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Integrated Metaprogramming Systems:

Language, Tools and Practices

YANNIS LILIS
PhD Thesis

University Of Crete
Computer Science Department

Abstract
Metaprogramming is an advanced language feature enabling to mix programs with
definitions that generate source code to be put in their place. Such definitions are
called metaprograms and are executed during the translation of the main program.
While metaprograms are essentially programs they are mostly treated as special cases
without sharing the current programming practices and development tools. In this
context, we emphasize the need for a methodological integration between
metaprograms and normal programs presenting a systematic proposition towards
integrated metaprogramming systems. We cover and implement aspects related to

language, programming model, tool support and deployment practices.

We identify a set of primary requirements related to language implementation,
metaprogramming features, software engineering support, and programming
environments, that are necessary to achieve such integration and elaborate on
addressing them in the implementation of a metaprogramming system. In particular,
we introduce the notion of integrated metaprograms, as coherent programs assembled
from specific meta-code fragments present in the source code. We prove the
expressiveness of this programming model and illustrate its software engineering
advantages through case studies that reflect demanding scenarios of exception
handling, design patterns and design by contract. Then we present an integrated tool-
chain that treats metaprograms as first-class citizens of the programming environment,
incorporating them into the workspace management and supporting them with a full-
scale build process. We also elaborate on the way we provide precise compile-error

reporting and full-power source-level debugging facilities for metaprograms.



Regarding model integration, we show how Aspect-Oriented Programming (AOP), a
paradigm originally considered only for normal programs, is effectively extended and
applied in a metaprogramming context. In particular, we present a systematic
proposition for introducing aspect orientation in the entire processing pipeline of a
metaprogramming system. Additionally, we discuss an implementation approach
treating aspects as batches of transformation metaprograms, the latter deploying a
custom AOP-related library we offer. Example scenarios are discussed demonstrating
how the proposed aspect system is used in practice, while we present how full-scale

source-level aspect debugging is facilitated during the program compilation process.

Finally, we propose deployment practices that utilize metaprogramming to achieve
reusability at a macroscopic scale. In this direction, we present a methodology for
implementing reusable design patterns and exception handling templates by realizing
them as metaprogram libraries that can be deployed on demand. We also discuss an
improved Model-Driven Engineering (MDE) practice where the outcomes of MDE-
tools become read-only Abstract Syntax Trees (ASTs) instead of source code to
resolve the inherent maintenance issues in such tools. In our approach the application
source code involves metaprogramming to deploy and manipulate the generated code
fragments as ASTSs, instead of being built around the generated code with custom

modifications and extensions.



OlroxkMnpopéve Zvotipoto MeTampoypappaTiopov:

I'hooca, Epyaieio ko IIpaxtikég

IOANNHX AIAHX
Adoxtopiky Alotpin

[Mavemomuo Kpntng
Tunuoa Emotung Ymoloyiotomv

MepiAnwn
O petampoypappaticpds €ivor €vo TPONYUEVO  YOPAKTNPIOTIKO YAWGGHOV TOV
EMUTPENEL OTA TPOYPCLLLLLOTO, VO, AVOLULYVOOVTOL LE OPIOUOVS TTOV TPAYOLYV KMOUKO, V10!
va umer otn 0éom tovc. Avtoi ot opiopol ovoudlovIOl UETATPOYPOUUATE KL
EKTEAOVVTOL KATA TN SLIPKELL TNG LETAPPAOTS TOV KLpiwe mpoypdppatos. [Tapdtt Ta
UETOTPOYPAUUATO EIVOL OVGLUGTIKE TPOYPAULOTA, GUYVA OVTILETOTILOVTOL MG E1OIKEG
TEPUTAGELS, YOPIG va LOpaloviot TIG TPEYOVGES TPOYPOUUOTIOTIKEG TPOKTIKEG KO
ta gpyoaieio avdntuEng. Xe avtd 1o mAaicto, toviCovpe v avdykn g HeBoSOAOYIKTG
€VOTOINGNG TOV UETATPOYPUUUATOV KOl TOV KAVOVIKOV TPOYPOUUATOV HECH LOG
CUGTNUATIKNG TPATACNG YO  OAOKANPWUEVE.  GUGTHUOTO,  UETATPOYPOUUOTIOUOD.
Ewdwotepa, KOAVTTOLUE KOU VAOTOWOVUE TTLYEG TNG YAMOGCOS, TOL  HOVIEAOL

TPOYPOULUUATIGHOD, TNG VTOGTNPIENG EPYUAEIMV KOl TV TPAKTIKAOV OVATTUENC.

Evtonilovpe éva 60voro ootV amoitoemy mov oyeTilovtal Le TNV LAOTOINGN TG
YADGGO, TO YOPOKTNPIOTIKE TOL UETAMPOYPOUUATIGUOV, TNV LROCTNPEN NG
TOPAY®YNG AOYIGHIKOD, Kot To TEPPAAAOVIO TPOYPOUUUATIGHOD, Ol Omoieg &ivan
amopaiTNTEG Yo TNV EMITEVEN AVTAG TNG EVOTOINONG KO TOPEYOVILE AETTOUEPEIES V10!
TNV OVTIUETOTICN TOVG GTNV LAOTOINGN €VOG GUGTHUOTOS UETOTPOYPOUUATIGHOD.
Ewwotepa, eodyovpe v £vvolo TOV  EVOTOINUEVOYV  UETATPOYPOUUATOV, ©OG
GUVEKTIKG TPOYPAULOTO TOV  GUVOPUOAOYOUVTOL OO GCULYKEKPUEVO TUAMOTO
HETOKMOWKO 7oL Ppiokovior HEGH OTOV TNYOMO KOOWKA. ATOSEKVOOLUE TNV
EKQPOCTIKOTNTO OVTOV TOL TPOYPOUUATICTIKOD HOVTEAOL Kol TOPOLGIALOvUE TO
TAEOVEKTNLATO. TOV MG TPOG TNV OVATTLEN AOYIGHKOD HECH TOPAUSEIYUATOV TOL
avTIKOTOTTPILOLY amoTNTIKE GEVAPLOL GYETIKA LE XEPIOUO eEMPECEDV, GYEOACTIK

npdTLTo. Kol oyediaom Paciouévn oe cuuPoraia. Xt GUVEXEL, TOPOVGIALOVUE Lo



OAOKANPOUEVT] OEPA epYOLEi®V TOL AVTHETOTILOVY TO HETOMPOYPELUATO ®G
Baocuéc ovtotteg £vog TEPPAAAOVTOS TPOYPOUUATIGHOD, EVOMUATMOVOVTAS TO OTN
dwyeipton tov yOpov epyasiog Kot vroompilovidg To pe o dladikocio
petayAmtriong minpovg kAipokog. Emiong avaivovpe tov TpoémO pe TOV OO0
mopéyovpe  okpPeic avaeopés Yoo AGON  UETAYADTTIONG KOODG KOl TANPOC

AELTOVPYIKN EKCPUAUATMOT TNYOIOL KMOOTKO Y10l LETOTPOYPALLUOTOL

ZYETIKO HE TNV E€VOMOINGN TOL HOVTEAOV, OEIYVOLUE TMG O TPOYPOULUUATICUOG
Baoiopévog oe mpoomtikég (Aspect-Oriented Programming), évo mpoypoppaTIiGTIKO
TOPAOELYLO. TTOV OPYIKE VEIGTOVTO HOVO Y10 KOVOVIKG TPOYPAUUOTO, UTOPEl va
enektafel Kot vo EpUPUOGTEL GTO TAAIGLO TOV LETOTPOYPOULUUATIGHOD. ZVYKEKPIUEVQ,
TOPOVGIALOVLE U0 GUGTNHUOTIKY] TPOTOGT Y10 TNV EIGAYMYN TPOOTTIKAOV GE OAL TO
oTAdL NG SodIKACTNG UETAYADTTIONG O £VO. GUGTNLOTO UETOTPOYPOUUATIGHOD.
Emmpdcheta, avorvovpe pia pébodo viomoinomng mov epoaprolel TIC TPOOTTIKES WG
TAPTIOEG LETOTYNUATICTIKOV LETATPOYPUULATOV, TO, OTO10 XPTGLLOTOOVV L EO1KN
B1PA0ONKN Yo TpoomTiKEG TV oMol mapExovpe. Zulntdpe TPAKTIKE GEVAPLO YPONG
YL TNV TPOTEWVOLEVT] TPOKTIKY TPOOTTIKAV, EVA TOPOVCIALOVUE TOV TPOTO LE TOV
omolo M TANPOLG KAIPOKOSG EKCPUAUATOOY] TOV TPOONMTIKMV GE EMIMEOO TNYAiOV

Kddwa pmopel va vrootnpryel katd T SLAPKEL THG LETAYADTTIONC.

Téhog, mpoteivovpe TPOKTIKES TTOVL YPNGLUOTOIOVV UETATPOYPUUUATIGUO Yo TNV
eMiTELEN EMOVOLYPCLUOTOINONG O LOKPOOKOTIKY] KAIHoKa. X& vt TNV Kotevbovvon,
napovcstalovpe o peBodoroyia Y TNV LAOTOINGCT  ETOVOYPNGULOTOUCLUOV
GYEOUOTIKAOV TPOTHTMV KOl KOAOLTIDV YEPIGUOV EPEGEDV, TPOLYLOTOTOLDVTOG TO,
oG PPMoONKES PETOTPOYPAUUATIGHOD TTOL UTOPOVV Vo Ypnoipomombovv katd
nepiotaon. EmumAéov, meprypdepovpe pia PBEATIOUEVN TPOKTIKY Yo TNV OVATTLEN
Loyopkov mov Paciletoar oe povtého (Model-Driven Engineering) émov ot é€odot
TOV gPYOLElOV LOVTEAOTOINOTG LETATPEMOVTOL GE OPUPETIKA GUVTOKTIKA O&vTpol
(ASTs) mov &ivar pHovo yio avayvmorn avti yio Tnyoio KOSIK, GTOXEVOVIONS OTNV
EMAVON TOV €YYEVOV TPOPANUATOV GLVTHPNONG CLTOV TOV gPYOAEi®V. XtV
TPOCEYYlIo]  HOG, O mNyaiog  KOJKAG TG €QOUPUOYNS  XPNOLUOTOLEl
LETOTPOYPAUUOTIGHO YOl VO ONUIOVPYNOEL KOl v Slaxeplotel o mopoyOUeva
TUNUOTO KOOIKO MG OPOIPETIKA GUVTOKTIKA 0évipa, avti va ytiletalr maveo oTtov

TOPAYOUEVO KMOKA LE O1BPOPES TPOTOTOUCELS KOl EMEKTACELC.
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“The computer programmer is a creator of universes for which he alone is the
lawgiver. No playwright, no stage director, no emperor, however powerful, has
ever exercised such absolute authority to arrange a stage or a field of battle

b

and to command such unswervingly dutiful actors or troops.’

- Joseph Weizenbaum



Chapter 1

Introduction

“I'd rather write programs to write programs than write programs.”’

- Dick Sites

The essence of programming is the transformation of the algorithmic logic required to
solve a certain problem into a program able to produce the solution. This way, we
express the logic only once and then use the program for any future occurrences of the
particular problem. Let’s consider the trivial example of deciding whether or not a
number is prime. It is clear that even for relatively small numbers this becomes a
tedious and error-prone task. Yet, the algorithmic logic required for the solution is
pretty straightforward and can be easily turned into a program that yields the correct

results.

The same line of thinking can be applied at a higher level, considering the problem at
hand to be the transformation of an algorithm into a program. In this sense, we do not
just want to deploy the logic of a particular problem into a program that solves it, but
rather have this logic turned into a higher-order program able to generate particular
problem solutions. For example consider the various design principles and patterns
available. When programming we take them into account and try to incorporate them
into our code when applicable. However, if we are to use a design pattern in two
different contexts we usually end up implementing it twice. Clearly, it would be more
efficient to transform our knowledge regarding the pattern and its use into a single
algorithm that will then be deployed for each target context to provide a full pattern

implementation.

The process described above refers to the creation of programs that generate or

transform other programs, a method known in general as metaprogramming.

Metaprogramming can help achieve various benefits [Sheard01], the most typical of

which is performance. It provides a mechanism for writing general purpose programs

without suffering any overhead due to generality; rather than writing a general
1



purpose but inefficient program, one writes a program generator that generates an
efficient solution from a specification. Additionally, by using partial evaluation it is
possible to identify and perform many computations at compile time based on a-priori
information about some of the program's input, thus minimizing the runtime
overhead. Another significant metaprogramming application is the reasoning about
object-programs. It is possible to analyze and discover properties of the object-
program that can be used to improve performance, provide assurance about the
behavior of the object program, or provide object program validation. Examples of
reasoning metaprograms include flow analyzers and type checkers. Finally,
metaprogramming can be used for code reuse at a macroscopic scale. Currently,
languages support code reuse through functions, generics, polymorphism, classes and
interfaces. However, there are recurring code patterns that cannot be abstracted and
reused with the above approaches. Since metaprogramming transforms or generates
code operating on code segments, it is possible to capture and abstract the recurring

code using some structured representation and deliver it as a directly reusable unit.

In general, metaprogramming involves a normal program p and a metaprogram mp
that when deployed will produce a transformed program p’ or create a new program
p' based on it (Figure 1.1). The language in which the original program p is written is
called the object language while the language in which the metaprogram mp is written
is called the metalanguage. If the object language and the metalanguage are the same,
it is a case of homogeneous metaprogramming, while if they are different it is a case
of heterogeneous metaprogramming. In any case, the abstract view of
metaprogramming process illustrated in Figure 1.1 has multiple incarnations matching
the different forms that the involved items p, mp, p"and p" may take.

metaprogram mp

transformed
deploy program p’
metaprogram

program p

new program p”

Figure 1.1 — Abstract view of the metaprogramming process
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One incarnation that is probably the first encounter many programmers have with the
notion of metaprogramming is the C Preprocessor (CPP) [Kernighan]. CPP receives
C source code fragments as input (p) and generates other C source code fragments as
output (p), with its metaprogram logic (mp) being specified as a text-substitution
macro system denoted with the #define directives. While part of the C language,
CPP is often implemented as a separate program enabling its usage in different
contexts, where the input and output programs are not necessarily C code fragments.
In fact, CPP, as a text-based system, is unaware of the syntax and semantics of any
language or program that deploys it, dictating only the syntax used for the

metaprogramming logic, i.e. the macro definitions.

Other incarnations may involve generating a new program in an entirely different
language than the one used for the original program. The lexical analyser generator
Lex and the parser generator Yacc are tools deploying such a form of
metaprogramming. Lex uses a pattern matching language to describe lexical elements
of a target language and Yacc uses a context free grammar to specify its syntactic
structure, while both generate C code to perform the lexical and syntax analysis for
the target language. This is a typical example of using metaprogramming for
improved performance; rather than writing a general purpose but inefficient program
for lexical or syntax analysis, one writes a program generator that generates an

efficient solution from a specification [Sheard01].

There are also scenarios where the original, the final program as well as the
metaprogram are all specified in the same language. A language exemplifying this
metaprogramming scenario is Lisp [McCarthy][Steele]. In Lisp, the textual
representation of a program is simply a human-readable description of the same
internal data structures (linked lists, symbols, number, characters, etc.) as would be
used by the underlying Lisp system. Lisp macros operate on these code structures and
Lisp code has the same structure as lists so macros can be built with any of the list-
processing functions in the language. In this sense, any operation that Lisp performs
on a data structure, Lisp macros can perform on code. It is important to note that code
in Lisp is represented in syntactic forms called s-expressions [McCarthy]. Compared
to the text-based representation of the CPP, this is far more expressive as it constitutes
a structured representation that allows the metaprogram logic to inspect internals of a



code fragment, modify it at a syntactic level and algorithmically combine it with other

code fragments.

Another similar scenario concerns program staging in Multi-Stage Languages
[Sheard00][Taha97][Taha04]. Multi-stage languages allow programmers to explicitly
state the evaluation order of the various computations specified in a program with
each stage of evaluation essentially generating code for future stages or the main
program. As such, each stage can be seen as a metaprogram that receives as input
staged source code fragments and produces as output other source code fragments that
are inserted in the main program being evaluated. The source code fragments used in
this process are specified in some structured syntactic form, usually an Abstract
Syntax Tree (AST), thus allowing the metaprogram logic to easily iterate over the
represented source code and manipulate its contents.

Metaprogramming for transforming the source code of a program is not limited to
affecting specific parts of the program, as is the case with macros or staged
computation, but it can also affect the entire program. Aspect-Oriented Programming
(AOP) [Kiczales97] is a programming paradigm that can be considered to follow such
a metaprogramming approach. AOP models crosscutting functionality that can be
introduced at specific locations of a target program. In this sense, the metaprogram
input is the entire program code, the metaprogram logic consists of the specification
of aspects (typically performed in a separate language) while the output of the
metaprogramming process is the target program code combined with the crosscutting
functionality introduced by the aspect. In this case, the input and output programs are
typically in the same form that can be either source code, some intermediate code or
AST representation, or even binary code.

Finally, the input or output of a metaprogramming process may not even be in code
form. For example, consider Model-Driven Engineering (MDE) [Kent], a software
development methodology utilizing domain models as primary engineering artifacts.
In MDE, a model can be transformed to another model (model-to-model
transformation) or a source code implementation in a target language (model-to-
source transformation) while existing source code can be used to extract a model

(source-to-model transformation). Such transformations can be seen as metaprograms



written in some language (e.g. OCL [OMG12]) that operate on some input form

(source, or model) and produce output in another form (again either source or model).

Despite current efforts to effectively support metaprogramming, there are still open
issues ranging from aspects of language design to integrated development
environment (IDE) facilities and practices for metaprogram deployment. Within this
thesis, we explore the field of metaprogramming in general and the domain of multi-
stage languages in particular and focus on facilitating the practicing of
metaprogramming, effectively paving the way for its adoption as a large-scale

development discipline.

We continue detailing the motivation for our work and elaborate on issues identified
towards facilitating metaprogram development. Finally, we present our contributions
in the field, reflecting the software engineering propositions, deployment practices

and implementation efforts required for addressing the identified issues.

1.1 Motivation

Many languages provide some support for metaprogramming and the amount of meta-
code being developed has started to grow rapidly over the past few years. However,
metaprogramming is still being treated as a special feature that is separated from the
main language. Metaprograms are usually developed and deployed with no
resemblance to normal programs. From a developer perspective, they tend to lack
common notions like files and modules, while from a deployment perspective they
typically adopt a macro invocation policy with no state sharing or the notion of a main
control flow. Moreover, metaprogramming lacks effective support for project
management, editing automations and source-level debugging, something restricting
larger-scale metaprogram developments. There seems to be no particular intention for
such lack of features other than the inherent implementation complexity when trying
to accommodate them in languages and tools. As metaprograms are programs, it is
irrational to offer diverse development styles amongst the two worlds and to actually
provide fewer facilities to metaprograms. In this direction, we emphasize the
necessity for a methodological integration between metaprogramming and normal

programming, featuring common software practices and development tools.



In the same sense, we consider that certain principles or paradigms traditionally found
in normal programming could be directly adopted or extended to apply in a
metaprogramming context. A representative paradigm in this respect is AOP that
currently supports only normal programs. Since metaprograms are full-scale
programs, they may involve cross-cutting concerns of their own, thus also requiring
AOP support. Effectively, this means that current AOP practices should be refined to
take into account the potential deployment on metaprograms. Additionally, there is
the opposite direction of aspects requiring metaprogramming support [Zook]. In this
context, and considering the previous discussion about AOP as a metaprogramming
method that transforms the original program with cross-cutting functionality, it is
interesting to explore the potential of deploying aspects as transformation programs
expressed in the same language. Such a notion would directly enable
metaprogramming support for aspects while also benefiting from any facilities offered

by the existing metaprogramming system due to language sharng.

Another promising direction is the potential of deploying metaprogramming towards
reuse. Traditional language features for reuse like functions, classes, modules, etc.
may not always suffice to capture and express arbitrary recurring code patterns of any
scale. For instance, consider Design Patterns [Gamma] that constitute directives for
solving common software engineering problems. There is no outcome that can be
directly reused as a program fragment; rather a description of how to solve the
problem in different situations, meaning that they should be manually adapted and
applied for each instance. Metaprogramming can achieve a higher level of reuse by
abstracting over code fragments and allowing the direct reuse of implemented code
templates that are instantiated through custom design parameters. A similar example
relates to the creation of reusable exception handling structures. In real-life software
systems, normal code and exception handling code is frequently tightly coupled and
specified within syntactically distinct blocks disallowing the adoption of traditional
language reuse approaches like inheritance, abstraction, polymorphism and genericity
towards modular and directly reusable exception handling code. With
metaprogramming, source code becomes a first-class value allowing syntactic
structures like exception handlers to be parameterized as reusable and directly
deployable units that can be inserted on demand in a target program.



Finally, still in the context of metaprogram deployment, we believe that
metaprogramming has the potential to overcome maintainability issues involved in
source code automation tools. For instance, consider Model-Driven Engineering
[Kent][Schmidt] where a source code skeleton is generated based on some model and
is then manually extended to produce the complete application. The manual
extensions cannot be easily reconciled with the original model while any model
updates cannot be directly incorporated in the code base as regenerating the source
code skeleton will discard the manual extensions. Through the use of
metaprogramming, we can overcome such issues by encapsulating application
generators as metaprograms. In a metaprogramming context, a model or the source
code it generates need not be external resources viewed separately from the code; in
fact they can constitute metaprogram data that can be used along with custom
deployment logic to freely mix model code and manual code extensions as part of a

metaprogram.

1.2 Contributions

This work targets the field of metaprogramming focusing on compiled languages and
explores the various aspects of the metalanguage design and its features as well as the
tools needed to provide the desired metaprogramming support. We strongly believe
that metaprogramming is essentially programming and we want to support it with
joint techniques and tools rather than treat it like a special feature. Only through
proper language features and tool support can metaprogramming become a
development approach usable in large-scale applications. Our ultimate goal is
twofold. On the one hand we want to provide a methodology for the development of
Integrated Metaprogramming Systems covering aspects of the design process, the
compilation and runtime execution, the system architecture and component
interoperation as well as the supporting tools. On the other hand we want to derive a
code of practice that will utilize metaprogramming techniques to achieve reusability
by supporting aspect-oriented programming, implementing design pattern generators
and exception handling templates, and facilitating the automation of source code
generation in the context of Model-Driven Engineering. Overall, the contributions of

this thesis are the following:



We identify a set of requirement related to language features, software
engineering, and programming environments in order to support integrated
metaprogramming.

We introduce the notion of integrated compile-time metaprograms and
propose a multi-stage metaprogramming model that realizes stages as
independent coherent programs assembled from specific meta-code fragments
present in the source code.

We provide an integrated tool chain that supports metaprograms with tools
and features similar to those used for normal programs. In particular, our
system offers: (i) integration of metaprograms and generated programs in the
workspace manager facilitating source browsing and editing features; (ii) a
build system aware of the staging process delivering typical build and
deployment tools for metaprograms; (iii) meaningful compile-error reporting
in the context of metaprogramming; and (iv) full-scale source-level debugging
of metaprograms and generated programs.

We propose a methodology for introducing aspect-oriented programming in
the entire staging pipeline and support aspect deployment as AST
transformations expressed in the same language.

We develop a practice that achieves reusable implemented design patterns by
utilizing metaprograms as pattern generators.

We propose an approach for implementing reusable exception handling
patterns with compile-time metaprogramming.

We address the maintenance issues of model-driven code generation by
refining the engineering process to encapsulating application generators as

metaprograms.

The work in this thesis has been implemented in the context of the untyped object-

based language Delta [Savidis05], [Savidis10]. As such we do not focus on type

checking issues or type system properties. Nevertheless, our propositions are

orthogonal to typing and can be well applied to any language, either typed or untyped,

as long as they offer the required support for metaprogramming. A significant reason

for choosing Delta in particular, was that we had access to both language and IDE

source code so as to implement the proposed metaprogramming extensions. Another

reason was the architectural split between the Delta language components, i.e.
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compiler, virtual machine and debugger that enabled implementing these

metaprogramming extensions in an organized and modular fashion.

1.3 Outline

This thesis is organized as follows. Chapter 2 provides some background information
on metaprogramming and discusses related work, focusing on language and tool
support for metaprogramming. Chapter 3 presents the key requirements identified for
integrating metaprogramming and normal programming and reviews existing
metalanguages against these requirements. Chapter 4 introduces the integrated
metaprogramming model and elaborates on aspects of metalanguage design and
implementation methods. Additionally, it compares the expressiveness of the
proposed model against the prevalent existing model and presents selected case
studies that evaluate and demonstrate the software engineering value of our proposal.
Chapter 5 focuses on tool support and details the extensions required to programming
environment facilities to accommodate metaprogramming. Chapter 6 explores the
adoption of aspect-oriented practices in the context of metaprogramming along two
orthogonal directions: (i) offering aspect support in the entire staging pipeline; and (ii)
realizing aspects as batches of transformation programs without requiring dedicated
languages. Chapter 7 discusses the deployment of metaprogramming towards
advanced software practices including design pattern generators, exception handling
templates, and staged model-driven generators. Finally, Chapter 8 summarizes the key
points of this thesis, draws key conclusions and discusses directions for future

research.



Chapter 2

Related Work

“The greatest part of a writer's time is spent in reading, in order to write: a man will

turn over half a library to make one book.”

- Samuel Johnson

2.1 Background Information

Metaprogramming involves generating, combining and transforming source code, so
it is essential to provide a convenient way for expressing and manipulating source
code fragments. Expressing source code directly as text is impractical for code
traversal and manipulation. Alternatively, intermediate or even target code
representations are very low-level to be deployed. Currently, ASTs are widely
adopted for source code representation, due to their ease of use and because they

retain the original code structure.

Although ASTSs provide an effective method for manipulating source code fragments,
manually creating ASTs for source fragments usually requires a large amount of
statements making it hard to identify the actually represented source code [Weise].
Thus, ways to directly convert source text to ASTs and easily compose ASTS into
more comprehensive source fragments were required. Both requirements have been
addressed by existing languages through a feature known as quasi-quotation or quasi-
quoting [Bawden]. Normal quotes skip any evaluation, thus interpreting the original
text as code. Quasi-quotes works on top of that, but instead of specifying the exact
code structure, they essentially provide a source code template that can be filled with
other code. To better illustrate this notion we briefly discuss its support in various

staged languages with a simple example.

Consider the following Lisp macro which generates the multiplication of the
argument X by itself. Definitions after the backquote operator  are not directly

evaluated but are interpreted as a code fragment value (i.e. an AST). The reverse of
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backquote is the unquote operator , which causes evaluation of such a code fragment
value (sort of lazy evaluation). The result is the expression (* 5 5) yielding 25.
(defmacro square (X)

(X, X))
(square 5) ; 25

The same example in MetaML [Sheard98] follows, where surrounding brackets <...>
are used to turn code fragments to ASTs (called delayed computations in MetaML )
and escape ~ enables combination of such ASTs within bracket expressions. This
means that square (see below) contains the AST of 5*5. Finally, run is used to
directly evaluate an AST (called execute of delayed computation in MetaML) which
in our example evaluates to 25.

val code = <5>;

val square <~code * ~code>;
val result run square; (* 25 *)

In Converge [Tratt05] the example looks quite similar, with a few syntactic changes
regarding the staging annotations: code within quasi-quotes /]...|/ is converted to
AST, while insertion $¢...} and splice $<...> operators relate to escape and run of
MetaML.

square : | ${code} * ${code} |]

code := [| 5 ]
=
result := $<square> // 25

Finally, the same example in Metalua [Fleutot07a] follows. Quasi-quotes are denoted
with +/...} while —... } implies splicing if inside quasi-quotes or execution otherwise.
result = ={
block:
code = +{ 5 }

return +{ -{code} * -{code} }
} -- 25

2.2 Language Support for Metaprogramming

2.2.1 Macro Systems

Macro systems operate on a source file by specifying certain input sequences that
should be mapped to output sequences according to some user defined procedure.
Macro systems may be language agnostic operating solely on input text and using
some fixed syntax to define the mapping procedure. Such systems are usually called

11



external preprocessors as they are typically used externally with respect to the
language translator. On the other hand, they may be a built-in language mechanism
being aware of the language syntax and semantics and may even use the full language
itself to specify the transformation logic, with the Lisp macro system being a typical

example of this category. Figure 2.1 shows the processing diagram of a macro system.
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Figure 2.1 — Processing diagram for macro systems

2.2.1.1 Text-Based

One of the most common categories of text-based macro systems is that of external
preprocessors. They are external tools that can be used independently from the main
programming language and they actually have no knowledge of the target language.
They process the language source file as simple text and perform the necessary text
substitutions producing the final source file that will later be given to the language
compiler or interpreter. As a result, a programmer using an external preprocessor
should be extra cautious to avoid common pitfalls like wrong operator precedence or

duplicate side effects.

One popular external preprocessor is the C preprocessor (CPP) used in the C
programming language [Kernighan]. In many C implementations, CPP is a separate
program invoked by the compiler as the first part of translation. The preprocessor
handles directives for source file inclusion, macro definitions and conditional
computation. Specifically for the macro definition it supports object-like and

function-like macros, token concatenation and token stringification, features
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especially helpful for performing compile time computations and writing code
generating code. For example, a macro whose parameters represent partial source-
code units, types or names may be used to generate code at compile time.
#define GEN ATTRIBUTE (id, type) \
void Set ##id (const type& val) { id = val; } \
const typeé& Get ##id (void) const { return id; }
class Point {
private:
double x, y;
public:
GEN_ATTRIBUTE (x, double)

GEN_ATTRIBUTE (y, double)
}

One relatively unknown technique that utilizes the CPP to generate repeating code
structures for similar operations executed on a list of items is the X Macro [Bright].
The technique involves a macro definition enumerating the list items and passing
them as arguments to the supplied X macro that will operate on the list items. For
example, consider a list of colors for which we want to automatically generate code
for enumerated values, string names, RGB values, etc. To achieve this we can use the
following code:
#define COLORS (X) \

X(red, "red", 255, 0, 0), \

X (green, "green", 0, 255, 0), \

X(blue, "blue", 0, 0, 255)

#define ID(id, name, r, g, b) id
enum Color { COLORS (ID) };

#define NAME (id, name, r, g, b) name
char *ColorNames[] = { COLORS (NAME) 1};

#define RGB(id, name, r, g, b) {r, g, b}
int RGBValues[][3] = { COLORS (RGB) };

Another general purpose macro processor is the m4 [Turner]. In contrast to the CPP,
m4 supports a freeform syntax, rather than line based syntax as well as a high degree
of macro expansion (arguments get expanded during scan and again during
interpolation). It also provides file inclusion, text replacement, parameter substitution
conditionals and loops. Most importantly though, m4 supports macros that can
generate other macros, as shown in the example below. This feature makes it more
expressive compared to CPP, always with respect to metaprogramming support.
define ("definedefineX', "define( defineX', "define (X', "xxx')')")
defineX X # -> defineXx X
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definedefineX X # -> X
defineX X # ->  xxx

Overall, even though macro processors are widely used and provide some basic
metaprogramming support, they tend to be insufficient for full scale
metaprogramming. The main reason is that code is treated as text and therefore we
cannot inspect the internals of code supplied as an argument. This way, we cannot
inject additional code at specific point of an input source code unit or even modify
them at a syntactic level. Intuitively one would like to have some sort of AST
representation to manipulate code either for iteration purposes (read) or for editing

(write).

2.2.1.2 Syntax-Based

A typical example of a language that provides a macro system which has the full
language itself available for the transformation logic is Lisp. A fundamental
distinction between Lisp and other languages is that in Lisp, the textual representation
of a program is simply a human-readable description of the same internal data
structures (linked lists, symbols, number, characters, etc.) as would be used by the
underlying Lisp system. Lisp macros operate on these code structures and Lisp code
has the same structure as lists so macros can be built with any of the list-processing
functions in the language. In this sense, any operation that Lisp performs on a data
structure, Lisp macros can perform on code. The programmer specifies a macro
definition stating its name and arguments as well as the code replacement. The macro
definition is specified using defmacro keyword and the code replacement may include
the special backquote, unquote and splicing operators to allow representing code
structures that may have arguments injected in them both in evaluated and
unevaluated forms. Any special syntax appears only in the macro definition; the

macro invocation resembles a normal function call.

Another language that provides a syntax-based macro system is Scheme [Dybvig09].
Scheme macros operate on ASTs and allow making sophisticated decisions based on a
node’s context within the tree. They are introduced using the define-syntax keyword
followed by associations of new syntactic keywords with transformation procedures
created using syntax-rules or syntax-case clauses and a simple pattern matching

sublanguage. Scheme macros are hygienic and respect the scoping rues of the rest of
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the language. This is assured by special naming and scoping rules for macro
expansion and avoids common programming errors that can occur in the macro
systems of other programming languages. Again, macro invocations bear a close
resemblance to procedures (both are indeed s-expressions) but they are treated
differently. The compiler first checks an expression for symbols defined as syntactic
keywords in the current lexical scope and tries to expand the macro treating the items
in the tail of the expression as arguments without compiling code to evaluate them

and this is performed recursively until no macro invocations remain.

MS? [Weise] is a macro system for infix syntax languages like C. It is programmable
in a minimal extension of C offering a template substitution mechanism based on
Lisp’s quasi-quotes and uses a type system to guarantee at macro definition time that
all macros and macro functions only produce syntactically valid program fragments.
There is no support for hygiene, but instead requires programmer intervention to
avoid variable capture errors. From an implementation perspective, code template
operators make the language context sensitive thus involving changes in the parser;
the parser should perform type analysis in order to parse macro definitions or parse

user code that invokes macros.

Dylan [Bachrach99] also provides a macro system based on skeleton syntax tree
(SST) approach and using a set of rewrite rules. Initially the program is parsed using a
“phrase” grammar able to understand only tokens and balanced delimiters. Then the
SST is traversed parsing the built-in forms and looking for macros to expand. When a
macro is encountered, the tokens that constitute the macro body are compared against
the set of rewrite rules and when the appropriate rule is matched the arguments are
accordingly substituted with the pattern matched values and the output of the macro is
parsed again until no macros are found. However Dylan’s syntax is not significantly
more flexible than LISP’s, and its macro related syntax is heavyweight, as it is a
separate language from Dylan itself. JSE [BachrachO1] is a macro system for Java
following a similar approach to Dylan macros. It differs from Dylan as exploits Java’s
compilation model to offer a full procedural macro system instead of one relying only
on rewrite-rules. This also allows the pattern matching and rewrite rule engine to be
less complex since standard Java control and iteration constructs can be used along

with it. Finally, JSE can package and reuse syntax expansion utilities in the same way
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as any other Java code, while the elements of its pattern matching engine are open to

programmer extension.

Marco [Lee] is an expressive and safe macro system macro that is independent from
the target language. It is based on the observation that the macro system need not
know all the syntactic and semantic rules of the target language but need only enforce
specific rules (syntax and name bindings for free and captured variables) that can be
checked by special oracles utilizing unmodified target-language compilers and
interpreters. These oracles are deployed by submitting specially crafted programs to
the target-language processor and then analyzing any resulting error messages. Macro
provides static types, conditionals, loops, and functions, making it Turing-complete,
while supporting target language fragments as first-class values through a quasi-quote
like syntax. For safety, it uses macro-language types to check target-language syntax,
and uses dataflow analysis to check target-language naming discipline. However, for
any language to be supported the programmer has to provide the appropriate
language-specific oracles, while to guarantee safety it requires the target language to
produce descriptive error messages that identify locations and causes of errors.

[Burmako] introduces a variety of macro flavors for supporting compile-time
metaprogramming in Scala [Odersky]. In particular apart from the def macros (typical
Lisp-style macros), it supports dynamic macros, string interpolation macros, implicit
macros, type macros and macro annotations. Each flavor encompasses a different
way that macros are presented and can be used by users, supporting various
applications scenarios like language virtualization, type providers, materialization of
type class instances, type-level programming, external domain-specific languages and

language extensibility.

2.2.2 Multi-Stage Languages

Multi-stage languages extend the multi-level language [Gliick95][Gliick96] notion of
dividing a program into levels of evaluation and make them accessible to the
programmer through special syntax called staging annotations [Taha97]. Such
annotations are introduced to explicitly specify the evaluation order of the program

computations, effectively generating code segments for future stages (Figure 2.2).
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Figure 2.2 — General staging process in multi-stage languages.

In this sense, a staged program is a conventional program that has been extended with
the appropriate staging annotations. Below we detail the basic staging annotations
adopting the syntax of MetaML, an extension to the functional programming language
ML, as it constitutes a good basis for general-purpose multi-stage programming (other
multi-stage languages discussed later have similar annotations both in syntax and

semantics).

e Brackets (<_>) construct a code fragment delaying its computation

e Escape (") combines code fragments (i.e. already delayed computations)

e Run (run _) executes a code fragment that corresponds to a delayed
computation

e Lift (lift _) constructs a code fragment from a ground value, such that the code

fragment represents the ground value

Brackets can be inserted around any expression to delay its execution. For example:

-| val result0 = 1+5;
val result0 = 6 : int
-| val code0 = <1+5>;
val code0 = <1+5> : <int>.

In a typed language like MetaML, the brackets of a delayed computation are also
reflected in the type. The type in the last declaration is <int>, read “Code of Int”. The
code type constructor is the primary devise that the type system uses for
distinguishing delayed values from other values and prevents the user from

accidentally attempting unsafe operations such as 1+<5>.

Additionally, MetaML prevents accidental collisions of variables introduced within
brackets with program variables of the same name regardless of the context in which a

code fragments is executed; in other words brackets respect hygiene.
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Escape allows the combination of smaller delayed values to construct larger ones.
This combination is achieved by splicing the argument of the escape in the context of
the surrounding brackets:

-| val codel = <(“code0, “codel)>;
val codel = <(1+5,1%+5)> : <int * int>.

Escape combines delayed computations efficiently in the sense that the combination
of the subcomponents of the new computation is performed while the new
computation is being constructed, rather than while it is being executed. This subtle
distinction is crucial for staging can make a big difference in the run-time

performance of the delayed computation.

Run allows the execution of a code fragment. It is a very important construct since it
is the only way to execute code fragments and therefore achieve the multi-stage
computations. The use of run in MetaML can be illustrated with the following simple
example:

-] val result = run <1+5>;
val result = 6 : int.

Lift allows us to inject values of ground type into a value of type code. Both brackets
and lift construct code, but lift does not delay its argument; it first evaluates it and
then constructs a representation for its value:

-| val code3 = 1lift 1+5;
val code3 = <6> : <int>.

Lift is restricted only to ground types and is not available for functions, as there is no
general way of computing a source-level representation for a function. It is not a
fundamental staging construct, since MetaML allows variables that are bound at one
level to be used at a higher level. Nevertheless, lift helps producing code that is easier

to understand, because constants become explicit.

Another multi-stage extension of ML is MacroML [Ganz]. MacroML supports
inlining, recursive macros and the definition of new binding constructs and views
macros as multi-stage computations. This eliminates the need for freshness conditions
and tests on variable names, and provides a compositional interpretation that can

serve as a basis for designing a sound type system for languages supporting macros.
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Multi-stage programming has also been explored in the context of compiled
languages. For example, MetaOCaml [CalcagnoO1] is a metaprogramming extension
of OCaml and is essentially a compiled dialect of MetaML. In fact, it is implemented
through a combination of ASTs, gensym and runtime reflection [Calcagno03]. It
differs from MetaML in that it safely handles ML’s side-effecting.

Multi-stage languages are typically homogeneous; nevertheless [Eckhardt] introduces
the notion of implicitly heterogeneous multi-stage programming, where object
language and metalanguage are different but the details of the representation are
handled by the metalanguage designer one and for all, allowing the programmer use a
familiar interface to execute generated code, thus maintaining a homogeneous multi-
stage programming experience. This enables existing generators to target different
languages without requiring any changes, and maintains the type correctness
guarantees of generated code as long as the translation itself is type preserving. Work
on heterogeneous metaprogramming also includes F# [Syme], an ML variant for
.NET, whose quasi-quoted values are generated into .NET code thus enabling

interoperability of code fragments across various .NET languages.

Most multi-stage languages focus on code generation and its optimization, but they
cannot operate as code analyzers as offering functionality to destruct or traverse
quoted expressions may cause the static type-safety guarantees to be violated. [Viera]
proposes a multi-stage language with intentional analysis that relaxes the static safety
in favor of flexibility and offers a homogeneous meta-system that allows observing
the structure of its object programs. The latter is achieved by a pattern matching
mechanism that is used to inspect the structure of quoted expressions and destruct

them into their component subparts.

There is also work towards applying multi-stage programming in the context of
imperative languages. For example, Metaphor [Neverov04][Neverov06] is a C#
[Hejlsberg] based language for expressing multi-stage programs in a strongly-typed,
imperative, object-oriented environment. It provides static type-checking of later
stage code and offers a type reflection capability to discover information about types
at run-time. Metaphor allows this reflection system to be incorporated into the

language’s staging constructs, thus allowing the generation of code based on the
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structure of types. Additionally, it treats both types and code as first-class values,

covering all four kinds of program reflection: code and type generation and analysis.

Combining multi-stage programming with imperative features is difficult, mainly due
to scope extrusion, in which free variables can inadvertently be moved outside the
scopes of their binders. In this direction, [Kameyama08][Kameyama09] introduced a
two-level language that provides delimited control operators (shift and reset), while
assuring statically that all generated code is well-formed. The language was based on
a two-level calculus with control effects and a sound type system, that was later
extended by [Kokaji] consider polymorphism. The key idea to prevent scope
extrusion was to restrict control effects to the scope of generated binders, that is, to
treat generated binders as control delimiters. Effectively, this means that code in
quasi-quotes should not have observable side effects. This requirement was later
relaxed in Mint [Westbrook], a multi-stage extension of Java [Arnold]. In Mint,
specific terms can be declared as weakly separable meaning that they do not have
observable side effects that involve code values. With escaped terms being weakly
separable, Mint can guarantee that no code value (and hence no future-stage variable)
can leave the scope in which it is generated. This way, type safety is retained, while
the system becomes more expressive; for example, in Mint it is possible to throw an
exception in a code generator, or accumulate code in a for-loop. However, there are
still restrictions; for instance restricting non-local operations within escapes to final
classes practically excludes a significant part of the standard Java library. Recently,
[Rhiger] took this one step further by introducing a type system that supports multiple

stages, evaluation under future-stage binders, as well as open code manipulation.

2.2.3 Runtime Metaprogramming

In traditional multi-stage languages like MetaML and MetaOCaml, code generation
occurs during program execution, so the term runtime metaprogramming — RTMP —
has been associated with multi-stage languages. However, runtime metaprogramming
is not limited to multi-stage languages. It can also be achieved through reflection, a
language facility allowing examining or modifying the structure and behavior of
program code during execution. This is typically supported by providing the compiler
and loader as libraries that can be used at runtime. This way, a programmer may

compose dynamic text containing source code and use the provided API to compile,
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load and deploy the dynamic code. For example, Figure 2.3 shows how two
mainstream languages, C# and Java, can offer metaprogramming through their
reflection API. For C# in particular, another option is to use the forthcoming Roslyn

technology [Ng].

string source = "class Test { public void func() { System.Console.WriteLine(\"Hello World\"); } }";
CodeDomProvider provider = CodeDomProvider.CreateProvider("CSharp");

CompilerParameters cp = new CompilerParameters();

cp.GenerateInMemory = true;

CompilerResults result = provider.CompileAssemblyFromSource(cp, source); // invoke the compiler
Assembly assembly = result.CompiledAssembly; // get the compiled assembly

Type type = assembly.GetType("Test"); // get generated class information

Object o = Activator.CreateInstance(type); // create an instance of the generated class
type.GetMethod("func").Invoke(o, null); // get and invoke €‘func’ method, printing Hello World
NEVED

String source = "public class Test { public void func() { System.out.println(\"Hello World!\"); } }";
JavaCompiler compiler = ToolProvider.getSystemJavaCompiler();

StringSourceJavaObject src = new StringSourcelavaObject("Test", source);

Iterable<? extends SimpleJavaFileObject> fileObjects = Arrays.asList(src);

compiler.getTask(null, null, null, null, null, fileObjects).call(); // invoke the compiler
Class<?> clazz = ClasslLoader.getSystemClassLoader().loadClass("Test"); // load generated class
Object o = clazz.newInstance(); // create an instance of the generated class
clazz.getMethod("func").invoke(0); // get and invoke €‘func’ method, printing Hello World

Figure 2.3 — Runtime code generation and execution through reflection: C# (top) and Java (bottom).

