
 
University of Crete 

School of Sciences and Engineering 
Computer Science Department 

 
 
 

DESIGNING, IMPLEMENTING AND EXECUTING 
CHOREOGRAPHIES AND ORCHESTRATIONS 

OVER A BPMN 2 ENGINE 
 
 
 
 
 
 

BY 
 

MICHAIL DIMITRIOU 
 
 

 
 
 
 
 
 

Master’s Thesis 
 
 
 
 
 

Heraklion, November 2011 





University of Crete 
School of Sciences and Engineering 

Computer Science Department 
 

DESIGNING, IMPLEMENTING AND EXECUTING 
CHOREOGRAPHIES AND ORCHESTRATIONS OVER A BPMN 2 

ENGINE 
 

BY 
 

MICHAIL DIMITRIOU 
 
 

A thesis submitted in partial fulfillment  
of the requirements for the degree of 

 Master of Science 
 





DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 1 - 

 

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 
 

Dimitiou Michail 

Master’s Thesis 

University of Crete 

Computer Science Department 
 

Abstract 
 

For decades now business managers have been using workflows to describe and study 
business processes. Soon after such workflows started appearing in the designing of 
Information Systems and the two worlds started their parallel evolution. Tools and 
standards where developed to design and study these models yet most of them where 
focusing on the one side of the coin. With the arrival of web services the similarity of a 
web service task to a business task and a business process to a service composition 
became obvious and the attempt to merge the world of management and IT began.   

With web service composition in mind several metamodels where proposed (WSFL, 
XLANG, BPML). With IBM and Microsoft leading the way Business Process 
Execution Language (BPEL) evolved from the above and became the standard for 
service composition and Business process execution. BPEL although excellent for 
machine readability (execution) and automated processes, proved too complicated for non 
developers and as no graphical representation was in mind when developed the 
management community sought after a standard for designing and studying models. Later 
Business Process Modeling Notation (BPMN) became the preferred designing 
metamodels for describing and specifying business tasks in a business process 
model. BPMN contrary to BPEL although easily human readable and with graphical 
representation wasn’t strict enough to be executable, as a result the two standards 
coexisted although mapping between them was required in order to transcend from 
design to execution.  With the evolution of the field and the new notions orchestrations as 
independent processes, choreographies as the collaboration and interaction of multiple 
orchestrations, human tasks and several more the development of a new notation looked 
necessary.  

The result as of 2010 was BPMN 2. This notation can be graphically represented and 
is strict enough to be executed can describe choreographies and human tasks and most 
importantly is easily extendable and configurable. In This Thesis we try to combine and 
refine some existing tools to create an infrastructure where someone can easily design 
and execute orchestrations and choreographies using BPMN 2. 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 2 - 

 

ΣΧΕΔΙΑΣΜΟΣ, ΥΛΟΠΟΙΗΣΗ ΚΑΙ ΕΚΤΕΛΕΣΗ ΧΟΡΟΓΡΑΦΙΩΝ 
ΚΑΙ ΕΝΟΡΧΗΣΤΡΩΣΕΩΝ ΠΑΝΩ ΣΕ ΜΙΑ BPMN 2 ΜΗΧΑΝΗ. 

Δημητρίου Μιχαήλ 
Master’s Thesis 

Πανεπιστήμιο Κρήτης 
Τμήμα Επιστήμης Υπολογιστών 

 
Δεκαετίες τώρα στελέχη επιχειρήσεων χρησιμοποιούν workflows για την περιγραφή και 
μελέτη επιχειρηματικών διαδικασιών. Σύντομα αυτά άρχισαν να εμφανίζονται στο 
σχεδιασμό των Πληροφοριακών Συστημάτων και οι δύο κόσμων άρχισαν την παράλληλη 
εξέλιξή τους. Διάφορα εργαλεία και πρότυπα αναπτύχθηκαν για το σχεδιασμό και τη 
μελέτη αυτών των μοντέλων αλλά τα περισσότερα από αυτά επικεντρώνονταν στη μία 
πλευρά του νομίσματος. Με την έλευση των διαδικτυακών υπηρεσιών η ομοιότητα ενός 
web service με μιας επιχειρησιακής εργασίας και μια επιχειρηματική διαδικασία με μια 
σύνθεση από web Services έγινε φανερή και η προσπάθεια να συγχωνευτεί o κόσμος του 
Management και του IT ξεκίνησε.  

Με τη σύνθεση υπηρεσιών Ιστού σαν βάση προτάθηκαν πολλά μεταμοντέλα όπως 
(WSFL, XLANG, BPML). Με την IBM και η Microsoft σαν οδηγούς εξελίχθηκε  η 
Business Process Execution Language (BPEL) και έγινε το πρότυπο για τη σύνθεση 
υπηρεσιών και εκτέλεσης  Επιχειρησιακών διαδικασιών. Η BPEL αν και εξαιρετική για 
ανάγνωση (εκτέλεση)  από μία μηχανή και για αυτοματοποιημένες διαδικασίες, 
αποδείχθηκε υπερβολικά περίπλοκη για τους μη προγραμματιστές και δεδομένου ότι δεν 
είχε κατά νου την γραφική αναπαράσταση  όταν αναπτύχθηκε η κοινότητα του 
Management αναζήτησε ένα διαφορετικό πρότυπο για το σχεδιασμό και τη μελέτη 
μοντέλων. Αργότερα Η Business Process Modeling Notation (BPMN) έγινε το 
προτιμώμενο μοντέλο για τον  σχεδιασμό και την περιγραφή επιχειρησιακών εργασιών 
και διαδικασιών. Η BPMN σε αντίθεση με την BPEL αν και εύκολα αναγνώσιμη από 
τον άνθρωπο και με γραφική παράσταση δεν ήταν αρκετά αυστηρά δομημένη ώστε να 
είναι εκτελέσιμη, με αποτέλεσμα τα δύο πρότυπα να συνυπάρχουν, αν και χαρτογράφηση 
μεταξύ τους ήταν απαραίτητη ώστε να μεταβούμε από το σχεδιασμό στην εκτέλεση. Με 
την εξέλιξη του τομέα και τις νέες έννοιες  της ενορχήστρωσης σαν μία ανεξάρτητη 
διαδικασία, της χορογραφίας σαν την συνεργασία και αλληλεπίδραση πολλών 
ενορχηστρώσεων,  τις ανθρώπινες εργασίες και αρκετές ακόμα, η ανάπτυξη μιας νέας 
σημειογραφίας φαινόταν απαραίτητη.  

Το αποτέλεσμα από το 2010 ήταν Η BPMN 2. Αυτή η σημειογραφία μπορεί να 
αναπαρασταθεί γραφικώς και είναι αρκετά αυστηρή ώστε να εκτελεστεί, μπορεί να 
περιγράψει χορογραφίες και τις ανθρώπινες εργασίες και κυρίως είναι εύκολα 
επεκτάσιμη και παραμετροποιήσιμη. Στην παρούσα εργασία προσπαθούμε να 
συνδυάσουμε και να τελειοποιήσουμε κάποια υπάρχοντα εργαλεία για τη δημιουργία 
μίας υποδομής, όπου κάποιος θα μπορεί εύκολα να σχεδιάζει και να εκτελεί 
ενορχηστρώσεις και χορογραφίες χρησιμοποιώντας BPMN 2.



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 3 - 

 

 
Acknowledgements 

 
 

First of all I would like to thank my supervisor, Mr. Christos Nikolaou for the 
cooperation we had over all these years, for his help and guidance and for giving me 
the opportunity to develop and implement my ideas.  

 

I would also like to thank Mr. Dimitris Plexousakis and Mr. Kostas Magoutis for 
being in my board of enquiry and for reading my work.  

 

Furthermore I’d like to thank all my friends in Heraklion for the moments we had the 
years of my stay, my colleagues in the Transformation and Services Laboratory for 
the cooperation. And of course all my Teachers and pears in the undergraduate and 
post graduate program of the Computer Science Department of Crete. 

 

 I must also thank my Employer Virtual Trip Ltd. and all my colleagues there for the 
chance to improve and develop my skills and the Job position that supported me 
financially during my post graduate years. 

Finally I my greatest appreciation go to my family that supported me financially and 
ethically throughout my studies and stood behind my every choice whether right or 
wrong.



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 4 - 

 

 

Table of Contents 
ABSTRACT ...................................................................................................................................................1 

ACKNOWLEDGEMENTS ..........................................................................................................................3 

TABLE OF CONTENTS ..............................................................................................................................4 

TABLE LIST .................................................................................................................................................5 

FIGURE LIST ...............................................................................................................................................6 

CODE SNIPPET LIST ..................................................................................................................................7 

1 INTRODUCTION ................................................................................................................................8 

2 BACKGROUND KNOWLEDGE/THEORY ....................................................................................8 
2.1 WEB SERVICES ...................................................................................................................................8 
2.2 ORCHESTRATIONS ..............................................................................................................................9 
2.3 CHOREOGRAPHIES .............................................................................................................................9 
2.4 ORCHESTRATIONS AND CHOREOGRAPHIES ........................................................................................9 
2.5 BMPN ...............................................................................................................................................9 
2.6 BPEL ............................................................................................................................................... 10 
2.7 BPEL AND BPMN ........................................................................................................................... 11 
2.8 BPMN 2........................................................................................................................................... 11 

3 THE INFRASTRUCTURE ............................................................................................................... 12 
3.1 THE BPMN 2 ENGINE .................................................................................................................. 12 

3.1.1 The engines API and its hierarchy can be seen in the following figure. ................................ 12 
3.2 MYSQL DATABASE ......................................................................................................................... 14 
3.3 BPMN 2 DESIGNER TOOL ................................................................................................................. 16 
3.4 MANAGEMENT WEB APPLICATION .................................................................................................. 18 

3.4.1 Architecture and functionalities ............................................................................................. 22 
3.5 SUMMARY ........................................................................................................................................ 25 

4 THE FRAMEWORK IN PRACTICE ............................................................................................. 26 
4.1 LEARNING THE BPMN 2.0 CONSTRUCTS .......................................................................................... 26 

4.1.1 None start event ..................................................................................................................... 26 
4.1.2 None end event ....................................................................................................................... 27 
4.1.3 Sequence flow ........................................................................................................................ 27 
4.1.4 Conditional sequence flow ..................................................................................................... 28 
4.1.5 Gateways ............................................................................................................................... 29 
4.1.6 User task ................................................................................................................................ 34 
4.1.7 Script Task ............................................................................................................................. 35 
4.1.8 Java Service Task .................................................................................................................. 36 
4.1.9 WebService Task .................................................................................................................... 38 
And here is the class: ........................................................................................................................... 39 
4.1.10 Java receive task ............................................................................................................... 39 

4.2 DESIGNING AND RUNNING A SIMPLE ORCHESTRATION ..................................................................... 40 
4.2.1 WebService Development ...................................................................................................... 40 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 5 - 

 

4.2.2 Process model Design ............................................................................................................ 42 
4.2.3 Form Creation ....................................................................................................................... 43 
4.2.4 XML refinement ..................................................................................................................... 45 
4.2.5 Deploying our Process .......................................................................................................... 47 
4.2.6 Running the process ............................................................................................................... 49 

5 EXTENDING THE INFRASTRUCTURE TO RUN CHOREOGRAPHIES. ............................. 50 
5.1 EXISTING TOOLS AND WORKAROUND .............................................................................................. 52 

5.1.1 Instantiation ........................................................................................................................... 52 
5.1.2 Send messages ....................................................................................................................... 52 
5.1.3 Receive message .................................................................................................................... 52 

5.2 CASE STUDY .................................................................................................................................... 53 
5.3 FIRST IMPLEMENTATION SAME ENGINE MULTIPLE CLASSES. ........................................................... 60 
5.4 SECOND IMPLEMENTATION DIFFERENT ENGINE MULTIPLE SERVICES. .............................................. 62 
5.5 FINAL IMPLEMENTATION DIFFERENT ENGINE, SINGLE RECEIVING SERVICES. .................................. 64 
5.6 EXTENSION SUMMARY ..................................................................................................................... 66 

