
University of Crete
Computer Science Department

CIRCULAR META-IDE FOR THE DELTA LANGUAGE:
DYNAMIC EXTENSIBILITY, REMOTE DEPLOYMENT, INTERACTIVE INTROSPECTION

AND SYNTAX DIRECTED EDITOR

by

YANNIS GEORGALIS

MASTER’S THESIS

Heraklion, October 2007

ii

iii

University of Crete
Computer Science Department

CIRCULAR META-IDE FOR THE DELTA LANGUAGE:
DYNAMIC EXTENSIBILITY, REMOTE DEPLOYMENT, INTERACTIVE INTROSPECTION

AND SYNTAX DIRECTED EDITOR

by

YANNIS GEORGALIS

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

Author: ___

Yannis Georgalis

Board of enquiry:

Supervisor ___

Constantine Stephanidis, Professor

Supervisor ___

Anthony Savidis, Associate Professor

Member ___

Evangelos Markatos, Professor

Member ___

Mema Roussopoulos, Assistant Professor

*The board of enquiry judged that the present Thesis is also given the characterization
With Distinction.

Approved by: ___

Panos Trahanias, Professor,
Chairman of the Graduate Studies Committee

Heraklion, October 2007

iv

Abstract

Following programming languages, Integrated Development Environments (IDEs) are

considered as the next decisive factor for effective software development, playing a

critical role in the software lifecycle, especially when it targets medium-to-large-scale

systems. In this context, the subject of this Thesis is Sparrow; an IDE for the dynamic,

object-based programming language – Delta. Sparrow was developed with the

following two key objectives: (a) to support extensibility of features, allowing such

extensions to be developed using Sparrow, i.e. it is a circular IDE, and (b) to facilitate

open deployment by third parties to build domain-oriented IDEs, i.e. it is a meta-IDE.

In this Thesis, the design and implementation of a large part of Sparrow has been

carried out – corresponding roughly to half of the system’s implementation, –

addressing the following issues: (a) the implementation of the basic component

framework for extensibility, enabling developers dynamically introduce IDE

components, (b) the implementation of the mechanism for remote deployment,

enabling third-party applications dynamically utilize the IDE in a domain specific

manner, (c) the implementation of a component introspection User Interface, enabling

users interactively review and invoke the underlying functionality of all IDE

components, and (d) the implementation of the source code editor supporting real-

time, true syntax highlighting during editing, relying on quick incremental parsing

particularly suited to the Delta language.

The work reported in this Thesis enabled the Sparrow IDE to play the role of an open

platform capable of dynamically hosting IDE functionality, reflecting the tabula rasa

concept. Along these lines, we expect future IDEs to move towards these directions,

delivering more flexible and open infrastructures by enabling users introduce

extensions and customizations reflecting their individual programming habits or any

emerging programming techniques.

v

Περίληψη

Μετά τις γλώσσες προγραµµατισµού, τα Ολοκληρωµένα Περιβάλλοντα Ανάπτυξης

(Integrated Development Environments - IDEs) θεωρούνται ο σηµαντικότερος

παράγοντας για την ανάπτυξη λογισµικού, παίζοντας κρίσιµο ρόλο στον κύκλο

ανάπτυξης προγραµµάτων, ιδιαίτερα δε για τα µεσαίας και µεγάλης κλίµακας

συστήµατα. Σε αυτό το πλαίσιο, το θέµα της παρούσας εργασίας είναι το σύστηµα

Sparrow, ένα IDE για τη δυναµική οντοκεντρική γλώσσα Delta. Το Sparrow

κατασκευάστηκε ακολουθώντας δύο κύριους στόχους: (α) να υποστηρίζει

επεκτασιµότητα των λειτουργιών του, επιτρέποντας να αναπτυχθούν οι επεκτάσεις

αυτές χρησιµοποιώντας το ίδιο το Sparrow, δηλαδή είναι ένα κυκλικό IDE, και (β) να

υποστηρίζει τη χρήση του από τρίτα συστήµατα διευκολύνοντας τη δηµιουργία IDEs

εξειδικευµένων στο εκάστοτε πεδίο εφαρµογών, δηλαδή είναι ένα µετα-IDE.