Lightweight Modular Staging (LMS) [Rompf] is a library-based approach for runtime
multi-stage programming in Scala. It tries to avoid quasi-quote syntax and instead
uses only types to distinguish between binding times. Essentially, while multi-stage
programming provides staging support for all language constructs by default but
requires the programmer to explicitly annotate staged code, LMS involves no explicit
staging but requires operations on staged types to be explicitly provided by the

programmer as traits.

'C [Engler], Jumbo [Kamin] and DynJava [Oiwa] are all two-level languages that
support metaprogramming through dynamic code generation. They extend their
respective base languages (C for 'C and Java for Jumbo and DynJava) with quasi-
quote operators that allow programmers specify code fragments in the original source
language level, thus facilitating compositional code generation. Jumbo performs type
checking when code is generated at runtime, requiring only the end result to be
correct; this yields better expressiveness but no safety guaranties. On the contrary, 'C
and DynJava impose restrictions to what can be expressed but offer static typing
facilities that perform such checks during compilation. From the two, 'C is more

expressive but also provides less safety guaranties, as code fragments lack context
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information and thus inconsistencies may arise in generated code. To offer stronger
type safety guaranties, DynJava relies on annotating dynamic code fragments with the
type and context information they involve. Such annotations, referred to as code
specifications, are essentially typed quasi-quotes that contain meta-data about the free
variables they contain. This information can then be used to check inconsistencies at
compilation time. Similar type safety guarantees in a dynamic code generation context
are offered by the Mnemonics [Rudolph] library that that spots most byte-code
verification errors at compile time of the generator. However, Mnemonics specifies

generated code using directly byte-code instead of quasi-quoted source code.

Finally, in interpreted language implementations (e.g. Lisp or Scheme interpreters)
there are no separate compilation and execution steps, only a single interpretation
step. This way, code generation (e.g. by a macro invocation) is not separated by the
execution of normal program code. In this sense, we also include such language cases

in the runtime metaprogramming family.

2.2.4 Compile-Time Metaprogramming

Program staging methods may also be applied during program compilation. In this
context, compile-time staging, known also as compile-time metaprogramming -
CTMP, supports the evaluation of staging definitions that transform the main program
during the compilation phase. Examples of languages supporting such a compilation

scheme include Template Haskell, Converge and Metalua.

Template Haskell [Sheard02] is a two-stage language that provides metaprogramming
facilities through quasi-quotes and splicing. Quasi-quotes [| ... |] can be inserted
around ordinary Haskell concrete syntax fragments (analogous to brackets) to
represent Haskell programs ([Mainland] proposes an extensible quasi-quotation
mechanism for Haskell providing access to many object languages), and the splice
operator $ that accepts an argument of type expression (analogous to escape) can
force the evaluation of some code within quasi-quotes during their construction. The
splice operator can also be used outside the quotations with the meaning of evaluating
its argument at compile time (analogous to run). In case the splice occurs at top level,
its argument may also have a declaration type in order to introduce new data types,
classes or instance declarations. There is also the lift operator that transforms a value
to an expression type (analogous to lift). Template Haskell also allows the
22



programmer to query the state of the compiler’s internal symbols, called reification.
This essentially provides a general way to get compile-time information about
declarations allowing the programmer to write reifyDecl f and get a data structure that
represents the value declaration for f. Finally, it is important to note that quasi-quotes
respect lexical scoping in the sense that every occurrence of a variable is bound to the
value that is lexically in scope at the occurrence site in the original source program,

before any template expansion, while they also respect macro hygiene.

Converge [Tratt05] follows the compile-time metaprogramming approach of
Template Haskell deploying it in a dynamically typed object-oriented language. It has
the same annotations semantics but with minor lexical differences; the operator to
perform compile time evaluation, called splicing operator, is denoted as $<...> and
the evaluation of an expression within a quasi-quote that copies the resulting AST into
the AST being generated by the quasi-quote is called insertion and denoted as ${...}.

Converge also provides a lift operator and respects macro hygiene.

Metalua [FleutotO7a] is an extension of Lua [lerusalimschy] that offers compile-time
metaprogramming support. It has similar staging annotations but a significantly
different underlying philosophy [FleutotO7b], strictly separating compile-time
metaprogramming meta-levels. Metalua introduces the concept of moving between
layers of meta-levels using the annotations +{...} (equivalent to brackets) and -{...}
(equivalent to run, unless it is nested inside a +{...} when it is equivalent to escape)
operators. The code executed at compile time is referred to as ‘level 0°, and the result
of the compilation as ‘level 1’. Of course there can be other levels as well; for
instance if the compile-time metacode itself relies on generation, it will be produced
by code that is executed in level -1.

Compile-time metaprogramming is not limited to program staging methods; there is a
wide range of systems supporting compile-time metaprogramming through macros,
templates, Meta Object Protocols (MOPs) [Kiczales91], traits, compile-time

reflection, compiler functionality reification, etc.

C++ templates [Stroustrup] constitute a Turing Complete [Veldhuizen03] functional
language interpreted at compile time [Abrahams][Veldhuizen96] as part of the

language type system that can be exploited to perform compile-time computations.
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Essentially, C++ can be seen as a two-stage language where the first stage consists of
the interpretation of the templates (denoted by the < > tags used in both declarations
and instantiations) and the second stage the compilation of the non-template code. For
example, consider the following template definitions used to calculate the Fibonacci
sequence. All types are resolved during compilation so all instantiations of the
Fibonacci struct, along with their enclosed enumerated filed value are
determined before code generation. Thus, when generating code for the expression
Fibonacci<5>::value the result will be the constant value 8.
template<int n> struct Fibonacci

{ enum { wvalue = Fibonacci<n-1>::value + Fibonacci<n-2>::value }; };
template<> struct Fibonacci<0> { enum { value =1 }; };

template<> struct Fibonacci<l> { enum { value =1 }; };
printf ("%d", Fibonacci<5>::value); //8, calculated at compile-time

In addition to the template system, the C++11 standard [Becker] adds an extra
metaprogramming approach through const expressions; the keyword constexpr can be
used on functions that meet some requirements, allowing them to be invoked during

compilation if their arguments are constants.

Nemerle [SkalskiO4] is a statically-typed class-based language compiled to CIL (NET
binary) supporting compile-time metaprogramming through its macro system. It uses
quasi-quotes denoted as <[...]> to express the syntax tree of the enclosing expression
and a splice operator $ to force an evaluation during the quasi-quote construction.
Nemerle macros are defined explicitly with the macro keyword so there is no need for
additional syntax in their invocation. They are invoked like a normal function, but
instead of generating a run-time function call the macro is executed at compile time
and the generated code is inlined for further processing. Nemerle macro invocations
can take place within the body of a function, providing a simple compile-time
function call, but they can also be used at various other places in the source file
targeting some specific declaration (class, field, method, property, event or argument).
This is achieved by supplying meta-attribute properties for the macros at their
definition and essentially stating where the macro will be used and the compilation
phase at which it should be processed. Based on these attributes, the macro will take
some specific arguments (for instance the class or the parameter being targeted by the
macro) that are automatically supplied by the compiler. This seams a rather intrusive

approach and it also requires knowledge of the compilation stages. Nevertheless,
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automatically supplying parameters based on the context of the macro use, introduces

the interesting idea of context aware macros.

OpenC++ [Chiba] and OpenJava [Tatsubori], are extensions of C++ and Java
respectively offering compile-time MOPs. In this approach, metaobjects (meta-class
instances) are available during compilation, providing a compile-time reflection
mechanism that is used to manipulate source code and provide class translation
through a method called type-driven translation. Essentially, after parsing the original
source, the system generates a class metaobject for each defined class. Then it deploys
the class metaobjects to translate the target class to normal language syntax (if further
metaobjects are involved in the generated code the same process continues recursively
until we have normal language syntax) and finally sends it to the original language
compiler for normal compilation. In this sense, both systems operate as separate
source-to-source preprocessors. The main difference between OpenC++ and
OpenJava is that the former utilizes ASTs as the data structure for source code
manipulation, while the latter focuses on a data structure that represents the logical
structure of an object-oriented program. Another system with a compile-time MOP is
Jasper [Nizhegorodov]; however it focuses on syntactic extensions rather than on

code generation.

The Jakarta Tool Set (JTS) [Batory] provides a set of domain-independent tools for
creating domain specific languages. JTS consists of two tools: Jak and Bali. Jak is a
metaprogramming extension of Java supporting AST constructors to create typed
quotations AST manipulation though a tree walk and hygienic generation facilities.
Bali is a parser generator for creating syntactic extensions based on a BNF grammar
with regular-expression repetitions. A JTS component consists of a Bali grammar file
for the extension syntax and a set of Jak files for the extension semantics. JTS is
related with the compile-time MOPS with its elements having direct counterparts: Jak
corresponds to the metalanguag, while Bali corresponds to MOP itself. In this sense,
JTS represents arbitrary syntactic extensions as GenVoca components like MOPs

represent class-specific extensions as meta-classes.

SafeGen [Huang05] is a metaprogramming tool for generating Java programs. It
features cursors that are variables ranging over all entities satisfying a first-order logic

formula over the input program, and generators which use cursors to output code
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fragments. Generators are written in a quasi-quotation style, giving the system a great
deal of flexibility, while their safety is statically determined by constructing first-
order logic sentences and checking their validity through a theorem prover. Since
validating first-order logic sentences is undecidable and the theorem prover may not
terminate for certain queries, SafeGen poses a time limit and maintains soundness by

providing warnings on the time-terminated queries.

Genoupe [Draheim] is a C# extension that supports defining and applying program
generators at compile-time. It is based on parameterizing classes over types and
values, and offers a @foreach keyword to loop over fields or methods of a type
parameter and generate code for each match. Genoupe offers a type system that offers
a high degree of static safety; however it cannot guarantee that generated code is
always well-typed as the deployed parameters (e.g. types) do not carry enough
constraints to allow such checking. Also, it can only generate new programming

elements, not add functionality to existing ones.

Another C# extension for compile-time metaprogramming is CTR [Fahndrich]. CTR
offers compile-time reflection and utilizes a high-level construct called transform to
write code for inspection and generation in a pattern matching and template style,
avoiding at the same time the complexities of reflection APIs. It avoids the explicit
quoting and unquoting conventions to keep new syntactic constructs to a minimum
and relies on meta-variables and a few keywords. It also provides the benefits of
staged compilation as well-formedness of generated code is statically checked. The
latter applies also for compiled transform entities, meaning they can be distributed
normally, while maintaining their safety guarantees. CTP offers better safety
guarantees than Genoupe and enables extensions by combining patterns and

generators within a single transform.

MorphJ [Huang08][Huang11] is another language supporting pattern-based reflective
declarations. It improves expressiveness through nested patterns that elaborate the
outer-most pattern with blocking or enabling conditions without sacrificing safety. In
particular, MorphJ refines the type system of CTR with a modular type system and
offers a both high level and safer solution as it can separately type-check generic

classes and catch errors early. Additionally, it does not require introducing concepts
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outside of the base language (as the generator and transform of CTR); instead code

generation is incorporated with the concept of generic classes.

Meta-trait Java [Reppy] is a compile-time framework that allows both generation and
introspection of code focusing on member-level patterns. It introduces user-
customizable traits that are parameterized over types, values, and names offering
compile-time pattern-based reflection. Traits support a uniform, expressive and type-
safe way for metaprogramming without resorting to AST manipulation, with their
type system incorporating a hybrid of structural and nominal subtyping. PTFJ [Miao]
generalizes the trait functions of Meta-trait Java, combining pattern-based reflection
with traits and providing language features for manipulating sets of member
declarations like giving them names, manipulating their domains using set operations,

and passing them as arguments to traits.

Mython [Riehl] is a variant of the Python programming language that supports
extending the compilation process through an extended quotation mechanism. Apart
from the code being quoted, Mython quotations accept an additional parameter that is
used to both parse the quoted code and extend the compile-time environment (unlike
other user code, the quotation parameter is evaluated at compile-time). This approach
allows embedding other languages by specifying compile-time definitions able to
translate the embedded code into Python. Such translations return host language
abstract syntax, and the possibly modified compile-time environment. Programmers
can bind new names in the compile-time environment by using a special translation
function provided by the compiler. Finally, compiler built-in functions become first
class values enabling the programmer customize their functionality and thus offering
support for domain-specific optimizations.

MetaFJig [Servettol0][Servettol3] is a Java-like language where class definitions are
first class values that can be built on existing classes through a set of primitive
composition operators, namely sum, restrict, alias, and redirect. Compilation is based
on a series of meta-reduction steps called compile-time execution that try to derive
non constant class declarations in the context of the current metaprogram. This
process is guaranteed to be sound by interleaving meta-reduction steps with type
checking that dynamically detects class composition errors The latter allows for a
modular approach enabling compile-time execution to defined on top of type-
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checking and execution system of the underlying language. MetaFJig also ensures
meta-level soundness; this means that no typing errors during compile-time execution
can originate from meta-code that has already been compiled (e.g. library code). This
is not granted for other approaches like C++ templates.

Backstage Java (BSJ) [Palmer] is a Java extension for compile-time
metaprogramming, supporting algorithmic, contextually-aware generation and
transformation of code. It features the following properties: (i) non-local changes are
effected without incurring confusing side-effects; (ii) execution order is dependency-
driven to retain determinism in case of non-local changes; and (iii) conflicts between
independent metaprograms are automatically detected. To achieve these, BSJ uses a
novel difference-based metaprogramming approach that regards metaprograms not as
simple program transformations but as transformation generators. In particular, ASTs
record any changes made on them using edit scripts and each metaprogram is
executed on a different AST copy without observing changed from other
metaprograms it does not depend on. Eventually, the generated edit scripts are merged
to produce the final program. Any failure in the merge operation corresponds to a

metaprogram conflict and is reported appropriately by the system.

Fan [Hongbo] is a compile-time metaprogramming system for OCaml that features a
unified abstract syntax representation defined using polymorphic variants and
supports nested quasi-quotes for the full language syntax, allowing them to be
overloaded and customized by the programmer. It also provides support for syntactic
extensions based on delimited, domain-specific languages (DDSLs) that can be
implemented as libraries. In fact, the quasi-quotation mechanism just another DDSL
library that is bundled with the compiler.

2.2.5 Modifiable Syntax and Semantics

Programming languages usually have a predefined fixed syntax that is a core part of
their specification. Some of them have a uniform and flexible syntax (i.e. Lisp) that
allows them to specify new syntax constructs into the language while others (for
instance Camlp4 [Rauglaudre]) allows extending some fixed grammar entries. The
motivation behind such syntax extensions is to allow programmers extend the
language and customize it according to their needs. Especially in languages that
support macro systems they are extremely useful, since they allow conveniently
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incorporating popular syntactic entities from other languages as well as embedding

domain specific languages (DSLs) in the main language [Czarnecki].

Lisp has traditionally been the language that used its macro system to add syntactic
extensions to the language core and indeed, elements of the standard Lisp syntax are
implemented as macro extensions. It has such a minimalistic syntax that essentially
everything written in it extends the basic language. The programmer uses the
defmacro keyword as well as the quote, backquote, unquote and splicing operators to
express the macro name and its parameters along with the code that will be replaced
at each occurrence of the macro invocation. A simple example of a Lisp macro adding
a square construct to the language is the following:

(defmacro square (X)

'(let ((Temp ,X))
(* Temp Temp)))

Scheme also supports introducing new syntactic constructs to the language through its
macro system. New syntactic extensions are defined by associating keywords with
transformation procedures, or transformers. Syntactic extensions are defined globally
using top-level define-syntax forms or within the scope of particular expressions using
let-syntax, letrec-syntax, internal define-syntax, or fluid-let-syntax while transformers
are created with syntax-rules, syntax-case, or some implementation-dependent
mechanism. Syntactic extensions are expanded into core forms at the start of
evaluation (before compilation or interpretation) by a syntax expander. The expander
is invoked once for each top-level form in a program. If the expander encounters a
syntactic extension, it invokes the associated transformer to expand the syntactic
extension, and then repeats the expansion process for the form returned by the
transformer. If the expander encounters a core syntactic form, it recursively processes
the sub-forms, if any, and reconstructs the form from the expanded sub-forms.
Information about identifier bindings is maintained during expansion to enforce
lexical scoping for variables and keywords. Below, we have an example of a Scheme
macro implementing a foreach construct based on the map function.

(define-syntax foreach

(syntax-rules ()
((foreach element in list body ...)
(map (lambda (element)

body ...)
list))))
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Dylan also provides syntax extensions based on its skeleton syntax tree (SST)
approach. Initially the program is parsed using a “phrase” grammar able to understand
only tokens and balanced delimiters. Then the SST is traversed parsing the built-in
forms and looking for macros to expand. When a macro is encountered, the tokens
that constitute the macro body are compared against a set of rewrite rules and when
the appropriate rule is matched the arguments are accordingly substituted with the
pattern matched values and the output of the macro is parsed again until no macros
are found. A sample Dylan extension is illustrated below.

define macro when

{ when (?test:expression) 2body:body end }

=> { 1if (?test) ?body end if }
end macro;

Metalua is able to dynamically extend its syntax based on its approach to separate
meta-levels. The programmer may introduce syntax extensions regarding prefix, infix
and suffix expression modifiers or new statements based on dedicated keywords, and
does that by simply dropping one meta-level and plugging-in the desired extensions to
the Metalua parser by specifying the necessary lexical (keywords), syntactic (token
sequence) and semantic (function to perform the extension logic) information. All
code that follows in the file in the original meta-level will be parsed with these
extensions enabled. Code in lower meta-levels is not affected making it clear when
and where a syntax change takes effect and preventing syntax-changing code from
interfering with itself. Metalua extensions are easy to use but there are limitations in
what can be parsed the programmer needs to have a very good understanding of the
underlying parser and compiler. The extensions can be directly incorporated in the
standard language but composition of multiple and possibly advanced extensions can
be challenging or even impossible. An example of a Metalua syntactic extension that

adds a power operator to the language is available below.

-{ block:
mlp.lexer:add{ "let", "in" }
mlp.expr:add{ "let", mlp.id, "=", mlp.expr, "in", mlp.expr,

builder = let in builder }
local function let in builder (x)
local variable, value, expr = unpack (x)
return +{

function (-{variable})
return -{expr}
end (-{value}) }

end
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Converge supports syntactic extensions by introducing the concept of a DSL block on
top of the standard splice operator. This allows arbitrary blocks of text to be
embedded in a Converge file that will be treated as complete, localised DSLs
embedded into the language. When the Converge tokenizer encounters a DSL block,
the text on the next level of indentation is left unparsed and is passed as a raw string
to a user defined DSL implementation function that is called at compile-time to parse
the text and return an AST. To this end, Converge provides a number of convenience
functions to capture standard idioms of DSL parsing as well as DSL AST creation.
Converge limits the ways in which new syntax can be embedded into the language,
but allows any syntax to be embedded, without interfering with the main language.
This allows a clean separation between, and composition of, languages even when
DSLs are embedded within each other. However this also means that DSLs can have
relatively limited interaction with each other. Here is an example of a Converge DSL
block.

func timetable (dsl block, src infos):

parse _tree := CEI::dsl parse(dsl block, src infos,\

["Premium", "Cheap"], [], GRAMMAR, "start")

return Translater.new () .generate (parse_ tree)
$<timetable>:

8:25 "Exeter St. Davids" Premium
10:20 "Salisbury" Premium, Cheap
11:49 "London Waterloo"

Nemerle also has built-in support for syntax extensions but it is limited to a number of
fixed places of the language grammar. There are two forms of syntax extensions.
Using the first one, the programmer is able to add new parsing rules that will be
triggered by a set of user defined keywords and operators. When the parser encounters
one of them at a valid position it executes a special parsing function for syntax
extension related to the corresponding token. The second one allows specifying that a
given part of program input will not be interpreted by the main parser, but will be
passed to a function that will perform user defined parsing based on the stream of
tokens. This stream consists of grouped and matched opening and closing brackets
{3, O, [] and <[]>) that they call token groups. In the definition of the syntax
extension macro a parameter is annotated to accept such a token group and will be
given the nearest group of tokens from the input during its invocation. An example of

a macro defining a syntax extension in Nemerle is the following:
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macro xml literal (tokens : Token)
syntax ("xml", tokens) { // process ’tokens’ }
def x = xml <person><name>John</name></person>;

While this approach allows embedding an arbitrary syntax into the language, it is
limited by the fact that token groups have certain separators (comma for () and [],
semicolon for {} and <[]>) that have a special meaning and therefore cannot be used
as part of the embedded syntax. This means that the syntax extensions allowed by the
language are restricted to those conforming lexically to Nemerle and having the same

token tree structure.

SugarJ [Erdweg] is a Java based language built on the grammar formalism SDF
[Heering] and the transformation system Stratego/XT [Bravenboer], introducing the
notion of sugar libraries as an approach for syntactically extending a programming
language within the language. A sugar library is like an ordinary library, but can, in
addition, export syntactic sugar for using the library. Each piece of syntactic sugar
defines some extended syntax and a transformation — called desugaring — of the
extended syntax into the syntax of the host language. For example, the following code
shows the definition of a sugar library for pairs along with an example usage.
//library source

package pair;
public class Pair<A,B> { .pair implementation as a generic class.. }

package pair;
import org.sugarj.languages.Java;
import concretesyntax.Java;
public sugar Sugar ({

context-free syntax

" (" JavaType "," JavaType ")" -> JavaType {cons("PType")}
" (" JavaExpr "," JavaExpr ")" -> JavaExpr {cons("PExpr")}
desugarings

desugar-pair-type
desugar-pair-expr
rules
desugar-pair-type:
PType(tl, t2) -> |[ pair.Pair<~tl, ~t2> ]|
Desugar-pair-expr:
PExpr (el, e2) -> |[ pair.Pair.create(~el, ~e2) ]|
}

//application source
import pair.Sugar;
public class Test {
private (String, Integer) p = ("12", 34);
}
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Sugar libraries maintain the composability and scoping properties of ordinary libraries
and thus are good candidates for embedding DSLs into a host language. As libraries
they can also be applied on other libraries, effectively supporting syntactic extensions
in the definition of other sugar libraries. Finally, then can be imported across meta-
levels to activate language extensions in user programs or act on all meta-levels

uniformly to enable syntactic extensions in metaprograms.

In this thesis, we focus on a unified language for both normal programming and
normal programming. On the contrary, syntactic extensions typically distinguish
between programming elements available in the metalanguage or the normal
language. In this sense, the support for syntactic extensions deviates from our main

direction and thus it is not considered as a requirement in the metalanguage design.
2.3 Tool Support for Metaprogramming

2.3.1 Error Reporting

Having proper error reporting for compilation errors is essential in the context of
metaprogramming as the erroneous code may be generated from other code and never
appear in the original source. However, most languages that support
metaprogramming provide very limited error reporting for compilation errors
originating from generated code. Typically, the error is reported directly at the
generated code with no further information about its origin or the context of its
occurrence. Below we examine some of the few cases that offer a more sophisticated

error reporting mechanism for compilation errors.

C++ compilers (e.g. Microsoft Visual Studio Debugger, GDB) provide fairly
descriptive messages regarding compilation errors occurring within template
instantiations. Using these messages provided, the programmer may follow the
instantiation chain that begins with the code of the initial instantiation that caused the
error (typically user code) and ends with the code of the instantiation that actually
triggered the error (probably library code). Essentially, these error messages represent
the execution stack of the template interpreter. While potentially informative and able
to provide accurate information to experienced programmers, template error messages
are quite cryptic for average programmers and require significant effort to locate the

actual error. Unfortunately, this is the common case for nontrivial meta-programs and
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applies especially to libraries with multiple template instantiations (e.g. Boost
[Abrahams]).

Converge provides some error reporting facilities related to meta-programming by
keeping the original source, line and column information for quoted-code and
retaining it at splice locations (injections into the program AST). For runtime errors,
this approach works fine but is limited by the single source code location that can be
associated with a given virtual machine instruction, not allowing for a complete trace
of the error. For compile-time errors, Converge can track down the source information
of the quasi-quotes and associated insertions (i.e. any AST creation) to provide a
detailed message. However, it fails to provide information about the splice locations,
which actually involve staging execution. This means that any error originating in
generated code cannot be properly traced back to the code that actually produced it.
Finally, any compile error reported is presented only with respect to the original
source, thus providing no actual context regarding the temporary module (i.e.

computation stage) being executed to perform the splice.

[Hirzel] presents a macro system that deploys contractual checks to offer better
compile-time error reporting. Each macro is associated with a pre-condition and a
post-condition that are checked during macro expansion. If an error occurs, it reports
the violated contract appropriately, blaming the macro call for pre-condition
violations or the macro definition for post-condition violations. This approach avoids
errors that are hard to understand, because they refer to implementation details of the
macro. However, contracts for complex macros may be difficult to express, while

they require a lot of effort on behalf of the programmer.

2.3.2 Debugging

Many metalanguages are extensions of existing languages with metaprogramming
features. For example, MetaOCaml is a multi-stage extension of the OCaml language,
MetaML is a higher-order extension of the ML language for staged
metaprogramming, Template Haskell is a Haskell extension that adds compile-time
metaprogramming facilities and Metalua extends Lua with a complete macro system.
The base languages typically provide some debugging facilities (e.g. ocamldebug for
OCaml, MLWorks debugger for ML, GHCi debugger for Haskell and Ldb for Lua);
however their counterparts that support metaprogramming fail to provide similar
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debugging tools. This is not limited to metalanguage extensions alone; there is a
general lack of debugging support for most languages offering metaprogramming
facilities. For instance, in Template Haskell the closest a programmer gets to tracing
and debugging the code being executed at compile time is using a compiler flag to
show the expansion of the top-level code splices as they happen. Similarly, the only
debugging facility in Metalua and Converge is the pretty printing of AST values (for
example Converge’s CEI::pp _itree library function). Overall, debugging functionality
in such languages is mainly limited to the primitive “printf debugging”, being far
from adequate when dealing with complex metaprograms. We continue with some
exceptions of languages and tools that offer more advanced debugging support in the

context of metaprogramming.

C++ support for metaprogramming is based on its template system that is essentially a
functional language interpreted at compile time. The C++11 standard also introduced
functions executed at compiled-time when declared with the keyword constexpr.
There are C++ debuggers (e.g. Microsoft Visual Studio Debugger, GDB) that allow
source level debugging of templates, but only in the sense of tracing the execution of
the template instantiation code and matching it to the source containing the template
definition. However, during compilation there is neither a way to debug template
interpretations nor is there support for tracing functions declared as constexpr. A step
towards the former is Templight [Porkolab], a debugging framework that uses code
instrumentation to produce warning messages during compilation and provide a trace
of the template instantiation. Nevertheless, it is an external debugging framework not
integrated into any development environment and relies on the compiler generating
enough information when it meets the instrumented code. Finally, there is no

programmer intervention; the system provides tracing but not interactive debugging.

D [Alexandrescu] is a statically typed multi-paradigm language that supports
metaprogramming by combining templates, compile time function execution, and
string mixins. Descent [Descent], an Eclipse plugin for D code, provides a limited
compile-time debugging facility for simple templates and compile-time functions.
However, the debugging process does not involve the normal execution engine of the
language; instead it relies on a custom language interpreter for both execution and

debugging functionality.
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Nemerle and its IDE, Nemerle Studio, provide support for debugging macro
invocations during compile time. Nemerle macros are actually compiler plug-ins that
have to be implemented in separate files and modules and are loaded during the
compilation of any other file that invokes them. Since they are dynamically linked
libraries with executable code, it is possible to debug them by debugging the compiler
itself; when a macro is invoked, the code corresponding to its body is executed and
can be typically debugged. However, the development model posed, requiring macros
to be separated, is restrictive and the macro debugging process is rather cumbersome.

DrRacket (formerly DrScheme) [Findler], a Scheme IDE, provides a facility for
debugging macro code. Specifically it has a macro stepper that allows the
programmer to see all macro transformations step by step. The macro stepper has a
good interface that highlights and matches macro arguments and their usage while
also providing information about their source location and properties. Furthermore, it
is possible to view the variable renaming steps used for the macro hygiene. The macro
stepper is a significant debugging aid for metaprogramming especially in a macro-

extensible language where extensions can be stacked in a “language tower”.

Lisp IDEs like AllegroCL [Franz] and LispWorks [LispWorks] provide good macro
debugging facilities. For example, both provide tracers able to show any function or
macro invocation, their arguments, environments as well as their results. Additionally,
they provide macro steppers for inspecting evaluations step by step. During each step,
macro invocations can either be directly evaluated to provide their result or they can
be expanded to show the resulting code and then stepped further into for a detailed
trace. A variety of stepping options are provided, (step to through call, step to call,
step to value, next step, step to end and step to cursor) enabling the programmer
perform a very targeted trace and thus significantly minimizing the time and effort

needed to debug complex macros.

JSE provides a macro expand facility that can generate the result of a macro
expansion given an input string containing the macro call. The macro call can either
be fully expanded or expanded one level at a time, thus enabling smart editors to
selectively macro expand marked regions of program source. JSE also offers macro

tracing flags for output regarding pattern matching and the binding of pattern
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variables. Still, the debugging functionality is far from what is typically supported by

a Java debugger.

2.3.3 IntelliSense

Source editing support, also known as IntelliSense [Microsoft], is a feature of great
importance as it provides a significant aid for the programmer and speeds up the
software development process. Most IDEs provide such support generally in the form
of tooltips that display information regarding various language expressions and
symbols (e.g. argument names, symbol types, external documentation, etc) or in the
form of auto-completion. Unfortunately, to our knowledge, there are few IDEs that
support source editing facilities with respect to the metaprogramming features of their

targeted language.

As previously discussed, C++’s metaprogramming is based on its templates. Visual
Studio for C++ provides Intellisense information for all template code. There is auto-
completion support for templates functions and template classes and their members as
well as tooltips that appear when hovering over a symbol or typing a template
instantiation or template function call that provide information about the template and
its parameters. It should be noted of course, that C++ templates cannot produce any
code other than their instantiations with specific types. This makes proving of source
editing features quite easier as all information required for the source editing features

is available directly from the source files.

Nemerle also provides support for source editing with respect to its macros. Macros
are compiler plugin declared in separate files and modules and handled as special
class definitions. This way, it is easy to provide auto-completion support for their
invocations. More importantly though, when hovering over a macro invocation
Nemerle provides a tooltip with information about the macro (point of definition and
possibly keywords associated with it) and its result, i.e. the code that will be produced
by the invocation and injected into the file being compiled. This way, programmers
can directly see what the macro code they type translates to and have a better
overview of the resulting source. On the downside, while typing a macro invocation
there is neither Intellisense support for its arguments nor a prompt to show its correct

syntax in case it is a syntactic extension macro.
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Leksah [Nicklisch], an IDE for Haskell that provides some support for Template
Haskell as well, provides source editing that supports metaprogramming. More
specifically, it provides auto-completion that takes into account symbols that are
brought into scope through metacode (i.e. top level splices). This is indeed very
helpful, as the programmer can acquire and use information that is not directly
available when reviewing the source. A drawback though is that the auto-completion
information is not automatically updated during editing but requires the source file to

be compiled first.

2.3.4 Browsing

Another important feature provided by many popular IDEs is source browsing. It
allows programmers to have a better overview of their code structure providing them
with easy access and navigation across modules, classes, functions, variables, etc. As
previously discussed, in a metaprogramming system a significant part of the final
executable code is introduced using metacode, and is therefore not easy (or in some
cases even possible) to browse through it. It is therefore evident that source browsing
should be an essential feature for integrated metaprogramming systems. Nevertheless,

we have observed that only a few existing systems provide such a feature.

There are IDEs for C++ (e.g. Microsoft Visual Studio and SunStudio) that provide
source browsing features that support the language’s metaprogramming constructs,
i.e. templates. For example, Visual Studio provides a project based class view as well
as a file based scope view that provide information about classes, namespaces,
functions, macros, constants and type definitions. Everything related to a template is
properly marked and associated with its template arguments. However, the note about
C++ templates not able to produce any code other than their instantiations with
specific types applies here too; all relevant source browsing information is already
available on the original source so one can extract them with a manner similar to

normal source browsing.

Open Dylan, a native code compiled Dylan implementation, has a full-feature IDE

that among others provides source browsing facilities. Specifically, it provides an

overview of the various definitions (macros, classes, constants, functions, variables,

etc) present within a module. Most importantly though, it shows all macro invocations

that introduce any additional definitions along with the definition introduced
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themselves. This is really important as it directly shows the programmer all
definitions available in the normal code. A small drawback though is that this
information is not automatically refreshed during editing; a compilation of the source
file is first required to generate the browsing information.

A similar feature can also be found in Leksah. In Template Haskell, top level splices
may introduce declarations and Leksah provides a source browser that displays
information about such generated declarations. Again though, we have the same
drawback; the information is only refreshed after a compilation of the file containing

the top level splice.

All in all, there is limited source browsing support both in quantity and in quality.
Many more IDEs could provide source browsing systems and the existing ones could
provide additional information or generally a better overview of the metacode and its
outcome. Especially for multi-stage languages, there is no such support. However,
each compilation stage may have a different set of available definitions that may even
not be available in the original source, so it especially valuable having a good

overview of what’s available at each stage.
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Chapter 3

Requirements

“The formulation of a problem is often more essential than its solution, which may be

merely a matter of mathematical or experimental skill.”

- Albert Einstein

The practicing of metaprogramming is strongly affected by the ability of related
language features and tools to effectively support software engineering. In this
context, we identify some prominent software engineering requirements that are
essential for the integrated practicing of metaprograms and normal programs and

review existing metalanguages and systems against the identified requirements.

3.1 Analysis

We define and elaborate a set of requirements derived from the weaknesses of
existing metalanguages that compromise the software engineering of metaprograms.
That is, they are criteria directly affecting the practicing of metaprogramming and
constitute an important aspect of our work. Overall, we consider metaprogramming to
be an art fundamentally harder to normal programming. However, the restricted
software engineering support by existing languages makes it even harder, sometimes
rendering metaprogramming to a dark art for average programmers. As it becomes
evident it is the bar regarding metaprogramming facilities that is actually raised by

such requirements to a level similar to normal programming.

3.1.1 Exploiting Normal Language Features and Tools

One of the most important requirements towards integrating normal programs and
metaprograms is the full exploitation of all normal language features and tools in the
context of the metalanguage. It is essential that metaprogrammers experience the
metalanguage as an extension on top of the normal language, rather than as a
restriction of it. For instance, if the normal language supports classes, threads and

modules, the metalanguage should also provide them in the same manner. While such
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a requirement may seem apparent at a first glance, as we discuss under the related
work, it is not currently met by the available compile-time metaprogramming
languages. We continue by briefly explaining the implications of this requirement in

the practicing of compile-time metaprogramming.

There are two reasons justifying why the exploitation of all normal language
constructs in the metalanguage is critical. Firstly, in implementing a metaprogram one
should not be given fewer features than what is offered in implementing a normal
program. Secondly, even when alternative equivalent facilities are offered, it is
difficult and painful for programmers familiar with the normal language to learn and
deploy a different set of constructs for similar programming tasks. Overall, the normal
language should be fully reused in expressing and organizing the metaprogramming
logic, with additional syntax and semantics introduced only where necessary.

To outline the importance of this requirement, consider C++ templates [Stroustrup],
which can support some level of compile-time metaprogramming. As previously
discussed, templates reflect a special-purpose functional language, interpreted during
compilation, being fundamentally different from the class-based imperative low-level
nature of the normal language. The latter requires so radically diverse approaches to
cope with similar computation problems that reuse of design or code is disabled. For

instance, consider the following normal C++ code for the Fibonacci sequence:

int fibonacci (int n) {
if (n == [l n == 1)
return 1;
else
return fibonacci(n - 1) + fibonacci(n - 2);

}

printf ("%d", fibonacci(5)); //8, calculated at runtime

To perform the same computation during compile-time with templates requires a
feature known as recursive template specialization:
template<int n> struct Fibonacci

{ enum { wvalue = Fibonacci<n-1>::value + Fibonacci<n-2>::value }; };
template<> struct Fibonacci<0> { enum { value =1 }; };

template<> struct Fibonacci<1l> { enum { value =1 }; };
printf ("%d", Fibonacci<5>::value); //8, calculated at compile-time

Clearly, the two versions are fundamentally different. In particular, the second one is
far less readable and obvious as it widely deviates from the common style of the

language and involves custom coding practices.
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In general, we argue that there should be no particular language-oriented distinction
between normal functions and metafunctions. They may differ in terms of their
operational role, with the latter typically implementing some AST manipulation logic,
but other than that there should be no fundamental difference between them.

Apart from the thorough exploitation of all language features, the entire set of
language tools should be reusable as well, including the compiler, runtime library,
virtual machine and debugger. In other words, metalanguage development should
avoid reinventing the wheel and emphasize tool reuse, while appropriately extending
or refining where needed according to the extra metaprogramming requirements. In
particular, the original compiler and virtual machine may be extended to translate and
execute respectively both normal programs and metaprograms. Similarly, by
extending the original debugging system of the language, source-level debugging of

metaprograms should be facilitated as with normal programs.

3.1.2 Supporting Context-Free and Context-Sensitive Generation

Metaprogramming is commonly used like a macro system to transform a source
fragment by inserting extra source code through code generation directives. In this
framework, there are two possible options (Figure 3.1) in controlling the insertion

context: (i) context-free: the code is inserted at the source point of the generation
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Figure 3.1 — Context-free (top) versus context-sensitive (bottom) code generation
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directive; and (ii) context-sensitive: information on the current AST context is
provided to the generation directive enabling code insertion at any AST locations

reachable by the supplied context.

The context-free case is commonly called splicing or inlining and covers all cases
where the generator logic does not require awareness of the code insertion context. In
this case, the generator operates only on its arguments, if any, and produces a source
fragment that is inserted by replacing in the AST the original generator directive.
Context-free generation is very common in metalanguages, while frequently the only

available option as in Lisp, Scheme, MetaML, Metalua and Converge.

The context-sensitive case is more general, accounting to all scenarios where the
generator logic needs to decide the actual code insertion context. Additionally, the
generator may insert code fragments at multiple different locations, not merely in a
single context. Typically, the latter involves an AST search by the generator logic in
order to locate the appropriate target contexts. Examples of context-sensitive
transformations relate to meta-attribute definitions of Nemerle and the built-in context
variable in Backstage Java [Palmer] providing access to the surrounding AST.

3.1.3 Composing and Generating All Language Constructs

While metaprograms eventually generate code, they always reflect some kind of
source fragment composition logic according to particular design demands. Usually
reuse is the primary motivation leading to composition and is frequently practiced by
designing code skeletons or templates. In such a typical scenario, reused code clearly
concerns the entire range of language constructs, while recurring code patterns
become code skeletons with composition and insertion applied by metaprogramming.
Now, once this type of reuse is anticipated for normal programs, there is no particular
reason to be excluded for metaprograms.

In other words, metaprograms are programs too, thus deserving all features available
to normal programs, including the ability to reuse any repeating metacode. For the
latter it is essential that the metalanguage enables expressing and composing
metacode as with normal code. In conclusion, we need to enable all kinds of
metatags, including generator directives, to be freely quasi-quoted, manipulated and

composed in the form of ASTs. To illustrate this requirement we provide a simple
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example from a text-based macro system, in particular the C preprocessor
[Kernighan] where the feature is missing. In particular, macros generating further
macro definitions are disabled. For instance, consider the following C macro and its
use below:

#define SINGLE ARG MACRO GENERATOR (name, arg, replacement) \

#define name (arg) replacement
SINGLE ARG MACRO GENERATOR (SQR, x, (x)*(x))

After the preprocessing stage, the resulting source text is as follows:

#define SQOR (x) (x)* (x)

The latter is invalid as pure C code and a compile error is caused. Apparently, this

problem is resolved with multiple preprocessing stages instead of a single one.

Another requirement relates to the practical limitations of quasi-quoted code to handle
more comprehensive scenarios of code composition. In particular, quasi-quotes
express code fragments with a constant structure, known at compile-time. They
cannot express structures being the outcome of computation, such as if statements
with a variable number of else if clauses. To allow generating such dynamic patterns
the metalanguage should provide extra facilities for manipulating AST values
including methods to traverse ASTs. This may be achieved either through extra
custom constructs such as algebraic data types for trees in Metalua, or via special

library functions like the ITree functions of the Compiler.CEl interface in Converge.

Finally, a known issue related to generating code that introduces names is variable
capture [Kohlbecker]. It concerns the potential of name conflicts between the inserted
code and the code already available at the insertion site. The earliest approach to
eliminate such conflicts was introduced in Lisp with the mandatory use of gensym in
all macros involving temporary variables. Later, the problem was better addressed in
Scheme through hygienic macros showing the importance of code generation without

having to explicitly address potential name collisions.

However, there are still cases where variable capture without automatic renaming is
indeed the desired effect, for instance when separately generating code for definitions
and code for their actual use. In such scenarios we should enable programmers

conditionally disable the hygienic behavior and preserve the original names in the
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generated code. In conclusion, it is important to support both cases by enabling the

selection of either hygienic generation or name capture.

3.1.4 Sharing and Separation of Concerns among Stages and Main

In general, all stages share the common role of transforming the source code of their
embedding program. In particular, outermost stages transform the source code of the
main program, while inner stages transform the source code of their enclosing stage.
To realize the required transformations, stages will typically implement functionality
for creating, editing and inspecting the necessary source fragments. Since similar
types of generated source patterns may well reappear, reuse and sharing of

functionality across stages is prominent.

Besides source code manipulation, stages as programs will require all sorts of utility
functions commonly needed in normal programming. When such functionality is also
required in the main program, sharing between stages and main is inevitable. In
compile-time metaprogramming the latter means such functionality is available both
at runtime, by main, as well as during compile-time evaluation, by stages. For
example, consider the following Converge example, where functionality for some

custom data containers is shared between runtime and compile-time evaluation.

func CreateAndPopulateContainer(...): = m e m e
i Run-time invocation

. o . - - - 1
func CompileTimeCalculation (container): L----QN@QTIUTPZ----J

| Compile-time invocation

func main() : (withinstage) .
container := CreateAndPopulateContainer(...)
$<CompileTimeCalculation (CreateAndPopulateContainer(...))>

Alternatively, the shared container functionality can be better organized as a library
deployed both by main and stages. But again, it is not always a best practice to
produce a library just to reuse some common code between stages and main. Thus, the
language should offer both options, by enabling code sharing and library

deployment, while letting programmers choose the one better fitting a situation.