CONCLUSIONS AND FUTURE WORK ................................................................................................. 67 

REFERENCES ............................................................................................................................................ 68 

 
 
 
 
 
 
 
 
 
 
TABLE LIST 

 
 

Tables             Page 
 
Table 1 : Database Tables. 15 
 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 6 - 

 

 

FIGURE LIST 
 
 

Figures           Page 

Figure 1 : DataBase Schema. ............................................................................................ 16 
Figure 2 : Activiti Designer Design perspective. .............................................................. 17 
Figure 3 : Activiti Designer Xml perspective. .................................................................. 17 
Figure 4 : Login Screen ..................................................................................................... 20 
Figure 5 : My Tasks view ................................................................................................. 22 
Figure 6 : Unassigned tasks view ...................................................................................... 23 
Figure 7 : Processes page .................................................................................................. 24 
Figure 8 : Deployments page ............................................................................................ 25 
Figure 9 : start event ......................................................................................................... 26 
Figure 10 : End event ........................................................................................................ 27 
Figure 11 : Sequence flow ................................................................................................ 28 
Figure 12 : conditional sequence flow .............................................................................. 28 
Figure 13 : conditional sequence flow example ............................................................... 29 
Figure 14 : Gateways ........................................................................................................ 29 
Figure 15 :  exclusive gateway .......................................................................................... 30 
Figure 16 : exclusive gateway example ............................................................................ 31 
Figure 17 : parallel Gateway ............................................................................................. 33 
Figure 18 : Parallel Gateway example .............................................................................. 34 
Figure 19 : User Task ........................................................................................................ 35 
Figure 20 : Script Task ...................................................................................................... 36 
Figure 21 : Java Service Task ........................................................................................... 37 
Figure 22 : WebService Task ............................................................................................ 38 
Figure 23 : receive task ..................................................................................................... 40 
Figure 24 : converter service wsdl representation ............................................................ 41 
Figure 25 : Converter BPMN 2 model .............................................................................. 42 
Figure 26 : uploading deployment .................................................................................... 48 
Figure 27 : Convert temperature form .............................................................................. 49 
Figure 28 : Convert result form ........................................................................................ 50 
Figure 29 : Buyer order process ........................................................................................ 54 
Figure 30 : seller process .................................................................................................. 55 
Figure 31 : Order Request form ........................................................................................ 56 
Figure 32 : make offer form .............................................................................................. 57 
Figure 33 : assess offer form ............................................................................................. 58 
Figure 34 : Complete order form ...................................................................................... 59 
 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 7 - 

 

CODE SNIPPET LIST 
 
 

Snippets           Page 

: login.xml ......................................................................................................................... 20 
: login.ftl ............................................................................................................................ 21 
: start event xml ................................................................................................................. 27 
: end event ......................................................................................................................... 27 
: Sequence flow ................................................................................................................. 28 
: conditional sequence flow .............................................................................................. 29 
: exclusive gateway xml .................................................................................................... 32 
: Parallel Gateway xml ...................................................................................................... 34 
: User Task Xml ................................................................................................................ 35 
: Script Task ...................................................................................................................... 36 
: WebService Task Xml .................................................................................................... 39 
: WebService call class ..................................................................................................... 39 
: converter.java file ........................................................................................................... 41 
: conversion start form ...................................................................................................... 43 
: conversion result form .................................................................................................... 44 
: Unrefined xml converter model ...................................................................................... 45 
: refined service task ......................................................................................................... 46 
: refined user tasks ............................................................................................................ 46 
: sequence flow refinement ............................................................................................... 47 
: get Process instance execution by process id .................................................................. 52 
: send signal to execution .................................................................................................. 53 
: Order Request form ........................................................................................................ 56 
: make offer form .............................................................................................................. 57 
: assess offer form ............................................................................................................. 58 
: Complete order form ....................................................................................................... 59 
: Delegate class for sending a new order .......................................................................... 60 
: Delegate class for sending the offer ................................................................................ 61 
: delegate class to make Http calls .................................................................................... 63 
: Start Shopper webScript ................................................................................................. 64 
: global receiver WebScript .............................................................................................. 66 
 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 8 - 

 

 

1 INTRODUCTION 
 
In this thesis we are going to describe to process that was followed for the development 
of an infrastructure were a user will be able to easily design develop and run service 
choreographies. In the first part we are going to introduce and describe the fundamentals 
of web service technologies. Later we shall go through the existing tools that we used in 
order to set the base of our infrastructure. As existing tools are not able to develop and 
run choreographies in the third part we will analyze the extensions developed for these 
tools by as, so as to augment these tools to be able to fulfill our need, which as we 
previously mentioned is to run choreographies. These extensions introduce new 
communication and data exchange mechanisms that are required. Furthermore we shall 
describe the process that a used must follow in order to design and run a proper 
choreography using these tools and our extensions. This process is our own approach to 
the problem and is basically our proposal and demonstration of how a choreography 
infrastructure should work. 
 
 

2 BACKGROUND KNOWLEDGE/THEORY 
 
2.1 Web services 
 
The first element we should be acquainted with is web services. Web service is our 
fundamental piece. It is basically to a web process and application what a class is to a 
java application with the significant difference that a web service can exist and be called 
from wherever in the net. 
The W3C[35] defines a “Web service” [7] as a software system designed to support 
interoperable machine-to-machine interaction over a network. It has an interface 
described in a machine-processable format (specifically Web Services Description 
Language WSDL[6]). Other systems interact with the Web service in a manner 
prescribed by its description using SOAP[5] messages, typically conveyed using 
HTTP[19] with an XML[8] serialization in conjunction with other Web-related 
standards." 

Furthermore we can identify two major classes of Web services, REST-compliant 
Web services [28], in which the primary purpose of the service is to manipulate XML 
representations of Web resources using a uniform set of "stateless" operations; and 
arbitrary Web services, in which the service may expose an arbitrary set of operations. 
The modern trend is towards restful services as they lack the complexity using well 
known and established HTTP protocols [26]. 

 
 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 9 - 

 

2.2 Orchestrations 
 

Although a Web Service may expose many methods, each WSDL (Web Service 
Description Language file) describes fairly atomic, low-level functions. What a single 
service does not give us is the rich behavioral detail that describes the role the service 
plays as part of a larger, more complex collaboration. When these collaborations and 
collections of activities are designed to accomplish a given business objective, they are 
known as a business process. A business process may extend across one or more 
organizations. The description of the sequence of activities that make up a business 
process is called an orchestration. 

 
2.3 Choreographies 

 
Service choreography is a form of service composition in which the interaction 

protocol between several partner services is defined from a global perspective. The 
intuition underlying the notion of service choreography can be summarized as follows: 

“Dancers dance following a global scenario without a single point of control" 
That is, at run-time each participant in service choreography executes its part of it (i.e. 

its role) according to the behavior of the other participants. Choreography’s role specifies 
the expected messaging behavior of the participants that will play it in terms of the 
sequencing and timing of the messages that they can consume and produce. 

 
2.4 Orchestrations and Choreographies 
 

The primary difference between orchestration and choreography is executability and 
control. An orchestration specifies an executable process that involves message 
exchanges with other systems, such that the message exchange sequences are controlled 
by the orchestration designer. Choreography specifies a protocol for peer-to-peer 
interactions, defining, e.g., the legal sequences of messages exchanged with the purpose 
of guaranteeing interoperability. Such a protocol is not directly executable, as it allows 
many different realizations (processes that comply with it). A choreography can be 
realized by writing an orchestration (e.g. in the form of a BPEL process) for each peer 
involved in it. The orchestration and the choreography distinctions are based on 
analogies: orchestration refers to the central control (by the conductor) of the behavior of 
a distributed system (the orchestra consisting of many players), while choreography 
refers to a distributed system (the dancing team) which operates according to rules (the 
choreography) but without centralized control [16]. 

 
2.5 BMPN 
Both the concept of orchestrations and choreographies is just theoretical. In order to 
design and develop one we need an appropriate language. As these architectures were 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 10 - 

 

developed partly having in mind business models and business management people, 
many languages that aroused were graphical. The most notable one is BPMN. 

More specifically Business Process Modeling Notation (BPMN)[12] is a graphical 
representation for specifying business processes in a business process model. 

The Business Process Modeling Notation (BPMN) is a standard for business process 
modeling, and provides a graphical notation for specifying business processes in a 
Business Process Diagram (BPD)[27], based on a flowcharting technique very similar to 
activity diagrams from Unified Modeling Language (UML)[38]. The objective of BPMN 
is to support business process management for both technical users and business users by 
providing a notation that is intuitive to business users yet able to represent complex 
process semantics. The BPMN specification also provides a mapping between the 
graphics of the notation to the underlying constructs of execution languages, particularly 
Business Process Execution Language. 

The primary goal of BPMN is to provide a standard notation that is readily 
understandable by all business stakeholders. These business stakeholders include the 
business analysts who create and refine the processes, the technical developers 
responsible for implementing the processes, and the business managers who monitor and 
manage the processes. Consequently, BPMN is intended to serve as common language to 
bridge the communication gap that frequently occurs between business process design 
and implementation. 
 
The weaknesses of BPMN could relate to: 

• Ambiguity and confusion in sharing BPMN models 
• Support for routine work 
• Support for knowledge work, and 
• Converting BPMN models to executable environments 

 
 

2.6 BPEL 
Unlike BPMN other languages with developers in mind where evolved. The most notable 
one is BPEL. 

Business Process Execution Language (BPEL), short for Web Services Business 
Process Execution Language (WS-BPEL)[32] is an OASIS[34] standard executable 
language for specifying actions within business processes with web services. Processes in 
Business Process Execution Language export and import information by using web 
service interfaces exclusively. BPEL is an orchestration language, not a choreography 
language.  

 WS-BPEL is meant to be used to model the behavior of both Executable and 
Abstract Processes 

Some BPEL features are:  
• Facilities to enable sending and receiving messages. A property-based message 

correlation mechanism 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 11 - 

 

• XML and WSDL typed variables 
• An extensible language plug-in model to allow writing expressions and queries in 

multiple languages: BPEL supports XPath 1.0 by default 
• Structured-programming constructs including if-then-elseif-else, while, sequence 

(to enable executing commands in order) and flow (to enable executing 
commands in parallel) 

• A scoping system to allow the encapsulation of logic with local variables, fault-
handlers, compensation-handlers and event-handlers 

• Serialized scopes to control concurrent access to variables 
 
 
2.7 BPEL and BPMN 
 
The BPMN specification includes an informal and partial mapping from BPMN to BPEL 
[17]. A more detailed mapping of BPMN to BPEL has been implemented in a number of 
tools, including an open-source tool known as BPMN2BPEL. However, the development 
of these tools has exposed fundamental differences between BPMN and BPEL, which 
make it very difficult, and in some cases impossible, to generate human-readable BPEL 
code from BPMN models. Even more difficult is the problem of BPMN-to-BPEL round-
trip engineering: generating BPEL code from BPMN diagrams and maintaining the 
original BPMN model and the generated BPEL code synchronized, in the sense that any 
modification to one is propagated to the other. 
 
2.8 BPMN 2 
 

The vision of BPMN 2.0 [9] is to have one single specification for a new Business 
Process Model and Notation that defines the notation, metamodel and interchange format. 
The features include: 

Aligning BPMN with the business process definition meta model BPDM to form a 
single consistent language 

Enabling the exchange of business process models and their diagram layouts among 
process modeling tools to preserve semantic integrity 

Expand BPMN to allow model orchestrations and choreographies as stand-alone or 
integrated models 

Support the display and interchange of different perspectives on a model that allow a 
user to focus on specific concerns 

Serialize BPMN and provide XML schemes for model transformation and to extend 
BPMN towards business modeling and executive decision support. 

