well-differentiated liposarcoma (ALT/WDL) to a nonlipogenic
sarcoma of variable histological grade. A small percentage of DDLPS develop as a late

complication of liposarcoma of lower grade or appear as ‘de novo DDLPS’ meaning higher

malignancy at the time of presentation (90%)(Gupta et al., 2016).

Figure 2 MR imaging of a dedifferentiated liposarcoma (Female patient, 67y, R. thigh) Above: TrueFISP and T2fat sat
axial. Below: T1 GRE and T1 SE after contrast medium administration.

Considering the aggressiveness of dedifferentiated liposarcoma, therapeutic strategies include
wide surgical excision in conjunction with radiotherapy or chemotherapy. It is of note that
compared to other high grade pleomorphic sarcomas, dedifferentiated liposarcomas exhibit
reduced aggressiveness and this can be attributed to the integrity of tumor suppression gene
(tp 53)(Coindre, Pédeutour and Aurias, 2010). The vast majority of DDLS similar underlying
chromosomal alterations (12q14—-15 amplification involving MDM2 gene) to well differentiated
liposarcomas. This in turn shows the biological similarity among liposarcomas of different
degree of differentiation representing a spectrum of the same disease. Often the spatial
transition between the well and poorly differentiated areas is very abrupt and visually evident

by difference in the color.
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Figure 3 Surgical specimen and corresponding trueFISP slice of a dedifferntiated sarcoma (male patient, 40y, right
thigh) where isles of well differentiated fat coexist with poorly differentiated fat. Hemorrhage and necrosis are also
shown.

Figure 4 Abrupt transition between poorly and well differentiated liposarcoma (Female patient, 67y, R. thigh)
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On MRI, ALT/WDL present as predominantly lipomatous tumors with thick septa (>2 mm),
globular and/or nodular areas, and/or associated masses [6]. The nonlipomatous component
has low signal intensity (SI) on T1-weighted images (TIWI) and various Sls on T2W!I, depending
on the type of tissue present. The thick septa or nodules enhance markedly after contrast
administration. Dedifferentiation is suggested by the additional presence of a focal nodular
nonlipomatous region greater than 1 cm in size with a low to intermediate SI on TIWI and

intermediate to high Sl on T2WI.
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2.1.2 Pleomorphic Liposarcoma

Pleomorphic liposarcoma (PLS) is the least frequent liposarcoma (5%) characterized by
increased malignancy, high metastatic potential and mortality. Identification of lipoblasts
differentiates within the tumor differentiates it from other pleomorphic sarcomas. However,
lipogenic differentiation may be focal only as linear, lacy or amorphous fat within the lesion.
Lipoblasts are frequently very large and contain irregular, hyperchromatic, scalloped nuclei,

with prominent nucleoli and multi-vacuolated cytoplasm. Genetically, pleomorphic

liposarcomas have complex caryotypes with a high frequency of p53 mutations.

Figure 5 Pleomorphic lipoblasts (male patient of 58y in the left shoulder)

At MR imaging, hemorrhage and/or extensive necrosis can be identified. They often do not
contain a sufficient amount of fat to exhibit its radiological characteristics and therefore they
exhibit low signal intensity on Tlw images and high signal intensity in T2 weighted Spectral fat

suppression may fail, suggesting different behavior and content from normal fat.
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Figure 6 MR Imaging of a pleomorphic liposarcoma with an extensive area of necrosis (low signal intensity in all
sequences) of a male patient of 58 y in the left shoulder. Above: PD fs axial, T2 fs sagittal. Below: T1 fat sat cor
Below: T1 fat suppressed after contrast in sagittal and axial plane.
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2.1.3 Myxoid Liposarcoma

Myxoid liposarcoma (MLS) comprehend a wide group of mesenchymal tumors and suggest the
second most frequently encountered entity after well differentiated liposarcomas. They have a
mixed composition of myxoid and round cell components, with the latter characterized by
increased cellularity, higher mitotic activity and necrosis. They are characterized by solid
sheets of primitive cells replacing the myxoid stroma and presenting a distinct vascular pattern
(Murphey, Arcara and Fanburg-Smith, 2005). The myxoid components are presented as
predominantly gelatinous lobules, with a delicate arborizing capillary network and primitive
mesenchymal cells with variable number of lipoblast at the peripheries of the lobules. Myxoid
and round cell components coexist in a variable degree and there is often a smooth transition
from one to another, suggesting a histological continuum. Mature adipose tissue areas are
sparse representing a small percentage of the tumor. The increased round part compartment
above 5% increases possibility for metastatic disease and entails worse prognosis (Lowenthal
et al., 2013). High grade tumors are usually larger in size, encase large vessels and have a
higher incidence of necrosis. Myxoid liposarcomas harbor a recurrent t(12;16) (q13;p11)

translocation.

The extracellular mucoid and myxoid compartments attract water from the blood supply which
is trapped inside the lesion and is responsible for the cyst-mimmicking appearance in MRI (Pai
et al., 2015) with high signal intensity in T2w images and extremely low in Tlw. Hyperintence
foci of lacy or linear shape can often be detected within the tumor, occupying a small
percentage of its volume. These foci are composed of minute quantities of adipocytes and
have the radiological characteristics of fat in all sequences. However, in contrast to cystic
lesions, myxoid liposarcomas have prominent signal enhancement after contrast medium

administration, with variable pattern (central, peripheral or diffuse enhancement)
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Figure 7 Ki-67 chrosis of a myxoid liposarcoma (Male, 35y, right thigh). Extensive myxoid areas are evident.

magnification x 40

Figure 8 MR Imaging of a myxoid liposarcoma (Male, 35y,right thigh) From left to right: T2 STIR, T1 fat

suppressed after contrast, T1 GRE.
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2.1.4 Atypical lipomatous tumor/well-differentiated liposarcoma

Well differentiated liposarcomas (WDL) (which includes the adipocytic (or lipoma-like),
sclerosing, inflammatory, and spindle cell variants) are low-grade malignant, locally aggressive
mesenchymal neoplasms, accounting for approximately 50% of all liposarcomas. They usually
arise in the deep soft tissues of the extremities (particularly the thigh) and less frequently in
the retroperitoneum. Masses in the trunk (mediastinum/retroperitoneum) entail significant
risk of local recurrence or metastasis (Mavrogenis et al., 2011)(Henze and Bauer, 2013). On the
contrary, WDLS of the extremities are often referred to atypical lipomatous tumors (ALT)
reflecting less aggressive behavior of WDLS occurring at the limbs. The potential for de-
differentiation and conversion to a higher grade liposarcoma mandates accurate and prompt

diagnosis.

They have predominantly adipose multi-lobulated and well circumscribed masses containing
nonlipomatous components. Fat cells vary in size and there are also scattered lipoblasts and
thick-walled blood vessels. Non lipomatous components are most often seen as prominent
thick septa within the adipocytic part, characterized by limited morbidity and lack of significant
potential for dedifferentiation. Differential diagnosis at the imaging stage includes benign
lipomatous lesion or fat necrosis or less frequent findings such as intramuscular lipoma with
atrophic muscle, normal fat with Lochkern (hole in the adipocyte nucleus) , spindle and
pleomorphic cell lipomas, atrophy of fat or silicone reaction and more rarely localized massive

lymphoedema associated with morbid obesity (Murphey, Arcara and Fanburg-Smith, 2005).

They key for the diagnosis of a WDL is mature adipocytic cells with a significant variation in
size, associated with a variable number of atypical stromal cells. The latter appear to be more
numerous in the fibrous regions (septae). The presence of lipoblasts (precursors of adipose
cells) is not a frequent finding. Genetically, WDL are characterized by clonal abnormalities
usually contain amplification of the 12q13-15 region (Fletcher et al., 1996) constituting a

distinction between WDL and benign lipomatous masses.
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Figure 11 Well differentiated liposarcoma of a female patient, 84 y, in the right thigh (Ki-67, Magnification x 100)

Imaging findings of WDLS on conventional MRI is very similar to subcutaneous fat with high
signal intensity in T1 and T2 images. However, they may also have thick septa, nodularity,
internal cystic changes. This characteristics may account for signal intensity heterogeneity and

areas of higher signal intensity in T2 images.
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Figure 12 MRI of a well differentiated liposarcoma of the right thigh of a female patient, 84y. Above: T2 STIR, T1
GRE. Below: T2 MESE and T1 fat suppressed after contrast.
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2.1.5 Lipoma

Lipomas are benign tumors of connective tissue composed of homogenous mature adipose
cells (adipocytes), with gross appearance similar to subcutaneous fat. Normal adipose tissue
and lipoma tissue is homogeneous, with intervening thin septae randomly distributed. They
are monovacuolar cells containing a large lipid droplet surrounded by cytoplasm and the
nucleus is flattened and located in the periphery of the cell. A typical size of a normal fat cell is
0.1mm. It is mainly composed of triglycerides and has the function of storing fat in a semi-
liquid state. Lipomas are well vascularized, however this characteristic may not be readily

apparent as vessels may be compressed by distended adipocytes.

Lipoma is itself a heterogeneous category as it also includes lipomatosis, lipomatosis of nerve,
lipoblastoma, angiolipoma, myolipoma of soft tissue, chondroid lipoma, spindle
cell/pleomorphic lipoma, and hibernoma according to WHO classification. However, as
differentiation between these entities is devoid of any clinical consequences this classification
does not distinguish simple overgrowth of fat, true neoplasms or hamartomatous processes.
Adipose cells in lipomas may have differences in composition as compared to subcutaneous
fat, i.e. have increased levels of lipoprotein lipase. Lipomas may also contain a few thin septa
of fibrous composition. The etiology is unknown and may occur at any age and sometimes one
patient may have multiple lipomas. Lipomas originate from fatty tissue between the skin and
the deep fascia, but are not attached to the overlying skin. Marginal resection is proposed as
treatment in cases of symptomatic or lipomas of a size larger than 5 cm. Large size or lipoma
location tethered to fascia can raise suspicion for a liposarcoma and consequently biopsy can
be helpful.
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Figure 13 Normal adipose cells, magnification x 100

MRI appearance of benign lipomas resembles that of subcutaneous fat, presented with high
signal intensity in both T1 and T2 sequences (short T1 and short T2 relaxation times) and also
lacks signal enhancement after contrast medium administration. Setae are seen as low
intensity strands on T1 images and have high signal intensity in T2w images probably because
of blood vessels passing within them. Spectral profile is also similar to subcutaneous fat and
consequently, signal is reduced in fat suppressed sequences. In this study lipomas were

recruited in the analysis as reference tissue in respect to malignant liposarcomas.

Figure 14 Lipoma of a male patient 63y on the left shoulder (From left to right: T2, T2 STIR and T1 sequences)
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2.2 Tissue heterogeneity of malignant liposarcomas

In the following section, a number of histopathologic images is presented showing the large
local tissue heterogeneity that characterizes malignant liposarcomas. Considering that each
image is at least two orders of magnitude from a voxel of a high resolution MR image and that
the measured signal is the spatial average of all components present in the volume of interest.
As seen in figures 15-21 many pathologic entities co-exist within a heterogeneous malignant
tumor, depending on its specific subtype. In figure 22, considering that its dimensions are at
least one order of magnitude below the dimensions of a pixel, it is made obvious that the
obtained signal carries information from a variety of different tissue types that needs to be
accordingly post processed with mathematical methods in order to be indicative of the voxel
composition. However, advances in scanner hardware as well as software capabilities and
mathematical methods have rendered possible the extraction of information at sub-millimeter
scale non-invasively. The main histopathologic findings present in a liposarcoma of high
malignancy are presented as indicative imaging targets sought by the acquisition techniques
that are described in the following chapter. All images have been collected at the Pathologic

Department of the University Hospital of Crete and are published with their permission.

Figure 15 The presence of lipoblasts is necessary for the diagnosis of a myxoid liposarcoma

44



Figure 16 Important findings of a pleomorphic liposarcoma: Dense vascular network, presence of lipoblasts,

inflammation, nuclear atypia
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Figure 17 Viable highly cellular liposarcoma with sparse presence of lipoblasts
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Figure 18 Vascularized adipocytic component
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Figure 19 Cystic component of myxoid liposarcomawith alveolar pattern
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Figure 20 Necrosis — Absence of viable cells or vascular network.
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Figure 21 Fibrotic tissue among well differentiated adipocytic cells.
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Figure 22 Tissue heterogeneity : vascularized adipocytic part, fibrotic tissue and muscle cells.

51



Chapter 3 Advanced MRI imaging

MR is the imaging modality of choice for local staging, monitoring response to therapy, and
surveillance for recurrence. MR portfolio of biophysical contrasts is broad, exploiting
differences among magnetic properties of different tissues and also by deploying a number of
different families of pulse sequences. Combination of T1 and T2-weighted sequences are
acquired to conclude on the location, extent and depth of the lesion without and with selective
fat-saturation to identify adipocytic components. Large size and depth and heterogeneous
signal are indications favoring malignancy (Gupta et al., 2016),(Nishida et al., 2007). However,
MRI features can be nonspecific and overlap with more common pathologic conditions,
making definite diagnosis difficult. To this end, advanced MR techniques complement the MR
armamentarium with 4D data for soft tissue tumor classification. In order to elucidate tissue
properties it is often necessary to acquire multiple series of images and quantify the progress
of a certain parameter in time or the degree of response to an external perturbation.
Specifically, Diffusion-weighted imaging (DWI) evaluates random motion of water molecules is
sensitive for the detection of cellular dense lesions and has become a mainstay for oncologic
imaging. Dynamic contrast-enhanced sequences examine the blood flow or vascular
permeability of the tumor vessel network. Lastly, relaxometry techniques can identify tissue
magnetic properties which are definite fingerprints of specific molecular characteristics and ca

be used to derive information on tissue function and composition.
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3.1 Diffusion Weighted MRI (DW — MRI)

The target of diffusion weighted imaging is the random (Brownian) motion of water molecules
in biological systems. The mathematical framework of this phenomenon was mathematically
described by Albert Einstein in 1905, where the average distance travelled by particles over
time can be estimated by taking into account temperature, medium viscosity and particle size
((No Title), no date). Free water molecules migrate faster in the absence of any cellular or
subcellular impediments (intracellular organelles, cell membranes, cells densely structured) or
in the absence of exchange phenomena with macromolecules and thus restriction of water
movement is indicative of the microenvironment of tissue. More specifically, diffusion is
sensitive to the time dependence of water proton displacement as a sensitive probe to the

tissue molecular structure.

Diffusion of water molecules within human tissue happens in random directions inside cells,
in the extracellular space and also in vessels. Motion related to thermal diffusion is incoherent
meaning that particles under consideration at a given time will have a distribution of positions
as opposed to coherent motion where all particles would have been equally displaced. This
phase distribution of spins leads to a drop in the signal amplitude either acquired by spin or
echo gradients. MR images can become sensitive to water diffusion with the addition of two
identical gradients in the imaging sequence in opposite directions eliminating signal from static
tissue and enhancing signal from water protons in a motionally restrictive environment. The
degree of sensitivity is user-controlled by the selection of b value. At least two values are
acquired at each imaging sequence in order to model DWI signal decay while the maximum
number of b values should comply with hardware restrictions and is also limited by prolonged

acquisition times.

Sensitivity to free water motion is an indicative measure of microenvironment complexity
which in turn is a marker of normality. The first application of DWI was in acute ischemic
stroke as immediate changes in the cellular and extracellular space (cell edema) preceding the
episode could be visualized as high signal intensity in DW images (Fisher and Sotak, no date). In
parallel diffusion imaging found a very large spectrum of applications in oncology as tumor

growth this related to dense cell structure and reduced extracellular space.

The simplest fitting model to DWI data is a single exponential assuming that in biological
tissues two main compartments can be identified: the intracellular and extracellular water
fractions, partitioned by semipermeable membranes. The exchange of water between the two
spaces through the membranes is assumed to be restricted during diffusivity time, thus the
tissue is compose of two distinct non-exchanging compartments. Moreover, the contribution

of macroscopic movement (blood microcirculation in the capillaries) can be neglected as it
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accounts for a very small amount of the total signal. The DWI signal of a homogeneous

medium, has a dominant mono-exponential decay curve of the form:
S(b)/S(0) = e~b4PC (Kwee et al., 2010).