Besides any possibly shared functionality between stages and main, each should
remain a distinct program with its separate hidden definitions and execution state. In
this sense, encapsulation should also be supported to enable separation of concerns

and thus facilitate modular staging. An example of encapsulation is shown in the
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following Metalua code, with function CreateAST being available only during
compilation (stage) and function Print being available only during runtime (main).
-{ block: function CreateAST () return +{1} end }

function Print (x) print(x) end
Print ( -{CreateAST ()} )

3.1.5 Programming Model for Stages Equal to Normal Programs

Normal programs can be decomposed into separate modules, enabling sharing of
functionality and state, while realizing a common global control flow. The present
situation with stages is very different from this notion due to a custom and arguably
impractical programming model commonly offered. While theoretically the existing
model renders stages as expressive as normal programs, this remark refers to
computability only and has little value in the software engineering quality of the
model itself. More specifically, as depicted under Figure 3.2, stages are evaluated as
independent transformations which operate on their input source fragments and

eventually affect their enclosing program. In this sense, they resemble atomic macro

main program nested staged code

nested staged code

Figure 3.2 — Common evaluation of stages in popular multi-stage languages (e.g. MetaML,
MetaOCaml, Converge, Metalua, etc.) and macro systems (e.g. Lisp): inside-out for nested stages, and
top-down for top level stages, all as independent execution sessions. Dotted lines connect stage

fragments of the same nesting level whose concatenation could comprise a single stage program.
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invocations of traditional macro systems, running sequentially and within independent

execution sessions, effectively operating as batches.

As shown, stages of the same nesting level always input from and output to their
enclosing source text, meaning they practically operate on the same data. Thus,
conceptually, their concatenation may comprise a single larger stage program
affecting the enclosing program. Now, following the current practice, the evaluation
of stages at the same nesting level can be actually interleaved with the evaluation of
inner stages. Thus, the conceptual model of joining stages into a single program is not

actually mapped into a corresponding sequential, lexically-scoped, control flow.

Additionally, stages are evaluated as independent programs. Then, to have some kind
of state sharing across stages one should rely on custom implementation features. In
particular, under interpreted language implementations, one may deploy shared global
environments or dynamic scoping to feature persistent variables across the multiple
interpreter invocations for stages. Not only are the latter merely implementation
workarounds and not a standard property of the stage programming model, but it turns

all stages, inner or outer, to a single program with a common shared state.

In general, the notion of a single program comprising only stages of the same nesting
enabling state sharing and common control flow is not supported. In fact, most
languages with compiled stages have no state-sharing workaround similar to
interpreted languages. The latter disables even very simple tasks, such as
implementing conditional source code insertions relying on information produced by
the evaluation of preceding stages in the source text. To our knowledge, the only
language that partly supports the above notion is Metalua. In fact, Metalua allows
sharing state among stage code at the same nesting, as shown by the example below.

function Car () return {..} end

--No extension so BasicCar is same as Car
-{block: extra = +{block:}}
function BasicCar () local car = Car() -{extra} return car end

--Add ABS, so ABSCar is Car + ABS
-{block: extra = +{block: -{extra} car.abs = function () end}}
function ABSCar () local car = Car() -{extra} return car end

--Incrementally add Turbo, so ABSTurboCar is Car + ABS + Turbo

-{block: extra = +{block: -{extra} car.turbo = function () end}}
function ABSTurboCar () local car = Car() -{extra} return car end
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--Incrementally add 4WD, so ABSTurboWD4 is Car + ABS + Turbo + WD4
-{block: extra = +{block: -{extra} car.WD4 = function () end}}
function ABSTurboWD4 () local car = Car () -{extra} return car end

In this example, there is a stage variable named extra carrying a code block as an AST
that is added to implementations of Car constructor functions. The code block is
initially empty, i.e. {block:} in Metalua, and is then incrementally extended with
additional statements by the successive staged code. For this example to work, the

extra variable should be shared across the various staged code blocks.

The latter is true in Metalua because stages are not evaluated by the original language
virtual machine, but by a custom interpreter supporting dynamic scoping and a
common shared state across all stage executions, including nested ones. In other
words, although Lua is compiled, in Metalua stages are actually interpreted. As a
result, any inner stage can access and overwrite extra thus breaking state
encapsulation on individual stages. Moreover, Metalua adopts the common multi-
stage language evaluation order where stage execution is interleaved. Thus, there is no
notion of sequential control flow for stage code at the same nesting.

Stages in existing languages are commonly evaluated in a depth-first fashion with
either recursive interpreter invocations or successive compilation and execution
rounds. Effectively, the current prevalent models for stages are two: (i) if interpreted
while offering state sharing among evaluations then the stage code collectively
behaves as one big program; or (ii) if compiled or interpreted without state sharing,
then staged code is totally fragmented and disjoint, executed as independent sessions.
We consider these two options to be special and limit cases, severely restricting the
chances for deploying common software engineering practices on stages. In this
context, we argue that a programming model for stages is needed joining staged code
of the same nesting into a separate coherent program, with lexically-scoped control
flow, enabling software engineering practices on stages as with normal programs.
We further emphasize the equality between programs and metaprograms by denoting

Programs = Metaprograms, or P = MP1.

LJust provoking its importance by making it sound like the P =? NP problem
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We should note that, even for the other languages discussed, an advanced user or the
language developer may find a way to emulate the semantics of a lexically-scoped
control flow and state sharing for staged code. In this context, our emphasis is not put
on expressiveness, meaning we do not argue that the model cannot be implemented in
any of these languages. Instead, our focus is on the optimal delivery of the model to

programmers in the most straightforward manner, as easy as with normal programs.

3.1.6 Treating Stages as First-Class Citizens of the IDE

Currently, compiled stages are evaluated as part of the build process in a way that is
transparent to programming environments. For example, there is no support for build
dependencies and flags on stages as with all other programs. In this context, stages
should become first-class citizens of the programming environment facilitating: (i)
reviewing and browsing the code of stages and the actual program transformations
they introduce; (ii) improved source editing of stages through staging-aware editing
automations; and (iii) a stage-aware build process. We continue by detailing the

necessity for including such features in metaprogramming environments.

3.1.6.1 Source Browsing and Editing Automations

When a program that involves metaprogramming does not behave as expected it is
usually difficult to directly determine the cause. The reason could be a faulty
implementation of the metaprogram, wrong deployment or even some error in the
logic of the final program. Since programmers only view the original source code they
cannot observe the transformations performed by the metaprogram. Moreover, the
metaprogram implementation may itself be generated by another metaprogram which
is never part of the main source. Converge offers a solution to this problem by relating
errors to all parts of the transformation path [Tratt08], thus allowing users to debug
relatively easy. We consider an alternative solution, targeting to provide programmers
with a view of the source code of their metaprograms as well as the transformations
they perform on the main program. Apart from debugging, such a view also allows
browsing through the various source code structures, providing easy access and
navigation across modules, classes, functions, variables, etc. This is especially
important in cases where such code is not available in the original source but
generated via metaprogramming and allows programmers better understand the

structures and functionality available in the generated code.
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Apart from source browsing, another IDE facility that greatly improves the software
development process relates to source editing automations. Relevant editing features
are referred to as IntelliSense are generally supported in the form of tooltips that
display information regarding various language expressions and symbols (e.g.
argument names, symbol types, external documentation, etc.) or in the form of auto-
completion. When it comes to metaprogramming, such features are invaluable as they
can provide information that is not directly available from the editing context. A
metafunction invocation may introduce multiple declarations to be used in the
generated code which never appear in the original source text. Nevertheless, editing in
a subsequent context should provide auto-completion support for them as if they were
part of the original source. An example of this functionality is depicted under Figure
3.3, where both the metaprogram (i.e. the GENERATE_CLASS macro) and the result

of its evaluation (i.e. the generated class X) support IntelliSense information.

$define GENERATE CLASS (name, body) M
clas=s name { body }

GENERATE CLASS (|

fdefine GENERATE CLASS (name, body) M\
class name { body }

GENERATE CLASS (X, voild f(weoid) {}):

| GEMERATE_CLASS(name,body) |

int main() {
X x;

oy
a¥f private : void X:f()
File: main.cpp

Figure 3.3 — Illustrating the support of IntelliSense information for both metaprograms (left) and their
outcomes (right) when deploying CPP for code composition.

In the context of multi-staging, such functionality is even more important as small
changes in the editing context (e.g. inside or outside a staging annotation) may result
in a different stage and thus different set of visible symbols. In this direction, a
programming environment should produce symbolic information for staged

definitions being utilized to offer IntelliSense features as for non-staged definitions.

3.1.6.2 Build Tools

While metaprograms are encapsulated in a main program, they may require external
libraries or compile flags that vary from those required by other metaprograms or the
main program. For example, consider a metaprogram generating code for a GUI
application. The main program will typically require a graphical library. However,
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such a library is likely not needed in the generator metaprogram. Similarly, while
most metaprograms will need to utilize an AST library, the main program will usually
not. Consequently, programmers should be allowed to specify custom build options

on metaprograms as they can on normal programs.

Besides build flags, typical build dependencies may emerge on stages too, that should
be handled similarly to normal program, i.e. building any dependencies prior to stage
compilation. For this to work on stages, we need to build the deployed modules prior
to stage compilation, all during the compilation of the main program. But the actual
build process is not handled solely by the compiler since it requires information
present in the build system of the programming environment. Practically, this implies
interplay between the compiler and the build system to build stage dependencies
prior to actual stage compilation. To avoid rebuilding if stages are up-to-date,

checking of respective stage binaries and their dependencies is also required.
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3.2 Review

We study representative and popular multi-stage languages with respect to the
identified integrated metaprogramming requirements and compare them to our
approach. While we primarily focus on compile-time staging, we also discuss runtime
staging within either compiled or interpreted implementations. The comparative
summary is provided under Table 3.1 and shows that the requirements are only

partially met by existing multi-stage languages.

Table 3.1 — Comparison of languages regarding the requirements for integrated metaprogramming. The
symbol 4 means that the feature is offered by the language with certain limitations (more details in the

language-specific discussion sections).
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3.2.1 Compile-Time Metaprogramming

3.21.1 C++

C++ support for metaprogramming is based on its template system that is essentially a
functional language interpreted at compile time [Abrahams][Veldhuizen96]. C++
templates do not offer the main C++ language features nor share its runtime libraries
and debugging facilities. Metaprogramming is achieved by instantiating the template
code with concrete types, so there is no notion of code expressed in AST form, thus
disallowing any possibilities for code traversal or manipulation and there is no way
for a template to compose another template. Additionally, templates cannot store or

share any state and the programmer has no control on the flow of their evaluation.

Finally, regarding IDE support, programming environments like Microsoft Visual
Studio provide browsing and editing features for code resulting from template
instantiations. However, as previously discussed, C++ templates do not allow freely
generating source code, but allow only instantiating skeleton classes and functions by
filling the gaps using the supplied type arguments. Thus, providing source browsing
and intelligent editing features is easier compared to general stage evaluation.

3.2.1.2 Template Haskell

Template Haskell [Sheard02] supports compile-time metaprogramming facilities
through quasi-quotes and splicing. It reuses most aspects of the normal language
without however providing debugging support for stages. It supports custom AST
manipulation and allows generating names with either hygienic or capturing style. It
also reifies the compiler’s symbol table, thus enabling programmers querying the
current state of compilation. Additionally, it allows querying the context through
reifyLocn thus enabling context-dependent generation. However, it does not support

splices that generate additional splices, since the splice itself is not an Expr.

All declared functions are available for both runtime and compile-time computations,
but it is not possible to define functions used only during compile-time stage
evaluation. Additionally, no function defined in a module can be used by splices in
the same module; for functions to be used in a splice they must be placed within an
imported module. Moreover, splices are evaluated separately, meaning there is no

notion of state sharing or lexical control-flow sequence linking them. Finally, Leksah
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[Nicklisch], a Haskell IDE offering some support for Template Haskell, does provide
some browsing and editing support for stages. In particular, any declarations
introduced by top level splices are visible in the source browser and are utilized by the
auto-completion system during editing. However, this information is not updated
during editing but requires the source file to be compiled first, meaning the symbolic

information is supplied to the editor as a product of the compilation process.

3.2.1.3 Nemerle

Nemerle [SkalskiO4] supports metaprogramming through its macro system. As
previously discussed, Nemerle macros are implemented as compiler plugins that have
to be implemented separately, built as typical dynamically imported libraries (dlls).
They are loaded on-demand during compilation of any source file that invokes them.
Macros can be either invoked like functions to generate code during compile-time, or
they can be linked (called meta-attribute definitions) to a variety of constructs like

classes and methods to enable context-sensitive source code generation.

Since Nemerle macros are dynamically linked libraries it is possible to debug them
using the original .NET CLR debugger. However, the debugging process is rather
awkward since it requires setting the programing environment to run the Nemerle
compiler in debug mode, as opposed to the user program. Then, tracing macro code is
possible during the compile session. Additionally, Nemerle macros as any other
dynamic libraries can share functionality and exchange state. However, such state
sharing requires macro library dependencies, thus restricting modular scenarios where
the shared state needs to be propagated across independently defined macros. Also,
there is no explicit notion of a lexical control flow among macro invocations of the
same source file, since no other stage definitions besides direct macro invocations are
supported. Finally, macros cannot generate macros, thus attempting to declare the

following simple macro yields a compile error.

macro Generator () { <[decl: macro Identity(x){x}]> } // Compile error

Since in Nemerle macros are not staged, but are separately edited and built, the
normal non-staged source browsing facilities and build system apply (NemerleStudio
or Microsoft Visual Studio with Nemerle plugin). Regarding staging, editing tooltips

are supported for macros with point of definition, possible associated keywords, and
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its actual evaluation result. However, there is no parameter help for macro invocations

or syntax hints in case of a syntactic extension macros.

3.2.1.4 Converge

Converge [TrattO5][Tratt08] is a dynamic class-based language that allows CTMP in
the spirit of Template Haskell. It reuses the original language features, compiler and
execution system for metaprograms, while it currently offers no source-level
debugger to judge if it is reusable on stages as well. However, since the language
offers an underlying infrastructure to introduce debugging frontends it could enable
the implementation of a reusable debugger frontend. ASTs can be created and
manipulated either via library functions or through quasi-quotes. Additionally,
generated ASTs may encompass either alpha-renamed (i.e. hygienic) variables or
dynamically-scoped names to support variable capture. Code generation is allowed
through splicing at various program locations. However, there is no support for
context-sensitive insertions, neither for generation of splices thus disabling
metagenerators. By design, Converge makes no scope-related distinction between
normal functions and metafunctions, so all user-defined functions are eligible to be
included within both stages and the final program (in fact only the minimal subset of
functions are included in each stage). However, it is not possible to explicitly state
that a function is only visible for compile-time computations. Finally, concerning
stage evaluation, splices are treated as separate temporary modules, being independent
of other splices, thus sharing no state or common control flow. For instance, assume
the following hypothetical example which is not possible in Converge. The first splice
declares a stage variable x and the second tries to access it. The special pragma splice
$p<...> of Converge is here used to ignore the result of the splice expression.

import Sys

Sp<x := 1>
$p<Sys::println(x)> // Compile error: Unknown variable 'x'.

The first splice alone would compile normally, with its evaluation declaring and
initializing the stage variable x. Actually, if we printed its value within the first splice
the result would be 1. However, once the second splice is put, a compilation error is
caused, indicating that no variable x exists. As mentioned, this is due to the fact that
splices are separate modules, meaning that the second splice will not find the declared
variable x introduced by the first one.
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3.2.1.5 MetalLua

Metalua [FleutotO7a] supports stages with the concept of separated meta-levels,
allowing shifting between them using special syntax. Metacode directly embedded in
the main program is referred to as level zero, while nested metacode takes the level of
its enclosing metacode minus one. Thus, levels are numbered as 0, -1, -2, etc., with
innermost levels attributing to the smallest level number. Evaluation of nested
metacode is performed inside out, with inner levels always preceding the outer ones.
Since metacode is evaluated top-down for level zero, and inside-out for negative
levels (nested), the execution of stages is interleaved, thus supporting no notion of a

lexically-scoped sequential control flow.

Sharing of functionality and state across stages is supported. This is due to a custom
metacode interpreter that performs the evaluation of all stages in Metalua supporting
dynamic scoping. However, such state sharing concerns all meta-levels. As a result,
different meta-levels, although strictly separated and encapsulated, may access and
affect the state of other meta-levels. The latter breaks encapsulation and seems more
of an implementation artifact, inherent in the stage interpreter, rather than design
intent. For instance, in the following example, all references to x, whether of stage 1

or stage 2, bind to a single stage variable, resulting in the following output: nil, 2, 3, 1.

x =1
-{ block:
print (x) -- uninitialized stage variable x so prints nil
x =2 }
-{ block:
-{ block:
print (x) —- binds to the earlier stage x so prints 2
x =3 }
print (x) -- x retains the value of 3 above thus prints 3
}
print (x) -- binds to main program x so prints 1 (at runtime)

Metalua exploits all main language features, making them available in staged code,
but it uses a custom interpreter implementation for stages and it does not support
metacode debugging. Also, while it offers visitors and manipulators for ASTs, it
forbids introduction of meta-levels programmatically, thus disabling metagenerators.
Finally, generated variables are dynamically scoped, meaning they are subject to
variable capture, while a hygiene library is offered utilizing gensym for hygienic

macros.
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3.2.1.6 Groovy

Groovy [Subramaniam] supports compile-time metaprogramming through AST
transformations. The latter are defined as normal classes implementing the
ASTTransformation interface and can be applied on other classes through annotations.
The class annotations specify the transformations that will be invoked by the compiler
while the ASTTransformation interface essentially provides an entry-point to
obtaining and manipulating the AST of the target class. Global transformations are
also supported by supplying an ASTTransformation subclass to the compiler that will
apply it on the entire syntax tree of the code being translated, but their application is

separated from the language and involves additional compilation parameters.

Groovy metaprograms reuse the language compiler and runtime system, while it is
possible to debug local transformations directly from the IDE (e.g. in IDEA
[JetBrains]). Additionally, since the transformations are normal Groovy code, the
source browsing and editing facilities of the language can be directly deployed.
However, there is no such support for the transformation outcomes: symbols resulting
from transformations are invisible to the source browser and the auto-completion tool.
Finally, all build flags and rules apply on transformation classes as well, thus allowing

dependencies on other normal sources or even further transformations.

In Groovy, transformations are evaluated independently to each other and cannot
share state or be orchestrated to a lexically-scoped control flow. They can share
functionality with normal sources once organized and imported as separate modules.

Finally, as with multi-stage languages studied, metagenerators are not supported.

3.2.2 Runtime Metaprogramming

3.2.2.1 Lisp and Scheme

The two major Lisp dialects, Common Lisp [Seibel] and Scheme [Dybvig09], support
metaprogramming through their powerful macro systems. In Common Lisp, programs
can manipulate source code as a data structure, thus macros may perform any data
operation on code as well, offering the entire set of language constructs to express the
transformation logic. Simple Scheme macros (created with syntax-rules) are
essentially transformation procedures accompanied by a simple pattern matching

sublanguage, while R6RS macros (created with syntax-case [Dybvig92]) are
57



procedural syntax transformers that allow destructuring input syntax objects and
rebuilding syntax objects as output. At the implementation level, in both languages,
normal code and macros share the same interpreter. However, while normal code is
traced through the standard language debugger, macros require a dedicated macro

stepper to trace code transformations resulting from macro invocations.

Lisp can create ASTs either through normal list processing functions or via the quasi-
quoting mechanism, providing full support for traversal and manipulation. Code
generation relies on replacing macro invocations with their output expressions, i.e.
inlining, but without offering any context information. The output of macros can be
extra macro definitions or invocations, meaning Lips supports metagenerators.
Regarding the generated names, Common Lisp offers name capture, while enabling
hygienic macros using gensym calls. On the other hand, Scheme offers hygienic
macros, while it offers the syntax-case clauses to selectively apply name capture. By
default, Lisp and its dialects do not offer the notion of a coherent program collecting
all macro definitions and invocations by stage nesting, as typical top-down and inside-
out evaluation is applied. However, given its runtime system and its powerful
reflectivity with self-interpretation, such functionality can be implemented as a
custom library for macro management and evaluation. Apparently, the latter is
feasible in Lisp, however, but it is rather complicated even for advanced users,
making it more practical when offered as a built-in feature.

The reason for including Lisp dialects in the RTMP section is practical and relates to
the way they are actually implemented. Most implementations are interpreted, i.e.
executing instructions on an AST, meaning that macros are expanded along with the
interpretation of normal code. As CTMP we consider languages directly compiled to
byte code, intermediate code or machine code. In particular, for the former two cases
we assume a comprehensive low-level instruction set with mostly general-purpose
instructions. For instance, the InterLisp [Moore] virtual machine specification defines
the vast majority of instructions to be Lisp dependent and to directly reflect language
constructs. As a result, from an implementation perspective, a Lisp interpreter and a
virtual machine are practically identical. Clearly, these are not options to judge, but

we only mention to explain why we put Lisp dialects under the RTMP family.
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3.2.2.2 MetaML, MetaOCaml and Mint

MetaML [Sheard98] is a multi-stage language that supports runtime
metaprogramming based on staging annotations. It is based on ML, fully exploiting
the original language, compiler and runtime system, however, not providing
debugging support for stages. MetaML allows creating ASTs only through a quasi-
quote mechanism and while it does not support explicit AST iteration it offers a
pattern-matching search facility on ASTs. Also, while it offers hygienic names, it
does not allow selective name capture. Code generation is achieved only through
inlining (Run operator) with no support for context-sensitive generation. In MetaML,
functions are shared across stages and main with no facility for hiding and
encapsulation. Finally, stages do not actually share common state, other than possible
cross-stage persistent [Taha97] values, while they are evaluated with the typical
inside-out and top-down order, meaning staged code of different nesting levels can be

also interleaved in this language.

MetaOCaml [CalcagnoO1][Calcagno03] is a metaprogramming extension of OCaml
and is essentially a compiled dialect of MetaML. Mint [Westbrook] extends Java with
the three standard multi-stage constructs, namely brackets, escape and run,
constituting an application of these concepts in an imperative language with a
compiled implementation. As such, they both share the same properties as MetaML

with respect to the identified requirements.
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Chapter 4

Metalanguage

"To the designer of programming languages, | say: unless you can support the
paradigms | use when | program, or at least support my extending your language into
one that does support my programming methods, | don't need your shiny new

languages."

-Robert Floyd

We propose a new programming model for stages that we call integrated because it
allows software engineering of metaprograms in a way similar to normal programs.
Overall, the generative nature of metaprograms is treated as any other functional
characteristic that programs may have, meaning no methodological separation
between the two worlds is necessary. In this model, independent snippets of stage
code at the same nesting are treated as a unified program, with a lexically-scoped
control flow, shared program state, and the scoping rules of the main language.

Additionally, all normal language features are available in implementing stages.

We continue by firstly elaborating on the programming model. Then, we brief our
metalanguage constructs to support the model and discuss the semantics regarding the
assembly of stage snippets in order to form integrated metaprograms. Finally, we
show the expressiveness of our model in comparison to the prevalent existing model

and discuss the tradeoffs involved in choosing one model over the other.

4.1 Integrated Model

As already mentioned, an integrated metaprogram is composed by the concatenation
of stage code at the same stage nesting with their order of appearance in the main
source. Due to this assembly, their evaluation is essentially the sequential execution of
their constituent source fragments thus denoting a lexically-scoped control flow
sequence within the integrated metaprogram. Since the concatenated stage fragments
may encompass generative directives, an integrated metaprogram behaves as having
multiple input and output locations within its enclosing program. We use here the
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term enclosing program and not just main program because for nesting levels above
one the resulting integrated metaprograms are hosted within other integrated
metaprograms. In Figure 4.1 an illustration of the integrated metaprogramming model
is provided, depicting source transformations, stage assembly, evaluation order and

lexically-scoped (sequential) control flow.
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1
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Figure 4.1 — Concept of integrated metaprograms: (i) comprising all stage fragments at the same
nesting in their order of appearance; (ii) denoting a sequential control flow among stage fragments; and
(i) providing scope visibility to previous stage fragments.

In stage code any feature available in normal programs can be used, like performing
typical file 1/0, launching GUIs to possibly interact with programmers in tuning code
generation behavior, handling network connections and communication, loading

dynamically linked libraries, and so forth.

The integrated metaprogramming model compared to fragmented stage code reflects a
fundamental methodological shift concerning transformations. In particular, we treat
transformations as any other program function. Effectively, since stage fragments at
the same nesting are related by transforming the same enclosing program, it seems an
unreasonable decision to physically separate them into distinct programs or modules.
Overall, segregating the stage fragments of the same enclosing program serves no
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particular goal and only complicates the engineering of metaprograms. In summary,

the following rounds are repeated for stage evaluation until no stages exist:

1. Determine innermost stage nesting level
2. Assemble integrated metaprogram for this nesting level

3. Build and execute

It should be noted that the result from the evaluation of each integrated metaprogram
is a transformed version of main called intermediate main. Besides the first round
using the original main, all the rest collect stage code from the current intermediate
main that is then transformed to the next one. Eventually, the intermediate main from
the last evaluated metaprogram is not staged and is called final main. It is compiled to

binary constituting the output of the entire multi-stage compilation process.

From the above process for stage evaluation it is evident that our proposed model
reflects a different evaluation order compared to the traditional practice of top-down
and inside-out evaluation of current multi-stage languages. For example, consider the
following nested staged code, where £1, f,, g1, g, are staged expressions and !

denotes metaprogram invocations.

YL (YEL())
'gi(lgz())

The traditional evaluation order in current multi-stage languages is:

'f2—> 'f1—> 'g2—> 'gl

The evaluation order with integrated metaprograms is:

{ ', > 'g,} > { £ > 'g;}

The brackets are used to denote that enclosed staged expressions are executed as a
single coherent program and not as isolated invocations. Clearly, the two orders are
different. A general form of the above example, showing the evaluation order between
the two approaches is illustrated under Figure 4.2.
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General form of Traditional evaluation Evaluation order with
nested staged code order of stages integrated metaprograms
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Figure 4.2 — Typical evaluation order in multi-stage languages - fij are staged expressions with i

enumerating staged code blocks and j denoting the stage nesting in the respective block.

4.2 Syntax and Semantics

As previously mentioned, our work has been implemented as the multi-stage
extension of the Delta language [Savidis05], [Savidis10] which is untyped object-
based, compiled to byte code and run by a virtual machine. In this context, the entire
set of main language features are available in staged code, while only the language
compiler has been extended to accommodate staging functionality. The original
virtual machine has not been modified, while it is directly deployed for stage
evaluation. In the following sections we briefly outline the staging syntax and

semantics for our implementation of integrated metaprograms.

4.2.1 AST Tags

Such tags allow directly converting source text into ASTs, involve no staging at all,
and are translated into calls that create ASTs by parsing source text or combining
other ASTs together. This is the same approach followed by Template Haskell and
Converge and could in fact be adopted to introduce similar tags in languages with no
compile-time metaprogramming as extra syntactic support on a reflection library

(runtime parsing, translation and execution). Besides quasi-quotes and escape that
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appear in many multi-stage languages, we also introduce delayed escape which is

essential to metagenerators.

Quasi-quotes (written <<..>>) may be inserted around definitions, such as
expressions, statements, functions, etc., to convey their AST form and are the easiest
way (not the only one) to create ASTs directly from source text. For instance,
<<1+2>> is the AST for the source text 1+2, while ast make const (3.14)
produces the AST for the numeric constant 3.14. Quasi-quotes are allowed to be
nested arbitrarily, something useful in implementing metagenerators. For example,
<< <<1+2>> >> is a nested quasi-quoted expression that represents the quasi-
quoted expression <<1+2>>. For variables present within quasi-quotes we identify
three possible binding policies: (i) late binding; (ii) early binding; and (iii) no binding
(or alpha-renaming).

Late binding means that variables within quasi-quotes are scoped in the context where
the respective AST is finally inserted. For instance, <<x=1>> does not bind to any x
visible at the quasi-quote location. In the Delta language, variables are lexically-
scoped and are declared-by-use the first time a name is met. Thus, if no x is defined at

an insertion point a new x is introduced by the assignment.

Early binding means that the variable within the quasi-quotes refers to a symbol
syntactically visible at the scope of the quasi-quote declaration. Such a policy is used
for example in C++ templates, where a name present within a template body is
resolved by first looking in the context of the template declaration instead of the
context of the template instantiation. In general this is a useful binding policy;
however in the particular implementation in Delta, it does not fit well with the
language semantics. Firstly, there is the issue of scope extrusion, in which a symbol
within quasi-quotes referring to a specific program variable may be used at a context
where the variable it refers to is out of scope. Then, it is possible for the symbol
within quasi-quotes to bind to some inner function allowing it to be used at a place
where it should not be visible, thus breaking encapsulation. The same applies if we
allow referring to non-exported functions of a module potentially allowing other
modules to refer to them. Practically, the only valid usage involves binding to an

exported top level (i.e. global) function so that it can be used from other modules or
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from a context where some local definition would otherwise shadow the global one,
preventing a default late binding approach from referring to the desired symbol.
Nevertheless, the same functionality can be achieved by simply supporting fully
qualified names for symbols within quasi-quotes. In this sense, an early bound
reference to a top level function can be achieved by explicitly specifying the module

in which the function is present, denoted as <<module: : £>>.

The no binding policy is used to solve the issue of variable capture and supports
hygienic macros by introducing alpha-renamed variables, i.e. variables that are given
automatically contextually-unique identifiers. In particular, we use the notation
<<$x>> to specify that x will be given a fresh unique name at the insertion context.
In most metalanguages such hygienic behavior is active by default with name capture

(i.e. late binding) enabled only through special syntax.

We have purposefully chosen such an inverse activation policy since we consider it to
more frequently fit the actual use of metaprograms. More specifically, metaprograms
may produce: (i) complete named elements such as classes, functions, methods,
constants, namespaces and generics that may be directly deployed; (ii) template code
fragments to be filled-in with other code fragments; (iii) other non-template code
fragments that may be further combined.

In case of named elements, the supplied name will be directly used for deployment,
thus name capture is the only way. When generating non-template code fragments,
those may be further composed together or inserted in templates. In this case, the
statements of such code fragments may erroneously capture earlier or outer variables.
The latter is avoided easily in the respective generator by always declaring generated
variables as local and enclosing related statements in blocks. Finally, in case of
templates, it is possible that inserted code fragments may undesirably capture names
in the template itself. This is the only case where the template generator should force
hygiene for template variables. Overall, based on the previous remarks, we considered
that for most scenarios name capture would suffice and for the template cases hygiene

may be deployed where required.
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Normal Escape (written ~ (expr)) is used only within quasi-quotes to prevent
converting the source text of expr into an AST form by evaluating expr normally.
Practically, escape is used on expressions already carrying AST values which need to
be combined into an AST constructed via quasi-quotes. For example, assuming x
already carries the AST value of <<1>>, the expression <<~x+2>> evaluates to
<<1+2>>. The latter also applies in nested quasi-quotes, meaning the expression <<
<<~x+2>> >> evaluates to << <<1+2>> >>. Additionally, we also support the
escaped expression to carry scalar values like number, boolean or string (i.e. ground
values). In this case, the value is automatically converted to its corresponding AST
value as if it were a constant. For instance, if x is 1, then ~x within <<~x+2>> will
be converted to the AST of value 1, or <<1>>, thus <<~x+2>> evaluates to

<<L1+2>>.

Delayed Escape (written ~..~ (expr)) is used when escape evaluation should be
deferred, something common in metagenerators. The number of tildes is the initial
nesting which for normal escapes is one. Then, escape evaluation, being performed

when quasi-quotes are evaluated, is applied as follows:

escape(n — 1, expr), n>1

eval(escape(n, expT')) = { expr n=1

Notice that the previous evaluation is not recursive — it returns either the escaped
expression or a new escape with decreased nesting. Practically, delayed escapes will
be at some point inlined into generated quasi-quotes. The following examples simply
outline the behavior of delayed escape (gen denotes code generation with an AST
parameter). Later, once the details of the staging tags and integrated stage assembly
are explained, more elaborate examples with metagenerators are discussed showing

the importance of delayed escapes.

o Writing << <<~~x>> >> represents the AST of <<~x>>

o Withy = <<~~x>>the expression gen << <<~y>> >>yields <<~x>>

The introduction of delayed escapes allows generating escapes and preserve
syntactically their presence within quasi quotes. The latter is in contrast to the single

escape preserving the value it carries. One could also think of a library function like
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esc (ast, n) to generate a chain of a n parent escapes on the supplied syntax tree.
Now, while the latter would produce tree forms identical to the delayed escape ones,
without ~" (expr) in the language syntax the resulting trees would be syntactically
ill-formed. In fact, in our implementation all syntax trees composed through library
functions pass internal syntactic validity checks, meaning the output of such library
function would be directly rejected. We consider delayed escapes to serve a purpose

similar to quasi-quotes: one may live without them but using them makes life easier.

The fact that the previous tags do not introduce staging as such, but are essentially
facilities for AST manipulation is depicted under Table 4.1. As shown, quasi-quotes
are shortcuts for AST creation (ast create), the latter in our language handled
with internal parser invocations. Similarly, escapes (ast escape) involve AST
composition operations, again without staging, and are only invoked for normal

escapes.

Table 4.1 — Code generation examples for quasi-quotes and escapes, showing that they do not involve

staging.
AST tag expressions Respective intermediate code
<<l + g()>>; ast create $0 "1 + g()"
<L~ (f(x)) + 2>>; param X
call f
getretval S0 #carries f (x)
ast create $1 "~(f(x)) + 2"
ast_escape $1 $0 #inserts f(x)
<< <L ~ax D> D> ast _create $0 "<< ~vx >>N
<< <L ~~x + ~y >> >> |ast create $0 "<< ~vx o+ ~y>>"
ast _escape $0 y #inserts vy
<< f(~a, ~b) >> ast _create $0 "f(~a, ~b)"
ast _escape $0 a #inserts a
ast _escape $0 b #inserts b

4.2.2 Staging Tags

Staging tags generally imply compile-time evaluation of associated source code, and
are essential in supporting compile-time metaprogramming. Syntactically, they define
the boundaries between staged code fragments and also introduce stage nesting, also
known as metalevel shifting. Besides inline (generation) and execute (metalevel
shifting), appearing in various metalanguages, we introduce define. We will show that
the latter is required for languages where execute cannot syntactically represent both
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block-scoped statements and program-scoped definitions. For instance, interface
definitions and import directives in Java are only globally defined, while statements
can only be locally defined in blocks. Thus, there can be no appropriate common non-
terminal for both which execute could adopt to address both. We will further discuss

this matter below, after first detailing the staging tags syntax and semantics.

Inline (written ! (expr)) Is staged code evaluating expr (whose value must be of
an AST type) into the enclosing program by substituting itself. Inline tags within
quasi-quotes are allowed, and as all other quasi-quoted expressions, are just AST
values that are not directly evaluated. It is allowed for expressions carrying an AST
representing an inline directive to be inlined, meaning generation directives may
generate further generation directives, thus supporting metagenerators. The latter,
besides nested stages statically defined via explicit staging tags allows any number of

stages to be dynamically introduced by metaprograms themselves.

As an extreme example, the following inline directive (the second one) repeatedly
reproduces itself (using the first one that is quasi-quoted), causing endless staging.

function £ () { return <<V (f£())>>; }
Y(E£0))

With a small change, the same example works in a way that the inline directive
reproduces itself a controlled number of times. The ni1 value shown in the example
denotes an empty AST value that essentially replaces the generator with no code.

function f(n) { return n < 1 ? nil : <LKV (f(~(n-1)))>>; }
'(£(10));

Execute (written &stmt) defines a staged stmt representing any single statement,
local definition or block in the language. Any definitions introduced are visible only
within staged code. Execute tags can also be nested (e.g. &&stmt), with their nesting
depth specifying the exact compilation stage they will appear in. Essentially execute is
similar to Metalua’s metalevel shifting construct —{...}. For example, the Delta code
&std::print (1) Iis equivalent to Metalua’s —{ print "1" } while
&&std::print (2) is equivalent to —{-{ print "2" }}. Additionally,
execute tags can be quasi-quoted and be converted to AST form, meaning their

inlining will introduce further staging.

68



The following is a simple example (adopted from [Czarnecki]) combining the use of
inline and execute tags. The function ExpandPower creates the AST of its x
argument being multiplied by itself n times, while MakePower creates the AST of a
specialized power function. It should be noted that in Delta, function definitions are
syntactically statements, thus allowed within execute tags. As shown, the code
resulting from this program encompasses only an assignment of the generated
anonymous function.
&function ExpandPower (n, x) {

if (n == 0)

return <<1>>;
else

return <<~x * ~ (ExpandPower (n - 1, x))>>;

}
&function MakePower (n) {
return << (

function(x) { return ~ (ExpandPower (n, <<x>>)); }
) >>;
}
power3 = ! (MakePower (3));
power3 = (function(x) { return x * x * x * 1; });

Define (written @defs) allows introducing stage defs, the later syntactically
representing any global program unit in the language (e.g. global definitions). Define
tags may be nested (e.g. @@def) with the nesting depth specifying the stage the defs

will appear in, being analogous to nested execute tags.

This tag is only needed for languages where there is a syntactic distinction between
global and local definitions. Thus, in languages such as Lua, JavaScript or Delta the
latter is not needed since global and local elements are not syntactically separated.
There, execute can do what define is supposed to offer. But define is required in
languages like C++, Java or C# since there are differentiations as to what can be

defined locally or globally.

Now, why define becomes necessary in such language case and what actual
metaprogramming need it serves becomes clear with an example. Consider the staged
code of Figure 4.3 (top left part), having stage nesting 1, in a hypothetical meta-C++
language adopting our staging tags. When no define is available, stage code adopts
execute and inline tags, our example using just execute. The integrated metaprogram

is assembled from all execute snippets into the stage 1 () function of Figure 4.3
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(right part). Notice two function definitions in execute tags, namely £ and Load B

(shaded areas, top left part of Figure 4.3)

whose functionality is required in stage

code. The problem is that their concatenation into stage 1 () constitutes illegal

C++ syntax as no local function definitions are allowed (shaded areas, right part of

Figure 4.3).

meta-C++ staged code:

& int f£(.) {..}

assembled main stage block:
class C {..};

& int x £(.);

class C {..};

void stage 1(..) {
int f£(.) {..}
int x = f£(.);

’

static B* Load B(C* c) {..}

& static B* Load B(C* c){..}
& C* ¢ = new C(..);

& B* b = Load B(c);

& class A {..};

& A* a = new A(..);

main() function of the integrated metaprogram:

int main (int argc, char** argv){
. stage _1(..); ..

}

C*x ¢ new C (..
B* b = Load B(
class A {..};
A* a new A(..);

) ;
c);

Figure 4.3 — Without supporting define all stage snippets are by default collected inside the main stage

block, that could cause ill-formed C++ syntax as C++ forbids local function definitions (shaded code).

Offering define allows the distinction between global definitions and statements,

enabling metalanguages to assemble integrated metaprograms by separating global

stage definitions from the main execution block. Using defines we rework our

example in Figure 4.4, turning the resulting C++ metaprogram to syntactically correct.

meta-C++ staged code:

Q@ int f£(..) {..}

& int x £(.);

class C {..};

@ static B* Load B(C* c) {..}

& C* ¢ = new C(..);
& B* b = Load B(c);
@ class A {..};

& A* a = new A(..);

main() function of the integrated metaprogram:

int main (int argc, char** argv) {
. stage 1(..); ..

}

global code comprising non-stage definitions and
stage definitions from define tags:

int £ (..) {..}

class C {..};

static B* Load B(C* c){..}
class A {..};

main stage block comprising stage code from
execute tags:
void stage 1 (..) {

int x = f£(.);

C* ¢ = new C(..);
B* b = Load B(c);
A* a = new A(..);

Figure 4.4 — When supporting define, only stage code from execute directives is collected inside the

main stage block; code from define is assembled with rest non-stage global definitions, following their

order of appearance, resulting in syntactically correct
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As shown, define allows programmers to explicitly instruct the stage assembler to
separate specific definitions from the main stage block and place them in the global

definitions section of the integrated program.

We may try dropping the extra define tag by extending the semantics of execute to
automatically treat global definitions as implicit define directives. Now, this can be
problematic in languages such as C++ where elements allowed in a global context,
like classes and type definitions, may also appear locally in a block. If the goal is to
locally define a class hidden outside, such as for template instantiations (being a very
common practice), the class will be placed in the global section and encapsulation is
broken. Consider the example of Figure 4.5 where local type definitions are provided.
This example fails as staged code when implicit define directives are implemented
due to name conflicts when locally defined types are transferred in the global section.

meta-C++ staged code:

class A {..};

& if (..) |
typedef pair<int,int> A;
typedef list<A> ListA;
}
& while (..) {
typedef list<A*> ListA;

}

global code and main stage block of the integrated metaprogram:

class A {..};

typedef pair<int,int> A; <error
typedef list<A> ListA;
typedef list<A*> ListA; <error

void stage 1 (..) {
if () o .
while (..) { ..}
}

Figure 4.5 — The automatic treatment of execute directives involving global definitions as define
directives disables encapsulation and information hiding for element categories allowed both at global

and local scope; this may cause semantic errors, such as replicate definitions (hame conflicts).

4.2.3 Stage Assembly and Evaluation

The current integrated stage program is composed by considering staged code only at
the innermost level, thus consisting of non-staged code. It consists of two sections,
one after the other: global area and main block. The main block collects code from
execute and inline directives concatenated together in the order they appear in the
source text. The global area encompasses all main program definitions used by the
current staged code, and also all code from define directives (if applicable), while
preserving the relative order of appearance of concatenated fragments in the main

source text. An example is provided under Figure 4.6 illustrating this process.
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Sections Main program Integrated metaprogram
main defs 0

global area other defs iz in Gleits A
main defs 0 <— defs 1
main defs 1 main defs 2
&codg_l :I
@defs 1
main defs 2 code 1

main block !(exEr_O)_ | inline expr 0
&code 2 code 2
&code_3 —_— code73
other defs B

Figure 4.6 — lllustrating the assembly of integrated metaprograms with a general example with arrows
outlining dependencies — only the required definitions from the main program are included.

The stage assembly process begins by computing the maximum stage nesting with a
traversal on the entire AST. This computation should be repeated at the beginning of
every stage evaluation since the maximum stage nesting may be increased if the
evaluation of the last stage has generated further staged code. Then we need to
perform a depth-first traversal and collect source code from all staging tags in this
nesting. For execute and define tags, the associated code is actually all that is needed

and it can be used as it is, while cutting respective nodes from the main program AST.

However, inline directives require a different treatment, since merely copying the
associated expr in the main block will not realize its expected generative behavior.
The latter, as mentioned earlier, involves substitution of the inline node by its expr
value. Clearly, some special invocations need to be included which will internally
handle the required AST modifications. In this context, an effective approach is to
adopt a library function offered by the meta-compiler that is linked only with
integrated metaprograms. This ensures integrated metaprograms are syntactically just
normal programs and can be compiled using the original language compiler. When

running, the meta-compiler is just part of their execution environment.

In our implementation this function is called std: :inline, with no result and a
single argument being the expr of AST type. Then, while assembling the stage, the
expr node is cut, leaving a leaf inline alone, and an std::inline (expr)
invocation is introduced in the main block. The role of the inline leaf is to be a
bookmark for the insertion point of its respective std::inline call. For this
reason, an inline leaf is pushed on a stack, exactly after its respective std: :inline

call is placed in the main block, thus ensuring their relative orders match. Then, the
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std: :inline function simply pops an inline leaf from the stack and substitutes it

by its expr argument.

