University of Crete
School of Sciences and Engineering
Computer Science Department

DESIGNING, IMPLEMENTING AND EXECUTING
CHOREOGRAPHIES AND ORCHESTRATIONS
OVER A BPMN 2 ENGINE

BY

MICHAIL DIMITRIOU

Master’s Thesis

Heraklion, November 2011

University of Crete

School of Sciences and Engineering
Computer Science Department

DESIGNING, IMPLEMENTING AND EXECUTING
CHOREOGRAPHIES AND ORCHESTRATIONS OVER A BPMN 2

ENGINE

BY

MICHAIL DIMITRIOU

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science

Author: ﬁ

Michail Dimitriou, Computer Science Department

Board of enquiry:

Supervisor:

Christos Nikolaou, Professor - University of Crete

Member:

Dimitrios Plexousakis, Profess: Ulmrsity of Crete

Member: K,MQW\

Kostantinos Magoutis, Researcher — FORTH-ICS

Approved by:

Angelos Bilas, Kssosiate Professor — University of Crete, Chairman of the Graduate

Studies Committee

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

Dimitiou Michail
Master’s Thesis
University of Crete

Computer Science Department

Abstract

For decades now business managers have been using workflows to describe and study
business processes. Soon after such workflows started appearing in the designing of
Information Systems and the two worlds started their parallel evolution. Tools and
standards where developed to design and study these models yet most of them where
focusing on the one side of the coin. With the arrival of web services the similarity of a
web service task to a business task and a business process to a service composition
became obvious and the attempt to merge the world of management and IT began.

With web service composition in mind several metamodels where proposed (WSFL,
XLANG, BPML). With IBM and Microsoft leading the way Business Process
Execution Language (BPEL) evolved from the above and became the standard for
service composition and Business process execution. BPEL although excellent for
machine readability (execution) and automated processes, proved too complicated for non
developers and as no graphical representation was in mind when developed the
management community sought after a standard for designing and studying models. Later
Business Process Modeling Notation (BPMN) became the preferred designing
metamodels for describing and specifying business tasks in a business process
model. BPMN contrary to BPEL although easily human readable and with graphical
representation wasn’t strict enough to be executable, as a result the two standards
coexisted although mapping between them was required in order to transcend from
design to execution. With the evolution of the field and the new notions orchestrations as
independent processes, choreographies as the collaboration and interaction of multiple
orchestrations, human tasks and several more the development of a new notation looked
necessary.

The result as of 2010 was BPMN 2. This notation can be graphically represented and
is strict enough to be executed can describe choreographies and human tasks and most
importantly is easily extendable and configurable. In This Thesis we try to combine and
refine some existing tools to create an infrastructure where someone can easily design
and execute orchestrations and choreographies using BPMN 2.

DIMITRIOU MICHAIL \
Spring 2011 - Heraklion W
Transformation Service Laboratory Page - 1 - ::-':*‘ {-

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

YXEAIAXMOZXZ, YAOIIOIHXH KAI EKTEAEXH XOPOI'PA®IQN
KAI ENOPXHXTPQXEQN ITANQ XE MIA BPMN 2 MHXANH.
Anuntpiov Miyoni
Master’s Thesis
Havemotijuio Kpijtng
Tunuoa Emotiuns Ynoloyierwv

Agkaetiec TOpo oTEAEYN EMXEPNOEDV YpNoomolovy WOrkflows yio v meprypagn ko
UEAETT) ETLYEPTLOTIKAOV OAOTKOGLDV. ZOVIOUO ALTE ApYLoay vo ELeavioviol 6To
oxedo o Tov IIAnpogoplok®v ZuoTUdtmv Kot o1 000 KOGUMOV APYLoaY TNV TOPAAANAN
eEEMEN Tovg. Atbdpopa epyadeio Kot TPOTLTTA AVOTTUYOMNKOV Y10t TO GYESACUO KoL TN
UEAETN OLTOV TOV LOVTEA®VY 0ALA T, TEPICCOTEPA OO OVTE ETIKEVIPOVOVTAY GTN Lo
TAevpd TOV VOopoHaToc. Me TNV €AeVoT] TOV SLOOIKTUAK®Y DINPEGLOV 1 OPLOLOTNTA EVOG
web service pe pog emyElpnNoloKng EPYOCIOG KO LI ETLYEPTLOTIKT S10S1KAGT0 LE pia
ovvbeomn amd Web Services £yive pavepr| Kat 1 TPOSTAOELN VO GLYXWOVEVTEL O KOGLLOG TOV
Management kot tov IT Eekivnoe.

Me 1 cOvBeon vanpecidv [otov cav fdon mpotdonioy ToAAE LETALOVTELN OTWG
(WSFL, XLANG, BPML). Mg v IBM ka1 1 Microsoft cav 0dnyovg eEeliydnke n
Business Process Execution Language (BPEL) kot £ywve o tpdtumo yio T ohvheon
vanpectdv Kot ektéleons Emyeipnolokov dwadikaciov. H BPEL av kot eopetikn yiao
avayvoon (extédeon) amd pio Unyovn Kot Yo dVTOUUTOTONIEVES O10OIKOGIES,
amodeiyOnie vePPoAKd TEPITAOKT) Y10l TOVG U] TPOYPOUUUOTICTES KOl SEGOUEVOL OTL OEV
elye Katd vou TNV YpaQIK ovomTopdoToct OTav avamtHyOnke 1 Koot Tov
Management avalnoe &va S1apopeTikd TPOTLTO Y10 TO GYEOIACUO KO TN HLEAETN
povtélmv. Apyotepa H Business Process Modeling Notation (BPMN) éywe to
TPOTIUMUEVO LOVTELO Y10, TOV GYEOLOCUO KOL TNV TEPLYPUPY| ETLYEPNCLOKDV EPYOUCIDV
kot dradwcaciwv. H BPMN g avtifeon pe v BPEL av kot evkola avayvaooiun and
TOV AVOPMOTO Kol PE YPOPIKN TOPAGTACT) OEV NTOV OPKETA AVGTNPA SOUNUEVT) DOTE VO
elvar ekteAéoiun, pe amotéAespla Ta SV0 TPOTVTO VO GLVVTTAPYOVV, OV KOt YopToypdenomn
HETOED TOLG NTOV OTAPAITNTN OGTE VO, LETAPOVUE ad TO OYESOCUO OTNV EKTEAEOT. Me
Vv €EEMEN ToL TopEN KO TIG VEEG EVVOLEG TNG EVOPYNOTP®ONG cav pio ave&aptn
dladKacia, TG YopoyPAPiac GOV TNV GLVEPYACTO Kot OAANAETIOpOCT) TOAADY
EVOPYNOTPOCEMY, TIG AVOPOTIVES EPYUCIES KO OPKETES OKOMA, 1 OVATTTLEN LG VENS
ONUEYPOPIOS GOVOTAY OmapoiTnTh.

To amotéiespa amd to 2010 nrav H BPMN 2. Avt 1| onpeoypoeio propet vo
avamopaoTadel YPoQIK®OS Kol Elval apKeETH avoTPY] MOTE VO EKTEAECTEL, Umopel va,
TEPLYPAYEL YOPOYPAPIES KA TIG avOpDOTIVEG Epyacieg Kot Kupimg gival evkola
EMEKTAGIUN KO TOPOUETPOTOMGIUN. XTIV TApoLSa epyacio Tpoomadolpe va
GLVOLAGOVLE KOl VO TEAELOTOGOVLE KATO0, VILAPYOVTO EPYAAEiD Yo TN dnpovpyia
piog vrodoung, 0mov Kamolog Bo pmopel evkoAa va oyed1dlel Kot va ekTeAel
EVOPYNOTPAOCELS KOl YOpoypapies ypnoonoiwvtag BPMN 2.

DIMITRIOU MICHAIL \
Spring 2011 - Heraklion W
Transformation Service Laboratory Page - 2 - ::-':*‘ {-

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

Acknowledgements

First of all 1 would like to thank my supervisor, Mr. Christos Nikolaou for the
cooperation we had over all these years, for his help and guidance and for giving me
the opportunity to develop and implement my ideas.

I would also like to thank Mr. Dimitris Plexousakis and Mr. Kostas Magoutis for
being in my board of enquiry and for reading my work.

Furthermore I’d like to thank all my friends in Heraklion for the moments we had the
years of my stay, my colleagues in the Transformation and Services Laboratory for
the cooperation. And of course all my Teachers and pears in the undergraduate and
post graduate program of the Computer Science Department of Crete.

I must also thank my Employer Virtual Trip Ltd. and all my colleagues there for the
chance to improve and develop my skills and the Job position that supported me
financially during my post graduate years.

Finally I my greatest appreciation go to my family that supported me financially and
ethically throughout my studies and stood behind my every choice whether right or
wrong.

DIMITRIOU MICHAIL \
Spring 2011 - Heraklion W
Transformation Service Laboratory Page - 3 - %’{-

-

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

Table of Contents
F N o RS I N A I 1
ACKNOWLEDGEMENTS ...ttt sttt e e e s sb s s be e s bt e s sbe s s sbes s sbeessbeessbesesbeessbeessbbeesbeeesreeas 3
TABLE OF CONTENTS ..ottt ettt ettt sttt e st et e s be s s sb e s s abee s sb e e s ebesesbeessbeessbeessbesesbaessbeessbbeesbeeesreeas 4
LI = I I TSRO 5
FIGURE LIST ittt ettt ettt st e et e st esa e e s ate e sab e e sabe e sab e e sabeesateesaaeesabeesaeeesabeesbeessabeesaenssreeas 6
CODE SNIP P ET LIS ettt ettt ettt ettt ettt e e e ae e et h e e b e e s et e e e be e s sb e e e baesebeesbesssbessbesssbeeerenesees 7
1 INTRODUGCTION . ..ottt ettt ettt ettt ettt e et e e e sa e e e e b e e e st e e e sbeeeshteesbeeesbbeesaesssbbsesbeessbbeesrenssreeas 8
2 BACKGROUND KNOWLEDGE/THEORYcooiiiiiietie ettt ettt sree s sran s sven e rs 8
2 R VA =3t AV T = 8
A O =0 o =1 = 101N 1 9
2.3 CHOREOGRAPHIEScccviiiitieitessiteestesssbessbesssbessbesssbessbesssbessbesssbassabessbessbesssbessnbesssbessbessbesansesssres 9
2.4 ORCHESTRATIONS AND CHOREOGRAPHIES .. .cciiiiiiitttiiiiieeiiiiibtiies s e s s sesibbbasssesssssabbbasssesssssabbbasssasssssnens 9
ST =1 1Y, 1 o N PSR OTSTRTT 9
T = = = TSRO URTRTRI 10
2.7 BPELAND BPIMN ...ttt sttt e e sttt e e st e s st e e st e s et e s sabe s s ateesabessabassabessabaesntasans 11
72 T = = V| N 11
3 THE INFRASTRUCTURE ..ottt ettt sttt st ae s sabe s s ba s sate s sabessnbessabessnaes e 12
3.1 THEBPMNZ2ENGINE ..ottt ettt st sate st e s st e s s atessabe s sabassabessrbessnbe s e 12
3.1.1 The engines API and its hierarchy can be seen in the following figure.........cccccooevvivrnnnne, 12
3.2 IMYSQL DATABASE ...ttt et e e e e e e e s e e bbb e e s e e e s e e bbb e e e e e e s r b e e e e e e aan 14
3.3 BPMN 2 DESIGNER TOOL tuiiiiiiiiiitttiiiieeeiiiiisittiteesessiisbbstesssesssssbbssasssesssasabtbssssasssasbbbasssesssssssbbasssssessns 16
3.4 MANAGEMENT WEB APPLICATION ..iiiiiiiiiittttiiieeeesiitbateessesssasbtbasssesssassbsbssssessssssbbasssesesssssbbssssssessns 18
3.4.1 Architecture and fUNCHIONAIITIES.veii it 22
IS TIS U112 = 7 25
4 THE FRAMEWORK IN PRACTICE ...ttt ettt sttt s ve s st sbassnne e 26
4.1 LEARNING THE BPMN 2.0 CONSTRUCTS.....tuiiiiieitiieiteeeitieesteessttsssbeessatsssseessatesssaessbtesssesssssesssensssnens 26
41.1 1N 0] TSy =T A=Y =]) R 26
41.2 [0 g TE=T 410 [10| SO 27
4.1.3 SEAUENCE FIOW ..ottt bbbt se e b na 27
4.1.4 Conditional SEQUENCE FIOW........oiiiiiiiiiei e e 28
.15 GAIBWAYS ..vveieeitieitieitee ittt ettt bttt et e ab e et e bt ekt e ke e Rt e et R e Re e eR £ e Re e bt e R bt R b e nb b e nbe e be e neenneennas 29
O T U LYY i - 1 R 34
T A o 4 1) 1= TGOS 35
O TN - V7 T Y ot - T QR 36
4.1.9 WEDSEIVICE TASK....viiittiiiiieitiiectie sttt ste e sttt s st e e sat e s s be s sat e s s abe e sabessbaeesabesssbessabesssbessnbessrressnsesans 38
ANG NEIE 1S TN ClASS: ...ttt ettt e e st e e s s bt e e e sbae e e s sab e e e ssabbesesbassessbbanesssbansesnns 39
4.1.10 JAVA TECRIVE TASK ...veiiieeiii ittt ettt ettt e et e e s st e s e st ae e e s sab e e e s sabaesssabanesssabeneas 39
4.2 DESIGNING AND RUNNING A SIMPLE ORCHESTRATIONcciiiiiiitiiiiiee e e s iitirtiee s e s s sibbaress s e s s sssbananseea s 40
421 WebService DEVEIOPMENLcooiiiiiiieieieeee e sa 40
DIMITRIOU MICHAIL A
Spring 2011 - Heraklion D
Transformation Service Laboratory Page - 4 - -,,%r;
N