Apparent diffusion coefficient (ADC) represents the mean displacement of water molecules

(typically a random walk) in space (Tofts, 2003)

Another important feature of oncogenesis is neovascularity with complex vessel structure of
vessels of increased permeability. Consequently the study of perfusion represents an
important aspect of tumor characterization and in the frame of an MR oncologic protocol it is
important of obtain quantitative perfusion information, ideally at a voxel level considering
tumor heterogeneity. Perfusion sensitive dynamic sequences measure signal changes during
the passage of an amount of paramagnetic contrast medium, which is considered a minimally

invasive procedure and moreover not free from contraindications.

IVIM intra-voxel incoherent motion

The pure mono-exponential model can be considered valid in a pure solution such as water
where the only source of motion is thermal diffusion. More complicated models are
appropriate to account for a second faster decaying component attributed to faster water
motion mimicking diffusion process in tissue, most probably to arbitrary oriented flow in the
micro-capillary network and not to thermal effects. For example, signal from the randomly
oriented microcapillary network will be similar to fast diffusion of protons in tissue. The
sequence has to be appropriately adjusted, by adding additional acquisitions at low b values to
sample the signal in regions where the faster decaying component contributes significantly to

the total signal.

The suggestion that information on local perfusion can be obtained quantitatively by perfusion
imaging made by Le Bihan (Le Bihan, Denis, Eric Breton, 1988) was in itself very exciting as this
meant the lack of need for contrast medium administration. It suggests that the signal
contribution from other sources of incoherent motion, such as active transports in living tissue,
can be decomposed from the total signal. Blood flow is assumed to be the dominant source of
incoherent non thermal signal, concluding to two different compartments in tissue, a micro

vascular and a non-vascular.

In its initial stage this idea was not adequately supported by the available hardware of the late
1980s and image quality in terms of signal to noise ratio was poor. However, the rapid and
enormous progress on hardware and software prerequisites, i.e. pulse design, fast stable and

rapidly alternating gradient systems, the idea of perfusion information based on diffusion
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sensitized images emerged. Le Bihan et. al. proposed that micro-perfusion in the capillary
network contributes to the DWI signal decay as a random walk (pseudo-random) because of
the arbitrary organization of the capillary network (Le Bihan, Denis, Eric Breton, 1988). Thus,

perfusion information can be obtained by the intra-voxel incoherent motion (IVIM) model as:
S(b)/S(0) = (1 — f)e PP + febP" (1)

where, S(b) is the measured signal intensity at the current b-value and S(0) is the measured
signal intensity with b=0, meaning no diffusion weighting, D is the diffusion coefficient, D* is
the pseudo-diffusion coefficient which is considered as an order of magnitude greater than D
and f is the micro-perfusion fraction that reflects the ratio of water flowing in capillaries to
the total water contained in a voxel. IVIM is an extended form of the conventional mono
exponential model, which equates to the mono-exponential form in the absence of micro-
perfusion fraction f. The effect of microcirculation of blood and thus the contribution of the

faster decaying component depends on the organ or pathological characteristics of the tumor.

It is important to note that D is not equal to ADC and can be conceived as the perfusion-free
ADC. D* holds information on blood speed and is the measured diffusion coefficient of the
microvascular compartment, also including thermal motion of the blood constituents. The
parameter f can is related to the incoherently flowing blood volume and fD* can be

understood as a measure of blood flowing through tissue at a unit time (Federau et al., 2014).

In order to capture diffusion contrast in the body including both thermal diffusion and bulk
physiologic motion (of the order of 1 mm/s) under the same diffusion sensitization gradients it
is essential to discard phase information from the raw images as phase differences caused by
the latter are vastly larger than the ones created by the small (order of some microns) thermal
displacements of protons. Consequently, only magnitude images are used, with an inevitable

cost on image signal to noise ratio.

The lack of need for contrast agent injection and estimation of perfusion parameters with two

diffusion gradients has rendered the use of DWI for vascularity assessment very attractive.

Parameter f has been found to have good positive correlation with histological microvascular
density in a number of animal and human studies, and also with physiologically or
pharmaceutically induce perfusion state changes, listed in the review article of Federau

(Federau et al., 2014).

Another active field of research has been the correlation of f with standard perfusion
parameters, using the assumptions of a random capillary network and a sufficiently long

diffusion time. Studies have investigated correlation of f with DSC derived blood volume in
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healthy brain tissue or brain gliomas while less conclusive results have been found between f

and DCE of ASL derived perfusion parameters.
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Mean signals at the b_value range

Figure 23Image from the in house built software platform depicting a sarcoma of the lower limb at b of 150 s/mm?2

(above) and DWI signal decay curve for all b values measured at a 2D ROI




Figure 24 a. Surgical specimen, b. DWI, c. anatomical T2 imaged. d. photo of gross anatomical area of the specimen,

e. Ki67 photo of hypercellular area, f. hypocellular area of the tumor
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3.2 Dynamic Contrast Enhanced MRI (DCE-MRI)

Tumor angiogenesis is closely related to blood perfusion. While there is a number of different
imaging modalities such as PET US or CT to estimate perfusion, MRI has the advantage of
combining perfusion information with tumor morphology and the relationship to neighboring

structures at high spatial resolution.

Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is one of the most
commonly used imaging techniques for capturing the perfusion characteristics of biological
tissues. It comprises of dynamic sequential T1 acquisitions of low temporal resolution before,
during and after the passage of a paramagnetic contrast agent of low molecular weight , which
is able to diffuse out of neoplastic vessels. Tumor vascular network is composed of irregular,
leaky vessels in a disordered structure. Thus, DCE-MRI acquisition quantifies metrics related to
vascular permeability, tissue perfusion, and expansions of extravascular-extracellular spaces
(EES) on a voxel basis. This process requires the use of appropriate mathematical models
under certain assumptions in order to be fitted to the DCE signal intensity time curves to

extract perfusion relevant biomarkers.

DCE-MRI analysis

In some studies, there is a direct processing of signal intensities (SIs) but this can lead to
erroneous results due to non-linear relationship of SIs with concentration at high
concentrations, dependent on factors such as native T1 of the examined tissue, and MR
acquisition parameters. The conversion of the MR signal to concentration of the contrast agent
(CA) in the tissues C,(t) was performed utilizing the flip angle method (Taheri et al., 2011). For
the quantification of the DCE-MRI signal, two pharmacokinetic models from the bibliography
were selected. The first is the widely known Extended Tofts model (ETM) (Tofts, 1997) , a
single compartment model where the plasma space is ignored and the CA is moving to the
parenchyma with a rate proportional to the difference of the concentrations between plasma

and EES with three parameters (Ktrans, Kep, vp) as shown in equation (2).

Ce(t) = Keranse ¥ept ® Co(t) + v,C, (1) (2)

~1 js the transfer constant

The symbol ® represents the convolution operator, K774 min
from the blood plasma into the EES and Kepmin‘1 is the transfer constant from the EES back
to the blood plasma while v, stands for the plasma volume and C,(t) for the time

concentration curve of a feeding artery, also known as the arterial input function (AIF).
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The second model used in our analysis is the Gamma capillary transit time model (GCTT) (Schabel, 2012)

described by equation (3).

0= | (ghed) o e () )] o

a T 1/a~1 a1
- KepT)

The recently suggested GCTT model, unifies four well-known models such as the Tofts Model
(Tofts, 1997),the ETM, the adiabatic tissue homogeneity (ATH) model (St Lawrence and Lee, no
date) and the two compartment exchange (2CX) model (Brix et al., 2012) depending on the
value of a~! being the shape parameter of the Gamma distribution of the capillary transit

times. F mL/mL/min~1!

is the blood flow or blood perfusion, a™! = t. /7 is the width of the
distribution of the capillary transit times inside a voxel, y(a, z) is the Gamma function, E is the
extraction fraction of CA that is extracted into the EES during a single capillary transit. The
Ktrans and vp parameters are not calculated directly from the fitting process as in ETM.
Therefore, these parameters are determined using the relations: Ki.qns = FE, v, =
(1 — Hct) = Ft. (Schabel, 2012). For our analysis hematocrit (Hct) value were considered

0.45 for male and 0.42 for female patients.

Importantly, since both DWI and DCE techniques examined tumor aggressiveness from
different observation angles it would be very useful to conclude on a common location highly
suspicious of locally increased malignancy pre-operatively. This non-invasive technique can be
a very powerful tool for biopsy guidance and avoid possible errors of tumor grade

misestimation from suboptimal sampling.
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Figure 25 Snapshot of the dynamic phase of DCE acquisition for a lower limb sarcoma and the corresponding

enhancement curve for the whole DCE series.
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Figure 26 Evaluation of tumor vascularity with DCE MRI (Ktrans parametric map in the top middle and Ktrans
histogram in the bottom left)and histopathologic images (CD 34 stain) of highly vascularized (top right)and poorly
vascularized tissue (bottom right)
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3.3 T2/ T2* relaxometry

T2 relaxometry has been a robust and sensitive method for tissue or material characterization
based on MRI data, as T2 relaxation constant can be considered as a definite signature of the
inner structure of the imaging object. T2 constant does not depend on the reader, pulse
sequence parameters or magnetic field strength but rather on the local chemical and physical
environment. It is thus sensitive to microstructure and composition of the sample and can
quantitatively characterize material or tissue. It has been used from the early days of MRI not
only in the medical field but also in other scientific domains such as food science, geological
studies, radiation dosimetry etc. (Santos et al., 2017),(Loskutov and Zhakov, 2016),(Maris et al.,
2016). In particular, T2 relaxation time of issue is affected by water content, random
movement of water molecules and macromolecules, local tissue temperature, tissue fat

content, presence of paramagnetic particles and pH value (Chaland et al., 2019).

T2 relaxation rate measurement was firstly proposed by Hahn in 1952 (Hahn and Maxwell,
1952) with repetitive spin echo sequences but the method was later optimized by the CPMG
sequence (Fransson et al.,, 1993a) which addresses the problem of imperfections in the
refocusing RF pulses inducing errors to the measurement process. T2 relaxometry uses fitting
models to the echo train data to obtain information on the number of decaying components
and their relaxation rates. The simplest model assuming one component present in tissue is
adequately fitted with one exponential term. However, tissues are heterogeneous in nature
and thus one imaging voxel contains an ensemble of different cells and extracellular matrix
components. In order to infer information on the content and interactions among these
microscopic components at a sub-imaging level it is necessary to deploy more complex

methods with more than one exponential terms for fitting of the signal decay curve over time.

Fat and water imaging

For some disease states or pathological situations it is very useful to decompose and quantify
the amount of signal corresponding to fat or water. Such cases are fatty infiltration of the liver,
acute phase of multiple sclerotic plague formation, layered structure in the cartilage, bone
marrow composition with age or after transplantation or irradiation and also for the

distinction between various kinds of tumors on the basis of lipid content.
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For tissues of interest to this study that contain fat to a greater or lesser extent it is important
to describe certain particular characteristics of fat and water imaging. Routinely measured MR
images, as opposed to spectroscopic sequences, measure signal reflecting the sum of signals
from all mobile protons within a certain tissue volume. Water protons have a single resonance
frequency and restore transverse relaxation at a slow rate (large T2 values) which can be
adequately approximated with a single exponential term. However, water has a faster
relaxation rate when bound to macromolecules or when spatially restricted by tissue
structure. Lipid protons in fat cells (adipocytes) consist mainly of triacylglycerols and are in a

liquid state in body temperature.

Lipid protons, as opposed to water protons, as parts of a macromolecule with magnetic field
inhomogeneity at very local level, exhibit more complex relaxation patterns. In order to infer
information on tissue composition and the relative fraction of different distinct components
the plot of component weightings as a function of T2 values is measured (T2 distribution). This
serves to identify its compartmental origin and the corresponding amplitude as a measure of

the anatomical size of the compartment. The equation used for fitting the T2 decay curve is

TE
"), N=12

N
S(TEk) = Z Ai eXp <—_
L T
i=1
Where N is the number of components. Bi-exponential description adequately approximates
the transverse relaxation decay curves, resulting in three independent variables which can be

used for descriptive tissue characterization.

Typically only magnitude images are used for T2 relaxometry in order to avoid sensitivity to a
large number of experimental factors, such as scanner type, field homogeneity, temperature,
coil type and pulse sequence design inherent in the phase part of the complex signal. However
reduced sensitivity to image artifacts comes at a penalty to SNR levels which is also a common

obstacle for robust MR signal quantification.

The most widely used method for obtainingT2 distributions is fitting the magnitude MR
images acquired by a multi-echo MRI pulse sequence using an Inverse Laplace Transform (ILT)
algortithm. When ILT methods are used for magnitude only MR relaxometry data it is
important to account for the Rician nature of the MR signal distribution, meaning that a
correction processs has to be followed for non-Gaussian distribution. In the alternative case of
using the complex MR signal for increased SNR levels phase unwrapping methods have to be
deployed in order to avoid miscalculations due to other factors affecting phase, such as local
field inhomogeneities. However, direct fitting of mono or multi-exponential functions to an

adequate number of sampling points during the signal decay evolution can reveal the distinct
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decay patterns present in the measured signal. Based on that, an assumption can be made on
the number of decaying components within the tissue. The advantage of the latter method
over ILT is the possibility to obtain voxel wise information on the tissue content. However, this
method usually requires a priori knowledge on the number of different relaxation patterns and
moreover the solution becomes a non-trivial mathematical problem for a number of

components greater than 2.
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Figure 27 Snapshot from in house built T2 relaxometry software visualizing a lower limb sarcoma at the 7th echo.




Figure 28 T2 parametric map on a patient with dedifferentiated liposarcoma of the abdomen (left) and

corresponding T2 spectrum of the lesion (right).
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Scope of the study

The overall aim of this work was to deploy an extended MR protocol for the study of soft tissue
sarcomas and extract clinically relevant information based on quantitative markers for the
support of diagnosis by maximizing the amount of information that can be derived by an
advanced extended MR examination. Each sequence was designed to serve a specific clinical
guestion and the final result is a set of imaging biomarkers that are indicative of the tumor

subtype , when used along with conventional diagnostic techniques.

The specific sub-tasks delivered within the frame of this study can be summarized hereupon:

To examine the possible correlation of DWI and DCE imaging markers, indicative of cellularity
and vascularity respectively, derived from well-established mathematical models (IVIM for
DW!I while ETM and GCTT for DCE as described in the following sections) on patients with soft
tissue sarcomas. As both vascularity and cellularity are measures of tumor aggressiveness, we
study the spatial correlation of relevant imaging markers in order to have a visual
representation of the most malignant parts. The impact of spatial correlation of DWI and DCE
metrics of malignancy is the mitigation of possible sampling errors from pre-operative biopsy,
which might underestimate the tumor grade or even give a false negative result. This point is

thoroughly discussed in chapter 4.

Considering that fat detection is essential for the diagnosis of liposarcoma, we examined an
imaging phenomenon tightly linked to the properties of fat, selectively. Subcutaneous fat may
have variable signal intensity on T2w images depending on the choice of imaging parameters
and more specifically, in the time interval between consecutive refocusing RF pulses (ESP, Echo
SPacing) in fast spin echo imaging. We examined the use of T2, T2* relaxometry and spin
coupling related signal changes (Spin Coupling ratio, SCr) on two different imaging protocols as
clinically relevant markers of fat cell differentiation. Based on previous work that confirmed
that the amount of signal loss due to spin coupling is significant for ESP below 20 ms on fat

phantoms, we extend this research to the clinical field. The role of spin coupling and T2/T2*
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relaxometry was studied for the support of pathognomonic evidence for the characterization

of fat containing soft tissue masses. These issues are discussed in detail in chapter 5.