 
As a result BPMN 2 is expected to replace and expand the existing solutions that use 

BPMN and BPEL. Merging the design and executing phase of developing orchestrations 
and choreographies. 
 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 12 - 

 

 
3 THE INFRASTRUCTURE 

 
In this section as mention previously we are going to describe the tools we are going 

to combine in order to form the infrastructure to fulfill our requirements that is no other 
that to provide an easy environment where choreographies can be designed and executed. 
So far there are numerous toolkits that allow a user to develop Service-Oriented 
Architecture (SOA) Applications. Most of these tools usually have a design environment 
based on using a notation like BPMN which they later map to BPEL. Furthermore they 
have an engine that will run the BPEL scripts over a web server and a hosting 
environment for web services. Having a BPEL as its engine obviously restricts the 
infrastructure to the restrictions o BPEL. As a result we can only design orchestrations 
and not Choreographies. 

This obviously means that we have to follow a different root. As our core we will use 
a BPMN 2 engine. Though BPMN 2 is meant to implement choreographies as this area is 
still very fuzzy all newly developed engines have overlooked them. So we will have to 
find an open source solution that will allow as customizing it and extending it to our 
needs. Other than that our infrastructure architecture looks very similar to existing tools 
let’s start describing our components. 
 
3.1 THE BPMN 2 ENGINE 
 

For the engine we will be using the Activity BPMN 2 engine [31]. Activity Engine 
is a Java process engine that runs BPMN 2 processes. The engine can be incorporates in 
any java environment as a jar file. In our case the engine is implemented as a web 
Application and run on Apache Tomcat Server[10]. 

 
The Web Application is developed using the Spring Surf technologies[33]. It offers 

its API through webScripts which are basically restful services that can provide us remote 
access to the functionality and information of the engine. 

 
3.1.1 The engines API and its hierarchy can be seen in the following figure. 

 
 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 13 - 

 

 
 
 
Intuitively we can understand that through the ProcessEngine Object we can gain 

access to all the artifacts that we need. 
 
RepositoryService: Gives access to the process definition. 
TaskService: Gives access to the active tasks of an execution. 
IdentityService: Give access to user information and authentication. 
FormService: Retrieves info about the form files assigned to tasks or start events. 
RuntimeService: Gives access to the execution. Accesses variable sends signal and 

others. 
ManagementService deletes or adds new deployments to the engine. 
HistoryService gives access to completed tasks and processes. 
 
 
 
More specifically the features and functionalities we are interested in are: 
 

• Users: The machine has incorporated a user and group architecture. Our users 
can be assigned to belong to any number of groups. All the groups can be seen 
and managed through the DB Table “act_id_group”. The groups are separated 
to two categories. 

• Security-Role: These groups are used to define the access level of the user to 
the functionalities of the engine. A user can only belong to one group of this 
type. The existing types are User, Manager and System-Administrator. In our 
site this role gives or restricts access to the deployment page. 

• Assignment: The users can belong to any number of assignment type groups. 
These groups are used to assign a task or a job to possibly any member of a 
group. This means that once a task, with assignment the “accountancy” group, 
is reached by an execution in a process all members of the group will be 
prompt to claim the task, The first one to claim it will be the one to fulfill it. 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 14 - 

 

• Tasks can also be directly assigned to a user by his id or possibly to a number 
of users by declaring all their ids in the BPMN model. 

• Image Representation: The engine has the capability to store an image 
representation of a model. Later we can use this feature to assist the execution 
o the models through our management App. 

• Forms: Each Human task can be assigned to an HTML form file. This way 
once a task is reached we can have a Visual representation of the data and 
information required by the user. 

• Execution scope: Every Time a process instance is started an execution is 
created. This execution can store variables that the tasks can use or declare. If 
our model has a fork then the execution duplicates itself along with all its 
variables. 

 
 
 

3.2  MySql DataBase 
 
 
 
For the BPMN 2 engine to run properly a database with the adequate tables must be 
created. For ease of use a sql dump with the initial entries has been created.  
 
 
 
 
 
The database schema is described briefly below. 

• ACT_RE_*: 'RE' stands for repository. Tables with this prefix will contain 'static'' information such as 
process definitions and, process resources (images, rules, etc.). 

• ACT_RU_*: 'RE' stands for runtime. These are the runtime tables, which contain the runtime data of 
process instances, user tasks, variables, jobs, etc. Activiti only stores the runtime data during process instance 
execution, and removes the records when a process instance ends. This keeps the runtime tables small and 
fast. 

• ACT_ID_*: 'ID' stands for identity. These tables contain identity information, such as users, groups, etc. 
• ACT_HI_*: 'HI' stands for history. These are the tables that contain historic data, such as past process 

instances, variables, tasks, etc. 
• ACT_GE_*: general data, which is used in various use cases. 

 
Table Name Children Parents Columns 
act_cy_comment 1 1 8 
act_cy_config   4 
act_cy_conn_config   7 
act_cy_link   14 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 15 - 

 

Table Name Children Parents Columns 
act_cy_people_link   8 
act_cy_tag   5 
act_ge_bytearray 2 1 5 
act_ge_property   3 
act_hi_actinst   11 
act_hi_detail   15 
act_hi_procinst   10 
act_hi_taskinst   13 
act_id_group 1  4 
act_id_membership  2 2 
act_id_user 1  6 
act_re_deployment 1  3 
act_re_procdef 1  9 
act_ru_execution 7 3 11 
act_ru_identitylink  1 6 
act_ru_job  1 15 
act_ru_task 1 3 11 
act_ru_variable  3 12 
Table 1 : Database Tables. 
 
 
 
 
 
 
Below we can see a graphical representation of the schema relations. 
 
 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 16 - 

 

 
 
Figure 1 : DataBase Schema. 
 
3.3 BPMN 2 designer tool 
 
Although BPMN 2 is extremely easily readable by humans and a simple text/xml editor 
should be enough to develop any model, the use of the Activiti Designer, a plug-in for the 
eclipse framework is proposed. Besides the obvious assistance of such a tool to develop a 
model, Activiti designer can additionally produce an image representing the model of our 
process. This image can be used later by our management application to represent the 
process and assist us in selecting and observing it. 
 Below we can see the designer tool first in the design perspective and then in the xml 
perspective. 
 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 17 - 

 

 
Figure 2 : Activiti Designer Design perspective. 

Figure 3 : Activiti Designer Xml perspective. 
 
 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 18 - 

 

3.4 Management Web Application 
 

For The execution and management of our models it was required to create a Web 
Application that would offer a visual representation of the information’s required to 
run and observe our processes and of course give us the functionality to interact 
with them. The detailed functionality of the application will be described later 
along with an explanatory example. Here we will focus on the framework and the 
techniques used for its development.  
 
For the development of the web app we used the Spring Surf framework.  
Below we will describe the main configuration files and artifacts of a Spring surf 
project. 
 

1. MYWEBAPP\WEB-INF\web.xml 
Defines a "UrlRewriteFilter" filter which Enables clean URLs with JSP 
views e.g. enabling url /welcome instead of /page/welcome. 
Spring MVC Dispatcher Servlet is also defined and pointed to /WEB-
INF/config/web-application-config.xml for its context configuration. 

2. MYWEBAPP\WEB-INF\urlrewrite.xml 
This configuration file provides UrlRewriteFilter filter with a set of Surf 
related inbound and outbound url rewrite rules. 

3. MYWEBAPP\WEB-INF\surf.xml 
It defines Surf specific configurations for runtime and mode. As default, it 
uses webapp runtime and development mode. (TODO: more details on the 
options) 

4. MYWEBAPP\WEB-INF\config\web-application-config.xml 
As defined in web.xml, this file provides context configurations for the 
Spring MVC Dispatcher Servlet. It first imports required infrastructure 
imports from MYWEBAPP\WEB-INF\config\surf-config.xml and then 
defines a list of required interceptors for the default Spring MVC annotation 
handler. Rest of the configurations are for interoperability with Spring 
annotated controllers and simple controllers. It also configures the default 
Spring multipart resolver for file uploading. 

5. MYWEBAPP\WEB-INF\config\surf-config.xml 
This configuration file defines context locations for both Surf Web Scripts 
Framework and Surf Framework. It also sets up to be auto-resolved to url 
based views. 

6. MYWEBAPP\css\sample.css 
This is the style sheet of the Quick Start Sample Site. 

7. MYWEBAPP\images\* 
Image files for the Quick Start Sample Site. 

8. MYWEBAPP\WEB-INF\chrome\* 
Chrome describes the border elements around a region or a component. 
These border elements may include styling elements like shadows, or they 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 19 - 

 

may introduce drag and drop capabilities into the page. They may also 
introduce user-functionality like buttons for popping up component settings 
(as you frequently see in portals). 

9. MYWEBAPP\WEB-INF\pages\* 
Our main Pages defined in XML format. Surf only requires page 
configuration XMLs to be placed under MYWEBAPP\WEB-INF. However 
for best practice we place them under MYWEBAPP\WEB-INF\pages 
example MYWEBAPP\WEB-INF\pages\login.xml. 
A page is a navigable page in our web application. It may have associations 
to other pages and multiple formats keyed from it to templates. A page is a 
top-level object from which you can traverse either additional navigation or 
rendering paths. 

10. MYWEBAPP\WEB-INF\templates\* 
The template folder. A Template Instance is an instance of a template type, 
which can be of a Freemarker type (templateName.ftl)[20] JSP or 
WebScript. A Surf page object has a required field for template instance 
therefore the Surf dispatcher knows which template to use to render view 
for the page. While Page xml configuration files describe the relations of a 
page the templates determine their appearance. 

11. MYWEBAPP\WEB-INF\webscripts\* 
This is the place for storing WebScripts that are generating components 
such as header, footer, navigation etc. Webscripts are like restful services 
and separate to view from the control. 
A component is an instance of a component type that has been "bounded" 
into a region or a slot. It represents a binding along with the instance-
specific state for that component instance. The Surf framework supports 
three types of scopes for the region/component binding, global scope, 
template scope and page scope. The Global Scope is for the component that 
is same across the site such as header and footer. The Template Scope is for 
the component that is same across the template such as a Text Block 
component which shows the same text for any page using this template. The 
page scope is for any page specific component. 

 
 
 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 20 - 

 

 
For Better understanding we shall show how the simple page of login is represented. 

 

 
 

Figure 4 : Login Screen 
 
 
 
<page> 
  <title>Login</title> 
  <title-id>page.login.title</title-id> 
  <template-instance>login</template-instance> 
  <authentication>none</authentication> 
</page> 
 
Code Snippet 1 : login.xml 
 
In login.xml we can see its title its id the template instance that will be used to represent it 
and its authentication set to none, meaning that anyone can access this page (No login 
required prior to this page). 
 
 
<#include "activiti.template.lib.ftl" /> 
<#assign successUrl=(url.args["url"]!url.url)?html /> 
<#assign failureUrl="/login?error=true" /> 
<@templateHeader/> 
<@templateBody> 
  <div id="header"> 
    <div class="activiti-component"> 
      <div class="application-info"> 
        <img src="${url.context}/res/images/logo.png"/> 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 21 - 

 

      </div> 
    </div> 
  </div> 
  <div id="content"> 
    <div id="login"> 
      <form accept-charset="UTF-8" method="post" action="${url.context}/dologin"> 
        <#if !successUrl?contains(failureUrl)> 
          <input name="success" type="hidden" value="${successUrl}" /> 
        </#if> 
        <input name="failure" type="hidden" 
value="${url.context}${failureUrl}&amp;url=${successUrl?url}" /> 
        <#if url.args["error"]??> 
        <div class="section"> 
          <div id="login-error" class="status-error"></div> 
        </div> 
        <#else> 
        <div class="section"> 
          <div id="login-browser-warning" class="status-error"></div> 
        </div> 
        </#if> 
        <div class="section"> 
          <label for="username">User Name:</label> 
          <input id="username" name="username" type="text" /> 
          <br/> 
        </div> 
        <div class="section"> 
          <label for="password">Password:</label> 
          <input id="password" name="password" type="password" /> 
          <input id="submit" type="submit" value="Login"/> 
          <br/> 
        </div> 
      </form> 
    </div> 
     
  </div> 
</@> 
<@templateFooter/> 
Code Snippet 2 : login.ftl 
 

In This freemarker file we can see the main form and the error control depending 
on the incoming url. 