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

4.2.2 Process MOAEI DESIGN........ciiiiiieieiieiie ettt ettt bt se e seesbe b sae 42
N T o] 1 1 WO (== 1 [0 TR OTRRTRRR 43
D Y| I =Y T4 T=T 24 T=T 0 R 45
4.25 DEPlOYING OUF PIOCESS ...evvivieviereeieiiesiesiesieseseeseeseeste e stessessaaseeseesseseessessessessessessseseessessensens 47
4,26 RUNNING the PrOCESS. .. ueitiiteiteereeriesieieestesesteseseeseesaeste e ssessesseaseeseesseseessessessessesseenseseessessessens 49
5 EXTENDING THE INFRASTRUCTURE TO RUN CHOREOGRAPHIES.cocoovviivieiee 50
5.1 EXISTING TOOLS AND WORKAROUNDcuuttiiiiiiiiiiiiiriieeiessiiitisiesssesssasissbssssessssssssssssssssssssssssssssesnns 52
51.1 RIS e= L (=N 0] o DRSS 52
5.1.2 SENG MESSAGES - .vnverveteterteateaseetestestestestestesseeseeseesseseeabesbeabeabeaseaseesaebesbesbeabeabeane e e enbeneesbenbenee 52
5.1.3 RECEIVE MESSAGE ...uvivetetieteaieeteitesteste bt atesieese et esbestesbesbe bt ebeaseaseese e besbesbesbeebeebe e e enbenbeabenbeee 52
LI O S =y 10) 72 53
5.3 FIRST IMPLEMENTATION SAME ENGINE MULTIPLE CLASSES. ...vviiiteeiteiitieiresiressressssessssesssesssnesans 60
5.4 SECOND IMPLEMENTATION DIFFERENT ENGINE MULTIPLE SERVICES.ucciviiiiteeiieciivessressressneeans 62
5.5 FINAL IMPLEMENTATION DIFFERENT ENGINE, SINGLE RECEIVING SERVICES.cccvviiieeiiiiiiiriieeeeenn 64
5.6 EXTENSION SUMMARY ...utiiiiiiiiiiiitiitieeesseiisbbettsesssssisbbatssssesssasbbbbaassesssasbbbbasssasssasabbbatesesssssbbbabaeeeessas 66
CONCLUSIONS AND FUTURE WORK ... oottt ettt tte sttt e e st bassate s s ebassvassbassaeeans 67
REFERENGCES ...ttt ettt et e ettt e st e e a e e s at e e sa b e e sbe e e sh b e e sbeeeshteesaeeesbtsesbesesbeseabesesrtesareeeees 68
TABLE LIST
Tables Page
Table 1 : Database Tables. 15
DIMITRIOU MICHAIL A
Spring 2011 - Heraklion D
Transformation Service Laboratory Page - 5 - =
N

V.'_

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND

ORCHESTRATIONS OVER A BPMN 2 ENGINE

FIGURE LIST

Figures Page
Figure 1 : DataBase SCNEMA.c.civeiiiiieiieie e 16
Figure 2 : Activiti Designer Design PersPeCLIVE.ccovveiierierieiie e 17
Figure 3 : Activiti Designer Xml perspectiVe.ccocovevviieeieeresiee e 17
FIQUIE 4 2 LOGIN SCIEEN....cviiitietieiee ettt sttt sttt st et sbe b sneesreeeeenes 20
FIGUIE 5 1 MY TASKS VIBWevieiiceie sttt ettt an e nneeneeenes 22
Figure 6 : UnasSigned taSKS VIEW..........cucveiierieiie e eiesiee st n e sna e 23
FIQUIE 7 & PrOCESSES PAJE ... eeveertietieiieesteeitesteeste et e bt e ste ettt esbe e tesreesbeenbe s bt e sbeeaesneesbeeneeenes 24
Figure 8 : DeplOyYMENTS PAGE ..cvvevveiieeieeieseesie et seete s e sre e sre e ae e raeaeeneesreeeeenes 25
FIQUIE O 2 STAIT BVENT ...ttt sre e 26
FIQUIE 10 1 ENG BVENT....c.eiieiccieie ettt ae e e nneenneenes 27
Figure 11 : SEQUENCE FIOWooiiii e s 28
Figure 12 : conditional Sequence fIOWcccviiiiiiiicic e 28
Figure 13 : conditional sequence flow example ... 29
FIGUIE 14 © GALBWAYS ...ecvvecvieieeieeiiesiee sttt et e et e et esneessa e e sneestaenseaseesaeenaeeneenneeneeanes 29
Figure 15 : eXClUSIVE QAIEWAYccueiiiiieiiieiieie sttt sttt s enes 30
Figure 16 : exclusive gateway eXample ..o s 31
Figure 17 : parallel GatEWAYcciveieeiieiieie ettt aeae e sre e enes 33
Figure 18 : Parallel Gateway eXample ... e 34
1o U R R U T I]SS 35
FIQUIE 20 SCIIPE TaSK. .. eeieieieeii e e 36
Figure 21 : Java SEIVICE TaSKicuiiieieciecieie ettt e et sae e sreeee s 37
Figure 22 : WEDSEIVICE TaASK.......cuiiieiiiiieiienieeie et 38
FIQUIE 23 2 TECEIVE TASK .. veviiiieir ettt e e ae e nreeeeenes 40
Figure 24 : converter service Wsdl repreSentationccoovereveeneeieneseene e 41
Figure 25 : Converter BPMN 2 MOdel.........ccccviiiiiiieee e 42
Figure 26 : uploading deploYMENtcocveiiiieiiere e 48
Figure 27 : Convert temperature fOrM ... s 49
Figure 28 : Convert reSUIt FOrMo e 50
FIQUIE 29 : BUYET OFUEI PIOCESSeeiueeeieiiesteesieesiesteesteaseesseesteeeesseesbeessesseesseensessessseessesnns 54
FIQUIE 30 : SEHET PrOCESS ...vveveeie ettt nreeeeenes 55
Figure 31 : Order REQUEST TOMMN ..o e 56
Figure 32 : make Offer fOrMcoo i 57
Figure 33 : aSSeSS OFfer FOIM........c.ei i s 58
Figure 34 : Complete Order FOrMcov oo 59
DIMITRIOU MICHAIL ‘

Spring 2011 - Heraklion W
Transformation Service Laboratory Page - 6 - ;l‘“ {-

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

CODE SNIPPET LIST

Snippets Page

0 (0o 13 T | S OSPRPSSR 20
THOGINLTEL ettt nreas 21
D SEAIT EVENT XIMIL..oiiii bbbt 27
T 0 [0 =AY o | SRR PPRPRRRRN 27
D SEOUENCE TIOW ... e e nne s 28
2 conditional SEQUENCE FIOWoouiiiiiiiie s 29
2 €XCIUSIVE QAtEWAY XMLiiiiieiecec et ae e nnes 32
s Parallel Gateway XM.........coooiie e 34
DUSEE TASK XML ..ttt st nreas 35
L SCIIPE TASK ittt re e re e nres 36
S WebService Task XMl ... 39
S WEDSErVICE Call CIaSS ..o e 39
D CONVEITEN.JAVA TIE ..o 41
2 CONVEISION STAM TOMM ..ot e 43
2 CONVETSION TESUIL FOIM ... et 44
- Unrefined xml converter Model ... 45
2 TETINEA SEIVICE TASK ...t b e nreas 46
S TETINEA USEI TASKS ... et 46
- sequence FIOW FrefiNEMENTcvv i 47
- get Process instance execution DY process id.........cccovieeieieiienicie e 52
2 SENA SIGNAI 10 EXECULIONc.vieiecee ettt e e anaesaeeneenneas 53
2 Order REQUESE TOIM ...ttt st nreas 56
T MAKE OFFEE TOIM . b 57
2 ASSESS OFFRI TOMMN .. et b e 58
0] 40T] <3 0] 0 (< g {01 1 1RSSR 59
- Delegate class for Sending @ NEW OFAENccveiieiiiiiiieieeie e 60
: Delegate class for sending the OFfer.........ccooieiiiiii e 61
- delegate class to make HIP CallScvviieiiiie e 63
2 Start SNOPPEr WEDSCHIPLveeieieieiieit et 64
- global receiver WEDSCIIPLc.vviieieee e 66
DIMITRIOU MICHAIL ‘

Spring 2011 - Heraklion

A1z

Transformation Service Laboratory Page - 7 -

-

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

1 INTRODUCTION

In this thesis we are going to describe to process that was followed for the development
of an infrastructure were a user will be able to easily design develop and run service
choreographies. In the first part we are going to introduce and describe the fundamentals
of web service technologies. Later we shall go through the existing tools that we used in
order to set the base of our infrastructure. As existing tools are not able to develop and
run choreographies in the third part we will analyze the extensions developed for these
tools by as, so as to augment these tools to be able to fulfill our need, which as we
previously mentioned is to run choreographies. These extensions introduce new
communication and data exchange mechanisms that are required. Furthermore we shall
describe the process that a used must follow in order to design and run a proper
choreography using these tools and our extensions. This process is our own approach to
the problem and is basically our proposal and demonstration of how a choreography
infrastructure should work.

2 BACKGROUND KNOWLEDGE/THEORY

2.1 Web services

The first element we should be acquainted with is web services. Web service is our
fundamental piece. It is basically to a web process and application what a class is to a
java application with the significant difference that a web service can exist and be called
from wherever in the net.

The W3C[35] defines a “Web service” [7] as a software system designed to support
interoperable machine-to-machine interaction over a network. It has an interface
described in a machine-processable format (specifically Web Services Description
Language WSDL[6]). Other systems interact with the Web service in a manner
prescribed by its description using SOAP[5] messages, typically conveyed using
HTTP[19] with an XML[8] serialization in conjunction with other Web-related
standards."

Furthermore we can identify two major classes of Web services, REST-compliant
Web services [28], in which the primary purpose of the service is to manipulate XML
representations of Web resources using a uniform set of "stateless"” operations; and
arbitrary Web services, in which the service may expose an arbitrary set of operations.
The modern trend is towards restful services as they lack the complexity using well
known and established HTTP protocols [26].

DIMITRIOU MICHAIL \
Spring 2011 - Heraklion W
Transformation Service Laboratory Page - 8 - %’{-

-

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

2.2 Orchestrations

Although a Web Service may expose many methods, each WSDL (Web Service
Description Language file) describes fairly atomic, low-level functions. What a single
service does not give us is the rich behavioral detail that describes the role the service
plays as part of a larger, more complex collaboration. When these collaborations and
collections of activities are designed to accomplish a given business objective, they are
known as a business process. A business process may extend across one or more
organizations. The description of the sequence of activities that make up a business
process is called an orchestration.

2.3 Choreographies

Service choreography is a form of service composition in which the interaction
protocol between several partner services is defined from a global perspective. The
intuition underlying the notion of service choreography can be summarized as follows:

“Dancers dance following a global scenario without a single point of control™

That is, at run-time each participant in service choreography executes its part of it (i.e.
its role) according to the behavior of the other participants. Choreography’s role specifies
the expected messaging behavior of the participants that will play it in terms of the
sequencing and timing of the messages that they can consume and produce.

2.4 Orchestrations and Choreographies

The primary difference between orchestration and choreography is executability and
control. An orchestration specifies an executable process that involves message
exchanges with other systems, such that the message exchange sequences are controlled
by the orchestration designer. Choreography specifies a protocol for peer-to-peer
interactions, defining, e.g., the legal sequences of messages exchanged with the purpose
of guaranteeing interoperability. Such a protocol is not directly executable, as it allows
many different realizations (processes that comply with it). A choreography can be
realized by writing an orchestration (e.g. in the form of a BPEL process) for each peer
involved in it. The orchestration and the choreography distinctions are based on
analogies: orchestration refers to the central control (by the conductor) of the behavior of
a distributed system (the orchestra consisting of many players), while choreography
refers to a distributed system (the dancing team) which operates according to rules (the
choreography) but without centralized control [16].

2.5 BMPN

Both the concept of orchestrations and choreographies is just theoretical. In order to
design and develop one we need an appropriate language. As these architectures were

DIMITRIOU MICHAIL \
Spring 2011 - Heraklion
Transformation Service Laboratory Page - 9 -

A1z

-

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

developed partly having in mind business models and business management people,
many languages that aroused were graphical. The most notable one is BPMN.

More specifically Business Process Modeling Notation (BPMN)[12] is a graphical
representation for specifying business processes in a business process model.

The Business Process Modeling Notation (BPMN) is a standard for business process
modeling, and provides a graphical notation for specifying business processes in a
Business Process Diagram (BPD)[27], based on a flowcharting technique very similar to
activity diagrams from Unified Modeling Language (UML)[38]. The objective of BPMN
IS to support business process management for both technical users and business users by
providing a notation that is intuitive to business users yet able to represent complex
process semantics. The BPMN specification also provides a mapping between the
graphics of the notation to the underlying constructs of execution languages, particularly
Business Process Execution Language.

The primary goal of BPMN is to provide a standard notation that is readily
understandable by all business stakeholders. These business stakeholders include the
business analysts who create and refine the processes, the technical developers
responsible for implementing the processes, and the business managers who monitor and
manage the processes. Consequently, BPMN is intended to serve as common language to
bridge the communication gap that frequently occurs between business process design
and implementation.

The weaknesses of BPMN could relate to:

Ambiguity and confusion in sharing BPMN models
Support for routine work

Support for knowledge work, and

Converting BPMN models to executable environments

2.6 BPEL
Unlike BPMN other languages with developers in mind where evolved. The most notable
one is BPEL.

Business Process Execution Language (BPEL), short for Web Services Business
Process Execution Language (WS-BPEL)[32] is an OASIS[34] standard executable
language for specifying actions within business processes with web services. Processes in
Business Process Execution Language export and import information by using web
service interfaces exclusively. BPEL is an orchestration language, not a choreography
language.