Definitions from the main program deployed across stages need not be placed in
external modules but are directly included in the stage assembly (reflected in the
main_defs_i parts of Figure 4.6). Further dependencies of copied definitions should be
copied as well, the process being recursive until no required dependencies are
missing. In case of deployed functions they should not depend on the state of the main
program, thus they may be safely copied and become an integral part of another
program. In particular, for a function to be eligible for inclusion in stages, it should
not: (i) contain staging tags (i.e. the entire definition should be present at the current
stage); (ii) access global variables of the main program; (iii) use any closure variables;
and (iv) use other functions that do not meet the same requirements. The reason for
excluding the use of closure variables is that in general they may involve runtime
functionality as they depend on the execution of the outer function. To determine
which functions meet the above requirements, during the AST traversal we also
collect information about function dependencies and use this information to extract
the eligibility information. More specifically, when traversing the body of a function,

upon any function usage we apply the following rules:

1. If the target function is ineligible, the current function depends on an ineligible
function and is therefore ineligible as well.

2. If the target function is eligible, we cannot yet determine about the current function
but have to continue the traversal; if all function dependencies are found are
eligible then the current function is eligible as well.

3. If the eligibility of the target function is not yet determined, we simply mark the
dependency and continue. If any dependent function later proves to be ineligible
the current function also becomes ineligible. If, on the other hand, all prove to be
eligible then the current function is eligible as well. Finally, if we have a cyclic
dependency we continue until all dependency information about functions involved
in the circle are available. Eventually, if all functions in the circle depend only on

each other and not on other ineligible function, they are all considered eligible.

In terms of performance, the integrated staging approach involves a single

compilation and evaluation round per stage nesting. In comparison, existing multi-
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stage languages involve one round per staged code fragment. Effectively, the

evaluation of integrated metaprograms is overall more efficient.

An example is provided under Figure 4.7 with a multi-stage main program, its

integrated metaprograms with resulting intermediate and final main versions.

Main and intermediate versions Integrated metaprograms

~__________Original staged main Stage nesting 2
&&function createimacro(name,args,val){1function create macro (name, args,val) {
i return << | return <<
function ~name (~args) ti> function ~name (~args)
{ return <<~val>>; } i { return <<~val>>; }
o o>>
1
lstd::inline(create macro (
: <<identity>>, <<x>>, <<K~~x>>
1
1
1
1
1
1
1
1

&! (create macro(
<<identity>>, <<x>>, <<~~x>>
1))
&!/(create macro(
: <<Lidentity>>, <<Kx>>, <<~~x * 2>>
L ...

V(identity (K<1>>)) ;
! (double (X<1>>)) ;

1
1
|
Lo>>;
1
1
1
1
1
1

));

std::inline(create macro (
<<Lidentity>>, <<x>>, <<~~x * 2>>

)) i

______ Intermediate staged main affer last stage Stage nesting 1
qfunction identity (x) { return <<~x>>; }/|function identity (x) {return <<~x>>;}

s&function double (x) {return <<~x * 2>>;} /[function double (x) {return <<~x*2>>;}

______________________

x = !“identity(<<1>>))q |:$>std::inline(identity(<<1>>));

y = !(double (K<1>>)); _ std::inline (double (<<1>>)) ;
Final non-staged main after last stage Stage nesting 0

x = 1; No more staged code

y = 1*2;

Figure 4.7 — Left: main with its intermediate and final versions; Right: Integrated metaprograms from
the original and intermediate main versions.

Initially, the maximum stage nesting is 2, tied between the declaration and usages of
function create macro (prefixed by the tags && and &! respectively). The first
stage thus contains the code present within these tags (Figure 4.7, top left, highlighted
with a dotted rectangle), along with the appropriate invocations to std::inline
(generated by the inline directives) for performing the code generation. Since
create macro Is defined at stage nesting 2 it is removed from the intermediate
main, while all inline tags at nesting 2 are substituted by the generated code of their

std::inline calls.

Thus, the resulting intermediate main contains the stage definitions of functions
identity and double along with remaining code (i.e. the two assignments) that
was part of the original program (Figure 4.7, middle left, highlighted with a dotted
shape). The same process continues for the next stage. Now the stage nesting is 1, tied

between the definitions and usages of functions identity and double, so the
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extracted metaprogram contains their code along with the extra std::inline
invocations. After stage execution, the function definitions of the stage itself are
removed, and the inline directives are again replaced by the generated code of their
std: :inline calls. This results into the final main having no further stages (Figure
4.7, bottom left).

4.2.4 Enabling Metagenerators

As previously mentioned, to support metagenerators the language should enable
creating ASTs with nodes representing staging tags. Simply inlining such ASTs will
introduce staging. The latter can be done by supporting staging tags directly in quasi-
quotes or through AST composition using a library. In general, stages may even
generate code with more deep staging than themselves. For instance, consider the
example shown in Figure 4.8, where meta gen is a metafunction that is capable of
generating code with arbitrary stage nesting, even though it is defined in the first stage
with nesting 1. In our example, it is invoked twice to generate two print calls, at
stage nesting 1 and 2 respectively. Notice that the loop assignment code =
<<&~code; >>; essentially prepends the syntax tree carried by code with an extra
execute parent tag, thus increases its stage nesting in every iteration. As a result, the
two  invocations return the trees <<&std::print(1l);>> and
<<&&std::print (2) ;>> assigned to stage variables x and y respectively. These

trees are combined with quasi-quotes and are inlined to introduce additional staging.

Main program transformations Stage metaprograms

_________ Original staged main Stage nesting 1
§function meta gen(code, n) { | function meta gen(code, n) {
! for (local 1 = 0; i < n; ++1) . for (local i = 0; 1 < n; ++1)
! code = <<&~code;>>; X code = <<&~code;>>;
: return code; Fi return code;
'} | }
4x = meta gen(<<std::print(1)>>, 1); x = meta gen(<<std::print(1)>>, 1);
gy = meta gen (<<std::print(2)>>, Z)ﬂ y = meta gen(<<std::print(2)>>, 2);
(KL~ ~y;>>) 5 ! std::inline (K<~x;~y;>>);

Intermediate staged main after last stage Stage nesting 2
&std::print(l); _____________________ std::print (2);
&&std::print(2); ____________________ E: ***This print is performed by the stage

___ Intermediate staged main after last stage Stage nesting 1
[i std::print(1l);
***This print is performed by the stage
Final non-staged main after last stage Stage nesting 0
No more source in main No more staged code

Figure 4.8 — An example where the first evaluated stage is a metagenerator. Left: main with
intermediate and final versions; Right: Integrated metaprograms from original and intermediate main

Versions.
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4.2.5 Context Sensitivity

As discussed earlier, context sensitivity is supported when the actual source code
insertion point may become the outcome of a computation. Currently, the inline
directives of multi-stage languages denote a statically defined context which is the
particular location of the directive itself. To support code generation at an arbitrary
context, i.e. location within the source code, a possible solution is to offer an entry
point for obtaining and directly manipulating the source program AST. In this
direction, and following the approach of offering the functionality as a special library
function so as to allow stages to be syntactically normal programs, we propose the
provision of another compile-time library function which simply returns the AST
node of itself, representing its actual location in the source program. In our
implementation the latter is named std: : context. For convenience, we also offer
an overloaded version that receives an AST tag and instead returns the closest
matching ancestor node. This way an invocation std: :context (tag) operates
almost as it reads; it returns the AST node that matches the given tag within the

invocation context.

We provide an example of context-sensitive generation for our implementation in the
Delta language, where objects are created ex-nihilo via respective constructor
expressions, also called object expressions. Consider an object expression in which
we wish to insert set / get methods for its members. Instead of repeated inline
directives per data member we use std: :context to get the object expression
AST, traverse it to find the data members and then: (i) directly attach to the AST the
required method definitions; or (ii) produce the AST for the method definitions, and
inline its returned value where desired. Both options for context-aware code

generation are illustrated in the following example.

&function InsertAccessors (obj) { < obj input is an object AST node
foreach (local attr, obj.getAttributes()) { <« iterate over object attributes
local name = attr.getName();
local set = <<method ~("set "+name) (val){ self.~name=val; }>>;
local get = <<method ~("get "+name) () { return self.~name; }>>;

obj.addMethods (set, get); <« insertset /get methods directly in object expression
}
return nil; < no code explicitly returned
}
&function GenerateAccessors (obj) { < obj input is an object AST node
local result = nil; <« will hold the generated method code to be inlined in the object
foreach (local attr, obj.getAttributes()) { <« iterate over class attributes
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local name = attr.getName()
local setter = <<method ~("set "+name) (val) {self.~name=val;}>>;
local getter = <<method ~("get "+name) () {return self.~name;}>>;
result = <<~result, ~setter, ~getter>>; <« combine methodsinanew AST
}
return result; < all generated accessor methods are returned to be inlined by client code
}

const OBJ TAG = "ObjectConstructor"; < tagmatching any object expression
function Point2D(x, y) { function Point2D(x, v) {
return [ return [
@x : x, Qy : vy, @x : x, Qy Y
! (InsertAccessors ( method set x(val){ self.x = val; },
std::context(OBJ_TAGki> method get x() { return self.x; },
)); method set y(val){ self.y = val; b,
() { return self.y; }

method get y
17 1:
} }

function Point3D(x, vy, z) { function Point3D(x, v, z) {

return [ return [

@x : x, Qy : vy, @z : z, @x : x, Qy : vy, Qz : z,
method set x(val){ self.x = val; b,
! (GenerateAccessors ( method get x() { return self.x; 1},
std::context(OBJ_TAG)E:> method set y(val){ self.y = val; },
)); method get y () { return self.y; 1},
method set z(val){ self.z = val; b,

() {

method get =z return self.z; }

17 17
} }

4.2.6 Metacode Libraries

As previously discussed, a metaprogram may use any normal program feature
including the deployment of other modules. In the Delta language the latter is handled
through the using directive that specifies the module to use. In the same sense, the
deployment of a module within a stage can be achieved by adding staged using
directives with the appropriate stage nesting. For example, let’s revisit the example of
the previous section that automatically introduces accessor methods for its members.
The function InsertAccessors can be placed as non-staged code within a separate

module called MetaUtils and deployed to perform the same transformation.

&using #MetaUtils;

const OBJ TAG = "ObjectConstructor"; <« tagmatching any object expression
function Point2D(x, y) {
return [

@X:X/ @y:YI
! (MetaUtils: :InsertAccessors (std::context (OBJ _TAG))) ;
17
}

We should note that the using directive actually refers to the binary file of the

specified module. In this sense, even if the source file of that module originally
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contained metacode, it has been already evaluated during its compilation and is no
longer available in the binary form. This essentially means that metaprogram
fragments of a source file cannot interact with or manipulate metaprogram fragments
of another source file. The latter is only possible through a higher order metaprogram

present in the same source or through external source transformation approaches.

The use of the binary file of the target module introduces an additional issue in case it
is not available prior to the staged program evaluation. To allow the dependency to be
resolved, we should naturally compile the target module as well before continuing
with the evaluation. This issue is addressed later in section 5.2 where we discuss the

interaction between the compiler and the build system.

4.3 Expressiveness

We prove that the integrated metaprogramming model is at least as expressive as the
current multi-stage programming model. Effectively, using the staging tags,
evaluation order and stage assembly semantics of our language we emulate the top-

down inside-out evaluation order of existing multi-stage languages.

In the introduction of our model we explained the different evaluation order between
current multi-stage languages and integrated metaprograms. We recall the example
we used and its traditional evaluation order below:

VEL(YEL()) s

'gi(tga());

'f, > £, > 'g, > 'g;
We can emulate the traditional stage evaluation sequence under the integrated
metaprogramming model by modifying the example as follows.

YEL(ME, () ;
1<<1g:i (192 () >>;

The second staged expression !<<!g; (!g; () )>> denotes a metaprogram inlining
the quoted AST <<!g; (!gz())>> and now has stage nesting one. The key point
here is that once we quasi-quote a definition we turn it to a constant non-staged AST
expression. We recall our earlier discussion on tags where we mentioned that none of
the AST tags are staging tags. Essentially, we hide any staging embedded in the quasi-

quoted definitions, until revealed latter at some point through inlining. The maximum
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stage nesting in the refined program is two and concerns £, in ! £1 (! £, () ) thus the
first stage consists only of the execution of £,. Then, the resulting program consists of
'fiand !'<<!g; (!gz())>>, both with stage nesting one, thus composing the next
stage and evaluated together. Up to this point, the evaluation sequence is the
following (blocks indicate distinct stage programs, arrows indicate order).

{ ' }> { '£, > 'K<lg;(1g2())>> }

The expression !<<!g; (g, ())>>is only used to generate the code whose original

staging was hidden with quasi-quotes, thus revealing its staging: !g1 (!g2()) ;

In the same way as before, this code will further evaluate as follows, with two
different stage programs: { g2 } — { gl }. Overall, the resulting evaluations
follow a sequence that is identical to the traditional order. This method can be
generalized for any multi-stage program and may be automated in the compiler, if
traditional evaluation is needed, through AST manipulation. More specifically, we
can locate all top-level staged fragments and surround them with an increasing
number of nested !<< .. >> tags, starting with zero. Thus, the first fragment
remains as it is (zero tags), the second is put inside ! << .. >> (one tag), the third
inside ! << ! << .. >> >> (two tags), and the n-th inside n-1 tags. This process
is illustrated in Figure 4.9 and shows that that the integrated model can emulate the

traditional model.

General form of Emulating the traditional evaluation order
nested staged code in the integrated model

!f11(!flz(!flz("'!flnl()"') ))
!fll(!f12(!f13(~--!fl ()..)))

ny
<< !le(!fzz(!f%(...!fz ()..))) >>

Ve, (VE, (V5 (L1E, ().)) "2

1<< 1< NE (MEs (1E5 (W1Es () >> >>

!f3l(!f32(!f33(...!f3 ()..)))
i-1 repetitions i-1 repetitions

<< .. !fil(!fi (P CLME On))) e >>

VE (VE (VE G VE (O).)))

Figure 4.9 — Emulation of the traditional top-down inside-out stage evaluation order in the integrated

model; delayed stage evaluation is forced with quasi-quotes and inlining.
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4.4 Discussion

There are certain tradeoffs involved in adopting the integrated metaprogramming
model. On the one hand it offers the notion of a coherent metaprogram with its lexical
scoping, shared state and sequential control flow. On the other hand, supporting these
features introduces an explicit dependency across stage fragments that could restrict
the potential for evaluating in a different way, such as arbitrary reordering or parallel
evaluation. However, we consider the latter to be a general language issue rather than
a metaprogramming model concern. In particular, as with normal programs,
reordering or parallelism may be automated by optimizers and runtimes to improve
performance, however, without mandating a paradigm shift from the original
programming model of languages. Since we emphasize the common treatment of
metaprograms and normal programs we consider all these issues on metaprograms to

be uniformly addressed following the practices of normal programs.

Another tradeoff relates to the inherent programming complexity in managing and
orchestrating separate stage fragments in order to behave meaningfully under their
sequential control flow. Since our control flow links code segments together that are
not close to each other in file scope, programmers may have to non-locally shift focus
of attention to assimilate such behavior. Apparently, this is not an easy task and is
something beyond the requirements of handling normal programs. However, its
complexity is not the same as splitting an algorithm into disparate sections and
keeping track of its behavior. In fact, we do not suggest or foresee that algorithms
within stages are to be split for some reason into separate stage fragments. We
consider that most dependencies between fragments will concern scope access to
earlier state and behavior, with the stage control executing linearly across fragments
from top to bottom of the main source file. Clearly, once stage fragments can be
independent to each other, they are essentially executed atomically and are far easier
to understand and control their behavior. While the latter is implemented with no
extra complexity in our model, we believe such scenarios represent only a very small

picture on what we expect metaprograms to do in the future.

Once a metaprogram grows at a point where it becomes difficult to manage its source
code, runtime state and control flow, we can deploy refactoring, separate modules,

abstraction techniques, or whatsoever, as with any normal program suffering from
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similar issues. For instance, it is possible to make libraries with code composition
functionality (AST manipulation, non-staged) that can be deployed by the various
metaprogram stages. However, it is not possible to entirely decouple the functionality
of a metaprogram from the original source file it actually affects. The actual source
locations where the code generation occurs are determined by the inline tags placed
directly within the affected source file. Thus, even if the entire metaprogram logic is
placed in a separate module, the original source still needs staged code to load the
module and call generator functions inside the appropriately placed inline directives.

Finally, a note related to type checking, as it enables an entire class of
metaprogramming bugs to be caught early by the type checker. Since Delta is an
untyped object-based language and the metaprogramming extension fully reuses the
host language, it involves no type checking. However, the integrated
metaprogramming model as such is orthogonal to the presence of a type system. Our
proposition targets the composition and execution of stages and does not involve the

type system, even if the hosting language would be typed.

45 Case Studies

We discuss metaprogram scenarios utilizing basic object-oriented features like
encapsulation and state sharing. Such features may differ from what is typically met
in the discussion of a metalanguage, but they are chosen on purpose to: (i) emphasize
our point that metaprograms are more than atomic macro expressions; and (ii)
highlight the importance of engineering stages like normal programs exploiting shared
state and control flow among stage fragments. It should be noted that we do not argue
the computation involved in such examples cannot somehow be expressed in existing
multi-stage languages. Instead our focus is purely on the software engineering
advantages of our model enabling typical programming patterns and techniques that
are applied in normal programs. In general, most examples involve grouping of
common functionality under generative objects that are shared across different stage
fragments. Such objects are only setup initially and are freely deployed within
different stage fragments to generate code. The latter avoids the tedious repetition of

the setup sequence as required with atomic macros that lack state sharing.
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4.5.1 Exception Handling

Exception handling [Goodenough] is known to be a global design issue that affects
multiple system modules, mostly in an application-specific way. In this sense, it
should be possible to select a specific exception handling policy for the entire system
or apply different policies for different components of the system. Using typical
object-oriented techniques, the only solution would be to abstract the desired
exception handling policy within a function (or object method) and place a
corresponding invocation to every applicable catch block. However, it does not avoid
the boilerplate code required for declaring the handler and performing the function
call, nor does it support arbitrary exception handling structures or context-dependent

information.

In this context, we can use metafunctions to generate code for exception handling
patterns. However, without shared state, metafunction invocations are separated and
require explicit and tedious repetition of the pattern details. Moreover, if multiple
exception handling patterns are available, it is not possible to parameterize their
application, or even use binders, to form custom exception handling policies. Using
our model, it is possible to maintain a collection of the available exception handling
patterns and select the appropriate policy based on configuration parameters or
normal control flow while requiring no changes at the call sites inside client code.
This is illustrated in the following example.

&function Logging (stmts)
{ return << try { ~stmts; } catch e { log(e); } >>; }

&function CreateRetry (data) { < constructor for a custom retry policy
return function (stmts) { <«return a function implementing the code pattern
return << «the returned function returns an AST
for (i = 0; i < ~(data.attempts); ++1i)
try { ~stmts; break; } <« try & break loop when successful
catch e { Sleep(~(data.delay)); } <-catch & waitbefore retrying
if (i == ~(data.attempts)) <maximum attempts were tried?
{ ~(data.failure_stmts); } <then give-up & invoke failure code
>>;
}
}
&ex = [ <compile-time structure for holding exception handling policies
@policies : [], Qactive : "",
method InstallPolicy (key, func) { @policies[key] = func; 1},

method SetActivePolicy (policy) { (Cactive = policy; 1},
method Apply (code) { return (policies[lactive] (code); }
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&ex.InstallPolicy ("LOG", Logging); < install the logging policy
&ex.InstallPolicy ("RETRY",CreateRetry ([ <«create and install a retry policy
@dattempts : 5, @delay : 1000, @fail : <<post("FAIL")>>

1))
for (1 = 0; i < 5; ++i)

&ex.SetActivePolicy ("RETRY") ; E$> try { £(); break; }
! (ex.Apply (KLE£()>>)); catch e { Sleep(1000); }

if (i == 5) {post("FAIL");}
&ex.SetActivePolicy ("LOG") ;
! (ex.Apply (<Lg()>>)); E:> try { g(); } catch e { log(e); }
! (ex.Apply (X<h () >>)) ; try { h(); } catch e { log(e); }

As shown, we utilize the stage object ex to accommodate and compose typical
exception handling policies. It is used in an object-oriented fashion to initially install a
number of required policies, such as LOG and RETRY, and to generate the respective
exception handling code by the invocation of the Apply () method. In this example,
Logging is directly a policy metafunction, while Retry accepts parameters to
produce the required policy metafunction (e.g. number of retries, delay between
attempts and fallback code when all attempts fail). Such parameters are provided
once, upon policy installation, and are not repeated per policy deployment. This
relieves programmers from repeatedly supplying all required parameters and
constructing all needed objects. Additionally, and most importantly, it allows a
uniform invocation style, enabling different policies to be activated as required at an
initial point, without inherent changes at the generation sites involving
! (ex.Apply (..)) ; directives. An extended version of this example as well as

further exception handling patterns based on our model are discussed in section 7.2.

4.5.2 Design Patterns

Design patterns [Gamma] constitute generic reusable solutions to commonly
recurring problems. They are not offered as reusable modules, but are recipes to apply
a solution to a given problem in different situations. This means that in general, a
pattern has to be implemented from scratch each time deployed, thus emphasizing
design reuse as opposed to source code reuse.

We have examined the possibility of utilizing metaprogramming to support generating
concrete pattern implementations, where applicable. In this context, the pattern
skeleton is turned into composition of ASTs, the pattern instantiation options become

composition arguments, the actual client code is supplied as AST arguments and the
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pattern instantiation is handled by generative directives. To effectively accommodate

such requirements, metaprograms require features beyond staged expressions.

With integrated metaprograms, programmers may apply practices like encapsulation,
abstraction and separation of concerns, thus significantly improving the metaprogram
development process. For example, it is possible to implement abstract pattern
generators, have multiple such objects or even hierarchies of them available, and
select the appropriate generator for a target context while preserving a uniform
invocation style. This functionality is demonstrated in the following example that
implements the adapter pattern. The pattern is implemented in two ways, using

delegation and sub-classing, while its application may be parameterized with staging.

function Window (args) { <« runtime class that will be adapted
return [
method Draw () {..},
method SetWholeScreen () {..},
method Iconify () {..}
1
}

&function GetClassDef (target) {..} < uses compiler state to find the target class

&function AdapterByDelegation () { < creates an adapter object that uses delegation

return [
method adapt (spec) {
local methods = nil; <« AST of adapted class methods, initially empty
local class = GetClassDef (spec.original);
foreach(local m, class.getMethods()) { < iterate over class methods
local name = m.GetName () ;
local newName = spec.renames[name];
if (not newName)
newName = name; < if no renaming use original name
methods = << < merge existing adapted methods with the current one
~methods,
method ~newName (...) { @instance.~name(...); }
>>;

}

return << <« create and return the adapted class using the adapted methods AST

function ~(spec.adapted) (...) {
return [
@instance : ~(spec.original) (...),
~methods
1
}
>>;
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&function AdapterBySubclassing() { <« createsan adapter object that uses subclassing
return [
method adapt (spec) {
local adaptedMethods = nil;<« AST of methods to be adapted, initially empty
local class = GetClassDef (spec.original);
foreach(local m, class.getMethods()) { <« iterate over class methods
local name = m.GetName () ;
local newName = spec.renames[name];
if (newName) <-only check renamed methods, other are inherited by base class
adaptedMethods = << <« merge adapted methods with the current one
~adaptedMethods,
method ~newName (...) { self.~name(...); }
>>;
}
return << <« the adapted class as a subclass that introduces the adapted methods

function ~(spec.adapted) (...) {
local base = ~(spec.original) (...); < base class object
local derived = [~adaptedMethods]; <« derived class object

std::inherit (derived, base); <« derived object inherits from base
return derived;

>>;
}
1
}
&AdapterFactory = [ «Creating and populating a factory with adapter implementations
@adapters : [1,
method Install (type, func) { @adapters|[type] = func; },

method New (type) { return Qadapters[type] (); }
17
&AdapterFactory.Install ("delegation", AdapterByDelegation);
&AdapterFactory.Install ("subclassing", AdapterBySubclassing);

&adapterType = "delegation"; < can also be read or computed dynamically
&adapter = AdapterFactory.New (adapterType) ; <—Create an adaptor object
&windowAdapterData = [ < compile-time data for the window adapter
@original: <<Window>>, (@adapted : <<WindowAdapter>>,
@renames : [{"SetWholeScreen":"Maximize"}, {"Iconify":"Minimize"}]
1
function WindowAdapter(...) {
return [
@instance : Window(...),
method Draw(...) { Q@instance.Draw(...); },
! (adapter.adapt ( E$> method Maximize (...)
windowAdapterData { @instance.SetWholeScreen (...); 1},
)) method Minimize(...) {@instance.Iconify(...);}
1;
}
&adapter = AdapterFactory.New ("subclassing"); < create new adapter object
&windowAdapterData.adapted = <<WindowAdapter2>>; <« change adaptation data
function WindowAdapter2(...) {
local base = Window(...);

local derived = [
method Maximize (...)
! (adapter.adapt ( E$> { self.SetWholeScreen(...); },
windowAdapterData method Minimize(...){ self.Iconify(...); }
Y); 1
std::inherit (derived, base);
return derived;

}
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Such generator objects can also abstract implementation details of the classes they
produce, with such details specified only upon creation. For instance, consider a
Singleton class that may adopt different invocation styles (e.g. static functions or
static instance and methods), that may even be declared within a namespace, thus
requiring extra syntax in its usage. Implementing such a code generation scheme in a
typical multi-stage language requires repeating the generated class details at every
location, something painful (consider that such details are syntactically verbose due to
quasi-quotes) and error-prone. Similarly, updating or replacing the implementation
would require manually locating all affected sites and applying individually the
required changes. Below we show an example for the definition and usages of a
MemoryManager Singleton class implemented in a hypothetical meta-C++ language
adopting our staging tags and integrated metaprogramming model. Notice that in this
particular example, there are no name conflicts across global and local declarations,

so for simplicity we do not use any define tags but only execute tags.

&AST* impl = << <« basic MemoryManager class implementation
void Initialize () {...}
void Cleanup () {...}
void* Allocate (n) {...}
void Deallocate (void* var) {...}
>>;
&class MemoryManagerGenerator { < MemoryManagerGenerator interface
protected:

AST* namespace; < hamespace in which the target class will reside in (may be null)
AST* GetClass () {<« iftargetclass iswithin a namespace, use a fully qualified name
AST* result = <<MemoryManager>>;
if (namespace) result = << ~(namespace) ::~result >>;
return result;
}
public: < methods to be implemented by concrete generator subclasses
virtual AST* GetDef () = 0;
virtual AST* GetInit() = 0;
virtual AST* GetCleanup() = 0;
virtual AST* Allocate (AST* n) = 0;
virtual AST* Deallocate (AST* var) = 0;
MemoryManagerGenerator (AST* ns = 0) : namespace (ns) {}
}i
&class StaticFuncGenerator : public MemoryManagerGenerator({
private: AST* MakeAllFunctionsStatic (AST* funclist) {...}
public:
AST* GetDef () const { <« generate singleton class using static functions
AST* staticImpl = MakeAllFunctionsStatic (impl) ;
<« modify base MemoryManager implementation making all of its functions static
AST* result = <<class MemoryManager { public: ~staticImpl; };>>;
if (namespace) < wrap the class within the given interface, if any
result = << namespace ~namespace { ~result; } >>;
return result;

}
AST* GetInit () { return <<~ (GetClass())::Initialize()>>; }
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AST* GetCleanup () { return <<~ (GetClass()) ::Cleanup()>>; }

AST* Allocate (AST* n){ return <<~ (GetClass())::Allocate(~n)>>; }
AST* Deallocate (AST* v) {return <<~ (GetClass()) ::Deallocate (~v)>>;}
StaticFuncGenerator (AST* ns = 0) MemoryManagerGenerator (ns) {}

}i

&class StaticInstanceGenerator public MemoryManagerGenerator ({

private:

AST* GetlInstance() const { return <<~ (GetClass()) ::Instance()>>; }
public:

AST* GetDef () const { < generate singleton class using a static instance

AST* result = <<
class MemoryManager {
public:
static Instance () {
static MemoryManager instance;
return instance;

}
~impl; <« insert methods from base MemoryManager implementation
}i
>>;
if (namespace) < wrap the class within the given interface, if any

result = << namespace ~namespace { ~result; } >>;

return result;

}

...all following methods use Getlnstance to generate code for accessing the static instance...

AST* GetInit(){ return <<~ (GetlInstance())->Initialize()>>; }
AST* GetCleanup () { return <<~ (GetInstance())->Cleanup()>>; }
AST* Allocate (AST* n) {return <<~ (GetInstance())->Allocate(~n)>>;}
AST* Deallocate (AST* v) {return <<~GetInstance()->Deallocate (~v)>>;}

StaticInstanceGenerator (AST* ns = 0) MemoryManagerGenerator (ns) { }

}i
&MemoryManagerGenerator* mm = new StaticFuncGenerator (<<Memory>>);
< create a concrete code generator object and use it through the base class API

namespace Memory {

class MemoryManager {

public:
static
static
static
static
bi

void Initialize () {..}
void Cleanup () {..}
void* Allocate (n) {..}

void Deallocate (void* wvar) {..}

=

! (mm->GetDef ()) ;

}
..other global definitions... ...other global definitions...
int main () { int main () {

Initialize();

! (mm->GetInit ()); Memory: :MemoryManager: :
...other normal program initializations... ...other normal program initializations...
void* x = Ei} void* x =

Memory: :MemoryManager: :Allocate (10) ;

! (mm->Allocate (<<10>>)

..normal code using variable x .
!(mm >Deallocate ( <<x>>

..other normal program code..
!(mm >GetCleanup()) ;

...other normal program cleanups...

>
=

...normal code using variable x ...
Memory: :MemoryManager: :Deallocate (x

...other normal program code...
Memory: :MemoryManager: :Cleanup () ;

..other normal program cleanups...

)7

return 0; return O;

} }
&delete mm; < dispose the compile-time generator object

As shown, the invocation details are specified only once for each case and are

abstracted through the mm code generator object, allowing the definition and
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deployment code to be automatically produced without requiring any extra
information. The latter allows updating the generation parameters, possibly affecting
names or calling styles, without having to change all client uses of the generated class.
Also, in this example, the ordering of the inline directives is important. In particular,
the definitions regarding the memory manager object should be generated before its
actual deployment, thus ! (mm->GetDef ()) is put first. In the same sense, the
initialization statements of a memory manager should be generated before any
memory allocation calls, thus ! (mm->GetInit ()) is put next. Then, any cleanup
actions usually take place the end of the program so the ! (mm->GetCleanup () )
is put last. A working example of similar MemoryManager functionality implemented
in Delta is available in [Lilis13], while further design pattern examples based on

metaprogramming are discussed in section 7.1.

4.5.3 Design By Contract

Design by Contract (DbyC) [Meyer91] is a popular method towards self-checking
code improving software reliability. It proposes contracts, constituting computable
agreements between clients and suppliers. Clients have to respect method
preconditions prior to invocation while suppliers guarantee that the associated
postconditions will be satisfied once the invocation completes. Failure to satisfy the
promised obligations, on either the client or the supplier side, constitutes a contract

violation that will most likely result into an error, typically conveyed as an exception.

In this context, it is possible to use metaprogramming to automatically generate
contract verification code. This applies both for the supplier class, whose methods can
be enriched with precondition and postcondition checking that raise exceptions upon
contract failures, and the class clients, whose invocations can be automatically
protected with try-catch blocks. However, the definition of the supplier class is
separated from the client invocations, meaning that the applications of the code
transformations are also typically separated. This means that if the transformation
logic is not known a priori, i.e. it relies on some prior compile-time computation, it is
not possible to match the generated class definition with a corresponding generation
of the class invocations. Even if the transformation logic is predefined, its applications
are still separated so they may be applied partly, meaning it is possible to end up with

a supplier class that uses DbyC and client invocations that do not or vice versa. In the
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first case any thrown supplier exception will never be handled by clients, while in the
second case client invocations will contain irrelevant exception handling code since

the supplier class may not throw any contract exceptions.

This problem can be solved with the state sharing and typical control flow offered by
integrated metaprograms. Any transformation to be applied on the supplier class can
be stored along with the corresponding transformation required for its usage and be
available in the following stage calls that will generate the client invocations, taking
into account the transformations performed on the class definition. The following
code highlights this functionality, by introducing a single object that can be used to
transform both the class definition (through the std: : context function discussed
earlier) and usages. In particular, the transformer object t contains all relevant
transformation information and could be used to handle any number of classes along
with their usages. Additionally, notice that the inlining code that uses the transformer
object is completely unaware of the actual transformation being applied; this

information is properly encapsulated within the transformer object.

&function DbyC () { < DbyC transformer
return [ < create and return a transformer object
method supplier (class) { < generator for the supplier class
foreach (local m, class.getMethods()) { <« iterate over class methods
local pre id = "pre " + m.getName (); < precondition method id
if (elass.hasMethod(pre id)) <« does the precondition method exist ?
m.body.push front ( <«add source (AST) at the beginning of the method
<< <« source fragment as AST begins here
if (not self[~pre_id] ())<«has precondition call failed?
throw [ «then throw an exception
@class: "ContractException",
@type : "Precondition",
@classId : ~(class.getName()),

@method: ~(m.getName ())
17
>> < source fragment as AST ends here
) i
...similar logic to add postcondition checking code at the method end here...
}
return nil; < no additional code to be inlined in the supplier context
by
method client (invocation stmts) ({ < generator for the client invocations
return <<
try { ~invocation stmts; }
trap ContractException { log(ContractException); }
>>;
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&t = DbyC():; <« compile-time transformer object

function Stack() { function Stack () {

return [ return [
method empty {..}, method empty {..},
method pre pop {..}, method pre pop {..},
method pop {..}, method pop {

if (not self["pre pop"]())
!'( t.supplier ( throw [
std::context("class")[$> @class : "ContractException",
)) s Qtype : "Precondition",
@classId: "Stack",
1; @method : "pop"

} 17
... original body of pop method follows here...
} 14
1:
}
st = Stack(); st = Stack();
!(t.client(<<st.pop()>>));Ei>‘try { st.pop(); }
catch ContractException
{ log(ContractException); }

The same approach can be extended to handle additional transformations that affect
both the definition and usage of a given class. For instance, if we wanted the Stack
class of the previous example to also be transformed as a singleton class, we could
define a corresponding transformer meta-function and then combine the two to create
a new transformer object that can be used without affecting any of the code generating

invocations.

&function Singleton () { < Singleton transformer
return [
method supplier(class) { ...turn classinto a singleton... },
method client (code) { ...gemerate invocation style for singleton client... }
17
}
&function ListTransformer (list) { < combination of multiple transformers
return [
@list : list,
method supplier(class) {
local retval = nil;
foreach (local t, Q@list) < combine all class definitions
retval = <<~retval, ~(t.supplier(class))>>;
return retval;
}I
method client (code) { < combine all client invocation uses
foreach(local t, @list)
code = t.client(code);
return code;

1;
}
&t = ListTransformer (list (DbyC(), Singleton())):

...the rest of the code remains exactly as it is ...
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Chapter 5

Tool Extensions

"Man is a tool-using animal. Without tools he is nothing, with tools he is all.”

- Thomas Carlyle

Next to programming languages, Integrated Development Environments (IDEs) and
the tools they provide play the most critical role in the software development process.
In this sense, an Integrated Metaprogramming System requires, apart from the
extension in the language, a set of tool extensions able to support metaprogramming
in a similar way current tools support normal programming. Such extensions include
the integration of metaprograms and their outcomes in the workspace manager
allowing code review and source browsing, a build system aware of stage
metaprograms and custom build properties they may involve, a facility for proper
reporting of compile errors generated by metaprograms and finally full-fledged
source-level debugging for both metaprograms (during compilation) as well as for
generated final programs (during runtime). We continue elaborating on the integration
of stages in the IDE of the Delta language, Sparrow [SavidisO7], and discussing the

necessary interactions between the compiler and the various IDE subsystems.

5.1 Workspace Manager

When using metaprogramming the code available in the source file and the code that
is finally compiled to byte-code may be significantly different. This, of course, is due
to the code transformations defined in the metaprogram itself, but results in executing
code that was never part of the original program and that the programmer may be
unable to see or understand. This can be a major drawback especially in cases where
the final program does not behave as expected and the programmer is unable to
determine why. The reason could be a faulty implementation of the metaprogram, a
misuse in its application in the current context or even some error in the normal
program code; however the programmer only sees the erroneous behavior with no

additional feedback about its origin.
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To facilitate programmers in such situations, we extract and store stage metaprogram
source code as separate read-only files that are incorporated in the workspace
manager of the IDE associated with their respective main program. Clearly, this
allows for better reviewing and understanding, compared to studying a metaprogram
across disparate text fragments as embedded in the main program. Additionally, we
also store the modified versions of the main program, after every stage evaluation
showing clearly the staged transformations introduced over the original program.
Essentially, this means that for a compilation involving n stages, there will be a total
of 2-n source files generated, that are collectively referred to as compilation stage
sources. All such source files are produced during the compilation process and are
propagated to the workspace manager for inclusion in is respective folders and
structures. Once incorporated in the workspace, besides reviewing and browsing, they
are also used for reporting compile errors (see section 5.3), setting breakpoints and

performing source-level debugging (see section 5.4).

Project Manager e Editor Manager x
PEW QOS power.dsc X ¥ X | power_stage_1_resultdsc < -
MetaTests &tfunction ExpandPower (x, n) { power3 = (function(x){return x*x*x;});
£ DesignPattems.dpraj . ege . std::print("2°3 = ", power3(2), "\n");
B e initial main
-] tests.dproj
f-la] compile_time_gui.dsc return x; source . .
1) contetdsc else N final main source
& 51 diagnostics.d return <<~x ~(ExpandPower (x, n — 1))>>;
, .
ol e S - after staging
*3 { ret unction(x){ return ~(ExpandPower(<<x>>, n)); })>>; }
)
e power3 = ! (MakePower(3)); //powsr3 = (function(x) | return x*x*x; });:
"31 o std::print ("2°3 = ", power3(2), "\n");
@-a
'
= .ﬁ].lﬂﬁ -
112 power_stage_ldsc X _—
142
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else if (n == 1) assembled
stage and final return x; stage source
sources added <<ex * ~ (ExpandBomer (x, n - 1))>>;
after compilation (n
{ return <<(function(x){ return ~(ExpandPower(<<x>>, n)); })>>; }
std::inline(MakePower (3));
‘ v

Figure 5.1 — Reviewing the compilation sources in Sparrow: Project manager view (left), initial main
source (middle), assembled stage source (bottom), final main source after staging (middle right).

Extracting the source code for compilation stage sources requires utilizing the
respective ASTs that are available during the compilation process and producing a
textual representation of their code, a process known as unparsing. Source code for
stage metaprograms is generated based on the assembled stage program AST (Figure
5.2, denoted as AST of stage i), while source code for main program transformations
is generated based on the main program AST versions that are updated as a result of
the corresponding stage execution (Figure 5.2, denoted as Intermediate Main AST

after stage i). The generated source code is then stored using some naming
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convention, for example adding a suffix along with the current stage number (Figure
5.2, denoted as stage_i_source and stage_i_result_source for stage metaprograms and
their results). In particular, the final program being compiled into executable code is
actually the result of the last stage, so it will also be available as the last generated

source (Figure 5.2).

stage_1 stage_2 | stage_n
source source source

Tunparse Tunparse unparse
AST of stage 1 j * AST of stage 2 j AST of stage n
assemble compile assemble compile compile
L 4 L 4 v

stage 1 stage 2 stagen final
executable executable ) 7T executable executable

input update input update update L\
N \ 4

initial intermediate main intermediate main e final main AST compild
main AST |:> AST after stage 1 E> AST after stage 2 S (after stage n)
Tparse unparse unparse unparse

stage_1_result stage_2_result |ETTTTIIEE stage_n_result
source source source

Figure 5.2 — Storing the source code of all stage metaprograms and their outputs (main program
transformations).

The compilation stage sources are meant to be shown to programmers, so naturally
they have to be as readable as possible. This means that any generated code segments
should span across multiple lines and be properly indented. Nevertheless, both stages
and main program transformations may contain code originating directly from the
main source. User written code should clearly be preferred over automatically
unparsed code (different indentation, empty lines, comments, etc.), so any such code
segments should maintain its original form. To support this efficiently, AST nodes
contain their starting and ending character positions in the original source allowing
the retrieval of their text segments. This way, the unparsing algorithm can combine

original and generated text segments to produce a visually appropriate source file.

Once such a source file has been generated during compilation it is sent to the IDE to
be incorporated into the workspace. This interaction and the communication it
involves rely on the way the compiler is invoked by the IDE. In case the compiler is
available as an IDE service invoked during the build process, it is possible to directly

provide callbacks for specific events like compilation errors or generation of
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compilation stages source. If it is implemented as a separate executable spawned by
the IDE, the communication channel between them is typically a memory pipe using
standard text input and output facilities. This requires establishing a protocol for
communicating the compiler events to the IDE using some text representation. For
example, to notify the IDE about the existence of the compilation stage sources, the
compiler may use a special message containing resource identifiers for them (e.g. file
paths). Early versions of our metaprogramming systems actually adopted this method
since it required only minimal extensions on the existing message handling
infrastructure. One last alternative is for the interaction to fully rely network based
communication. In this case, the IDE acts as a server for receiving compilation stage
sources and supplies the host and port information as parameters in the compiler
invocation. Once launched, the compiler will use these parameters to establish a
connection with the IDE and use it for supplying it with any compilation stage sources
generated during the compilation process (see section 5.2). This is the approach
currently adopted in our metaprogramming system. The reason for changing the
original approach was that the compilation stage sources required additional metadata
associated with them in order to properly support compile-time debugging of stages.

This will be discussed in more detail later in section 5.4.2).

5.2 Build System

To treat metaprograms equally to normal programs we need to support them with
typical build and deployment tools. While a metaprogram resides in a source file
along with a normal program, it may use external libraries or compilation options that
are entirely different from those used by the normal program and clearly,
programmers should be allowed to specify them despite the fact that metaprogram

sources are not available prior to compilation.

Towards this direction, we extend the deployment options associated with normal
sources to accommodate information about stages. In particular, we support
specifying custom compilation options (e.g. additional external libraries, compiler
options, deployment options, etc.) for specific stages while also providing default
options applicable for all other stages. The default options are actually very useful
when the number of stages cannot be statically determined, thus disabling the

association of compilation options with specific stage numbers.
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With the stage compilation options specified directly within the normal program
deployment options, it would be possible to provide them as arguments in the
compiler invocation. Then the compiler could utilize the supplied options, handling
handle the assembly and compilation of the stage metaprograms internally, without
requiring any additional interaction. Nevertheless, this deployment model does not
support metaprograms to have any dependencies; before the compiler invocation they
are not available while during it they cannot be resolved without external information.
The latter essentially dictates that in order to support this functionality the compiler
should directly interoperate with the build system. In this context, we utilize the
ability to incorporate compilation stage sources directly in the workspace manager,
generate their compilation options based on the stage compilation options of the main
program by matching their stage numbers and allow the compiler send build request
for them directly to the build system. The entire process, outlined under Figure 5.3,

involves the following steps:

(9) add intermediate or final source in the workspace

(10) if still staged
(5) add stage source in the workspace continue from step (4)

(11) build final source

(2) if staged continue

(6) build stage source from step (4)

y J | by

Build (1) compile source
System

Compiler

1‘ (3) notify binary ready | Tt 1 (4) assemble and

unparse stage source

(7) notify stage binary ready

(8) execute stage binary and unparse
intermediate or final source

Figure 5.3 — Build system and compiler interaction sequence diagram regarding metaprograms.