 
 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 22 - 

 

3.4.1 Architecture and functionalities 
 
 
Our Site is basically consisted of two main pages two child pages and several 
components. 
Our first main page was described before and is the login screen of our system. Once we 
are logged in we can access the applications main page start. The start page has two 
child pages and as defined by its template a header and footer. Since the other two pages 
are children of this they share the same header and footer. These three pages have the 
following function. 
 

1. Start/tasks Once in this page we use our task component to represent the 
active tasks for these users. The Tasks are separated to personal, unassigned 
and by owner group. Since a user can belong two several groups the tasks 
are categorized. Unassigned tasks appear with a claim selection. Once 
claimed the task is now personal and appears only to this user from now one 
with the option to complete the task. 

 

 
Figure 5 : My Tasks view 
 
 
 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 23 - 

 

 
Figure 6 : Unassigned tasks view 
 
 

2. Processes The first child page is PROCESSES. Here we can see all the 
deployed processes. If a graphical representation of the model has been 
given we have the option to view it. Otherwise we have only the option the 
initiate the process. If the start event of the process was assigned with a 
form then the option to fill that form is presented. At this point anyone can 
start any process thaw afterwards only assigned users can interact with its 
tasks. 
 
 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 24 - 

 

 
Figure 7 : Processes page 
 

3. Deployments Finally the second Children is DEPLOYMENTS. In this 
Page a user has access only if he belongs to the administrator group. Here 
someone can delete or upload new deployments. Every deployment can 
include several processes and its accompanying files. The way to deploy a 
new process will be described later. 

 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 25 - 

 

 
Figure 8 : Deployments page 
 
3.5 Summary 
 
So far we have combined a set of tools and frameworks that allow as: 

1. Run simple web service. 

2. Design orchestrations based on BPMN 2. 

3. Run those BPMN 2 scripts. 

4. A web environment where we can manage users, services, processes, and monitor 

their flow. 

 

Basically what a simple user will see is a web based process management system. In this 

system we have users that can initiate processes and provide data to the system when 

asked (human task), furthermore we have automated tasks running by the system (web 

services).  Finally the flow of the execution of those tasks is directed by the models 

designed in BPMN 2. 

 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 26 - 

 

What we lack is extending orchestration to choreographies. To achieve that we need to 

find a way for multiple processes (orchestrations) existing in the same or different 

environment to communicate with each other and basically self coordinate their 

operations which will ultimately form a choreography. 

 
 

4 THE FRAMEWORK IN PRACTICE 
 
In order to understand the concept that led as to the development of our extensions we 
must understand how everything works through examples. 
 
 
4.1 Learning the BPMN 2.0 constructs  
 
 
Before we start our example we must familiarize a little with the BPMN 2.0 artifacts their 
graphical and xml representation. 
 
4.1.1 None start event 

Description 
A 'none' start event means that there is no trigger for starting the process instance. This 
means that the engine cannot anticipate when the process instance must be started. As a 
result we must start the instance programmatically. A good practice is through a web 
service which we can call from an interface or can be called by another process. 

Graphical notation 
A “none” start event is graphically represented as a circle with no inner icon (i.e. no 
trigger type). 

 
Figure 9 : start event 

XML representation 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 27 - 

 

The XML representation of a none start event is the normal start event declaration, 
without any sub-element (other start event types all have a sub-element declaring the 
type). 

<startEvent id="start" name="my start event" /> 
Code Snippet 3 : start event xml 
 
 
4.1.2 None end event 

Description 
A 'none' end event means that there is no result thrown when the end event is reached. As 
such, the engine will not do anything besides ending the current path of execution. Notice 
that the end event doesn’t end the process but the current path. 

Graphical notation 
A “none” end event is graphically represented as a circle with a thick border with no 
inner icon (no result type). 

 
Figure 10 : End event 

XML representation 
The XML representation of a none end event is the normal end event declaration, without 
any sub-element (other end event types all have a sub-element declaring the type). 

<endEvent id="end" name="my end event" /> 
Code Snippet 4 : end event 
 
 
4.1.3 Sequence flow 

Description 
A sequence flow is the connector between two elements of a process. After an element is 
visited during process execution path, all outgoing sequence flow will be followed. This 
means that the default nature of BPMN 2.0 is to be parallel: two outgoing sequence flow 
will create two separate, parallel paths of execution. 

Graphical notation 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 28 - 

 

A sequence flow is graphically represented as an arrow going from the source element 
towards the target element. The arrow always points towards the target. 

 
Figure 11 : Sequence flow 

XML representation 
Sequence flow need to have a process-unique id, and a reference to an 
existing source and target element. 

<sequenceFlow id="flow1" sourceRef="theStart" targetRef="theTask" /> 
Code Snippet 5 : Sequence flow 
 
4.1.4 Conditional sequence flow 

Description 
A sequence flow can have a condition attached to it. When an activity is finished, 
conditions on the outgoing sequence flow are evaluated. When the condition is true, that 
outgoing sequence flow is selected. When multiple sequence flows are true, 
multiple paths will be generated and the process will be continued in a parallel way. 

Graphical notation 
A conditional sequence flow is graphically represented as a regular sequence flow, with a 
small diamond at the beginning. The condition expression is shown next to the sequence 
flow. 

 
Figure 12 : conditional sequence flow 

XML representation 
A conditional sequence flow is represented in XML as a regular sequence flow, 
containing a condition Expression sub-element. Note that for the moment 
only tFormalExpressions are supported, Omitting the xsi:type="" definition will simply 
default to this only supported type of expressions. 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 29 - 

 

<sequenceFlow id="flow" sourceRef="theStart" targetRef="theTask"> 
  <conditionExpression xsi:type="tFormalExpression"> 
    <![CDATA[${order.price > 100 && order.price < 250}]]> 
  </conditionExpression> 
</sequenceFlow> 
Code Snippet 6 : conditional sequence flow 

 
Figure 13 : conditional sequence flow example 

4.1.5 Gateways 
A gateway is used to control the path of execution. A gateway is graphically represented 
as a diamond shape, with an icon inside. The icon shows the type of gateway. 

 
Figure 14 : Gateways 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 30 - 

 

4.1.5.1 Exclusive gateway 

Description 
An exclusive gateway (XOR gateway), is used to model a single decision in the process. 
When the execution arrives at this gateway, all outgoing sequence flows are evaluated in 
the order in which they are defined. The first sequence flow whose condition evaluates to 
true is selected for continuing the process. 

Graphical notation 
An exclusive gateway is graphically represented as a typical gateway (i.e. a diamond 
shape) with an 'X' icon inside, referring to the XOR semantics. Note that a gateway 
without an icon inside defaults to an exclusive gateway.  

 
Figure 15 :  exclusive gateway 

XML representation 
The XML representation of an exclusive gateway is straight-forward: one line defining 
the gateway and condition expressions defined on the outgoing sequence flow. Take for 
example the following model: 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 31 - 

 

 
Figure 16 : exclusive gateway example 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 32 - 

 

This is represented in XML as follows: 

<exclusiveGateway id="exclusiveGw" name="Exclusive Gateway" /> 
     
<sequenceFlow id="flow2" sourceRef="exclusiveGw" targetRef="theTask1"> 
  <conditionExpression xsi:type="tFormalExpression">${input == 
1}</conditionExpression> 
</sequenceFlow> 
     
<sequenceFlow id="flow3" sourceRef="exclusiveGw" targetRef="theTask2"> 
  <conditionExpression xsi:type="tFormalExpression">${input == 
2}</conditionExpression> 
</sequenceFlow> 
     
<sequenceFlow id="flow4" sourceRef="exclusiveGw" targetRef="theTask3"> 
  <conditionExpression xsi:type="tFormalExpression">${input == 
3}</conditionExpression> 
</sequenceFlow> 
Code Snippet 7 : exclusive gateway xml 
 
 
4.1.5.2 Parallel Gateway 

Description 
Gateways can also be used to model concurrent paths in a process. This is the Parallel 
Gateway, which allows forking into multiple paths or joining multiple incoming paths. 
Basically The Parallel Gateway does nothing as it leaves all the path selection to the 
conditions in the sequence flows. Based on the incoming and outgoing sequence flow a 
parallel Gateway can have any of the following functions or both (multiple incoming and 
outgoing flows): 

 

4. fork: all outgoing sequence flow are followed in parallel, creating one 
concurrent execution for each sequence flow. 

5. join: all concurrent executions arriving at the parallel gateway wait in the 
gateway until an execution has arrived for each of the incoming sequence 
flow. Then the process continues past the joining gateway. 

Graphical Notation 
A parallel gateway is visualized as a gateway (diamond shape) with the 'plus' symbol 
inside, referring to the 'AND' semantics. 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 33 - 

 

 
Figure 17 : parallel Gateway 

XML representation 
Defining a parallel gateway needs one line of XML: 

<parallelGateway id="myParallelGateway" /> 

The actual behavior (fork, join or both), is defined by the sequence flow connected to the 
parallel gateway. 

For example, the model above comes down to the following XML: 

    <startEvent id="theStart" /> 
    <sequenceFlow id="flow1" sourceRef="theStart" targetRef="fork" /> 
     
    <parallelGateway id="fork" /> 
    <sequenceFlow sourceRef="fork" targetRef="receivePayment" /> 
    <sequenceFlow sourceRef="fork" targetRef="shipOrder" /> 
     
    <userTask id="receivePayment" name="Receive Payment" />   
    <sequenceFlow sourceRef="receivePayment" targetRef="join" /> 
     
    <userTask id="shipOrder" name="Ship Order" />  
    <sequenceFlow sourceRef="shipOrder" targetRef="join" /> 
     
    <parallelGateway id="join" /> 
    <sequenceFlow sourceRef="join" targetRef="archiveOrder" /> 
     
    <userTask id="archiveOrder" name="Archive Order" />  
    <sequenceFlow sourceRef="archiveOrder" targetRef="theEnd" /> 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 34 - 

 

     
    <endEvent id="theEnd" /> 
Code Snippet 8 : Parallel Gateway xml 

 
 

 
 

 
Figure 18 : Parallel Gateway example 

 

4.1.6 User task 

Description 
A 'user task' is used to model task that needs to be performed by a human.  

Graphical notation 
A user task is graphically represented as a typical task (rounded rectangle), with a small 
user icon in the left upper corner. 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 35 - 

 

 
Figure 19 : User Task 

XML representation 
A user task is defined in XML as follows. The id attribute is required, the name attribute 
is optional. 

<userTask id="theTask" name="Important task" />                    
                                   

A user task can also have a description undel the <documentation> child tag. 

<userTask id="theTask" name="Schedule meeting" > 
  <documentation> 
          Schedule an engineering meeting for next week with the new hire. 
  </documentation> 
Code Snippet 9 : User Task Xml 

 

Activiti extensions for task assignment 
• Assignee attribute: this custom extension allows to directly assign a user task to 

a given user. 
<userTask id="theTask" name="my task" activiti:assignee="mdimitr" /> 

• Candidate Users attribute: this custom extension allows us to make a user a 
candidate for a task. 
<userTask id="theTask" name="my task" activiti:candidateUsers="mdimitr, 
saler" /> 
Candidate means that this user will later have the choice to claim this task or let it 
to be claimed by another. 

• Candidate Groups attribute: this custom extension allows making a group as 
candidate for a task. 
<userTask id="theTask" name="my task" 
activiti:candidateGroups="management, accountancy" /> 
As users belong to groups then we can assign all users in a group to be candidate 
users for this task. 
 