WS-BPEL is meant to be used to model the behavior of both Executable and
Abstract Processes

Some BPEL features are:

e Facilities to enable sending and receiving messages. A property-based message

correlation mechanism

DIMITRIOU MICHAIL \
Spring 2011 - Heraklion W
Transformation Service Laboratory Page - 10 - ::-':*‘ {-

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

e XML and WSDL typed variables

e An extensible language plug-in model to allow writing expressions and queries in
multiple languages: BPEL supports XPath 1.0 by default

e Structured-programming constructs including if-then-elseif-else, while, sequence
(to enable executing commands in order) and flow (to enable executing
commands in parallel)

e A scoping system to allow the encapsulation of logic with local variables, fault-
handlers, compensation-handlers and event-handlers

e Serialized scopes to control concurrent access to variables

2.7 BPEL and BPMN

The BPMN specification includes an informal and partial mapping from BPMN to BPEL
[17]. A more detailed mapping of BPMN to BPEL has been implemented in a number of
tools, including an open-source tool known as BPMN2BPEL. However, the development
of these tools has exposed fundamental differences between BPMN and BPEL, which
make it very difficult, and in some cases impossible, to generate human-readable BPEL
code from BPMN models. Even more difficult is the problem of BPMN-to-BPEL round-
trip engineering: generating BPEL code from BPMN diagrams and maintaining the
original BPMN model and the generated BPEL code synchronized, in the sense that any
modification to one is propagated to the other.

2.8 BPMN 2

The vision of BPMN 2.0 [9] is to have one single specification for a new Business
Process Model and Notation that defines the notation, metamodel and interchange format.
The features include:

Aligning BPMN with the business process definition meta model BPDM to form a
single consistent language

Enabling the exchange of business process models and their diagram layouts among
process modeling tools to preserve semantic integrity

Expand BPMN to allow model orchestrations and choreographies as stand-alone or
integrated models

Support the display and interchange of different perspectives on a model that allow a
user to focus on specific concerns

Serialize BPMN and provide XML schemes for model transformation and to extend
BPMN towards business modeling and executive decision support.

As a result BPMN 2 is expected to replace and expand the existing solutions that use
BPMN and BPEL. Merging the design and executing phase of developing orchestrations
and choreographies.

DIMITRIOU MICHAIL \
Spring 2011 - Heraklion W
Transformation Service Laboratory Page - 11 - ;l‘“ {-

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

3 THE INFRASTRUCTURE

In this section as mention previously we are going to describe the tools we are going
to combine in order to form the infrastructure to fulfill our requirements that is no other
that to provide an easy environment where choreographies can be designed and executed.
So far there are numerous toolkits that allow a user to develop Service-Oriented
Architecture (SOA) Applications. Most of these tools usually have a design environment
based on using a notation like BPMN which they later map to BPEL. Furthermore they
have an engine that will run the BPEL scripts over a web server and a hosting
environment for web services. Having a BPEL as its engine obviously restricts the
infrastructure to the restrictions o BPEL. As a result we can only design orchestrations
and not Choreographies.

This obviously means that we have to follow a different root. As our core we will use
a BPMN 2 engine. Though BPMN 2 is meant to implement choreographies as this area is
still very fuzzy all newly developed engines have overlooked them. So we will have to
find an open source solution that will allow as customizing it and extending it to our
needs. Other than that our infrastructure architecture looks very similar to existing tools
let’s start describing our components.

3.1 THE BPMN 2 ENGINE

For the engine we will be using the Activity BPMN 2 engine [31]. Activity Engine
is a Java process engine that runs BPMN 2 processes. The engine can be incorporates in
any java environment as a jar file. In our case the engine is implemented as a web
Application and run on Apache Tomcat Server[10].

The Web Application is developed using the Spring Surf technologies[33]. It offers

its API through webScripts which are basically restful services that can provide us remote
access to the functionality and information of the engine.

3.1.1 The engines API and its hierarchy can be seen in the following figure.

DIMITRIOU MICHAIL \
Spring 2011 - Heraklion W
Transformation Service Laboratory Page - 12 - %’{-

-

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

Intuitively we can understand that through the ProcessEngine Object we can gain
access to all the artifacts that we need.

RepositoryService: Gives access to the process definition.

TaskService: Gives access to the active tasks of an execution.

IdentityService: Give access to user information and authentication.

FormService: Retrieves info about the form files assigned to tasks or start events.

RuntimeService: Gives access to the execution. Accesses variable sends signal and
others.

ManagementService deletes or adds new deployments to the engine.

HistoryService gives access to completed tasks and processes.

More specifically the features and functionalities we are interested in are:

e Users: The machine has incorporated a user and group architecture. Our users
can be assigned to belong to any number of groups. All the groups can be seen
and managed through the DB Table “act_id_group”. The groups are separated
to two categories.

e Security-Role: These groups are used to define the access level of the user to
the functionalities of the engine. A user can only belong to one group of this
type. The existing types are User, Manager and System-Administrator. In our
site this role gives or restricts access to the deployment page.

e Assignment: The users can belong to any number of assignment type groups.
These groups are used to assign a task or a job to possibly any member of a
group. This means that once a task, with assignment the “accountancy” group,
is reached by an execution in a process all members of the group will be
prompt to claim the task, The first one to claim it will be the one to fulfill it.

DIMITRIOU MICHAIL \
Spring 2011 - Heraklion -
Transformation Service Laboratory Page - 13 - %—g—

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

e Tasks can also be directly assigned to a user by his id or possibly to a number
of users by declaring all their ids in the BPMN model.

e Image Representation: The engine has the capability to store an image
representation of a model. Later we can use this feature to assist the execution
o the models through our management App.

e Forms: Each Human task can be assigned to an HTML form file. This way
once a task is reached we can have a Visual representation of the data and
information required by the user.

e Execution scope: Every Time a process instance is started an execution is
created. This execution can store variables that the tasks can use or declare. If
our model has a fork then the execution duplicates itself along with all its
variables.

3.2 MySqgl DataBase

For the BPMN 2 engine to run properly a database with the adequate tables must be
created. For ease of use a sgql dump with the initial entries has been created.

The database schema is described briefly below.

e ACT_RE_*:'RE'stands for repository. Tables with this prefix will contain 'static" information such as
process definitions and, process resources (images, rules, etc.).

e ACT_RU_*:'RE'stands for runtime. These are the runtime tables, which contain the runtime data of
process instances, user tasks, variables, jobs, etc. Activiti only stores the runtime data during process instance
execution, and removes the records when a process instance ends. This keeps the runtime tables small and
fast.

e ACT_ID_*:'ID'stands for identity. These tables contain identity information, such as users, groups, etc.

e ACT_HI_*: 'HI' stands for history. These are the tables that contain historic data, such as past process
instances, variables, tasks, etc.

e ACT_GE_*: general data, which is used in various use cases.

' Table Name 'Children Parents Columns

[act cy comment || 1| 1] 8

[act_cy config | | | 4

[act_cy conn_config || | | 7

[act cy link | | | 14

DIMITRIOU MICHAIL b
Spring 2011 - Heraklion D
Transformation Service Laboratory Page - 14 - -,,%r\;

=

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

‘TableName ~ Children Parents Columns
| act_cy_people_link | | | 8
|act_cy tag | | | 5
[act ge bytearray || 2 | 1] 5
|act ge property || | | 3
| act_hi_actinst | | | 11
[act_hi_detail | | | 15
[act_hi_procinst | | | 10
[act hi_taskinst | | | 13
[act_id_group | 1| | 4
[act_id_membership | | 2| 2
[act_id_user | 1 | 6
[act re_deployment || 1|| | 3
[act_re procdef | 1| | 9
|act_ru_execution | 7] 3 11
|act_ru_identitylink || | 1| 6
[act ru_job | | 1 15
|act ru_task | 1| 3| 11
| act_ru_variable | | 3 12

Table 1 : Database Tables.

Below we can see a graphical representation of the schema relations.

DIMITRIOU MICHAIL L
Spring 2011 - Heraklion)
Transformation Service Laboratory Page - 15 -

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

null.act_id_memhership
null.act_ru_identitylink USER_TID_
ID_ GROUP_ID_
act_id_user |15 r‘0"\'5|

|0 r"‘DLUS| 0_
. \ act_id_membership
null .act_ru_executfion |_|" PDUJS|1 > USER_ID_
1D GROUP_ID_
act_id_group /< 2 |1E| rows|
|U r“ows| 0.

~ |'|" rows| 1>

- act_cy_comment
act_ru_job i
act_ge_bytearray ID_ —
ANSWERED_COMMENT_ID_
act_re_deployment) ID_ EXCEPTION_STACK_ID_
| O« DEPLOYMENT _ID
10 - <1 0 rows 153
<1 | 0 I’"DU.IS|
|0 rows| 1> <1 |0 rows| 2>
null.act_cy_commen
ID_
act_ru_wvariable
10 |0 mws|
EXECUTION_ID_
null.act_ru_wvarighle
i act_ru_executio PROC_INST_ID_
= ID_ BYTEARRAY _ID_
|0 TPROC_INST_ID_ - act_ru_identityllink
rows|
BUSIMESS_KEY_ <3 [0 roug 0
PARENT_ID_ GROUP_ID_
null.act_ru_taghk
= FROC_DEF_ID_ act_ru_task USER_ID_
1 LS UPER_EXEC_ o | odTRsK D,
|0 rows| - EXECUTION_ID_ e
<3 Joraws] 7> PROC_INST_ID_ <1 |0 Pows|
FPROC_DEF_ID_
11.act jagh
Sl act_re_procdef CREATE_TIME_ null.act_ge_hytearfay
I0_
I0_ s I0_
- .. <3 |0 rows| 1
|0 rHDLUS| |0 mws| 13 |0 rows|

Figure 1 : DataBase Schema.

3.3 BPMN 2 designer tool

Although BPMN 2 is extremely easily readable by humans and a simple text/xml editor
should be enough to develop any model, the use of the Activiti Designer, a plug-in for the
eclipse framework is proposed. Besides the obvious assistance of such a tool to develop a
model, Activiti designer can additionally produce an image representing the model of our
process. This image can be used later by our management application to represent the
process and assist us in selecting and observing it.

Below we can see the designer tool first in the design perspective and then in the xml
perspective.

DIMITRIOU MICHAIL
Spring 2011 - Heraklion 3
Transformation Service Laboratory Page - 16 - = 5\-

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

Fin Edt Megate Sewch Propect fun Widow Hep
ri-Wa $-0-Q- ™

i Progect Bxglorer 11 BB =" Ol oowcronte | 5 TN S| o 5 —
5 b= bomrPragectl Fr— [| e cutin s vt palabin,
3 8 BrrIBenerty I
% & srcimanere | St
= B wejmanjresuries 1 Marguee
= dagrams
<l buyer_oeder_process_dagramm et e Carmeckn
U bnpe_orter_jricmis e seren bgere20. e — Seutrcefon
B borer_order _process_dagrammgng [
< ghoper_prder_procese_daegramm, scthit ——
i sheper_prder_process_dhogyarre borreiaf, weld W=t
T srover_ortier_process_dairamm.ong — o [
s e _Trocess. actit m
i+ geeghe_process bomni20. k"‘“ ———% UserTask = | End Tk
B scie_process.ong — — L FuserTask
= formm Sotri
acoepsOfferform. form B8
| completerderforn.farm B servceTask
] a2
messageorm. form 7 i
5] erderPorm form Hama
2 wefesthon B ReceveTas
O wcfestiesources (2 Cateway @
& W WE Systes Liwary i |.6]
W Actan Desgner Extensions @y Parsleiatenay
w5 (@ Exchabvelatenay
® i taget | 1
¥ pom.sord & Bandary cvnt <
2 mylinier o Q) Tmerfeundary..,
3 42 myWebServioesChent Dupgram | BAMMZ0 g
L HeotedystemaTemcries [T et
& Servers (£ v | I propernes 1 B Conmcle | 5 Search TR
G Testermer tye: dggree -
Hain ooty i pron
Lsteners
Form by messagefarm
Documentation:
< »

Figure 2 : Activiti Designer Design perspective.

Fie Edt Sosce Nawvgate Sewch Broject R Widm Hep
(&% 0-Q idF BE
L3 Progect Expiorer 1 e
S 2 bomrProjectl
@ bomrEesents
3 B wefmanfpn
H & wofmanfesources
= B degrams
e buyer_order_process_dagrase hoen 20,
T e _ordes_process_dogram.ong
- shoper_peder_proctss_dagramen born .
t thoper_prcder_process,_dage s prg
=i pevple_process. scvn

i hctit [web "
=]

Blio =]
An outing i not
avalsbe.

g B

O824/ HODEL” Rmlne i RaL="HLLE: /Wy . v T . crg/I001/ Xlche

ZoraFey= messagefom </

toworid s

S M System Lbrary (o5 1 6]
WL Activit Designer Extensons
&
-
¥ pom.xml
= myWebServices
4= myWehServcesCient
il L3 RemoteSystemaTemofiet
& i Servers.

153

" 50 || L2 mackers | I properoes 17 () Conscle | 4 search

1

Figure 3 : Activiti Designer Xml perspective.

DIMITRIOU MICHAIL L
Spring 2011 - Heraklion)
Transformation Service Laboratory Page - 17 -

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

3.4 Management Web Application

For The execution and management of our models it was required to create a Web
Application that would offer a visual representation of the information’s required to
run and observe our processes and of course give us the functionality to interact
with them. The detailed functionality of the application will be described later
along with an explanatory example. Here we will focus on the framework and the
techniques used for its development.

For the development of the web app we used the Spring Surf framework.
Below we will describe the main configuration files and artifacts of a Spring surf
project.

1. MYWEBAPP\WEB-INF\web.xml
Defines a "UrIRewriteFilter" filter which Enables clean URLs with JSP
views e.g. enabling url /welcome instead of /page/welcome.
Spring MV C Dispatcher Servlet is also defined and pointed to /WEB-
INF/config/web-application-config.xml for its context configuration.