1. When a source is to be compiled, the build system resolves and builds its
dependencies, finally invoking the compiler on the actual source, while also
waiting possible further requests from it.

2. If the source contains stages the process continues from step 4.

3. Otherwise, the source is directly compiled, the build system is notified that the
binary is ready, and the compilation process ends here.

4. The stage source, i.e. an integrated metaprogram, is composed.
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5. It is submitted to the build system for propagation to the workspace manager.
Any compilation options for this source are derived from the stage
compilation options of the originating main source.

6. The build system is asked to build the submitted stage source.

7. Once ready, the build system responds that the stage binary is ready (else,
error reporting is involved).

8. The metaprogram is run, modifying the current AST, and the transformed
main source is produced by unparsing the AST.

9. It is submitted to the build system for propagation to the workspace manager.
As this is a new version of the main program, it inherits its compilation
options directly from it.

10. If it is still staged then we continue from step 4.

11. Otherwise, it is the final source and the build system is asked to build it.

Effectively, the compiler becomes a client of the build system, capable to recursively

involve the build system back in the loop with additional build requests for stages.

For subsequent build requests we also have to consider when a source should be
rebuilt or when it should be considered up-to-date, maintaining its binary without
involving any compilation. Since stages originate from code within the main source,
modifications in its code may result into different staged code and eventually a
different final program. Stage sources are automatically generated and thus
semantically read-only; however they may still be outdated if one of their
dependencies has changed. In general, this means different stage execution, resulting
to a possibly changed intermediate program, and consequently, again, a different final
program. To properly support such cases, sources that contain stages should be the
handled specially and thus the entire build process has to be extended to become
staging-aware, as illustrated in the flowchart of Figure 5.4. In particular, if the target
source contains stage sources (outcome of a previous build session), the recursive
build of dependencies is omitted as the main source is bound to change due to
metaprogramming. Instead the build system checks if the target source is up-to-date
or it has changed since the last build (with respect to its previously produced binary).
If it has changed, any compilation stages sources will also change, so they are
removed from the workspace and the target source is sent for compilation. Any
dependencies within the main source that are not yet processed will remain intact
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during the program transformations (new dependencies may be introduced via meta-
programming, but the original ones cannot be removed), so they will be available in
the final source, at which point they will be recursively built before compiling the
final program source. If the main source is up-to-date, we further check if its
associated stage sources are up-to-date which practically means checking whether any
of their dependencies have changed. If this is the case, the resulting final program is
also outdated, so any compilation stage sources are again removed from the
workspace and the target source is sent for compilation. Otherwise, all stage sources
are up-to-date and consequently the generated final program remains the same. This
way, the only additional step required is to normally build the final source. If any of
its dependencies have changed, they will be recursively built, followed by a
compilation of the final source, while if they are unchanged, the final source itself is

unchanged so the build process will yield up-to-date.
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J—. source final source L deps 1..k
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build up-to-date source 3 ! staging send stage sources pure build
L tags to the build system S Ll
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Figure 5.4 — Control flow for the staging-aware build process; starting process is ‘build’ (top-left).

It is worth noting that the first compiler invocation on a source file with stages
performs no actual translation. Instead, its purpose is to produce the stage sources,
supply them to the build system, and when done, execute their binary to apply their
transformations on the main program. Once done with stages, the compiler will

eventually submit the final source of the transformed main to the build system.

5.3 Compile-Error Reporting

As with normal programs, when writing metaprograms errors are bound to happen, so
it is important to have the proper tools to understand their origin and finally resolve

them. Compilation errors are generally considered easy to resolve as compilers can
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identify exactly where something went wrong and why. However, in the context of
metaprogramming, compilation errors tend to be much harder to resolve;
metaprogram compilation may involve code that was never part of the original
program and thus the traditional error report may no longer reflect code that the
programmer can see and understand. A first step towards the solution is to utilize the
compilation stage sources that are already incorporated in the workspace in order to
provide the missing source information. Nevertheless, the source code of a
metaprogram may be the result of a nested metaprogram and thus an error reported in
the former may in fact be caused by the latter. Essentially, compile-error reports
should encompass additional information regarding the context in which a
metaprogram was assembled so as to help programmers identify the real cause of an
error. We continue elaborating on the required information and introduce the notion

of a compile-error chain across the compilation stage sources.

5.3.1 Compile-Error Chain across Stages and their Outputs

Both stages and their outputs, i.e. the main program transformations (including the
final program) are derived from previous intermediate versions of the main program
and ultimately from the original main program. As such, even code segments that
were never part of the original program can be traced back to some source location of
the original main program. In this sense, a meaningful and precise report for
compilation errors occurring either in stages or the final program should encompass
the entire code generation trajectory that led to the generation of the erroneous code
segment. From the perspective of the error report, the latter allows creating an error
chain across all involved source files (both stages and main program transformations)

and combine this information into a descriptive message.

To support such functionality, each AST node is enriched with information about its
origin, thus creating a list of associated source references. The source references for

each node are created using the following rules:

1. Nodes created by the initial source parsing have no source reference.
2. When assembling nodes for a compilation stage, a source reference is created,
pointing to the current source location of the node present in the main AST.
3. When updating the main AST, the source locations of the modified nodes are
mapped to the latest stage source, creating the corresponding source reference.
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Rules 1 and 3 along with the fact that the main AST can be modified only through the
execution of the compilation stages guarantee that the main AST nodes will always
either be a part of the original source or be generated by some previous stage and have
a source reference to it. Furthermore, rule 2 and the fact that compilation stages are
created using only nodes from the main AST guarantee the same property for all
compilation stages as well. This means that any AST being compiled, either for some
compilation stage or the final program, will incorporate for each of its nodes the entire
trajectory of the compilation stages involved in their generation. Figure 5.5 provides a

sample visualization of this information upon the occurrence of an error.
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Figure 5.5 — Precise error reporting for compilation stages using the chain of generated sources.

We should note that our approach focuses on providing the source locations involved
in a compile error but does not affect the error message itself. Since the same
compiler executable is used for both normal programs and compilation stages, the
same messages are naturally reported upon errors regardless of their origin. We
believe that such error messages are chosen by the compiler to provide all relevant
information based on the error context and are not related to the meta-compilation
process. By providing the complete error chain across all stages and outputs, we

provide the missing information context required to fully understand the error report.

For instance, the error reported in Figure 5.5 concerns an undeclared symbol called as

a function. Looking only at the original source (bottom left) there is no evidence of
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such a function call so the error message makes no sense; however looking at the
stage result that actually caused the error (top left) we can spot the erroneous function

call and thus understand the message shown in the error report.

5.3.2 Study for Runtime Metaprogramming

The above discussion focuses on a system offering compile-time metaprogramming;
however error reporting is equally important for runtime metaprogramming. Code
assembled at runtime may also generate errors during its translation, and thus require
tracking down their origin to be resolved. In this context, we discuss how a
methodology similar to that discussed previously could be deployed in languages

supporting runtime metaprogramming, using existing features or possible extensions.

Let’s consider multi-stage languages that generate code during runtime based on
staging annotations. While it may be possible to ensure the type-correctness of a
generated program based on the type-correctness of its generator (for instance this is
the case in MetaML), there may also be semantic errors that cannot be reported before
translating the code at runtime. For such cases, staging annotations should keep track
of their locations and combine this information upon AST creations and combinations
or insertions into the main program. For a single stage this would resemble the
approach used by Converge for compile-time error reporting. For instance, consider
the following example written in Mint [Westbrook], a multi-stage extension of Java.
Code<Void> code = <|{break;}|>;

for (int i = 0; 1 < 10; ++1i) code.run();
code.run () ;

Essentially, the above code creates a delayed computation for a break statement and
runs it both inside and outside of a loop. When the computation is run inside the loop
it should normally execute the break statement and exit the loop. However, when it is
run outside of a loop it should produce an appropriate error message referring to the
origin of the erroneous computation. In this sense, the code object <| {break; } | >
should maintain the line information of its origin, possibly combine it with line
information from any involved escapes (in this case we have none), and finally use it
during the execution of the run operator to provide an error message similar to the
following: “In line 3, run introduces a ‘break’ outside of a loop. See original delayed

computation at line 1.”.
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However, if we have multiple stages or if the AST generation involves combining
multiple quasi-quotes present in the original source, reporting just the original source
locations of the code segments that generated the erroneous AST would probably be
insufficient as any context of the final AST being translated is not available. In this
case, we could unparse each of the involved ASTs to generate source segments (as
separate files or parts of a file containing all the relevant information) that can then be
used for linking the source references of the error message, thus providing the full
context of any AST combination and insertion in the entire code generation chain.

In the context of runtime metaprogramming through reflection, the source code to be
generated is just typical program data (e.g. dynamic text) and has no special source or
line information associated with it. As such, the only way to provide an improved
error reporting mechanism in this case, would be to manually insert any source and
line information for the generated code along with any potential references to other
source locations, if of course such a construct is supported by the language. For
example, in C# it is possible to utilize the #1ine directive along with
System.Diagnostics.StackTrace instances to allow instrumenting the
dynamic source code in a way that it reports any of its compilation errors directly on
the original source lines that generated the error. This functionality is depicted under

Figure 5.6.

StringBuilder sb = new StringBuilder(); Original file — Program.cs
sb.AppendLine("class Test {");
sb.AppendLine("void func() {");
i "#line {0} \"{1}\"",
I new System.Diagnostics.StackTrace(true).GetFrame(0).GetFileLineNumber(),
Lnew System.Diagnostics.StackTrace(true).GetFrame(0).GetFileName()
sb.AppendLine("return 0;");
sb.AppendLine("}");
sb.AppendLine("}");
string source = sb.ToString();
// use 'source' for compilation hereafter...

class Test { Generated file — Test.cs

Program.cs, line 52: Since void func() {
'Test.func()' returns void, a #line 52 "Program.cs"
return keyword must not be =2 return @; <— markedasline 52

followed by an object expression ) }

Figure 5.6 — Instrumenting #line directive for better error reporting in C#: The compilation error occurs

in the generated file but is reported in the original file.

101



If the reflection API provides support for compiling code based on some AST value,
it would be possible to enrich the AST structure with custom source file, line, or
source reference information and have the programmer explicitly write code that sets
this information in the nodes of the AST to be translated. This way, and considering
that the compiler is also extended to utilize such AST information, it would be
possible to generate a more detailed error report relating the generated code to the
original program instructions producing it and allowing a client programmer identify

the cause of an error more easily.

5.4 Source-Level Debugging

Every compilation stage is instantiated by the execution of the respective stage
metaprogram. As such, it should be subject to typical source-level debugging even
though it is executed during compilation. Sparrow provides such functionality
supporting typical debugging facilities such as expression evaluation, watches, call
stack, breakpoints and tracing. Figure 5.7 shows a compile-time debugging session

highlighting the following points:

1. Breakpoints are initially set within a meta-function in the original source file.

2. The source file is built with debugging enabled. This launches the compiler for

the build and attaches the debugger to it for any staged program execution.
3. During compilation, the IDE is notified about any compilation stage sources.
4. Stage sources are added in the workspace associated with the source being built.
5. A breakpoint is hit, so execution is stopped at its location.

6. The source corresponding to the breakpoint hit is opened within the editor to
allow further debugging operations such as tracing, variable inspection, etc.

7. The breakpoints in the generated stage source (including the one hit) were
automatically generated based on the breakpoints set in the original source file.

8. The execution call stack is available for navigation across active function calls.

9. Itis possible to inspect variables containing code segments as AST values.
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Figure 5.7 — A compile-time debugging session in Sparrow; highlighted items 1-9 are discussed in text.

Offering this functionality requires addressing three main issues: (i) initiating a
compile-time debug session while utilizing the previously discussed generated stage
sources for source information; (ii) introducing breakpoints for the stage code both
before and during the debug session; and (iii) enabling inspection of AST values. We

continue by detailing how each of these issues has been addressed within our system.

5.4.1 Translation-Time Debug Session

Stage programs are essentially normal programs, so it is possible to extend the
standard language and IDE infrastructure to support them with typical source level

debugging.

Generally, a debugging infrastructure is split in the backend, attached to the executing
program (i.e. the debuggee) and providing an appropriate query protocol, and the
frontend, offering user interaction and internally communicating with the backend.
The backend is typically incorporated into the language runtime, and the frontend is
usually part of the IDE. In our case, the debuggee is the compiler executable. Since
the compiler is responsible to run stages, besides the language runtime, it must be
linked with the backend as well (Figure 5.8).
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Figure 5.8 — Interaction between the compiler and integrated development environment for supporting
compile-time source-level stage debugging.

To allow specifying that any stages executed during the compilation should be
debugged the IDE should offer an explicit user option. Now, consider that stage
debugging is enabled when building a source file that contains stages. This will
launch the compiler, which in effect activates the debugger backend and connects to
the debugger frontend (Figure 5.8, step 1). Then, the debugging session operates as
with any other program. When a stage source is generated, the IDE is notified about
its existence and incorporates it into the project management thus allowing its source
to be used for debugging purposes. The stage is then translated to binary form and
executed by the virtual machine (Figure 5.8, step 4). The latter is actually the only
step relevant to the debugging process with the backend being attached to the stage
binary execution. Apart from that, the stage build process and the transition to the
next stage when the current terminates are totally transparent to the backend. In fact,
this allows for the entire staging process to be debugged in a seamless way; stepping
from the last instruction of one stage will cause the execution to pause at the first
instruction of the next stage without requiring a separate debug session or any

additional extensions.

From the IDE perspective, another requirement for proper compile-time debugging is
to properly orchestrate any facilities previously targeted only for build or debug

sessions. Essentially, IDEs provide different tools during build sessions (e.g. error
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messages, build output, etc.) and debug sessions (e.g. call stack, watches, threads,
processes, loaded modules, etc.), while wusually applying different visual
configurations for each activity. Compile-time debugging involves both a build and a
debug session, so the provided facilities should be combined in a way that maintains a

familiar working environment.

5.4.2 Supporting Stage Breakpoints

Once a stage source has been generated and incorporated into the IDE workspace, it is
possible to normally add or remove breakpoint for the code it contains, however, that
only happens during a meta-compilation round. Prior to that there are no stage sources
and no way to associate breakpoints with their execution. The only information
available is limited to any breakpoints associated with the main source being
compiled. However, it is possible to use these breakpoints to automatically generate
breakpoints for the involved stage sources.

The stage AST is composed of main AST nodes and, as previously discussed, main
AST nodes are either part of the original source or recursively generated by some
previous stage. Effectively, this means that each stage node originates from one or
more nodes of the original AST. Viewing this from a different perspective, the
original AST nodes can be associated with the stage nodes they generate, and the
same applies for their line information. To achieve this, we extend the unparsing
process discussed earlier to associate each node line of the AST being traversed to the
current line of the source being generated, taking into account the lines introduced by
the unparsing implementation (Figure 5.9). Each AST node generates two (not
necessarily distinct) line associations, one upon entering and one upon exiting the
traversal. The result of the traversal is a list with line associations that can be used to
transform breakpoints placed in the original source into stage breakpoints.

As shown in Figure 5.9, the generated line associations are not necessarily one-to-one;
effectively this means that a single original source breakpoint may end up generating
multiple stage source breakpoints (e.g. a single-line expression that generates a multi-
line function) while multiple source breakpoints may end up generating the same
stage source breakpoint (e.g. a complex multi-line expression that generates a single
line of code). However, this is actually the functionality that a programmer would
expect supposing that any code modifications occur directly at the line they appear in
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Figure 5.9 — Extracting line mappings for a compilation stage: The assembled stage AST (top), the
original source and the compilation stage source (bottom right) and the line mappings generated by

each AST node (next to each of the AST nodes, referring to elements of the bottom left table).

within the original source. For instance, an expression generating a function can be
seen as substituting itself with a single (probably long) line containing the function
definition. A breakpoint set on the single line function would be hit during the
execution of any statement within the function; likewise, the breakpoint of the
original source will generate breakpoints for all lines the function expands to,

achieving the same functionality.

The main source breakpoints reside within the IDE, while the association of line
mappings for the compilation stage sources relies on AST data and can thus take place
only within the compiler. Naturally, some additional interaction is required to

combine this information in order to generate the stage breakpoints.

Our initial approach towards this involved supplying the compiler with the original
breakpoints, e.g. as arguments in its invocation. Then, during stage source generation,
the computed line associations would be applied on them to generate the stage

breakpoints. Finally, the resulting breakpoints would be sent back to the IDE, e.g. by
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utilizing the communication channel between the backend and the frontend. The idea
behind this approach was to minimize the data communicated to the IDE by keeping
the line associations as internal compiler data available only during debugged
compiler invocations. Nevertheless, line associations may also be required externally
by IDE components, while they may be needed even after the compilation has been
completed. For example they may be needed to provide better navigation across stage
sources and main program transformations or to generate breakpoints for the runtime
debugging of the final source deploying a similar method with the one used for stage
breakpoints. To support this functionality, we adopt the original approach as follows.
The line associations for compilation stage sources are normally calculated within the
compiler during the unparsing and are then propagated to the IDE as accompanying
metadata. Upon receiving a compilation stage source, and only if case of a debugged
compile session, the IDE is then responsible to apply the line associations to generate
the stage breakpoint based on any breakpoints present in main source. Finally, as in
the original approach, any breakpoints generated this way are essentially transient, so
they are only kept during the execution of their respective stage and discarded

afterwards.

Apart from allowing the IDE to be aware of the line associations, the new approach
also provides better modularity and separation of concerns. The compiler’s only
responsibility is now the generation and provision of the compilation stage sources
and their corresponding line associations. In the IDE, the line associations now
become part of the compilation stage source metadata and are maintained by the
workspace management. Additionally, the generation and bookkeeping of the stage
breakpoints is now part of the typical breakpoint management of the IDE. Finally, the
debugger communication now requires no extensions to support posting a breakpoint

from the backend directly to the frontend.

5.4.3 Enabling AST Inspection

The execution of a compilation stage typically targets the modification of the main
source being compiled by manipulating code segments in AST form. To debug such
operations, it should be possible to inspect such runtime values and browse through
their contents. For example, using a typical expression tree-view the programmer

should be able to navigate across a tree hierarchy representing an AST node and
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inspect any of its attributes (e.g. type, name, value, etc.) or its related tree nodes (e.g.
children, parent, etc.). Supporting such a facility may be directly supported by the
existing debugger backend infrastructure, for instance if the AST nodes are

represented using native data structures, or it may require some minor extensions.

While the above view may provide all relevant information for an AST, it becomes
more and more difficult to use as the tree size grows. This is because the AST is
visualized only through its root node and specific nodes within the hierarchy can only
be viewed after navigating across all other intermediate nodes. For a better visual
representation that directly illustrates the entire AST we propose using graphical tree
visualizers. This way, programmers may simultaneously observe all AST nodes, the
connectivity and relations among them as well as their specific attributes (directly
annotated on the visualized tree or available as tooltip information). Since ASTs
represent source code, another viable solution is to unparse the AST into source code
and provide it to the programmer with proper formatting and syntax highlighting, for
instance reusing the editor component to deliver the view as a read-only document. In
the latter case, additional handling may be required to properly visualize all possible
AST values as they may also contain incomplete code segments. Overall, the IDE
should ideally offer multiple alternative visualization schemes that programmers may

select based on the nature of the program being debugged. For example, Figure 5.10

provides the alternative visualizations for inspecting the AST <<x

= 10>>.

Expression
=l-ast

Value

sn{0x9c)std: :ast{0xob) " = 10"

AST expression:

ast

Unparsed source:
x = 10;

o Hrepf Close

sn(oxcE)sthiast(Oxcs) = 107 Expr

| variable | [ const |

=] O]

Figure 5.10 — Alternative views for inspecting AST values in Sparrow: an expression tree view (left), a

viewer unparsing AST to source code (left, top) and a graphical tree view (left, bottom).
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5.4.4 Study for Runtime Metaprogramming

Again, the above discussion was focused towards compile-time metaprogramming.
We continue by exploring how stage debugging can be achieved in a language
offering runtime metaprogramming and discuss directly applicable existing practices,
their limitations as well as possible extensions. As with the compile-time case, we
focus on the requirements for stage debugging (i.e. source information and debug
information) as well as the support for setting breakpoints in the context of the stage
metaprogram. We begin with languages that support metaprogramming through
reflection and again use C# and Java as examples.

5.4.4.1 Stage Debugging

As previously discussed, in both C# and Java, the compiler can be used at runtime to
compile any dynamically created source text. The compilation outcome is typically a
binary file (dll or exe file in C#, class file in Java) that can be loaded and executed
using the reflection API. Deploying such code within a typical debug session and
ensuring that the proper options for generating debug information are supplied to the
compiler invocation, we end up with a normally executing binary that can be
debugged. However, we are missing the source information required for true source-
level debugging. In C#, compilation is performed through a temporary file containing
the dynamic source text. Using a compiler option it is possible to specify that the
temporary file should be retained after the end of the compilation. This way it can be
automatically used by the debugger to trace execution of the dynamically generated
code.

In Java there is no similar option to automatically generate a source file to be used for
debugging purposes. Nevertheless, an existing source file matching the generated
binary file can be automatically loaded and used for source-level debugging. This
means that it is possible to achieve the desired functionality by manually storing the
dynamic source text in an appropriate source file before loading the generated binary
file. To automatically support this functionality without requiring any intervention
from the programmer, we propose utilizing the information present in the class file to
generate a source file through reverse engineering, i.e. using a Java decompiler (e.g.
[Dupuy]). To this end, the Java Platform Debugger Architecture [Oracle] would have

to be extended with an extra command allowing the debugger frontend to ask the
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backend for missing source information, while their interplay would be as follows.
The backend initially issues a stop-point at a specific source location. The frontend,
typically part of the IDE, checks if the target source is present in the project
management and if not, it asks the backend to supply a source file. The backend that
has access to the generated class file, invokes the decompiler to generate a matching
source and sends it back to the frontend. Finally, the frontend receives the source and
opens it in an editor to support source-level debugging. From that point, the source
file can be used as any normal file, allowing the programmer to add extra breakpoints

and supporting typical debugging facilities.

Apart from using the compiler on a dynamic source text, it is also possible to directly
emit code in intermediate or final form. In C# there is the Reflection.Emit
namespace containing functionality for generating intermediate language code. When
emitting code this way, it is possible to associate it with a source file to be used for
debugging. However, this involves manually specifying a corresponding source
location for each emitted instruction as well as explicitly providing names for any
generated symbols. Standard Java libraries do not provide a similar functionality;
however it is possible to generate byte-code using a third party library like the Byte
Code Engineering Library [BCEL] or ASM [Bruneton]. The generated binaries can be
loaded for execution during a typical debug session, but they do not provide an
associated source representation. Nevertheless, with the class file present, the
proposed method of decompiling the class applies here as well, allowing the creation

of a source file that can be used for debugging purposes.

A reflection infrastructure is also offered by the Delta language. To provide source
information for debugging purposes when the original code is stored in a buffer or
when only a respective syntax tree is available for translation we use the following
approach: The source text is incorporated into the debug information of the generated
binary. Once the binary is loaded for execution, the source text from the debug
information is extracted by the debugger backend and is posted to the debugger
frontend when a breakpoint is hit in a statement of the dynamic source code. Then, the
frontend opens an editor for the dynamic source code enabling users to review it and

also add or remove breakpoints as needed.
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In general, the data required to carry out stage debugging consist of the stage source
text and the respective debug information. Typically, they are utilized by different
components during the debug process and target different tasks; the stage source is
used for displaying code and tracing through it as well as setting breakpoints while the
debug information is used for expression evaluation and call stack information
(Figure 5.11, right part). As such, they may be stored independently, both either in
memory or as a files within the filesystem, effectively presenting different options
regarding their availability. Supporting each of these options is important towards
allowing source-level debugging for all cases; however existing languages typically
provide only partial support. For example, in C#, it is possible to compile a source
present in memory as well as a source present in the filesystem but the generated
binary and debug information file (pdb file) is always stored in the filesystem. Even if
we explicitly set that generation should take place in memory (using the
CompilerParameters.GenerateInMemory property), temporary files are
always created in the filesystem and are disposed after compilation. This intermediate
step may in fact cause unexpected errors to occur if for example the disk quota is
exceeded or the application lacks access privileges. Even worse, during a subsequent
debug session, the debugger will request these intermediate files to provide source
and debug information, however they have been already disposed after compilation
(unless explicitly otherwise specified), meaning that no proper debugging is possible.
Similarly, in Java, the debug information is inserted into the generated class file that is
always stored in the filesystem and the debugger always requires a source file in the
filesystem to match that generated class file. Essentially, in both cases, the only
possibility for a proper debug session is when all required information is available in
the filesystem. In Delta, where the dynamic source is part of the debug information
and the debug information itself is stored within the generated binary it is possible to
have that binary stored in both filesystem and memory. In particular, regardless of the
stage source text or generated binary presence (either memory or filesystem), Delta

provides full source-level debugging support.

The left part of Figure 5.11 summarizes the different availability options for stage
source text and its respective debug information and the debugging support offered by
each language discussed.
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Figure 5.11 — Left: source-level debugging support for runtime stages in C#, Java and Delta regarding
the different availability options of stage source text and its respective debug information; Right: the

split responsibility in using source text and debug information for debugging sessions.

5.4.4.2 Stage Breakpoints

Once a source file corresponding to the metaprogram being executed becomes
available, it is possible to use it for setting the desired breakpoints. However, the
previously discussed methods for providing the source file imply that execution is
already stopped within the metaprogram context. Effectively, we need a way to set
breakpoints in the generated code before it becomes available, or an entry point for
breaking execution within the generated code and then placing additional breakpoint

directly on its source.

The simplest scenario is to locate the first invocation targeting generated code and use
that as an entry point. Within the debug session, we can place a breakpoint at the
already present source that will invoke the generated code and then step into that
invocation to cause execution to break in the desired context. However, this may not
always be possible as the generated code is not invoked necessarily directly after
loading. For instance, the generated code may contain callbacks that are only
registered upon loading and whose invocation occurs at an unspecified time later in
the execution of the program. In such cases one possible option is to instrument the
generated code with explicit directives for breaking system execution (granted of
course that the language and execution system provide such a facility). For example,
such functionality is provided in C# through System.Diagnostics.
Debugger.Break. In case of a debugged execution (that can be determined at

runtime through System.Diagnostics.Debugger.IsAttached) it is
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possible to insert such break invocations where needed in the code to be generated.
For the callback example mentioned earlier, that would involve placing a break
invocation as the first instruction in each of the callbacks present in the generated
code. In general, the same would have to be done for every executable piece of code
(e.g. function, method, etc.) present in the generated binary. The latter may result in
multiple breakpoints being issued with subsequent invocations of generated code,
while the original intent was only to break execution in the first invocation. However,
as shown in the code example of Figure 5.12 this is easily resolved by substituting the

original call with a wrapper that only breaks execution in its first invocation.

string breakDef = ""; class Test {
string breakCall = ""; static bool firstTime = true; BRCLEIREESIol
if:(System.Diagnostics.Debugger.IsAttached)i static void BreakWrapper() {
{ if (firstTime) {
breakDef = "static bool firstTime = true;" + firstTime = false;
"static void BreakWrapper() {" + i System.Diagnostics.Debugger.Break();
"if (firstTime) { firstTime = false;" + }
"System.Diagnostics.Debugger.Break(); } }"; }
breakCall = "BreakWrapper();"; public void funci() {
} BreakWrapper();
StringBuilder sb = new StringBuilder(); System.Console.WriteLine("func1");
sb.AppendLine("class Test {");
if (breakDef.Length > @) sb.AppendLine(breakDef); public void func2() {
sb.AppendLine("public void funci() {"); BreakWrapper();
if (breakCall.Length > @) sb.AppendLine(breakCall); System.Console.WriteLine("func2");
sb.AppendLine("System.Console.WriteLine(\"func1\");"); }
sb.AppendLine("}"); }
sb.AppendLine("public void func2() {");
if (breakCall.Length > @) sb.AppendLine(breakCall); class Test {
sb.AppendLine("System.Console.WriteLine (\"func2\");"); public void funci() for run session
sb.AppendLine("}"); { System.Console.WriteLine("funcli"); }
sb.AppendLine("}"); public void func2()
string source = sb.ToString(); { System.Console.WriteLine("func2"); }
// use 'source' for compilation hereafter... }

Figure 5.12 — Example in C# illustrating the instrumentation of the generated code with debugger break
instructions to stop execution in the context of the generated code during a debug session.

While the above is an adequate solution to the problem, it requires introducing
additional code just for debugging purposes, something typically undesirable. The
original problem narrows down to breaking execution after loading the binary and
before executing any of its code, so it should be addressed as a breakpoint issue.
Apart from normal breakpoints, there are also conditional breakpoints, breaking
execution when a condition is met, data breakpoints, breaking execution when the
value of some data is changed, and exception breakpoints, breaking execution when
an exception is thrown. In the same sense, we propose introducing a breakpoint
category dedicated for breaking execution upon loading a binary file. In the presence
of such a breakpoint, when a generated binary is loaded, execution will be stopped

and the debugger will generate a matching source file using one of the earlier

113



discussed methods. This source file can then be utilized to add any normal
breakpoints directly in the generated code before it is executed, thus solving the initial
problem without requiring code instrumentation and with minimal debugging effort
from the programmer (essentially only enabling the proposed breakpoint when

necessary).

5.4.4.3 Multi-Stage Languages

Multi-stage languages that support runtime code generation through staging
annotations (e.g. MetaOCaml, MetaML, Metaphor [Neverov04][Neverov06], Mint)
could also use a similar approach to the one discussed for compile-time
metaprogramming. In such languages, the stage code is typically available in some
AST form that can be unparsed to provide a source file to be used for debugging.
Regarding breakpoint support, it should also be possible to associate lines from the
original source to lines of the generated source to automatically generate breakpoints
for the stage program. Nevertheless, there is a significant difference compared to the
compile-time case. Since breakpoints are typically targeted for runtime execution,
they do not interfere with the compilation of the original program; however, if code
generation occurs at runtime the same breakpoints may be triggered by the normal
execution flow of the program even if the intent was to use them just for generating
breakpoints for the stage program. The latter essentially demonstrates the need for
disambiguating between breakpoints targeted for normal program execution and
breakpoints targeted for stage metaprograms. In this sense, we propose introducing a
new breakpoint category for explicit stage breakpoints. Such breakpoints may be set
in the original source just like normal breakpoints but they do not cause execution to
break; instead they are only used in the context of staging and allow generating
normal breakpoint for all stage programs based on the previously discussed line

associations.

In particular, multi-stage languages based on top of a language that supports
reflection, like Mint (based on Java) or Metaphor (based on C#) may utilize the
reflection mechanism and the approach mentioned previously to support stage
debugging. Such a language could be implemented using a stage preprocessor, an
AST composition library and the pure base language along with its support for

dynamic compilation (Figure 5.13). Initially, the source file that includes staging
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annotations is provided to the stage preprocessor that translates them into the
appropriate AST composition invocations, while associating them with information
about the source and line they originate from. If the run construct is syntactic (e.g.
run code as in MetaML) it is preprocessed as well, translating them into invocation
of the reflection API that will dynamically generate code from the constructed AST
(either directly or by first obtaining its source text through unparsing). Otherwise, if
the run construct is a normal language invocation part of the AST library (e.g.
code.run () asin Mint), then the invocation of the reflection API is already present
in the implementation of the run method of the AST library. In both cases, the
reflection API will be used at runtime to dynamically generate and execute the stage
code, thus allowing it to be debugged with the existing language infrastructure and

extensions we discussed in the previous sections.

Original program Preprocessed program Final program
(with staging) (no staging) (supporting runtime staging)
Host Language Stepl Host Language Step2 Compiled
Source Code Source Code | ) Binary
E Staging Extensions § _)E Host Language Stmts E @ AST Manipulation 2
! Source Code ‘% 6 | | UsingStaginglLibrary | W and Composition 2
1 q:) ﬁ I ] * ?D 3 g
Host Language 5 S Host Language s g- ASTto Source Code %
Source Code oo OEJ. Source Code - 0o (Unparsing) E]
w O Q
1 °_° a- [} ! o
' Staging Extensions S _»' Host Language Stmts | 2= Compilation, Loading and !;;
i Source Code 2 i Using Staging Library i Invocation (reflection) E

Figure 5.13 — Sample implementation of a multi-stage language with runtime metaprogramming
relying on: (i) staging extensions preprocessing; and (ii) runtime code generation, loading and

invocation via the language reflection facilities.
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Chapter 6

Support for Aspects

“Nevertheless, | consider OOP as an aspect of programming in the large; that is, as
an aspect that logically follows programming in the small and requires sound

knowledge of procedural programming.”

-Niklaus Wirth

Aspect-Oriented Programming (AOP) [Kiczales97] is a methodology for modeling
crosscutting concerns into modular units called aspects. Aspects contain information
about the additional behavior, called advice, that will be added to the base program by
the aspect as well as the program locations, called join points, where this additional
behavior is to be inserted based on some matching criteria, called pointcuts. Aspects
are typically expressed in separate languages and an aspect weaver combines the base

program with the aspect program to form the final program.

In the context of multi-stage languages, AOP could be used not only for normal
programs but also for all stages they might contain. As thoroughly discussed in
previous chapters, stage metaprograms, besides their special mission being primarily
generative to produce code, are essentially no different to normal programs. Thus,
they deserve, and require, all typical programming techniques of normal programs,
including aspects. For instance, within stage code, one may deploy logging aspects to
support tracing of method invocations, or apply exception handling aspects at
appropriate call sites. Apparently, there is no particular reason to forbid the
application of such aspects in stage code. In fact, there are also various scenarios
related to the generative role of stages. For example, stages typically handle code in
the form ASTs, so we could define aspects for AST manipulation, such as decorating
with extra code, validating according to criteria, or introducing custom iteration

policies.

Without aspect support we simply limit the potential for developing stages using state
of the art programming practices. For instance, consider Aspect] [Kiczales01], a
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popular language for AOP, and Mint [Westbrook], a Java extension offering staging
facilities. Staged code within a Mint program is actually Java code. However, it is not
possible to use AspectJ to apply AOP on the staged code as it is never available in a
form that can be manipulated by the aspect weaver. In fact, the reason is more
fundamental: no interplay between the aspect weaver and a staging system has ever

been considered or proposed.

In current implementations for AOP the language compiler is ignorant of the aspect
weaver and the transformation it performs on the functionality of the original
program. Overall, the aspect weaver is never in the compilation or execution loop.
However, in multi-stage languages, stages are composed and evaluated during either
compilation or execution disabling any possibility for the aspect weaver to intervene.
Additionally, the source or binary of a stage is transient during compilation or
execution and cannot be available to the aspect weaver unless it becomes part of the
loop. To resolve this, the respective source or binary files for stages must be created
and supplied to the aspect weaver during the staging process. For the previous
Aspect and Mint example, the latter would involve explicitly writing aspects for
staged code and weaving them into the binary along with the staged code so that the

stage evaluation contains the advised functionality.

In this direction, we propose the adoption of AOP in multi-stage languages, introduce
a methodology for aspect weaving in the entire staging pipeline and discuss an
implementation on the multi-stage extension of the Delta languages. In particular, we
do not introduce a separate aspect language for AOP, but we implement aspects as
batches of AST transformation programs written in the same language. This approach
fits well with typical multi-stage metaprogramming practices since programmers are
already familiar with using and manipulating ASTs. Also, it allows exploiting features
like reviewing, inspecting or debugging AST transformations that may already be
offered by the multi-stage language IDE. Despite the particular implementation, the
two distinct methodologies, i.e. supporting aspects for stages and applying them
without dedicated languages are orthogonal and can be deployed independently of
each other. In fact, we also discuss how aspects for stages can be supported in a

mainstream AOP language like AspectJ.
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6.1 Aspects for Stages

There are two approaches for weaving aspect code along with normal program code:
source-level weaving and binary-level weaving. Source-level weaving involves
applying the aspect on the original source to get the transformed version of the source
that is then compiled to binary (Figure 6.1, top). On the other hand, in binary-level
weaving the source is normally compiled to binary and then the aspects are applied to
generate an updated binary version (Figure 6.1, bottom). However, in the context of
existing multi-stage language implementations, none of these approaches is
sufficiently supported to facilitate AOP at a full scale. To explain why, we first
consider the potential options for applying aspect weaving (either source- or binary-
level) being before, during and after the staging process. Then we study the way such
options can be supported under both CTMP and RTMP, the latter either for compiled
implementations - RTMPg, or interpreted ones - RTMP, (clearly, the distinction refers
to the implementation method, not the language itself). As we discuss latter, the
weaving options, and the way they can be applied, strongly depend on the
implementation approach of the target multi-stage language. Although our system
supports CTMP and source-level weaving, we discuss all possible combinations to
outline the differences involved towards weaving implementation, and also cover a
wider range of languages. For example, RTMP concerns mainstream languages like
Java and C#. Although not multi-stage languages by default, they have extensions
that introduce multi-stage programming constructs, and also provide powerful
reflection mechanisms that enable some degree of runtime metaprogramming.
Overall, the multi-stage language implementation approach maps to different options
of source or binary weaving, which display varying usability, expressiveness and
efficiency properties when it comes to programming and applying aspects.

source weaving
A

r
— — —
— — > —
J
Y

binary weaving

Figure 6.1 — The two alternative contexts for aspect weaving.
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6.1.1 Weaving Options

We revisit the processing diagrams of the various staging approaches highlighting the
potential options for applying aspect weaving in the context of multi-stage languages.
These options are not mutually exclusive and can be combined to achieve aspect
orientation in multiple steps of the compilation or execution process.

In CTMP, we can apply source-weaving on the initial source (Figure 6.2: 1) before it
is parsed into the AST form that will be used for the staging process. Then during
staging, we can apply either source- or binary-weaving respectively on the source or
binary form of each stage metaprogram (Figure 6.2: 2-3). Finally, when no more
stages exist, we can again apply source- or binary-weaving on the final version of the
code, as transformed by all stage evaluations (Figure 6.2: 4-5). Of course, to apply
source-weaving either during or after the staging process, we first need to unparse the
respective AST into a source file; the transformed source resulting from the weaving

process can then be compiled to produce the respective binary code (either stage

binary or final binary).

before staging after staging

1. src weaving 4. src weaving 5. bin weaving
A\
initial
source

extract update
stage
source program
during staging staging
2. src weaving 3. bin weaving process

Figure 6.2 — Compile-time staging and aspect weaving options.

In RTMP¢, we can apply source-weaving directly on the main source and then
compile it to binary form or perform the compilation first and then advise it through
binary-weaving (Figure 6.3: 1-2). The same options apply also for the dynamic source
and its binary that are generated as part of the staging process at runtime. This way we

can apply either source- or binary-weaving for all stages involved (Figure 6.3: 3-4).
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Figure 6.3 — Runtime staging (compiled language case) and aspect weaving options.

In RTMP, we can apply source-level weaving on the initial source (Figure 6.4: 1)
before it is parsed to AST form and sent to the interpreter for evaluation. Then, after
extracting stage code and before evaluating it, we can uparse it to get the respective
stage source, apply source-weaving on it (Figure 6.4: 2) and then reparse it to get the
transformed AST that will be evaluated recursively. for any stage code the stage
source that has to be unparsed for this purpose.

before staging

1. src weaving

initial

interpreter
source

***only for non-interleaved execution

extract extract

stage
source

during staging staging
process 3. src weaving

Figure 6.4 — Runtime staging (interpreted language case) and aspect weaving options.

To offer the weaving option after the evaluation of stages (Figure 6.4: 3) a small
modification on the way stages are actually interpreted is required. In particular,
stages are commonly evaluated as part of the main program execution and as soon as
they are met within program definitions. Thus, staging evaluation interleaves main
program evaluation. In general, once staging completes, part of the main program is
already executed, rendering meaningless to apply aspects on a program that is already
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partially evaluated. The reason is simple to explain. Consider we allow such weaving
to take place, and imagine a function that is affected by weaving and which has
already been invoked many times. Then, the semantics of such a function can vary
during execution, with the version before weaving being different to the one another
after weaving. Now, this sort of inconsistency appears only due to interleaving of
stage evaluation with the main program. To adopt an interpreted evaluation that
disables interleaving would be trivial in RTMP, implementations and with no discount
on stage expressiveness. In particular, it suffices to apply stage evaluation first, and
then, once no staging remains, proceed with the evaluation of the main program. In
fact, this type of ordering is similar to CTMP implementations, while setting after

staging weaving a well-defined option.

Notice that in all previous cases, the initial source file contains the normal program
code together with stage code, while aspect code is considered to be in separate files.
Thus, a weaving process may in fact apply aspects to any of them. We further
elaborate on what functionality can be addressed by the potential aspect applications
in the following section.

The difference between applying AOP in a normal language and a metalanguage is
essentially that in the former case, there is a single source or binary for
transformation, while in the latter case there are multiple sources or binaries for
transformation and they are involved in different parts of the process. Table 6.1
summarizes the options for applying AOP with different combinations of source and

binary aspect weaving for each of the staging approaches.

Table 6.1 — Ability to implement aspects under different categories of multi-stage languages and for the
different possible weaving contexts and subjects

. . o Runtime Staging
Weaving| Weaving |Compile-time = edli 3
Context Subject Staging ompiled| Interprete

language [ language

Initial source v v v
Source o = = =
Code age sources

Final source v N/A 4

. Initial binary N/A v N/A

Binary .

Stage binaries v 4 N/A
Code - -

Final binary v N/A N/A




Trying to apply the current AOP practices without interfering with the staging
pipeline, means essentially operating as a source code pre-processor or binary code
post-processor, thus limiting the potentials for aspect weaving. For CTMP we are
limited to weaving options 1, 4 and 5, for RTMP¢ we are limited to weaving options 1
and 2, while for RTMP, we are limited to the single option 1. These however cannot
fully express aspect transformations in the staging pipeline. For RTMPc, this should
be clear, as the dynamic code is generated at runtime with no way to be updated. For
RTMP,, it would be possible for the normal or staged code present in the initial source
but there is no way to handle any code introduced by staging. For CTMP, the only
supported scenario relates to a two-stage language, where we have only one stage of
metaprogramming and the entire meta-code is available within the original source. In
this case, it is possible to apply source-level weaving to transform the existing meta-
code, while also applying binary-level weaving right after compilation to transform
the code generated by the metaprogram. An example for this scenario would be C++,
where a pre-compilation source-level weaving could transform the template code (i.e.
the stage-code) and a post-compilation binary-level weaving transform the template
instantiations (i.e. the generated code). The previous method cannot be applied for
languages with more than two stages (i.e. more than one nested metaprograms). The
reason is that the initial source-level weaving can only transform the meta-code that
already exists in the original source, but not the meta-code that is introduced as a
result of a previous stage. Other than that, any binary-level weaving would operate on
the final program source after all stage metaprograms have been executed, and of

course cannot transform their functionality.