 

4.1.7 Script Task 

Description 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 36 - 

 

A script task is an automatic activity. When a process execution arrives at the script task, 
the corresponding script is executed. 

Graphical Notation 
A script task is graphically represented as a typical task (rounded rectangle), with a small 
'script' icon in the top-left corner of the rectangle. 

 
Figure 20 : Script Task 

XML representation 
A script task is graphically represented by specifying the script and the scriptFormat. 

<scriptTask id="theScriptTask" name="Execute script" scriptFormat="groovy"> 
  <script> 
    sum = 0 
    for ( i in inputArray ) { 
      sum += i 
    } 
  </script> 
</scriptTask> 
Code Snippet 10 : Script Task 
The groovy jar is the default script library for the engine. 

 

 

4.1.8 Java Service Task 

 

Description 
A Java service task is used to invoke an external Java class. 

Graphical Notation 
A service task is visualized as a rounded rectangle with a small gear icon in the top-left 
corner. 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 37 - 

 

 
Figure 21 : Java Service Task 

XML representation 
There are 4 ways of declaring how to invoke Java logic: 

• Specifying a class that implements JavaDelegate or ActivityBehavior 
• Evaluating an expression that resolves to a delegation object 
• Invoking a method expression 
• Evaluating a value expression 

To specify a class that is called during process execution, the fully qualified classname 
needs to be provided by the 'activiti:class' attribute. 

<serviceTask id="javaService"  
             name="My Java Service Task"  
             activiti:class="org.activiti.MyJavaDelegate" /> 

It is also possible to use an expression that resolves to an object. This object must follow 
the same rules as objects that are created when the activiti:class attribute is used 
(see further). 

 <serviceTask id="serviceTask" 
activiti:delegateExpression="${delegateExpressionBean}" /> 

Here, the delegateExpressionBean is a bean that implements the JavaDelegate interface, 
defined in for example the Spring container. 

To specify a method expression that should be evaluated, use 
attribute activiti:expression. 

<serviceTask id="javaService"  
             name="My Java Service Task"  
             activiti:expression="#{printer.printMessage(execution, myVar)}" /> 

Method printMessage will be called on the named object called printer. This object is by 
default initialized in every process execution.  The first parameter passed is 
the DelegateExecution, which is available in the expression context by default available 
as execution. The second parameter passed, is the value of the variable with 
name myVar in the current execution. 

 

http://activiti.org/userguide/index.html#bpmnJavaServiceTaskImplementation


DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 38 - 

 

Service task results 
The return value of a service execution (for service task using expression only) can be 
assigned to an already existing or to a new process variable by specifying the process 
variable name as a literal value for the 'activiti:resultVariable' attribute of a service task 
definition.  

<serviceTask id="aMethodExpressionServiceTask" 
    activiti:expression="#{myService.doSomething()}" 
    activiti:resultVariable="myVar" /> 

 
 
4.1.9  WebService Task 

Description 
A WebService task is used to synchronously invoke an external web service. 

Graphical Notation 
A WebService task is graphically represented the same as a Java service task. 

 
Figure 22 : WebService Task  

 
 

 
For less complexity we have created out own class to call webservices so we can instead 
use the java service task. 
 

<serviceTask id="Call_WS" name="Call WS" 
activiti:class="gr.tsl.delegate.WsDelegate"  > 
 <extensionElements> 
 <activiti:field name="wsdl" 
expression="http://localhost:8080/VacationService?wsdl" /> 
 <activiti:field name="operation" expression="saveVacationApproval" /> 
 <activiti:field name="parameters" expression="${user}, ${days}" /> 
 <activiti:field name="returnValue" expression="myReturn" /> 
 </extensionElements> 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 39 - 

 

</serviceTask> 
 
Code Snippet 11 : WebService Task Xml 

 

And here is the class: 
public class WsDelegate implements org.activiti.engine.delegate.JavaDelegate { 

  private Expression wsdl; 

  private Expression operation; 

  private Expression parameters; 

  private Expression returnValue; 

  public void execute(DelegateExecution execution){ 

    String wsdlString = (String)wsdl.getValue(execution); 

    JaxWsDynamicClientFactory dcf = JaxWsDynamicClientFactory.newInstance(); 

    Client client = dcf.createClient(wsdlString); 

    ArrayList paramStrings = new ArrayList(); 

    if (parameters!=null) { 

      StringTokenizer st = new StringTokenizer( (String)parameters.getValue(execution), ","); 

      while (st.hasMoreTokens()) { 

        paramStrings.add(st.nextToken().trim()); 

      } 

    } 

    Object response = client.invoke((String)operation.getValue(execution), paramStrings.toArray(new 
Object[0])); 

    if (returnValue!=null) { 

      String returnVariableName = (String) returnValue.getValue(execution); 

      execution.setVariable(returnVariableName, response); 

    }}} 

Code Snippet 12 : WebService call class 

 
4.1.10  Java receive task 

Description 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 40 - 

 

A receive task is a simple task that waits for the arrival of a certain message. Currently, 
we have only implemented Java semantics for this task. When process execution arrives 
at a receive task, the process state is committed to the persistence store. This means that 
the process will stay in this wait state, until a specific message is received by the engine, 
which triggers the continuation of the process past the receive task. 

Graphical notation 
A receive task is visualized as a task (rounded rectangle) with a message icon in the top 
left corner. The message is white (a black message icon would have send semantics) 

 
Figure 23 : receive task 

XML representation 
<receiveTask id="waitState" name="wait" />     

To continue a process instance that is currently waiting at such a receive task, we must 
send a signal programmatically for example through a web service we have created for 
this job. 
 
4.2 Designing and running a simple Orchestration 
 
Our case study will be a simple orchestration involving both automated Tasks 
(WebServices) and human related tasks. We are going to design a process representing a 
unit convertor between Celsius and Fahrenheit. 
 
 
4.2.1 WebService Development 
 
First of all we must implement our WebService. We are going to use eclipse and Apache 
Axis. To start we implement a simple java bean with the logic we require. We end up 
with the following Converter.java file. 
 
public class Converter 
{ 
  public String celsiusToFarenheit ( String celsius ) 
  { 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 41 - 

 

 String tmp=String.valueOf((Float.parseFloat(celsius) * 9 / 5) + 32); 
    System.out.println(celsius+" C == "+tmp+" F"); 
 return tmp; 
  } 
 
  public String farenheitToCelsius ( String farenheit ) 
  { 
    String tmp=String.valueOf((Float.parseFloat(farenheit) - 32) * 5 / 9); 
    System.out.println(farenheit+" F == "+tmp+" C"); 
 return tmp; 
  } 
} 
Code Snippet 13 : converter.java file 
 
 
Afterwards using the Axis 2 plug-in for Eclipse and Web Services we create a bottoms up 
java bean WebService and Publish it and its WSDL file on our Server. Here is a graphical 
representation of our WSDL. 
 

 
Figure 24 : converter service wsdl representation 
As mentioned before in order to call this Web Service we created our own 
WSDelegate.java class. This Class will make the call and will set the returned value as a 
Variable in our Execution. 
 
 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 42 - 

 

4.2.2 Process model Design 
 
Using the Eclipse Activiti Designer we will create the skeleton of our model. Although 
designer tools can make our life sometimes easier it’s usually right to make any 
refinements directly to the Code. After inserting and connecting all our artifacts we will 
have something like the following figure. 
 

 
Figure 25 : Converter BPMN 2 model 
 
As can be seen by the Model at the beginning our process a user will be requested to 
select the type of conversion he wishes to make. Afterward based on his selection the 
right web service call will be dispatched. Once that is done the user can see the result and 
choose whether to repeat the process.   
 
After designing our model we will end up with 2 files: 

1. unit_converter.bpmn20.xml:  
This is the xml file of our process. 
 

2. unit_converter.png: 
This is the graphical representation of the model in png form. 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 43 - 

 

 
 
4.2.3 Form Creation 
 
For our process to run, it is required that we produce some form files. These files will 
define how the information for our user will be viewed and the interface for him to make 
selections and input data. Form file can be assigned to any Start Event and user Task. In 
our model we shall assign two of such files to our two user Tasks respectively. 
For the first user task we require a form that will allow him to choose if he wants to 
convert from Celsius to Fahrenheit or vice versa and a field to input the value to be 
converted.  
 
<h1>Converter</h1> 
<p> Which conversion do you want to make </p> 
   <table> 
   <tr> 
   <td> 
    <select name="toUnit"> 
    <option value="far">Celsius To Farenheit</option> 
    <option value="cel">Farenheit To Celsius</option> 
   </select> 
   <input type="hidden" name="toUnit_type" value="String" /> 
   </td> 
   </tr> 
  <tr>   
    <td> 
      <label> 

<input type="text" name="temp" value="0" /> 
         <input type="hidden" name="temp_required" value="true" /> 
      </label> 
    </td> 
  </tr> 
</table> 
Code Snippet 14 : conversion start form 
 
 
After this form is submitted two new variables will appear in our execution. The Variable 
“toUnit” has stored the type of conversion the user wants to make and we can use it to 
direct the process flow. The variable “temp” will hold the temperature we’ll pass to our 
WebService for conversion. 
 
For our second user task we require a Form that will portray the results of our conversion 
and give the selection to finish or redo the process. 
 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 44 - 

 

 
<h1>ConverterResult</h1> 
   <table> 
   <tr> 
   <td> 
     ${temp} ${(toUnit=="far")?"Farenheit":"Celsius"} is converted to ${newTemp} 
${(toUnit=="cel")?"Farenheit":"Celsius"} 
   </td> 
   </tr> 
  <tr>   
    <td> 
      <select name="redo"> 
    <option value="true">Yes</option> 
    <option value="false">No</option> 
   </select> 
   <input type="hidden" name="redo_type" value="Boolean" /> 
    </td> 
  </tr> 
</table> 
Code Snippet 15 : conversion result form 
 
In this form we can also see how we can run java code through our form or inside our 
models xml file. Whatever is inside the ${…} is basically java code that runs inside the 
execution scope much like jsp. Running inside the execution scope of the process means 
we have access to its variable and in this case we alter our representation based on the 
existing values of  “toUnit”, “temp” and  “newTemp” (newTemp being the name of the 
variable we will later assign the result of the WebService call).  
 
 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 45 - 

 

4.2.4 XML refinement 
 
The current State of the XML File is as follows: 
 
  <process id="tempConverter" name="TempConverter"> 
    <startEvent id="startevent1" name="Start"></startEvent> 
    <serviceTask id="servicetask1" name="CelsiusToFarenheit" > 
    </serviceTask> 
    <serviceTask id="servicetask2" name="FarenheitToCelcius"> 
    </serviceTask> 
    <exclusiveGateway id="exclusivegateway1" name="Exclusive Gateway"> 
 </exclusiveGateway> 
 <exclusiveGateway id="exclusivegateway3" name="Exclusive Gateway"> 
 </exclusiveGateway> 
 <userTask id="usertask2" name="Give Temperature"> 
 </userTask> 
    <userTask id="usertask1" name="redoOrFinish"> 
 </userTask> 
    <sequenceFlow id="flow4" name="" sourceRef="servicetask2" targetRef="exclusivegateway3"> 
 </sequenceFlow> 
    <sequenceFlow id="flow6" name="" sourceRef="servicetask1" targetRef="exclusivegateway3"> 
 </sequenceFlow>   
 <sequenceFlow id="flow22" name="" sourceRef="exclusivegateway3" targetRef="usertask1"> 
 </sequenceFlow>   
    <sequenceFlow id="flow7" name="" sourceRef="startevent1" targetRef="usertask2"> 
 </sequenceFlow> 
    <exclusiveGateway id="exclusivegateway2" name="Exclusive Gateway"> 
 </exclusiveGateway> 
    <sequenceFlow id="flow14" name="" sourceRef="usertask1" targetRef="exclusivegateway2"> 
 </sequenceFlow> 
    <sequenceFlow id="flow15" name="" sourceRef="exclusivegateway2" targetRef="usertask2"> 
    </sequenceFlow> 
    <endEvent id="endevent1" name="End"></endEvent> 
    <sequenceFlow id="flow18" name="" sourceRef="usertask2" targetRef="exclusivegateway1"> 
 </sequenceFlow> 
    <sequenceFlow id="flow19" name="" sourceRef="exclusivegateway1" targetRef="servicetask1"> 
    </sequenceFlow> 
    <sequenceFlow id="flow20" name="" sourceRef="exclusivegateway1" targetRef="servicetask2"> 
    </sequenceFlow> 
    <sequenceFlow id="flow21" name="" sourceRef="exclusivegateway2" targetRef="endevent1"> 
    </sequenceFlow> 
 </process> 
Code Snippet 16 : Unrefined xml converter model 
 
As we can easily notice there is nothing more than our tasks gateways and flows that 
connect them. What we need to do is add conditions to the flows if required, set 
Assignees and form to the user tasks and define the class and its fields in the service task 
for the web Service calls.  
 