2. MYWEBAPP\WEB-INF\urlrewrite.xml
This configuration file provides UrlRewriteFilter filter with a set of Surf
related inbound and outbound url rewrite rules.

3. MYWEBAPP\WEB-INF\surf.xml
It defines Surf specific configurations for runtime and mode. As default, it
uses webapp runtime and development mode. (TODO: more details on the
options)

4. MYWEBAPP\WEB-INF\config\web-application-config.xml
As defined in web.xml, this file provides context configurations for the
Spring MVC Dispatcher Servlet. It first imports required infrastructure
imports from MYWEBAPP\WEB-INF\config\surf-config.xml and then
defines a list of required interceptors for the default Spring MVC annotation
handler. Rest of the configurations are for interoperability with Spring
annotated controllers and simple controllers. It also configures the default
Spring multipart resolver for file uploading.

5. MYWEBAPP\WEB-INF\config\surf-config.xml
This configuration file defines context locations for both Surf Web Scripts
Framework and Surf Framework. It also sets up to be auto-resolved to url
based views.

6. MYWEBAPP\css\sample.css
This is the style sheet of the Quick Start Sample Site.

7. MYWEBAPP\images*
Image files for the Quick Start Sample Site.

8. MYWEBAPP\WEB-INF\chrome*
Chrome describes the border elements around a region or a component.
These border elements may include styling elements like shadows, or they

DIMITRIOU MICHAIL \
Spring 2011 - Heraklion W
Transformation Service Laboratory Page - 18 - ;l‘“ {-

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

may introduce drag and drop capabilities into the page. They may also
introduce user-functionality like buttons for popping up component settings
(as you frequently see in portals).

9. MYWEBAPP\WEB-INF\pages*
Our main Pages defined in XML format. Surf only requires page
configuration XMLs to be placed under MYWEBAPP\WEB-INF. However
for best practice we place them under MYWEBAPP\WEB-INF\pages
example MYWEBAPP\WEB-INF\pages\login.xml.
A page is a navigable page in our web application. It may have associations
to other pages and multiple formats keyed from it to templates. A page is a
top-level object from which you can traverse either additional navigation or
rendering paths.

10. MYWEBAPP\WEB-INF\templates*
The template folder. A Template Instance is an instance of a template type,
which can be of a Freemarker type (templateName.ftl)[20] JSP or
WebScript. A Surf page object has a required field for template instance
therefore the Surf dispatcher knows which template to use to render view
for the page. While Page xml configuration files describe the relations of a
page the templates determine their appearance.

11. MYWEBAPP\WEB-INF\webscripts*
This is the place for storing WebScripts that are generating components
such as header, footer, navigation etc. Webscripts are like restful services
and separate to view from the control.
A component is an instance of a component type that has been "bounded"
into a region or a slot. It represents a binding along with the instance-
specific state for that component instance. The Surf framework supports
three types of scopes for the region/component binding, global scope,
template scope and page scope. The Global Scope is for the component that
Is same across the site such as header and footer. The Template Scope is for
the component that is same across the template such as a Text Block
component which shows the same text for any page using this template. The
page scope is for any page specific component.

DIMITRIOU MICHAIL \
Spring 2011 - Heraklion W
Transformation Service Laboratory Page - 19 - ::-':*‘ {-

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND

ORCHESTRATIONS OVER A BPMN 2 ENGINE

For Better understanding we shall show how the simple page of login is represented.

<« C | ® localhost:8080/TSLManager/

fake [28] myshow [Tim Video Blog Admin http://194.219.48. 16...

& TSLManager

User Mame: ||

Password

Figure 4 : Login Screen

<page>
<title>Login</title>
<title-id>page.login.title</title-id>
<template-instance>login</template-instance>
<authentication>none</authentication>
</page>

Code Snippet 1 : login.xml

In login.xml we can see its title its id the template instance that will be used to represent it
and its authentication set to none, meaning that anyone can access this page (No login

required prior to this page).

<#include "activiti.template.lib.ftl" />
<#assign successUrl=(url.args["url"]turl.url)?html />
<#tassign failureUrl="/login?error=true" />
<@templateHeader/>
<@templateBody>
<div id="header">
<div class="activiti-component">
<div class="application-info">

DIMITRIOU MICHAIL
Spring 2011 - Heraklion
Transformation Service Laboratory Page - 20 -

3
.-’fi\.

V.'_

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

</div>
</div>
</div>
<div id="content">
<div id="login">
<form accept-charset="UTF-8" method="post" action="${url.context}/dologin">
<#if successUrl?contains(failureUrl)>
<input name="success" type="hidden" value="${successUrl}" />
<[#if>
<input name="failure" type="hidden"
value="${url.context}${failureUrl}&url=${successUrl?url}" />
<#if url.args["error"]??>
<div class="section">
<div id="login-error" class="status-error"></div>
</div>
<ttelse>
<div class="section">
<div id="login-browser-warning" class="status-error"></div>
</div>
<[#if>
<div class="section">
<label for="username">User Name:</label>
<input id="username" name="username" type="text" />

</div>
<div class="section">
<label for="password">Password:</label>
<input id="password" name="password" type="password" />
<input id="submit" type="submit" value="Login"/>

</div>
</form>
</div>

</div>
</@>
<@templateFooter/>
Code Snippet 2 : login.ftl

In This freemarker file we can see the main form and the error control depending
on the incoming url.

DIMITRIOU MICHAIL \
Spring 2011 - Heraklion 3
Transformation Service Laboratory Page - 21 - = -’:-:-

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

3.4.1 Architecture and functionalities

Our Site is basically consisted of two main pages two child pages and several
components.

Our first main page was described before and is the login screen of our system. Once we
are logged in we can access the applications main page start. The start page has two
child pages and as defined by its template a header and footer. Since the other two pages
are children of this they share the same header and footer. These three pages have the
following function.

1. Start/tasks Once in this page we use our task component to represent the
active tasks for these users. The Tasks are separated to personal, unassigned
and by owner group. Since a user can belong two several groups the tasks
are categorized. Unassigned tasks appear with a claim selection. Once
claimed the task is now personal and appears only to this user from now one
with the option to complete the task.

& TSLManager

£ Michalis Dimitriou Logout

TASKS | PROCESSES | DEPLOYMENTS

My tasks

My tasks (1)
Unassigned tasks (2)

n Accountancy (0)

in Engineering (2) u * 5295 | Give Temperature

n Management (0)
n Sales (0)

Figure 5 : My Tasks view

DIMITRIOU MICHAIL \
Spring 2011 - Heraklion
Transformation Service Laboratory Page - 22 -

AL/

-

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

;-=I:‘ TSLManager 2

& Michalis Dimitriou Logout
TASKS | PROCESSES | DEPLOYMENTS

My tasks (1) Unassigned tasks in group Engineering ;
Unassigned tasks (2)
in Accountancy (0)
in Engineering (2) E 5337 | Investigate hardware
in Management (0)
in Sales (0) o~) - _

E ot 5340 | Investigate software

Figure 6 : Unassigned tasks view

2. Processes The first child page is PROCESSES. Here we can see all the
deployed processes. If a graphical representation of the model has been
given we have the option to view it. Otherwise we have only the option the
initiate the process. If the start event of the process was assigned with a
form then the option to fill that form is presented. At this point anyone can
start any process thaw afterwards only assigned users can interact with its

tasks.
DIMITRIOU MICHAIL \
Spring 2011 - Heraklion -
Transformation Service Laboratory Page - 23 - %—g—

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

.:i:‘ TSLManager £ Saler Saler Logout

TASKS | PROCESSES | DEPLOYMENTS

Processes

1

Expense process | 45! Show Diagram | | &% Start Instance

Timer escalation example ! | |3 Show Diagram | | i startinstance

Fix system failure ™

| |45} Show Diagram || 8% StartInstance |

Write bi-monthly financial report ! | 45} Show Diagram | | &% StartInstance
Review sales lead ! | |45} Show Diagram | | &% StartInstance
Single candidate group example &) StartInstance
Schedule meeting reminder ! | 43} Show Diagram | | £ startInstance |

TempConverter 1 | |45 Show Diagram || £ StartInstance |

Vacation request 1 | |45} Show Diagram ||] Show Start Form |

€ 2011 tsl.gr. All rights reserved.

Figure 7 : Processes page

3. Deployments Finally the second Children is DEPLOYMENTS. In this
Page a user has access only if he belongs to the administrator group. Here
someone can delete or upload new deployments. Every deployment can
include several processes and its accompanying files. The way to deploy a
new process will be described later.

DIMITRIOU MICHAIL A
Spring 2011 - Heraklion
Transformation Service Laboratory Page - 24 -

.7‘ i\\

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

& TSLManager 2 Michalis Dimitriou Logout

TASKS PROCESSES DEPLOYMENT 5

Deployments

1
Select Id =« MName Time
. 5267 | converter bar Fri 15 Apr 2011 01:32:32
A 5296 activiti-engine-examples.bar | Fri 15 Apr 2011 04:39:46
| Delete || Delete Cascade || Lpload |

Figure 8 : Deployments page

3.5 Summary
So far we have combined a set of tools and frameworks that allow as:
1. Run simple web service.
2. Design orchestrations based on BPMN 2.
3. Run those BPMN 2 scripts.
4

. A'web environment where we can manage users, services, processes, and monitor

their flow.

Basically what a simple user will see is a web based process management system. In this
system we have users that can initiate processes and provide data to the system when
asked (human task), furthermore we have automated tasks running by the system (web
services). Finally the flow of the execution of those tasks is directed by the models
designed in BPMN 2.

DIMITRIOU MICHAIL
Spring 2011 - Heraklion -
Transformation Service Laboratory Page - 25 - %—g—

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

What we lack is extending orchestration to choreographies. To achieve that we need to
find a way for multiple processes (orchestrations) existing in the same or different
environment to communicate with each other and basically self coordinate their

operations which will ultimately form a choreography.

4 THE FRAMEWORK INPRACTICE

In order to understand the concept that led as to the development of our extensions we
must understand how everything works through examples.

4.1 Learning the BPMN 2.0 constructs

Before we start our example we must familiarize a little with the BPMN 2.0 artifacts their
graphical and xml representation.

4.1.1 None start event

Description

A 'none' start event means that there is no trigger for starting the process instance. This
means that the engine cannot anticipate when the process instance must be started. As a
result we must start the instance programmatically. A good practice is through a web
service which we can call from an interface or can be called by another process.

Graphical notation

A “none” start event is graphically represented as a circle with no inner icon (i.e. no
trigger type).

Figure 9 : start event

XML representation

DIMITRIOU MICHAIL \
Spring 2011 - Heraklion W
Transformation Service Laboratory Page - 26 - %’{-

=

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

The XML representation of a none start event is the normal start event declaration,
without any sub-element (other start event types all have a sub-element declaring the

type).

<startEvent id="start" name="my start event" />

Code Snippet 3 : start event xml

4.1.2 None end event

Description

A 'none' end event means that there is no result thrown when the end event is reached. As
such, the engine will not do anything besides ending the current path of execution. Notice
that the end event doesn’t end the process but the current path.

Graphical notation

A “none” end event is graphically represented as a circle with a thick border with no
inner icon (no result type).

Figure 10 : End event

XML representation

The XML representation of a none end event is the normal end event declaration, without
any sub-element (other end event types all have a sub-element declaring the type).

<endEvent id="end" name="my end event" />

Code Snippet 4 : end event

4.1.3 Sequence flow

Description

A sequence flow is the connector between two elements of a process. After an element is
visited during process execution path, all outgoing sequence flow will be followed. This
means that the default nature of BPMN 2.0 is to be parallel: two outgoing sequence flow
will create two separate, parallel paths of execution.

Graphical notation

DIMITRIOU MICHAIL \
Spring 2011 - Heraklion W
Transformation Service Laboratory Page - 27 - -7,%’{'

-

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

A sequence flow is graphically represented as an arrow going from the source element
towards the target element. The arrow always points towards the target.

—

Sequence flow need to have a process-unique id, and a reference to an
existing source and target element.

Figure 11 : Sequence flow

XML representation

<sequenceFlow id="flow1" sourceRef="theStart" targetRef="theTask" />

Code Snippet 5 : Sequence flow

4.1.4 Conditional sequence flow

Description

A sequence flow can have a condition attached to it. When an activity is finished,
conditions on the outgoing sequence flow are evaluated. When the condition is true, that
outgoing sequence flow is selected. When multiple sequence flows are true,

multiple paths will be generated and the process will be continued in a parallel way.

Graphical notation

A conditional sequence flow is graphically represented as a regular sequence flow, with a
small diamond at the beginning. The condition expression is shown next to the sequence
flow.

Ocmnditit}nExpressiun

Figure 12 : conditional sequence flow

XML representation

A conditional sequence flow is represented in XML as a regular sequence flow,
containing a condition Expression sub-element. Note that for the moment

only tFormalExpressions are supported, Omitting the xsi:type="" definition will simply
default to this only supported type of expressions.

DIMITRIOU MICHAIL \
Spring 2011 - Heraklion W
Transformation Service Laboratory Page - 28 - -?%’{-

-

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

<sequenceFlow id="flow" sourceRef="theStart" targetRef="theTask">
<conditionExpression xsi:type="tFormalExpression">
<I[CDATA[${order.price > 100 && order.price < 250}]]>
</conditionExpression>
</sequenceFlow>

Code Snippet 6 : conditional sequence flow

&

250}

Standard
senvice

&

Premium
service

S{order.isPremium Order} ixi Sl{order.price =

Figure 13 : conditional sequence flow example
4.1.5 Gateways

A gateway is used to control the path of execution. A gateway is graphically represented
as a diamond shape, with an icon inside. The icon shows the type of gateway.

—

—
Figure 14 : Gateways
DIMITRIOU MICHAIL \
Spring 2011 - Heraklion W
Transformation Service Laboratory Page - 29 - %r’:'

=

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

4.1.5.1 Exclusive gateway

Description

An exclusive gateway (XOR gateway), is used to model a single decision in the process.
When the execution arrives at this gateway, all outgoing sequence flows are evaluated in
the order in which they are defined. The first sequence flow whose condition evaluates to
true is selected for continuing the process.

