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0.1 IlepirAndm

To nopdv xelyevo amotehel Ty Bimhwyotiny cpyasia Tou
Ioxévvn Hatpopudvn yio To yetomtuylond npdyeopua IIin-
pogopxic. Xty epyooia auty Blepeuvdtal ,TOCO YENOLLO-
TOLWVTAG UTOAOYLOTIXEC UEPodol xou pedodoug unyavixic
uddnong 660 %o TEOCOUOLWCEWY, TO PUVOUEVO TOU Op-
YAVWPEVOU ATOLXLOMOD, YVWOTH we, “Aeltepn @dorn tou
EXnvio0 amouaouol”.

0.2 Summary

In this document lies the thesis of loannis Patramanis
for the Bioinformatics Master program. In this work we
used both computational methods and machine learn-
ing along with simulations in order to explore the phe-
nomenon of the organised colonization known as “the
second phase of Greek Colonization”.
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Chapter 1
Introduction

In this document you will find a detailed description
of my Master Thesis. This thesis was conducted un-
der both Dimitris Kafetzopoulos, head of the Ancient
DNA Lab of IMBB, FORTH and Pavlos Pavlidis, head
of Evolab of ICS, FORTH. This work is inseparably con-
nected to the ” Apoikia” project of the aDNA lab. All ac-
tions taken have been with this project in mind. Having
said that, the pipeline created here is of an exploratory
manner and can be redesigned to answer a number of
different questions. All code written during my master
and this thesis can be found here and is free to use as it
is, or as a template for your work.

Our overall aim is to create a pipeline for demographic
inference from genome-wide shotgun sequencing data
and to assess the predictability of certain demographic
models. Our initial aim is to simulate genotypes un-
der certain models, in an attempt to mimic a specific
historical event. This event can include migrations and
admixture between populations, lineage splits, popula-
tion bottlenecks or exponential growths of population
size. We then test our ability to predict the parameters
of these simulations as well as to distinguishing between
different models that produce similar results, using com-
putational and machine learning methods.

The particular scenario in question is the creation of
the ancient Corinthian colony of Ambracia. For reasons
that will be discussed latter down the line, this scenario
offers a unique opportunity to stress test some existing
methods for demographic inference that are not so fre-
quently used in human population genetics as well as
some novel modification to them. Should our method
provide descent results, it will pave the way for the use
of these approaches in actual data.

Because of the multidisciplinary theme of this work,
we will first have to explain some basic concepts from
each field, so that no matter the background, anyone
can understand the aim and purpose of this thesis: We
will begin with an introduction to the filed of population
genetics, focusing on human population studies. Fol-
lowing that is a brief overview of the data, tools and
methods used in these fields, paying special attention
to machine learning and one particular class of compu-
tational methods, center piece of this thesis: the Ap-
proximate Bayesian Computations. Finally there will
be a summary of the historical and archaeological back-
ground regarding Ambracia and the Apoikia project be-
fore moving on to the main thesis.

Figure 1.1: "The Greek Colony, Marseille ” oil painting
by Pierre Puvis de Chavannes


https://github.com/johnpatramanis/Ambracia_Reworked

1.1 A hundred-plus years of Pop-
ulation Genetics

1.1.1 Birth and early stages

Population genetics is a sub field of evolutionary biology,
studying the genetic diversity and structure within and
between populations and the processes governing them.
[37, 38] After the publication of the Hardy—Weinberg
principle in 1908, which can be regarded as the ”year
of birth” of this discipline, the seminal work performed
by Ronald A. Fisher[28], John B. S. Haldane [13], Se-
wall G. Wright [75, 85] as well as and the important
articles by Richard C. Lewontin [55] firmly established
population genetics as an integral part of theoretical and
evolutionary biology [33]. These founding personalities
irreversibly rooted the field in mathematics and statis-
tics, where its core still lies.

Figure 1.2: From left to right: Sewall G. Wright, John
B. S. Haldane, Ronald A. Fisher

1.1.2 Selection vs Neutrality

In 1964 Motoo Kimura and James Crow suggested that
most evolutionary changes at the molecular level, and
most of the variation within and between species, are
due to random genetic drift of mutant alleles that are
selectively neutral [36]. This theory that was also sug-
gested ,independently ,by two American biologists Jack
Lester King and Thomas Hughes Jukes [44] and that
would later be described in detail by Kimura in his
1983 monograph titled ” The Neutral Theory of Molecu-
lar Evolution” [48] reignited an already existing debate
of neutralist - selectionist (random genetic drift versus
selection in evolution had also been vigorously debated
in the 1940s) [9] and changed biology forever since. To-
day when searching to identify selection on a given locus
,one uses the neutral theory as a null hypothesis.

1.1.3 The Coalescent theory

Coalescent theory, a natural extension of the neutral the-
ory was developed by multiple teams in the 1980’s [62].
Coalescent is a model of how gene variants sampled from
a population may have originated from a common an-
cestor. Given a set of parameters that effect it, two
genes have a certain chance in each generation to coa-
lesce into a common ancestral gene. In the simplest case,
coalescent theory assumes no recombination, no natural
selection, and no gene flow , no overlapping generations
or population structure but has since been developed to
include almost any scenario possible.

a) Geneaology of a
population

b) Geneaology of a sample
of genes of the population

c) Genealogy of the
sample of genes

: MRCA

¢ “\_ Coalescent
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Figure 1.3: Visualisation of an example of coalescent
theory. Three samples are selected from a population
with a constant effective population size of 10, their
Most Recent Common Ancestor lies 6 generations in the
past.

1.1.4 The history and geography of hu-
man genes

When talking specifically about human population ge-
netics it is impossible not to mention Luigi Luca Cavalli-
Sforza. Even from the 1960’s he pioneered statistical
methods for estimating tree topologies [7] and wrote
his concerns about representing human populations with
such tree like structures, which he though inefficient
when migration and admixture were heavily involved, as
in the case of our species. He and his colleges where the
first to apply Principal Component Analysis on genetic
data [15] a method that is considered the baseline of a
genetic analysis today. In the 1990’s and early 2000’s he
among others pushed for the creation of database cap-
turing the genetic diversity among humans, named the
Human Genome Diversity Project [16], a database that



is still utilised today in many population genetics pub-
lications. He was one of earliest people to work with
molecular data in a an anthropological framework, in
conjunction with historical and linguistics data and by
doing so, opened the way for the study of human history
through the study of loci.

1.2 Population Data

1.2.1 Human Genetic Variation

All humans differ genetically. It has been shown that
even in mono-zygotic twins, differences can be identified
in their Copy Number Variation (CNV) Profiles [86].
Most of the genetic variation between humans are single
base alterations. The 1000 genomes project sequenced
and analyzed around 2500 individual whole genomes,
from different populations around the world, and dis-
covered that SNPs account for about 95 percent of the
genetic variation and insertions and deletions around 4
percent. The remaining 1 percent can be attributed to
what is regarded as ’structural differences’ [31].

Single Nucleotide Polymorphisms (SNPs) are there-
fore the most reliable way to infer genetic affinity be-
tween two individuals, as they are present in every hu-
man, are inheritable and accumulate at a predictable
rate in a population. In 2018 the dbSNP database an-
nounced moving from build 150 to 151 and from 324 to
660 million recorded SNPs, more than double. Build
150, in 2017 also contained almost double the number of
SNPs from its previous version. Besides their applica-
tions in forensics [21] , genome wide associations studies
[27], pharmacogenetics [37] and personalized medicine
([30], SNPs are the primary data for population genet-
ics studies.

Both the existence or not of a SNP in a population, as
well as its frequency in a population are valuable sources
of information for the genetic history of that population.
Two populations with a very recent common genetic ori-
gin will probably have very similar frequencies for most
SNPs. Populations that are products of admixture tend
to have SNP frequencies similar to their ancestral popu-
lations. Other parameters however, such as the effective
population size and isolation, can also play a pivotal
role on the genetic composition of a population. By an-
alyzing thousands or even millions of SNPs at the same
time, from different populations, it is possible to infer
migration patterns and other past demographic events.

When using SNP data however it is of great impor-
tance to know the location and nature of the SNPs used

in an analysis. A integral part of modern evolutionary
biology is locating segments of DNA where selection,
positive or negative, has taken place. When studying the
genetic history of populations however one should avoid
these loci and focus on neutral ones, as they can better
represent a population’s history. Genetically linked loci
are also usually omitted in preference to ones that are
independent of each other, as they can skewer some of
the analyses. Finally it is important to distinguish auto-
somal SNPs from the ones present on the Y chromosome
and the mitochondrion. The later ones, because of their
unique nature regarding inheritance, recombination and
mutation rate both require distinct handling when being
analysed but also offer a different view on a population’s
history [19].

Figure 1.4: On average, genetic similarity between any
two humans is 99.9 percent.There is about 2-3 times
more genetic diversity within the wild chimpanzee pop-
ulation than in the entire human gene pool.



1.3 Modern Population Genetics

1.3.1 From Population Genetics to Pop-
ulation Genomics

In the last 10 years we have seen a dramatic decrease
in the cost of sequencing and a parallel increase in the
number of available genomes [64]. Even before the offi-
cial completion of the 1000 genomes project [20], studies
on worldwide human populations were being conducted
using genome-wide data [56, 11]. These works led the
transition of the field from population 'genetics’ to pop-
ulation ’genomics’: hundreds of samples and thousands
of loci are now the new standard. Thanks to the de-
crease of the costs that we mentioned however, even a
small to medium sized laboratory has the capability to
acquire genome-wide data for multiple samples.

1.3.2 SNP Arrays - Next Generation Se-
quencing

In the current day and age there are two main sources
of SNP data being used by teams around the world for
studying populations. Even with the overall decrease in
the use of micro arrays in biology, SNP-panel micro ar-
rays are still very popular in the field [78, 26, 74]. These
are usually designed by companies using the preexisting
knowledge of population diversity, contain thousands-
even millions of SNPs at a relative low price per sam-
ple and are able to capture rough differences between
contemporary groups of people. Just like in any other
field of biology however, Next Generation Sequencing is
quickly rising in usage. In population genetics the ad-
vantages are clear: more SNPs which offer a deeper and
truer view on the structure and history of a group, as
well as new, undetected SNPs which can lead to all sorts
of discoveries[3]. This of course comes at a higher price
per sample and many laboratories have to choose be-
tween higher sample size or higher depth for their sam-
ples.