 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 46 - 

 

 
 
4.2.4.1 Refining the service tasks 

 
To make the Service Tasks to function properly first of all we must assign them a class. 
In this case we use our gr.tsl.delegate.WsDelegate class that we use to make WebService 
calls. 
The required fields for this class is the WSDL’s URI, the operation of the service we will 
invoke the input variables and the result variable. 
 
<serviceTask id="servicetask1" name="CelsiusToFarenheit" 
 activiti:class="gr.tsl.delegate.WsDelegate"> 
 <extensionElements> 
  <activiti:field name="wsdl"> 
<activiti:string>http://localhost:8080/ConverterProj/wsdl/Converter.wsdl 
</activiti:string> 
  </activiti:field> 
  <activiti:field name="operation"> 
   <activiti:string>celsiusToFarenheit</activiti:string> 
  </activiti:field> 
  <activiti:field name="parameters"> 
   <activiti:expression>${temp}</activiti:expression> 
  </activiti:field> 
  <activiti:field name="returnValue"> 
   <activiti:string>newTemp</activiti:string> 
  </activiti:field> 
 </extensionElements> 
</serviceTask> 
Code Snippet 17 : refined service task 
 
 
 
4.2.4.2 Refining the user Tasks 

 
As far as the user tasks are considered, we need to define an owner and a form. In our 
case we assign the two forms we created before respectively and set as owner the user 
“mdimitr”. 
 
<userTask id="usertask2" name="Give Temperature" activiti:assignee="mdimitr" 
activiti:formKey="converterForm.form"></userTask> 
    <userTask id="usertask1" name="redoOrFinish" activiti:assignee="mdimitr" 
activiti:formKey="redoForm.form"></userTask> 
Code Snippet 18 : refined user tasks 
 
 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 47 - 

 

4.2.4.3 Refining the sequence flows 

 
Considering the sequence flows we are interested only in those that we wish to control 
the flow or more practically the ones which we wish to be active under condition. In this 
case we speak about the flows coming out our first and last exclusive gateway. The 
second gateway acts as exclusive join which means that only the first flow that will arrive 
will cross. If instead we had a parallel gateway all flows should arrive before the process 
moved on. 
<sequenceFlow id="flow15" name="" sourceRef="exclusivegateway2" targetRef="usertask2"> 
      <conditionExpression xsi:type="tFormalExpression"><![CDATA[${redo==true}]]> 
      </conditionExpression> 
    </sequenceFlow> 
    <sequenceFlow id="flow18" name="" sourceRef="usertask2" targetRef="exclusivegateway1"> 
    </sequenceFlow> 
    <sequenceFlow id="flow19" name="" sourceRef="exclusivegateway1" targetRef="servicetask1"> 
      <conditionExpression xsi:type="tFormalExpression"><![CDATA[${toUnit=="far"}]]> 
      </conditionExpression> 
    </sequenceFlow> 
    <sequenceFlow id="flow20" name="" sourceRef="exclusivegateway1" targetRef="servicetask2"> 
      <conditionExpression xsi:type="tFormalExpression"><![CDATA[${toUnit=="cel"}]]> 
      </conditionExpression> 
    </sequenceFlow> 
    <sequenceFlow id="flow21" name="" sourceRef="exclusivegateway2" targetRef="endevent1"> 
      <conditionExpression xsi:type="tFormalExpression"><![CDATA[${redo==false}]]> 
      </conditionExpression> 
</sequenceFlow> 
Code Snippet 19 : sequence flow refinement 
  
Above we can see that just like in the forms the conditions are java code. In this case the 
clause we use must return a Boolean value. 
 
 
 
4.2.5 Deploying our Process 
 
 
After we have concluded the designing and coding part of our process we must have 
ended up with a series of files. The only necessary file is a *.bpmn20.xml that is our 
process model in bpmn2 format. During the deployment it’s the only type of file that is 
evaluated and is the only factor for a successful deployment. Any other error will appear 
during execution. Of course if the model declares to use certain form files we must 
include those as during execution when requested to this files won’t be found. In addition 
we must make sure that any class called by the process must exist in the class path of the 
engines web app. Finally the image file of the model is totally optional. 
 
In our case we ended up with the following files: 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 48 - 

 

 
• unit_converter.bpmn20.xml 
• converterForm.form 
• redoForm.form 
• unit_converter.png 

 
All we have to do now is to create a zip file name *.bar for example converter.bar. 
Afterward we have to login with an administrator account to our manager app and go to 
the deployments page. Then we select upload and select the *.bar file we want to deploy. 
 

 
Figure 26 : uploading deployment 
 
 
If all went well the new Deployment must appear in the Deployments and a new process 
in our processes tab. 
 
 
 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 49 - 

 

4.2.6 Running the process 
 
To Start the new process first we have to select “Start Process” for the process we are 
interested ( TempConverter ) in the Processes page. Then if we are logged in as 
“mdimitr” the first task should appear in “MyTask” at the Tasks page and selecting 
complete form should show the form for completion. 
 

 
Figure 27 : Convert temperature form 
 
 
 We select to convert from 88 degrees Celsius to Fahrenheit. 
Then the engine should move to the service task to call the adequate operation of the web 
service. And if all worked a new Task should appear to see the result and choose to finish 
or convert again. 
 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 50 - 

 

 
Figure 28 : Convert result form 
 
 
If we choose “no” the process will finish otherwise the first task will appear again. 
 
 
 
 

5 EXTENDING THE INFRASTRUCTURE TO RUN 
CHOREOGRAPHIES. 

 
In this section we will try to describe our concept and way of thought so as to develop 
and evolve extensions for the activiti engine that will allow it to implement 
Choreographies. For the concept to be more easy understand will be described through a 
simple case study and try to fulfill the requirements needed step by step. 
 
Although our Infrastructure supports by default orchestrations Choreographies is a totally 
different story.  First of all we need to define the requirement of o Choreography to be 
considered in fact Choreography[16]. 
 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 51 - 

 

1. Participants: As we now Choreography is the coordinated interaction of two or 
more Orchestrations. So by definition we must have two or more separate 
Processes running. 

 
2. Distributed: Our processes should be able to interact no matter where they are 

deployed. This means that they should work whether they exist in the same 
Infrastructure or not. 

 
3. Interoperability: The processes should be able to interact no matter in what type of 

infrastructure they are deployed. To ensure this their communication must be 
consisted by open standards like SOAP through webservices or http request 
responses. 

 
4. No Centralized Control: A proper choreography should not depend on a 

centralized control. All processes must communicate directly with each other. 
 

5. Privacy: While to properly design our processes and have them successfully 
coordinate we have to have all of them in mind, each process should require only 
minimum information for its partners meaning that no detailed inside knowledge 
of a partner process should be required. 

 
6. Instantiation: Every process must be able to have instances with separate scopes 

and access. This means that a process partner is an instantiation of a process type 
so that when its partner wants to contact it they contact the specific Instance on 
not any of that type. This was a major restriction we had so far with BPEL as we 
couldn’t repetitively contact the same execution.  

 
 
 
With the above in mind we must define and create the tools a process can have access to, 
in order for it to communicate and interact with other processes and thus form an 
choreography. 
 

1. Receive message: A process must be able to wait for certain messages and once it 
has received them to continue its execution flow. 

 
2. Send messages: A process must be capable to send a message to any of each 

partner. 
 

3. Instantiation: We need a way to identify our partners. This means that we need 
Knowledge for their location and an identification that will separate them from 
the other instances of the same process type. 
 

 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 52 - 

 

5.1 Existing Tools and workaround 
 
 
 
5.1.1 Instantiation 
 
As we have described before in our Infrastructure once o process is Started a new process 
instance and a new execution are created. Those instances are given unique ids that we 
can use to access them. Here is soma code that demonstrates how this can be done. 
 
 
ProcessEngine processEngine = ProcessEngines.getDefaultProcessEngine()     
RuntimeService runtimeService = processEngine.getRuntimeService();      
Execution newExec = runtimeService.createExecutionQuery().processInstanceId(partnerId).singleResult(); 
Code Snippet 20 : get Process instance execution by process id  
 
With the ProcessEngines.getDefaultProcessEngine() we get the main Process engine 
which as described is our root object. Trough the processEngine object we can gain 
access to the runtimeService that can query through all the running process instances. As 
a result knowing our partners id can give as access to its execution and the ability to 
interact with it. 
 
 
 
5.1.2 Send messages 
 
As is our Infrastructure doesn’t support any way of actually sending a message to another 
process instance. To work around this setback we are going to use the Java Service Task 
artifact. As we described before the Java Service task can work for us as our Swiss army 
knife. We can practically use it to do anything by simply creating an adequate java class 
and assign it to the task. With this in mind we can use it to read files query data from a 
database call Web Service or make http requests.  
 
 
 
5.1.3 Receive message 
 
Just like in the case of sending a message there is no artifact dedicated to such a function. 
What we can use to work around is the receive task. Although all it does is pause the 
execution, we can use it to receive information. What we need is for the process to wait 
until we have somehow fed it with the required information programmatically and then 
tell it to resume. This is done by sending a signal to the paused execution. Here is a 
sample of the code capable for that. 
 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 53 - 

 

 
 
 
 
 
 
ProcessEngine processEngine = ProcessEngines.getDefaultProcessEngine(); 
RuntimeService runtimeService = processEngine.getRuntimeService(); 
Execution newExec = runtimeService.createExecutionQuery().processInstanceId(PartnerId).singleResult(); 
runtimeService.signal(newExec.getId());  
Code Snippet 21 : send signal to execution 
 
As before, we access the execution of a process by its id and send a signal that will 
unpause it to the specific execution. 
 
 
5.2 Case Study 
 
Two evolve our thought on how we used a simple Choreography case study showing the 
interaction between a buyer and a seller during an order procedure. 
Here is a graphical representation of the two interacting processes. 
 
 
 
 
 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 54 - 

 

 
Figure 29 : Buyer order process 
 
Above we can see the process that a buyer will follow. First he will request an offer over 
a certain item. The item is defined by a form assigned to the start event. After that he 
waits for the seller to send him an offer. Once he has received the offer he can assess it. If 
he likes it he can send that he accepts the offer otherwise he asks for a cancelation. 
 
 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 55 - 

 

 
Figure 30 : seller process 
 
 
This process gets instantiated after a call from a buyer. Once instantiated the seller is 
asked to make an offer and sends it. After that he waits for verification or cancelation if 
he receives cancelation the process ends. If he receives verification he is requested to 
continue with the order. 
 
In both this processes we can see that in the place of a possible send message artifact we 
use the java service task. And for waiting for message the receive task respectively. 
 
 
For the above processes to be executed we also need appropriate form files to interact 
with them. Here are the ones we developed for this case study. 
 