Graphical notation

An exclusive gateway is graphically represented as a typical gateway (i.e. a diamond
shape) with an "X" icon inside, referring to the XOR semantics. Note that a gateway
without an icon inside defaults to an exclusive gateway.

O @

Figure 15 : exclusive gateway

XML representation

The XML representation of an exclusive gateway is straight-forward: one line defining
the gateway and condition expressions defined on the outgoing sequence flow. Take for
example the following model:

DIMITRIOU MICHAIL \
Spring 2011 - Heraklion W
Transformation Service Laboratory Page - 30 - -?%’{-

-

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

1}

${input == 2}

$input == 3} i i ${input
>

Figure 16 : exclusive gateway example

DIMITRIOU MICHAIL
Spring 2011 - Heraklion
Transformation Service Laboratory

Page - 31 - %-g

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

This is represented in XML as follows:

<exclusiveGateway id="exclusiveGw" name="Exclusive Gateway" />

<sequenceFlow id="flow2" sourceRef="exclusiveGw" targetRef="theTask1">
<conditionExpression xsi:type="tFormalExpression">${input ==

1}</conditionExpression>

</sequenceFlow>

<sequenceFlow id="flow3" sourceRef="exclusiveGw" targetRef="theTask2">
<conditionExpression xsi:type="tFormalExpression">${input ==

2}</conditionExpression>

</sequenceFlow>

<sequenceFlow id="flow4" sourceRef="exclusiveGw" targetRef="theTask3">
<conditionExpression xsi:type="tFormalExpression">${input ==

3}</conditionExpression>

</sequenceFlow>

Code Snippet 7 : exclusive gateway xml

4.1.5.2 Parallel Gateway

Description

Gateways can also be used to model concurrent paths in a process. This is the Parallel
Gateway, which allows forking into multiple paths or joining multiple incoming paths.
Basically The Parallel Gateway does nothing as it leaves all the path selection to the
conditions in the sequence flows. Based on the incoming and outgoing sequence flow a
parallel Gateway can have any of the following functions or both (multiple incoming and
outgoing flows):

4. fork: all outgoing sequence flow are followed in parallel, creating one
concurrent execution for each sequence flow.

5. join: all concurrent executions arriving at the parallel gateway wait in the
gateway until an execution has arrived for each of the incoming sequence
flow. Then the process continues past the joining gateway.

Graphical Notation

A parallel gateway is visualized as a gateway (diamond shape) with the plus’' symbol
inside, referring to the '"AND' semantics.

DIMITRIOU MICHAIL \
Spring 2011 - Heraklion W
Transformation Service Laboratory Page - 32 - ::-':*‘ {-

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

&

Receive
payment

&

Archive order

O

Ship order

Figure 17 : parallel Gateway

XML representation
Defining a parallel gateway needs one line of XML.:

<parallelGateway id="myParallelGateway" />

The actual behavior (fork, join or both), is defined by the sequence flow connected to the
parallel gateway.

For example, the model above comes down to the following XML.:

<startEvent id="theStart" />
<sequenceFlow id="flow1" sourceRef="theStart" targetRef="fork" />

<parallelGateway id=""fork" />
<sequenceFlow sourceRef="fork" targetRef="receivePayment" />
<sequenceFlow sourceRef="fork" targetRef="shipOrder" />

<userTask id="receivePayment" name="Receive Payment" />
<sequenceFlow sourceRef="receivePayment" targetRef="join" />

<userTask id="shipOrder" name="Ship Order" />
<sequenceFlow sourceRef="shipOrder" targetRef="join" />

<parallelGateway id=""join"" />
<sequenceFlow sourceRef="join" targetRef="archiveOrder" />

<userTask id="archiveOrder" name="Archive Order" />
<sequenceFlow sourceRef="archiveOrder" targetRef="theEnd" />

DIMITRIOU MICHAIL \
Spring 2011 - Heraklion W
Transformation Service Laboratory Page - 33 - -7,%’{'

-

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

<endEvent id="theEnd" />

Code Snippet 8 : Parallel Gateway xml

Task 1

O—><+ Task 2

Task 3

Figure 18 : Parallel Gateway example

4.1.6 User task

Description
A 'user task' is used to model task that needs to be performed by a human.

Graphical notation

A user task is graphically represented as a typical task (rounded rectangle), with a small
user icon in the left upper corner.

DIMITRIOU MICHAIL \
Spring 2011 - Heraklion ;
Transformation Service Laboratory Page - 34 - =

7IN

=

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

My Task

Figure 19 : User Task

XML representation

A user task is defined in XML as follows. The id attribute is required, the name attribute
is optional.

<userTask id="theTask" name="Important task" />

A user task can also have a description undel the <documentation> child tag.

<userTask id="theTask" name="Schedule meeting" >
<documentation>
Schedule an engineering meeting for next week with the new hire.
</documentation>

Code Snippet 9 : User Task Xml

Activiti extensions for task assignment
o Assignee attribute: this custom extension allows to directly assign a user task to
a given user.

<userTask id="theTask" name="my task" activiti:assignee="mdimitr" />

o Candidate Users attribute: this custom extension allows us to make a user a
candidate for a task.

<userTask id="theTask" name="my task" activiti:candidateUsers="mdimitr,
saler" />

Candidate means that this user will later have the choice to claim this task or let it
to be claimed by another.

o Candidate Groups attribute: this custom extension allows making a group as
candidate for a task.

<userTask id="theTask" name="my task"
activiti:candidateGroups="management, accountancy" />

As users belong to groups then we can assign all users in a group to be candidate
users for this task.

4.1.7 Script Task

Description

DIMITRIOU MICHAIL \
Spring 2011 - Heraklion
Transformation Service Laboratory Page - 35 -

7IN

“d

=

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

A script task is an automatic activity. When a process execution arrives at the script task,
the corresponding script is executed.

Graphical Notation

A script task is graphically represented as a typical task (rounded rectangle), with a small
'script’ icon in the top-left corner of the rectangle.

=1

Execute script

Figure 20 : Script Task

XML representation
A script task is graphically represented by specifying the script and the scriptFormat.

<scriptTask id="theScriptTask" name="Execute script" scriptFormat="groovy">
<script>
sum=0
for (i ininputArray) {
sum +=1i
}
</script>
</scriptTask>

Code Snippet 10 : Script Task
The groovy jar is the default script library for the engine.

4.1.8 Java Service Task

Description
A Java service task is used to invoke an external Java class.

Graphical Notation

A service task is visualized as a rounded rectangle with a small gear icon in the top-left
corner.

DIMITRIOU MICHAIL \
Spring 2011 - Heraklion W
Transformation Service Laboratory Page - 36 - -7,%’{'

-

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

My Java

Service Task

Figure 21 : Java Service Task

XML representation
There are 4 ways of declaring how to invoke Java logic:

e Specifying a class that implements JavaDelegate or ActivityBehavior

« Evaluating an expression that resolves to a delegation object

e Invoking a method expression

o Evaluating a value expression

To specify a class that is called during process execution, the fully qualified classname
needs to be provided by the "activiti:class' attribute.

<serviceTask id="javaService"
name="My Java Service Task"
activiti:class="org.activiti.MyJavaDelegate" />

It is also possible to use an expression that resolves to an object. This object must follow
the same rules as objects that are created when the activiti:class attribute is used
(see further).

<serviceTask id="serviceTask"
activiti:delegateExpression=""${delegateExpressionBean}" />

Here, the delegateExpressionBean is a bean that implements the JavaDelegate interface,
defined in for example the Spring container.

To specify a method expression that should be evaluated, use
attribute activiti:expression.

<serviceTask id="javaService"
name="My Java Service Task"
activiti:expression="#{printer.printMessage(execution, myVar)}" />

Method printMessage will be called on the named object called printer. This object is by
default initialized in every process execution. The first parameter passed is

the DelegateExecution, which is available in the expression context by default available
as execution. The second parameter passed, is the value of the variable with

name myVar in the current execution.

DIMITRIOU MICHAIL \
Spring 2011 - Heraklion W
Transformation Service Laboratory Page - 37 - -7,%’{'

-

http://activiti.org/userguide/index.html#bpmnJavaServiceTaskImplementation

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

Service task results

The return value of a service execution (for service task using expression only) can be
assigned to an already existing or to a new process variable by specifying the process
variable name as a literal value for the "activiti:resultVariable' attribute of a service task
definition.

<serviceTask id="aMethodExpressionServiceTask"
activiti:expression="#{myService.doSomething()}"
activiti:resultVariable="myVar" />

4.1.9 WebService Task

Description
A WebService task is used to synchronously invoke an external web service.

Graphical Notation
A WebService task is graphically represented the same as a Java service task.

e

Webservice call

Figure 22 : WebService Task

For less complexity we have created out own class to call webservices so we can instead
use the java service task.

<serviceTask id="Call_WS" name="Call WS"
activiti:class="gr.tsl.delegate. WsDelegate™ >
<extensionElements>
<activiti:field name="wsdI"
expression="http://localhost:8080/VacationService?wsdl" />
<activiti:field name="operation" expression="saveVacationApproval" />
<activiti:field name="parameters" expression="${user}, ${days}" />
<activiti:field name="returnValue" expression="myReturn" />
</extensionElements>

DIMITRIOU MICHAIL \
Spring 2011 - Heraklion W
Transformation Service Laboratory Page - 38 - %’{-

=

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

</serviceTask>

Code Snippet 11 : WebService Task Xml

And here is the class:
public class WsDelegate implements org.activiti.engine.delegate.JavaDelegate {

private Expression wsdl;
private Expression operation;
private Expression parameters;
private Expression returnValue;
public void execute(DelegateExecution execution){
String wsdIString = (String)wsdl.getValue(execution);
JaxWsDynamicClientFactory dcf = JaxWsDynamicClientFactory.newlnstance();
Client client = dcf.createClient(wsdIString);
ArrayL.ist paramStrings = new ArrayList();
if (parameters!=null) {
StringTokenizer st = new StringTokenizer((String)parameters.getVValue(execution), ",");
while (st.hasMoreTokens()) {
paramsStrings.add(st.nextToken().trim());

¥
¥

Object response = client.invoke((String)operation.getValue(execution), paramStrings.toArray(new
Object[0]));

if (returnValue!=null) {
String returnVariableName = (String) returnValue.getValue(execution);
execution.setVariable(returnVVariableName, response);
1
Code Snippet 12 : WebService call class

4.1.10 Java receive task

Description

DIMITRIOU MICHAIL \
Spring 2011 - Heraklion -
Transformation Service Laboratory Page - 39 - %—g—

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

A receive task is a simple task that waits for the arrival of a certain message. Currently,
we have only implemented Java semantics for this task. When process execution arrives
at a receive task, the process state is committed to the persistence store. This means that
the process will stay in this wait state, until a specific message is received by the engine,
which triggers the continuation of the process past the receive task.

Graphical notation

A receive task is visualized as a task (rounded rectangle) with a message icon in the top
left corner. The message is white (a black message icon would have send semantics)

wait

Figure 23 : receive task

XML representation

<receiveTask id="waitState" name="wait" />

To continue a process instance that is currently waiting at such a receive task, we must
send a signal programmatically for example through a web service we have created for
this job.

4.2 Designing and running a simple Orchestration
Our case study will be a simple orchestration involving both automated Tasks

(WebServices) and human related tasks. We are going to design a process representing a
unit convertor between Celsius and Fahrenheit.

4.2.1 WebService Development

First of all we must implement our WebService. We are going to use eclipse and Apache
AXxis. To start we implement a simple java bean with the logic we require. We end up
with the following Converter.java file.

public class Converter

{

public String celsiusToFarenheit (String celsius)

{
DIMITRIOU MICHAIL \
Spring 2011 - Heraklion W
Transformation Service Laboratory Page - 40 - -,,%’{-

-

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

String tmp=String.valueOf((Float.parseFloat(celsius) * 9 / 5) + 32);
System.out.printin(celsius+" C == "+tmp+" F");

return tmp;
}
public String farenheitToCelsius (String farenheit)
{

String tmp=String.valueOf((Float.parseFloat(farenheit) - 32) * 5/ 9);
System.out.printin(farenheit+" F == "+tmp+" C");
return tmp;
}

}

Code Snippet 13 : converter.java file

Afterwards using the Axis 2 plug-in for Eclipse and Web Services we create a bottoms up
java bean WebService and Publish it and its WSDL file on our Server. Here is a graphical
representation of our WSDL.

5 ConverterService D €9 Converter
& Converter i celsiusToFarenheit
http: flocahost:3080/Con... Blinput parameters | (8] celsiusToFarenheit

{Jl output parameters | [g] celsiusToFarenheithesponse

i farenheitToCelsius

Einput parameters | (8] farenheitToCelsius

Jl output parameters | [B] farenheitToCelsiusResponss

Figure 24 : converter service wsdl representation

As mentioned before in order to call this Web Service we created our own
WSDelegate.java class. This Class will make the call and will set the returned value as a
Variable in our Execution.

DIMITRIOU MICHAIL
Spring 2011 - Heraklion W
Transformation Service Laboratory Page - 41 - ;l‘“ {-

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

4.2.2 Process model Design
Using the Eclipse Activiti Designer we will create the skeleton of our model. Although
designer tools can make our life sometimes easier it’s usually right to make any

refinements directly to the Code. After inserting and connecting all our artifacts we will
have something like the following figure.

i X)
CelsiusToFarenh..,

=

Give Temperature

(EY
redo0rFinish
FarenheitToCelci...

Figure 25 : Converter BPMN 2 model

As can be seen by the Model at the beginning our process a user will be requested to
select the type of conversion he wishes to make. Afterward based on his selection the
right web service call will be dispatched. Once that is done the user can see the result and
choose whether to repeat the process.

After designing our model we will end up with 2 files:
1. unit_converter.opmn20.xml:
This is the xml file of our process.