1.3.3 Data Collection from temporary
populations

One final note on modern population genetics, is on the
changes in the sampling process. As data sets are get-
ting larger, who gets to be sequenced is becoming a more
meticulous selection process. Most studies today apply
strict criteria when obtaining samples to represent a cer-
tain population: The individuals are usually required to

Cost to sequence a human genome (USD)
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Figure 1.5: Cost of whole genome sequencing through
the past years

have their grandparents all born in the same region of
interests, to not have a known relation with any of the
other samples of the study, be genetically healthy as well
as any other cultural criterion the study demands (e.g.
speaking a certain language).

1.4 Ancient Population Genetics
- Archaic Humans

1.4.1 Ancient DNA

Ancient DNA refers to the DNA obtained from left over
materials of organisms that lived hundreds or even thou-
sands of years ago. These materials include bones, teeth,
hair, feces as well a non-organic material that have into
contact with an organism. The first attempts to ex-
tract and analyse aDNA were performed before the PCR
era. In in 1984, [39] managed to recover DNA using
bacterial cloning from dried muscle of quagga, an ex-
tinct subspecies of plains zebra (Equus quagga). How-
ever, due to extremely poor DNA preservation, analyses
of aDNA were limited until an effective technology for
DNA amplification, like PCR made very small amounts
of DNA accessible for study [12]. High-throughput se-
quencing has however allowed the sequencing of larger
ancient DNA fragments from across the entire length
of a genome, not only increasing the available mate-
rial to work with, but allowing a two-fold approach to
authentication through analysis of postmortem damage
and detection of secondary contaminating individuals



[77]. Some of the greatest achievements of the field in-
clude: the capturing of prior human genetic diversity,
including their microbiome and their pathogens, [54],
sequenceing extinct organisms [34] , including ancient
homini and revealing secrets about our own evolution as
a species[31, 60, 73].

1.4.2 Archeogenomics

The word archeogenomics is a combination of the words
archeo meaning ancient and genomics the field studying
genomes. It is commonly used to describe the emerg-
ing field of studying ancient genomes. Today hundreds
of ancient human genomes from multiple locations and
time points have been sequenced and analysed. By se-
quencing DNA from human remains such as bones and
teeth we are able to reconstruct the populations of the
past and infer our history, assisted always by other fields,
such as history, anthropology, archaeology and linguis-
tics. Recently using ancient DNA we have been able
to reconstruct the genetic history of Europe by iden-
tifying 3 very diverse ancestral populations of modern

Europeans[51], discovered unknown migrations to the
Pacific Islands [71] and recorded the peopling of the
Americas [63].
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1.4.3 Capturing ancient polymorphism

In addition to brute force shotgun sequencing, new
methods of capturing ancient genomic diversity in hu-
mans have been made popular. Targeted enrichment
of the regions required to address a particular biological
question is a method commonly used, which ranges from
a limited number of loci, to several millions genome-
wide markers [32, 29] and even the entire genomes [14].
When describing a new population, a common method
is to enrich for several hundreds of thousands of loci
that are known to diverge in frequencies between popu-
lations. The logic is similar to one we described above
for modern genomes: either a more expensive and rather
stochastic approach, but with the potential for discovery,
using shotgun sequencing or a cheaper, guided and more
conserved approach using enrichment of known polymor-
phic sites. One major drawback of ancient population
genetics is however the lack of confidence, corresponding
to the low quality of data. Most methods can overcome
missing or erroneous data often by increasing the quan-
tity of SNPs. However some of the most modern tools
that require phased, "haplotypic’ data [23] are used very
infrequently [59] as the quality of aDNA is considered
too low for these kinds of analyses.



1.5 Tools and Metrics in Popula-
tion Genetics data

In order to understand and visualize the differences and
similarities between different population groups, a num-
ber of methods have been developed over the years.
These range from simple distance metrics to complex
haplotipic algorithms. As we have mentioned, most data
on populations is comprised of Single Nucleotide Poly-
morphisms, thus the majority of tools and metrics of the
field are centered around the analysis of SNPs.

1.5.1 Fst Distances and Visualization

One of the oldest metrics to infer genetic relations be-
tween populations are the Fixation Indices also known
as F-statist[? ]. Among these statistics Fst is the most
commonly used. Fst, also known as Population Inbreed-
ing Coeflicient was developed as a metric to infer popu-
lation substructure by measuring the distance between
two subgroups within the original population. It is a
fairly simple metric that measures population differen-
tiation due to genetic structure and thus is commonly
used to calculate how similar two populations are: the
lower the Fst between them, the more closely related
they are. The formula of Fst for 2 populations is given
bellow.

mbhetween — Twithin

F'st
whetween

Where pi is the average number of pairwise differences
between two individuals.

Very similar to the Fst are: Fis, which calculates the
inbreeding coefficient for an individual and Fit which
calculates an individuals inbreeding coefficient relative
to the population.

1.5.2 Inbreeding Estimation

One of the most interesting measurements for a popu-
lations is its inbreeding levels. These can be calculated
by a number of different metrics such as the Fst be-
tween random sub-sampled populations within the orig-
inal, by measuring the Runs of Homozygosity per indi-
vidual(total length of homozygous tracks on the genome)
or by the number of Identical by Descent haplotype seg-
ments shared with other individuals. In the past few
years, many studies have been made on these measure-
ments as well as other signatures of inbreeding [17, 69, 4]
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1.5.3 Haplotype Sharing Methods

When using the term ”haplotype” in human population
genetics one can be referencing one of two things: ei-
ther the non-recombining and non-Mendelian inherited
segments of DNA such as mitochondrial DNA and the
Y chromosome or a group of mutations that because of
their close genetic distance are inherited together. When
inspecting two closely related individuals one can find
many haplotypes of the second type that are identical
in their polymorphic pattern. These are what we call
Identical by Descent segments (IBDs). These segments
help us identify admixture events that happened close to
the present (in evolutionary scale) and their information
doesn’t always agree with the whole genome frequencies
information. One example of this is in [26] where Crete
shows very low affinity to North East populations when
looking at allele frequency data and high affinity to them
when looking at IBD sharing data.

IBD segment

Figure 1.7: Visual representation of Identical by descent
segments

1.5.4 Principal Component Analysis

Principal Component Analysis in a procedure aiming to
transform a set of observed variables into another set
of uncorrelated variables called principal components.
Since the first component describes the maximum vari-
ance and each succeeding component a reduced amount
from its previous one, PCA is a simple and effective way
to perform dimensionality reduction. By plotting the



initial components one can describe the overall struc-
ture of the data. Originally invented by Karl Pearson in
1901 [68], it has become extremely popular in the recent
years for data exploration. As we mentioned before, it
was first utilised by Cavalli-Sforza and Edwards [? | by
using each population as a sample and their frequencies
for certain SNPs as features. In modern analyses indi-
viduals and not populations are being used as samples
and the presence or not of the alternative SNP (het-
erozygous or homozygous) as features.

1.5.5 F-statistics

The term F-statistics can be used for two different but
related groups of measurements. The traditional F-
statistics which are based on the Fixation Index we de-
scribed before and the more recent ones, also known as
F-statistics described first in [? ]. This second batch
of F-statistics are related to the first one, but attempt
to measure scenarios of admixture as well as relations
between groups of individuals. One of the most com-
monly used of these statistics is "F3” which, using 3
groups and their allele frequencies, models one of the
three as an admixture of the other 2. F3 uses an "F2”
measurement which is very similar to the Fst. The for-
mula for both F2 and F3 are given bellow. In order
to test whether population three is a product of admix-
ture between population one and population two, first
we measure the F2 values between all pairs.

mwithinpl 4+ Twithinp2

F2(pl,p2) = wbetween — 5

Where pi is the average number of pairwise differences
between two individuals and pl is short for population
one. Now using these F2 values we can calculate the F3
for test population three using population one and two
as ”"parental” populations.

F2(p3,p2) + F2(p3,pl) — F2(pl, p2)
2

F3(pl,p2,p3) =

When F3 is a negative value there is evidence of ad-
mixture since, population three has a close relation to
both population one and tw (low F2 values) and pop-
ulation one and two have a distant relation (high F2
between them).

In addition to F3, F4 as well as a D-statistic belong to
the same group of metrics and are commonly used. How-
ever these require 4 populations to be utilised. These F
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statistics are very common in ancient DNA where hap-
lotipic data is very rare and genotypes are commonly
missing, since they can be used with frequency data
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Figure 1.8: Example of the use of F3 from [52]. Here
pairs of populations are used as models of parental popu-
lation for the Mycenaean samples with Neolithic Greece
and Srubnaya being the best fit.



1.6 Machine Learning and Com-
putational tools on Popula-
tion Genetics Data

Over the last decade Machine Learning (ML) has rev-
olutionized our world. Entire fields have reinvented
themselves from its use such as speech recognition, nat-
ural language processing, image recognition and bio-
informatics [13, 58, 6]. In populations genetics however
the field has lagged behind sticking mostly to traditional
computational methods and only somewhat ML meth-
ods such as the PCA. Only recently have groups of the
field experimented with these new set of tools: visual-
ization using tSNE [50] on genome wide data [57], clas-
sification algorithms for natural selection [67] and even
uMAP [53] on medieval ancient DNA genomes [59].

The basic concept of machine learning is to use a train-
ing data set to ”learn” and a test data set to make pre-
dictions on (Classification,Regression) or to be trans-
formed (PCAtSNE,uMAP for visualization).

Machine Learning is usually divided into three groups:
Supervised, Unsupervised and Semi-supervised learning.
An example of the first group is a typical classification
method, where two labeled classes of data are used for
learning, class A and class B and a new data is then to
be assigned to either one of the two classes.

An example of unsupervised learning would be a typ-
ical PCA where the data are inserted label-less and la-
beled afterwards when plotting. The algorithm has no
knowledge to which class each sample belongs to when
it runs, the only knowledge comes the data itself.

A third group, semi-supervised also known as rein-
forcement learning is comprised of methods where both
labeled and unlabeled data are used in the training. One
of most basic concept of reinforcement learning is that
of trial and error as well as that of the reward. The al-
gorithm attempts to map its way around the most ideal
path using these two concepts.

1.6.1 A Note on ML tools

There are various machine learning algorithms available
right now and each passing year a couple of brand new
ones or some modified versions of an existing model are
released. These range from basic decision trees to multi-
layered artificial neural networks, which evolved to what
is now commonly known as deep learning. Depending on
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Figure 1.9: Visual overview of Machine Learning with
examples

what task should be accomplished, what type and what
amount of data is available a different ML method can
prove itself the best for the job. There is no objectively
best algorithm and when one is searching for the best
tool for a particular task they ought to try as many as
their time frame and workload allows.