Another specific goal of this work was to examine an alternative method to ILT for the analysis
of T2 relaxometry data for the calculation of T2 spectrum regarding fat containing samples.
The purpose of examining an alternative method is to gain the advantage of voxelwise
parametric maps that are impossible when using ILT but are essential for imaging
heterogeneous masses in clinical practice. After establishing the validity of the method, we
deployed it for the voxel wise characterization of the relaxation pattern of benign and
malignant fat containing tumors of variable degree of malignancy. The proposed method
requires no a priori assumption on the number of components (maximum two) and is

thoroughly discussed in chapter 6.

Lastly, chapter 7 briefly repeats the main points ensued by the relevant subparts of the study

dedicated to the analysis of specific sequences as an overall conclusion.
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Research contribution

Chapter 4 Statistical and spatial correlation between diffusion

and perfusion MR imaging parameters on soft tissue sarcomas

4. 1 Motivation

The purpose of this part of study was to examine the correlation of diffusion and perfusion
guantitative MR parameters, on patients with malignant soft tissue tumors. Moreover, in the
frame of DWI-DCE correlation study, we investigated the spatial agreement of hallmarks of

malignancy as indicated by diffusion and perfusion biomarkers respectively.

The importance of this work relies on the ability to obtain perfusion information from a non-
invasive MRI method, considering that contrast medium administration is considered as a
minimally invasive procedure and there are cases where its use is contraindicated. The
possible correlation of DCE and DWI results will simplify the acquisition process without
compromising the diagnostic information that can be derived from an MRI examination with

an advanced oncologic protocol.

For the second part of this work, we made a visual representation of the tumor areas that
present more aggressive imaging feature in either DWI or DCE with thresholding above the
mean value. Then we fused the two maps onto the anatomical image in order to identify the

areas that are more suitable for tissue harvesting during pre-operative biopsy.
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4. 2 Method

30 patients (18 males, 12 females median age: 63 y) were recruited for the MRI examination
with suspicion for soft tissue tumor, during a 2 year study period (2016-2018). Lesions showing
no enhancement or tumors with very low signal in fat suppressed sequences, such as benign
lipomas or well differentiated liposarcomas were excluded. Similarly to common practice,
cases were MRI examination is contraindicated (pacemakers, ferromagnetic implants,
claustrophobia, contraindications for administration of Gadolinium contrast medium) were
also excluded. Moreover, severe image degradation from artifacts especially for abdominal
STT also led to the exclusion of 3 patients. The examination protocol has been approved by the
local ethics committee and all patients have signed an informed consent for the use of their
data for research purposes. The final patient cohort of the analysis comprised the following
STT: 6 dedifferentiated liposarcoma, 5 pleomorphic liposarcoma, 4 myxoid liposarcoma, 4
leiomyosarcoma, 2 alveolar sarcoma, 3 malignant peripheral nerve sheath sarcoma, 1 Ewing
sarcoma. The diagnostic procedure also included biopsy, either with CT or US guidance
proceeding the MR examination. Patients with malignant findings in biopsy were sublitted to
the surgical excision of the tumor. As a final step, the surgical specimen was immediately
transferred to histopathologic department for analysis. A graphical representation of the

described workflow is shown in Fig. 20
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Figure 29 Workflow description. (a) MR imaging (fat suppressed contrast enhanced T1W) of a soft tissue mass in the

neck. (b) Surgically excised specimen and tissue preparation sampling for staining. (c) Assessment of vascularity (CD
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34) and mitotic activity (Ki-67) based on specific staining. (d) Quantitative analysis of MR data, indicative Ktrans

parametric map and the corresponding histogram.

MRI Protocol

The imaging protocol, apart from the conventional sequences, included DWI and DCE-MRI
quantitative techniques. Depending on the lesion site the appropriate choice of coil and FOV
was made on the basis of complete lesion coverage at highest SNR. DW axial images were
acquired utilizing an EPl (Echo Planar Imaging) sequence with fat suppression, diffusion
sensitizing gradients in 3 directions (b = 0, 50, 100, 150, 200, 500, 800, 1500 s/mm?2), number
of slices = 14-18, echo time (TE) =100 ms, repetition time (TR) = 3500 ms, matrix size
=128x128, field of view either (FOV)=200x200mm (alternative for torso 400x400mm), slice
thickness=5mm. This technique has been applied for the reduction of machine related
geometrical distortions or apparent distortions in signal intensities. TIW DCE perfusion MR
imaging was performed by utilizing a 3D VIBE (volume interpolated breath hold examination)
sequence in the axial plane with variable flip angles (FA=50, 100, 150, 200, 250, 300) for the
initial calculation of the parametric T1 maps. Consequently, an intravenous bolus injection of
the paramagnetic CA (Magnevist, Gadopentetate Dimeglumine, Bayer Healthcare, Bayer, 0.1
mmol/kg) was performed. The aforementioned T1W DCE VIBE perfusion sequence comprised
45 dynamic acquisitions (6.5 s temporal resolution) after the intravenous injection of the CA
with the following imaging parameters: number of slices=14, FA=150, TE=3.23 ms, TR=7.1 ms,
matrix size=384x384, FOV=200x200mm (400x400 mm) and slice thickness=5 mm.

Histopathologic analysis

Within a period of 14 days after MR examination, all patients with relevant indications from
biopsy underwent surgery during which the surgeon marked the specimen with sutures in
predefined points in order to enable the actual three-dimensional orientation of the specimen
in relation with the patient’s body. The excised specimens were transferred to the department
of pathology for classification and grading. The outer surface of the specimen was marked with
permanent ink in order to identify the surgical markings. The pathologist confirmed the
original orientation of the specimen in the body based on the sutures and then cut consecutive
thin slices from the top and the bottom of the specimen in order to identify the upper and
lower rim of the neoplasm. The central slice of the tumor, corresponding to the lesion’s central

imaging slice, was selected after measuring the distances from the upper and lower margins,
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was divided in orthogonal slabs (in a grid-manner), and placed into plastic cassettes (Fig.
19(b)). Tumor tissue sections were processed according to CAP guidelines (Lester, 2010) and
recommendations for specimen handling 4 um thick sections of each tumor slab were cut,
placed into glass slides, stained and examined microscopically (Nikon Eclipse E-200) in order to
characterize each area of the central tumor slice in terms of differentiation, cell type, cellular
atypia, cellularity, mitotic activity, vascularity and presence of necrosis. More specifically, Ki-67
staining, indicative of mitotic activity was used to give insight into the presence of areas of
high or low cellularity which is also the contrast mechanism of DWI. Analogously, CD 34
staining, indicative of vascular density was performed to locate highly perfused areas of the
tumor to be studied alongside with DCE imaging Fig. 19(c). Histopathologic analysis results
were used to verify findings from MRI data post processing analysis, graphically represented as
voxel-based parametric maps and ROI histograms in order to have a visual overview of the

distribution of the calculated values for each marker Fig. 19(d).
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Figure 30 Image post processing workflow (data acquisition, generation of parametric maps and resizing, Pearson’s

correlation between derived markers).

Mathematical framework for IVIM-MRI analysis

The quantification of diffusion and perfusion parameters was implemented in python 3.5
(www.python.org). The parametric maps were extracted with the trust region reflective

algorithm, of the SciPy library (scipy.optimize.least_squares).

The DWI signal of a homogeneous medium, has a dominant mono-exponential decay curve of
the form: S(b)/S(0) = e P4PC (Kwee et al., 2010). Apparent diffusion coefficient (ADC)
represents the mean displacement of water molecules (typically a random walk) in space
(Tofts, 2003). Le Bihan et. al. proposed that micro-perfusion in the capillary network
contributes to the DWI signal decay as a random walk (pseudo-random) because of the
arbitrary organization of the capillary network (Le Bihan, Denis, Eric Breton, 1988). Thus,

perfusion information can be obtained by the intra-voxel incoherent motion (IVIM) model as:
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S(b)/S(0) = (1 — fle PP + fe=bD" (1)

where, S(b) is the measured signal intensity at the current b-value and S(0) is the measured
signal intensity with b=0, meaning no diffusion weighting, D is the diffusion coefficient, D* is
the pseudo-diffusion coefficient which is considered as an order of magnitude greater than D
and f is the micro-perfusion fraction that reflects the ratio of water flowing in capillaries to

the total water contained in a voxel.

The IVIM parameters were obtained by using the aforementioned nonlinear fitting algorithm
with the following constraints for each parameter: f € [0,1],D € [0,5] x 10~3mm?/s, D* €
[10,200] x 1073 mm?/s.

DCE-MRI analysis

The conversion of the MR signal to concentration of the contrast agent (CA) in the tissues
C.(t) was performed utilizing the flip angle method (Taheri et al., 2011). For the quantification
of the DCE-MRI signal, two pharmacokinetic models from the bibliography were selected. The
first is the widely known Extended Tofts model (ETM) (Tofts, 1997) with three parameters

(Ktrans, Kep, vp) as shown in equation (2).

Ct(t) = Ktranse_Kept ® Ca(t) + vpCa(t) (2)

-1

The symbol & represents the convolution operator, K77 min~1 is the transfer constant

1 is the transfer constant from the EES back

from the blood plasma into the EES and K,,min~
to the blood plasma while v, stands for the plasma volume and C,(t) for the time

concentration curve of a feeding artery, also known as the arterial input function (AIF).

The second model used in our analysis is the Gamma capillary transit time model (GCTT)
(Schabel, 2012) described by equation (3).

= ()t (e ) oo
ep

The recently suggested GCTT model, unifies four well-known models such as the Tofts Model
(Tofts, 1997),the ETM, the adiabatic tissue homogeneity (ATH) model (St Lawrence and Lee, no
date) and the two compartment exchange (2CX) model (Brix et al., 2012) depending on the
value of a~! being the shape parameter of the Gamma distribution of the capillary transit
times. F mL/mL/min~! is the blood flow or blood perfusion, a~! = t./7 is the width of the

distribution of the capillary transit times inside a voxel, y(a, z) is the Gamma function, E is the
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extraction fraction of CA that is extracted into the EES during a single capillary transit. The
Ktrans and vp parameters are not calculated directly from the fitting process as in ETM.
Therefore, these parameters are determined using the relations: Ki.qns = FE, v, =
(1 — Hct) = Ft. (Schabel, 2012). For our analysis hematocrit (Hct) value were considered

0.45 for male and 0.42 for female patients.

To assess the quality of the fits between the data and the pharmacokinetic models
(assume G(x,t)) the root mean squared error (RMSE) was chosen. Considering, parameters

x = {xl,xz, ...,xp} and d data points of size N the RMSE formula is given by equation (4).

N
(G(x,t;) — d;)? (4)
RMSE =
2w

Correlation Analysis

As a first step, perfusion derived maps were resized through cubic interpolation (to mitigate
information loss) to match the size of the diffusion parametric maps. Then the slice location of
each DICOM tag was used to align the two sequences in the z-axis. Images from each 4D
dataset were masked according to the corresponding 3D ROI delineated by an experienced
(>30years) musculoskeletal radiologist. To avoid false or biased results of correlation between
non perfused areas (vp < 0.05 or f < 0.05) were excluded from the analysis. Thus for every 3D

ROI Pearson’s correlation coefficient was calculated by (5).

\/Z{V=1(fi—f)(vpi—ﬁ)
Trvp =
\/Z{V=1(fi—f)2\/21iv=1(vpi—ﬁ)2

(5)

A graphical representation of the post processing process is shown in Fig. 2 describing the
steps from data acquisition to the correlation of all possible pairs of IVIM (f,D,D*,f XD, f X
D*) and DCE (Ktrans, Kep, vp, E, F) derived parameters.

Spatial identification of tumor aggressiveness

As both high cellularity and high vascular supply are markers of tumor aggressiveness, we
calculated the percentage of tumor voxels meeting both criteria of low D and high Ktrans.

Between the two models used for Ktrans extraction in this study we proceeded in this step
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with the ETM based calculation as it is more widely used and tested for quantitative studies
(Litjens et al., 2010). For every 3D whole tumor ROI, the mean value of D and Ktrans were used

as thresholds between high and low cellularity and vascularity respectively.

4

=

Figure 31Malignant tumor (MPNST) of the left shoulder (axial STIR MR image (b)). Histopathologic analysis Ki-
67(x100) showed alternation of areas with low (a) and high (c) cellularity areas. Corresponding IVIM-D parametric

map (d) and corresponding histogram (e).

ETM-Ktrans

Figure 32Malignant tumor (MPNST) of the left shoulder. ETM Ktrans map is overlaid to T1 VIBE image for the tumor
ROI (b). Histopathologic analysis CD34 (x100) showed diverse pattern of vascularity (i.e. areas of low vascularity (a)
neighboring to areas of high vascularity (c) and corresponding Ktrans histogram as calculated by the ETM.
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4.3 Results

The best aimed value describing tissue cellularity, is D calculated by the IVIM model deprived
of the contribution of macro-diffusion movement (blood flow) from the vascular part of the
tissue. Voxel based parametric maps were calculated for all patients and results were studied
for reference based on the histopathologic analysis of the central tumor slice and more
specifically Ki-67 stain images, showing nuclei density and mitotic activity and thus cellularity

(Fig. 20). Similarly, CD 34 stain was used for assessing regional tumor vascularity (Fig.22).

In terms of fitting accuracy, both pharmacokinetic models performed equally well, exhibiting
low RMSE values. The mean RMSE and standard deviation values for ETM and GCTT models
were RMSEgry; = 0.0879 £ 0.1264 and RMSE;crr = 0.1062 £ 0.1350 respectively.

The Pearson’s correlation r of both vp-ETM and vp-GCTT with f-IVIM per patient, as markers of
tumor perfusion, is presented in Table I. The third column of Table | summarizes the %
percentage of volume overlap between voxels meeting both criteria of high cellularity (low D)
and high vascular permeability (high Ktrans) as described in Correlation Analysis. The mean r
values of the patient cohort are greater than 0.5 (r>0.5: linear relationship) only for f-IVIM and
vp-GCTT. To graphically illustrate the linear relationship of f-IVIM and vp-GCTT quantile-
quantile plots (g-q plots) were also appended in Fig. 5 for a patient with Ewing sarcoma of the
shoulder. It is important to note that the corresponding p-values per patient were significantly

lower than 107> for all cases because the analysis was voxel based rather than ROI based.

As a next step, we studied the spatial correlation of the most aggressive tumor areas as
indicated by the two different MR methodologies, i.e. cellularity as indicated by D and tumor
vascular supply as indicated by DCE Ktrans. A criterion of low D and high Ktrans was set and
then the intersection of the two subsets of tumor voxels was graphically represented overlaid
on anatomy to constitute a guide for tumor biopsy within such heterogeneous and large

masses (Fig. 6,7).
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Figure 33. Parametric vp maps for an Ewing sarcoma of the right shoulder computed by: GCTT (a) and ETM (c)
models. In the middle IVIM-f parametric map. In the lower part, g-q plot between f and GCTT-vp (d) clearly shows
the linear relationship with Pearson’s r =0.6 as opposed to f-ETM vp where annr of 0.09 indicates neutral correlation.
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Figure 34 Dedifferentiated liposarcoma of the right thigh. Parametric maps of ETM Ktrans (a) and IVIM D (b)
superimposed on DCE T1 GE and DWI images respectively. The lower image (c) shows the areas meeting both
criteria of high Ktrans (high vascular permeability) and low D (high cellularity).)
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Ktrans > mean(Ktrans ror) D < mean(D ror)

(c)

Figure 35 Malignant tumor (MPNST) of the left calf. Parametric maps of ETM Ktrans (a) and IVIM D (b)
superimposed on DCE T1 GE and DWI images respectively. The lower image (c) shows the areas meeting both

criteria of high Ktrans (high vascular permeability) and low D (high cellularity).

80



Figure 36Alveolar soft tissue sarcoma of the neck (same patient as in fig. 1). (a) ETM vp map, (b) parasagittal fat
suppressed contrast enhanced TIW MR image. (c) GCTT-vp map, (d) ETM vp histogram, (e) GCTT vp histogram

Table I. Pearson’s correlation coefficient between DWI and DCE derived parametric maps and
percentages of voxel overlap with high Ktrans and low ADC as described in materials and

methods section.