2. unit_converter.png:
This is the graphical representation of the model in png form.

DIMITRIOU MICHAIL \
Spring 2011 - Heraklion W
Transformation Service Laboratory Page - 42 - -?%’{-

-

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

4.2.3 Form Creation

For our process to run, it is required that we produce some form files. These files will
define how the information for our user will be viewed and the interface for him to make
selections and input data. Form file can be assigned to any Start Event and user Task. In
our model we shall assign two of such files to our two user Tasks respectively.

For the first user task we require a form that will allow him to choose if he wants to
convert from Celsius to Fahrenheit or vice versa and a field to input the value to be
converted.

<h1>Converter</h1>
<p> Which conversion do you want to make </p>
<table>
<tr>
<td>
<select name="toUnit">
<option value="far">Celsius To Farenheit</option>
<option value="cel">Farenheit To Celsius</option>
</select>
<input type="hidden" name="toUnit_type" value="String" />
</td>
</tr>
<tr>
<td>
<label>
<input type="text" name="temp" value="0" />
<input type="hidden" name="temp_required" value="true" />
</label>
</td>
</tr>
</table>
Code Snippet 14 : conversion start form

After this form is submitted two new variables will appear in our execution. The Variable
“toUnit” has stored the type of conversion the user wants to make and we can use it to
direct the process flow. The variable “temp” will hold the temperature we’ll pass to our
WebService for conversion.

For our second user task we require a Form that will portray the results of our conversion
and give the selection to finish or redo the process.

DIMITRIOU MICHAIL \
Spring 2011 - Heraklion 3
Transformation Service Laboratory Page - 43 - = -’:-:-

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

<h1>ConverterResult</h1>
<table>
<tr>
<td>
${temp} ${(toUnit=="far")?"Farenheit™:"Celsius"} is converted to ${newTemp}
${(toUnit=="cel")?"Farenheit":"Celsius"}
</td>
</tr>
<tr>
<td>
<select name="redo">
<option value="true">Yes</option>
<option value="false">No</option>
</select>
<input type="hidden" name="redo_type" value="Boolean" />
</td>
</tr>
</table>
Code Snippet 15 : conversion result form

In this form we can also see how we can run java code through our form or inside our
models xml file. Whatever is inside the ${...} is basically java code that runs inside the
execution scope much like jsp. Running inside the execution scope of the process means
we have access to its variable and in this case we alter our representation based on the
existing values of “toUnit”, “temp” and “newTemp” (newTemp being the name of the
variable we will later assign the result of the WebService call).

DIMITRIOU MICHAIL
Spring 2011 - Heraklion W
Transformation Service Laboratory Page - 44 - ::-':*‘ {-

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

4.2.4 XML refinement

The current State of the XML File is as follows:

<process id="tempConverter" name="TempConverter">

<startEvent id="startevent1l" name="Start"></startEvent>

<serviceTask id="servicetask1l" name="CelsiusToFarenheit" >

</serviceTask>

<serviceTask id="servicetask2" name="FarenheitToCelcius">

</serviceTask>

<exclusiveGateway id="exclusivegatewayl" name="Exclusive Gateway">
</exclusiveGateway>
<exclusiveGateway id="exclusivegateway3" name="Exclusive Gateway">
</exclusiveGateway>
<userTask id="usertask2" name="Give Temperature">
<f/userTask>

<userTask id="usertask1" name="redoOrFinish">
</userTask>

<sequenceFlow id="flow4" name=
</sequenceFlow>

<sequenceFlow id="flow6" name=
</sequenceFlow>
<sequenceFlow id="flow22" name=
</sequenceFlow>

<sequenceFlow id="flow7" name=
</sequenceFlow>

<exclusiveGateway id="exclusivegateway2" name="Exclusive Gateway">
</exclusiveGateway>

<sequenceFlow id="flow14" name=
</sequenceFlow>

<sequenceFlow id="flow15" name=

</sequenceFlow>

<endEvent id="endevent1" name="End"></endEvent>

<sequenceFlow id="flow18" name="" sourceRef="usertask2" targetRef="exclusivegatewayl">
</sequenceFlow>

<sequenceFlow id="flow19" name=

</sequenceFlow>

<sequenceFlow id="flow20" name=

</sequenceFlow>

<sequenceFlow id="flow21" name=

</sequenceFlow>

</process>

Code Snippet 16 : Unrefined xml converter model

sourceRef="servicetask2" targetRef="exclusivegateway3">

sourceRef="servicetaskl" targetRef="exclusivegateway3">

sourceRef="exclusivegateway3" targetRef="usertask1">

sourceRef="startevent1" targetRef="usertask2">

sourceRef="usertask1" targetRef="exclusivegateway2">

sourceRef="exclusivegateway?2" targetRef="usertask2">

sourceRef="exclusivegatewayl1" targetRef="servicetask1">

sourceRef="exclusivegatewayl1" targetRef="servicetask2">

sourceRef="exclusivegateway2" targetRef="endevent1">

As we can easily notice there is nothing more than our tasks gateways and flows that
connect them. What we need to do is add conditions to the flows if required, set

Assignees and form to the user tasks and define the class and its fields in the service task
for the web Service calls.

DIMITRIOU MICHAIL b
Spring 2011 - Heraklion ;
Transformation Service Laboratory Page - 45 -

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

4.2.4.1 Refining the service tasks

To make the Service Tasks to function properly first of all we must assign them a class.
In this case we use our gr.tsl.delegate.WsDelegate class that we use to make WebService
calls.

The required fields for this class is the WSDL’s URI, the operation of the service we will
invoke the input variables and the result variable.

<serviceTask id="servicetask1" name="CelsiusToFarenheit"
activiti:class="gr.tsl.delegate.WsDelegate">
<extensionElements>
<activiti:field name="wsdIl">
<activiti:string>http://localhost:8080/ConverterProj/wsdl/Converter.wsdl
</[activiti:string>
</activiti:field>
<activiti:field name="operation">
<activiti:string>celsiusToFarenheit</activiti:string>
</activiti:field>
<activiti:field name="parameters">
<activiti:expression>${temp}</activiti:expression>
</activiti:field>
<activiti:field name="returnValue">
<activiti:string>newTemp</activiti:string>
</activiti:field>
</extensionElements>
</serviceTask>

Code Snippet 17 : refined service task

4.2.4.2 Refining the user Tasks

As far as the user tasks are considered, we need to define an owner and a form. In our
case we assign the two forms we created before respectively and set as owner the user
“mdimitr”.

<userTask id="usertask2" name="Give Temperature" activiti:assignee="mdimitr"
activiti:formKey="converterForm.form"></userTask>

<userTask id="usertask1" name="redoOrFinish" activiti:assignee="mdimitr"
activiti:formKey="redoForm.form"></userTask>
Code Snippet 18 : refined user tasks

DIMITRIOU MICHAIL \
Spring 2011 - Heraklion
Transformation Service Laboratory Page - 46 -

[/

=

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

4.2.4.3 Refining the sequence flows

Considering the sequence flows we are interested only in those that we wish to control
the flow or more practically the ones which we wish to be active under condition. In this
case we speak about the flows coming out our first and last exclusive gateway. The
second gateway acts as exclusive join which means that only the first flow that will arrive
will cross. If instead we had a parallel gateway all flows should arrive before the process

moved on.
<sequenceFlow id="flow15" name="" sourceRef="exclusivegateway2" targetRef="usertask2">
<conditionExpression xsi:type="tFormalExpression"><![CDATA[${redo==true}]]>
</conditionExpression>
</sequenceFlow>
<sequenceFlow id="flow18" name="" sourceRef="usertask2" targetRef="exclusivegateway1">
</sequenceFlow>
<sequenceFlow id="flow19" name="" sourceRef="exclusivegatewayl" targetRef="servicetaskl">
<conditionExpression xsi:type="tFormalExpression"><![CDATA[${toUnit=="far"}]]>
</conditionExpression>
</sequenceFlow>
<sequenceFlow id="flow20" name="" sourceRef="exclusivegatewayl" targetRef="servicetask2">
<conditionExpression xsi:type="tFormalExpression"><![CDATA[${toUnit=="cel"}]]>
</conditionExpression>
</sequenceFlow>
<sequenceFlow id="flow21" name="" sourceRef="exclusivegateway2" targetRef="endevent1">
<conditionExpression xsi:type="tFormalExpression"><![CDATA[${redo==false}]]>
</conditionExpression>
</sequenceFlow>

Code Snippet 19 : sequence flow refinement

Above we can see that just like in the forms the conditions are java code. In this case the
clause we use must return a Boolean value.

4.2.5 Deploying our Process

After we have concluded the designing and coding part of our process we must have
ended up with a series of files. The only necessary file is a *.bpmn20.xml that is our
process model in bpmn2 format. During the deployment it’s the only type of file that is
evaluated and is the only factor for a successful deployment. Any other error will appear
during execution. Of course if the model declares to use certain form files we must
include those as during execution when requested to this files won’t be found. In addition
we must make sure that any class called by the process must exist in the class path of the
engines web app. Finally the image file of the model is totally optional.

In our case we ended up with the following files:
DIMITRIOU MICHAIL \

Spring 2011 - Heraklion
Transformation Service Laboratory Page - 47 -

[/

=

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

unit_converter.opmn20.xml
converterForm.form
redoForm.form
unit_converter.png

All we have to do now is to create a zip file name *.bar for example converter.bar.
Afterward we have to login with an administrator account to our manager app and go to
the deployments page. Then we select upload and select the *.bar file we want to deploy.

[a— —_ - —_— = [a— —_—

;& TSLManager 2 Michalis Dimitiou Logout

TASKS | PROCESSES | DEPLOYMENTS

Deployments

: Previous 1 MNext ==

Select “ ~ [Mame Time

O 5296 | activiti-engine-examples_ bar | Fri 15 Apr 2011 04:39:46
| Delete H Delete Cascade H Upload |
x
Upload
Deployment

Emhoyr apyeiov | converter bar

Figure 26 : uploading deployment

If all went well the new Deployment must appear in the Deployments and a new process
in our processes tab.

DIMITRIOU MICHAIL \
Spring 2011 - Heraklion W
Transformation Service Laboratory Page - 48 - = {-

=

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

4.2.6 Running the process

To Start the new process first we have to select “Start Process” for the process we are
interested (TempConverter) in the Processes page. Then if we are logged in as
“mdimitr” the first task should appear in “MyTask” at the Tasks page and selecting
complete form should show the form for completion.

L [- g e

,;:'e TSLManager a

& Michalis Dimitriou Logout

TASKS | PROCESSES = DEPLOYMENTS

My tasks

My tasks (1) << Previous 1 Next >>
Unassigned tasks (2)

n Accountancy (0}

n Engineering (2) E * 5359 | Give Temperature

n Management (0)
N Sales (0) *

Converter

Which conversion do you want to make

Celsius To Farenheit »

Price
88

Figure 27 : Convert temperature form

We select to convert from 88 degrees Celsius to Fahrenheit.
Then the engine should move to the service task to call the adequate operation of the web

service. And if all worked a new Task should appear to see the result and choose to finish
or convert again.

DIMITRIOU MICHAIL \
Spring 2011 - Heraklion
Transformation Service Laboratory Page - 49 -

Al £

-

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

;& TSLManager 2 Michalis Dimitriou Logout
TASKS | PROCESSES = DEPLOYMENTS
My tasks (1) My tasks =< Previous 1 e

Unassigned tasks (2)

N Accountancy (0)

~ Erer L 5367 redoOrFinish
in Management (0)
in Sales (0)

ConverterResult

88 Farenheit is converted to 190 4 Celsius

No |»

Figure 28 : Convert result form

If we choose “no” the process will finish otherwise the first task will appear again.

5 EXTENDING THE INFRASTRUCTURE TO RUN
CHOREOGRAPHIES.

In this section we will try to describe our concept and way of thought so as to develop
and evolve extensions for the activiti engine that will allow it to implement
Choreographies. For the concept to be more easy understand will be described through a
simple case study and try to fulfill the requirements needed step by step.

Although our Infrastructure supports by default orchestrations Choreographies is a totally
different story. First of all we need to define the requirement of o Choreography to be
considered in fact Choreography[16].

DIMITRIOU MICHAIL \
Spring 2011 - Heraklion W
Transformation Service Laboratory Page - 50 - %’{-

=

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

1. Participants: As we now Choreography is the coordinated interaction of two or
more Orchestrations. So by definition we must have two or more separate
Processes running.

2. Distributed: Our processes should be able to interact no matter where they are
deployed. This means that they should work whether they exist in the same
Infrastructure or not.

3. Interoperability: The processes should be able to interact no matter in what type of
infrastructure they are deployed. To ensure this their communication must be
consisted by open standards like SOAP through webservices or http request
responses.

4. No Centralized Control: A proper choreography should not depend on a
centralized control. All processes must communicate directly with each other.

5. Privacy: While to properly design our processes and have them successfully
coordinate we have to have all of them in mind, each process should require only
minimum information for its partners meaning that no detailed inside knowledge
of a partner process should be required.

6. Instantiation: Every process must be able to have instances with separate scopes
and access. This means that a process partner is an instantiation of a process type
so that when its partner wants to contact it they contact the specific Instance on
not any of that type. This was a major restriction we had so far with BPEL as we
couldn’t repetitively contact the same execution.

With the above in mind we must define and create the tools a process can have access to,
in order for it to communicate and interact with other processes and thus form an
choreography.

1. Receive message: A process must be able to wait for certain messages and once it
has received them to continue its execution flow.

2. Send messages: A process must be capable to send a message to any of each
partner.

3. Instantiation: We need a way to identify our partners. This means that we need
Knowledge for their location and an identification that will separate them from
the other instances of the same process type.