Furthermore most ML tools run using some param-
eters. These parameter require what we call ”tuning”:
running the same algorithm with different parameters
and examining which combination outputs the best re-
sults.

Finally when talking about ML it is important for
someone to understand the concept of ”overfitting” and
"underfitting”. Lets say for example that we train an
ML algorithm on some of our data. Paying attention to
the notes above we chose the best software, model and
parameters for our data and achieve very low error rates
on our predictions. If we then use the same algorithm
on different data and get much higher error rates, then
what we have done is called overfitting: we have tailored
our algorithm for our particular data which however are
not the same with everyone’s else and thus our method
struggles with a different data set. The reverse problem
is called underfitting: creating a model that performs
the same for all data, but not in the optimal way.
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Figure 1.10: Example of what overfitting and underfit-
ting looks like

1.6.2 Classifiers to be used

As we mentioned earlier there are hundreds of available
ML models to use. For the purpose of this study we will
use two classes of them: the Random Forests Classifiers
and an SVM classifiers.

1.6.3 Random Forests

Random Forests (RF) are classifiers that work well for
classification problems as they are able to exploit both
high and low ‘informative’ features and deal with the
problem of overfitting. The original classification algo-
rithm which inspired RF was the Decision Trees method.
Based on the values each of the features may take, ‘de-
cision’ nodes are created resulting in a tree structure.
Upon reaching a leaf of this tree, a decision is achieved
for the label of the input data. The features with lower
entropy (the most informative) appear closer to the root
of the tree. However, a single tree might be heavily bi-
ased and as a result the algorithm may overfit. The
solution to the overfitting problem is RF, a classifier
that consists of several different decision trees whose out-
comes are combined, usually by averaging the results, to
predict the class of the input.

1.6.4 Support Vector Machines

SVM is a machine learning algorithm proposed by [22].
SVMs attempt to split the dataset into two classes via
using a hyperplane that separates those classes. The
goal is to find the ideal hyperplane which best separates
those classes. It uses specific data points of each class to
determine the position of the hyperplane. These points
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Figure 1.11: Example of Random Forests

are called the Support Vectors. The distance between
the hyperplane and the closest support vector from each
class is calculated as ’the margin’. SVMs attempt to
maximize this margin in order to maximize the probabil-
ity of correctly classifying new data. Due to the ability
of SVMs to reach higher dimensions, they do not suffer
from the ‘curse of dimensionality’, making them a suit-
able algorithm for classifying samples with a multitude
of features.

Introduction to SVM @
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| ] 1 * * |
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Figure 1.12: Example of a perfect SVM classification,
notice the points-samples delimiting the gap between the
classes - these are the support vectors

1.6.5 The Approximate Bayesian Com-
putation

In 1984 Diggle Gratton [24] distinguished two forms of
statistical models: those that are prescribed in terms of



known distributions, with known likelihood functions,
and those that are implicit, from which we can simulate
samples but do not have access to an explicit expression
for the likelihood. Approximate Bayesian Computation
is one of the most widely used method of the second
group.

The basic outline of what subsequently became known
as ABC (Approximate Bayesian Computation) was in-
troduced by Pritchard [72] for solving an application in
population genetics. Lets look at the following theoret-
ical example:

Given one sample of unknown Z parameters, we have
a number of observations. These observations can be
translated into a Y number of summary statistics. Now
we have a sample with Y dimensions, our Y summary
statistics.

In order to infer its parameters we simulate K sam-
ples using all combinations of the parameters for a given
range. Our aim is for the final data set of K simula-
tions to have each parameter represented by a uniform
distribution, this is known as the ”prior distribution”.
For each of our K simulations we translate its observa-
tions and again obtain Y summary statistics. Now we
can place all of our simulations and their corresponding
statistics into a matrix of K rows and Y columns. This
matrix is the most common input for ABC inference
software.

Lets say that we only have one parameter in question
to be inferred. For that parameter we can place our sim-
ulations in a Y41 dimensional space, where each simula-
tion would be represented by a dot in that space. There
are Y dimensions corresponding to our summary statis-
tics, plus one for the parameter in question. Remember
that each simulation was created using a value for that
parameter. In this space we can also place our sample
which fits into that space, except for one dimension: the
unknown parameter. At this step, it is a common tech-
nique in ABC to discard a large chunk of the simulations
that are regarded as too distant from the sample. This is
usually done using an euclidean distance measurement.
The percentage of the discarded simulations is referred
to as the ”tolerance” of the ABC model.

In our example we discard 80 percent of our simu-
lations and keep the 20 percent of the closest simula-
tions.We are thus in a Y41 dimensional space with K/5
dots (20 percent of the original K), the simulations that
are left. Now using a single simulation and its position
in the Y+1 dimensional space we can project our sample
in that space as well, where it ”should be” positioned,
using linear regression thus making a prediction for its
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unknown parameter. If we do this for each of our K/5
simulations we end up with K/5 predictions and we can
create a distribution of these predictions, which is known
as the ”posterior distribution”.

It is common that each of these predictions is also
scaled in ”importance” using its distance from the sam-
ple - the further away the simulation the less im-
portant its regarded. It is up to the user to chose
which metric of that posterior distribution of predic-
tions, mean/mode/median is our final prediction of the
unknown parameter. This is done for all of the param-
eters at the same time.

One of, if not the most important details about ABC
is the selection of the summary statistics to be used.
Theoretically any metric or measurement that is corre-
lated with population structure can be used a summary
statistic. In population genetics there are dozens of met-
rics that have been developed over the years. Obviously
the better a metric reflects a scenario, the more useful
it is to the ABC inference of that scenario. It is im-
portant to also note however that one should be careful
when adding summary statistics, as previous works have
shown that by increasing the number to high on can
cause statistical noise [15] as well as decreased accuracy
and stability to the ABC [30].

Finally some attention must be paid to the use of pa-
rameters that are not subject to inference and not ran-
domized, but are used in the simulations. These pa-
rameters will be referenced as ” Assumptions” for the
purpose of this work, since they will be assumed to be
known and of a certain value. These "known” param-
eters should be supported by previous experiments and
real world data [79], since it has been shown to interfere
with the conclusion [80].
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Chapter 2

Ambracia: a Corinthian Colony in
Epirus

Figure 2.1: Uncovered amphitheater of Ambracia,
modern day Arta, Greece
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2.1 Historical Background of the
models

As we have previously mentioned, our intent is to sim-
ulate a certain historical event, in order to weight the
difficulty of estimating some of the factors involved in
that scenario. Here we give a very brief overview on the
background of that historical event: the Colonization of
Epirus by the Corinthians and the creation of the city
of Ambracia. We will first mention a few key factors
that characterised the period that this event took place,
known as the second phase of Greek colonization. Then
we will take a look Epirus during that time and finally
focus on the city of Ambracia. In the last section of this
chapter we will briefly discuss the model that is based on
this historical event along with the expected difficulties
that come with studying it.

2.2 The second phase of ancient
Greek colonization

The historical event we will be attempting to simulate
belongs to a broader historical period, known as ’the
second phase of Greek colonization’. During this period
Greek city states organised the creation of new cities
far from the southern Greek mainland all around the
Mediterranean and the Black sea. These migrations
were unique and differed from the preceding first phase
of Greek colonization, which brought the Ioanians, Do-
rians and Aeolians on the shores of Aegean Islands and
Asia Minor, which happened more 'naturally’ due to
population movements and demographic pressures dur-
ing the Greek 'Dark Ages’. They also differed from the
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later settling of Greek speaking cities by Alexander the
Great during his campaign, as these were a product of
a monarchic kingdom while the colonies we are looking
into, are products of free societies. Ultimately the cre-
ation of these colonies is fundamentally connected to the
idea of the ’polis’ , the independent city state [32].

In politics and history, a colony is a territory under
the immediate political control of a state, distinct from
the home territory of the sovereign. For colonies in an-
tiquity, city-states would often found their own colonies.
Some colonies were historically countries, while others
were territories without definite statehood from their in-
ception. The 'Metropolitan state’ is the state that owns
the colony. In Ancient Greece, the city that founded a
colony was known as the 'metropolis’. ”Mother country”
is a reference to the metropolitan state from the point
of view of citizens who live in its colony, the ”apoikia”.

Some of the earliest examples of this type of colony
we will be looking into, can be found in southern Italy
by the middle 8th century b.c. in an area that what
would later be called Magna Grecia. This phenomenon
would dominate the Greek world for the next couple
of hundreds of years. By default these colonies would
be organised using the template of and the follow the
customs of their mother cities, their 'metropolis’. Pop-
ulated by citizens moving from their metropolis or from
other colonies, their citizens usually lost their political
rights in their place of origin and sometimes were re-
stricted from ever coming back [2]. The city state of
Corinth is a proud example of this process. During the
Archaic and Classical period Corinth had settled dozens
of colonies, creating a network of cities along the western
Balkan coast and southern Italy which fueled its trading
capabilities.

- Areas of Geek settlement
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Figure 2.2: The second phase of Greek colonization
saw the spread of Greek settlements around the
Mediterranean and the Black sea.



The process of the creating a colony itself, is not very
clear to us. Its location was usually chosen by a number
of factors such as geographical and geopolitical position
as well as available land and valuable resources. It was
believed that the colonising population was comprised
of males only who would subsequently mate with lo-
cal women, but today this is not considered the rule.
Women, as well as entire families have been recorded
to move to these colonies after the initial settlement.
The size of the colony varied and could potential super-
sede that of the metropolis reaching numbers as high as
50.000 people [19].

2.3 Epirus during the Geometric,
Archaic and Classical periods

Epirus has been occupied since at least Neolithic times
by seafarers along the coast and by hunters and shep-
herds in the interior. A number of Mycenaean remains
have been found in Epirus, especially at the most impor-
tant ancient religious sites in the region, the Necroman-
teion (Oracle of the Dead) on the Acheron river, and the
Oracle of Zeus at Dodona. [10, 1].

In the Middle Bronze Age, Epirus was inhabited by
the same nomadic Hellenic tribes that went on to settle
in the rest of Greece [1]. Aristotle considered the region
around Dodona to have been part of 'Hellas’ and the
region where the Hellenes originated [34].