Pearson’sr DCE-DWI ov

Patiens f-vp ETM f-vp GCTT %

p.1 0.310873 0.534515 23.509
p.2 0.181833 0.630569 6.009
p.3 0.149587 0.570498 24.493
p.4 0.24293 0.38424 28.62
p.5 0.608346 0.49826 14.537
p.6 0.413949 0.618321 6.898
p.7 0.019283 0.524793 30.208
p.8 0.30969 0.482717 20.439
p.9 0.468085 0.471851 8.698
p.10 0.208291 0.514515 31.344
p.11 0.168474 0.483627 28.808
p.12 0.46131 0.698278 11.772
p.13 0.050655 0.586594 18.39
p.14 0.485701 0.454904 10.838
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p.15 0.41729 0.671383 6.681
p.16 0.600212 0.510584 9.756
p.17 0.164873 0.62538 9.597
p.18 0.417714 0.476529 10.998
p.19 0.224486 0.551787 15.431
p.20 0.311413 0.609723 6.241
p.21 0.166259 0.667271 27.567
p.22 0.340793 0.647787 28.619
p.23 0.205189 0.564165 17.271
p.24 0.361632 0.540817 17.231
p.25 0.375686 0.403571 13.442
mean 0.306582 0.532072

Table 3

4.4 Discussion

The first aim of the present study was to validate associations of IVIM derived parameters with
known DCE models on STT data. Secondly, the most aggressive sub-regions of the tumor were
located individually, as indicated either by DWI or DCE and then the spatial correlation

between two methods was presented.

Initially we examined the sensitivity of IVIM to measure perfusion related parameters as this
could theoretically simplify an MR oncologic protocol including both DWI and DCE sequences
and also help to avoid the intravenous injection of contrast medium. This in turn positively
affects acquisition time, patient discomfort and imaging cost whereas there are cases that
gadolinium administration is clinically contraindicated. Relevant published studies have shown
positive correlation of DCE and DWI MRI parameters. Suo et al. performed semi-quantitative
perfusion DCE analysis on breast cancer with a 3T MR scanner reported correlation of (f-IVIM)
with relative enhancement ratio exhibiting r = 0.55 and f-IVIM with AUC with r = 0.56 (Suo et
al., 2015). In the brain region two correlative DWI-DSC studies by Kim et al. (Kim et al., 2014)
and Federau et al. (Federau et al., 2014) reported correlation of f-IVIM and CBV with r=0.67
and r=0.75 respectively. The experimental DWI protocol of the latter consisted of 16 b-values
and this can partially explain the high r value reported. To the best of our knowledge, this is

the first DCE and DW!I study concerning soft tissue sarcomas.

The results of the first part showed positive correlation between f-IVIM and vp-GCTT with a
Pearson’s r of 0.532 while the correlation between f-IVIM and vp-ETM was neutral, r = 0.306. It

is important to note that our analysis sought correlation between all pairs of DWI (f, D, D*, f X
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D, f X D*) and DCE (Ktrans, Kep, vp, E, F) derived parameters with r values ranging from -

0.132 to 0.263 indicating no significant correlation.

DCE derived parameter values and repeatability can vary widely by analytical methodology (Ng
et al., 2015). As this work deploys two different models for DCE data quantification differences
between parametric maps calculated by GCTT or ETM models respectively are expected
because of different assumptions made (number of compartments, directionality of CA
transfer between the blood plasma and the EES). Indicatively Fig. 8 shows the differences
between vp-GCTT and vp-ETM not only in the absolute values but also in the pattern of the
parametric map. This variability is a possible explanation for the positive correlation between

vp-GCTT and f-IVIM as opposed to the neutral correlation of vp-ETM and f-IVIM.

With regard to the second part of the analysis, we used the mean value of each biomarker for
thresholding but the use of other histogram metrics, such as 5%, 10% percentiles, could have
also been used for the same purpose. All patients had non-zero volume overlap between
voxels with metrics showing aggressiveness indicated from the two different methodologies.
Preliminary results from this study previously reported (Nikiforaki et al., 2018), had shown
spatial correlation on a smaller patient population. A frequently encountered finding among
the patient cohort was the thresholded DCE-DWI overlap in the periphery of the tumor which
was consistent with findings of histopathologic analysis. This in turn shows the possible
application of DCE-DWI overlap for preoperative biopsy guidance as in all cases overlapping
voxels were not dispersed in the tumor 3D tumor volume but congregated in specific sub-

regions as depicted with red in the lower part of Fig. 5 and 6.

The most challenging datasets proved to be in the abdominal region, probably due to
respiratory artifacts hampering DCE-DWI alignment and degradation of 4D data quality.
Another limitation of our study arises from the necessary step of resizing the DCE parametric
maps to match the size of DWI maps. Among available interpolation methods, bicubic
interpolation was preferred over linear or nearest neighbor as it outperforms the other two
(Pan, Yang and Tang, 2012).

In conclusion, a free correlation study among all DCE and DWI derived pairs of parameters
showed a linear relationship between f-IVIM and vp-GCTT in patients with soft tissue
sarcomas. Moreover, the spatial relationship between low cellularity and high vascular

permeability areas was illustrated as a possible visual guide for pre-operative biopsy.
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Chapter 5 T2, T2* and Spin Coupling ratio as biomarkers for the

study of lipomatous tumors

5.1 Motivation

It has been reported from the early days of MR imaging that subcutaneous fat may have
variable signal intensity on T2w images depending on the choice of imaging parameters and
more specifically the time interval between the consecutive RF refocusing pulses. In this part
of the study we deployed T2/T2* relaxometry sequences with appropriate parameters in order
to quantify T2 and T2* relaxation constants. Moreover, we repeated T2 relaxometry in the
absence of spin coupling phenomena in order to quantify spin coupling related signal changes
and correlate this information with the degree of differentiation of benign and malignant
adipocytic tumors. For this purpose we introduced a specific marker called Spin Coupling ratio,
SCR, that represents the % signal difference of signal loss between two different T2
relaxometry acquisition schemes between the lesion and healthy subcutaneous fat. The
patients recruited for this study had a diagnosis for lipoma, well differentiated liposarcoma,
myxoid liposarcoma, pleomorphic liposarcoma or poorly differentiated liposarcoma. We
concluded that T2, T2* and SCr can be used for the classification of fat containing tumors,
which may be important for biopsy guidance in heterogeneous masses and treatment

planning SCr surpassed the classification performance of T2 and T2* relaxometry.
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5.2 Method

Patient Population

During this study twenty patients with lipomatous tumors were recruited for MRI examination
with the selected advanced protocol from July 2017 to May 2018. One patient was excluded
because of compromised cooperation resulting in severe motion artifacts. All patients had
signed an informed consent for the use of clinical and imaging data for research purposes.
Surgeon marked the specimen with sutures in predefined points in order to enable the actual
three-dimensional orientation of the specimen in relation with the patient’s body and to

warrant the implementation of sections of the tumor in its true axial plane.

Imaging protocol

All MRI exams were performed on a 1.5T MR scanner. The protocol includes apart from
conventional imaging sequences to present the location and the extent of the lesion (a dual
echo Proton density and T2w TSE with fat suppression in axial and coronal plane,
TR/TE1/TE2/TI: 3360/14/83 msec, 5 mm slice thickness / 0.5 mm gap, 19 slices) functional
imaging sequences to highlight showed tumor cellularity (8-b values 2D EPI DWI TR/TE:
2900/100 msec, 5 mm slice thickness / 0 mm gap, b values: 0/50/100/150/200/500/800/1500,
19 axial slices) and vascularity (a dynamic 3D Tilw fast low angle shot (FLASH) (TR/TE:
7.09/3.27msec, temporal resolution 7.09 sec 5 mm slice thickness/1.6 mm gap, 14 axial slices).
Imaging planes were non-oblique for easier co-localization of imaging slice and site of

histological examination.

The T2 quantitative MRI protocol consists of two 2D multislice MESE, PD-to-T2-weighted
sequence were obtained with no interslice delay time. For the first sequence: n=25 equidistant
spin echoes with TE1=13.4 ms, ESP =13.4 ms and for the second n=10, TE1 =26.8ms,
ESP=26.8ms while TR was 2500ms for both sequences.. The latter sequence (10 echoes: 26.8,
.., 80.4,..., 268 ms) was used for T2 relaxometry as it does not suffer from the bright fat
appearance from spin coupling while the former sequence (25 TEs: 13.4, 26.8, ..,80.4,..335)
was used for subtraction of images between the two relaxometry sequences at identical echo
times. Fourteen axial slices of 5 mm slice thickness and 5 mm interslice distance were
obtained. A rectangular field of view (280 x 210 mm) with a rectangular reconstruction matrix
(256 x 192 pixels) was utilized. The final 3D spatial resolution was therefore: 1.1 x 1.1 x 8
mm3. The MESE sequence was based on a 2D multiecho CPMG spin echo sequence with
alternating 180° RF pulses under the phase-alternating-phase-shift (PHAPS) scheme (Fransson
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et al., 1993b). A selective refocusing RF pulse scheme was utilized. Additionally, a multi echo
T2* MEGRE with 4 in phase echoes (4.77, 9.59, 14.41, 19.23) and 4 out of phase echoes (2.38,
7.18, 12, 16.82) was used for the calculation of T2* maps.

el

Figure 37 Surgical specimen (dedifferentiated liposarcoma of the thigh). The central slice was divided into 26
orthogonal sections. Area of well differentiated liposarcoma (asterisk) is adjacent to area of poor differentiation
(pdls). Necrotic (N), hemorrhagic areas , infiltrated muscle (im) and fat (f) were identified. Corresponding anatomical

T2/T1w images are shown on the right.

Histological Correlation

The intact surgical specimen was transported immediately after excision to the pathology
department, were it was delivered to and handled by a trained pathologist who performed the
gross examination, photographed and marked the specimen with permanent ink according to
the surgical markings and margins. Furthermore, after identifying the upper and lower margins
of the tumor, in the superior-inferior direction, parallel sections perpendicular to the axial

plane of 1 cm thickness were taken. The central slice of the tumor, corresponding to the
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lesion’s central imaging slice, was selected after measuring the distances from the upper and
lower margins, was divided in orthogonal slabs (in a grid-manner), and placed into plastic
cassettes (Fig. 1). Tumor tissue sections were processed according to CAP guidelines and
recommendations for specimen handling (Lester, 2010). In brief after 48 hours’ fixation into 10
% neutral buffered formalin, sections were embedded into paraffin, dehydrated through a
series of graded ethanol baths, infiltrated with wax and then embedded into wax blocks. 4 um
thick sections of each tumor slab were cut, placed into glass slides, stained with H/E and
examined microscopically (Nikon Eclipse E-200) in order to characterize each area of the
central tumor slice in terms of differentiation, cell type, cellular atypia, cellularity, mitotic

activity, vascularity and presence of necrosis.

The histopathologic topographic characterization guided the imaging post-processing stage so
as to recognize the histologically designated “benign”, “necrotic”, malignant areas and also to
conclude on differentiation grade on a very locally restricted area which could be used for ROI
measurements. The corresponding site was located on the central imaging slice as distance

from the center and angle in a virtual axially located 360 degree cycle.

A case of hibernoma was included in the patient cohort because of its interest but was not
included in the statistical analysis as it cannot constitute a category by itself. Data from patients
diagnosed with dedifferentriated liposarcoma were assigned as either well or poorly

differentiated tissue according to the result of histological examination for the selected slice.

Data post processing

Pixel based parametric T2/T2*maps were produced after mono-exponential fitting of the multi
echo MESE/MEGRE data from in-house built software platform (Manikis et al., 2016). Mean
T2/T2* was calculated for each Region of Interest (ROI) which was delineated by an expert
radiologist within the tumor central slice at a homogeneous region, excluding necrosis and
hemorrhage. In the case of dedifferentiated liposarcoma, ROl delineation was performed after
the pathologist suggested areas of poor differentiation. Image based calculations (subtraction
and division of T2MESE images to calculate relative signal loss at identical TE) were performed
with Mango software (Mango Software, Research Imaging Institute, UTHSCSA). Statistical
analysis was performed using R. Each examined biomarker was descriptively summarized and
presented as mean + standard deviation (SD). Pairwise comparisons were assessed

quantitatively using Student’s T-test. Boxplots depicting the different subject groups were
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displayed. For all tests, a p-value of less than 0.05 was considered to indicate statistical

significance.

The relative signal loss percentage of the fatty tissue between two T2 acquisitions of different
echo spacing, 13.4 ms and 26.8 ms respectively was calculated (Spin Coupling, SC) for all image
pixels (Eq. 1).

T2,-T2,
T2,

SC = (1)

SC value calculated for the tumor ROl was then divided by SC value calculated for
subcutaneous fat ROl of the same patient from the same acquisition in order to produce a

patient specific metric, Spin Coupling ratio, (SCr) (Eq.2).

_ SCtumor
SC‘I"ath - Scfat (2)

88



Figure 38 SCratio maps for three lipomatous masses of variable degree of malignancy. Above: Dedifferentiated
liposarcoma of the thigh: a) T2 MESE ESP: 26.8 ms, TE: 80.4 ms, b) SCr map [-10, 50] %, c) T2MESE ESP:13.4 ms TE:
80.4 ms. Histopathologic examination confirmed sites of well differentiation at the tumor periphery at locations
60’clock and 30’ clock respectively at the periphery (arrows) that should be avoided for needle biopsy. Cystic
components (C) were also observed and also sites of poor differentiation (asterisk). Fig. 2 middle: Benign Lipoma a)
T2 MESE ESP: 26.8 ms, TE: 80.4 ms, b) SCr map [-10, 50, c) T2MESE ESP: 13.4 ms TE: 80.4 ms. Fig. 2 below: Myxoid
Liposarcoma Lipoma a) T2 MESE ESP: 26.8 ms, TE: 80.4 ms, b) SCr map [-10, 50], c) T2MESE ESP:13.4 ms TE:
80.4 ms. All MR images are displayed at [0,1000] a.u.
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5.3 Results

Resulting pixel based parametric maps of SCr are shown on Fig. 29, complemented by original
bright and dark fat T2w images, ROl based mean apparent T2, mean apparent mean T2* were
calculated for the lesion as well as for uninvolved fat adjacent to the tumor volume to be used
as reference for protocol robustness (Table I). Subcutaneous fat sustains a relatively constant
value for mean apparent T2/T2* within the patient population, unlike fat containing tumors
that exhibit an extensive range of values. Similarly SCr remains relatively constant for healthy
fat among all patients while there is a significant range of measured values between different

types of fat containing neoplasms.

Statistical analysis (pairwise t-test with Bonferroni correction) was performed to find
significant differences in mean apparent T2, mean apparent T2* and SCr between five distinct
categories, i.e lipoma, well differentiated liposarcoma, myxoid liposarcoma, pleomorphic
liposarcomas and poorly differentiated liposarcoma. Difference was considered significant for
p<0.05, and is marked by * for p between [0.01-0.05), ** for p [0.001-0.01) and lastly marked
with *** for p between [0-0.001) as shown in Table Il. Non-significant differences are noted as
ns. Figure 3 graphically represents SCr results, as this was proved (from results shown on Table

II) the metric with the higher discriminative power among all three.

It is of note that only SCratio succeeded in classification between pleomorphic liposarcoma
and poorly differentiated part of dedifferentiated liposarcoma, both of which are graded as

highly malignant (histologic specific grade: 3) and have similar imaging characteristics.

No metric could find significant differences between lipoma and well differentiated
liposarcoma in the 5-class problem. However, when performing a 2-class classification
between the two classes of low malignancy and very similar imaging characteristics, SCr shows
significant differences between lipoma and well differentiated liposarcoma while all the other

metrics fail (Figure 4 left).