Another possible weaving approach, still operating on binary level, would be to insert
the extra functionality upon loading of the binary. This can be achieved by extending
the loader with hooks that will perform the weaving, being the way load-time weaving
is actually supported in Aspect]. Disregarding any performance penalties about the
computations taking place at loading time, binary loading occurs for both normal and
stage programs, so this approach could potentially be used to weave functionality in
both of them without interfering with the staging pipeline. However, this method does
not allow differentiating between normal and stage programs, meaning they cannot be
supported with different aspects. The only way enabling different aspects, following

our proposition, is for the multi-stage language to uniquely name and separate the
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produced stage classes for all stage code fragments. The later would allow load-time
weaving approaches by selectively intervening only on stage classes, once adopting
the class name patterns of the language compiler. However, the latter requires two
important changes. Firstly, we should guarantee that the multi-stage language
generates separate classes for stage code snippets, something not currently supported
by known runtime multi-stage languages for Java. Secondly, the naming patterns for
stage classes should become a documented language feature so that load-time weavers
can exploit them. Essentially, these two extensions serve no other purpose than allow
bringing a load-time weaver into the staging loop. The later repeats our earlier
argument that no stage-level weaving is possible without the multi-stage language
actually setting the ground. Additionally, load-time weaving is applicable only for
languages compiled to byte-code, like Java or C#, when run directly by respective
virtual machines. However, it is not appropriate when Ahead-Of-Time compilation
(AOT) is applied on such languages. Clearly, it is not applicable for languages that
directly generate native code, like C or C++. Overall, we consider load-time weaving
to be insufficient for full-scale aspect deployment within a multi-stage language and
do not further include it in our discussion, although it could be used to achieve similar

functionality with some of the case studies discussed later.

In conclusion, in order to effectively support aspects for stages in a multi-stage
language, aspect weaving should be necessarily introduced as part of the staging

process.

6.1.2 Aspect Categories

In a multi-stage language, the original program po also contains the various stage
metaprograms sg, ..., Sp,. With the execution of these stages, the original program py is
transformed sequentially to pi, ..., pn, the last being the final program version. In
AOP, we typically have the original program p that is advised by the aspect program
a. Introducing AOP in a multi-stage language requires considering the various
interaction points: (i) program po is advised by aspect program a; (ii) stage
metaprograms Si, ..., Sp are advised by aspect program a; and (iii) intermediate
program transformations py, ..., pn are advised by aspect program a.

Considering the first interaction point, the program po contains both normal program

code and staged code, meaning that the aspect a could advise any of them. However,
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none of them have their final form yet; normal code may be transformed by stage
code, while code of a particular stage may be transformed by higher stage code. This
means that applying aspect a to advise normal program code or stage code may cause
inconsistencies and thus should be avoided. For example, consider a scenario where
we advise the normal code to insert logging functionality for all functions it contains.
With this taking place before the staging process, any functions generated due to
staging will not contain the logging functionality, eventually resulting into final code
where only some of the functions are actually advised. Nevertheless, applying an
aspect on the original program can be useful. It can introduce additional code for a
specific stage or even introduce extra stages. Such an aspect can be seen as a higher-
order metaprogramming facility that allows the transformation logic to be entirely
decoupled from the main source code. For example, this allows turning normal code
to stage code to perform some computations during compilation and improve
performance (sort of partial evaluation) or introduce stage code that performs static
analysis on specific parts of the original source. Such aspects are always executed
before the staging process, so we call them pre-staging aspects.

In the second interaction point, we have each stage metaprogram s; being advised by
the aspect program a. Each stage contains code from both the original program along
with code generated by stages directly embedded in it (higher-order). Thus, applying
the aspect right before its evaluation guaranties that the stage has its final form and
that the advice functionality is consistent. The reason for using such aspects relates to
crosscutting functionality typically found in stage code. With stages involving code
generation, the manipulation of ASTs is very common, typically involving scenarios
of structural validation, decoration with extra functionality or attributes, and custom
iterators. Apart from their special purpose as code generators, stages are also
programs that may involve crosscutting functionality typically found in normal
programs, like synchronization, logging and monitoring. For instance, a common
scenario may involve adding logging calls to trace meta-function invocations. For the
weaver to deploy such aspects, it needs to have access to the source or binary code of
each stage. This means that the compiler (in CTMP) or the runtime system (in
RTMP) should not treat stages as private transient programs, but should somehow
supply produced source or binary files to the aspect weaver to operate on.

Additionally, interplay between the weaver and the compiler or runtime is required
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following the actual weaving process. More specifically, in source-level weaving, the
compiler (or interpreter) generates the stage source, gives it to the weaver and gets
back the advised version that it then compiles (or interprets). In binary-level weaving
(only in compiled-languages), the compiler first compiles the stage source to binary,
gives it to the weaver and gets back the advised binary version. We call such aspects

in-staging aspects.

Regarding the third interaction point, we notice that the intermediate program
transformations ps, ..., pn1 are in fact intermediate forms. This means that any aspect
application in them occurs on an incomplete program and may thus cause
inconsistencies. The case of applying an aspect on p, in particular requires that all
stage evaluations have been performed and that there is no more staging involved in

the final program version.

It should be noted that in RTMP, either interpreted or compiled, it is generally
undecidable to judge if no further staging process can take place after a certain
runtime point. The reason is that use of reflection mechanisms, dynamic loading or
eval can generate implicit staged code, not visible in the currently executing program
instructions. Moreover, in either RTMP or CMTP, aspects applied after staging could
also introduce further staging. Consequently, there is no way to impose just a single
staging process. As a result, we define as final a program containing no more staged
code. Clearly, if implicit staging is introduced by the evaluation of the final program
itself, or by aspects applied after staging, then further aspect weaving following the
proposed approach reapplies. With such a scenario, additional staging rounds occur,
leading to another final program at the end. In this sense, the term final just denotes
the program resulting from a staging process, not by all staging processes. Overall,
aspects on p, play the same role as aspects on normal programs: there is a program
that needs to be advised involving no staging. They are applicable to both CMTP and
RTMP,, for the latter assuming a non-interleaved execution. They do not apply to
RTMPg, since, when the runtime staging process completes, part of the program has
already been executed. Such aspects are always applied after the staging process, so

we call them post-staging aspects.

Table 6.2 gives an overview of each discussed aspect category, highlighting its

purpose and deployment options for each staging approach.
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Table 6.2 — Ability to implement aspects under different categories of multi-stage languages and for the

different possible weaving contexts and subjects

Compile-time Runtime staging
Purpose stgging Compiled language Interpreted
P guag language
=2 Introduce or Before source Before main compilation | Before main
L ‘5 | update staging . (source weaving) or after | interpretation
O & My compilation (source . o .
& | on the original . main compilation (binary (source
weaving) . X
program weaving) weaving)
= Before stage Before dynamic source
< i e Before stage
S compilation (source compilation (source . .
3 . . .| interpretation
P Update stages | weaving) or after | weaving) or after dynamic (source
c stage compilation | source compilation (binary .
E ) . : weaving)
(binary weaving) weaving)
o Before final After non-
% compilation (source N/A interleaved
= : - . X
5 _Update the weaving) or just (main program is already Interpretation
= final program | after compilation . of all stages
3 . executing)
g completes (binary (source
weaving) weaving)

For a complete combination of stages and aspects one may introduce multi-stage
programming in the context of an aspect program. In fact, multi-stage languages fully
support nested stages, being metaprograms that generate the code of enclosing
metaprograms. Similarly, one could consider chained aspects, being aspects applying
cross-cutting concerns on the logic of other aspects. Thus, their combination is
theoretically unlimited. Regarding the blending of stages and aspects, an aspect
program a, may itself contain stage metaprograms s, ..., S, that transform it
sequentially into a, ..., an, the last being the final version of the aspect program. Such
a combination is meaningful, enabling aspect properties like pointcuts and advice to
be generated through metaprogramming. However, it requires the aspect language to
be extended with extra constructs (e.g. as in [Zook]). If we consider an aspect to be
applied to a client program through a binary executable form, any staging during
aspect compilation is transparent to all of its clients, so its deployment remains the
same despite staging. Effectively, the two sides of the combination between multi-
stage languages and AOP are orthogonal and can be adopted independently of each
other. In this thesis we primarily focus in the first direction, i.e. introducing AOP in a

multi-stage language. However, as discussed in the following section, we provide
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aspects as transformation programs written directly in our multi-stage language,

meaning our aspects can be fully staged.

6.2 Aspects without Dedicated Languages

A spin-off outcome of our work is an alternative way to apply aspect transformations.
Essentially, we treat aspects as AST transformation programs written in the same
language and deploying an aspect library working on ASTs. We continue by
elaborating on this notion and discuss how such transformation programs can be
integrated in the workspace management and build process of the integrated
development environment. We do not argue that this is the ultimate approach towards
supporting AOP; we present it as a viable alternative and discuss its advantages when

deployed in an existing multi-stage language.

6.2.1 Aspects as Transformation Batches

To test aspects for stages we started thinking of crafting a prototype aspect engine for
our staged language. In this context, we observed that the language offers quasi-
quotes, escaping, and a comprehensive AST library, all of which are not staged but
can be used as part of a normal program. Now, the latter are essentially everything
one needs to algorithmically perform source code transformations. Practically, aspects
are a restricted form of algorithmic cross-cutting transformations, currently offered
with distinct languages with automations in expressing pointcuts and advice.
Regarding pointcuts, one might directly offer a library set to search AST nodes
against criteria defined as predicate functions, or even through some custom string-
based pattern matching language. A similar library set can also be offered for defining

and applying advice.

The prototype implementation of our approach offers only static aspect
transformations, being analogous to the static model offered by Aspect). However,
treating aspects as transformation batches is not limited to static weaving as such.
Batches may be implemented in a runtime preprocessing process to perform binary or
load-time weaving, thus operating in a way similar to the dynamic aspect weaving
model. We focused on a compile-time static model only for practical reasons: (i) it is
more efficient, as it introduces no runtime overhead; and (ii) it leads to smaller

executable images, since the aspect program is not linked with the affected program.
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Along these lines, it became clear that all aspect features may be directly realized via
a respective aspect library working on ASTs. This led us to the idea of turning aspect
programs to normal language programs taking as input the AST of another program
while deploying the aspect library to apply pointcuts and advice directly in the main
language. In particular, aspects programs contain a main function, conventionally
called transform, which takes a single AST argument, transforms it as needed and
returns the updated version. To apply a series of aspect programs on a source file we
use a special weaver program. The weaver initially takes the source file and parses it
into an AST. Then, for each of the given aspect programs, it invokes the transform
function passing as argument the current AST version which it then updates based on
the function’s return value. The same process continues until all aspect programs have
been applied and the source has been transformed to its final form, encompassing the
source code as advised by all the aspects. Essentially, aspect weaving is a batch

process of AST transformations (see Figure 6.5).
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Figure 6.5 — Source-level aspect weaving as a batch of AST transformation programs.

The above transformation process applies to all discussed aspect categories. As shown
in Figure 6.6, we essentially have three batches (chains) of transformation programs
as follows: (i) one for the original program - pre-staging aspects; (ii) one for each
stage - in-staging aspects; and (iii) one after the staging process - post-staging
aspects. Once the last batch is applied, the final program version is then compiled to

binary form.

From a deployment perspective, we try to minimize the coupling between the
compiler and the aspect weaver and achieve a uniform invocation style. In fact, they
never communicate explicitly, but are coordinated by the build system. To this end,
the aspect weaver always receives a batch and an affected source file as input, and
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produces a source file as output. In this sense, the weaver is unaware of the previously
mentioned aspect categories. It simply applies the current transformation batch to the
input source file. Along these lines, the compiler also receives a source file as input
by the build system. With aspects present, the transformed source version is supplied
to the compiler; otherwise the original source file is directly supplied. The reason for
unparsing the result of every aspect transformation batch, and not maintaining it in the
form of an AST, is for simplicity, since this way, we retain the original compiler

accepting directly source text.

3
pre-staging Aspect in-staging Aspect post-staging Aspect
aspects Weaver aspects Weaver aspects Weaver
main transformed stage i transformed final transformed
source main source g stage i source final source
A A
extract evaluate
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main source .| main source
before stage i after stage i
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Figure 6.6 — Complete overview of all aspect transformation batches occurring during compilation.

This approach has many advantages compared to custom aspect languages. Firstly, no
second language and translator are deployed. Secondly, by turning aspects to normal
programs they can be directly hosted in the language IDE and be normally debugged.
Thirdly, aspects become first-class IDE citizens and thus can be managed under the
same umbrella with the programs they actually transform. Finally, their software
engineering directly reuses the techniques and constructs of normal programs, not
requiring reinventing the wheel as with aspects languages (e.g. aspect inheritance is
essentially reintroduced). In the context of a metalanguage, the latter also applies for
its metaprogramming features, effectively enabling metaprogramming support for
aspect programs. For a homogeneous metalanguage in particular, having the
metalanguage operate also as an aspect language offers great compositional flexibility
and expressiveness: programs may be advised by aspects, these aspects may be
further advised by other aspects or be subject to staging, any such stages may also be

advised by aspects and so on.

Overall, we realized that the AST manipulation elements are not merely some utility
elements for staged languages, but could play a fundamental role in all cases where
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source code needs to be manipulated. In particular, if supported with the required IDE
extensions, they can substitute transformation languages by a combination of

processes and libraries.

6.2.2 Aspect Transformation Library

As previously discussed, the metaprogramming elements of the language are
sufficient for any AST transformation and thus for introducing cross-cutting
functionality. However, we further facilitate the development of aspect programs by
providing an AST transformation library with functionality that resembles the typical
AORP style.

Since we target AST transformations, joinpoints essentially match specific AST node
types to which advice functionality can be added. For example, we support the typical
joinpoints like the call and execution of a function or method, the execution of an
object constructor, the getting or setting of an object field and the execution of an
exception handler. Each of them correspond to specific AST nodes; the function
execution corresponds to the AST of the body of the matched function while the
execution of an exception handler corresponds to the AST of the matched exception
handler’s body. Pointcuts are expressed as string literals and are matched against AST
nodes using a custom pattern matching language. For example, the pointcut method
m (*) will match nodes corresponding to method definitions with name m and any
number of arguments. We support the typical pointcuts covering the basic joinpoints,
pointcut combinators (i.e. and, or, not) for composition as well as some pointcuts
specific for AST manipulation. For instance, the ast (type) pointcut matches all
AST nodes that have the given type, the parent (pattern, [childId])
matches parent nodes whose child at index childld (or any child if not specified)
satisfies the given pattern while the descendant (pattern) matches the nodes
that are part of a sub-tree whose root node is of the given type. Such pointcuts allow
specifying fine-grained aspect transformations on a target AST. For example if we
want to advise the break statements of a for loop within some method m we can
use the following pointcut: "ast (break) and descendant (for) and
descendant (method m(*))". In the same sense, the pointcut

"ast (assign) and parent (id(x), lvalue) "™ will match all assignments
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whose child with index 1value, i.e. whose left value, is an identifier x, for instance

x = 1,x = £(),etc.

The main  function of our library is aspect(target:ast,
pointcut:string, advice type:enumerated, advice:ast) that
given a target AST and the pointcut to match will insert the advice AST as specified
by the advice type. The target argument may specify either the entire program AST or
any of its sub-trees that may have been obtained through custom AST traversal or
prior node matching against some criteria. Regarding the advice type, we support
before, after and around advice, meaning that the given code may be inserted
respectively before, after or around the matched joinpoint. The exact way that advice
code is inserted depends on the joinpoint and the matched AST node; for example,
when we match the execution of a function, before advice inserts the given code at the
beginning of the matched function body, while after advice inserts its code at all exit
paths of the matched function body. For after advice applied on function or method
execution in particular, we can use the delayed escape << .. ~~retval .. >>that
will carry the original return value of the function. Another delayed escape,
specifically << .. ~~proceed .. >>,is also typically used in around advice. The
advice is applied by firstly substituting the AST being advised with the given advice
AST and then by replacing the delayed escape (~~proceed) with the original AST
value. For example, when applying the around advice <<print ("before") ;
~~proceed; print ("after")>> on the AST of a function call << £ () >>
the result will be <<print ("before™); f£(); print("after")>>. This
construct can also be combined with ASTs that contain staging annotations. For
example, the advice <<! (~~proceed) >> can transform the expression £ () into
! (£()), while the advice <<~~ (~~proceed)>> can transform x into ~x (the
first delayed escape represents a single ~ while the ~~proceed is typically replaced
by the target AST, here x). Essentially, when using around advice, the last argument
to the aspect function can be seen as a process that takes the matched AST and

transforms it as described by the target AST.

To allow explicit transformation logic while still relying on pattern matching we also
provide two additional functions: match (target:ast, pointcut:string),

that will find and return all nodes within the target AST that match the given pointcut
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and advice (target:ast, advice type:enumerated, advice:ast)
that will insert the advice AST in the target as specified by the advice type. A
summary of the basic elements offered by our AOP library is provided in Table 6.3.

Table 6.3 — Overview of the basic elements offered by our AOP library

. aspect(target:ast, pointcut:string, advice_type:enumerated, advice:ast) : void
ler?ry match(target:ast, pointcut:string) : list<ast>
functions : : . -
advice(target:ast, advice_type:enumerated, advice:ast) : void
Advice type BEFORE AFTER AROUND
Basic execution(pattern) call(pattern) exception(pattern)
Pointcuts class(pattern) setter(field) getter(field)
AST ast(type) child(pattern) parent(pattern)
Pointcuts descendant(pattern) ascendant(pattern) construction(pattern)
Colzr):l)lli)ri]:l(;iz)rs pointcut and pointcut pointcut or pointcut not pointcut

6.2.3 Aspects in the Workspace Manager

In a system supporting binary-level weaving, the aspect sources are typically placed
along with the normal program sources in the workspace management. For instance,
in the AJDT [Eclipse05] eclipse plugin for Aspectl, there are aspect-enabled projects
that can host both normal Java and Aspect] source files whose generated code is
woven together after compilation. In a system with source-level weaving, the aspect
transformation has to be in executable form while a normal program is still in source
code waiting to be transformed before its compilation. This means that aspect sources
and normal program sources are compiled at different times and thus should be
properly distinguished in the workspace management. Particularly in our system,
where aspects are implemented as typical programs within the same language and
their separation with normal programs relies only on their different deployment,

supporting such a distinction is even more critical.

Our system supports this distinction by introducing the notion of aspect sources that
are organized in aspect projects. An aspect source contains all typical source
information required for its build and deployment (e.g. compilation flags,
dependencies, runtime libraries, etc.) as well as information about its transformation
purpose, i.e. if it is a pre-staging, an in-staging or a post-staging aspect. This
information is explicitly provided by the programmer who specifies the

transformation category for each aspect source. In fact, for a single aspect it is
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possible to specify more than one category, for instance both in-staging and post-
staging. The reason for this is that stages may involve computations typically found in
a normal program, so they may also require similar crosscutting functionality. Thus, a

single aspect is allowed to address both stages and normal programs.

Aspect projects are used for grouping aspect sources and allow specifying the
ordering of multiple aspect sources of the same type. For each project or source file
within the workspace, the IDE allows specifying the aspect projects that will be used
to advise it. As aspect programs are also programs, aspect sources inherit all
properties of normal sources and they can be advised as well. This means that it is
possible to use an aspect transformation to manipulate the code of another aspect
transformation (but not of itself, as that would require a pre-existing binary of its
code).

6.2.4 Aspects in the Build Process

Aspect transformation may be part of the compilation loop; however the aspect
weaver need not be tightly coupled with the compiler. Actually, they may both be
unaware of the existence of the other and let the build system orchestrate their

interoperation.

The aspect weaver just takes an input source, transforms it one or more times and
gives as output the resulting output source, thus naturally involving no additional
interoperation with either the compiler or the build system. On the other hand, the
compiler receives as input a source file and gives as output a binary file; however it
requires interoperating with the build system to handle the build process of any stages
involved in the process. In this sense, interaction between the build system, compiler
and aspect weaver, illustrated in Figure 6.7, is as follows. When a source is to be
built, the build system invokes the weaver with that source as input (step 1), applies
the associated pre-staging aspects, receives its output (step 2) and then uses that as
input to the compiler (step 3). Then, during the staging pipeline, the meta-compiler
assembles the stage source (step 4) and asks the build system to build it (step 5) and
provide its binary code; that code will then be execute to update the AST of the initial
program being compiled. After receiving the stage source, the build system can
invoke the aspect weaver to apply the in-staging aspects (step 6), get the transformed

stage source (step 7) and send it for compilation on a new compiler instance (step 8).
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The nested compilation will provide the stage binary (step 9) that the build system can
then supply to the original compiler (step 10) to continue its stage execution. After the
current stage execution, if there are still additional stages the same process is repeated
(step 11). Eventually, there will be no more staging and the source code resulting
from the staging process is ready to be built (step 12). This final source is then
propagated to the weaver for applying the post-staging aspects (step 13), and the
result is sent to yet another compiler instance (step 15) that will generate the final

binary code (step 16).
(8) launch new compiler
Compiler for stage aspect result (7) stage aspect result
(instance) | (9) compiled stage binary (6b) apply stage aspects

::_'I(Sa) build stage aspects

: if needed
(4) assemble (if needed)
stage source (5) build stage source

(2) pre aspect result

13) launch meta-compiler .
Meta for pre aspect result Build Aspect

(1b) apply pre aspects
System Weaver

X . €1(1a) build pre aspects
Compiler (10) stage binary ready (i) (iuflnegde‘j)p

(11) execute

1s:tage ind r<t9}|)eat (12) final staging result

hrom (4) until we ""1(13a) build post aspects
ave no staging <! (if needed)

(15) launch new compiler (13b) apply post aspects
Compiler for post aspect result

(instance) [(16) compiled final binary]

(14) post aspect result

Figure 6.7 — Interaction sequence diagram between the build system, compiler and aspect weaver.

This description assumes that the aspect transformations are already available in
binary form. In general, this may not be the case, so before applying any aspect
transformations, the build system may first have to build them to get their binary form
(Figure 6.7, steps la, 6a, 13a). Such build steps are automatically perform by the
system if needed and may involve additional meta-compilation, in case the target
aspect source contains meta-code, or even recursive aspect transformations, if the
target aspect is also advised by another aspect. Essentially, a single build request for
the initial source may trigger multiple nested build requests for metaprograms or
aspect programs involved directly or indirectly in the process.

For instance, consider a pre-staging aspect source that contains meta-code and a

normal source with no meta-code that will be advised by the aspect source. When

trying to build the normal source we require the binary of the aspect source, meaning

we have to build it first (normal source, step 1a). Since the pre-staging aspect involves
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no aspect transformations of its own, it is directly sent to the meta-compiler that
handles the staging process and returns a binary for it (aspect source, steps 3-5, 8-12
and 15-16). Then we can continue with the weaving of the normal source and the
subsequent meta-compilation process that will result in the final binary (normal
source, steps 1b-5, 8-12 and 15-16). Of course, if either the aspect source or the
original source were advised by additional in-staging or post-staging aspects, there
would be further aspect weaver invocations (i.e. steps 6-7 and 13-14) and possibly
additional nested build requests. Overall, the build process is a recursive process that

relies on the following principles:

e Building a source that is advised by specific aspect projects requires
recursively building all aspect sources of these projects, invoking the aspect
weaver to transform the initial source and then recursively building the last
transformation result.

e Building a source with no aspect transformations, but containing meta-code
requires assembling each stage, building it recursively, executing its binary
code to update the main program AST and finally recursively building the
final source when no more meta-code is present.

e Building a source with no aspect transformation or meta-code requires
recursively building any module dependencies for the initial source and then

finally typically translating its source code into binary.

6.2.5 Debugging Aspects

Utilizing aspects or metaprograms in a development process is a challenging task on
its own. Trying to combine the two presents an inherently increased level of
complexity, requiring the IDE to provide advanced tool support for writing and
debugging programs in order to help programmers in this demanding task. In this
direction, we extend our previous work on tool support for metaprogramming
[Lilis12A], to also support aspect-oriented transformations. Since we build upon our
implementation for aspect support, the discussion is focused on source-level weaving.
Nevertheless, the feature implementation could also utilize binary-level weaving,

while the rationale for their support is still valid in both cases.
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6.2.5.1 Reviewing Woven Code

When aspect code is woven together with normal program code, either through
source- or binary-level weaving, the result is a transformed version of the code that is
not available to the programmer. This may not be an issue when the resulting code
behaves as expected or the aspect is simple enough to verify its functionality in a few
execution sessions. However, if the resulting code does not behave as expected or the
aspect involves some complex pointcuts, information about the final version of the
code can be invaluable to programmers, allowing them to see how the aspect
application transformed the code and figure out the reason of the erroneous behavior.
Reviewing the results of aspect weaving can provide helpful information even when
the resulting code executes correctly, as it enables programmers to move from an
abstract representation of the final code to a concrete visualization, increasing their

understanding of the transformation that takes place.

This is a similar requirement with the reviewing of the updated version of the main
program after having evaluated some stage metaprogram [Lilis12A]. As such, it is
addressed in a similar way by unparsing the AST produced by the aspect
transformation into source text, storing that text into a source file, and finally
notifying the IDE to insert it in the workspace, properly associating it with the

original source. Sparrow already supports this functionality for metaprogram results,
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Figure 6.8 — Sample workspace showing source files generated by staging and aspect transformations.
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so the only addition required involves the aspect weaver. In case of multiple aspects,
the weaver generates an updated version of the source code after applying each
separate transformation, thus providing a full trajectory of the transformation process.
Figure 6.8 illustrates a sample workspace involving files generated by both staging

and aspect transformations.

6.2.5.2 Providing Accurate Compile Errors

When the source code of a program that has passed through multiple transformation
steps contains errors, it is not clear whether the error was present in the original
source or if it was introduced as a result of one or more of the transformations
[Tratt08]. In this sense, instead of a single error report specifying the final error
location, the compiler should be able to track down and provide the first introduction
of the erroneous code as well as the complete transformation chain that led to its final
form. To achieve this functionality it is possible to associate any generated source
location with the source location it originated from before the transformation took
place. This way, we can create a list of source references that can track the error

across all source files involved in the compilation.

A similar error tracking scenario is involved in the typical metaprogramming process
requiring the creation and maintenance of a list of source references [Lilis12A].
However, in that case the entire process takes place within the compiler that simply
provides the IDE with all relevant source reference information upon generating the
error report. With the introduction of aspect transformations, we have a separate
aspect weaver process responsible simply for source transformations and unaware of
the source references maintained by the compiler. Since the aspect weaver and the
compiler have to be as loosely-coupled as possible, the infrastructure for the source
references has to be moved within the IDE, stored as metadata accompanying each
generated source file. This way, whenever a generated source is created by a
transformation process, either due to aspects or metaprogramming, we also have to
provide the associated source references to the IDE. With this information, the IDE
can then track down all sources involved in the generation or transformation of an
error and form the entire transformation chain, properly associating it with any issued
error report. This functionality is illustrated in Figure 6.9, where the given error report

refers to all source files involved in the generation of the erroneous code. This allows
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the programmer to navigate across the various source files versions (as discussed they
are available in the workspace), reviewing the transformations performed from one

version to the next and eventually understanding which transformation introduced the

error.
Error, file 'main aspect 1 stage 2 result aspect 2.dsc', line 19:
Expres=sion '(g)' not a callable wvalue {(it=s type iz 'Undefined)"®

See file 'main aspect 1 stage 2 result aspect l.dsc', line 18,
See file 'main aspect 1 stage 2 result.dsc', line 12. (')
‘See file 'main aspect 1 stage 2 aspect l.dsc', line lD

See file 'main aspect 1 stage 2.dsc', line 12 (‘2

See file 'main aspect 1 stage 1 result.dsc', line 12. P
‘See file 'main aspect 1 stage 1 aspect l.dsc', line 32 :

LI L T

See file 'main aspect 1 stage l.d=sc', line 3Z.
See file 'main aspect l.dsc', line 32, (-)
SBee file '"main.d=c', line ll.e)

‘Finished compiling 'main aspect 1 =stage 2 result aspect 2.ds=sc',
1 ERRCES detected.

Figure 6.9 — Tracing compile errors in the source transformation pipeline involving staging and

aspects; source names refer to the workspace of Figure 6.8.

6.2.5.3 Tracing the Evaluation of Aspects

Being able to view the result of an aspect transformation is a step closer to debugging
aspect applications; however it lacks the information about how the code reached its
final form. Such information involves tracing the entire control flow of the
transformation logic as well as inspecting the transformation data. Essentially, the
requirement is to provide full- fledged source-level debugging of the aspect program
that is invoked to perform the transformation. Any aspect program is executed during
the compilation process and performs AST modifications, so it resembles the
execution of a normal compile-time metaprogram. In this sense, we can reuse the IDE
debugger front-end functionality for compile-time debugging [Lilis12A] and
instrument the aspect weaver with a debugger back-end that will handle the execution
of the aspect programs. This way we can support debugging of the aspect
transformation logic without practically making any changes to the existing

infrastructure. An example of such a debugging session is illustrated in Figure 6.10.

As we mentioned earlier, in-staging aspects transform stage metaprograms before
they are evaluated, so the two execute sequentially. From a debugger perspective, this

means that the front-end has to be able to support multiple different back-ends.
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Additionally, all stage executions take place within the compiler, meaning they are
served by a single debugger back-end, while the aspect transformations for different
stages are executed by different aspect weavers, meaning they are served by multiple
debugger back-ends. Essentially this means that the debug session of the stage

metaprogram can be interleaved with the debug sessions of the in-staging aspects.
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Figure 6.10 — Full-scale source-level debugging of aspect programs when they are actually applied
during compilation.

For example consider a program with two stages of metaprograms where each of
these stages is subject to an aspect transformation. When compilation begins, the
debugger back-end within the compiler will connect with the IDE front-end. After the
first stage is composed it will be sent to the aspect weaver for transformation. Upon
launching the weaver, its debugger back-end will also connect to the IDE front-end
overriding the previous connection. The weaver will then proceed with the execution
of the aspect transformation that is the first program that will be debugged. After
finishing the transformation, the debugger back-end of the weaver disconnects from
the IDE front-end, restoring the compiler debugger back-end as the active one. The
compiler then proceeds with the execution of the first stage that is the second program
that is debugged. When the stage execution is finished, the initial program AST is
transformed and ready to compose the second stage. The same process is repeated,
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with the launch of the aspect weaver creating a new active debugging connection for
the aspect transformation of the second stage and its termination restoring the
compiler’s debugging connection as the active one, to finally debug second stage

execution.

Offering the functionality described above requires extensions in the infrastructure; in
particular allowing the debugger front-end to handle multiple back-ends. However,
considering the execution order of the systems involved in the process, namely the
compiler and the instances of the aspect weaver, it is clear that no two systems may
run in parallel. This means that the only required extension is to support adding and

removing debugger connections, while typically serving the one added most recently.

6.3 Case Studies

We present various case studies illustrating the potential benefits from incorporating
aspects in the staging pipeline. In particular, we focus on scenarios concerning pre-
staging and in-staging aspects. We do not provide examples explicitly post-staging

aspect as any typical AOP aspect is also a valid post-staging aspect.

6.3.1 Aspects to Insert Staging

In [Taha04], Taha describes a methodology for taking conventional programs and
turning them into multi-stage programs thus reducing potential runtime overhead and

improving performance. For instance consider the classic power example.

function power (x, n) { < original power version

if (n == 0) return 1;
else return x * power(x, n - 1);
}
a = 2; print(power(a, 4)); <—recursive invocation at runtime
function spower (x, n) { < staged power version
if (n == 0) return <<LK1>>;
else return <<~x * ~(spower(x, n — 1))>>;
}
a = 2; print (! (spower (<<a>>, 4))); <final code is: print(a*a*a*a*1);

Typically, the staged version has to be explicitly written by the programmer.
However, it is possible to turn the methodology into an algorithm allowing the
automation of this process (i.e. a methodology for transforming function power into
spower automatically). Implementing such an algorithm requires analyzing the AST

of the target program to locate potential for deploying staging and then transforming it
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appropriately to introduce the necessary staging annotations. In this sense, the
application of the algorithm can be seen as an aspect-oriented transformation that
weaves the advice functionality, i.e. staging annotations, at the desired pointcuts, i.e.
source locations with staging potential. In particular, this is a pre-staging aspect; it
will transform the initial source, originally containing only normal code, to enrich it
with staging annotations. The aspect is shown below with transform being its
entry point. Notice the use of the previously described AST-wise pointcuts like

descendent, child, ast, etc. used for fine-grained AST matching.

tOAST = << << ~~proceed >> >>; <« transforms x =2 <<x>>, used below
addEscape = <<~~ (~~proceed)>>; <« transforms x 2 ~x, used below
addStaging = <<&~~proceed;>>; <« transforms func f(){} = &func f(){} , used below
addInline = <<! (~~proceed)>>; <« transforms f() 2 !(f()), used below
...the above are used for around advice, applying the corresponding transformations...
function InFunc (name) { return "descendant (function "+name+"(..))"; 1}
function MatchCall (name) { return "ecall(" + name + "(..)"; }
function OutsideRecursiveCall (funcName)
{ return "not descendant (" + MatchCall (funcName) + ")"; }
...the above are helper functions to create pointcut expressions...
function StageDefinition (func) { < turns the function body to a staged form
local recursiveCall = MatchCall (func.GetName()) ;
aspect (func, recursiveCall, AROUND, addEscape); <—escape recursive calls
local exprs = match(func, "child(return)"); <«begin with all return exprs
while (not exprs.empty()) { < until all exprs for the result are handled
local dependencies = list new(); < holdsthe deps for the current exprs
foreach(local expr, exprs? {
advise (expr, AROUND, toAST); < turn expr into AST form, i.e. <<expr>>
ids=match (expr,"id(*) and not descendant("+recursiveCall+")");
foreach (local id, ids) { < for all matched ids (args&locals) in expr
dependencies.push back(id.GetName ()); <« mark id as a dep
advise(id, AROUND, addEscape);} < escape the id
}

exprs.clear();

foreach(local x, dependencies) { < check for assignments to deps
assigns=match(func, "ast(assign) and parent(id("+x+"),lvalue)");
foreach(local assign, assigns) «for all matched assigns recursively

exprs.push back(assign.GetChild("rvalue")); «check the rvalues

}
}
advise (func.GetParent () ,AROUND, addStaging) ; «<-stage entire function definition
}

function StageCalls (ast, funcName) {
calls=match(ast, MatchCall (funcName)+"and not "+InFunc (funcName)) ;

foreach (local call, calls) { <« for each matched non-recursive call
foreach(local actual, call.GetActuals()) < iterate over actuals
if (not actual.IsConst())
advise(actual, AROUND, toAST); < stage args
advise(call, AROUND, addInline); < stage entire call with inline tag
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function transform (ast) { <« astholds the code to be transformed
foreach(local func, match(ast, "function *(..)")) <« findall functions
if (CanBeStaged(func)) { <« check ifthe result can be expressed as a
< mathematical expression over input arguments

StageDefinition (func) ; < stage the function definition
StageCalls (ast, func.GetName ()) ;< stage calls across the entire ast
}
return ast; <« the transformed ast is the result of the aspect weaving

}

In particular, the aspect will first try to find functions that have potential for staging.
Without going into details, this process essentially looks for functions whose result
can be expressed in a mathematic expression over their input arguments. Power, as
well as other mathematical functions like factorial, fibonacci, etc., fit the above
description and will be matched by the aspect. For each of the matched functions, we
need to stage both definition and invocations. For the definition, we have to stage all
items relating to the function result. In this sense, we begin by properly staging the
return expressions of the function while marking any argument or local variables
involved in their computation. We then repeat the same process targeting any
assignment to the previously marked variables. We properly stage the right hand side
of each assignment and mark any additional arguments or local variables involved in
its computation. This process continues iteratively until all involved variables have
been handled. We should also note that any recursive function invocations are by
default considered to be involved in the final function result so they are staged up-
front and then excluded from the remaining process (hence the recursive call
pointcut). For the power example in particular, this process will transform return
1; to return <<1>>; and return x * power(x, n - 1); to return
<<~x * ~(power(x, n - 1))>>;. This is achieved by applying around
advice and specifying toAST = << << ~~proceed >> >> and addEscape
= <<~~ (~~proceed)>> as advice targets. The former essentially turns 1 into
<<1>>and x * power(x, n — 1) into <<x * power(x, n — 1)>>
while the latter further transforms <<x * power (x, n - 1)>>Iinto <<~x *

~(power(x, n — 1))>>.

Then, for each invocation, the aspect will introduce the inline operator and turn any
non-constant argument to its corresponding AST form. In the power example, this
process will transform the invocation power (a, 4); toAST will turn a into

<<a>>, while <<! (~~proceed) >> will further transform power (<<a>>, 4)
142



into ! (power (<<a>>, 4)). The result is essentially the automatic staging of all
relevant function invocations that achieves the desired performance gain. This would
not have been possible without the pre-stage aspect, as the original program contained
no staged code and its compilation would yield binary code where all functions and

their invocations maintained their original form.

This may not be a representative AOP example, but it shows how a pre-staging aspect
should operate, i.e. updating or changing the staging of a program, and illustrates a
scenario were such functionality is useful. In fact, this example relates to partial
evaluation and would be typically handled by a partial evaluator without requiring the
extra aspect specification. However, the binding-time analysis involved in partial
evaluation is not complete and can only approximate the knowledge of the
programmer, meaning that explicitly specifying how the code should be staged may
yield better results. Additionally, implementing the aspect involves mainly AST
manipulation that a programmer is familiar with, while effective use of a partial

evaluator involves a steep learning curve [Jones].

Considering the specific power example, writing and applying the aspect is of course
more complicated than staging the code manually. However, the aspect is generic
enough that it can be used for a variety of other mathematical functions without the
need for manually staging each of them. Additionally, the aspect automatically locates
and stages all function invocations; without that, the programmer would have to
locate all such invocations (probably multiple ones, scattered in the source code) and

stage them manually.

6.3.2 Aspects for Custom Static Analysis

During the compilation process, a compiler typically performs a series of static
analysis checks to the program being compiled. However, a programmer is typically
not aware of the checks being performed while also being unable to customize their
behavior. The latter can be achieved by placing staged code at specific locations
within the original source so that their execution performs the desired static analysis
checks. In this direction, we can use a pre-staging aspect to introduce the custom
analysis code along with its deployment. For example, the aspect below introduces

staged code to analyze all functions definitions.
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function transform (ast) {

foreach(local func, match(ast, "ast(function)")) <«match all functions
advise ( «insert staged call to analyze matched function
func,
AFTER,
<<&analyze (compiler::get function ast (~(func.GetName()))) ;>>

)7
advise(ast, BEFORE, <<&function analyze (func) {..}>>);<«insertstaged def
return ast;

}

6.3.3 Aspects to Introduce Memoization in Stages

To improve runtime performance for mathematical functions involving intense
computations a common technique is to generate for them constant tables, i.e. tables
that will map specific function arguments directly to a constant value. Such tables can
be generated by metaprograms; for example, consider the following code that
generates a constant table for a range of Fibonacci numbers. As indicated by the &
annotation, functions fibonacci and GenerateFibonnaciTable are staged;
in particular, the latter uses the former to calculate the required values and merge
them into a constant table that is inlined in the program code
(! (GenerateFibonnaciTable (20)) invocation). At runtime, function fib

will provide the result directly by accessing the generated constant table.

&function fibonacci (n) { <« compile time version using normal computation
if (n == 0 or n == 1) return 1;
else return fibonacci(n - 1) + fibonacci(n - 2);

}

&function GenerateFibonacciTable (upperBound) {

local numbers = nil;
for (local i = 0; i < upperBound; ++1i)
numbers = <<~numbers, ~(fibonacci (i))>>; <merge computed values
return << [~numbers] >>; <generate const table with the resulting values
}
function fib(n) { < runtime version using the generated const table
static table = ! (GenerateFibonacciTable (20)); <-inlinethe consttable here

return tableln];
}
print ("fib (15) = ", fib(15)); < call involves no runtime overhead

While the above technique improves runtime performance, during compilation the
metaprogram still has to compute the required values, something that may take a long
time. To improve compile-time performance (metaprogram execution), we can use
memoization, i.e. caching the result of a function to avoid recalculating it with the
same arguments. This functionality is not coupled to a specific metaprogram but

would apply to any metaprogram with similar functionality. As such, it can be
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expressed as an in-staging aspect that will be used for each such metaprogram
advising its function invocations with memoization. The fibonacci example above can

be advised with memoization by the following aspect code:

function transform (ast) {

local pointcut = "execution(function fibonacci(n))";
local beforeAdvice = <<

static memoizer = []; <«memoization cache

if (memoizer[n] != nil) return memoizer([n];
>>;
local afterAdvice = <<memoizer[n] = ~~retval;>>;
...the above advice memoizes the result of the calculation; ~~retval carries the return value...
aspect(ast, pointcut, AFTER, afterAdvice);
...put the before advice second to avoid advising the return present in it...
aspect(ast, pointcut, BEFORE, beforeAdvice);
return ast;

}
6.3.4 Aspects for Tracing Diagnostics in Stages

Stages may contain code that was never part of the original program and thus it may
not be easy to trace their execution when they don’t behave as expected. In such
cases, unless the IDE provides support for debugging metaprograms, the only option
is to manually insert logging calls within functions of the stage program to trace their
execution. However, logging is a well-known crosscutting concern that can be
addressed through AOP. In this sense, using the following code as an in-staging
aspect achieves the desired functionality.

function transform (ast) {
local funcs = match(ast, "execution(function *(*))");

foreach(local f, funcs) { < iterate over all matched function definitions

local name = f.GetName/() ;
advise (f, BEFORE, <<print ("Entering " + ~name);>>);
advise(f, AFTER, <<print("Exiting " + ~name);>>);

}

return ast;

}

Note that since we use an in-staging aspect, the ast argument passed to the
transform function will only contain stage code. As such, the tracing functionality
is only introduced in functions available within stages, and not the functions of the

final program.

6.3.5 Aspects for Locking Shared Objects in Stages

Since stages are normal programs, their execution may involve multiple threads of

execution that share various resources. This raises the issue of protecting the stage
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code from possible race conditions by introducing typical synchronization constructs
like mutexes. This can be achieved using a locking aspect as illustrated in the
following code.
function transform (ast) {
local class = "class(SharedObject)"; < class for synchronization
local pointcut="descendant ("+class+") and execution(method *(..))";

aspect(ast, pointcut, BEFORE,<<self.mutex.lock() ;>>);

aspect(ast, pointcut, AFTER,<<self.mutex.unlock();>>);

aspect(ast, class, BEFORE, <<@mutex:mutex new ()>>) ;<insert mutex member
return ast;

}
6.3.6 Aspects for Exception Handling in Stages

As already discussed, the code of a stage metaprogram may be sophisticated and
involve multiple scenarios where errors can occur. In this context it is a typical
practice to use exception handling to separate the normal execution from the error
handling code. Exceptions can be seen as a crosscutting concern allowing them to be
modularized as aspects [Kiczales97]. In this sense, stage code could utilize an in-
staging aspect to be advised with the error handling logic. For example, the following

aspect can be used to specify different exception handling policies for a variety of use

cases.
function AllMethodsInClass (class) < helper to create pointcut expressions
{return "execution(method *(..)) and descendant(class("+class+"))";}

function transform (ast) {
aspect(ast, AllMethodsInClass ("RemoteObject"), AROUND,
<<try { ~~proceed; } catch Exception { log(Exception); }>>

) ; <« log and ignore any exception regarding remote object invocations
aspect(ast, AllMethodsInClass ("StackWithDbyC"), AROUND,
<<try { ~~proceed; } catch ContractException { assert false; }>>

); < ensure no contract exceptions thrown by a class with Design by Contract
aspect(ast, AllMethodsInClass ("ConfigurationManager"), AROUND,
<<try { ~~proceed; } catch IOException
{ throw [@class:"ConfigException", @source:IOException]; }>>

) ; <« hide low level IOExceptions and raise higher level ones
return ast;

}
6.3.7 Aspects for Decorating Classes in Stages

Stages are mainly code generators and thus they make extensive use of AST creation

and manipulation. Even if the AST library offered by the language facilitates AST

traversal and manipulation, programmers may still want to decorate AST values with

custom functionality. To do so, one would have to implement an additional library

and manually decorate AST creation occurrences in the code. The latter can be seen
146



as a crosscutting concern that can be addressed through the following in-staging
aspect. In particular, the aspect will locate all quasi-quotes nodes (i.e. AST creations)
and apply the desired decoration based on the language element they contain. Of
course, any inlines and escapes have to be advised as well to retrieve the original AST
value from the decorated object.
function transform (ast) ({

local quasiquotes = match(ast, "ast(quasiquote)") ;<«find all AST creations
foreach (local quote, quasiquotes) {
) =

if (quote.GetChild() .GetType ( = "class")
advise (quote, AROUND, <<]| <« AST creations are replaced with objects
@ast : ~~proceed, <« the original AST is stored as normal data

method GetMethods (){ .}, <= custom methods added
method GetAttributes ) {..},
) {..}

method BaseClasses

1>>);
else 1if (quote.GetChild() .GetType () == "function")
advise (quote, AROUND, <<| < AST creations are replaced with objects
@ast : ~~proceed, <« the original AST is stored as normal data

method GetName ( <« custom methods added

) {)y
method GetActual (n) {..},
method GetLocals () {..}

1>>);
else ...perform similar handling for other quoted language elements...