Figure 2.3: Rough map of ancient Epirus during the 4th
century B.C.Depicted are its culture groups and impor-
tant cities, based on archaeological or historical record

The Dorians are thought to have invaded Greece from
Epirus and Macedonia at the end of the 2nd millennium
BC (circa 1100-1000 BC), though the reasons for their
migration are obscure. Epirus at that time is consid-
ered part of the Proto-Greek linguistic area during the
Late Neolithic period. By the early 1st millennium BC,
all fourteen "Epirote’ tribes including the Chaonians in
northwestern Epirus, the Molossians in the centre and
the Thesprotians in the south, were speakers of a strong
"North-west Greek dialect’. This dialect is closely related
to Doric proper, while sometimes there is no distinction
between Doric and the Northwest Greek. Whether it
is to be considered a part of the Doric Group or the
latter a part of it or the two considered subgroups of
West Greek, the dialects and their grouping remain the
same[25]. Unlike most other Greeks of this time, who
lived in or around city-states, the inhabitants of Epirus
lived in small villages and their way of life was foreign
to that of the poleis of southern Greece[34, 1].

During the 7th and 6th century colonies were set up
along the coastlines of Epirus by southern Greek states
such as Corinth and Elis [35]. Beginning in 370 BC, the
Molossian Aeacidae dynasty built a centralized state in
Epirus and began expanding their power at the expense
of rival tribes. In 295 BC and what is considered the
peak of that kingdom, Pyrrhus came to throne. He is
most famous for his costly wars against the Romans and
Carthaginians, two rising superpowers of the era, but
nonetheless brought great prosperity to Epirus, building
the great theater of Dodona and a new suburb at Am-
bracia, a now prominent city, which he made his capital.

Figure 2.4: Coins from ancient Epirus
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2.4 The case of Ambracia

Initially a local tribal Epirote settlement [33], later
turned into a trading station and finally to a fully fledged
city, ancient Ambracia was build on the banks of the
river Arahthos and its ruins lie right bellow the mod-
ern day city of Arta. According to historical records
it was founded by Gorgos, son of Cypselus, the tyrant
of Corinth. After the expulsion of Gorgo’s son, Perian-
der, the citizens set up a democracy stationed between
the local Epirote tribes of Athamanes, Kassopeans and
Molossians. As a colony of Corinth it remained loyal to
its mother city siding with her both in the Persian wars
in which it contributed, according to records, around 500
hoplites and the in the Peloponnesian war with around
3000[46].

Figure 2.5: Recovered Mosaic from Ambracia

A prominent and flourishing city, it was regarded as
a proud example of a democracy by Aristotle who in
his work ” Ambracian State” analyzes it’s robust gov-
ernment. Its later years saw it first, becoming a semi
independent city under Macedonian supervision during
Philip’s the second conquests and then being absorbed
into the Epirote state, even becoming its capital under
King Pyrrhus of Epirus. It was finally sacked by the
hands of the Roman general Marcus Fulvius Nobilior at
189 B.C. and later its population forced to flee to the
nearby city of Nicosia at 31 B.C.

The archaeological record shows a very organised city
with main avenues of around 15 meters and smaller one
of about 5, creating similar building blocks of around
20 houses. The houses are all equal, around the same
size of 15x15 meters. Only later, around the Hellenis-
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tic period do we start to see true economic disparity
with houses of expensive decorations showing up in the
record. Its 2 necropolises, outside of the city walls, con-
tributing around 300 human skeletal remains but also re-
ferring around 900 names written on tombs and columns
as well as. These names include both prominent citizens
such as generals and aristocrats but also cooks, artists
and craftsmen[5].

-

Figure 2.6: Example of recovered column with written
name, Ambracia

Figure 2.7: Sketch map of Ambracia, based on the ar-
chaeological findings. Depicted with light blue are the
two necropolises (lower left and lower right), a public
space (upper left), the walls of the city with a red line
and a central public building with a red dot.



2.5 Project: Apoikia

Apoikia is a broad project centered around the second
phase of Greek colonization which aims to explore that
process through multiple lenses. One of the most excit-
ing of those lenses is the archeogenomic one, with the
city of Ambracia being a prime subject for it.

As we have seen there is both historical, archeological
and even linguistic evidence that attempts to explain
the formation of the city. Still, neither of those can
truly reveal the genetic composition of its inhabitants.
Were they all citizens of its mother city, Corinth or were
they local people drawn in to the settlement. This wont
be an easy task as a) we are looking at events at a very
small time scale (about 800 years from the founding to
its destruction) b) at populations that were probably
related to each other.

Figure 2.8: View of Tomaros mountain from the theater
in Dodoni, Epirus
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On the other hand, the questions are many: Did the
Corinthians drive out the people living there or did they
incorporate them to their new society. What was the
size of that population relative to the metropolis or the
local one. What was the relation of the colony with its
metropolis, did they exchange people or did the colonists
distance themselves? How quickly was the colony in-
creasing in size?

Our aim is discover which of these questions could be
answered by sequencing the remains of individuals be-
longing to these three populations: The inhabitants of
Ambracia, the inhabitants of a local, indigenous settle-
ment as well as the inhabitants of Corinth.

For that purpose we will attempt to recreate the
founding of the colony, as well as an extended period
after that. This will be done by simulating three popu-
lations in time through a multitude of different scenarios.
We will then attempt to correctly identify the different
scenarios using only the genotypes produced by the sim-
ulations and metrics we can obtain from them, just as
if we had randomly sequenced individuals from those
populations.



Chapter 3

Materials and Methods

In this chapter we will discuss the processes and tools
by which we intend to achieve our task. Although both
ABC and ML methods have been used many times in
the past and also applied to genotype data, many steps
taken here were completely novel and experimental. Be-
cause of this, both a complete "rework” and smaller ad-
justments took place in the process whenever test results
implied that was required. We will begin by describing
the original design of the thesis step by step, as well as
the problems that arose, when they did in the timeline
of the thesis.

3.1 Overview

Our goal is to create a data set of simulations that in-
cludes and describes all the different possible interac-
tions between two population groups and a third one
being created by them and these interactions. We then
intend to translate each simulation to a set of metrics,
summary statistics that are also available to researchers
of aDNA. Finally we will conduct internal training on
the data sets either through ABC or ML models with
the aim of predicting the parameters from which those
simulations were generated by only using the summary
statistics. The success of this method implies that it is
possible for someone that uses these metrics on real se-
quencing data to infer the demographic parameters that
lead to those genotypes. The first major step of the
thesis was to construct the simulated data set as well as
translate them in a rigorous and effective way into useful
summary statistics.

In order to create and prepare the data to be used in
the ABC, a small pipeline was set up. This pipeline is
one of the centerpieces of this thesis, as it is the source
of the simulations attempting to reproduce the scenario
in question using all the different parameters, as well as
the source of the summary statistics. The pipeline is
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designed to run multiple times and cover a wide range
of values for each a parameter.

In each run of the pipeline, a set of values, each corre-
sponding to a parameter, is selected at random. What
these parameters are and how the effect the simulation
is discussed later in this chapter. These parameters are
stored and used by the simulator as a scenario from
which genotypes are outputted. These genotypes are
then funneled through our selected software to generate
summary statistics. The summary statistics are format-
ted and stored. Finally for each run the set of parame-
ters used to generate it and the summary statistics from
that data set are paired and stored into a new file. This

final file contains rows equal to the number of runs. Each
row represents a run of the simulations as a vector with
its first 14 dimension corresponding to the 14 parameters
used in the simulations and the rest of the dimensions
corresponding to the summary statistics generated by
the simulation’s genotypes.

In the next page you can find a visual representation of
the pipeline described above, in its original form. Modi-
fications where made during the thesis in order to handle
the problems encountered. Each part of the pipeline is
described in the following pages.
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3.2 Data preparation - Initial

Version

3.2.1 Simulations

In order to use ABC, a certain number of simulations
were required. For this task the Msprime python-3.7
module was chosen [47].

Msprime - A Coalescence Simulator

Msprime is a backwards coalescence simulator. In sim-
ple terms these kind of simulators use the mathematical
models of coalescent and re-create scenarios moving from
the ”present” backwards in time until all individuals of
the simulation converge into their Most Recent Com-
mon Ancestor. Coalescent simulations are pivotal for
understanding population evolutionary models and de-
mographic histories, as well as for developing novel ana-
lytical methods for genetic association studies for DNA
sequence data.

Coalescent simulators traditionally scale badly in
terms of sequence length, especially when combined with
recombination and large sample sizes, compared to Se-
quentially Markov coalescent (SMC) simulators. These
in turn however have disadvantages such as decreased
accuracy and the discarding of long range linkage infor-
mation [47].

Msprime stands as one of the newest coalescence sim-
ulators available. It is largely based on the ms software
build by [41] but offers improvements in many aspects.
It has been shown to perform similarly with Sequentially
Markov coalescent in smaller genome sizes, with a com-
parable scaling and apparently scales better with sample
sizes.

These numbers alone would make Msprime a sound
tool, however it’s interface is arguably it’s best feature.
It can be run natively in python3 and both its param-
eters and output be seamlessly weaved in one’s python
code. The user can set up the scenario using python
objects and also obtain any information required about
the simulation’s output by handling Msprime’s unique
python Classes. These include migration event’s, ances-
tral sampling, Newick trees, mutation information and
lists of ancestral individuals. Overall Msprime is highly
recommended as a tool for researchers with a modest un-
derstanding of python and coalescent as it is a powerful
and comprehensive, yet welcoming and easy to under-
stand tool with a smooth learning curve.
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Figure 3.2: Comparison of the average running time
over 100 replicates for various coalescent simulators with
varying sequence length and sample size.

Setting up a simulation

For someone interested in the actual code of a simu-
lated scenario the following link is provided, leading to a
python 3 script on Github where a simple 3 population
scenario is performed. Please notice the dependencies
required before running it on your machine.

The simulations completed for this thesis follow the
same procedure as the one in the link: First, an over-
all loop is created corresponding to the number of sim-
ulations desired. In our case we aim for around 300
thousand simulations. In each loop a new scenario is
simulated and the genotypes created by the simulation
are outputted into a file.

In each loop before running the Msprime simulation,
the parameters for it need to be set up. In our case some
of the parameters are stable and unchangeable - the as-
sumptions, and some are to be predicted later through
the ABC. The latter are selected at random between a
set range, recorded, saved in a file and then supplied
to the Msprime simulate function to execute the sce-
nario. In order to represent each value of each parame-
ter equally we used a uniform sampling method. Along
with these randomised parameters , a list of populations
and their ”demographic events” is also required. In our
case the only event defined a priory is the creation of a
”Colony” population. This is simulated as a population
split from either of the two already existing populations
referred to here as the "Metropolis” and the ”Locals”
population.
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https://github.com/johnpatramanis/Simulation-Scenarios/blob/master/scenario_1.py

Each simulation follows a similar tree-like structure
for our three populations. A visual example of what we
mean by ”tree structure” of three populations is given
bellow. As we have mentioned each run (loop) uses a
different, randomized set of parameters for the same tree
structure. A different set of these parameters can result
into a completely different scenario and thus to different
genotype compositions.
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Figure 3.3: Representation of the tree structure of the
simulated populations.