Furthermore a pairwise t-test was performed between an “extended” class including two
entities (lipoma and well differentiated liposarcoma) tested versus healthy subcutaneous fat
visible in the same acquisition based on T2 relaxation constant. Significant differences are

found between tumors and normal appearing adjacent fatty tissue (Figure 4 right).
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Figure 39Box plot graphically representing mean value and standard deviation for each category based on SCr. for
all lipomatous tumor types. p-value is marked by “*”, “**” “***” qnd “ns” for values between [0.01-0.05), [0.001-
0.01), [0-0.001) and [0.05-1] respectively.
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Figure 40Classification problem simplified to two categories. Left: Significant difference is found
between lipoma and well differentiated liposarcoma based on SCr. Right: Lipoma or well differentiated liposarcoma
have significant differences in measured T2 value from uninvolved subcutaneous fat (sf)

Table 4. T2, T2*, Spin coupling percentage (SC) and Spin Coupling ratio (SCr) for 5 lipomas, 1
hibernoma (not included in further statistics), 4 well differentiated liposarcomas (wdls), 3
myxoid liposarcomas (mls), 2 pleomorphic liposarcomas and 4 poorly differentiated
liposarcomas (pdls). Subscripts | and sf declare lesion and subcutaneous fat respectively. SCr is
the ratio of spin coupling loss of the lesion over the same value of uninvolved healthy fat of the

same acquisition. SD = Standard Deviation
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T2l (ms)  T2sf (ms) T2*|(ms) T2*sf (ms SCI (%) @ SCsf(%) SCrl
lipomal 104,9 102,8 31,4 29,8 39,9 40,4 0,99
lipoma2 | 100,4 100,9 29,2 28,0 41,3 42,0 0,98
lipoma3 | 103,6 96,9 30,8 30,6 37,8 36,9 1,02
lipoma4 102,3 99,6 28,6 29,5 38,7 36,2 1,07
lipoma5 103,5 98,0 30,4 30,6 40,1 39,8 1,01
Mean 102,9 99,6 30,1 29,7 39,6 39,1 1,01
SD 1,5 2,1 1,0 1,0 1,2 2,2 0,03
hibernomi 196,7 96,5 103.7 29,2 -0,4 35,2 -0,01
wdls 1 103,4 99,7 44,6 29,8 36,7 39,8 0,92
wdls 2 102,5 98,7 28,8 28,5 37,1 39,7 0,93
wdls 3 101,5 98,2 31,7 29,3 49,0 51,8 0,95
wdls 4 105,5 102,0 57,3 28,4 31,9 40,3 0,79
Mean 103,2 99,7 40,6 29,0 38,7 42,9 0,90
SD 1,7 1,5 11,3 0,6 6,3 51 0,1
mls 1 572,0 99,5 287,0 32,0 0,2 40,5 0,00
mls 2 535,1 99,4 370,7 29,6 0,1 36,9 0,00
mls 3 383,8 100,5 282,4 28,8 7,3 41,7 0,18
Mean 497,0 99,8 313,4 30,1 2,5 39,7 0,06
SD 99,7 0,6 49,7 1,7 4,1 2,5 0,1
pls 1 144,6 100,2 78,6 28,5 6,1 34,9 0,17
pls 2 135,4 104,7 90,1 29,0 0,0 34,1 0,00
Mean 140,0 102,5 84,4 28,8 3,1 34,5 0,09
SD 6,5 3,2 8,1 0,4 4,3 0,6 0,1
pdis 1 145,4 100,7 69,3 27,1 -20,1 32,1 -0,62
pdis 2 169,3 94,9 129,5 29,5 -6,2 41,4 -0,15
pdls 3 144,3 100,5 84,4 28,8 -12,6 45 -0,28
pdis 4 131,9 99,7 59,4 30,2 -7,1 41,8 -0,17
Mean 147,7 98,9 85,6 28,9 -11,5 40,1 -0,3
SD 15,6 2,7 31,0 1,3 6,4 5,6 0,2
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Table 5. Classification performance for T2, T2*, SC and SCr between lipomatous tumors. p-value
is marked by “*”, “**” “***” and “ns” for values between [0.01-0.05), [0.001-0.01), [0-0.001)
and [0.05-1] respectively.

T2 lipoma wdls | mls | pls SC lipoma | wdls mls | pls
wdls | ns wdls ns

mls %k %k k %k %k k mls %k %k k 3k %k %k

pls ns ns ok pls ok ok ns

pdls ns ns k% Ins pdls ok ok * ns
T2* SCr

wdls | ns wdls ns

pls ns ns ok pls ok ok ns

pdls ns ns *¥**  Ins pdls ok ok * *
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5.4 Discussion

Fat quantification and fat content determination has been a long-standing target of
quantitative MRI. To our knowledge, the first use of spin coupling as contrast for clinical
imaging was published in 1993 (Todd Constable, Smith and Gore, 1993).

Currently, the most widely used NMR based method for the study of tissue structure is in vivo
MR spectroscopy. It offers direct recognition of each spectral peak and its relative amplitude
for a given sample, but it is has many inherent constraints that prevent extensive use in a
routine basis. It requires special software and post processing, human expertise, adequate
sample homogeneity and main field homogeneity. Ex-vivo 13C MRS has been used by S. Singer
et al to differentiate between fat-containing tumors based on tissue biochemistry (Singer et
al., 1997). The major findings of this study were significant differences in the fatty acyl chain
content (ratio between lipomas: wdls: pls or dediff. liposarcomas is 1 : 3 : 0.01) probably
attributed to the increase of the poly-unsaturation degree of high grade sarcomas as
compared to intermediate or low grade. The latter suggests an increase in the number of
double bonds present in the fatty acyl chain which affects the motion and order of the acyl
chain and in turn affects membrane proteins. This can be an important factor determining the
invasive and metastatic capacity of the high grade liposarcoma cell types. Moreover, they
remarked the presence of free fatty acids and phospholipids in dedifferentiated/pleomorphic

sarcomas which were not detectable in normal fat, lipoma or well differentiated liposarcoma.

The proposed method based on spin coupling ratio does not rely on direct detection of tissue
composition but taking into account the biochemical differences observed in the spectrum,
changes in lipid specific imaging contrast are expected. Differences in the measured SCr show
variable degree of dependence on refocusing pulse spacing and may be indicative of
differences in the fat content of adipocytic neoplasms. Subcutaneous fat exhibits a very
narrow and specific range of all T2 and Spin Coupling related metrics instead in the resulting
changes of signal produced. SCr calculation does not require special hardware or software nor
post processing expertise. It requires minimal acquisition time and has excellent spatial
resolution, exploiting rather than being weakened by tissue heterogeneity as in the case of MR

spectroscopy.

Results of the present study show that T2 relaxometry in conjunction with spin coupling ratio
can achieve differentiation between any pair of the five different adipocytic moieties. As seen
in Fig. 3 SCr decreases with increased differentiation grade. Well differentiated liposarcomas
lose a significant percentage (38.9%) of their signal due to spin coupling at TE=80 ms which is

comparable to normal fat signal loss (42.9% ), myxoid have almost identical signal intensity

95



between the two acquisitions-probably because of the dominant long T2 component- and, at
the other end, pleomorphic and poorly differentiated tumors have even lower SCr. In fact, the
latter group exhibits negative values which was unexpected as zero loss was considered to be
the lower limit by theory. However this finding was consistent among all examined patients

and requires more detailed study in a molecular and chemical level.

In fast SE sequences each echo reading has a distinct phase encoding in order to represent a
different line of k-space within a given TR interval .The effect of spin coupling in signal
modulation cannot be decomposed and measured separately to other concurrent spin
dephasing phenomena during acquisition, such as magnetization exchange effects, stimulated
echoes or diffusion of water molecules through a local field inhomogeneities (Constable et al.,
1992). However, the process of subtraction of images with identical parameters apart from
ESP accentuates contrast mechanisms affected significantly by pulse spacing. For this reason,
we believe that, if not uniquely, the observed differences can be attributed mainly to spin

coupling.

A definite constrain of our study is the number of patients that participated in the study but
these preliminary results show that SCr can be introduced into the clinical routine and to build
a larger database for use in the future. However it is promising that structures of similar origin
but different molecular inner structure or composition have a different imaging identity and
the proposed biomarker of spin coupling ratio highlights the imaging spectrum of fat that

remains otherwise unperceivable.
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Chapter 6 Combined qualitative inverse Laplace transform and
multi-exponential fitting study of T2 relaxometry data on a fat
containing phantom: application of multi-exponential fitting on

adipocytic tumors

6.1 Motivation

The aim of this part of the study is to qualitatively evaluate the transverse relaxation
properties of fat containing samples by deploying two different methodologies: inverse laplace
transform (ILT) which is the gold standard and a proposed method based on mono and double
exponential fitting. The number of discrete exponentially decaying components is derived by
statistical methods and are then correlated with the spectrum of T2 components as obtained
by the ILT method for validation.In order tovalidate the results against the ILT method, we use
a phantom with samples of known exponential decay patterns of the transverse magnetization
and different compositions, either aqueous or fatty or mixed aqueous and fatty with variable
percentages. The proposed method is then applied to benign and malignant lipomatous soft
tissue masses to reveal the different decaying patterns depending on the histologic similarity

of the lesion to the normal adult fat cell (cell differentiation).

Taking into account that the number of exponentially decaying proton compartments depends
on tumor tissue micro-environment, a voxel by voxel tissue description with no a priori
assumption for the number of exponential components can contribute to a non-invasive

characterization of fat containing soft tissue masses and support radiological diagnosis.

6.2 Method

Patient Population - Histological assessment

The imaging protocol was submitted and approved by the local ethics committee. All patients

signed an informed consent for the use of clinical and imaging data for research purposes.
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Patients with primary lipomatous tumors who underwent MRI examination from July 2017 to
February 2019 prior to the planned surgical excision were included in the study. Patients with
recurrent or residual tumors and those submitted to preoperative treatment were excluded.
Subsequently, one patient was excluded because of compromised cooperation resulting in
severe motion artifacts and two patients that refused to perform the examination because of
claustrophobia. A total of 24 patients with primary lipomatous tumors of the lower limb (11),
the upper limb (7) and the retroperitoneal space (6) were studied. The surgeon marked the
specimen with sutures or surgical staples in predefined points in order to enable the actual
three-dimensional orientation of the specimen in relation with the patient’s body and to
warrant the implementation of sections of the tumor in its true axial plane. For each patient at
least 3 slices (at the top and bottom end and a slice in the middle of the tumor) were analyzed
in terms of differentiation, cell type, cellular atypia, cellularity, mitotic activity, vascularity and
presence of necrosis. Histopathologic analysis revealed 6 lipomas, 4 well-differentiated
liposarcomas, 3 myxoid liposarcomas, 4 pleomorphic liposarcomas and 7 dedifferentiated

liposarcomas.

Imaging protocol

All MRI exams were performed on a 1.5T MR scanner (Vision/Sonata hybrid System, Siemens,
Erlangen, Germany). For the patient study, conventional dual echo turbo spin echo (PD and T2)
as well as T1 sequences offered complete coverage of the region in question and were used for
the design of quantitative study. The Field of View (FOV) and the choice of the coil depended
on the site of the tumor and were determined on the basis of highest SNR and adequate
spatial coverage. Two possible schemes were used for the FOV, either 200 x200 or 400x400 as
masses differed substantially in their size. The T, quantitative MRI protocol consisted of 2D
single slice Multi Echo Spin Echo (MESE) based on a 2D multi echo Carr-Purcell-Meiboom-Gill
(CPMG) spin echo sequence with alternating 180° RF pulses wunder the
phase-alternating-phase-shift (PHAPS) scheme (Fransson et al., 1993a). The final result was a
single slice, PD-to-T2-weighted sequence with no interslice delay time. PD-to-T2-weighted
sequence were obtained with no interslice delay time. A TR of 2500 ms, using 25 equidistant
spin echoes (TEs starting at 13.4 ms, Echo Spacing, ESP = 13.4 ms, last TE = 335ms). 7 to 14
axial slices, depending on tumor size, of 5 mm slice thickness and 5 mm inter slice gap were
obtained. A rectangular reconstruction matrix (384 x 320 pixels) was chosen. The same single
slice MESE sequence was used for the phantom study, with a standard FOV of 230 x 144 mm. A
selective refocusing RF pulse scheme was utilized for elimination of stimulated echoes (Hennig,
1991).
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Data pre-processing

In the MESE/PHAPS sequence the first echo signal is not accurate because of B1 field
imperfections (Milford et al., 2015) (Majumdar et al., 1986) and is usually either extrapolated
or ignored. In this study we did not correct for the first echo as extrapolation process requires
the choice of a proper model and this would in turn introduce bias to the next step of mono or
double exponential fitting model selection. The first TE used for both ILT and the multi-
exponential T2 analysis was therefore, the second acquired TE at 26.8 ms. from the original
MESE/PHAPS sequence. This confounds the minimum bound for T, estimation, which was

chosen at 30 ms for the present study.

Phantom study

As a first step the fitting method was tested on an in-house built phantom composed of 11
samples with different relaxation patterns. More specifically mixtures with variable fat/water
content (milk cream with different fat content and mixtures of different number of egg yolks

and whites), pure corn oil and double distilled water were analyzed with the same sequence.
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1: Acetone
2: Double Distilled Water
3: Milk Cream 35%
4: Milk Cream 20%
5: Milk Cream 15%
6: Milk Cream 12%
7: 1 White 3 Yolks (mix)
8: 3 White 1 Yolk (mix)
9: 1 White 1 Yolk (mix)
10: 1 Yolk
11: Corn Oil

Mono-Bi exponential
model classification

Mono-exponential fit
Bi-exponential fit

Figure 41Phantom configuration and multi-exponential classification of the samples

T, relaxometry

All numerical calculations concerning Mexp T, relaxometry were implemented in Python 3.5
(www.python.org) apart from the ILT method which was implemented in Matlab (MathWorks,
Natick, Massachusetts) . The graphical user interface (GUI) and results visualization were
accomplished by the use of PyQt4 and PyQtGraph (www.pyqtgraph.org) libraries respectively.
Below the mathematical framework and technical details for the T, relaxation are presented

below.

Inverse Laplace Transform method

A continuous MR relaxometry signal y(t) is of the form:
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Where, T, denotes the relaxation time, f(T,) represents the amplitude of the corresponding
component and e(t) is the instrumentation noise. After the discretization of (2) the goal is to
extract the distribution of the f(T,) amplitudes through (3) below.

N
_ti
9(t) = y(t) —e(® = ) e T £(Ty) 3
j=1
In equation (3) the index i stands for the number of echoes. In matrix notation the main aim is

t

to solve the linear system g = Af where: 4;; = e "2j is the discrete Laplace transform and
g(t;) = y(t;) —e(t). For the purpose of our analysis e(t) was considered to be the vector
containing the mean background noise for every TE. The problem thus is to find the vector f

by minimizing (4) below.

f = argminllg — Afl3 4)

Taking into consideration that the inverse Laplace transform is a highly ill-posed problem and
therefore intrinsically affected by numerical instability, its solution may not be unique. To
address this limitation, a penalty term (a) is introduced (Tikhonov, A. N. and Arsenin, 1977) to
increase stability in the inversion as illustrated in (5). This technique is known as Tikhonov

regularization.

f=argminilg - AfNZ + allfl13 ()

Additionally, for the phantom study, signal y(t) was the mean ROI signal from all voxels
assigned as a certain sample. Lastly, the Matlab’s fminsearch function equipped with the

Nelder-Mead simplex direct search was used to obtain the vector f with a = 0.01.

Proposed T, Multi-exponential Analysis (Mexp method)

Supposing an MR signal S(TEk), measured at echo times TEk (k = 1, 2 ,..., K), the decay of the

transverse magnetization can be represented as the sum of up to N exponential decays as

shown in (6).
N
S(TEy) —e(TEy) = ) A;exp|— ) N=12
i=1 2t
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Whittall and MacKay in (Whittall and MacKay, 1989) stated that mono or bi-exponential
analysis of materials with different T, time constants is relatively accurate as opposed to more
complex systems with N > 3 the T, relaxometry is a nontrivial problem. Thus, our analysis was
based on searching a maximum of two components. To be more precise, for every voxel in the
region of interest Eq. (6) was fitted twice for all N (N = 1,2) meaning mono and double
exponential fit respectively by using non-linear least squares (NLLS). The number of

exponentials was determined by the highest R? described in the “Goodness of fit” section.