}

aspect(ast, "child(escape) ", AROUND, <<~~proceed. ast>>) ; «<—get original AST
aspect(ast,"child(inline) ", AROUND, <<~~proceed.ast>>) ; «get original AST
return ast;

}

6.3.8 Aspects for Custom AST lteration in Stages

It is typical for stage code to traverse the tree structure of an AST value. In Delta, this
is achieved through an AST visitor, where node types are associated with handler
functions. For example, the following code will traverse the AST shown and invoke
the associated handler (i.e. the anonymous function) for every function node
contained within the AST.

ast = << function f () { return << function g () {} >>; } >>;

visitor = astvisitor new();

visitor.set handler ("function", function(node, id, entering){ .. });
ast.accept preorder (visitor);

The visitor does not differentiate between functions being directly within the
traversed AST or inside any nested quasi-quotes it contains, meaning that in this
example the handler will be triggered by both functions £ and g. However, it is very
common for the traversal to target only functions directly within the AST and not

nested ones. To achieve this, we have to introduce additional handlers to keeps track
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of the stage nesting and modify existing ones to utilize this information. This can be
modeled with the following in-staging aspect:
function transform(ast) {
local visitors = "ast(assign) and" +
"parent (call (astvisitor new()), rvalue)";

foreach(local visitor, match(ast, visitors)) {
local handlers = "execution(function (node,id,entering)) and " +
"descendant (call("+id.GetName () +".set handler (..))";<«match handlers
aspect(visitor.GetEnclosingBlock (), handlers, AROUND,
<< if (nesting==0) ~~proceed; >>);
local id = visitor.GetChild("lvalue") .copy():;
advise(visitor.GetEnclosingStmt (), AFTER, <<

local nesting=0;<«introduce nesting var and modify it as needed in following handlers
~id.set handler ("quasiquotes", function(node, id, entering)

{if (entering) ++nesting; else --nesting;}) ;<increased within quotes
~id.set handler ("escape", function(node, id, entering)

{if (entering) --nesting; else ++nesting;}) ;<«decreased within escapes
>>);

}

return ast;

}
Notice that we first update existing handlers and then introduce the new ones so as to
avoid advising them or having to specify a more complex pointcut that excludes them.

6.3.9 Aspects for AST Validation in Stages

ASTs are usually constructed through quasi-quotes, however they cannot express
structures depending on some computation, for example having an if statement with a
variable number of else if clauses. To allow generating such code patterns,
metalanguages typically provide some extra facility, like a library for explicit AST
creation and manipulation. ASTs created using either the library or through quasi-
quotes should interoperate; however while ASTs created by quasi-quotes are well-
formed, ASTs created through the library may be incomplete or even ill-formed. In
this context, a programmer could insert custom validation code at specific source
locations, ensuring that any AST is well-formed and that any manually constructed
erroneous AST is reported as early as possible. This functionality can be achieved
through an in-staging aspect that introduces a validate function available in stage
code and weaves appropriate invocations to any source locations involving ASTSs. In
particular, this requires advising AST nodes corresponding to e. quasi-quotes, escapes
and inlines. Additionally, we can advise any stage function operating on ASTSs to also
deploy a validation call for its argument. The source code for this in-staging aspect is
provided below.
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function transform(ast) {
local validator = << function validate(ast) { .. return ast; } >>;
...the two following lines turn <<... ~x ...>> into validate(<<... ~(validate(x)) ...>>)...
aspect(ast, "ast(quasiquotes)", AROUND, <<validate (~~proceed)>>);
aspect(ast, "child(escape)", AROUND, <<validate (~~proceed)>>);

...the following line turns !(...) into !(validate(...))...
aspect(ast,"child(inline)", AROUND, <<validate (~~proceed)>>);
aspect(ast, "execution(function *(ast,..))", BEFORE,

<<validate (ast) ;>>); <« also validate any function with an AST as first argument
...insert the validate func last to avoid advising it or having to specify a more complex pointcut...
advise(ast, BEFORE, validator);
return ast;

}

6.4 Discussion

We continue by discussing some elements that may differ in other languages and
provide an overview for deploying our approach using a mainstream AOP language
like AspectJ.

Scope extrusion In the Delta language, variables within quasi-quotes are typically
dynamically scoped in the context where the quoted code will actually be inserted. In
this sense, there are no guarantees regarding name bindings and as such no scope
extrusion issue. However, our proposition towards AOP for stages is orthogonal to
such an issue. In a language where symbols within quasi-quotes bind to specific
variables via lexical scoping, the same language facilities that are used to guarantee
the name binding for normal program compilation can be extended to also apply for
any aspect transformations. For example, Template Haskell [Sheard02] and Converge
both use the notion of original names to bind quasi-quoted symbols to top-level
definitions within a module. In particular, for a top-level function £ within a module
M, any reference to £ used within quasi-quotes is directly translated to M: £ (M. £ for
the Converge version), uniquely referring to the particular name. In the same sense,
any quasi-quote of an aspect transformation could also refer to the same function
using an extension for original names. Since the name of the module is not directly
available during the compilation of the aspect program, we could instead use a special
delayed escape ~~module that will be replaced with the name of the module when it
becomes available. This way, we could directly use original names within quasi-

quotes, for instance writing <<~~module: f>>.

Interaction and Commutation Among Aspects Our implementation realizes aspects

as separate AST transformation programs that are applied sequentially. In this
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sequence, any aspect being applied operates on the result of earlier aspects, so
naturally the application order is important; in fact, applying aspect programs with a
different order may yield different results meaning that this is not a commutative
process. For example, consider an aspect for introducing additional members to a
class and another one for automatically generating accessor functions for the class
members. If the former aspect is applied first the resulting class will have accessor
functions for all members while if it is applied second any newly introduced members
will have no accessor functions. Apart from the ordering issue, aspect transformations
are applied once and for all, without the ability to be triggered again by other aspects.
Essentially, an aspect may inspect changes introduced by earlier aspects, but not vice
versa, effectively disallowing any bidirectional interaction between two aspects.
Both limitations arise from the particular aspect implementation as transformation
programs and are not inherent issues of our proposition for aspects in stages. In this
sense, utilizing a more traditional AOP approach, with a separate aspect language and
collective weaving of the aspect code along with the normal program or metaprogram
code, aspects of the same category can interact with each other, while their

commutation is the same as with normal aspects.

AOP for stages using Mint and AspectJ To apply our methodology using Mint and
Aspect], AspectJ first has to be extended to support the staging extensions of Mint.
The latter is required so as to allow the aspect code contain staging annotations.
Additionally, the stage binaries produced by Mint need to be available before they are
executed so as to be advised by the aspect weaver. Essentially, the translation-
execution loop required for the staging process has to provide an entry point allowing
updating the original stage binary with the advised one. With these extensions, we can
then follow the binary weaving shown in Figure 6.4. Initially, the original program is
compiled to binary and is advised by the pre-staging aspects. As such, the program
execution that follows uses the advised version of the binary. At runtime, whenever a
stage binary is produced, the aspect weaver can intercept it, advise it with the in-
staging aspects and then send it for execution. This way, the stage execution contains
both original and aspect functionality. Regarding post-staging aspects, Mint uses

runtime metaprogramming so, as previously discussed, they cannot be supported.
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6.5 Comparison to Current AOP Practices

To our knowledge, this is the first work with a systematic proposition towards
supporting aspects for stage programs in the context of multi-stage languages.
However, we consider our work to be closely related to the attempts of using
metaprogramming features for achieving aspect-orientation. For example, AOP++
[Yao] is a generic AOP framework in C++ that utilized the metaprogramming
constructs of the language, i.e. templates, to express pointcut expressions and match
joinpoints at compile-time. Nemerle [SkalskiO4] facilitates metaprogramming through
its macro system and can support AOP features by applying annotation based macro
invocations on program classes. AspectR [Bryant] is a library for Ruby that utilizes
metaprogramming techniques to implement AOP by wrapping code around existing
methods in classes. Groovy AOP [Kaewkasi] is an AOP system for Groovy that
provides a hybrid dynamic AOP implementation based on both metaprogramming and
byte-code transformation. Aspects, pointcuts and advice are specified at compile-time
based on a Groovy based domain-specific language while the advice is woven into
byte-code at runtime using dynamic compilation.

Languages like Lisp or Scheme have a built-in notion of stages, while they also
facilitate AOP through library support, for example using AspectL [Costanza] or
AspectScheme [Dutchyn] respectively, thus allowing potentially combining stages and
aspects. However, these libraries target generic AOP and do not provide explicit
support for introducing aspects in staged code. Essentially this means that while from
an expressiveness point of view it is possible to specify aspects for stages, from a
software engineering point of view it requires introducing additional sophisticated
macros, something difficult even for advanced users. The latter could be easily
addressed with a dedicated AOP library for stages offering such macros out of the box
and thus facilitating the adoption of AOP practices in staged code. It also shows that
even languages with both concepts require a more systematic approach for their

combined deployment.

MorphJ [Huang08][Huangll] is a language that introduces a form of
metaprogramming by enabling the specification of general classes that are produced
by iterating over members of other classes. In this sense, it can also be used to achieve

AOP functionality by advising structural program features (e.g. before-, after-, and
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around-advice for methods). As a program generation or transformation approach,
MorphJ only allows enhancement of classes through subtyping or delegation. On the
contrary, our system allows arbitrary code generation or transformation making it
more expressive. As an AOP approach, MorphJ allows advising normal program code
but cannot support advising its reflective transformation functionality, i.e. the
metaprogram specifying the general class generation. A fundamental point of our
proposition is that metaprograms may also require AOP functionality, so we support
all stages of a multi-stage program to be subject to AOP. The advantage of MorphJ
over our system (or other AOP tools) is the guarantee of modular type safety enabling
the general classes to be type-checked independently of their uses. Indeed, in our
system it is possible for an aspect program to be valid on its own, but cause errors
upon its deployment. However, such an error is still reported during compilation,
while the offered error reporting facility discussed in section 6.2.5.2 allows it to be

easily identified and thus resolved.

There are also systems that provide dynamic AOP support through meta-object
protocols or byte-code modification at load- or run-time. Examples include but are not
limited to JAC [Pawlak], Handi-Wrap [Baker] and Spring [Johnson] for Java, AspectS
[Hirschfeld] for Smalltalk and AspectLua [Cacho] for Lua. This approach is

orthogonal to our work that focuses on systems with static AOP (like Aspect]).

Existing tools for debugging code involving AOP are also relevant to our work. For
example, [Eaddy] and [Yin] offer support for debugging the final woven code while
properly associating execution with the original source code or the aspect source
code. Our system relies on source-level weaving and keeps the results of each aspect
transformation, so source-level debugging of the woven code is straightforward by
using the result of the final aspect transformation. Instead we focus on providing
source-level debugging support for the transformation logic, allowing programmers

view normal and aspect related code as ASTs and trace the entire weaving process.
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Chapter 7

Advanced Practices

"Good programmers know what to write.

Great ones know what to rewrite (and reuse)”

-- Eric S. Raymond

A primary focus of this thesis was to derive a code of practice that will utilize
metaprogramming techniques to achieve reusability at a macroscopic scale. In this
context, we discuss three promising directions where metaprogramming can make a
difference in the software development process: (i) implementing reusable design
patterns by utilizing metaprograms as pattern generators; (ii) implementing reusable
exception handling templates by adopting metaprogramming to express handler logic
as parameterized source code fragments; and (iii) facilitating source code automation
by encapsulating model-driven code generators as metaprograms. We continue by
elaborating on the design rationale and proposed methodologies for each of the

explored direction.

7.1 Design Pattern Generators

In software engineering, design patterns [Gamma] constitute generic reusable
solutions to commonly recurring problems within a given context in software design.
Effective software design requires considering issues that may not become visible
until later in the implementation and design patterns can help preventing such
problems by providing tested, proven development paradigms. A design pattern is not
a complete design directly transformable into code; it is rather a description on how to
solve the given problem in different situations illustrating relationships and
interactions between classes and objects involved. This means that in general, a
pattern has to be re-implemented from scratch each time it is deployed, thus

emphasizing design reuse as opposed to source code reuse.

This issue was first identified in the attempt to turn patterns into context-independent

reusable components [Arnout] without requiring developers re-implement the same
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boilerplate code in every different context. The result was a classification of design
patterns being componentizable or not, with the actual pattern component
implementations where applicable. However, the approach was based on the Eiffel
language [Meyer92] strongly relying on its Agent and Design by Contract
mechanisms; thus it may not directly apply to other languages that offer no such
features. Nevertheless, the idea of turning patterns into components has been explored
in other languages as well. For example, PerfectJPattern [Garcia] is a framework and
catalog of componentized design patterns for Java. It offers support for various design
patterns, including some (e.g. Adapter, Decorator) that were classified as non-
componentizable by Arnout. To deliver such functionality, the PerfectJPattern
framework makes extended use of the Java reflection API, i.e. it relies on runtime

metaprogramming.

Similar work has also been carried out in the context of compile-time
metaprogramming. Nemerle supports generating the implementation details of a
design pattern through meta-attribute based macros [SkalskiO5]. In particular, it offers
implementations for the Composite, Proxy, Singleton and Abstract Factory patterns.
Groovy AST transformations can also offer such functionality; in particular, the
@Delegate and @Singleton annotations introduced in version 1.6 show the potential

for automatically generating design pattern implementations.

Our approach also targets compile-time metaprogramming and shares the philosophy
of expressing the pattern logic as a metaprogram while passing the particular
application context as deployment parameters. In this sense, our contribution is not
the adoption of metaprogramming for pattern generators per se, but our proposition
for utilizing the integrated metaprogramming model to do so. Essentially, as discussed
in section 4.5.2, to effectively accommodate the requirements for implementing
design pattern generators requires features beyond staged expressions. With integrated
metaprograms, programmers may apply normal program practices like encapsulation,
abstraction and separation of concerns. Additionally, the support for shared state and
typical control-flow enables the delivery of more elaborate pattern implementations
involving matching modifications across multiple classes or the orchestrated insertion

of specific pattern implementation details at disparate source locations.
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We continue by discussing some examples of design pattern generators that utilizing
our programming model. Our examples include patterns that were classified as non-
componentizable by Arnout (e.g. decorator, adapter, singleton, etc.) illustrating that
they can in fact be modularized and reused not as components but as parameterized
source code fragments deployable through metaprogramming. Our work has been
carried out in the context of the untyped Delta language; nevertheless it can be
directly applied in a typed language. To show this we also discuss corresponding
example implementations in a hypothetical meta-C++ that adopts our staging

annotations and programming model.

7.1.1 Decorator

The Decorator pattern allows attaching additional responsibilities to an object
dynamically. It targets individual object and not entire classes, so it provides a
flexible alternative to subclassing for extending functionality. The basic idea is to
enclose the target component in another object that provides the extended
functionality, called decorator. The decorator forwards any requests to the target
component while performing additional actions before or after that. It conforms to the
interface of the component it decorates so that its presence is transparent to the
component's clients. This transparency allows decorators to be nested, thus supporting

an unlimited number of added responsibilities.

The software engineering components involved in the Decorator pattern include the
interface of the decorated object, an interface for the decorator class (conforming to
the latter) and the concrete decorator classes. The latter are the main part required to
deploy the pattern, involving only the class names along with the methods with
refined functionality as the varying behavior that can be parameterized. In this sense,
we can utilize a meta-function that will generate decorator classes for a target class

based on the refined methods given as parameters. This is illustrated in the following

example.
function Car () { <normal class for which we want to generate a decorator
return [
method Move ) {..},
method Break ) {..},
method Accelerate () {..},

17
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&function DecoratorGenerator (class, decoratorSpecs) { <—pattern generator
local allMethods = class.GetMethods() ;
local decorators = nil;
foreach (local spec, decoratorSpecs) {
local delegations = nil;
local refinedMethods = spec.refined.GetMethods () ;
foreach (local name, allMethods)
if (not refinedMethods.contains (name) ) <-only for non-refined methods
delegations = <<
~delegations, < merge with any previous delegation methods
method ~name(...){@instance.~name(...);} <«adddelegation method
>>;  «... in formals means any formals, ... in call means pass all supplied arguments
local decorator = << < create new decorator class using a constructor function

function ~(spec.name) (instance) { <instance is the decorated object
return [
@instance : instance,
~delegations, «class contains the non-refined delegation methods
~ (spec.refines) <along with the refined ones
1
}
>>;
decorators = <<~decorators, ~decorator>>; < merge decorator classes
}
return decorators; <« return a single AST containing all decorator classes

! (DecoratorGenerator ( function ABSCar (instance) {

GetClassDef ("Car"), return [
[ @instance : instance,
[ method Move (...) {@instance.Move(...);:},
@name "ABSCar", method Accelerate (...)
@refines : << { @instance.Accelerate(...); },
method Break () {..} method Break {..} < refined method
>> 1:

function TurboCar (instance) {

1, }
[

@name : "TurboCar", return [

@refines : << @instance : instance,

method Move () {..}, method Break(...)

method Accelerate () {..} { @instance.Break(...); 1},
>> method Move {..}, <« refined method

] method Accelerate {..} <« refined method

] 1;
)) }

7.1.2 Adapter

The Adapter pattern allows converting the interface of a class into another interface
that clients expect. This enables classes to work together that couldn't otherwise
because of incompatible interfaces. The implementation of a generator for the Adapter
pattern was already discussed in the case study of section 4.5.2. There we covered two
implementation options, through subclassing and through delegation, however both in

the context of an untyped language. Here we also provide a typed implementation
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using the hypothetical meta-C++. Notice that in the context of a typed language, the
AdapterGenerator metafunction (implemented as a functor class) requires

knowledge about both the adaptee class and the target interface.

&class AdapterGenerator { <—pattern generator implemented as a functor class

public:
typedef std::map<std::string, std::string> AdapterMap;

private:
std::string name;
ClassAST* target;
ClassAST* adaptee;
AdapterMap adaptedMethods;
public:
AST* operator () () |
AST* methods = (AST*) 0; <will hold the adapter class method implementations

const MethodList& targetMethods = target->GetMethods () ;
for (MethodList::const iterator i = targetMethods.begin();

i != targetMethods.end(); ++i «iterate over target class methods
) A
assert ((*1)->IsVirtual()); <—adaptation will work only on virtual functions
const std::string name = (*1i)->GetName () ;
AdapterMap::const iterator iter = adaptedMethods.find(name);
const std::string originalName = iter == adaptedMethods.end() °?
name : iter->second;

assert (adaptee->GetMethod (originalName) ->Matches (*1)) ; «<-make sure
the specified adaptee method matches the target method (same args & return type)

Formals* formals = (*i)->GetFormals();
AST* actuals = (AST*) 0; <«will hold the arguments for the adapted method call
for (Formals::const iterator j = formals->begin();

J != formals->end(); ++j

actuals = <<~actuals, ~((*j)->GetName ())>>;<«-accumulate argument
Type* returnType = (*1i)->GetReturnType();
AST* body = <<~ (adaptee->GetName ()) ::~originalName (~actuals)>>;
...the adapted method body consists only of the invocation of the original method...
if (not returnType->IsVoid())
body = <<return ~body;>>; <« handle non-void methods to propagate the result
AST* method = <<~returnType ~name (~formals) { ~body; }>>;
methods = <<~methods, ~method>>; < create method and merge with existing
}
return <<
class ~name: public ~(target->GetName ()), <inheritfrom targetclass
private ~(adaptee->GetName ()) {<«inherit from adaptee class
public:
~methods; <«insert adapted methods
}i
>>;
}

AdapterGenerator (const std::stringé& name, ClassAST* target,
ClassAST* adaptee, const AdapterMapé& adaptedMethods) : name (name),
target (target), adaptee (adaptee), adaptedMethods (adaptedMethods) {}

}i
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class OriginalWindow { <«adaptee class

public:
void Draw (DC& dc) {..}
void SetWholeScreen (void) {..}
void Iconify (void) {..}
i
class TargetWindow { «target interface
public:
virtual void Draw (DC& dc) ;

virtual void Maximize (void):;
virtual void Minimize (void):;

i

&AdapterBySubclassing: :AdapterMap adaptedMethods;

&adaptedMethods ["Maximize"] = "SetWholeScreen";
&adaptedMethods["Minimize"] = "Iconify";
! (AdapterGenerator ("Adapter", GetClass("TargetWindow"),

GetClass ("OriginalWindow"), adaptedMethods) ()); {}
class Adapter : public TargetWindow, private OriginalWindow {
public:

void Draw (DC& dc) { OriginalWindow: :Draw (dc) ; }
void Maximize (void) { OriginalWindow: :SetWholeScreen(); }
void Minimize (void) { OriginalWindow: :Iconify(); }

}i
7.1.3 Flyweight

The Flyweight pattern promotes the use of sharing to support a large number of
similar objects efficiently. When an application requires a large number of objects
that all involve similar state, repeating such state across every object could result in
memory or efficiency problems. Instead, we can group the common state in a single
immutable object called flyweight and share it across all target object instances that
require it. This way, each object holds only its own mutable state along with a

reference to the flyweight object thus significantly reducing the required memory.

A pattern generator for the flyweight pattern involves only specifying the contents of
the flyweight object, i.e. the shared state. With this information, we can use a meta-
function to traverse the involved class declarations and modify them to use the
flyweight object instead of repeated state. This functionality is shown in the example

below, again implemented in the hypothetical meta-C++.

&class FlyweightGenerator { <«—pattern generator implemented as a functor class

private:
static void ReplaceInAST (AST* ast, AST* original, AST* target);

< used to delegate all occurrences of a member to the flyweight object

public:
typedef std::set<std::string> StringSet;
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static AST* Apply (ClassAST* target, StringSet flyweightMembers) ({

AST* members = (AST*) 0;
for (StringSet::const iterator i = flyweightMembers.begin();
i != flyweightMembers.end(); ++1i «iterate over flyweight members

) A

MemberAST* member = target->GetMember (*i);
members = <<~members; ~member;>>

ConstructorList& constructors = target->GetConstructors();
for (ConstructorList::iterator j = constructors.begin();
j != constructors.end(); ++73) «iterate over target class constructors

(*j) —>RemoveFromInitializationList (*1);
MethodList& methods = target->GetMethods () ;
for (MethodList::iterator j = methods.begin();

j != methods.end(); ++7j) «iterate over target class methods
ReplaceInAST ((*j)->GetBody (), <« delegate all occurrences of the member
<<~ (*1)>>, <<flyweight->~(*1)>>); < to the flyweight object

target->RemoveMember (*1i) ;

}

target->AddInnerClass (<< < create the AST of the Flyweight class
struct Flyweight {
~members; < members moved here from the target class

static map<string, Flyweight*> pool ;< pool for flyweight instances
static Flyweight* Get (const std::stringé& type):;
}i

>>);
target->AddMember (<<Flyweight* flyweight;>>) ;< insert flyweight reference
const std::string name = target->GetName () ;

return <<map<string,~name::Flyweight*> ~name::Flyweight::pool;>>;
} <« all class functionality is inserted directly in the target class; return only the static map
instantiation that should be inserted outside the target class body (within a source file)
}i

class Soldier { class Soldier {
private: private:
State state; State state;
Pos pos; Pos pos;
Task task; Task task;
Behavior behavior; struct Flyweight ({
Graphics graphics; Behavior behavior;
AT ai; Graphics graphics;
public: AT ai;
Behavior GetBehavior () static map<string,Flyweight*> pool;
{ return behavior; } static Flyweight* Get (string type);
...other public Soldier methods... bi
Soldier (State s,Pos p,Task t): Flyweight* flyweight;
state(s),position(p),task(t), public:
behavior (DEFAULT BEHAVIOR), Behavior GetBehavior ()
graphics (DEFAULT GRAPHICS), { return flyweight->behavior; }
ai (DEFAULT AI) {} ...other public Soldier methods...
}; Soldier (State s, Pos p, Task t):
&std::set<std::string> members; state(s), position(p), task(t),
&members.insert ("behavior") ; flyweight (Flyweight: :Get (DEFAULT) )
&members.insert ("graphics") ; {1}
&members.insert ("ai") ; }s
! (FlyweightGenerator: :Apply (
GetClass ("Soldier"), E$>map<string, Soldier::Flyweight*>
members Soldier::Flyweight: :pool;

))
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7.1.4 Undo-Redo

Supporting undo/redo functionality is a common requirement for various applications,
especially for interactive ones, with text editors and drawing applications being
exemplifying examples. Such functionality can be achieved using the Command
pattern as follows. The execute operation of a command can store state for reversing
its effects, while the command interface offers an undo operation to reverse the effects
of a previous execute call. Executed commands are stored in a history list that can be
traversed backwards and forwards calling undo and execute (i.e. redo) respectively to

support an unlimited number of undo and redo operations.

To generate a complete pattern implementation, apart from the Command interface
and the command history list we also need the list of commands and the functionality
they involve. Such information depends on the specific application context and has to
be explicitly provided as deployment parameters to the pattern generator. In
particular, when specifying the list of commands for a specific class that we want to
extend with undo/redo functionality, we need to supply the data required by each
command as well as the class methods that offer the matching functionality.
Additionally, we should supply the logic for performing the undo operation. For
instance, in a text editor containing methods InsertText and DeleteText, we
may introduce an Insert command specifying the position where the insertion will
take place as well as the text to be inserted, and a Delete command specifying the
starting position for the deletion and the number of characters to delete. Additionally,
for the Insert command the execute operation should be associated with
InsertText and its undo operation with DeleteText. Similarly, for the Delete
command the execute operation should be associated with DeleteText and its
undo operation with InsertText. Finally, the original class methods should be
implemented through the available commands so as to offer the undo/redo
functionality. With such information specified as deployment parameters, we can
implement a pattern generator meta-function able to support various undo/redo
application instances as follows. This is illustrated in the following example, where
the pattern is delivered as a subclass that offers the required undo/redo functionality

and overrides the undoable methods to issue matching commands.
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&function CreateCommand (name, data, execute, undo) {

local args = nil, local formals = nil, local members = nil;
foreach(local item, data) {
formals = <<~formals, ~expr>>; <merge command data for formal list

args = <<~args, self.~item>>; <merge command data for the execute invocation
members = <<~members, {~item:~item}>>; <«merge command data for members
}
return <<method ~name (object, ~formals) { < command constructor function
return [
@object : object,
~members,
method execute () {
~ (execute.storeUndoData); <-code for storing the undo data
self.object..~(execute.method) (~args) ;
}, <« perform the execute action call locally on the target object
method undo () «<—perform the undo action call locally on the target object
{ self.object..~(undo.method) (~(undo.args)); }
1
}>>;
}

&function OverrideFunc (name, command) {

return <<method ~name (...) { <generate the overridden method

local base = std::getbase(self, 0); <«—(Qet base class object
@newcommand (@commands .~command (base, ...));

}>>; «create the matching command targeting the base class object

}
&function UndoRedo (name, commandSpecs, funcMappings){ <-pattern generator
local commands = nil; «will hold the command class constructor functions

foreach (local spec, commandSpecs) { <«—create command classes based on specs
cmd=CreateCommand (spec.name, spec.data, spec.execute, spec.undo);

commands = <<~commands, ~cmd>>; e4nmgecmnmands

local overrides = nil; «will hold the overridden version of the undoable functions

foreach (local map, funcMappings) <for all specified funcs create and merge overrides
overrides=<<~overrides, ~ (OverrideFunc (map.method, map.command) ) >>;

return <<
function ~name (baseObject) {<«—generate a derived class with undo/redo functionality
local objectWithUndoRedo = [
@commands: [~commands] <«holder for the command class constructors

@undoStack : list new(), <use 2 stacks to implement the command history
@redoStack : list new(),
method undo {

if (@undoStack.total() > 0) { <« ifthere are actions to be undone
cmd = @QundoStack.pop_front () ; «<-remove command from undo stack
@redoStack.push front (cmd); <« insertthe command in the redo stack
cmd.undo () ; < undo the effects of the command

}

b
method redo {

if (@redoStack.total() > 0) { <« ifthere are actions to be redone
cmd = @redoStack.pop front () ;«remove command from redo stack
@undoStack.push front (cmd); <« insertthe command in the undo stack
cmd.execute () ; < execute the command again

}y
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method newcommand (cmd) { <« overridden methods just issue a new command
@undoStack.push front (cmd) ; « insert the command in the undo stack
@redoStack.clear () ; <no undone actions can be redone after new actions
cmd.execute () ; «—execute command to perform the original method functionality
I
~overrides <«insert the overridden methods in the subclass
1
inherit (objectWithUndoRedo, baseObject);
return objectWithUndoRedo;

}

>>;
}
&commandSpecs = [
[
@name : "Insert", <«command class name
@data : list new("pos", "text"), <«command class data
@execute : [/*@storeUndoData : nil,*/<«code for storing undo data(here none)
@method: "AddText"], <-original method for execute action(args implied from data)
@undo : [@method : "DeleteText", <«original method for undo action
@args : <<@pos, strlen(@text)>>] <«argumentsfor undo action
1,
[
@name : "Delete",
@data : list new("pos", "len"),
@execute : [@storeUndoData : <<L@text = @object.text;>>,
@method : "DeleteText"],
@Qundo: [@method : "AddText",
@args : <<@pos, strslice(@text, @pos, @pos + @len - 1)>>]
1,
[
@name : "Set",
@data : list new("text"),
@execute : [@storeUndoData : <<@old text = @object.text;>>,
@method: "SetText"],
@undo : [@method : "SetText", Rargs : <<@old text>>]
]
17
&funcMappings = | <map original object methods to matching commands
[ @method : "AddText", @command : "Insert"],
[ @method : "DeleteText", @command : "Delete"],
[ @method : "SetText", Qcommand : "Set"]
17
function Editor () { <original class with no undo/redo functionality
return [
@text : "", @caret : O,
method Display (msqg) {..},
method SetText (text) {..},
method AddText (pos, text){..},
method DeleteText (pos, len) {..}

17
}
! (UndoRedo (<<EditorWithUndoRedo>>, commandSpecs, funcMappings)):;
<«generates the derived class EditorWithUndoRedo that offers the required undo/redo functionality
editor = EditorWithUndoRedo (Editor()):;
editor.AddText (0, "Hello world!"™);
editor.undo(); editor.redo () ;
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7.2 Exception Handling Templates

Exception handling [Goodenough] is a key mechanism supporting structured error
recovery within a software system. It allows effectively decoupling normal code from
error handling code through distinctive try-catch control blocks. Once exceptions are
raised with a throw statement, the program control is transferred to the closest handler
matching the raised exception. The same exception raised by different contexts may
naturally be caught by different handlers, something dependent on the calling context
which led to the statement raising the exception.

Ideally, exception handling in a language should facilitate the construction of
handling code in a way that is modular and easy to reuse. But still the challenge of
implementing modular, generic and directly reusable exception handler code remains
an open issue for software developers. The main problem is that in real-life software
systems the normal code and the handling code are frequently tightly coupled. An
important factor in this context is that the exception handling logic is encompassed
within syntactically distinct blocks, meaning the chances for applying language reuse
approaches such as inheritance, abstraction, polymorphism and genericity, become de
facto restricted. Finally, although there are well known good and bad practices
regarding exception handling [Doshi][McCune], none of the established exceptions
patterns can be directly reused in an implementation form across application contexts.
In this context, we thought that once we manage to parameterize the syntactic
structures, essentially treating syntax, and in effect source code, as a first-class value,
we may succeed in realizing exception patterns in a directly implementable and

deployable form.

This line of thinking has driven us to consider staged metaprogramming. Using
metaprogramming, it is possible to express error handling patterns as parameterized
source fragments in the form of AST templates with empty placeholders ready to host
client-supplied code. Each pattern is implemented by a respective metafunction that
can be invoked during compilation at the appropriate source context with the desirable
parameters in order to generate a concrete instantiation of the exception handling
pattern. Such patterns may in general encompass complex exception handling
structures, combing arbitrary statements with nested and repeated try-catch blocks
(Figure 7.1).
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Figure 7.1 — The recursively-repeated structure of exception handling patterns generated via

metaprogramming; stmts may contain exception handling code following the main pattern.

Nevertheless, the client code need only be aware of the pattern behavior, its

corresponding meta-function and how to apply it. This way, not only programmers are

relieved from underlying, sometimes transient, implementation details, but the

exception handling patterns can be standardized and be directly reused. In this sense,

it is possible to produce libraries of parameterized exception handling patterns, thus

allowing configuring pattern deployment at generation-time based on the particular

application requirements. This property is illustrated in Figure 7.2. We support our
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Figure 7.2 — Deploying library metaprograms to generate exception handling patterns.
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claim by examining key exception handling scenarios and by providing all respective

meta-implementations to eventually turn them into reusable pattern libraries.

Since Delta is an untyped language, the implementations discussed in most scenarios
correspond to untyped exception handling. Nevertheless, our approach has nothing to
do with type checking or type systems, so it can be applied to any language, either
typed or untyped, as long as it offers the required metaprogramming features. In
particular, some of the presented scenarios involve typical staged computations so
they could be directly adopted in any of the multi-stage (or even two-stage) languages
discussed earlier (e.g. MetaML, Nemerle, MetalLua, Converge, Groovy, etc.).
However, there are other scenarios involving state sharing and control flow in stage
code (like the one discussed in the case study of section 4.5.1), making them more
suitable for the integrated metaprogramming model.

7.2.1 Exception Handling Scenarios

We discuss a wide range of exception handling scenarios including resource failures,
high level architectural exceptions, and multiple repeating catch blocks. DbyC
contractual exceptions also fall in this category, but were already discussed in the case
study of section 4.5.3, so they are not repeated here. Each of the discussed scenarios
as well as other exception handling patterns discussed later can be modularly
organized by collecting all relevant meta-functions in library modules. Then any
client module can simply deploy these libraries during its compilation; as previously
discussed, apart from the normal (i.e. runtime) dependencies of a program, it may also

have meta-code dependencies, i.e. dependencies for some of its stages.

Resource failures. A typical error handling category relates to exceptions being
raised due to resource failures. This includes scenarios where the system runs out of
memory, a network connection fails, or a local database does not respond properly.
Through metaprogramming we can reduce the boilerplate code required to test
various resource failures, by automatic generation at the desirable client context. An
implementation and its deployment are provided below.

&function Resources (alloc stmts, handler stms)

{ return <<try { ~alloc_stmts; } catch e { ~handler_stmts; }>>; }
&function InitialMemoryAllocation (alloc)

{ return Resources(alloc, <<print ("No memory!"); exit();>>; }
&function NormalMemoryAllocation (alloc)
{ return Resources(alloc, <<Collector(); ~alloc;>>; }
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! (InitialMemoryAllocation (<< x = malloc(10) >>));
! (NormalMemoryAllocation (<< y = malloc(20) >>));
try { x malloc(10); } catch e { print("No memory!"™); "exit (); }
try { y malloc(20); } catch e { Collector(); y = malloc(20);}

High level architectural exceptions. When implementing the interaction amongst
high-level architectural components, the exceptions that can be raised are usually
formalized and relate to predefined conditions that may fail during runtime. Along
these lines, a component is aware of the exceptions that may be raised by a certain
invocation and its reaction to them is typically predetermined: it either knows how to
handle errors, in which case it deals with them directly, or it does not and just filters
and propagates the exceptions to the calling component. These high-level exception
interactions can be turned into metacode, inserted at the appropriate sites of
component implementations. This allows standardizing exception interactions as
component meta-data and can lead to cleaner code that is easier to understand and

maintain. Such functionality can be achieved with the exception pattern shown below.

&function ArchitecturalException (exception) {
return [ < returns a generator instance with meta methods for architectural exceptions
method Raise { return << throw ~exception; >>; },
method Ensure (condition) < if the condition fails will raise an exception
{ return << if (not (~condition)) ~(self.Raise()); >>; 1},
method Filter (invocation stmts, filter stmts) {
return << < upon an exception execute the filtering statements and rethrow
try { ~invocation_stmts; }
catch e { assert e==~exception; ~filter stmts; throw e; }
>>;
} 4

method Handle (invocation stmts, handler stmts) {

return << <« handle an exception executing the given handler statements
try { ~invocation stmts; }
catch e { assert e == ~exception; ~handler stmts; }

>>;

17
}

An invocation example along with the source code it generates is provided below:

&bank = ArchitecturalException ("NegativeAmount") ;

! (bank.Ensure (<<acc.amount >= 0>>);

! (bank.Handle (<<acc.Withdraw (100)>>, <<acc.CancelTransaction()>>);{}
if (not (acc.amount >= 0)) throw "NegativeAmount";

try { acc.Withdraw(100); }

catch e { assert e == '"NegativeAmount"; acc.CancelTransaction(); }

Multiple repeating catch blocks. A common scenario encountered in exception

handling relates to small source fragments, even single statements, which may raise
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multiple distinct exceptions. Such code fragments may be found in various
independent locations of the program but the error handling strategy is usually
similar. A typical example of this scenario is the use of sockets, where various things
may go wrong (e.g. IOException, TimeoutException, SecurityException, etc.), but
each of them is usually handled in a custom manner. For instance, upon a Timeout-
Exception the program will typically wait and retry the operation after some time,
upon an IOException it will try to reestablish the 10 stream, upon a SecurityException
it may try to elevate security privileges or notify the user about insufficient
permissions, and so on. Such cases require introducing comprehensive cascading
catch blocks that cannot be abstracted via polymorphism or genericity in any manner.
But it is possible to introduce metafunctions capturing the cascaded exception
handling logic and insert it at the appropriate client sites thus accomplishing the

desirable exception handling behavior. This is demonstrated by the following code:

&function Cascading (invocation stmts, alt handlers) {
local ast = nil; <« will hold the AST enumerating all handler entries
foreach (typedﬂmmm1: handlermm"wmm, alt handlers)
ast = <<«create entry to map exception type to handler and merge with previous entries
~ast, { ~type : function{ ~handler; } }
>>;
return <<
try { ~invocation stmts; }
catch e { -
local D = [~ast]; < inserts previously made AST of handlers
local f = D[e.type]l; < get handlers dispatcher for this exception
if (f) f£(); else throw e; <« ifthe handler exists call it else throw
}

>>;

}

&FILE IO Handlers = [ < hash table as <exception type>: <handler code>
{"EOFException" : << reader.close(); >> 3,
{"FileNotFoundException" : << print("no file"); >> },
{"UnknownEncodingException" : << load_encodings(); >> }

17

! (Cascading ( < generator produces the cascaded handling logic

<< reader = FileReader ("foo.abc"); reader.read(); >>,
FILE IO Handlers
)); @
try { reader = FileReader ("foo.abc"); reader.read(); }
catch e {

local D = [
{"EOFException" : function { reader.close(); }1y
{"FileNotFoundException" : function { print("no file"); }},
{"UnknownEncodingException" : function { load_encodings(); }}

1
local £ = Dle.typel;
if (f) £(); else throw e;
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Our examples are untyped so the cascading catch blocks are modeled through a single
catch block, using a dispatcher to choose a handler via the runtime exception type tag.
In a typed language, the generated code would consist of successive catch blocks for
typed exceptions, each with the respective handler invocation. For example, the
following code implements the above scenario in a hypothetical meta-Java language

adopting our staging tags and programming model.

&class Cascading {
public static AST generate (AST stmts, HashMap<String,AST> handlers) {
TryCatchAST ast = new TryCatchAST () ;< classto create AST for a try-catch block
ast.setTryBlock (K< try { ~stmts; } >>); «try blocks
for (Map.Entry<String, AST> entry : handlers.entrySet()) {
String type = entry.getKey());
AST handler = entry.getValue()
ast.addCatchBlock (<< catch (~type e) {~handler;} >>); <-catch blocks

}
return ast;
}

}
&HashMap<String, AST> SOCKET Handlers = new HashMap<String, AST>();

&SOCKET Handlers.put ("UnknownHostException", <L...>>);
&SOCKET Handlers.put ("ConnectException", <L...>>);
&SOCKET Handlers.put ("NoRouteToHostException", <<...>>);
&SOCKET Handlers.put ("IOException", <<L...>>);
Socket s = null; Socket s = null;
try { s = new Socket("host", 80); }
! (Cascading.generate ( E$>catch UnknownHostException e)

<<s = new Socket ("host", 80);>>,catch
SOCKET Handlers catch
) ) ; <« produce the cascading handling logic catch

NoRouteToHostException e)

)
{
ConnectException e) {
{
IOException e) {

.}
.}
)
)

—~ o~~~

7.2.2 Exception Policies

We recall the case study of section 4.5.1 illustrating the adoption of
metaprogramming to select different exception handling policies for different parts of
a system. The Logging and Retry meta-functions shown there are just two of the
policy examples that we have implemented. Below we present a more elaborate set of
exception handling policies incorporating strategies discussed in [WirfsBrock], and

then implement each policy using a corresponding meta-function.

¢ None — Do not handle exceptions

e Inaction — Ignore any raised exceptions

e Logging — Log any raised exceptions

e Retry — Repeatedly attempt an operation that raised an exception

e Rollback — Try to proceed, but on failure undo the effects of the failed action
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e Cleanup Rethrow — Perform any cleanup actions and propagate the exception
e Higher Level Exception — Raise a higher level exception

e Guarded Suspension — Suspend execution until a condition is met and retry

&function None (stmts) { return stmts; } < no handling, just return stmts
&function Inaction (stmts) { return << try {~stmts;} catch e {} >>; }
&function Logging (stmts)

{ return << try { ~stmts; } catch e { log(e); } >>; }

&function CreateRetry (data) { < constructor for a custom retry policy
return function (stmts) { <«return a function implementing the code pattern
return << «the returned function returns an AST
for (local i = 0; i < ~(data.attempts); ++1i)
try { ~stmts; break; } < try & break loop when successful
catch e { Sleep(~(data.delay)); } <-catch & waitbefore retrying
if (i == ~(data.attempts)) <maximum attempts were tried?