For each loop the same simulation, with the same ran-
domised parameters, is run 100 times independently to
simulate 100 different independent genomic segments.
In order to speed up simulation time these 100 simula-
tions are split into the available threads of the machine
through Python’s "multiprocessing” package. Once all
100 simulations are complete the segment genotypes are
outputted and sewed together into entire genomes.

Bellow you can find a pseudo code representation of
this whole process described until now.

Algorithm 1 Simulation Generation

procedure OVERALL SIMULATIONS LOOP
for Loop in number of simulations do
Parameters - Randomized
Assumptions < Set

for Second Loop in number of segments do

3.2.2 The Parameters

The parameters that are randomized in each scenario
and the range from which their values can be selected,

are depicted on the table bellow.

Parameters List

Parameter Name Parameter
Range

Original Population Size | 200 - 1000

of Colony

Effective Population Size | 400 - 1000

of Colony

Effective Population Size | 400 - 1000

of Metropolis

Effective Population Size | 400 - 1000

of Locals

Migration Rate Colony to | 0.0001 - 0.1

Metropolis

Migration Rate Metropo- | 0.0001 - 0.1

lis to Colony

Migration Rate Colony to | 0.0001 - 0.1

Locals

Migration Rate Locals to | 0.0001 - 0.1

Colony

Migration Rate Metropo- | 0.0001 - 0.1

lis to Locals

Migration Rate Locals to | 0.0001 - 0.1

Metropolis

Growth Rate of Colony 0.0001 - 0.1

Growth Rate of Metropo- | 0.0001 - 0.1

lis

Growth Rate of Locals 0.0001 - 0.1

Original Population of | 0.0001 - 0.1

Colony

SIMULATE(Demography,Assumptions, Parameters)

COMBINE(Genotype Segments)

1:
2
3
4
5: Demography < Set
6
7
8
9 OUTPUT(Genotypes Combined)
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In every simulation only three populations are used,
each one representing a group of people from our histor-
ical scenario: The ”Colony” population representing the
city of Ambracia, the 'Metropolis’ representing the city
of Corinth and finaly the 'Local’ population representing
the various people occupying Epirus at that time. The
different parameters used in each simulation are what
ultimately causes the differences in genotype composi-
tion between each simulated run. These parameters can
be divided into 4 groups:

Effective Population Sizes

The first group is comprised of the effective popula-
tion sizes, sometimes also referred as inbreeding effec-
tive population size and is controlled by four parame-
ters. The effective size represents the number of indi-
viduals that belong to a population and participate in
its gene pool. This measure does not count the actual
number of individuals in that population but rather an
idealised version of it by making an unrealistic but con-
venient simplifications such as random mating, simulta-
neous birth of each new generation, constant population
size, and equal numbers of children per parent.

Populations with high effective sizes tend to have over-
all increased genetic diversity as well as decreased per
individual homozygosity. In a natural population the ef-
fective and actual population sizes should be correlated,
however many factors such as population substructure,
can cause them to differentiate. In a city, for example
where a 2 class system is taking place and one class does
not participate in the gene pool (e.g. slaves that are not
allowed to intermix with free-men) one would expect to
the effective and actual population of the city to differ
greatly.

There are four parameters in this group. The first
three are corresponding to the effective population size
at the time of sampling for our three populations:
Metropolis, Locals, Colony. As we mentioned these do
not necessarily represent the actual size of these popula-
tions but never the less can be used as a rough estimate
for them, especially for making comparison between the
three populations (e.g. the Metropolis is roughly two
times that of the Colony). In our simulations all 3 pop-
ulations represented either large cities (Corinth, Ambra-
cia) or entire tribal groups (Local Epirotes). In order to
represent that, we chose to constrain our effective sizes
between 400 and 1000. On the lower spectrum of the
range the effective size is enough to represent a large
city of antiquity, while on the higher side a group of
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cities or entire region.

The fourth parameter is the original population size of
the colony. The colony has two different effective popu-
lation size in order to simulate its creation. If the initial
population of the colony is much smaller than that of
the Metropolis and it reaches a much larger final popu-
lation size then that is a unique scenario, different than
one where the final size is similar to the initial but both
much smaller than the Metropolis. In coalescent terms
a severe but short-lasting decline in effective population
size is termed a population ‘bottleneck’. Bottlenecks are
normally associated with external catastrophic events
such as an ice age or severe disease, but they can also
be associated with the colonisation of a new habitat by
a population. This fourth parameter is used for exactly
that reason, to simulate the bottleneck (or lack of) as-
sociated with the creation of a colony. For logical co-
herency we also restricted the effective size of the colony
to be smaller than that of its origin population.
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Figure 3.4: Example of effects of population size to num-
ber and length of ROHs. ROH stands for Runs of Ho-
mozygocity [17]

Migration

The second group of six parameters is comprised of the
migration rates between these three populations. With
the words human migration one can refer to a number of
different things: The prehistoric out of Africa spread of
humans over the globe, the transmission of farming from
Anatolia to the all of Europe in the Neolithic, the rav-
aging hordes of ”"barbarians” of late antiquity, even the
asylum seekers leaving the war torn countries of today.
Movement of entire populations, groups of people or in-
dividuals has always been a core function of mankind
in its history. In the confines of this thesis, the word



migration is used from a coalescence viewpoint, to de-
scribe the ”"jump” of an individual and his lineage from
one population group to another.

In coalescence simulations individuals living inside the
same population are free to admix with each other but
not with individuals from other populations. This is
where migration rates come in: for each passing gen-
eration a certain percentage of the population can be
migrants from another population. This way we can
simulate contact between groups of people and gene flow
between populations in our simulations. Once an indi-
vidual has migrated to a new population he or she is
considered by all means a normal member of that pop-
ulation.
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Figure 3.5: Visualisation of migration rates and their
position on the migration matrix

In our simulations six migration rates where used.
The Colony population for example, has two migration
rates, one to represent the percentage of individuals orig-
inally from the Metropolis population and one for the
people originally of the Locals population. When refer-
ring to a migration rate two population names are given,
in this thesis the first name always corresponds to the
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recipient population. Thus a value of 0.1 for migration
rate Colony - Metropolis means that 10 percent of the
Colony population for each generation are migrants from
the Metropolis population. The migration rates have a
range between 0.0001 and 0.1 to simulate either an al-
most non existent contact to an intense migration event.
Normally migration rates can change through time, but
for simplicity reasons as well as the small time frame of
our simulation, once the migration rates have been set at
the initiation of the simulation, they cannot be changed
until its end.

For those looking for the migration rate inside the
code, they can be found inside what is known as the mi-
gration matrix, a simple matrix with rows and columns
equal to the number of population. Each cell of the ma-
trix corresponds to the migration rate between Popula-
tion number Row - Population number Column with the
diagonal cells always equal to zero since they represent
migration from a population to itself.

The migration rates are probably the most important
parameters used in the simulation, as they can create
fundamentally different scenarios, even when not inter-
acting with the rest of the parameters.



Growth rate

The third group of parameters are the growth rate of the
populations. One growth rate parameter per population
controls the speed at which the population increases in
size. It is known that populations on the rise or who have
recently gained size quickly have distinct genotype com-
position [65]. Furthermore a population with a recent
bottleneck as well as growth can differentiate greatly
from its former self due to intense genetic drift. If with
couple this also with migration from an outside source,
this could easily lead into a population looking nothing
like its predecessor. This is a fairly important point, as
our scenario, the Coloniation of Epirus could very well
stand within this hypothetical.

For the purpose of this work for each simulation, three
values are chosen at random to determine the growth
rates of each population. These are chosen between the
values of 0.0001, simulating a de facto stable population
and 0.1, simulating a population explosion.

Initial size of Colony: Large

Origin of The Colony

For our final parameter we attempted to explore a more
difficult question rather than just statistical inference of
numerical parameters. As we have mentioned in the pre-
vious chapter, it is known that the Corinthians are the
people who set up the initial colony of Ambracia however
it is not quite clear from historical and archaeological ev-
idence what the original population of the colony was.
In order to cover both scenarios, of a Corinthian or a
Local original population each simulation has a random
value of 0 or 1 with a 50 percent chance. In half of the
scenarios the colony population is created a split from
the Metropolis population and in the rest from the Local
population.

Initial size of Colony: Small
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Figure 3.6: PCA examples of how population size cou-
pled with migration can effect a population. Here the
Colony population is always a split from the Metropolis
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3.2.3 The Assumptions

Along with the parameters that are changing in each
simulation run there is a set of parameters that remain
static, unchanging for all of the simulations. As we have
mentioned before these are assumed to be of a certain
value and unchanging through the different scenarios.
There are two basic assumptions taken in our simula-
tions.

Mutation Rate

The mutation rate is one of the most basic parameters
required to run a Coalescence simulation. Simply put,
the mutation rate is the probability of a new mutation
occurring in each generation, per individual and per ge-
netic position. The higher the mutation rate the quicker
two population diverge from each other.

In the past few years efforts have been made to calcu-
late the mutation rate in humans. This has been done by
either direct observation of modern people and their off-
spring, comparing divergent lineages by using fossils as
time records or population genetic approaches. These

have yielded different between 1 - 2%10 -8 [3, 12] as a
mean overall mutation rate in humans. In our work, we
used the more recent results of a 1.45%10 -8 [(1] and set

our parameter accordingly.

Generation time

Coalescence Theory does not use the conventional met-
rics of time. Instead everything is calculated in genera-
tions. In order to make real world predictions, one has
to convert a number of generations to conventional time
measurement. This is usually done using a Generation
Time simplification, which assumes that all individuals
of a species have a certain amount of time from when
they are born to when they leave their first offspring.
This of course is not completly accurate, however its
serves its puprpose, as it allows us to easily convert gen-
erations to time. In this thesis a standard generation
time of 20 years was used for all simulations.

Genome Size and Recombination

We decided to simulate genetic segments of a 500.000
bp size. For each simulation 100 segments were gener-
ated with the same parameters leading to genomes of
5.000.000 bp in size. Since we wanted to simulate inde-
pendent segments we used no actual recombination in
our calculations, which is available through Msprime.
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3.2.4 Obtaining the metrics

After every simulation is finished the genotypes are out-
putted in two formats, a Varriant Calling Format (VCF)
and an MS format. The VCF output is the automatic
output generated by Msprime, while the MS format is
created using python by handling the genotypes through
some custom lines of code.