As an iterative procedure, NLLS needs to be provided with an initial starting point which can be
considered as a disadvantage because an inaccurate starting point might lead to NLLS
convergence to a local minimum rather than the global minimum. This limitation is handled by
repeating the procedure of fitting with different starting points for converging to the global
minimum (Li et al., 2016) (typically by comparing the norm of the residuals between each fit).
NLLS have the advantage of passing arguments such as the bound constraints for each variable
for optimization. In our case, the optimization of (6) was succeeded with 4;, (i = 1,2) in the
range of 0 to 2000 and T,; € [30,120] ms and T,, € [120.1 2000 | ms. The trust region
reflective algorithm of the scipy.optimize.least_squares (www.scipy.org) was used in order to
extract A; and T,; values from the raw relaxometry data. To avoid local minima, the fitting
process for every voxel and model was performed 20 times having as an initial starting points
equally distributed within the range of each parameter bound. NNLS is preferable to ILT for
voxel-wise T, mapping as it has lower computational cost. It is worth noting that even for a
single voxel the ILT method returns a T, distribution (vector outcome for each voxel) rather
than a discrete T, value. Similarly, for a ROI study the ILT result is a distribution where the

metric of interest is the shape and number of the distinct T, peaks.

Goodness of fit

Having an analytical form of the model fitted to the data, the adjusted R squared (R?) can be
computed in order to acquire information about the goodness of fit. R? is a generalized metric
based on the R squared (R?) and its value is always less than or equal to that of R? € [0,1].
This metric was proposed to overcome the limitation of R? concerning that its value increases
when more explanatory variables are added to the model. Therefore, R? was considered more
suitable for this study than R? since it takes into account the number of data points (K), the
number of the explanatory variables (m) of the model function and the residuals between the
model function (G;) and the data (y;) as can be seen in equations (7) and (8). Index i stands for

the number of the measured data points.
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A graphical representation of the workflow used in this study is shown in Fig. 431

Workflow

T, Distribution

Background Subtraction /
| Inverse
Laplace Transform e
~ method

Classification Map

Mono-exp
e Ll Bi-exp

T»1
Tﬂ

Figure 42 Study workflow
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6.3 Results

Phantom study

Eleven samples with different composition were analyzed using both T, relaxometry methods
in order to test the proposed Mexp method in regard to the number of distinct
T, components. Sample composition varied from aqueous, to pure fat containing also mixtures
of variable fat ratio. Aqueous samples, acetone and double distilled water were positioned in
1-2 respectively, showing = 97% mono exponential behavior by Mexp method Fig. 2. This
result is in agreement with the results from ILT method showing a single T, distribution

characteristics such as the mean value Fig. 343.
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Figure 43Data fitting, ILT distribution and Mexp results for aqueous samples
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In analogy, the estimation regarding the number of components from different fat samples
(Egg yolk and corn oil in positions 10 and 11 respectively) exhibited the presence of two
different relaxation components for the 100% for the sample voxels Fig. 4. Since imaging data
from healthy appearing adipose tissue were available, we extended our analysis to a

subcutaneous fat ROl showing 100% bi-exponential behavior (also appended in Fig. 4).
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Mixtures of aqueous and fatty composition were also studied and presented in Fig. 345 and
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Figure 44Data fitting, ILTdistribution and Mexp results for egg yolk, corn oil and adipose tissue..

Specifically, milk creams with different fat contents, namely: 35, 20, 15 and 12% present in

positions 3,4,5 and 6 respectively (Fig. 2), showed dominance of the bi-exponential model with

variable degree of voxel percentage. This result was in agreement with the result obtained

from the ILT analysis. Bi-exponential dominance varied from 100% to 85% voxel percentage for

milk creams of 35% and 12% respectively, with increased fat content favoring double

exponential pattern for all 4 samples. Furthermore, the area of the shorter T, component

distribution varies with fat content, as it seems to progressively decrease with decreasing fat

content. A mono-exponential behavior was observed in a voxel percentage of above 10% only

for milk cream with the least fat content (12%).
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Figure 45 Data Fitting, ILT distribution and Mexp results for milk creams of different fat fractions
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The corresponding mono-exponential distribution is also presented in Fig. 5. Additionally,

mixtures of egg whites and yolks (Fig.6) were studied. These mixtures are present in positions

7-9 in Fig. 2 and again, a wider bi-exponential dominance is noticed as the fatty component is

increased. In more detail, the sample containing a mixture of one egg white and 3 yolks had

mono/bi-exponential voxel dominance ratio of 10/90% while at the other end a mixture of

increased aqueous component (three egg whites, one yolk) had a ratio of 40/60%. The mixture

of one white and one yolk had 91% mono-exponential dominance. Interestingly, for the

mixture of one egg white and three yolks, the ILT method failed to recognize the fat

contribution and shows a single distribution while the Mexp method shows 60% bi-exponential

behavior. All the aforementioned results are presented in Table 1.
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Figure 46 Data fitting, ILT distribution and Mexp results for egg white and yolk mixtures

Patient study

Having verified the sensitivity of Mexp methodology to identify water compartments in
samples with known relaxation patterns in the literature (Jones, MacKay and Rutt, 1998;
Yahya, Tessier and Fallone, 2011; Mitsouras, Mulkern and Maier, 2016), we proceeded to a
patient study with benign and malignant lipomatous tumors based on the proposed Mexp
method. For the histopathologically distinct entities described in the patient population the
mono/bi exponential classification per pathology was calculated as barplots in Fig. 7. Apart
from lipoma all other categories exhibit mixed mono/bi-exponential behavior with different
degree of contribution. It is important to note that data come from regions within the tumor
excluding macroscopic cystic or necrotic areas identifiable in conventional MRI as this could
introduce bias to the results. Voxels used for the analysis were indicative of viable tumor
characteristics. Indicatively, Fig. 8 shows voxel by voxel classification for: (a) a benign lipoma of
the left shoulder, (b) a well differentiated liposarcoma of the right thigh, (c) a myxoid
liposarcoma of the left thigh, (d) a poorly differentiated liposarcoma of the left thigh and (e) a

pleomorphic liposarcoma of the left thigh.
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Relaxation pattern for lipoma resembles the chosen tissue mimicking sample of corn oil
(Constable et al., 1992) presenting more than 99.7% bi exponential behavior. On the basis of
strong agreement on the bi-exponential behavior of both methods we took a further step of

presenting the lipoma T, distributions per patient in Fig. 9. ILT results (left plot Fig. 9) show a

Phantom study

strong qualitative resemblance with results from Mexp method (right plot Fig. 9). Tissue
heterogeneity within liposarcomas cannot permit a similar per patient analysis for the rest of

the patient cohort. Calculated values for A; and T,; for all lipomatous tissue subtypes are

shown in Table 1.
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Mono/Biexponent

Phantom Samples A, +std T,.% std At std T,,% std
prevalence (%)
Acetone 98/2 532.982 +20.1 2231.083 * 206
DD water 97/3 893.132 £ 24.4 1716.445 £ 24(
Milk Cream 35% 0/100 519.836 + 218| 41.269 + 16.16] 794.440 + 236 240.320 £ 55,
Milk Cream 20% 5/95 339.084 + 246| 44.615 +24.821 871.756 + 261 304.354 + 66.
Milk Cream 15% 10/90 409.935 + 352| 46.750 + 26.81] 830.871 + 374 411.115 + 48,
1012.082 + 47| 200.652 + 13.0
Milk Cream 12% 15/85
313.229 + 208| 57.604 + 35.13] 764.865 + 225 349.630 + 64.
1115.686 = 4] 91.433 £1.993
1 White 3 Yolks 10/90
518.258 + 141 46.127 £10.934 674.145 + 152 177.276 + 23,
1021.354 + 4{ 258.039 + 5.86
3 White 1 Yolk 40/60
169.016 +115 47.971 +33.78( 910.839 + 154 317.543 + 50,
1 White 1 Yolk 91/9 1511.349+ 71| 65.818 + 1.159
1Yolk 0/100 980.825 + 36.4 30.0 + 1.137 | 43.578 £15.0¢ 236.501 * 20,
Corn Qil 0/100 666.831 + 183| 40.416 +12.03¢ 1044.111+ 10| 193.364 + 33,
Adipose Tissue 0/100 504.498 £+ 69.] 45.690 +13.94] 751.916 + 147 191.284 + 21,
Patient study
Mono/Biexponent
Tissue Type A; +std Tyt std A, std Ty, std
prevalence (%)
Lipoma 0.3 % mono - - - -
99.7 % bi 319.943 +183| 41.807 +13.32] 630.097 + 195 205.197 + 64,

Well differentiated

liposarcoma

17.7 % mono

205.911 £ 95.9

322.761 £139.

82.3 % bi

279.234 £ 160

42.926 + 19.64¢

757.961 + 260

220.782 +112

Myxoid liposarcoma

47.8 % mono

910.357 £134

439.581 +79.24

52.2 % bi

237.412 £ 129

60.801 +37.31

793.358 £ 190

469.580 +148

Poorly differentiated liy

53 % mono

469.685 + 237

152.166 + 102.

47 % bi

242.496 £ 156

48.166 + 25.06

525.902 + 378

223.732 £121

Pleomorphic liposarcon

25 % mono

583.505 +99.(

441.506 * 154.

75 % bi

285.210 £ 95.1

38.531+19.23

678.743 £ 109

263.641 £153

Table 6
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Model prevalence

- Mono-exponential fit
. Bi-exponential fit

Figure 47Mexp based voxel by voxel classification indicatively for tissues of variable degree of malignancy
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Figure 48Tissue Classification based on Mexp method
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Figure 49ILT T2 disribution and corresponding Mexp results for five lipomas

6.4 Discussion

The observation of Damadian that cancerous tissue has longer T,times than normal tissue
(Damadian, 1971) has been the cornerstone of clinical MRI. The first proof of concept for tissue
characterization from multi-exponential T,relaxometry was published from Vasilescu in 1978
(Vasilescu et al., 1978), reporting three micro—anatomically distinct compartments in the
excised sciatic frog nerve reasoned to be water closely associated with proteins and
phospholipids. This study clearly suggested that it is possible apart from extracting a tissue
specific T,value, to probe tissue composition at a microscopic level. Assuming slow or minimal
exchange between water compartments, the number of distinct exponential decays
corresponds to the number of water compartments in tissue with different relaxation rates,
with signal intensity amplitude being a measure of its anatomical size. Transverse relaxation
(T,) relaxation rate (spin dephasing) is a measure of the mobility of water molecules in tissue,
which in turn is indicative of the microenvironment of tissue and the presence of motion

confounding structures or other macromolecules that bind to the water dipole molecule.
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The study of myelin in the brain and muscle have been the focus and the driving force for
expanding multiexponential T,methodology armamentarium. Concerning the former, three
distinct water compartments have been identified, assigned to motion-restricted water
particles between the lipid layers of the myelin sheath (10 ms < T, < 40 ms), more freely
moving water in the intra- and extracellular spaces (80 ms < T, < 100 ms) and CSF (T, > 2
s)(Mackay et al., 1994; Whittall et al., 1997; Alonso-Ortiz, Levesque and Pike, 2015). For the
latter, studies on muscle tissue have identified up to four water compartments with T,values
ranging from <5 ms to T, >400ms, assigned to extracellular (slow exponential extracellular
component with T, > 0.4 s, intermyofibrillar (T, = 0.15 s), myofibrillar (0.03 s < T, < 0.06 s) and
a rapid component (T, < 0.03 s) residing at the vicinity of the macromolecules (Saab et al.,
2001; Kimura et al., 2005).

In the specific domain of lipid or connective tissue, T, relaxometry has been subject of a
limited number of publications (Torriani et al., 2014)(Chaudhari et al., 2017). However,
reported results from MR Spectroscopy have shown evidence that the study of fat content
allows for adipose tissue classification on the basis of variable abundance of distinct fat
moieties with each one having a different T, rate in benign lipomatous tissue and liposarcomas
(Millis et al., 1999; Chen et al., 2001). Unlike water that resonates at a single frequency, fat
spectrum is more complex with a number of resolvable peaks depending on the imaging
hardware and the theoretical assumptions (Simchick et al., 2018). MR signal from fat comes
mainly from the triglyceride molecules in fatty tissue, while other compounds such as
cholesterol and free fatty acids contribute insignificantly in comparison to triglycerides. Fatty
acids in triglycerides have chain lengths ranging between 14 and 18 while they have 0-2
double bonds (Hodson, Skeaff and Fielding, 2008) depending on diet or metabolic activity of
adipose tissue depot (Lundbom et al., 2013). Adipose tissue differentiation based on NMR has
shown a marked fall in visible triglyceride levels associated with a significant increase in
phosphadylcholine levels, with the latter serving as a measure of cell membrane turnover and
cell division. Low grade liposarcoma was found to have similar triglyceride content to normal
fat (25). Notwithstanding the significance of these results, in vivo MR spectroscopy is not
readily available and moreover has poor spatial resolution and has high software, timing and

shimming demands, as opposed to T, relaxometry.

Each peak in the fat spectrum has a distinct T,relaxation time ranging from 30 to 70 ms at 1.5T
(Hamilton et al., 2011) and, at a voxel level, the measured T,is the averaged sum of all fat
peaks present in the imaging volume. Longer T, are conjectured to originate from methyl-H in
mobile triglycerides originating from cytoplasmic lipid droplets, most abundant in highly
differentiated liposarcomas, while, on the other hand, shorter T, components come from
rotationally hindered and perhaps intracellularly bound protons of pleomorphic or

dedifferentiated liposarcomas. Myxoid neoplasms exhibit higher water content and low
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triglyceride and increased levels of phospholipids (Millis et al., 1999). Apart from lipid content,
other microscopic structures contribute to the decay signal at a voxel level, such as fibrous or

myxoid tissue hosted within malignant neoplasms.

To this end, our study focused on T, relaxometry of fat samples for validation and was
extended to human tissue in order to describe the relaxation patterns of complex
microenvironment within tissue of lipomatous origin. Phantom results were obtained and
looked in comparison to the well-established ILT method for obtaining T, spectrum, in order to
verify qualitative agreement in the distribution shape and the number of distinct
T, compartments. Indeed, results from the phantom study verified that the algorithm can
identify the most appropriate exponential fitting model as samples of known decay pattern
were attributed to the theoretically expected model. In more detail, double distilled water or
acetone was described by the mono-exponential model, which is considered as the most
accurate, and corresponds to the free water compartment in tissue. Corn oil was used as it
closely matches the spectrum and longitudinal relaxation times of subcutaneous abdominal fat
(Kuroda et al., 1998) and was best described by an exclusively bi-exponential model. Dairy
cream of variable fat content were used as they provide a mixed aqueous and fatty
environment with measurable contribution from each component (Jones, MacKay and Rutt,
1998). Egg white exhibits two-component decay with intermediate and long T, times.
Meanwhile, yolk is generally best characterized with triexponential decays, with short,
intermediate and very long T, decay times. Experimental results have shown that the
intermediate component of yolk could be attributed to lipids (Mitsouras, Mulkern and Maier,
2016).

Based on the above results the same numerical procedure was applied to lipomatous tumors
and also to reference ROIs from normal tissue (normal adipose tissue). Subcutaneous fat
exhibited very similar behavior to corn oil while, from the clinical aspect, resembles to well-
differentiated fat. However, the latter also exhibits a small percentage of voxels with mono
exponential dominance which in turn is present in all studied tumors of high histological grade.
In detail, neoplasms of higher degree of malignancy have a significant presence of mono
exponential voxels (Fig. 7). This diverse distribution can be a result of a heterogeneous tumor
microenvironment. Moreover, we separately examined and observed shortened T, times and
mono-exponential behavior in the areas of necrosis ident6ified by histopathology, potentially
as a result of macromolecular compounds from the cells released into the extracellular space

and binding to free water molecules (Liu et al., 2016).