DIMITRIOU MICHAIL \
Spring 2011 - Heraklion W
Transformation Service Laboratory Page - 51 - ::-':*‘ {-

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

5.1 Existing Tools and workaround

5.1.1 Instantiation

As we have described before in our Infrastructure once o process is Started a new process
instance and a new execution are created. Those instances are given unique ids that we
can use to access them. Here is soma code that demonstrates how this can be done.

ProcessEngine processEngine = ProcessEngines.getDefaultProcessEngine()
RuntimeService runtimeService = processEngine.getRuntimeService();
Execution newExec = runtimeService.createExecutionQuery().processinstanceld(partnerld).singleResult();

Code Snippet 20 : get Process instance execution by process id

With the ProcessEngines.getDefaultProcessEngine() we get the main Process engine
which as described is our root object. Trough the processEngine object we can gain
access to the runtimeService that can query through all the running process instances. As
a result knowing our partners id can give as access to its execution and the ability to
interact with it.

5.1.2 Send messages

As is our Infrastructure doesn’t support any way of actually sending a message to another
process instance. To work around this setback we are going to use the Java Service Task
artifact. As we described before the Java Service task can work for us as our Swiss army
knife. We can practically use it to do anything by simply creating an adequate java class
and assign it to the task. With this in mind we can use it to read files query data from a
database call Web Service or make http requests.

5.1.3 Receive message

Just like in the case of sending a message there is no artifact dedicated to such a function.
What we can use to work around is the receive task. Although all it does is pause the
execution, we can use it to receive information. What we need is for the process to wait
until we have somehow fed it with the required information programmatically and then
tell it to resume. This is done by sending a signal to the paused execution. Here is a
sample of the code capable for that.

DIMITRIOU MICHAIL \
Spring 2011 - Heraklion W
Transformation Service Laboratory Page - 52 - %’{-

-

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

ProcessEngine processEngine = ProcessEngines.getDefaultProcessEngine();

RuntimeService runtimeService = processEngine.getRuntimeService();

Execution newExec = runtimeService.createExecutionQuery().processinstanceld(Partnerld).singleResult();
runtimeService.signal(newExec.getld());

Code Snippet 21 : send signal to execution

As before, we access the execution of a process by its id and send a signal that will
unpause it to the specific execution.

5.2 Case Study

Two evolve our thought on how we used a simple Choreography case study showing the
interaction between a buyer and a seller during an order procedure.
Here is a graphical representation of the two interacting processes.

DIMITRIOU MICHAIL \
Spring 2011 - Heraklion W
Transformation Service Laboratory Page - 53 - %’{-

=

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

Cancel Order I

denied

zend request

x ﬂCCEFtEd>{ Verify Order

¥

= | E
Receive Offer | Accept Offer

Figure 29 : Buyer order process

Above we can see the process that a buyer will follow. First he will request an offer over

a certain item. The item is defined by a form assigned to the start event. After that he

waits for the seller to send him an offer. Once he has received the offer he can assess it. If

he likes it he can send that he accepts the offer otherwise he asks for a cancelation.

DIMITRIOU MICHAIL
Spring 2011 - Heraklion
Transformation Service Laboratory Page - 54 -

O

.-’fi\.

=

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

eceive...

&
Make offer
{ Order Canceled .

ﬁ
Send Offer

X

=

Order Aproved Complete Order

=

Wait Order

Figure 30 : seller process

This process gets instantiated after a call from a buyer. Once instantiated the seller is
asked to make an offer and sends it. After that he waits for verification or cancelation if
he receives cancelation the process ends. If he receives verification he is requested to
continue with the order.

In both this processes we can see that in the place of a possible send message artifact we
use the java service task. And for waiting for message the receive task respectively.

For the above processes to be executed we also need appropriate form files to interact
with them. Here are the ones we developed for this case study.

DIMITRIOU MICHAIL \
Spring 2011 - Heraklion
Transformation Service Laboratory Page - 55 -

[/

=

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

<h1>Order Request</h1>
<table>
<tr>
<td>
<label>
Product Name:

<input type="text" name="productName" value="" />
<input type="hidden" name="productName_required" value="true" />
</label>

</td>
</tr>
<tr>
<td>
<label>
Quantity:

<input type="number" name="quantity" value="1" min="1" />
<input type="hidden" name="quantity_type" value="Integer" />
</label>
</td>
</tr>
</table>
Code Snippet 22 : Order Request form

x

Order Request

Product Mame

iterm 1

Quantity
10|

Figure 31 : Order Request form

In this form the buyer gives the name and the quantity of the product.
Two variables are created one with the quantity of the product and the other with the

products name.

DIMITRIOU MICHAIL
Spring 2011 - Heraklion W
Transformation Service Laboratory Page - 56 - -7,%’{'

-

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

<h1>Make offer</h1>
<p>
give price for ${quantity} of ${productName}.
</p>
<table>
<tr>
<td>
<label>
Price:

<input type="number" name="price" value="0" />
<input type="hidden" name="price_type" value="String" />
</label>
</td>
</tr>
</table>
Code Snippet 23 : make offer form

Make offer

give price for 10 of item 1.
Price
1000

Figure 32 : make offer form

In this the seller makes an offer for the specified amount of a certain item.
A variable “price” containing the amount is created.

DIMITRIOU MICHAIL \
Spring 2011 - Heraklion W
Transformation Service Laboratory Page - 57 - = {-

=

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND

ORCHESTRATIONS OVER A BPMN 2 ENGINE

<h1>Offer Approval</h1>
<p> the offer for ${quantity} of ${productName}</p>
<p> is ${price}
<p>
do you accept the offer?

<select name="acceptOffer">
<option value="1">Yes</option>
<option value="0">No</option>
</select>

<input type="hidden" name="acceptOffer_type" value="Integer" />

</p>
Code Snippet 24 : assess offer form

Offer Approval

the offer for 10 of item
is 1000

do you accept the offer? | Yes #

Figure 33 : assess offer form

Here the buyer assesses the offer and either accepts it or not.
A Boolean variable “acceptOffer” is created.

DIMITRIOU MICHAIL
Spring 2011 - Heraklion
Transformation Service Laboratory Page - 58 -

3
.-’fi\.

V.'_

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND

ORCHESTRATIONS OVER A BPMN 2 ENGINE

<h1>Order Completion</h1>
<p>
complete order
</p>
Code Snippet 25 : Complete order form

x

Order Completion

complete order

'Figure 34 : Complete order form

The seller receives the acceptance of the offer and completes it.

DIMITRIOU MICHAIL
Spring 2011 - Heraklion
Transformation Service Laboratory Page - 59 -

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

5.3 First Implementation same Engine multiple classes.

For our first attempt to implement our concept we are going to follow the simplest
approach. First of all our two processes are deployed on the same Engine. This means
that any java class we invoke can gain access to both processes and interact with them.
Following this concept we will create a different class for every Service task in our
Choreography. As a result we will end up with four delegate classes.

public class StartShopperProcess implements JavaDelegate {

public void execute(DelegateExecution execution) {

ProcessEngine processkEngine =
ProcessEngines.getDefaul tProcessEngine();

RuntimeService runtimeService =
processEngine.getRuntimeService();

IdentityService identityService =
processkEngine.getldentityService();

ProcessliInstance pi=null;

try {
identityService.setAuthenticatedUserlid("'mdimitr'");

} finally {
identityService.setAuthenticatedUserlid(null);
}
pi=runtimeService.startProcesslnstanceByKey(''shoperProcess");

Execution newExec =
runtimeService.createExecutionQuery() -processinstanceld(pi.-getld())-sing
leResult();

String
productName=(String)execution.getVariable("'productName™);

int
quantity=((Integer)execution.getVariable('quantity™)).intValue();

runtimeService.setVariable(newkExec.getld(),"buyerlid”,
execution.getProcessinstanceld());

runtimeService.setVariable(newkExec.getld(),"productName',

productName) ;

runtimeService.setVariable(newExec.getld(),"quantity",
quantity);

execution.setVariable('shopperild”, pi.getld());
+
by
Code Snippet 26 : Delegate class for sending a new order
After the buyer has filled the order form the service task calls this class. Here we gain

access, as described before, to the process engine and through it to the runtimeService.
Through the runtime service we can instantiate a new seller process and get its process Id.

DIMITRIOU MICHAIL \
Spring 2011 - Heraklion W
Transformation Service Laboratory Page - 60 - ::-':*‘ {-

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

We store the Id in a variable of the local execution “shopperld”. Using this id we can
query and access the execution off the newly instantiated seller process. This way we can
create a variable there with the buyer’s process id. Furthermore we create two variables to
store the quantity and the product name for our order.

As a result both processes know the id of their partner and we passed the data we wanted

After that the seller process will prompt him to fill the make offer form.

public class sendOffer implements JavaDelegate {
public void execute(DelegateExecution execution) {
ProcessEngine processkEngine =
ProcessEngines.getDefaultProcessengine();
RuntimeService runtimeService =
processEngine.getRuntimeService();
String shopperld=(String)execution.getVariable('buyerld™);
Execution newExec =
runtimeService.createExecutionQuery() .processinstanceld(shopperlid).singl
eResult();
runtimeService.signal (newkExec.getld());
runtimeService.setVariable(newkExec.getld(),"price',execution.getVa
riable('price™));

s
Code Snippet 27 : Delegate class for sending the offer

After the make offer form is filled the following service task calls this class. Here we use
the store id of the buyer’s process instance and use it to access it and create a new
variable to it containing the amount of the offer. Furthermore we send a signal to the
buyers execution to move on from the receive task that it has paused.

After that the buyer is prompt to fulfill the asses offer form. Depending on the choice a
different class will be called and as in send offer class we pass the choice made through a
variable.

Although this implementation is fully functional and seems to fulfill most of our demands
for choreography it has a major flaw. It runs on a single Engine and as mentioned our
demand for Choreography is distribution which means they must be able to run in
different machines. With this implementation this is not feasible. Yet with few changes
we can evolve it to work between two engines.

DIMITRIOU MICHAIL \
Spring 2011 - Heraklion 3
Transformation Service Laboratory Page - 61 - = {-:-

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

5.4 Second Implementation different Engine multiple services.

What we need to do is to instead of using a class to interact with both partners to break
this into a class and a web service or a servlet. For easier understanding we are going to
use http requests to communicate.

With this concept in mind for every interaction between two partners we require a
delegate class that will make the request and a servlet or a web service that will receive it.
We assume that we know the location of the partner Process and have incorporated in our
model.

Re out that all the calling classes will be almost identical and that will change will be the
http parameters passes and the result variable.

This means that just as we acted with our orchestrations and created a single delegate
class to make all our Web Service calls similarly we can make one for our http call.

This class will look like that:

public class WsRestDelegate implements JavaDelegate {

private Expression Url;

private Expression parameters;

private Expression returnValue;

public void execute(DelegateExecution execution) {

String URLString = (String)Url._getValue(execution);
String paramStrings = "'';
if (parameters!=null) {
StringTokenizer st = new StrlngTokenlzer(
(String)parameters.getValue(execution), ",");
whille (st.hasMoreTokens()) {
paramStrings=paramStrings+"&"+st_nextToken() -trim(Q);
}
}
String result = null;
if (URLString.startsWith('http://""))

DIMITRIOU MICHAIL \
Spring 2011 - Heraklion W
Transformation Service Laboratory Page - 62 - -7,%’{'

-

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

{

try

{

String urlStr = URLString;

if (paramStrings.length () > 0)

{

urlStr += "?" + paramStrings;

}

URL url = new URL(urlStr);

URLConnection conn = url._openConnection ();

BufferedReader rd = new BufferedReader(new
InputStreamReader (conn.getlnputStream()));

StringBuffer sb = new StringBuffer();

String line;

while ((line = rd.readLine()) != null)

sb.append(line);
rd.close();

result = sb._toString();
} catch (Exception e)

e

e.printStackTrace();

“

if (returnValuel=null) {
String returnVariableName = (String)
returnValue.getValue(execution);
execution.setVariable(returnvVariableName, result);
System.out.printIn(’" returned "+returnVariableName+" = "+

}

result);

}
by
Code Snippet 28 : delegate class to make Http calls

The above class works exactly like our webService call class worked instead now we
make an Http request.

To level with the previous implementation this class will call a service that will
instantiate the sellers process, store the http parameters as local variables and send with
its response its process id.

On our next calls we will sent as parameter the process id for the receiving service to

access the right process instance.

On the receiving point the service will look like That:

DIMITRIOU MICHAIL \
Spring 2011 - Heraklion 3
Transformation Service Laboratory Page - 63 - = {-:-

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

protected void executeWebScript(ActivitiRequest req, Status status,
Cache cache, Map<String, Object> model) {

ProcessEngine processkEngine =
ProcessEngines.getDefaultProcessengine();

RuntimeService runtimeService = processEngine.getRuntimeService();

IdentityService identityService =
processEngine.getldentityService();

Processlinstance pi=null;

try {
identityService.setAuthenticatedUserid("'mdimitr');

} finally {
identityService.setAuthenticatedUserid(null);

}

pi=runtimeService.startProcesslnstanceByKey(*'shoperProcess");

Execution newExec =
runtimeService.createExecutionQuery() -processinstanceld(pi.-getld())-sing
leResult();
String productName=(String)req.getString('productName™);
int quantity=Integer.parselnt(req.getString(''quantity'));
int callerld=Integer.parselnt(req.getString(“'buyerid™));
runtimeService.setVariable(newkExec.getld(), " buyerlid",
callerld);
runtimeService.setVariable(newkExec.getld(),"productName",
productName) ;
runtimeService.setVariable(newkExec.getld(), "quantity",
quantity);
model _put(*'shopperlid™”, pi.getld());
}

Code Snippet 29 : Start Shopper webScript

We can see that it is very similar to our new order class in snippet 26. The basic
Difference is that the variables from the caller are now http parameters ant in order to
create a new variable to the caller we must include it in our response.

Similarly we form receiving WebScript for every receive task.