Once the genotypes have been outputted in the two
different formats, they can be then utilized by other soft-
ware to obtain the metrics or ’summary statistics’ in
ABC language. With the exception of the PCA, each
software generated the statistic 100 different times, one
for each segment. The summary statistics selected for
the first ABC test, along with the software used to gen-
erate them are he following:

3.2.5 PCA Clusters

Principal Component Analysis is one of the most used
exploratory tools in population genetics. It is able to
cluster together individuals that share a genetic simi-
larity. Our initial idea was to use this information, ob-
tained through the eigenvectors, as a summary statistic
in our ABC. PCA was performed on the whole stitched-
together genomes using PLINK v1.9 [18] and the vcf file
as input. After obtaining the first 10 eigenvectors of the
PCA a custom clustering was performed using python.

Our aim was to obtain a metric of how tight or loose
each population clustered as well as how close or far
away the center of each population cluster was from the
others. For each population the mean of its eigenvec-
tors was calculated, between the individuals belonging
in that population and used as the center of that popu-
lation. Then the average distance of an individual of the
population from the center of that population was cal-
culated. Finally the distance between the centers of the
different populations was also calculated. In total six
metrics were obtained: three describing the clustering
within each population using the average distance from
the center and three between the populations using the
distance between the centers.

3.2.6 F3 Statistics

F3 statistics were also chosen as a summary statistic
since, as we talked about in the introduction, they are
a very popular tool, known for providing indication of
admixture and are also very rigorous.

For the F3 statistics the vef output was converted to
eigenstrat format using Convertf. Once this was com-
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plete, the new eigenstrat file was used as input for the
qp3Pop software, using the default settings, to calculate
the 3 statistic for our populations with this ordering:
Locals, Metropolis, Colony in order to test the Colony
population as a mixture of the other two populations.

3.2.7 CoMuStats

Finally the MS format file was used as input for CoMuS-
tats. CoMuStats was created as an extention of CoMuS,
a custom Coalescence simulator created by Pavlidis [76].
It is largely based on msABC [(6] with some extra statis-
tics. It’s purpose is take MS formatted genotypes and
output a number of summary statistics to be used for
ABC in particular.

CoMuStats was used with the settings -npop 3 20 20
20 -ms which outputs 20 different metrics. The output
of CoMuStats is file with rows equal to the number of
simulations. Every row is divided into columns, with
each column representing a metric. In total this basic
run of CoMuStats generates 20 different metrics. Thus
from each simulation we generate a matrix of 100 rows
and 20 columns.



Distributions of Summary Statistics

Now that we posses 100 measurements for our summary
statistics, for each simulations, we need to convert them
into something more useful for our ABC and later for our
classification problems. The standard way of converting
these 100 values would be to use a metric such as their
mean, mode or median. Indeed both for the f3 statistics
and for each individual metric generated by CoMuStats
we calculated the mean for further use. However we de-
cided to translate our 100 measurements with a second,
novel method.

Each simulation/scenario generated a 100 measure-
ments for each metric. These correspond to a dis-
tribution, unknown to us and specific for the simula-
tion/scenario used to generate the 100 measurements.
Because two different simulations might generate two
different distributions, but these distribution have the
same mean or because in some other cases means don’t
represent well the density of their distribution, we chose
to use a novel method that would better represent the
whole distribution rather than just the mean.
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Figure 3.7: Process of acquiring distribution points from
chunks instead of singular values for each metric
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Our idea was to first select certain values and use
them as set points which would define all of the dis-
tributions for a certain metric. After all the simulations
finished, for each summary statistic we isolated the min-
imum and maximum values among all of the simulation
runs. For example for the f3 statistics we had 300.000
simulations each with 100 measurements, leading to a
total of 30.000.000 values of 3 statistic. From those we
selected the minimum and maximum values. These were
stored and the same process was done for all summary
statistics.

Now that we have the minimum and maximum for
each statistic, we will use them as anchors points to
get the distribution. We select 9 more points which are
equally spaced between these 2 points for every sum-
mary statistic. Now we have 11 points - values for every
summary statistic. For every simulation, thus for every
distribution of 100 measurements, we can sample that
distribution at these 11 points, obtain 11 probabilities
and get a ruff estimate of what the distribution looks
like.
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To get the actual distributions, the metrics where
loaded into R where the density function was used. Us-
ing the density function, 11 points where then extracted
from the distribution of each metric within a certain
range (defined by the minimum and maximum of that
metric from all the simulations). This points are enough
to explain the distribution to a certain level (see figure
above).

Minimum Value Among all
Simulations

3.2.8 The Problem

After completing our pipeline we tested it using a small
number of simulations. Quickly the main problem with
this method became apparent: our pipeline was very
slow. One round of simulations and summary statis-
tics calculation took an average of INSERT NUMBER
HERE. This was unacceptable since our aim of 300.000
simulations would take an approximate 27 weeks. Since
all of our efforts would be based on this pipeline, we
went back to the drawing board.

After investigating which processes slowed down the
entire pipeline it was decided that a rework was required.

Maximum Value Among all
Simulations

7 more points are drawn equally space between these 2 points

Figure 3.8: Visual example of different distribution.
Each different colour represents a distributio of a sum-
mary statistic for one simulation. The arrows on the
edges represent our 'anchor’ points, all distributions fall
within these boundaries.
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3.3 Data preparation - Reworked

From our assessment the simulation were actually run-
ning smoothly and at an acceptable speed. It is the post
genotype generation part of the pipeline that provided
the delay. Both the multiple conversions between for-
mats and some of the software used proved inefficient in
terms of computational speed.

After some consideration it was decided to limit soft-
ware usage to that of CoMuStats. This of course meant
that we would lose an important part of our summary
statistics. To compensate for that, we decided to modify
the way we ran CoMuStats in two ways, which we will
be discussing bellow.

3.3.1 CoMuStats Modifications

Since we decided to remove the usage of Plink for the
PCA and of qp3Pop for the F3 statistic we decided to
make our CoMuStats runs more complex in an effort
to make its summary statistics more indicative of each
scenario.

To do that we first changed the parameters used in
each CoMuStats run. The flag 1-sepPops was used to
separate each population. Previously CoMuStats would
generate 20 summary statistics that described the whole
data set containing all three populations, whereas now
these 20 summary statistics would be generated 4 times:
one for the data set as a whole and once for each popu-
lation independently. For example the summary statis-
tic 'Number of Singletons’ would be generated once by
counting the number of singletons in the entire dataset,
once for the Metropolis population, once for the Local
population and finally once for the Colony population.
This way we raised our summary statistics from 20 to
80.

In addition to this, the flag 1-pairwiseFst was used
in connjuction withi-sepPops to calculate the Fst dis-
tances between each population, adding 3 more sum-
mary statistics.
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Figure 3.9: Artwork for CoMus and CoMustats. You
can find more information on CoMuS here


http://pop-gen.eu/wordpress/software/comus-coalescent-of-multiple-species
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Figure 3.10: Overview of Reworked version of Data Cre-

ation for ABC
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Finally we modified the code of CoMuStats, just for
this thesis, by adding the calculation of F2 and F3 mea-
surements for 3 populations by using the new flag -f3
popl pop2 pop3. The F2 statistic is, as we mentioned in
the introduction, very similar to the Fst however since it
is required to calculate the F3 we added it as well. Each
pair of populations now also generates an F2 measure-
ment. Also a user defined triplet of populations, with
the first population inserted tested as product of admix-
ture of the other two, also generates a F3 measurement.
By this addition we extended our summary statistics to
87.

The final command line used for CoMuStats looked
like this

1-npop 3 20 20 20 -pairwiseFst -ms -sepPops -f3 3 1 2

with population number 3, the Colony being the one
tested for admixture.

3.3.2 New Data preparation

Once we got our customized version of ComStats with
the new flags set up, we were ready to repeat the
pipeline. This time the speed of the simulations and
summary statistics generation was deemed sufficient
with an average run of 5.5 seconds We aimed at 300.000
simulation runs, generated and stored parameters, geno-
types and summary statistics. Once this was complete
we tranformed each simulation’s 100 segments with the
2 methods detailed in the previous section. This time
the process was simpler since all of the summary statis-
tics were already merged together in one file, the output
file of ComMuStats.

Again the CoMuStats output file for each run was a
matrix with 100 rows but with 87 columns this time.
With the process described in the previous section each
such matrix was transformed a into a)a vector of means
with 87 dimensions and b) a vector with 11 values for
each summary statistic, representing its distribution,
thus with 957 (!) dimensions. In the end we combine
all these vectors into two final matrices one with 300.000
rows and 87 columns and one with 300.000 rows and 957
columns. For clarity we will refer to the first former as
"Means Summary Statistics’ and the later as 'Distribu-
tion Summary Statistics’
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Figure 3.11: Again, the creation of the 2 summary statis-
tics matrices



3.4 ABC Predictions

To prepare our final two data sets for ABC we need only
one more thing: to merge each simulation’s parameters
with its corresponding vector of summary statistics. Be-
fore doing so however, we decided to create a matrix
which contains the maximum and minimum values for
each summary statistic. This will be used later in the
ABC. All the parameter files were scanned and their
minimum and maximum values calculated and stored in
a new file, referred to as the 'Logit’ file.

Finally one parameter was left out of the ABC esti-
mations since it differed from the others. The parameter
"Original Population of Colony’ is a categorical / binary
parameter, rather than a true numerical one and thus
could not be inferred at the same time as the others.

Having merged the parameters with the two summary
statistics matrices we are now ready to run the ABC
inference.

3.4.1 Running the ABC

For our ABC parameter inference the ’abc’ package of
R was selected to be used. Each one of the two ma-
trices created was independently loaded into R. Along
with them, the Logit file was also loaded. The process
described bellow was followed for both of the matrices.

First a 10000 rows were isolated from the matrix and
stored into a new matrix. This matrix will be called the
test data set. The remaining 290000 rows will be used
as the training data set. Now we will test the predicting
power of our method by estimate the parameters of each
row of the test data set. We created a 10000 repetition
loop where in each iteration one row from the test data
set is selected, split into a parameters and a summary
statistics vector and where the later is inserted into the
abc function.
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Figure 3.12: From [10] here the ABC algoirthm is show-
cased. The Y axis represents the parameter theta and
the X axis represents the summary statistics. Each dot
is a simulation. After removing distant simulation the
rest of the thetas are placed in a distribution and the
uknown theta calculated using that distribution.
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Each time the abc function uses the training data set
to predict the parameters of the tested vector. Here
we utilised the data of the Logit file created before, as a
”logit matrix” for the abc function. This matrix does not
permit the function to predict values for each parameter,
outside of the minimum and maximum values provided
by the matrix. The abc function was also executed using
the 'ridge’ method of the package. After some initial
tests with different levels of tolerance the 0.15 chosen as
the standard for the rest of the predictions.