One of the major constraints inherent in T, relaxometry is acquisitions with adequate SNR to
ensure accurate and repeatable measurements. Compromised SNR results in peak broadening

and confounds accurate multi exponential fitting. In an experimental simulation of a three pool
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model an SNR of the order of 500 was reported for accurate detection (>80% of samples) of
three exponential curves, while an SNR of 150 detected only 30% (Andrews et al., 2005).
However such SNR levels are very challenging in a clinical setting, in terms of spatially localized
signal and acquisition timing. In our study SNR ranged from 120-80, depending on tissue type,
with the most signal abundant pathology being myxoid liposarcoma and lipomatous masses at
the other end. To this end, Mexp results were used quantitatively, assessing the T, distribution

shape rather than a quantitative estimation of each water pool size.

Additionally, the first (effective) TE is limiting the minimum T, rate feasible to be detected by
the proposed method and thus one cannot exclude a third compartment in the low T, range
that cannot be detected with the described sequence parameters. A very short T, component
could be attributed to water protons motionally restricted, probably strongly bound to
macromolecules or physically constrained within cell structures. Here, we set the minimum
detectable T, at 20 ms for a first —effectively, since the signal from TE=13.4 was ignored-echo

at 26.8 ms.

Another important aspect to be noted is that the problem of decomposing the total signal to
more than two discrete exponentials becomes non trivial (Whittall and MacKay, 1989) because
of the large number of the parameters for optimization (i.e. for N= 3, max. number of
parameters=6). Non overlapping bounds had to be set between models as the fitting algorithm
is unable to accurately assign components of the same T2 value to different components. The
reason for this constrain is that in case of same T2i values the optimization process favors to

adapt the weights (Ai in Eq. (1)) rather than the exponential term.

The limited number of samples does not allow for classification of the various types of
liposarcomas, but yet it is a feasibility study showing the complex pattern of relaxation among
different tissue types that can be sensitive to the chemical and physical environment
surrounding water hydrogen protons. The pure bi-exponential behavior characterizing healthy
adipose tissue and benign lipoma differs for the malignant tissues of lipomatous origin, where
a mono-exponentially decaying component contributes to the signal time intensity curve of
CPMG/PHAPS T, relaxometry data.
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Chapter 7 Conclusion

Considering the importance of accurate pre-operative characterization of soft tissue masses
for all subsequent medical procedures we set an advanced oncologic MR imaging protocol
compriced of multi-b DWI, high resolution DCE, multi-echo GE and SE T2 relaxometry
sequences among other conventional imaging series. During the data acquisition period, we
focused our methods to the imaging of benign and malignant tumors of adipocytic origin, as
this kind of data vastly outnumbered any other soft tissue tumor subtype and thus would
present the most statistically powerful result. Quantitative MR methods were presented in
order to extract the clinically relevant information from the proposed protocol according to
the best practices as proposed by recent literature. The overall scope of this work is to
maximize the impact of pre-operative imaging methods for soft tissue tumors and to present

guantitative methods that can be deployed in other fields of oncology, or other medical fields.

The conclusions drawn from this study at the three different stages can be summarized below:

7.1 DWI - DCE imaging sequences

A free correlation study among all DCE and DWI derived pairs of parameters, showed a linear
relationship between f-IVIM and vp-GCTT in patients with soft tissue sarcomas. DCE in
conjunction with DWI MRI can provide useful information on sites of aggressive characteristics
both in terms of cellularity and vascularity. Localization of sites combining dense cell density
and increased vascular permeability increases confidence about identification of the most
malignant areas within a heterogeneous large neoplasm. This non-invasive mapping can be a

useful tool for guiding the pre-operative biopsy and for overall treatment planning.

7.2 T2/T2* relaxometry sequences

The novel biomarker SCr can be introduced as a quantitative adjunct for radiological
assessment of lipomatous tissue type and grade with minimal software and time prerequisites.
The amount of spin coupling related signal loss differs among entities of different degree of
cell differentiation. Clinical implications of this MRI technique may be biopsy guidance in

heterogenous lipomatous tumors to assure for harvesting tissue with the highest malignancy
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grade and non-invasive preoperative diagnosis of tumor type and grade, which is essential for

adequate treatment planning.

7.3 T2 relaxometry sequence - Multi exponential methods

A proposed Mexp method with no a priori assumptions on the number of components can be
used alternatively to the well-established ILT method to identify the number of distinct T2
relaxing compartments. Agreement between the two methods suggests the possible use of
MExp to provide valuable tissue specific information stemming from a microscopic tissue scale
as an adjunct to conventional radiological assessment of the complex tissue
microenvironment. It has the added advantage of producing pixel based parametric maps
rather than ROI based distributions as resulting from the ILT method. The number of fast/slow
relaxing components is indicative of tissue composition and varies among adipocytic

neoplasms of different degree of malignancy.
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ARTICLE INFO ABSTRACT

Keywords: Background: Subcutaneous fat may have variable signal intensity on T2w images depending on the choice of
MR diagnosis imaging parameters. However, fatty components within tumors have a different degree of signal dependence on
Tumors/lipomatous the acquisition scheme. This study examined the use of T2, T2" relaxometry and spin coupling related signal

Spin coupling ratio/biomarker
T2 relaxometry
T2" relaxometry

changes (Spin Coupling ratio, SCr) on two different imaging protocols as clinically relevant descriptors of benign
and malignant lipomatous tumors.

Materials and methods: 20 patients with benign lipomas or liposarcomas of variable histologic grade were ex-
amined at an 1.5 T scanner with Multi Echo Spin Echo (MESE) different echo spacing (ESP) in order to produce
bright fat T2w images (ESP: 13.4 ms, 25 equidistant echoes) and dark fat images (ESP: 26.8 ms with 10 equi-
distant echoes). T2" relaxometry acquisition comprises 4 sets of in-opposed echoes (2.4-19.2 ms, ESP: 2.4 ms)
Multi Echo Gradient Echo (MEGRE) sequence. All parametric maps were calculated on a pixel basis.

Results: Significant differences of SCr were found for five different types of lipomatous tumors (Pairwise t-test
with Bonferroni correction): lipomas, well differentiated liposarcomas, myxoid liposarcomas, pleomorphic li-
posarcomas and poorly differentiated liposarcomas. SCr surpassed the classification performance of T2 and T2"
relaxometry.

Data conclusion: A novel biomarker based on spin coupling related signal loss, SCr, is indicative of lipomatous
tumor histological grading. We concluded that T2, T2" and SCr can be used for the classification of fat containing
tumors, which may be important for biopsy guidance in heterogeneous masses and treatment planning.

1. Introduction of involved margins and local recurrence, while in the case of a benign

tumor marginal resection is adequate. Marginal resection is preferred

Fat containing tumors can be benign (lipomas) or malignant (lipo-
sarcomas). Liposarcomas which account for approximately 20% of all
sarcomas comprise different degrees of malignancy, including low (well
differentiated), intermediate (myxoid) and high (pleomorphic, ded-
ifferentiated) [1]. Histologic type and grade is important to predict the
clinical behavior of liposarcomas, i.e. rate of growth, possibility to
metastasize, risk of recurrence and survival rate.

Preoperative diagnosis of soft tissue tumor type and grade is es-
sential for treatment planning. In the case of a malignant soft tissue
tumor (sarcoma) wide excision of the tumor together with a rim of
adjacent structures is the surgical treatment of choice to reduce the risk
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E-mail address: nikiforakik@gmail.com (K. Nikiforaki).

https://doi.org/10.1016/j.ejmp.2019.03.023

where appropriate since it decreases the risk of short-term, functional
and cosmetic morbidity, which are frequently observed after wide
tumor excision. Moreover, depending on the exact tumor type and
grade preoperative radiotherapy or chemotherapy may be indicated.
While MRI is the imaging method of choice for soft tissue tumors,
unfortunately as yet reliable preoperative diagnosis is only accom-
plished by core needle or open biopsy. Since soft tissue tumors may be
heterogeneous and the area with the highest malignancy grade de-
termines its biological behavior, it is essential to harvest tissue samples
from this site of the tumor. MRI may determine this specific area and
consequently be helpful in directing the biopsy, either performed

Received 15 February 2019; Received in revised form 19 March 2019; Accepted 21 March 2019

Available online 28 March 2019

1120-1797/ © 2019 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.


http://www.sciencedirect.com/science/journal/11201797
https://www.elsevier.com/locate/ejmp
https://doi.org/10.1016/j.ejmp.2019.03.023
https://doi.org/10.1016/j.ejmp.2019.03.023
mailto:nikiforakik@gmail.com
https://doi.org/10.1016/j.ejmp.2019.03.023
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejmp.2019.03.023&domain=pdf

K. Nikiforaki, et al.

imaging-guided or by palpation. However, non-invasive achievement of
the correct assessment of soft tissue tumor type and grade would avoid
the potential complications of a biopsy, such as spillage of tumor cells,
wound breakdown with tumor growth through the wound, pain,
bleeding, wound infection and patient’s discomfort. Moreover, since the
vast majority of patients with a soft tissue tumor undergoes never-
theless MRI, additional costs of preoperative biopsy and histological
examination may be saved. Hence, it would be a great accomplishment
when type and grade of soft tissue tumors, including lipomatous tu-
mors, and their heterogeneous areas can be determined in a non-in-
vasive manner by MRI techniques.

Benign and malignant tumors of lipomatous origin can share a
number of overlapping imaging characteristics on conventional MRI.
Radiological diagnosis is based on lesion size, depth, presence of en-
hancing septa, etc. [2,3]. However tissue histopathological sample ex-
amination is needed to assess parameters as cell type, cellular atypia,
number of mitoses and presence of necrosis for definitive tumor char-
acterization.

However, apart from conventional MRI, quantitative biomarkers
derived from an extended protocol can non-invasively offer an insight
into tissue that can support radiological diagnosis. In this study we
examined 2 widely used biomarkers and we introduce a novel bio-
marker related to spin coupling (Spin Coupling ratio, SCr).

T2 relaxometry has been a robust and long standing method for
tissue or material characterization based on MRI, as T2 relaxation
constant can be considered as a definite signature of the inner structure
of the imaging object, used not only in medicine but in other fields such
as food science, geological studies, radiation dosimetry etc. [4-6]. As
opposed to water that resonates at a single frequency, lipid protons give
rise to at least 8 distinct resonance peaks [7]. Each lipid spectral peak
exhibits a different relaxation rate and consequently different T2 con-
stant [8]. Estimation of T2 depends on the relevant abundance of each
peak in the selected region and thus is indicative of the microscopic
inner structure of the sample.

Secondly, T2" can enhance the information obtained from standard
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Fig. 1. Surgical specimen (dediffer-
entiated liposarcoma of the thigh). The
central slice was divided into 26 or-
thogonal sections. Area of well differ-
entiated liposarcoma (asterisk) is ad-
jacent to area of poor differentiation
(pdls). Necrotic (N), hemorrhagic areas
and fat (f) were identified as well as
infiltrated muscle (im). Corresponding
axial and coronal T2/T1-w (trueFISP)
images are shown on the right.

T2 relaxometry, by presenting a quantitative metric of local field in-
homogeneity which is indicative of the presence of paramagnetic mo-
lecules, i.e. blood products, iron rich structures, etc. [9]. The utility of
measuring T2 in combination with T2 lies on its ability to correlate
well with a number of semantic physiological parameters such as local
tissue oxygenation and iron concentration.

Lastly, the concept behind measuring spin coupling signal loss is
based mainly on the object of this study, which is fat containing tissue.
From the early days of MRI the bright appearance of fat on images with
short echo spacing was reported as opposed to other structures of si-
milar T2 relaxation constant and darker appearance [10]. Since this
phenomenon is selectively observed on fat, the purpose of this study is
to quantitatively evaluate signal changes for lipomatous tumors of
different degree of malignancy in order to examine the clinical re-
levance of a novel biomarker.

Unlike water that resonates at a single frequency, fat has a complex
spectrum because of its composition in different triglycerides. At clin-
ical field strengths six distinct spectral peaks are visible at different
resonant frequencies (5.3, 4.2, 2.7, 2.1, 1.3, 0.9 ppm) corresponding to
different spectral components/proton moieties that collectively re-
present the total fat signal. The interactions through chemical bonds in
the spectrum (spin coupling) result in the splitting of spectral peaks in
doublets or triplets that in turn lead to signal changes of the coupled
system. In particular, spin coupling evolution induces a sinusoidal
modulation in addition to the T2 exponential decay of the echo train,
resulting in a faster decay of the MR signal. Thus, when moving to
imaging  scale, fat appearance on  conventional T2w
Carr-Purcell-Meiboom-Gill (CPMG) images may vary significantly be-
tween different acquisition schemes, mainly depending on the time
distance between consecutive 180 refocusing pulses (different ESP).
Interaction between coupled spins present in fatty acid chain (hydrogen
in methyl and methylene) introduce field inhomogeneities at a very
local level, inducing thus an additional signal modulation to the ex-
ponential T2 decay. However, in the case of closely spaced radio-
frequency pulses-small ESP- spin coupling related signal modulation
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(dephasing) is affected, resulting in slower relaxation rate and conse-
quently brighter signal intensity of fat. [11]. An empirical threshold of
20 ms [12] referring to the inter pulse interval is reported, above which
the fast rate of RF refocusing pulses decelerates spin coupling evolution
and leads to bright fat appearance. Explicit explanation regarding the
theory of multiple spin systems and the fat bi-phasic appearance can be
found in references [13-15].

A phantom study from our team showed different amount of spin
coupling related signal loss between oil samples of different botanical
origin and thus different spectral identity, indicating that the specific
inner structure of each oil sample relates to magnetic behavior of the fat
and its appearance on T2w MRI [16]. The aim of the present study is to
extend this research to the clinical field and examine the role of spin
coupling and T2 relaxometry in supplementing pathognomonic evi-
dence for the characterization of fat containing soft tissue masses.

2. Materials and Methods
2.1. Imaging protocol

All MRI exams were performed on a 1.5T MR scanner (Vision/
Sonata hybrid System, Siemens, Erlangen, Germany). Conventional
imaging sequences presented lesion location (dual echo Proton density
and T2w TSE with fat suppression) in axial and coronal plane for lo-
calization of the lesion margins (TR/TE1/TE2/TIL: 3360/14/83 msec,
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Fig. 2. SCratio maps for three lipoma-
tous masses of variable degree of ma-
lignancy. Above: Dedifferentiated lipo-
sarcoma of the thigh: a) T2 MESE ESP:
26.8 ms, TE: 80.4 ms, b) SCr map [—10,
50] %, c¢) T2MESE ESP:13.4ms TE:
80.4 ms. Histopathologic examination
confirmed sites of well differentiation at
the tumor periphery at locations
60’clock and 30’ clock respectively at
the periphery (arrows) that should be
avoided for needle biopsy. Cystic com-
ponents (C) were also observed and also
sites of poor differentiation (asterisk).
Fig. 2 middle: Benign Lipoma a) T2
MESE ESP: 26.8 ms, TE: 80.4 ms, b) SCr
map [ —10, 50, ¢) T2MESE ESP: 13.4 ms
TE: 80.4ms. Fig. 2 below: Myxoid Li-
posarcoma Lipoma a) T2 MESE ESP:
26.8 ms, TE: 80.4 ms, b) SCr map [—-10,
50], ¢) T2MESE ESP:13.4ms TE:
80.4 ms. All MR images are displayed at
[0,1000] a.u.

5mm slice thickness/0.5mm gap, 19 slices) and functional imaging
sequences showed tumor cellularity (8-b values 2D EPI DWI TR/TE:
2900/100 msec, 5 mm slice thickness/0 mm gap, b values: 0/50/100/
150/200/500/800/1500, 19 axial slices) and vascularity (a dynamic
3D T1w fast low angle shot (FLASH) (TR/TE: 7.09/3.27msec, temporal
resolution 7.09 sec 5mm slice thickness/1.6 mm gap, 14 axial slices).
Imaging planes were non-oblique for easier co-localization of imaging
slice and site of histological examination.