5.5 Final Implementation Different Engine, single receiving
services.

When creating such infrastructures we must always have in mind that they are going to be
used by mostly non developers. As a result although our last implementation confronts

DIMITRIOU MICHAIL \
Spring 2011 - Heraklion W
Transformation Service Laboratory Page - 64 - - {-

-

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

fully with our choreography requirements is user unfriendly. Every time we create a new
process we must create adequate receiving WebScript and this is quite redundant. If we
observe all our web script we can see huge similarities and a pattern for a single global
receiver emerges.

This receiver will have the following logic. It will check for a parameter with name
“ProcKey” this will be the key of a process that must be instantiated. So if it exist it will
instantiate the mentioned process.

Otherwise it will check for the parameter with name “procld”. This will be the id of the
process instance called.

After that it will check for a parameter with name “return”. This parameter will hold the
names of variables required to be returned, delimited with a minus symbol “-”.Finally it
will browse through all the rest parameters and instantiate them as Variables.

This global receiver will look like that:

protected void executeWebScript(ActivitiRequest req, Status status,
Cache cache, Map<String, Object> model) {

HttpServletRequest request=req.getHttpServletRequest();
Enumeration<String> names = request.getParameterNames();
String name=""";

Execution newExec=null;
ProcessEngine processkEngine =
ProcessEngines.getDefaul tProcessEngine();
RuntimeService runtimeService = processEngine.getRuntimeService();
Processlinstance pi=null;
String returnvars;
String procld;
String procKey=req.getString(‘‘procKey™);
if (procKey!=null){

pi=runtimeService.startProcesslnstanceByKey("'shoperProcess");
newExec =
runtimeService.createExecutionQuery() -processinstanceld(pi.-getld())-sing
leResult();

else{
procld=req.-getString('procld™);
newExec =
runtimeService.createExecutionQuery() .processinstanceld(procld).singleRe
sult(Q;

}

while((name=names.nextElement()) =nul 1){
if(name!="procKey" && name!="procld” && namel!="return™){
runtimeService.setVariable(newkExec.getld(),name,
req.-getString(name));

3
DIMITRIOU MICHAIL \
Spring 2011 - Heraklion 3
Transformation Service Laboratory Page - 65 - = -’:-:-

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

returnVars=req.getString('return’™);
String[] variables=null;

if(returnvars!=nul){
variables=returnVars.split('-"");
}

for(int 1=0; i1 < variables.length; i++){
model .put(variables[i],
runtimeService.getVariable(newkExec.getld(),variables[i]));

}
}
Equation 30 : global receiver WebScript

5.6 Extension Summary

What we developed are classes and native services that provide the ability for
independent processes to communicate and interact with each other thus forming
choreographies. Furthermore through our case study we demonstrated a way of thinking
conceptualizing and designing orchestrations to interact with each other so as to lead to
functional and useful choreographies. Such functionality can be incorporated in the
activity engine and other similar tools and be perfected through real life applications.
What is required is standardization of communication protocols between processes and
lift the mist of what choreographies really are as many interprete and view it in different
ways.

DIMITRIOU MICHAIL
Spring 2011 - Heraklion W
Transformation Service Laboratory Page - 66 - -?%’{-

-

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

CONCLUSIONS AND FUTURE WORK

During the study for this work we gain significant knowledge on how to develop and run
web services and WebService Orchestration. Additionally we noticed the limits of current
frameworks and infrastructures. This fact pushed the community to the creation of BPMN
2 a business model that can satisfy both developers and managers. Believing that
choreographies are an integral part of the future of business processes we attempted to
figure out if the latest developments can provide easy implementation. As it was figured
out Choreographies seem to most developers still very exotic and hesitate to incorporate
them in their work. Yet it is Obvious that we are moving away from strictly orchestration
character that was set by BPEL. As a result the artifacts for a choreography capable
infrastructure exist. The result of this study was an infrastructure capable of providing an

environment to easily develop both orchestrations and choreographies.

In the future we must test the logic and the stability of this implementation with more
complex models. Furthermore we can add more BPMN 2 artifacts that will give
significant more possibilities to the model designers. A first improvement that was
notices is to store the calls/messages so as if a call is made before a receive task is
reached to pass it without pausing. In addition to this, calls can also have receive task

targets so as if a receive task is never reached the call to be discarded.

DIMITRIOU MICHAIL \
Spring 2011 - Heraklion W
Transformation Service Laboratory Page - 67 - -?%’{-

-

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

REFERENCES

5. "Web Service to Web Service Communication”. Retrieved 2011-09-22.

6. "Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language".
Retrieved 2011-09-22.

"Web Services Glossary" . W3C. February 11, 2004. Retrieved 2011-09-22.

8. "XML 1.0 Specification". W3.org. Retrieved 2011-09-22.
9. Allweyer T (2010 Feb 22). BPMN 2.0 - Introduction to the Standard for Business

Process Modeling. BoD. ISBN 978-3-8391-4985-0.

10. apache tomcat server

11. BPEL vs BPMN 2.0: Should you care? Frank Leymann http://bpt.hpi.uni-
potsdam.de/pub/BPMNZ2010/Program/bpmn2010_leymann.pdf

12. Briol P. (2008 April 12). BPMN, the Business Process Modeling Notation Pocket
Handbook. LuLu. ISBN 978-1-4092-0299-8.

13. Briol P. (2010 Nov 16). BPMN 2.0 Distilled. LuLu. ISBN 978-1-4461-0406-4.

14. Business Process Execution Language for Web Services, Version 1.1 (PDF) (5 May
2003)

15. Business Process Modeling Notation, specification of BPMN v1.0 by Stephen A.
White (3 May 2004), for Business Process Management Initiative (BPMI)

16. Chris Peltz: Web Services Orchestration and Choreography. IEEE Computer
(COMPUTER) 36(10):46-52 (2003)

17. Chun Ouyang, Marlon Dumas, Arthur H. M. Ter Hofstede : From Business
Process Models to Process-oriented Software Systems: The BPMN to BPEL Way

18. Debevoise, Neilson T, et al. (2008 July 4). The MicroGuide to Process Modeling
in BPMN. BookSurge Publishing. ISBN 978-1-4196-9310-6.

19. Fielding, Roy T.; Gettys, James; Mogul, Jeffrey C.; Nielsen, Henrik Frystyk; Masinter,
Larry; Leach, Paul J.; Berners-Lee (June 1999). "RFEC 2616: Hypertext Transfer Protocol
- HTTP/1.1".

20. FreeMarker template engine http://freemarker.sourceforge.net/
21. Gero Decker, Oliver Kopp, Frank Leymann, Mathias Weske: BPEL4Chor:
Extending BPEL for Modeling Choreographies. ICWS 2007:296-303

DIMITRIOU MICHAIL A
Spring 2011 - Heraklion -
Transformation Service Laboratory Page - 68 - %—f‘{-

http://www.wstutorial.com/web-service-to-web-service-communication/
http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/
http://en.wikipedia.org/wiki/World_Wide_Web_Consortium
http://www.w3.org/TR/REC-xml
http://www.bpmn-introduction.com/
http://www.bpmn-introduction.com/
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-3-8391-4985-0
http://tomcat.apache.org/
http://bpt.hpi.uni-potsdam.de/pub/BPMN2010/Program/bpmn2010_leymann.pdf
http://bpt.hpi.uni-potsdam.de/pub/BPMN2010/Program/bpmn2010_leymann.pdf
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-1-4092-0299-8
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-1-4461-0406-4
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel/ws-bpel.pdf
http://en.wikipedia.org/wiki/PDF
http://www.bpmn.org/Documents/BPMN%20V1-0%20May%203%202004.pdf
http://csdl.computer.org/comp/mags/co/2003/10/rx046abs.htm
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-1-4196-9310-6
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616
http://freemarker.sourceforge.net/
http://doi.ieeecomputersociety.org/10.1109/ICWS.2007.59
http://doi.ieeecomputersociety.org/10.1109/ICWS.2007.59

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND

22.

23.

24.

25.
26.

217.

28.

29.

30.
31.
32.
33.
34.

35.

36.

ORCHESTRATIONS OVER A BPMN 2 ENGINE

Grosskopf, Decker and Weske. (2009 Feb 28). The Process: Business Process
Modeling using BPMN. Meghan Kiffer Press. ISBN 978-0929652269.

Jack Vaughan: BPMN 2.0 adds notation to handle BPM choreography.
SearchSOA.com

Johannes Maria Zaha, Alistair P. Barros, Marlon Dumas, Arthur H. M. ter

Hofstede: Let's Dance: A Lanqguage for Service Behavior Modeling. OTM
Conferences 2006:145-162
Object Management Group (OMG) http://www.omg.org/

Pautasso, Cesare; Zimmermann, Olaf; Leymann, Frank (2008-04), "RESTful
Web Services vs. Big Web Services: Making the Right Architectural
Decision", 17th International World Wide Web Conference (WWW2008) (Beijing,
China)

Process Modeling Notations and Workflow Patterns, paper by Stephen A. White of
IBM Corporation (2006)

Richardson, Leonard; Ruby, Sam (2007-05), RESTful Web Services,
O'Reilly, ISBN 978-0-596-52926-0

Ryan K. L. Ko, Stephen S. G. Lee, Eng Wah Lee (2009) Business Process
Management (BPM) Standards: A Survey. In: Business Process Management
Journal, Emerald Group Publishing Limited. Volume 15 Issue 5. ISSN 1463-
7154. PDF

S-Cube Knowledge Model: Service Choreography

The Activiti project http://activiti.org

The ms-bpel standard by OASIS oasis ms-bpel.
the Spring Surf Project http://www.springsurf.org/

The Organization for the Advancement of Structured Information
Standards (OASIS) Oasis-open.org.

W3C (September 2011). "World Wide Web Consortium (W3C) About the Consortium”.
Retrieved 2011-09-22.

Web Services Choreography Working Group at W3

DIMITRIOU MICHAIL A
Spring 2011 - Heraklion

Transformation Service Laboratory Page - 69 - %{—

http://www.bpmn-book.com/
http://www.bpmn-book.com/
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-0929652269
http://searchsoa.techtarget.com/news/article/0,289142,sid26_gci1372109,00.html
http://dx.doi.org/10.1007/11914853_10
http://www.omg.org/
http://www.jopera.org/docs/publications/2008/restws
http://www.jopera.org/docs/publications/2008/restws
http://www.jopera.org/docs/publications/2008/restws
http://www.bpmn.org/Documents/Notations_and_Workflow_Patterns.pdf
http://oreilly.com/catalog/9780596529260
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-0-596-52926-0
http://ryanko.files.wordpress.com/2008/03/bpm-journal-koleelee-bpms-survey.pdf
http://www.s-cube-network.eu/km/terms/s/service-choreography
http://activiti.org/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://www.springsurf.org/
http://www.oasis-open.org/committees/process.php#stand_approv_process
http://www.w3.org/Consortium/
http://www.w3.org/2002/ws/chor/

DESIGNING, IMPLEMENTING AND EXECUTING CHOREOGRAPHIES AND
ORCHESTRATIONS OVER A BPMN 2 ENGINE

37. White, Stephen A, and Miers, Derek (2008 August 28). BPMN Modeling and
Reference Guide. Future Strategies Inc.. ISBN 978-0-9777-5272-0.

38. Wikipedia contributors. Unified Modeling Language. Wikipedia, The Free Encyclopedia.
November 4, 2011, 15:44 UTC. Available
at: http://en.wikipedia.org/w/index.php?title=Unified Modeling Language&oldid=4589860
43. Retrieved 2011-09-22

39. Zongyan Qiu, Xiangpeng Zhao, Chao Cai, Hongli Yang: Towards the theoretical
foundation of choreography. WWW 2007:973-982

DIMITRIOU MICHAIL A
Spring 2011 - Heraklion -
Transformation Service Laboratory Page - 70 - %—f‘{-

http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-0-9777-5272-0
http://en.wikipedia.org/w/index.php?title=Unified_Modeling_Language&oldid=458986043
http://en.wikipedia.org/w/index.php?title=Unified_Modeling_Language&oldid=458986043
http://doi.acm.org/10.1145/1242572.1242704
http://doi.acm.org/10.1145/1242572.1242704

	1 INTRODUCTION
	2 BACKGROUND KNOWLEDGE/THEORY
	Web services
	2.2 Orchestrations
	2.3 Choreographies
	2.4 Orchestrations and Choreographies
	2.5 BMPN
	2.6 BPEL
	2.7 BPEL and BPMN
	2.8 BPMN 2

	3 THE INFRASTRUCTURE
	THE BPMN 2 ENGINE
	3.1.1 The engines API and its hierarchy can be seen in the following figure.

	3.2 MySql DataBase
	3.3 BPMN 2 designer tool
	3.4 Management Web Application
	3.4.1 Architecture and functionalities

	3.5 Summary

	4 THE FRAMEWORK IN PRACTICE
	Learning the BPMN 2.0 constructs
	4.1.1 None start event
	4.1.2 None end event
	4.1.3 Sequence flow
	4.1.4 Conditional sequence flow
	4.1.5 Gateways
	4.1.5.1 Exclusive gateway
	4.1.5.2 Parallel Gateway

	4.1.6 User task
	4.1.7 Script Task
	4.1.8 Java Service Task
	4.1.9 WebService Task
	4.1.10 Java receive task

	4.2 Designing and running a simple Orchestration
	4.2.1 WebService Development
	4.2.2 Process model Design
	4.2.3 Form Creation
	4.2.4 XML refinement
	4.2.4.1 Refining the service tasks
	4.2.4.2 Refining the user Tasks
	4.2.4.3 Refining the sequence flows

	4.2.5 Deploying our Process
	4.2.6 Running the process

	5 Extending the infrastructure to run Choreographies.
	5.1 Existing Tools and workaround
	5.1.1 Instantiation
	5.1.2 Send messages
	5.1.3 Receive message

	5.2 Case Study
	5.3 First Implementation same Engine multiple classes.
	5.4 Second Implementation different Engine multiple services.
	5.5 Final Implementation Different Engine, single receiving services.
	5.6 Extension Summary