This means that only 15 percent of the total simula-
tions were used for the prediction of the values, leading
to around 19300 simulations being utilised for the re-
gression step. For each repetition of the loop the abc
function runs with the described parameters and esti-
mates the parameters of the test vector. The true pa-
rameters are outputted along with the predicted mean,
median and mode output values of the abc function and
stored into a new file. Once the process is finished we
can apply our own custom error measurements to asses
the effectiveness of our predictions. The above process
is a custom,manual application of the so called ”leave
one out” validation method.

3.5 Scenario Selection

We quickly realised that the aforementioned ’Original
Population of Colony’ parameter could not be inferred
the same way the others could through normal ABC.
This problem was more of a classification problem rather
than a regression one. After we complited our parameter
estimations for 13 out of our 14 parameters we decided
to test some of the available classification algorithms for
this last parameter.

3.5.1 The Two Different Scenarios

All of our simulations belong to one of two scenar-
ios, with the parameter taking the values: 1 where the
original population of the Colony is an offshoot of the
Metropolis population and 0 where it is of the Local pop-
ulation. However migration from the non-parental pop-
ulation coupled with a small effective population size or
bottlenecks can greatly skewer the identity of the pop-
ulation. This is where classification algorithms are re-
quired, should there be some differentiating summary
statistics or a combination of them, then some of the
available algorithms would be able to correctly identify
the scenarios and thus this parameter.

2000

1000

—=1000 4

—2000 -

-3000 -2500 -2000 -1500 -1l000 -500 0

Figure 3.13: Visualization of the two models using
a)PCA b)tSNE ¢)uMAP on the Summary Statistics of
each simualtion (red : model 0 - blue : model 1.
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3.5.2 ABC Random Forests

Our first attempt at classification came in the form of
another ABC package of R named ’aberf’” [70]. This
package combines the classic ABC algorithm with a ran-
dom forest classifier. Our use of the package mimicked
our previous ABC runs. Again we loaded each of the
two summary statistics/parameters file separately into
R. For each file we split off 10000 rows to be used as our
test / validation data set. We used the rest of the rows
as input for the abcerf function with default settings and
only changing the number of trees parameter with values
first between 100 and 1000 and then between 100 and
10000. This functions has an internal error estimation.
Nevertheless we also performed an outside validation us-
ing our test data set, using the best performing number
of trees from the internal error estimation.

Leaving R behind we moved on to one of the most
used python 3 collection packages: ’scikit-learn’ more
commonly known as simply sklearn. There is multitude
of available ML classification tools provided by sklearn.
Theoretically we should have attempted to use most, if
not all of them to select the best one. Because of time
constrains however we chose to use two of them: the
Random Forests Classifier and the SVM classifier.

3.5.3 SKlearn Random Forests

We chose to compare our ABC random forest (RF) clas-
sifier with sklearns RF classifier. This time we chose
to omit using the Distribution summary statistics since
the ML methods are notorious for their computing time
which scales with the number of samples and feaures
(sumamry statistics) and the particular data set con-
tained more than 900 features, as we saw previously.

Like previously we loaded our data sets, this time in
python3. Unlike preciously however, this time we per-
formed what is known as model and feature selection
before using the classifier. We made use of the ’pipeline’
function of Sklearn which allows one to perform a num-
ber of procedures, step by step on a data set.

The pipeline contained an initial step of normalisa-
tion using sklearn’s ’StandardScaler’, which removes the
mean of each feature and scales to variance. Then,
features with low variance are removed using sklearn’s
"VarianceThreshold’ with a threshold of 0.16 . Fi-
nally a certain number of hyperparameters are tested
in all of their combinations in the RF classifier using
sklearn’s ’GridSearchCV’ and the provided hyperparam-
eters. The hyperparameters tested can be seen in the
figure bellow. This was validated using an inner Kfold

38

validation of 10. The best performing combination of pa-
rameters from the inner Kfold is then used in an outer
Kfold validation of 5 to estimate the final error rate and
the overall performance of our classifier.

Hyper-Parameters List

Hyper-Parameter Name Options

Criterion ‘gini’ / ’entropy’
Number of tress 100/150/500/1000
Max number of features | ’sqrt’ / ’log2’
considered each split

Depth of trees 20/30/40/50/ None’

3.5.4 SKlearn Support Vector Machines

As an additional classifier other than random forests, we
selected sklearn’s SVM. We followed the same method
as aboce using again the pipeline function with Stan-
dardScaler, VarianceThreshold and the GridSearchCV.
Again we used both an inner and outer Cross Validation
by selecting and using the best hyper parameters.

Hyper-Parameters List

Hyper-Parameter Name Options
SvVC C 1/2/5/7/10
Kernel 'rbf” / 'poly’
Max number of features | 20/30/50
considered

Degree for Poly kernel 1/3
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Chapter 4

Results

In this chapter we will look at the results produced
by this thesis. We will first look at the output of our
simulations and then move on to the error rates for the
ABC predictions and finally for the classifications.

4.1 Simulation Results

After completing 300 000 simulations and obtaining the
summary statistics on them in about 450 hours or 19
days, we decided to test whether our simulations cov-
ered the desired range of values for the parameters. Be-
sides covering the expected range of the parameters, we
also want these values to idealy be represented in a uni-
form distribution. This was not true in our case for all
parameters, as we will see bellow and could potentially
interfere with the results, which we will discuss in the
next chapter. Overall we can see that in most of the
parameters do have a uniform distribution with the ex-
ception of the Ne of the Colony both Initial and Final.

Migration Rate Colony to Metropolis

Figure 4.1: Prior Distribution of 2 Parameters
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Figure 4.2: Prior Distribution of 6 more Parameters
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4.2 ABC Results

After completing 10000 leave one out predictions for
each of the two summary statistics data sets we cal-
culated their prediction errors in order to asses their
estimations. For the error estimation we used the Root
Mean Squared Error divided by the maximum - mini-
mum of the parameter. First we calculate the square
error for each individual prediction using the formula
bellow:

Individual Error = (Actual — Predicted)?

Then, once we have this measurement for each predic-
tion we calculate the root of the mean of those squared
errors and finally divide it by the difference of the max-
imum and the minimum the parameter can take. This
final step is used to normalise the error rates between pa-
rameters.Bellow you can find the formula for the Root
Mean Squared Error (RMSE).

) Ymean(IndividualO f Errors)
RM SE(PredictedParameter, Aactual Parameter) = MazimumO[ Parameter — MinimumO fParameter
Having calculated the RMSE for each parameter indi-
vidually and for each one of the two data sets, we created
the tables in the following page to depict and compare
them. We selected the mean for each predictions dis-
tribution as it yielded the best results, when compared
with the mode or the median.

Ne of Locals Prior vs Posterior Distribution

2000

1000

Figure 4.4: Example of both Prior (blue) and Posterior
(orange) Distribution of a parameter. Here the predic-
tion would be either the mean, median or mode of the
orange distribution, around 850-900.
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Parameter Error Rates - Means Datset

Parameter Name RMSE
Original Population Size | 0.144
of Colony

Effective Population Size | 0.143
of Colony

Effective Population Size | 0.201
of Metropolis
Effective Population Size | 0.207
of Locals
Migration Rate Colony to | 0.157
Metropolis
Migration Rate Metropo- | 0.150
lis to Colony
Migration Rate Colony to | 0.162
Locals
Migration Rate Locals to | 0.126
Colony
Migration Rate Metropo- | 0.129
lis to Locals
Migration Rate Locals to | 0.119
Metropolis
Growth Rate of Colony 0.163
Growth Rate of Metropo- | 0.172
lis
Growth Rate of Locals 0.163

In the following page we also present examples of the
ABC prediction process. In each individual plot we have
the 300 000 points representing the simulations. In the
X axis we have a certain Parameter and in the Y axis a
certain Summary Statistic. We are thus looking at how
using the rejection of simulation the ABC is able to infer
the parameter in question. The center of the Circles is
our prediction for the parameter based on that summary
statistic.
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Parameter Error Rates - Distribution Date set
Parameter Name RMSE
Original Population Size | 0.157
of Colony

Effective Population Size | 0.194
of Colony

Effective Population Size | 0.248
of Metropolis

Effective Population Size | 0.220
of Locals

Migration Rate Colony to | 0.264
Metropolis

Migration Rate Metropo- | 0.313
lis to Colony

Migration Rate Colony to | 0.226
Locals

Migration Rate Locals to | 0.229
Colony

Migration Rate Metropo- | 0.247
lis to Locals

Migration Rate Locals to | 0.158
Metropolis

Growth Rate of Colony 0.218
Growth Rate of Metropo- | 0.223
lis

Growth Rate of Locals 0.216

Ne Locals

Figure 4.5: Visualisation of how the next plots are cre-
ated. The Posterior distribution is combined with the
Prior into a new plot that displays both.
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Error Rate

4.3 Model Selection Results

As we have shown earlier, that assigning to one of the
two scenarios of colonization is not an easy task. Here
we present the results of our classification efforts through
the various tools tested.

4.3.2 SKlearn RF

Next is the SK-learn version of RF. Here of all the com-
binations of th hyperparameters, the best one chosen is
depicted bellow. This gave us an inner success rate of
0.778 and a final outer success rate of 0.761 .

Hyper-Parameters List

Hyper-Parameter Name

Best Options Selected

Criterion

‘gini’ / ’entropy’

4.3.1 ABC - RF

Number of tress

100,/150/500,/1000

Max number of features
considered each split

'sqrt’ / 'log2’

Our first classifier is the ABC-RF classifier. We first

Depth of trees

20/30/40/50/ None’

tested for the optimal number of trees to be use be
steadily increasing the number between 100 and 10000,
using an inner error rate of ABC-RF. We saw a tiny but
continuous decrease in the error rate until around the
5000 trees mark, where the prediction rate started to
fluctuate. We chose 5000 as the optimal number of trees
as between 100 and 10000 it yielded the best internal
errors and used it in our outer error testing in which we
run a 1000 predictions using the leave one out valida-
tion. This gave us an average of 0.260 error rate or a
0.74 success rate of assignment.