The T2 quantitative MRI protocol consists of two 2D multislice
MESE, PD-to-T2-weighted sequence were obtained with no interslice
delay time. For the first sequence: n = 25 equidistant spin echoes with
TE, = 13.4ms, ESP=13.4ms and for the second n =10,
TE; = 26.8 ms, ESP = 26.8 ms while TR was 2500 ms for both se-
quences.. The latter sequence (10 echoes: 26.8, ..., 80.4,..., 268 ms) was
used for T2 relaxometry as it does not suffer from the bright fat ap-
pearance from spin coupling while the former sequence (25 TEs: 13.4,
26.8,..,80.4,..335) was used for subtraction of images between the two
relaxometry sequences at identical echo times. Fourteen axial slices of
5mm slice thickness and 5mm interslice distance were obtained. A
rectangular field of view (280 x 210mm) with a rectangular re-
construction matrix (256 x 192 pixels) was utilized. The final 3D spa-
tial resolution was therefore: 1.1 x 1.1 x 8 mm®, The MESE sequence
was based on a 2D multiecho CPMG spin echo sequence with alter-
nating 180 degrees RF pulses under the phase-alternating-phase-shift
(PHAPS) scheme [17]. A selective refocusing RF pulse scheme was
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Table 1
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T2, T2, Spin coupling percentage (SC) and Spin Coupling ratio (SCr) for 5 lipomas, 1 hibernoma (not included in further statistics), 4 well differentiated liposarcomas
(wdls), 3 myxoid liposarcomas (mls), 2 pleomorphic liposarcomas and 4 poorly differentiated liposarcomas (pdls). Subscripts 1 and sf declare lesion and subcutaneous
fat respectively. SCr is the ratio of spin coupling loss of the lesion over the same value of uninvolved healthy fat of the same acquisition. SD = Standard Deviation.

T21 (ms) T2sf (ms) T2'1 (ms) T2"sf (ms) SCl (%) SCsf (%) scrl

lipoma 1 104,9 102,8 31,4 29,8 39,9 40,4 0,99

lipoma 2 100,4 100,9 29,2 28,0 41,3 42,0 0,98

lipoma 3 103,6 96,9 30,8 30,6 37,8 36,9 1,02

lipoma 4 102,3 99,6 28,6 29,5 38,7 36,2 1,07

lipoma 5 103,5 98,0 30,4 30,6 40,1 39,8 1,01

Mean 102,9 99,6 30,1 29,7 39,6 39,1 1,01

SD 1,5 2,1 1,0 1,0 1,2 2,2 0,03

hibernoma 196,7 96,5 103.7 29,2 -0,4 35,2 —0,01

wdls 1 103,4 99,7 44,6 29,8 36,7 39,8 0,92

wdls 2 102,5 98,7 28,8 28,5 37,1 39,7 0,93

wdls 3 101,5 98,2 31,7 29,3 49,0 51,8 0,95

wdls 4 105,5 102,0 57,3 28,4 31,9 40,3 0,79

Mean 103,2 99,7 40,6 29,0 38,7 42,9 0,90

SD 1,7 1,5 11,3 0,6 6,3 5,1 0,1

mls 1 572,0 99,5 287,0 32,0 0,2 40,5 0,00

mls 2 535,1 99,4 370,7 29,6 0,1 36,9 0,00

mls 3 383,8 100,5 282,4 28,8 7,3 41,7 0,18

Mean 497,0 99,8 313,4 30,1 2,5 39,7 0,06

SD 99,7 0,6 49,7 1,7 4,1 2,5 0,1

pls1 144,6 100,2 78,6 28,5 6,1 34,9 0,17

pls 2 135,4 104,7 90,1 29,0 0,0 34,1 0,00

Mean 140,0 102,5 84,4 28,8 3,1 34,5 0,09

SD 6,5 3,2 8,1 0,4 4,3 0,6 0,1

pdls 1 145,4 100,7 69,3 27,1 -20,1 32,1 -0,62

pdls 2 169,3 94,9 129,5 29,5 -6,2 41,4 -0,15

pdls 3 144,3 100,5 84,4 28,8 -12,6 45 -0,28

pdls 4 131,9 99,7 59,4 30,2 -7,1 41,8 -0,17

Mean 147,7 98,9 85,6 28,9 -11,5 40,1 -0,3

SD 15,6 2,7 31,0 1,3 6,4 5,6 0,2
Table 2 examined biomarker was descriptively summarized and presented as
Classification performance for T2, T2", SC and SCr between lipomatous tumors. mean *+ standard deviation (SD). Pairwise comparisons were assessed
p-value is marked by ™7, “*”, “"”, and “ns” for values between [0.01-0.05), quantitatively using Student’s T-test. Boxplots depicting the different
[0.001-0.01), [0-0.001) and [0.05-1] respectively. subject groups were displayed. For all tests, a p-value of less than 0.05

Lo lipoma wdls mls pls SC lipoma wdls mls pls was considered to indicate statistical significance.

wdls ns wdls ns

mls mls _ _ . . _

2.3. Patient population — histological correlation

pls ns ns pls ns

pdls ns ns - ns pdls ’ : ns

_ scr Twenty patients with lipomatous tumors underwent MRI from July

wdls s wdls  ns 2017 to May 2018 prior to the planned surgical excision. One patient

mls mls was excluded because of compromised cooperation resulting in severe

pls ns ns pls ns motion artifacts. All patients signed an informed consent for the use of

pdls ns ns ns pdls )

utilized. Additionally, a multi echo T2" MEGRE with 4 in phase echoes
(4.77, 9.59, 14.41, 19.23) and 4 out of phase echoes (2.38, 7.18, 12,
16.82) was used for the calculation of T2" maps.

2.2. Data post processing

Pixel based parametric T2/T2" maps were produced after mono-
exponential fitting of the multi echo MESE/MEGRE data from in-house
built software platform [18]. Mean T2/T2" was calculated for each
Region of Interest (ROI) which was delineated by an expert radiologist
within the tumor central slice at a homogeneous region, excluding
necrosis and hemorrhage. In the case of dedifferentiated liposarcoma,
ROI delineation was performed after the pathologist suggested areas of
poor differentiation. Image based calculations (subtraction and division
of T2MESE images to calculate relative signal loss at identical TE) were
performed with Mango software (Mango Software, Research Imaging
Institute, UTHSCSA). Statistical analysis was performed using R. Each
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clinical and imaging data for research purposes. Surgeon marked the
specimen with sutures in predefined points in order to enable the actual
three-dimensional orientation of the specimen in relation with the pa-
tient’s body and to warrant the implementation of sections of the tumor
in its true axial plane. The intact surgical specimen was transported
promptly to the pathology department, were it was delivered to and
handled by a trained pathologist who performed the gross examination,
photographed and marked the specimen with permanent ink according
to the surgical markings and margins. Furthermore, after identifying
the upper and lower margins of the tumor, in the superior-inferior di-
rection, parallel sections perpendicular to the axial plane of 1cm
thickness were taken. The central slice of the tumor, corresponding to
the lesion’s central imaging slice, was selected after measuring the
distances from the upper and lower margins, was divided in orthogonal
slabs (in a grid-manner), and placed into plastic cassettes (Fig. 1).
Tumor tissue sections were processed according to CAP guidelines and
recommendations for specimen handling [19]. In brief after 48h’
fixation into 10% neutral buffered formalin, sections were embedded
into paraffin, dehydrated through a series of graded ethanol baths, in-
filtrated with wax and then embedded into wax blocks. 4 um thick
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Fig. 3. Box plot graphically representing mean value and standard deviation for
each category based on SCr. for all lipomatous tumor types. p-value is marked
by «, « «™» and “ns” for values between [0.01-0.05), [0.001-0.01),
[0-0.001) and [0.05-1] respectively.

1.2
* 105 [
11
19 102 ‘
99
0.8 ‘

SCr (lipoma) SCr (wdls) T2(lIiwdls) T2 (sf)

Fig. 4. Classification problem simplified to two categories. Left: Significant
difference is found between lipoma and well differentiated liposarcoma based
on SCr. Right: Lipoma or well differentiated liposarcoma have significant dif-
ferences in measured T2 value from uninvolved subcutaneous fat (sf).

sections of each tumor slab were cut, placed into glass slides, stained
with H/E and examined microscopically (Nikon Eclipse E-200) in order
to characterize each area of the central tumor slice in terms of differ-
entiation, cell type, cellular atypia, cellularity, mitotic activity,

80

Physica Medica 60 (2019) 76-82

vascularity and presence of necrosis.

The histopathologic topographic characterization guided the ima-
ging post-processing stage so as to recognize the histologically desig-
nated “benign”, “necrotic”, malignant areas and also to conclude on
differentiation grade on a very locally restricted area which could be
used for ROI measurements. The corresponding site was located on the
central imaging slice as distance from the center and angle in a virtual
axially located 360 degree cycle.

A case of hibernoma was included in the patient cohort because of
its interest but was not included in the statistical analysis as it cannot
constitute a category by itself. Data from patients diagnosed with
dedifferentiated liposarcoma were assigned as either well or poorly
differentiated tissue according to the result of histological examination
for the selected slice.

The relative signal loss percentage of the fatty tissue between two
T2 acquisitions of different echo spacing, 13.4 ms and 26.8 ms respec-
tively was calculated (Spin Coupling, SC) for all image pixels (Eq. (1)).

T2, — T2,
T2,

SC =
@

SC value calculated for the tumor ROI was then divided by SC value
calculated for subcutaneous fat ROI of the same patient from the same
acquisition in order to produce a patient specific metric, Spin Coupling
ratio, (SCr) (Eq. (2)).

SC,
SCratio = ——fumor
SCar @
3. Results

Resulting pixel based parametric maps of SCr are shown on Fig. 2,
complemented by original bright and dark fat T2w images, ROI based
mean apparent T2, mean apparent mean T2" were calculated for the
lesion as well as for uninvolved fat adjacent to the tumor volume to be
used as reference for protocol robustness (Table 1). Subcutaneous fat
sustains a relatively constant value for mean apparent T2/T2" within
the patient population, unlike fat containing tumors that exhibit an
extensive range of values. Similarly SCr remains relatively constant for
healthy fat among all patients while there is a significant range of
measured values between different types of fat containing neoplasms.

Statistical analysis (pairwise t-test with Bonferroni correction) was
performed to find significant differences in mean apparent T2, mean
apparent T2" and SCr between five distinct categories, i.e lipoma, well
differentiated liposarcoma, myxoid liposarcoma, pleomorphic lipo-
sarcomas and poorly differentiated liposarcoma. Difference was con-
sidered significant for p less than 0.05, and is marked by * for p between
[0.01-0.05), ™ for p [0.001-0.01) and lastly marked with **" for p
between [0-0.001) as shown in Table 2. Non-significant differences are
noted as ns. Fig. 3 graphically represents SCr results, as this was proved
(from results shown on Table 2) the metric with the higher dis-
criminative power among all three.

It is of note that only SCratio succeeded in classification between
pleomorphic liposarcoma and poorly differentiated part of dediffer-
entiated liposarcoma, both of which are graded as highly malignant
(histologic specific grade: 3) and have similar imaging characteristics.

No metric could find significant differences between lipoma and
well differentiated liposarcoma in the 5-class problem. However, when
performing a 2-class classification between the two classes of low ma-
lignancy and very similar imaging characteristics, SCr shows significant
differences between lipoma and well differentiated liposarcoma while
all the other metrics fail (Fig. 4 left).

Furthermore a pairwise t-test was performed between an “extended”
class including two entities (lipoma and well differentiated lipo-
sarcoma) tested versus healthy subcutaneous fat visible in the same
acquisition based on T2 relaxation constant. Significant differences are
found between tumors and normal appearing adjacent fatty tissue
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(Fig. 4 right).
4. Discussion

Fat quantification and fat content determination has been a long
standing target of quantitative MRI. To our knowledge, the first use of
spin coupling as contrast for clinical imaging was published in 1993
[20].

Currently, the most widely used NMR based method for the study of
tissue structure is in vivo MR spectroscopy. It offers direct recognition
of each spectral peak and its relative amplitude for a given sample, but
it is has many inherent constraints that prevent extensive use in a
routine basis. It requires special software and post processing, human
expertise, adequate sample homogeneity and main field homogeneity.
Ex-vivo 13C MRS has been used by S. Singer et al to differentiate be-
tween fat-containing tumors based on tissue biochemistry [21]. The
major findings of this study were significant differences in the fatty acyl
chain content (ratio between lipomas: wdls: pls or dediff. liposarcomas
is 1 : 3 : 0.01) probably attributed to the increase of the poly-un-
saturation degree of high grade sarcomas as compared to intermediate
or low grade. The latter suggests an increase in the number of double
bonds present in the fatty acyl chain which affects the motion and order
of the acyl chain and in turn affects membrane proteins. This can be an
important factor determining the invasive and metastatic capacity of
the high grade liposarcoma cell types. Moreover they remarked the
presence of free fatty acids and phospholipids in dedifferentiated/
pleomorphic sarcomas which were not detectable in normal fat, lipoma
or well differentiated liposarcoma.

The proposed method based on spin coupling ratio does not rely on
direct detection of tissue composition but taking into account the bio-
chemical differences observed in the spectrum, changes in lipid specific
imaging contrast are expected. Differences in the measured SCr show
variable degree of dependence on refocusing pulse spacing and may be
indicative of differences in the fat content of adipocytic neoplasms.
Subcutaneous fat exhibits a very narrow and specific range of all T2 and
Spin Coupling related metrics instead in the resulting changes of signal
produced. SCr calculation does not require special hardware or soft-
ware nor post processing expertise. It requires minimal acquisition time
and has excellent spatial resolution, exploiting rather than being wea-
kened by tissue heterogeneity as in the case of MR spectroscopy.

Results of the present study show that T2 relaxometry in conjunc-
tion with spin coupling ratio can achieve differentiation between any
pair of the five different adipocytic moieties. As seen in Fig. 3 SCr de-
creases with increased differentiation grade. Well differentiated lipo-
sarcomas lose a significant percentage (38.9%) of their signal due to
spin coupling at TE = 80 ms which is comparable to normal fat signal
loss (42.9%), myxoid have almost identical signal intensity between the
two acquisitions-probably because of the dominant long T2 component-
and, at the other end, pleomorphic and poorly differentiated tumors
have even lower SCr. In fact, the latter group exhibits negative values
which was unexpected as zero loss was considered to be the lower limit
by theory. However this finding was consistent among all examined
patients and requires more detailed study in a molecular and chemical
level.

In FSE each echo has a distinct phase encoding in order to represent
a different line of k-space within a given TR interval. The effect of spin
coupling in signal modulation cannot be decomposed and measured
separately to other concurrent spin dephasing phenomena during ac-
quisition, such as magnetization exchange effects, stimulated echoes or
diffusion of water molecules through a local field inhomogeneities [22].
However, the process of subtraction of images with identical para-
meters apart from ESP accentuates contrast mechanisms affected sig-
nificantly by pulse spacing. For this reason, we believe that, if not un-
iquely, the observed differences can be attributed mainly to spin
coupling.

A definite constrain of our study is the number of patients that
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participated in the study but these preliminary results show that SCr
can be introduced into the clinical routine and to build a larger data-
base for use in the future. However it is promising that structures of
similar origin but different molecular inner structure or composition
have a different imaging identity and the proposed biomarker of spin
coupling ratio highlights the imaging spectrum of fat that remains
otherwise unperceivable.

In conclusion, the novel biomarker SCr can be introduced as a
quantitative adjunct for radiological assessment of lipomatous tissue
type and grade with minimal software and time prerequisites. Clinical
implications of this MRI technique may be biopsy guidance in hetero-
genous lipomatous tumors to assure for harvesting tissue with the
highest malignancy grade and non-invasive preoperative diagnosis of
tumor type and grade, which is essential for adequate treatment plan-
ning.
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