 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 56 - 

 

 
 
<h1>Order Request</h1> 
<table> 
  <tr> 
    <td> 
      <label> 
        Product Name:<br/> 
        <input type="text" name="productName" value="" /> 
        <input type="hidden" name="productName_required" value="true" /> 
      </label><br/> 
    </td> 
  </tr> 
  <tr>   
    <td> 
      <label> 
        Quantity:<br/> 
        <input type="number" name="quantity" value="1" min="1" /> 
        <input type="hidden" name="quantity_type" value="Integer" /> 
      </label> 
    </td> 
  </tr> 
</table> 
Code Snippet 22 : Order Request form 
 

 
Figure 31 : Order Request form 
 
In this form the buyer gives the name and the quantity of the product. 
Two variables are created one with the quantity of the product and the other with the 
products name. 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 57 - 

 

 
 
 
<h1>Make offer</h1> 
<p> 
  give price for ${quantity} of ${productName}. 
</p> 
<table> 
  <tr>   
    <td> 
      <label> 
        Price:<br/> 
        <input type="number" name="price" value="0" /> 
        <input type="hidden" name="price_type" value="String" /> 
      </label> 
    </td> 
  </tr> 
</table> 
Code Snippet 23 : make offer form 
 
 

 
Figure 32 : make offer form 
 
 
 
In this the seller makes an offer for the specified amount of a certain item. 
A variable “price” containing the amount is created. 
 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 58 - 

 

 
<h1>Offer Approval</h1> 
<p> the offer for ${quantity} of ${productName}</p> 
<p> is ${price} 
<p> 
  do you accept the offer? 
 
  <select name="acceptOffer"> 
    <option value="1">Yes</option> 
    <option value="0">No</option> 
   </select> 
   <input type="hidden" name="acceptOffer_type" value="Integer" /> 
</p> 
Code Snippet 24 : assess offer form 
 

 
Figure 33 : assess offer form 
 
 
Here the buyer assesses the offer and either accepts it or not. 
A Boolean variable “acceptOffer” is created. 
 
 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 59 - 

 

<h1>Order Completion</h1> 
<p> 
  complete order 
</p> 
Code Snippet 25 : Complete order form 
 
 
 

 
Figure 34 : Complete order form 
 
The seller receives the acceptance of the offer and completes it. 
 
 
 
 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 60 - 

 

5.3 First Implementation same Engine multiple classes. 
 
For our first attempt to implement our concept we are going to follow the simplest 
approach. First of all our two processes are deployed on the same Engine. This means 
that any java class we invoke can gain access to both processes and interact with them. 
Following this concept we will create a different class for every Service task in our 
Choreography. As a result we will end up with four delegate classes. 
 
 
public class StartShopperProcess implements JavaDelegate { 
   
 public void execute(DelegateExecution execution) { 
  ProcessEngine processEngine = 
ProcessEngines.getDefaultProcessEngine(); 
  RuntimeService runtimeService = 
processEngine.getRuntimeService(); 
  IdentityService identityService = 
processEngine.getIdentityService(); 
  ProcessInstance pi=null;  
  try { 
     identityService.setAuthenticatedUserId("mdimitr"); 
      
   } finally { 
     identityService.setAuthenticatedUserId(null); 
   } 
 pi=runtimeService.startProcessInstanceByKey("shoperProcess"); 
   Execution newExec = 
runtimeService.createExecutionQuery().processInstanceId(pi.getId()).sing
leResult(); 
   String 
productName=(String)execution.getVariable("productName"); 
   int 
quantity=((Integer)execution.getVariable("quantity")).intValue(); 
   runtimeService.setVariable(newExec.getId(),"buyerId", 
execution.getProcessInstanceId()); 
  runtimeService.setVariable(newExec.getId(),"productName", 
productName); 
   runtimeService.setVariable(newExec.getId(),"quantity", 
quantity); 
       
   execution.setVariable("shopperId", pi.getId()); 
 } 
} 
Code Snippet 26 : Delegate class for sending a new order 
 
 
After the buyer has filled the order form the service task calls this class. Here we gain 
access, as described before, to the process engine and through it to the runtimeService. 
Through the runtime service we can instantiate a new seller process and get its process Id. 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 61 - 

 

We store the Id in a variable of the local execution “shopperId”. Using this id we can 
query and access the execution off the newly instantiated seller process. This way we can 
create a variable there with the buyer’s process id. Furthermore we create two variables to 
store the quantity and the product name for our order. 
 
As a result both processes know the id of their partner and we passed the data we wanted 
 
After that the seller process will prompt him to fill the make offer form.  
 
. 
 
 
 
public class sendOffer implements JavaDelegate { 
 public void execute(DelegateExecution execution) { 
  ProcessEngine processEngine = 
ProcessEngines.getDefaultProcessEngine(); 
  RuntimeService runtimeService = 
processEngine.getRuntimeService(); 
  String shopperId=(String)execution.getVariable("buyerId");  
  Execution newExec = 
runtimeService.createExecutionQuery().processInstanceId(shopperId).singl
eResult();   
  runtimeService.signal(newExec.getId());  
 runtimeService.setVariable(newExec.getId(),"price",execution.getVa
riable("price")); 
   } 
} 
Code Snippet 27 : Delegate class for sending the offer 
 
 
 
After the make offer form is filled the following service task calls this class. Here we use 
the store id of the buyer’s process instance and use it to access it and create a new 
variable to it containing the amount of the offer. Furthermore we send a signal to the 
buyers execution to move on from the receive task that it has paused. 
 
After that the buyer is prompt to fulfill the asses offer form. Depending on the choice a 
different class will be called and as in send offer class we pass the choice made through a 
variable. 
 
 
Although this implementation is fully functional and seems to fulfill most of our demands 
for choreography it has a major flaw. It runs on a single Engine and as mentioned our 
demand for Choreography is distribution which means they must be able to run in 
different machines. With this implementation this is not feasible. Yet with few changes 
we can evolve it to work between two engines. 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 62 - 

 

 
 
 
 
 
5.4 Second Implementation different Engine multiple services. 
 
 
What we need to do is to instead of using a class to interact with both partners to break 
this into a class and a web service or a servlet. For easier understanding we are going to 
use http requests to communicate. 
 
 
 
With this concept in mind for every interaction between two partners we require a 
delegate class that will make the request and a servlet or a web service that will receive it. 
We assume that we know the location of the partner Process and have incorporated in our 
model. 
Re out that all the calling classes will be almost identical and that will change will be the 
http parameters passes and the result variable. 
This means that just as we acted with our orchestrations and created a single delegate 
class to make all our Web Service calls similarly we can make one for our http call. 
 
This class will look like that: 
 
 
 
 
 
public class WsRestDelegate implements JavaDelegate { 
  
 private Expression Url; 
 private Expression parameters; 
 private Expression returnValue; 
 public void execute(DelegateExecution execution) { 
   
  String URLString = (String)Url.getValue(execution); 
     String paramStrings = ""; 
     if (parameters!=null) { 
       StringTokenizer st = new StringTokenizer( 
(String)parameters.getValue(execution), ","); 
       while (st.hasMoreTokens()) { 
         paramStrings=paramStrings+"&"+st.nextToken().trim(); 
       } 
     }  
     String result = null; 
     if (URLString.startsWith("http://")) 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 63 - 

 

     { 
     try 
     { 
     String urlStr = URLString; 
     if (paramStrings.length () > 0) 
     { 
     urlStr += "?" + paramStrings; 
     } 
     URL url = new URL(urlStr); 
     URLConnection conn = url.openConnection (); 
     BufferedReader rd = new BufferedReader(new 
InputStreamReader(conn.getInputStream())); 
     StringBuffer sb = new StringBuffer(); 
     String line; 
     while ((line = rd.readLine()) != null) 
     { 
     sb.append(line); 
     } 
     rd.close(); 
     result = sb.toString(); 
     } catch (Exception e) 
     { 
     e.printStackTrace(); 
     } 
     }   
     if (returnValue!=null) { 
       String returnVariableName = (String) 
returnValue.getValue(execution); 
       execution.setVariable(returnVariableName, result); 
       System.out.println(" returned "+returnVariableName+" = "+ 
result);        
     } 
 } 
} 
Code Snippet 28 : delegate class to make Http calls 
 
 
The above class works exactly like our webService call class worked instead now we 
make an Http request. 
 
To level with the previous implementation this class will call a service that will 
instantiate the sellers process, store the http parameters as local variables and send with 
its response its process id. 
 
On our next calls we will sent as parameter the process id for the receiving service to 
access the right process instance. 
 
 
On the receiving point the service will look like That: 
 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 64 - 

 

protected void executeWebScript(ActivitiRequest req, Status status, 
Cache cache, Map<String, Object> model) { 
    
 ProcessEngine processEngine = 
ProcessEngines.getDefaultProcessEngine(); 
 RuntimeService runtimeService = processEngine.getRuntimeService(); 
 IdentityService identityService = 
processEngine.getIdentityService(); 
 ProcessInstance pi=null; 
 try { 
    identityService.setAuthenticatedUserId("mdimitr"); 
     
  } finally { 
    identityService.setAuthenticatedUserId(null); 
  }  
 
 pi=runtimeService.startProcessInstanceByKey("shoperProcess"); 
  
  Execution newExec = 
runtimeService.createExecutionQuery().processInstanceId(pi.getId()).sing
leResult();  
  String productName=(String)req.getString("productName"); 
  int quantity=Integer.parseInt(req.getString("quantity")); 
  int callerId=Integer.parseInt(req.getString("buyerId"));  
  runtimeService.setVariable(newExec.getId(),"buyerId", 
callerId); 
  runtimeService.setVariable(newExec.getId(),"productName", 
productName); 
  runtimeService.setVariable(newExec.getId(),"quantity", 
quantity);  
 model.put("shopperId", pi.getId()); 
  } 
Code Snippet 29 : Start Shopper webScript 
 
We can see that it is very similar to our new order class in snippet 26. The basic 
Difference is that the variables from the caller are now http parameters ant in order to 
create a new variable to the caller we must include it in our response. 
 
Similarly we form receiving WebScript for every receive task. 
 
 
 
 
5.5 Final Implementation Different Engine, single receiving 

services. 
 
 
When creating such infrastructures we must always have in mind that they are going to be 
used by mostly non developers. As a result although our last implementation confronts 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 65 - 

 

fully with our choreography requirements is user unfriendly. Every time we create a new 
process we must create adequate receiving WebScript and this is quite redundant. If we 
observe all our web script we can see huge similarities and a pattern for a single global 
receiver emerges. 
 
 
This receiver will have the following logic. It will check for a parameter with name 
“ProcKey” this will be the key of a process that must be instantiated. So if it exist it will 
instantiate the mentioned process.  
Otherwise it will check for the parameter with name “procId”. This will be the id of the 
process instance called. 
After that it will check for a parameter with name “return”. This parameter will hold the 
names of variables required to be returned, delimited with a minus symbol “-”.Finally it 
will browse through all the rest parameters and instantiate them as Variables. 
 