{ ~(data.failure_stmts); } «then give-up & invoke failure code
>>;
}i
}
&function CreateRollback (rollback smts) {
return function (smts) {
return <<
try { ~stmts; } < try the code and on error execute the rollback stmts
catch e { ~rollback_stmts; }
>>;
}i
}
&function CreateCleanupRethrow (cleanup smts) {
return function (smts) {
return <<
try { ~stmts; } < try the code and on error cleanup and rethrow
catch e { ~cleanup_stmts; throw e; }
>>;
}i
}
&function CreateHigherLevelException (exception) ({
return function (stmts) {
return <<
try { ~stmts; } <« trythe code and on error throw a higher-level exception
catch e { throw [ ~exception, (@source : e ]; }
>>;
}i
}
&function CreateGuardedSuspension(condition) {
return function (stmts) {
return <<
while (true)
try { ~stmts; break; } < try the given code and break on success
catch e { while (not ~condition); } < else waitcondition to hold
>>;
}i
}

The policy implementations are straightforward, typically placing the given

invocation code (stmts) in a try block and the handler logic in a catch block.
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The deployment is similar to that shown in section 4.5.1, with each policy details
specified only once at their registration and then reused across all generated catch
blocks. The latter enables exception handling policies to become standardized library
components that can be reused based on the application requirements.

An alternative approach for parameterized exception handling policies [Newton]
involves a library filtering already caught exceptions. This means that boilerplate code
is repeated per handler, but more importantly it cannot support scenarios with more
elaborate exception handling logic (for example Retry, Guarded Suspension, etc.).

7.2.3 Process Modeling Patterns

Exception handling is not limited to the scope of specific functions or software
modules, but also applies in the more general context of a process model. In both
cases it is important to specify the normal execution path as well as the possible
exceptional behaviors along with the tasks required to handle them properly. In this
sense, exception handling patterns observed in the one world can also be beneficial to
the other. To this end, we adopt the trying other alternatives and inserting behavior

process modeling patterns shown in [Lerner] and implement them as meta-functions.

Trying other alternatives. It is possible for a single task to be accomplished in
multiple ways, possibly involving different components and relying on different
conditions. Instead of explicitly using such information in the code structure, it is
preferable to abstract the functionality in distinct operations, where all of them
achieve the same task, and if one fails another alternative may be tried in its place.
Below we provide an exception handling pattern implementation for this scenario.
The alternatives argument contains a list with the alternative code fragments for
the given task, while the ex argument is the exception that signals failure of a task so
as to try an alternative.

&function TryAlternatives (alternatives, ex) ({

local ast = << local success = false; >>; <« guard for successful alternative
foreach (local alt, alternatives)

ast = << ~ast; < merge with previously produced AST
if (not success) < skip rest of alternatives if task has succeeded
try { ~alt; success = true; } <« if noexception we succeeded
catch e { if (e != ~ex) throw e; }<« throw all other exceptions
>>;

return << ~ast; if (not success) throw ~ex; >>; <« throw ifall fail
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An example of invoking the TryAlternatives meta-function at compile-time and the

respective source code it introduces in its place is provided below:

&alternatives = list new(<<hotell.Book ()>>, <<hotel2.Book ()>>);
&0Order (alternatives) ; <« optionally apply client-specific ordering
! (TryAlternatives (alternatives, "FullyBookedException")) ; {}
local success = false;
if (not success)

try { hotell.Book(); success = true; }

catch e { if (e !'= "FullyBookedException") throw e; }
if (not success)

try { hotel2.Book(); success = true; }

catch e { if (e != "FullyBookedException") throw e; }
if (not success) throw "FullyBookedException";

Inserting behavior. When errors occur during the execution of a series of tasks, they
may not be fatal, but may instead require specific actions to be performed to fix the
problems that caused them. This inserted behavior may have to be executed directly
after the occurrence of an error before any later tasks are executed (immediate fixing),
or it may be possible to just note the error and handle it accordingly after all tasks are
completed (deferred fixing). Below we provide a pattern implementation supporting
both scenarios. The tasks argument contains all relevant information (normal code,
exceptions that they may raise and handler code) about the tasks to be executed, while

the immediate argument specifies when to apply the error handling code.

&function InsertBehavior (tasks, immediate) {
local ast = nil, local err = nil, local i = 0;
foreach (local task, tasks) {
ast = << ~ast; « merge with previously produced AST if any
try { ~(task.stmts); } «insert the task-related stmts
catch e {
if (e != ~(task.except)) throw e; <« throw all other exceptions
~(immediate ? task.handler : << errors[~i] = true >>);
} « if immediate-fixing insert directly the task handler else record the error
>>;
if (not immediate) « if deferred fixing insert code to handle recorded errors
err = << ~err; if(errors[~i]) { ~(task.handler); } >>;
++1;
}
return (immediate ? ast : << local errors=[]; ~ast; ~err >>);

}
try { LoadConfig(); }

&tasks = list new ( catch e {

[ @stmts : << LoadConfig()>>, if (e !'= "NotFound") throw e;
@except : "NotFound", LoadDefaultConfig() ;
@handler: <<LoadDefaultConfig()>>], }

[ @stmts : <<SendData ()>>, try { SendData(); }
dexcept : "ConnectionError", catch e {

@handler: <<RepairConnection ()>> ] if (e !'= "ConnectionError")
) 2 throw e;
! (InsertBehavior (tasks, true)); E$> RepairConn() ;

}
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7.2.4 Pattern Combinations

The previously discussed patterns target different implementation layers ranging from
low level operations on sockets to high level component interactions towards a
common task. All these patterns are orthogonal and can be combined with each other

to form more elaborate and custom exception handling styles (Figure 7.3).
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Figure 7.3 — Modular composition of exception-handling patterns as decorator stacks.

It is important to note that using this approach the pattern combination maintains a
linear code complexity level. Even though the generated code may contain multiple
levels of nested and/or cascading catch blocks, the original code involves mainly
independent pattern implementations, typically provided as a library, and the pattern
combination that essentially behaves as a code decoration process. For example,
consider the task of booking a hotel. Various alternative hotel objects may be
available for booking, each object involving Design by Contract tests, while the
system may adapt a retry policy to handle any raised exceptions. Clearly, addressing
all these requirements by manually inserting exception handling code would result
into error-prone code that will be hard to read, understand and maintain. However,
using metaprogramming we can combine applications of the Retry Policy, Try

Alternatives and Design by Contract patterns.

! (ExceptionPolicies.Get ("RETRY") ( «apply the Retry pattern
TryAlternatives ( «apply the Try Alternatives pattern
list new(
DbyC () .client (<<hotell.Book ()>>), «apply DbyC pattern
DbyC () .client (<<hotel2.Book ()>>), «apply DbyC pattern
), "FullyBookedException"

));
s
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for (local i = 0; i < 5; ++1i) @

try { <« try-catch generated by Retry
local success = false;
if (not success)
try { <« try-catch generated by TryAlternatives
try { hotell.Book(); } <« try-catch generated by DbyC
catch ContractException { log(ContractException); }
success = true;
} catch e { if (e != "FullyBookedException") throw e; }
if (not success)
try { « try-catch generated by TryAlternatives

try { hotel2.Book(); } <« try-catch generated by DbyC
catch ContractException { log(ContractException); }

success = true;
} catch e { if (e != "FullyBookedException") throw e; }
if (not success) throw "FullyBookedException";
break;
} catch e { Sleep(1000); }
if (1 == 5) { post("FAIL"), }

7.2.5 Comparison to AOP

Our proposition for exception handling templates targets the delivery of modular and
reusable error handling code. As such, it is closely related to AOP and the work
towards separating the exception handling logic from the application code and

modularizing it into aspects.

Introductory texts [Kiczales97][Laddad03] describe exception handling as a potential
target for applying AOP and there are refactoring catalogues [Cole][Laddad06] that
include procedures for moving exception-handling code to aspects; however they do
not assess the suitability or effectiveness of the approach. An initial study on this
subject [Lippert] showed that aspects can decrease the number of LOC, but later more
in-depth studies [FilhoO6a][Filho06b] showed that there are cases where aspects may
bring more harm than good. In general, current AOP languages have some limitations
when used for exception handling. Firstly, they cannot express certain exception
handlers without leading to program anomalies [Filho07]. Secondly, they do not help
much in making the interface between normal and error handling code explicit
[FilhoO6b]. Additionally, turning context dependent handlers into aspects requires
introducing artificial changes, thus causing software maintenance issues [Greenwood]
[FilhoQ9]. Finally, mixing exception handling with AO programs can hinder program
reliability as the exception flow is complicated, leading to several possible bugs
[Coelho08A][Coelho08B].
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Using metaprogramming to generate exception handling code structures can help
overcoming limitations found in AO solutions. Firstly, the exception handling code is
generated in-place meaning that any required context is directly available to it,
avoiding the need for explicitly providing it as additional aspect parameters.
Secondly, code generation allows creating any code structure including nested and
cascading exception handlers without having to specify multiple advices.
Additionally, combining multiple exception handling patterns is explicit and
straightforward; there can be no conflicts from independently deployed aspects where
no ordering is specified. Finally, metaprogramming allows parameterizing code
structures and thus combining similar functionality, something not always possible
through typical AO advice [Filho09]. Table 7.1 highlights the pros and cons of each
approach with respect to exception handling.

Table 7.1 — Comparison of AOP and metaprogramming in the context of exception handling.

Aspects Metaprograms

Automation | 4 Pointcuts match multiple sites Pattern is repeated per site

Combination May impose explicit ordering | M Free user-defined ordering

Handlers depending on local | M Handlers are generated in-place

Context context break encapsulation and always access local context

Similar code fragments must | [ Similar code fragments can be
Reuse be repeated every time composed and reused as ASTs
[/l Reuse via aspect inheritance | [ Reuse via metafunctions

Expressiveness Bound by pattern matching I Allows any handler scenario
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7.3 Staged Model-Driven Generators

The general philosophy of Model-Driven Engineering (MDE) [Kent][Schmidt] rents
its roots to Model-Driven-Architecture (MDA) [OMG10] of the Object Management
Group, emphasizing rapid application development together with model-oriented
reuse and evolution. The core idea is that it is possible to capitalize on platform-
independent models, use them to automatically derive platform-specific models
through transformation engines and ultimately utilize code generators to automatically
produce the source code corresponding to the modeled entities. The generated source
code can then be extended or linked with custom application code to deliver the final
application (Figure 7.4).

tags are read to
regain model

tags embedded as
commented-out code or
Tags

as custom annotations

Code A — E>
Generator m W

after custom user
updates and extensions

Model
Reconstructor

——(1)
Modeling Model
Framework

Figure 7.4 — Architecture of generative model-driven tools: (1) interactive model editing; (2) code
generation from models; and (3) tags inserted in the generated source code to carry model information
and enable model reconstruction.

Custom user updates or extensions may introduce two maintenance issues once code
is freely edited: (i) if source tags are affected model reconstruction is broken; and (ii)
code inserted without special tags is overwritten on regeneration. To address these
issues we investigate an alternative path where the output of an MDE tool becomes
available in the form of an AST and it is inserted along with normal application code
on-demand and in-place through staged metaprogramming. This work has been
conducted as a separate Master’s Thesis exploring the adoption of metaprogramming
in the field of MDE. Here we only give an overview of the main ideas involved and

the proof-of-concept prototypes. For a more detailed discussion see [Valsamakis].

7.3.1 MDE Maintenance Issues

MDE tools cannot optimally address all required features of an application at the

software engineering level. Thus, custom source code amendments and modifications
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are always anticipated. Even if advanced methods are deployed to modularize and
decouple the generated code from the rest of the application code, one can never

exclude the possibility that interdependencies or custom updates may appear.

The typical lifecycle of the generated code is outlined under Figure 7.5. As shown, a
dependency is introduced by having the application logic directly refer and deploy
generated components (middle part). But for most languages this is overall
insufficient for effectively linking application and generated code, practically
requiring the generated code to be also manually modified. Typical updates relate to
application functionality importing and invoking, application-specific event handling,
linkage to third-party libraries that are not known to the model-driven tool, code
improvement or refactoring. This situation very quickly results into many

bidirectional dependencies (right part).

app code app code
generated > generated > generated
code code code
| 3
code updates
Initial code is generated application codevtypically extends generated code is updated (filling
from the model around generated code gaps or using app features)

Figure 7.5 — Common growth of application code around the originally generated code; future custom
extensions and updates eventually lead to bidirectional dependencies.

The latter maintenance issues are detailed in the typical generative model-driven
process shown in Figure 7.6. Initially, if the code is not changed, source regeneration
and model reconstruction are well-defined (left, steps 1-4). In other words, the MDE
tool works perfectly for both steps of the processing loop. However, once the
generated code is updated (left, step 5), two problems directly appear. Firstly, tag
editing and misplacing may break model reconstruction (left, steps 6-7), while any
code manually inserted outside the MDE tool causes a model-implementation
conflict. Secondly, source regeneration overwrites all manually introduced updates
(left, steps 8-9). For real-life applications of a considerable scale the latter may lead to
the adoption of the MDE tool only for the first version, or worse, avoiding using an
MDE tool at all.
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Figure 7.6 — The primary maintenance issues in the deployment of generative model-driven tools either
individually (left) or collectively (right).

Maintenance issues also arise when trying to combine the outcome of multiple MDE
tools. When using multiple tools, a single application element may end up being
shared by different models. This means that when the code for each model is
generated, there will be code repetitions for the shared elements (right, steps 1-2). In
this case, the developer has to manually edit the generated sources to drop any
repeated definitions and link the code properly (right, steps 3-4). Furthermore, the use
of different MDE tools implies different code generators and thus different coding
styles and methods present in the generated code. Having all generated sources
conform to specific coding standards inevitably requires manual refactoring (right,
step 5).

7.3.2 Improving the MDE Process

To address the inherent maintenance issues involved in the deployment of generative
MDE tools we started thinking of an alternative path, in which the MDE tool output
would somehow remain invariant, i.e. in a not-editable form, and the source code of
the application could still grow and evolve in an unconstrained manner around it. This
led us to the idea of bringing staging into the pipeline by enabling programmers
algorithmically manipulate the generated code including: loading, processing and
transforming. This approach, not only addresses the maintenance issues of traditional
generators, but also sets code manipulation as a first-class concept in MDE and
reveals the value of using a metaprogramming language in this context. In this
direction, we discuss two deployment options: (i) languages with explicit stages
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(including all multi- and two- stage languages discussed earlier), providing maximum
compositional flexibility for source code manipulation and insertion; and (ii)
languages utilizing their reflection API to support implicit staging (e.g. Java, C#,
Python, Lua, Ruby, etc.), providing a less flexible but still powerful and feasible

solution.

7.3.2.1 Deploying Staging

The refined model-driven process with staging is outlined under Figure 7.7. As
shown, the first step concerns stage code evaluation that inserts the model code along
with the normal program code, while the second one concerns normal program
translation or evaluation. In particular, with staged model-driven generation the MDE
process is improved as follows. Initially, the model-driven tools generate code in the
form of language-specific ASTs. Apart from code, the ASTs can also incorporate any
special code annotations, like those required by various Java frameworks. ASTs are
essentially read-only data, meaning the result of the code generation remains
unchanged and thus the code-to-model reconstruction path is unnecessary. Then, the
generator macros are evaluated, reading and manipulating the ASTs as previously
discussed, and finally inserting the desired source fragments where needed. This
method fully supports the manipulation of multiple ASTs regardless of their

originating tool. Essentially, this allows for combined deployment of different MDE

Original application source Transformed source
with generator staged code Stage 1 after staged code evaluation Stage 2
Custom App o Custom App c
quel Model Source Code 3 Source Code -S
Editor ! § . . e
1
i Staged Code 1 c ! Inserted | ©
i (generator macros) :_) §— S _): Model-Driven Code ! © |_|>_|
! Y © ! i £ ~
33 -
Custom A © Custom A
Generators A7 o8 5L 2.9
Source Code - w Source Code =
() —
| | oo | | g
Language specific (C#, i Staged Code :_) 8 _): Inserted : S
Java, Delta, MetaML, i (generator macros) & : Model-Driven Code : =
Meta Ocami, etc.) b - Do o :

Just after macro evaluation the language automatically
replaces them by their output in the source text and normal
compilation / evaluation is performed

Figure 7.7 — The refined model-driven process with an inverted responsibility through staging:
programmers deploy generator macros to insert generated code on-demand and in-place without
affecting the originally produced ASTs by the MDE tools. The second stage applies translation on

compile-time staging, or evaluation (translation and execution) on runtime staging.
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tool outputs. Additionally, the generator macros may contain any application-specific
composition or editing logic. This means that it is possible to perform any code
transformation on a source fragment before inserting it in the final source. Finally,
after the staged evaluation has produced the final source, the process continues with

the normal translation (compile-time staging) or evaluation (runtime-staging).

7.3.2.2 Deploying Reflection

Many popular languages do not support staging; nevertheless, one may deploy the
reflection mechanism of languages like C# or Java to practice a similar source code
management and generation pipeline as the one discussed in the previous section.
This option is detailed under Figure 7.8, showing that the language compiler and the
dynamic class loading and method invocation facilities (i.e. reflection API) are
directly deployed. The entire process starting the conversion from ASTs to
intermediate representations (very flexible, suggested), or alternatively to source text
(more rigid, not suggested), should be explicitly implemented as it is not automated
by the languages. However, it is cached, meaning it is not repeated during execution,
but applied once per AST version.

The oval of Figure 7.8 labeled as composition parameters represents the need for
performing custom mixing between the automatically generated source code and the
manually inserted code, something that is apparent in the presence of Composer as an
integral part of the application. This is similar to AST composition alternatives,
although at the intermediate representation level, and is very critical to ensure that

maximum code mixing freedom is provided to developers.

cached conversion: applied only if ASTs are more Intermediate: CIL,JIL, etc. Code composition approach is an
recent from the produced intermediate / source codes Source: C#, Java, etc. integral part of the application logic

Intermediate \ Involves definitions that
Converter > Composer may refer to app code
. or Source Text /
__________________________________________________________ | Composition
! Loadingand|_ [~—— . -_—y _Parameters
! . m Compilation m L. —
{ Invocation ° ~J | Application

language reflection API

Figure 7.8 — Applying the generative MDE process with runtime staging; the application composes
intermediate or source text and deploys the language reflection API for compilation and invocation (JIL

stands for Java Intermediate Language, CIL for the Common Intermediate Language of .NET).
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7.3.3 Self MDE Deployment

MDE is a widely used software engineering approach but is typically practiced
separately from the rest of the development process. Generative MDE tools are used
to transform model entities to source code that is then incorporated into an integrated
development environment (IDE) for further processing and linking with the remaining
application code. In this sense, MDE requires third party tools that cannot always be
properly integrated in the deployed IDE. Of course, there are exceptions like Eclipse
which provides typical development support (e.g. for Java) while also integrating
various modeling frameworks (e.g. Eclipse Modeling Framework [Eclipse03])
through plugins. However, in such cases the integration of the modeling support is
usually language-dependent while the adoption of any additional modeling framework
for which no IDE plugin exists (e.g. legacy tools) still requires the model authoring
and code generation to be separated from the main development process. The problem
escalates when dealing with large-scale applications that may involve multiple models
authored and maintained by different MDE tools. In this case, developers should be
aware of all deployed models, their associated tools as well as the source locations
they affect. Since such information exists only as developers’ knowledge and is
typically not documented somewhere, a large number of deployed models may lead to

severe organization and maintenance issues.

Nevertheless, when using generative MDE tools the target is always to obtain the
generated code; the MDE tool is typically not launched again unless the model needs
to be updated, while any model updates result in the model code being regenerated
and then linked again with normal program code. Towards this direction, we try to
bring the MDE deployment as close as possible to the actual application development
by adopting metaprogramming practices to orchestrate the MDE deployment directly
within the program source. Essentially, we extend our proposition regarding staged
model-driven generators to include initial stage execution code responsible for
launching the MDE tool. In this sense, model editing in now performed online during
the compilation of the main program instead of being a separate offline process.
Then, the process continues as before, with the generator macros loading the modeled
entities stored in AST form, inserting them into the program source and finally
translating them along with the normal program code to deliver the final executable.
The extended proposition is illustrated in Figure 7.9.
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Figure 7.9 — Extending the staged model-driven generator proposition to offer self MDE deployment.

The staged code for launching the model and the staged code for inserting the model
code are both parts of the same executing staged metaprogram and are separated only
semantically. Practically, we suggest that the initial code responsible for launching the
MDE tools will block the stage execution until all model updates have been
performed and the model code is converted to AST form. Thus, when stage execution
continues with the subsequent generator code, the ASTs they receive as input will be

already updated, thus reflecting the latest model changes.

Applying this methodology, the entire knowledge regarding the deployment of MDE
tools becomes explicit data, specified within the program itself. This may be
particularly important when multiple MDE tools are used to generate code for several
parts in the same application. In such cases, source code originating from multiple
tools may cause confusion as to which tool produced each code segment and for what
purpose. Thus, having a clear association between the tool and the model code it
generates directly visible within the program source can be a significant aid towards
understanding the purpose and the linkage of the generated code segments within the

overall application.

Deploying the proposed approach in a context where a programmer is also an MDE
tool expert is straightforward; however in a collaborative development setup where

programmers and model developers have distinct responsibilities it requires additional
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consideration. Initially, programmers implement the metaprogram containing the
execution macros for externally launching the MDE tool and the generator macros for
loading the model code in AST form. These sources are given to the model
developers that are responsible for interacting with the launched MDE tools during
staged execution in order to generate the model entities. The latter implies that model
developers also have source code tools available to them so as to compile the sources,
however does not require any additional programming knowledge. The resulting
model is then converted to AST form and given back to programmers. Any source
code changes should not affect the execution macros to allow model developers
launch the MDE tools and work in parallel, while any new model updates simply

result in updated AST versions that are supplied to programmers.

For programmers that have no MDE tools installed, the staged execution should skip
the first step of the process and continue directly with the insertion of the model code
using already existing AST data, created and supplied at an earlier point by a model
developer. This functionality can be easily abstracted within the initial execution
macros; the macros can check if the required MDE tools are available or not and act
accordingly. Additionally, regardless of the presence of the MDE tools, it is possible
to interactively ask users if they want to perform any model editing (e.g. through a
simple dialog); if they choose not to edit any model, there is no MDE tool invocation
and the generators just use the previous AST versions.

7.3.4 Case Studies

To validate our approach we have carried out three case studies with proof-of-concept
prototypes, one focusing on user-interface code generation, another one creating an
entire class hierarchy based on a given model and a third one combining the two
previous models into a single application. The goals of our studies were: (i) to show
that the maintenance issues are effectively eliminated; (ii) to highlight the flexibility
of inserting the generated model code in-place along with the custom application code
using generative macros; and (iii) to show that the MDE tool chain can be

successfully incorporated as part of the metaprogram.
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7.3.4.1 User-Interface Generation

We have adopted the wxFormBuilder [Hurtado], a popular publicly available interface
builder for the wxWidgets cross-platform library that generates interface descriptions
into a custom language-neutral format called XRC (XML Interface Resources). Using
this tool, we constructed a simple graphics painting application, the latter actually
practiced in alternative ways, such as with single authoring project or alternatively
with multiple independent projects (i.e. multiple XRC models). This way we could
also assert the compositional flexibility of our proposed approach in combining
independently authored interfaces under a single system. Then we build an
appropriate converter to transform the XRC data into Delta language ASTs. Finally,
using the metaprogramming features of the Delta language we imported and
manipulated the application ASTs, and also added extra interactive features and
behavior to it, besides the ones introduced only with the wxFormBuilder. In-between
this process we reloaded the visual models and regenerated the XRC files many times,

to test that no maintenance issues arise by this cycle.

Figure 7.10 illustrates one of the implemented user-interface composition scenarios
based on two separate interface descriptions. The toolbar of the second interface is
initially retrieved by cropping its top level frame, and is then inserted directly in the
top level frame of the paint application. Finally, the combined interface is produced

by inlining the transformed paint application AST.
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Figure 7.10 — Examples of generated interfaces: Left: Original application GUI authored by the
interface builder; Middle: Custom toolbar authored as a separate interface; Right: Composing the two
previous interfaces through AST manipulation.

Additionally, we assessed the self MDE deployment proposition by launching the
wxFormBuilder directly from the metaprogram to allow interactive editing of the user

interface during compilation. The latter is accomplished with the following code:
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&modelProjectPath = "/models/paint.fbp"; <« wxFormBuilder project file
&std::fileexecute ("start wxFormBuilder" + modelProjectPath);

...the above call suspends execution until model editing is complete and wxFormBuilder is closed...
&modelProject = xml::load(modelProjectPath);

&model = load xrc (modelProject.path); <« loadsthe updated XRC for the Paint GUI
&ast = Converter::xrc2ast (model) ; <« convert the XRC data to AST
! (ast); < insert the model code into the program source

7.3.4.2 Class Hierarchy Generation

We used the Eclipse Modeling Framework [Eclipse03] to model a class hierarchy for
the development of a paint application toolset. The hierarchy contained the abstract
notion of shapes, as well as concrete drawable shapes like points, lines, circles, etc.
The model was created through the Ecore meta-model and its specification was
generated in XMI format. We also built a converter to transform XMI data to Delta

language ASTS.

Figure 7.11 shows the model, the generated AST (shown as source code for clarity) as
well as the deployment code required to inline the code AST in-place with the normal
program code. Again during the process, we reloaded the model and regenerated the
XMI specification to verify that no maintenance issues were introduced in the

development process.

#] geometry.ecore 52 = O function Geometry () {
F] @ platform:/resource/ModelTest/geometry.ecore function Shape () {..}
4 # Geometry function Point () {..}
> B Shape
» H Point -> Shape function Circle() {
» H Line -» Shape local circle = [
. ¥ RectangleQutCode @center : Point(),
> B Rectangle - Shape @radius : O,
a4 [ Circle -» Shape method area() {},
4 @ areal):Elnt
4 = Code method setCircle(circle) {}

4 body -> return std:pi() * @radius * @radius;
. @ containsPoint(Point) : EBoolean

I

. @ intersectsLine(Line) : EBoolean std:: lnhérlt (circle, Shape());
» @ setCircle(Circle) return circle;

> = center: Point }

» = radius : Elnt

# Drawinghrea [Drawinghrea] }

&ast = Converter: :xmi2ast ("geometry.ecore") ; «load XMI model definitions and convert to AST

&ast.Geometry.Circle.area.body.insert ( <«inserting custom functionality for generated methods
<<return std::pi() * @radius * Qradius;>> <«-code within <<>>isautomatically converted to AST

)

...any other meta or normal code may be freely placed here ...

! (ast) ; <« inline the entire AST carrying the class hierarchy at this source location

Figure 7.11 — Top-left: Ecore model of the target class hierarchy; Top-right: Code structure (AST)
generated by the model; Bottom: Deployment code for loading and converting the model to AST,

performing manual updates through AST editing and inlining the final AST code.
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To implement the methods of the modeled classes we practiced two alternative
approaches: (i) we specified the code directly in the model through the use of special
EAnnotation elements (Figure 7.11 top-left, highlighted); and (ii) we inserted the code
through AST editing as part of the metaprogram (Figure 7.11 bottom, 2" statement).
The second approach may seem more difficult to adopt, but in fact it is easy to
develop and offers several advantages over the first one. In the first approach, code is
entered as raw text providing no programming facilities or any potential for
parameterization or reuse. On the contrary, in the second approach, code is created
through quasi-quotes at a syntactic level offering facilities like highlighting, auto-
completion, refactoring tools, etc. Additionally, the representation of code as ASTs
allows adopting standard software engineering practices like parameterization,
encapsulation and modular composition. The only issue related to programmatically
extending the generated AST is the need for traversing the AST to locate the nodes
that require extensions, something requiring knowledge of the code generation
scheme as well as internal AST information. Nevertheless, this can be augmented by
an AST decoration process that offers direct navigation across AST nodes using the
named entities of the class hierarchy, as illustrated by the access of a particular
method body as ast.Geometry.Circle.area.body (Figure 7.11 bottom, 2™
statement). This way, knowledge of the model entities and a simple tree manipulation

API are sufficient for a developer to introduce elaborate AST extensions.

The deployment of the Eclipse Ecore model editor was practiced either as a separate
external tool, or as part of the main program compilation, launching it during stage
code execution. Additionally, we explored the alternative of implementing the model
editor as an inherent part of the metaprogram, i.e. without launching any external
applications. In particular, we built a simple GUI offering an editable tree control to
specify the class hierarchy, effectively emulating the Ecore model editor functionality.
Such an approach may take advantage of executing in the same address space with the
metaprogram that will utilize the model output, for example storing the generated
ASTs directly in a metaprogram variable accessible from the generator macros, thus
minimizing the overhead of storing and reloading the AST data. Also, such a custom
editor need not be implemented from scratch for any program; it can be implemented
once as a reusable compile-time library and then deployed anytime a program requires

self MDE deployment through the particular editor.
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7.3.4.3 Combining Multiple MDE Tools

As a last case study, we focused on combining multiple MDE tools to generate code
for a single application. In particular, we used the previously discussed user-interface
model for the painting application along with the class hierarchy model used to
implement the core logic of the paint application. In this context, a simple
concatenation of the generated source code caused no direct compilation conflicts;
however it was far from sufficient for deriving a fully-functional application. In fact,
multiple manual updates were necessary involving both generated components and
requiring bidirectional dependencies. Firstly, the event handling code required
knowledge of the separately generated implementation classes. Then, certain methods
of the class hierarchy like draw required invoking Ul-related operations. However,
the class hierarchy model was unaware of the deployed Ul library, meaning that such
information could not be available in the model and would thus have to be explicitly
expressed as a manual extension in the generated sources. Finally, we needed to
combine the generated code with the custom application logic. The meta-code
implementing this functionality is outlined below with details removed for clarity.

using wx; < normal code, directive for importing the wxWidgets GUI toolkit
&paintUI = nil; < meta-code variable, to store the AST of the paint application Ul code
&shapesUI = nil; < meta-code variable, to store the AST of the shapes toolbar Ul code
&classes = nil; < meta-code variable, to store the AST of the class hierarchy for the toolset
&{ <« an entire block of meta-code begins here

paintUI = Convert::xrc2ast("paint.xrc"); < load XRC Ul data and convertto AST

shapesUI= Convert: :xrc2ast("toolbarShapes.xrc");
classes = Convert::xmi2ast ("paint.ecore") ;< load XMI model and convert to AST
Tree: :Crop (shapesUI, "shapes"); <« dropthe outer frame inserted by wxFormBuilder
canvas = Tree::Get (paintUI, "canvas") ; « getthe code creating the canvas paint panel
Tree: :InsertBefore (paintUI, shapesUI, canvas); < insertthe code for the shapes
toolbar into the paintUl frame, placing it before the code of the canvas
classes.Geometry.Circle.draw.body.insert ( <«implementation for Circle::draw(dc)

<<dc.drawcircle (Qcenter, @radius);>>);<«dc:arg, @center and @radius: attributes
...other shape method implementations are specified here as well...
Tree: :Insert (paintUI, « insert an application event handler for circle shape button

"circle", "EVT COMMAND BUTTON CLICKED",
<<Paint.SetSelectedTool ("shapeCircle") ;>> « handler code specified as an AST

) ;
...other event handlers are inserted here as well...
} «the block of meta-code ends here
...any other meta or normal code may be fireely placed here...
! (classes) ; «inline the entire AST carried by classes at this source location
...any other meta or normal code may be freely placed here...
! (paintUI) ; <« inline the entire AST carried by paintUl at this source location
...any other meta or normal code may be freely placed here...
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The option for self MDE deployment was explored here as well. In particular, we
included as part of the metaprogram data information about the models deployed in
the application (e.g. model type, modeling tool and execution path) and used this
information to automatically assemble a dialog enabling the interactive launching of

all MDE tools directly from the execution context of the metaprogram.
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Chapter 8

Conclusions and Future Work

“Reasoning draws a conclusion, but does not make the conclusion certain, unless the

mind discovers it by the path of experience.”

-Roger Bacon

8.1 Summary

In this thesis we discussed a systematic proposition for Integrated Metaprogramming
Systems covering aspects of language, programming model, tool support and
deployment practices. Our primary motivation was the need for a methodological
integration between metaprogramming and normal programming, as we consider
impractical to have diverse development styles and approaches amongst the two
universes. Since metaprograms are essentially programs, we identified a set of
prominent requirements for achieving such integration, effectively enabling
metaprograms to directly adopt the engineering practices, processes and tools of
normal programs. We consider the latter to represent a paradigm shift towards an
integrated code of practice where metaprograms are no longer considered to belong to

a segregated and customized language domain.

Central to our proposition is the notion of integrated metaprograms resulting by the
collection of all code fragments of the same stage nesting, following their order of
appearance in the main source, while implying a lexically-scoped control flow. We
proved that the integrated model is at least as expressive as the traditional stage
evaluation in existing multi-stage languages, while it provides significant advantages
from a software engineering perspective. The latter was demonstrated through the
detailed case studies that included demanding scenarios of exception handling, design
patterns and design by contract.

Apart from integrating metaprogramming with normal programming at the language
level, we also focused on integrating it at the tool chain level, turning metaprograms

to first-class citizens of the programming environments. Metaprograms, as well as the
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transformations they perform on normal programs, are both included in the workspace
manager thus facilitating source code review and enabling a full-scale meta-build
process with informative error reporting and source-level debugging. The meta-build
process is achieved by supporting for metaprograms all build flags and properties of
normal programs. Additionally, a typical recursive build process is applied for any of
their dependencies prior to actual compilation. Then comprehensive error reporting is
offered by tracing back the entire chain of source locations involved in generating an
erroneous code fragment. Finally, full-scale source-level debugging is supported by
automatically generating metaprogram breakpoints from original source breakpoints,
and by instrumenting the language compiler with the debugger backend so that

debugging sessions for evaluated stages can be initiated.

Once effectively integrated normal programs and metaprograms in terms of language
and tools, we explored how certain paradigms and best practices of normal
programming may be extended to directly apply in a metaprogramming context. In
this direction, we focused on the application of AOP in the context of
metaprogramming and introduced aspect-orientation in the entire processing pipeline
of a multi-stage language. In particular, we identified three aspect categories: (i) pre-
staging aspects, applied on the original source code in order to introduce staging or
transform existing stages; (ii) in-staging aspects applied on stage metaprograms to
apply typical AOP on stage code; and (iii) post-staging aspects, applied in the
outcome of the staging process (compile-time metaprogramming only) to perform
traditional AOP transformations. In particular, aspect deployment has been practiced
through a model treating aspects as batches of transformation programs written in the
same language. This model fits well with typical multi-stage metaprogramming
practices, allows exploiting all discussed metaprogramming facilities of the IDE while

it supports the opposite direction, that of deploying metaprogramming for aspects.

Finally, we focused on deriving a code of practice that can exploit metaprogramming
to achieve reusability at a software design level not currently feasible with the
available reusability constructs of existing languages. More specifically, we discussed
the delivery of reusable design pattern implementations built through
metaprogramming. In this approach, a metaprogram encompassing the pattern logic
serves as a pattern generator while the details of the particular application context are
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defined through pattern instantiation parameters. The latter methodologically
resembles the way class templates are defined and used in C++ and it essentially leads
to pattern templates being more macroscopic reusable artifacts. Then we presented a
methodology for implementing combinations of exception handling policies as
reusable libraries. In this case, we encapsulated the policy logic into meta-functions
that are invoked with appropriate configuration parameters which control the way the
generated exception handling source code is structured. Finally, we deployed
metaprogramming to cope with the maintenance issues arising from the usage of
generative MDE tools. In particular, we proposed an improved model-driven code of
practice where the generator components of MDE tools output source fragments as
ASTs. Then, application source code encompasses metaprograms to load and
compose such ASTs as required, and to finally generate code at the required source

locations using generative directives.

8.2 Conclusions

Throughout the entire thesis we have emphasized two primary arguments driving our
research work: (i) metaprograms, being programs as such, deserve all programming
features, practices and tools available to normal programs; and (ii) essential
metaprogram development can be only achieved with the availability of the required

tools across the entire development cycle.

During the initial design phases of our integrated metalanguage we mostly focused on
the code generation directives (i.e., the inline staging tag). While this allowed
expressing various metaprogramming scenarios, we quickly observed that it suffered
from a practical perspective. More specifically, certain common expressions had to be
repeated with every inline directive since, syntactically, generative directives are
expressions, and thus disabled the modular encapsulation of reusable definitions such
as functions or classes. Additionally, the need to have some kind of state propagated
from one directive to another appeared very frequently. In this context, we required a
way to declare shared variables or instantiate shared objects, something again
impossible with the typical generative expressions. As a result, we came out with the
idea of introducing staged code that merely incorporates such required definitions,
becoming syntactically visible to any following generative directives. Then, we also

realized that besides a collection of generative directives, a metaprogram may reflect
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more comprehensive algorithmic characteristics, implying control flow scenarios far
beyond the mere sequence of generative calls. To address this demand we allowed
statements to be part of staged definitions. Eventually, all the previous have led to the
introduction of the execute staged tag which helped to better consolidate and support

the idea of combining related staged fragments into a coherent integrated program.

Even from the very early phases of this thesis, involving the writing of non-trivial
metaprograms in various languages, it became obvious that metaprogramming was
becoming a tedious and unconventional task with the absence of development tools.
Initially, we experienced difficulties in tracing compile errors caused by defects in the
logic of staged code due to lack of elaborate information on the root of the error.
Then, runtime errors in stages had to be resolved, something that proved to be an even
harder task due to absence of any debugging instruments. In fact, the latter was a little
surprising since we had to deploy very old methods with extra diagnostic messages in
the original source code. Practically, this programming experience was a sort of
paradigm mismatch. On the one hand we applied an advanced programming method,
and on the other hand we were bound in toolsets so primitives as two decades ago.
Needless to mention that similar issues arose as the size of the metaprograms
escalated, since soon we started to notice the absence of editing automations and build

facilities for metaprograms.

Concerning aspects, it should be noted that they were originally targeted only on the
final program, aiming to allow arbitrary algorithmic transformations, as opposed to
simple pattern matching. The latter was fully supported by our custom AOP
implementation treating aspects as non-staged transformation metaprograms. Now,
quickly after the notion of integrated metaprograms was formulated, where we
revisited stages as full-scale programs, we realized there was no reason to exclude
stages from the automation of crosscutting concerns. This not only required an
effective application of aspects on metaprograms, but also challenged a uniform
approach applicable in both worlds. This led to an exhaustive analysis of all potential
points in which aspects might be required, eventually leading to the triplet of pre-, in-,
and post- staging aspects. The latter involved an early study showing the way such
stage aspects can be accommodated in languages with runtime staging by exploiting

reflection mechanisms.
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The proposition for an alternative aspect system relying on transformation batches
came actually as a spin-off while trying to validate with concrete case studies our
notion of aspects for stages. Very early we started considering aspects to constitute a
special case of non-staged metaprograms, delivered with custom languages for
automating query, matching and transformation. Since our work was driven by an
integration discipline on metaprograms, we thought that the necessity for a separate
language just for aspects was somehow a barrier. Hence, we focused on turning all
aspect automations to a library, setting aspect application as a build preprocessing

stage, and treating aspects as non-staged metaprograms with no separate language.

In this case, after implementing case studies, we have three surprising observations.
Firstly, this approach allowed aspects to be treated as normal programs, offering all
features of the development environment, ranging from debugging, to build system
and source control. Secondly, it allowed deploying staged metaprograms inside
aspects, thus not only offering aspects for stages, but also bringing stages to aspects,
something we never initially imagined. At this point we assume this to be a good sign
for the completeness of the method. Finally, we understood that we may introduce
aspects on aspects as well, semantically resembling nested staged metaprograms,

something we considered to gracefully close the circle.

In the context of deployment practices, we investigated numerous scenarios where
metaprogramming can help accomplish better reuse. In particular, design pattern
generators and exception handling templates demonstrate the reuse power of
integrated metaprograms beyond what is possible with the reusability constructs of
existing languages. An in-depth case study concerned the proposition for staged
model-driven generators to alleviate the serious maintenance issues inherent in the
manual modification of generated model code. Besides the various technical
advantages of the approach, we eventually received a more general message. In
particular, we started thinking that in any of the current practices, tools and processes,
wherever code generation is somehow involved, we should probably explore potential

improvements by metaprogramming solutions.

Overall, this thesis focused on deriving a systematic discipline for developing and
deploying metaprograms, directly driven by software engineering requirements. We

consider metaprogramming to play an increasingly important role in the software
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development process. As software systems continue to grow in size and complexity,
reuse should shift towards more flexible and powerful solutions, with metaprograms
being a very promising solution. In this context, we strongly emphasize the criticality
of a demand-driven perspective and the need to support large-scale and real-life

adoption of metaprograms. We consider our work to be step ahead in this direction.

8.3 Future Work

In this thesis we focused on the most prominent of the identified requirements, while
some of the areas remain open and require additional research work. Below, we

briefly discuss key topics for future work.

One of the identified issues, being beyond the scope of this thesis, concerns the
provision of source editing automations for metaprograms, in particular auto-
completion, quick information, parameter help, and go-to definition. Now, for typed
non-meta languages such automations rely on the creation of symbol tables during
editing, usually involving some sort of custom parsing of the edited files, as well as of
those imported. In case of either untyped or dynamically-typed non-meta languages
the general problem is still open since it requires editing-time evaluation.

Regarding metalanguages, stage evaluation is apparently required to make sure that
the editing tools process the actual resulting program. More specifically, for any stage
or the final program the evaluation of any inner stages is needed to obtain the
resulting source code. Generally, this case is similar to the previous one, as it also
requires editing-time evaluation to derive information for program elements, and
requires further research to provide efficient and scalable solutions. However, we
assume the problem to be more challenging in the context on untyped metalanguages
due to the combined complexity. In any case, since editing automations are currently
a necessary element of all existing development tools, future work in this domain

becomes absolutely critical.

Another topic for future research work regarding metaprogramming tools concerns
advanced editing views. Currently, we extract stage metaprograms and include them
as separate read-only source files inside the workspace to help in the administration
and understanding of stages. However, editing stage code is still bounded to the

context of the original source file. Since the latter likely encompasses a lot of source
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code that is irrelevant to the staging logic it unnecessarily overloads the stage
programming task. In this direction, specific editing facilities to improve the task are
needed, such as folding code not belonging to the current stage, enabling
programmers also experience a visually integrated program. Additionally, layered
editing views for stages and the transformations they introduce are required, enabling
seamless navigation in the entire transformation path of code fragments from the
original source to their eventual form in the final source. Such views may support
editing directly on the final program by translating back to respective modifications in

the context of the original source file.

Regarding metaprogram debugging, we envision more advanced facilities that are
optimized towards AST inspection tasks. In our work we discussed typical facilities
like call stack, watches, breakpoints and execution tracing that should be supported
under metaprogram debugging. In this context, we consider that new debugging
facilities are required optimized for inspecting the generative behavior of
metaprograms. For instance, appropriate visualizations of the various transformed
versions of the main program AST, resulting from stages, may be very helpful. In our
work we supported visualizations of inspected AST values. Such a feature can be
further improved with more interactive features such as: folding or unfolding sub-
trees, search using language constructs, display of unparsed code for selected nodes,
node bookmarking, configurable visualization approaches, etc.

Finally, the implementation of integrated metaprogramming systems for typed
languages such as C++, C# and Java is a very challenging endeavor. We already
investigated a few examples on a hypothetical meta-C++ assuming an integrated
metaprogramming model. In fact, all metaprogramming tool extensions we proposed
have been designed without a particular dependency on the typing approach of the
language or its staging model. Nevertheless, a typed language universe may introduce
additional requirements not apparent in an untyped language context, potentially

requiring further investigation.

Overall, we consider that a full-scale implementation of our approach in a mainstream
and popular typed language will not only make the advantages of integrated
metaprogramming far more evident, but it will genuinely push forward the art of

metaprogramming and lead to more advanced programming practices in the future.
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