10

0.8 1

0.6

0.4 1

0.2 1

0.0

T T T
4000 6000 8000

Number of Trees

T
0 2000

Figure 4.7: Error rates for different number of trees, for
the ABC-RF function. As we can see there is little dif-
ference between each iteration after the first 1000 trees.

4.3.3 SKlearn SVM

The SVM classifier is next. Again of all the combinations
of hyperparameters the best one chosen was : 0.68. This
gave us an inner success rate of and an outer success rate

of 0.674.

Hyper-Parameters List

Hyper-Parameter Name Best Option Selected
SVC C 1/2/5/7/10

Kernel 'rbf” / poly’

Max number of features | 20/30/50

considered

Degree for Poly kernel 1/3

4.3.4 Best Results By Classifier

Best Error Rates per Classifier
Classifier Best Parameters Error
SK learn SMV 0.674
ABC RF 0.74
SK learn RF 0.761

10000



Chapter 5
Discussion

In this final chapter we will discuss the efforts and the
results of the current thesis. First we will mention again
some of the difficulties encountered and mistakes made
during both the design and the execution of this work.
Then we will comment on the results presented here and
the effectiveness of the process and finally discuss future
modifications to the approach and its possible applica-
tions.
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5.0.1 Discussing the Design process

First, lets take a more critical look on our design of the
simulation and summary statistics extraction process.
We will talk about the choice and effectiveness of our
summary statistics a bit later.

In our design of this process we did not consider a very
important parameter: time. After waiting for around
30.000 simulations and doing some initial ABC test, we
came to the realization that to achieve a sufficient num-
ber of simulations for the ABC to be effective, we would
require an unacceptable amount of time. The simula-
tion process by itself was running at an efficient man-
ner. The problem with the initial version of the sim-
ulations/summary statistics generation, was the use of
‘outside’ software.

These software are: plink, convertf and qp3Pop. By
outside we are referring to software not created by our-
selves or someone in the lab, thus not in our control
to modify, in order improve performance. The problem
was actually two fold: both the speed of the software
itself and the conversions between formats that the soft-
ware required, consumed a lot of time. Plink for exam-
ple, while theoretically able to handle vcf files, which
Msprime could output , required some modifications on
the vcf file, such as the labels of the SNPs and their
chromosomes. On the other hand qp3Pop required an
‘eigenstrat’ format file which had to be converted from
the vcf file. It would also seem that qp3Pop was not de-
signed to handle a large number of small SNP files but
rather one file with the whole genome.

This left us with CoMuStats, which however was cre-
ated by Dr. Pavlidi’s laboratory and thus we could mod-
ify to serve our purpose. This was not an easy process
but we successfully manage to incorporate the F2 and
F3 calculations into CoMuStats.

We chose to leave the PCA out of the summary statis-
tics along with its clustering metrics, as it would require
a great effort for uncertain effectiveness. This however
leaves the question of how effective PCA represents these
aprameters, or how useful it would be for parameter in-
ference. These questions are open for further exploration
and perhaps coupled with / compared to, newer dimen-
sionality reduction techniques such as tSNE and uMAP.

By discarding the outside software and conversions
and sticking with CoMuStats, we were able to reduce the
time for a cycle of simulation and statistics extraction
by about ten times, from an average of almost a minute
to around 6 seconds.

By checking the output of simulations we were able
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to confirm that for almost all parameters we indeed
obtained a uniform distribution between the desired
ranges. The two exceptions to this were the initial and
final size of the Colony population. This is due to the
difference in the process that these two parameters were
selected at random before each simulation. The initial
size of the colony was also selected from a random uni-
form distribution. However that values was then checked
to be less than that of the effective population size of the
parental population. Thus in simulation runs where, for
example the effective population size of the Metropolis
was selected at random to be 500 and the randomly se-
lected initial size of the colony was 700, the size of the
colony would be recalculated until it was less than 700.
This was done to serve a form of realism, as we thought
it would be wrong to allow the colonizing population to
be larger than that of its origin population. This is the
reason the distribution for that parameter is tilted to
the left, or in more formal terms is a ’right tailed’ one.
Since the final population is dependant on the initial
population it also suffers from the same effect. We re-
alise however that this could be causing problems in our
results in inference and classification and suggest that
should someone try a similar approach, not constrain
the prior parameters the same way we did.

Finally as a side note, the range of our parameters
is not set in stone. We chose the ranges based on the
needs of this thesis and set them enough to give us room
for the predictions. Should on follow a similar approach
we would suggest increasing the range of parameters to
compensate for more diverse scenarios. Something like
that of course, would also require a larger number of
simulations as well, which is another reason we chose to
stick to these ranges.



5.0.2 Discussing the Results

Leaving the data generation behind, here we will dis-
cuss the results generated by our ABC methods and
the SK learn classifiers. Generally speaking, the results
of both the parameter inference and the classifications
showed that our selection of summary statistics was not
off-point. Even in the difficult case of predicting one
of the two scenarios we had some positive results. As
we mentioned briefly in the introduction, the particular
example we chose to explore, that of a theoretical 2nd
phase Greek colonization, would provide unique difficul-
ties.

The fact that the entire scenario is a short one, lasting
about 800 years, as well as that reality that the popu-
lations are probably closely related were already discon-
certing. When compering it to other evolutionary sce-
narios such as the out of Africa model or when dealing
with widely diverged populations we would expect this
method to perform much worse with our data. Still, in
spite of all these problems, which we translated into the
scenario, we still got some positive results. To us, this
shows that this method of collecting multiple summary
statistics from hundreds of simulations is a valid way
of identifying scenarios, yet it requires further improve-
ments.

ABC results

Now lets look at the results from the ABC. We com-
pared our results from the two data sets the Means and
the Distribution data set. For 10000 leave one out pre-
dictions we recorded the error rate and calculated the
RMSE for every parameter.

To our disappointment it appears that the Mean of
the summary statistics outperforms the 11-point distri-
bution summary statistics measurements. On every pa-
rameter the RMSE error of the Mean data set appears
to be almost half of that of the Distribution data set.
The average RMSE between all paramters was 0.157 for
the Means data set and 0.229 for the Distributions one.

Our aim was to create a more detailed summary statis-
tic representation by providing the distribution of each
metric instead of just the means. The Distribution data
set contained in the end, eleven-times more summary
statistics than the Mean data set, to a total of 957. It
is known that sometimes too many statistics can cause
noise in the ABC. It would appear that this is also the
case here, by increasing the amount of summary statis-
tics we have reduced their effectiveness.

For someone wishing to imitate this methodology of
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using the distribution, we would suggest a) removing the
statistics that have very low variance or b) calculating
the correlation between each summary statistic and ev-
ery parameter and removing the lowest ones. We believe
that although in our examples the Mean data set per-
formed better there is still room for improvement of the
Distribution data set.

Having said that the author of this thesis is fairly
pleased with the results from the ABC, as it seems that
among the simulations the parameter can be somewhat
estimated, even if not precisely. We would recommend
further use of ABC in population genetics and suggest
one to try this method we real world data at hand. We
highly suggest CoMuStats as a summary statistics gen-
erator from ms like simulations, but one may wish to
use a different set of summary statistics. For someone
wishing to replicate this method we provide a link to a
script which transforms a vcf file to an ms format and
runs its through CoMuStats (requires CoMuStats to be
installed).


https://github.com/johnpatramanis/Simulation-Scenarios/blob/master/vcf_to_ms.py
https://github.com/johnpatramanis/Simulation-Scenarios/blob/master/vcf_to_ms.py
https://github.com/johnpatramanis/Simulation-Scenarios/blob/master/vcf_to_ms.py

Classification results

Finally let’s take a look a the classification results.
These efforts were made with the single goal of predict-
ing the origin of the colony population parameter As we
have mentioned multiple times in this thesis, this was
from the beginning considered to be the hardest param-
eter to predict. The simple reason being that multi-
ple different scenarios could produce the same results in
summary statistics. One can easily see this by looking
at the figures of 34. Even with some more advanced di-
mensionality reduction techniques rarely do scenarios 0
and 1 not overlap.

Nevertheless we attempted to use a number of classifi-
cation techniques coupled with feature and model selec-
tions to accomplish this task. The best results produced
by each classifier can be seen bellow. As you can see
the best performing one was the the SK learn Random
Forests. We are not sure why this particular classifier
performed the best but we do know its has not to do with
the features as the it went through the same pipeline as
the SVM one. We aslo noticed that the other Random
Forest classifier (ABC-RF) with which it shares the same
algorithm also performed pretty well. Ths SVM classi-
fier performed substencially worse than the RF ones.
This could be due to the fact that the samples do not
separate in any plane, as we saw that even with dif-
ferent dimensionality reduction techniques we couldn’t
separate them or show any substantial form of structure.

It seems that our chosen summary statistics do indeed
contain information that can be used to decipher the pa-
rameter of recent origin of population as with our best
classifier we are correct about 3 out of 4 times. Still
compared to other types of data this is a poor classifica-
tion result. With this in mind one can expect for some
other classifier to perform even better than our best one.
Furthermore it is possible that our summary statistics
were not best suited for this particular estimation.

5.0.3 Possible Applications

As one may understand, this thesis was of an experi-
mental and exploratory character. Nowhere in this the-
sis were real data used for our analysis. We recommend
that, would someone want to follow a similar approach,
one should try to incorporate data from real populations
to see how they perform in the ABC.

One can also download our code from hereand gener-
ate his/her own simulations for testing their data. To do
this all you have to do is download and install all the pre-
requisites mentioned here and simply execute this file to
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generate the summary statistics. The scenario we have
created here would ideally be used with a 3 population
example where one is a product of either one of the other
two populations. The scenario however can be changed
by the user to be pretty much anything, given that the
user has some experience with Msprime.

5.0.4 Closing Remarks

This thesis was a theoretical exploration into a histor-
ical scenario. We attempted to simulate the different
possible colonization models under a multitude of dif-
ferent parameters. In the process of this thesis we have
demonstrated that it is possible to estimate with a de-
cent accuracy the parameters used to generate each sim-
ulation. We have also shown that even in a difficult to
predict scenario such as the one we explored we can still
reach 75 percent success rate. We believe that all of
these methods can be taken a step further, as what we
created here were not a clear cut / distinct scenarios but
more realistic in between ones. As more people exper-
iment with Machine Learning and population genetics
we expect this field to change dramatically, as it has for
the past decade.


https://github.com/johnpatramanis/Ambracia_Reworked
https://github.com/johnpatramanis/Ambracia_Reworked/blob/master/ambracia_simulations_reworked.py
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