This global receiver will look like that: 
 
protected void executeWebScript(ActivitiRequest req, Status status, 
Cache cache, Map<String, Object> model) { 
    HttpServletRequest request=req.getHttpServletRequest(); 
 Enumeration<String> names = request.getParameterNames();  
 String name="";   
 Execution newExec=null; 
 ProcessEngine processEngine = 
ProcessEngines.getDefaultProcessEngine(); 
 RuntimeService runtimeService = processEngine.getRuntimeService(); 
 ProcessInstance pi=null; 
 String returnVars; 
 String procId; 
 String procKey=req.getString("procKey"); 
 if (procKey!=null){ 
 
 pi=runtimeService.startProcessInstanceByKey("shoperProcess"); 
  newExec = 
runtimeService.createExecutionQuery().processInstanceId(pi.getId()).sing
leResult(); 
 } 
 else{ 
  procId=req.getString("procId"); 
  newExec = 
runtimeService.createExecutionQuery().processInstanceId(procId).singleRe
sult(); 
 } 
   
 while((name=names.nextElement())!=null){ 
  if(name!="procKey" && name!="procId" && name!="return"){ 
   runtimeService.setVariable(newExec.getId(),name, 
req.getString(name)); 
  } 
 } 



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 66 - 

 

 returnVars=req.getString("return"); 
 String[] variables=null; 
  
 if(returnVars!=null){ 
  variables=returnVars.split("-"); 
 } 
  
 for(int i=0; i < variables.length; i++){ 
  model.put(variables[i], 
runtimeService.getVariable(newExec.getId(),variables[i])); 
 } 
  } 
Equation 30 : global receiver WebScript 
 
 
5.6 Extension Summary 
 
What we developed are classes and native services that provide the ability for 
independent processes to communicate and interact with each other thus forming 
choreographies. Furthermore through our case study we demonstrated a way of thinking 
conceptualizing and designing orchestrations to interact with each other so as to lead to 
functional and useful choreographies.  Such functionality can be incorporated in the 
activity engine and other similar tools and be perfected through real life applications. 
What is required is standardization of communication protocols between processes and 
lift the mist of what choreographies really are as many interprete and view it in different 
ways.



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 67 - 

 

CONCLUSIONS AND FUTURE WORK 
 

During the study for this work we gain significant knowledge on how to develop and run 

web services and WebService Orchestration. Additionally we noticed the limits of current 

frameworks and infrastructures. This fact pushed the community to the creation of BPMN 

2 a business model that can satisfy both developers and managers. Believing that 

choreographies are an integral part of the future of business processes we attempted to 

figure out if the latest developments can provide easy implementation. As it was figured 

out Choreographies seem to most developers still very exotic and hesitate to incorporate 

them in their work. Yet it is Obvious that we are moving away from strictly orchestration 

character that was set by BPEL. As a result the artifacts for a choreography capable 

infrastructure exist. The result of this study was an infrastructure capable of providing an 

environment to easily develop both orchestrations and choreographies. 

 

In the future we must test the logic and the stability of this implementation with more 

complex models. Furthermore we can add more BPMN 2 artifacts that will give 

significant more possibilities to the model designers. A first improvement that was 

notices is to store the calls/messages so as if a call is made before a receive task is 

reached to pass it without pausing. In addition to this, calls can also have receive task 

targets so as if a receive task is never reached the call to be discarded.



DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 68 - 

 

REFERENCES 

5. "Web Service to Web Service Communication". Retrieved 2011-09-22. 
6. "Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language". 

Retrieved 2011-09-22. 
7.  "Web Services Glossary" . W3C. February 11, 2004. Retrieved 2011-09-22. 
8. "XML 1.0 Specification". W3.org. Retrieved 2011-09-22. 
9. Allweyer T (2010 Feb 22). BPMN 2.0 - Introduction to the Standard for Business 

Process Modeling. BoD. ISBN 978-3-8391-4985-0. 

10. apache tomcat server 

11. BPEL vs BPMN 2.0: Should you care? Frank Leymann http://bpt.hpi.uni-

potsdam.de/pub/BPMN2010/Program/bpmn2010_leymann.pdf  

12. Briol P. (2008 April 12). BPMN, the Business Process Modeling Notation Pocket 

Handbook. LuLu. ISBN 978-1-4092-0299-8. 

13. Briol P. (2010 Nov 16). BPMN 2.0 Distilled. LuLu. ISBN 978-1-4461-0406-4. 

14.  Business Process Execution Language for Web Services, Version 1.1  (PDF) (5 May 

2003) 
15.  Business Process Modeling Notation, specification of BPMN v1.0 by Stephen A. 

White (3 May 2004), for Business Process Management Initiative (BPMI) 

16. Chris Peltz: Web Services Orchestration and Choreography. IEEE Computer 

(COMPUTER) 36(10):46-52 (2003) 

17. Chun Ouyang, Marlon Dumas, Arthur H. M. Ter Hofstede : From Business 

Process Models to Process-oriented Software Systems: The BPMN to BPEL Way 

18. Debevoise, Neilson T, et al. (2008 July 4). The MicroGuide to Process Modeling 

in BPMN. BookSurge Publishing. ISBN 978-1-4196-9310-6. 

19.  Fielding, Roy T.; Gettys, James; Mogul, Jeffrey C.; Nielsen, Henrik Frystyk; Masinter, 

Larry; Leach, Paul J.; Berners-Lee (June 1999). "RFC 2616: Hypertext Transfer Protocol 

-- HTTP/1.1". 
20. FreeMarker template engine http://freemarker.sourceforge.net/ 

21.  Gero Decker, Oliver Kopp, Frank Leymann, Mathias Weske: BPEL4Chor: 

Extending BPEL for Modeling Choreographies. ICWS 2007:296-303 

http://www.wstutorial.com/web-service-to-web-service-communication/
http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/
http://en.wikipedia.org/wiki/World_Wide_Web_Consortium
http://www.w3.org/TR/REC-xml
http://www.bpmn-introduction.com/
http://www.bpmn-introduction.com/
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-3-8391-4985-0
http://tomcat.apache.org/
http://bpt.hpi.uni-potsdam.de/pub/BPMN2010/Program/bpmn2010_leymann.pdf
http://bpt.hpi.uni-potsdam.de/pub/BPMN2010/Program/bpmn2010_leymann.pdf
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-1-4092-0299-8
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-1-4461-0406-4
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel/ws-bpel.pdf
http://en.wikipedia.org/wiki/PDF
http://www.bpmn.org/Documents/BPMN%20V1-0%20May%203%202004.pdf
http://csdl.computer.org/comp/mags/co/2003/10/rx046abs.htm
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-1-4196-9310-6
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616
http://freemarker.sourceforge.net/
http://doi.ieeecomputersociety.org/10.1109/ICWS.2007.59
http://doi.ieeecomputersociety.org/10.1109/ICWS.2007.59


DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 69 - 

 

22. Grosskopf, Decker and Weske. (2009 Feb 28). The Process: Business Process 

Modeling using BPMN. Meghan Kiffer Press. ISBN 978-0929652269. 

23. Jack Vaughan: BPMN 2.0 adds notation to handle BPM choreography. 

SearchSOA.com 

24. Johannes Maria Zaha, Alistair P. Barros, Marlon Dumas, Arthur H. M. ter 

Hofstede: Let's Dance: A Language for Service Behavior Modeling. OTM 

Conferences 2006:145-162 

25. Object Management Group (OMG) http://www.omg.org/ 

26. Pautasso, Cesare; Zimmermann, Olaf; Leymann, Frank (2008-04), "RESTful 

Web Services vs. Big Web Services: Making the Right Architectural 

Decision", 17th International World Wide Web Conference (WWW2008) (Beijing, 

China) 
27. Process Modeling Notations and Workflow Patterns, paper by Stephen A. White of 

IBM Corporation (2006) 

28. Richardson, Leonard; Ruby, Sam (2007-05), RESTful Web Services, 

O'Reilly, ISBN 978-0-596-52926-0 
29. Ryan K. L. Ko, Stephen S. G. Lee, Eng Wah Lee (2009) Business Process 

Management (BPM) Standards: A Survey. In: Business Process Management 

Journal, Emerald Group Publishing Limited. Volume 15 Issue 5. ISSN 1463-

7154. PDF 

30. S-Cube Knowledge Model: Service Choreography 

31. The Activiti project http://activiti.org 

32. The ms-bpel standard by OASIS oasis ms-bpel. 

33. the Spring Surf Project http://www.springsurf.org/ 

34. The Organization for the Advancement of Structured Information 

Standards (OASIS)  Oasis-open.org. 

35.  W3C (September 2011). "World Wide Web Consortium (W3C) About the Consortium". 

Retrieved 2011-09-22. 
36. Web Services Choreography Working Group at W3 

  

http://www.bpmn-book.com/
http://www.bpmn-book.com/
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-0929652269
http://searchsoa.techtarget.com/news/article/0,289142,sid26_gci1372109,00.html
http://dx.doi.org/10.1007/11914853_10
http://www.omg.org/
http://www.jopera.org/docs/publications/2008/restws
http://www.jopera.org/docs/publications/2008/restws
http://www.jopera.org/docs/publications/2008/restws
http://www.bpmn.org/Documents/Notations_and_Workflow_Patterns.pdf
http://oreilly.com/catalog/9780596529260
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-0-596-52926-0
http://ryanko.files.wordpress.com/2008/03/bpm-journal-koleelee-bpms-survey.pdf
http://www.s-cube-network.eu/km/terms/s/service-choreography
http://activiti.org/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://www.springsurf.org/
http://www.oasis-open.org/committees/process.php#stand_approv_process
http://www.w3.org/Consortium/
http://www.w3.org/2002/ws/chor/


DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND 
ORCHESTRATIONS OVER A BPMN 2 ENGINE 

DIMITRIOU MICHAIL  
Spring 2011 - Heraklion  
Transformation Service Laboratory     Page - 70 - 

 

37. White, Stephen A, and Miers, Derek (2008 August 28). BPMN Modeling and 

Reference Guide. Future Strategies Inc.. ISBN 978-0-9777-5272-0. 

38. Wikipedia contributors. Unified Modeling Language. Wikipedia, The Free Encyclopedia. 

November 4, 2011, 15:44 UTC. Available 

at: http://en.wikipedia.org/w/index.php?title=Unified_Modeling_Language&oldid=4589860

43. Retrieved 2011-09-22 
39. Zongyan Qiu, Xiangpeng Zhao, Chao Cai, Hongli Yang: Towards the theoretical 

foundation of choreography. WWW 2007:973-982 

http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-0-9777-5272-0
http://en.wikipedia.org/w/index.php?title=Unified_Modeling_Language&oldid=458986043
http://en.wikipedia.org/w/index.php?title=Unified_Modeling_Language&oldid=458986043
http://doi.acm.org/10.1145/1242572.1242704
http://doi.acm.org/10.1145/1242572.1242704

	1 INTRODUCTION
	2 BACKGROUND KNOWLEDGE/THEORY
	Web services
	2.2 Orchestrations
	2.3 Choreographies
	2.4 Orchestrations and Choreographies
	2.5 BMPN
	2.6 BPEL
	2.7 BPEL and BPMN
	2.8 BPMN 2

	3 THE INFRASTRUCTURE
	THE BPMN 2 ENGINE
	3.1.1 The engines API and its hierarchy can be seen in the following figure.

	3.2  MySql DataBase
	3.3 BPMN 2 designer tool
	3.4 Management Web Application
	3.4.1 Architecture and functionalities

	3.5 Summary

	4 THE FRAMEWORK IN PRACTICE
	Learning the BPMN 2.0 constructs 
	4.1.1 None start event
	4.1.2 None end event
	4.1.3 Sequence flow
	4.1.4 Conditional sequence flow
	4.1.5 Gateways
	4.1.5.1 Exclusive gateway
	4.1.5.2 Parallel Gateway

	4.1.6 User task
	4.1.7 Script Task
	4.1.8 Java Service Task
	4.1.9  WebService Task
	4.1.10  Java receive task

	4.2 Designing and running a simple Orchestration
	4.2.1 WebService Development
	4.2.2 Process model Design
	4.2.3 Form Creation
	4.2.4 XML refinement
	4.2.4.1 Refining the service tasks
	4.2.4.2 Refining the user Tasks
	4.2.4.3 Refining the sequence flows

	4.2.5 Deploying our Process
	4.2.6 Running the process


	5 Extending the infrastructure to run Choreographies.
	5.1 Existing Tools and workaround
	5.1.1 Instantiation
	5.1.2 Send messages
	5.1.3 Receive message

	5.2 Case Study
	5.3 First Implementation same Engine multiple classes.
	5.4 Second Implementation different Engine multiple services.
	5.5 Final Implementation Different Engine, single receiving services.
	5.6 Extension Summary