Στο πλαίσιο αυτής της εργασίας, αναπτύχθηκε ένα µεγάλο µέρος του Sparrow, που

αντιπροσωπεύει περίπου το ήµισι της υλοποίησης του όλου συστήµατος, και αφορά

στα παρακάτω ζητήµατα: (α) την υλοποίηση της βασικής δοµής διαχείρισης

τµηµάτων λογισµικού που υποστηρίζει την επεκτασιµότητα του συστήµατος, η οποία

καθιστά δυνατή τη δυναµική εισαγωγή και χρήση των τµηµάτων από τους

προγραµµατιστές, (β) την υλοποίηση του µηχανισµού ελέγχου µέσω δικτύου, ο

οποίος επιτρέπει σε εξωτερικές εφαρµογές να χρησιµοποιούν δυναµικά το IDE ως

τµήµα, µε τρόπο που εξαρτάται από το εκάστοτε πεδίο εφαρµογών, (γ) την

υλοποίηση διεπαφής ενδοσκόπησης των τµηµάτων κώδικα, η οποία επιτρέπει στους

προγραµµατιστές να βλέπουν και να καλούν τις λειτουργίες των τµηµάτων του IDE

κατά τη διάρκεια της χρήσης του, και (δ) την υλοποίηση του συντάκτη κώδικα, ο

οποίος µπορεί να παρουσιάζει σε πραγµατικό χρόνο µε γραφικό τρόπο τα τµήµατα

του πηγαίου κώδικα σύµφωνα µε το συντακτικό της γλώσσας, υλοποιώντας µία

µέθοδο γρήγορης, αυξητικής συντακτικής ανάλυσης ειδικά σχεδιασµένης για τη

γλώσσα Delta.

Η παρούσα εργασία κατέστησε εφικτή την ανάπτυξη του Sparrow ως µία ανοικτή και

επεκτάσιµη πλατφόρµα λογισµικού, ακολουθώντας τη φιλοσοφία tabula rasa, ώστε

vi

να υποστηρίζει ευέλικτα τη λειτουργικότητα ενός IDE υλοποιώντας ένα γενικό

αρχιτεκτονικό πλαίσιο που υποστηρίζει τη δυναµική συρραφή των λειτουργικών

τµηµάτων. Σε αυτές τις γραµµές, αναµένουµε τα µελλοντικά IDEs να κινηθούν σε

παρόµοιες κατευθύνσεις, προσφέροντας ακόµη πιο ευέλικτες και ανοικτές υποδοµές,

επιτρέποντας στους προγραµµατιστές να εισάγουν επεκτάσεις και προσαρµογές

σύµφωνα µε τις ιδιαίτερές τους προγραµµατιστικές συνήθειες καθώς και τις εκάστοτε

αναδυόµενες προγραµµατιστικές τεχνικές.

vii

Ευχαριστίες

Θα ήθελα να ευχαριστήσω τους επόπτες της µεταπτυχιακής µου εργασίας Αντώνιο

Σαββίδη και Κωνσταντίνο Στεφανίδη για την συνεχή καθοδήγηση και υποστήριξή

τους τα τελευταία τεσσεράµισι χρόνια στο πλαίσιο της συνεργασίας µας στο

Εργαστήριο Επικοινωνίας Ανθρώπου-Υπολογιστή, του Ινστιτούτου Πληροφορικής

του Ιδρύµατος Τεχνολογίας και Έρευνας.

Επίσης, θα ήθελα να ευχαριστήσω τον Θεµιστοκλή Μπουρδένα µε τον οποίο είχα τη

χαρά να συνεργάζοµαι συνολικά τρία χρόνια, ιδιαίτερα δε τους τελευταίους επτά

µήνες στο πλαίσιο της εκπόνησης των µεταπτυχιακών µας εργασιών που είχαν ως

κοινό στόχο την ανάπτυξη του Sparrow IDE.

Ευχαριστώ, τέλος, την οικογένειά µου και τους φίλους µου που µε υπέφεραν και µε

στήριξαν όλα αυτά τα χρόνια.

Table of contents

List of figures...x

List of tables...xii

List of tables...xii

1. Introduction..1

1.1 Objectives ..1

1.1.1 Common features ...2

1.1.2 Novel features ..2

1.2 Architecture..3

1.2.1 Circularity ..4

1.2.2 Meta ...5

1.3 Methodology..6

2. Related work ..7

2.1 The Delta Language...7

2.2 Existing IDEs...9

2.2.1 Visual Studio..10

2.2.2 Eclipse..11

2.2.3 KDevelop ...11

2.2.4 Comparison..12

3. Dynamic Extensibility ...14

3.1 Components ...14

3.2 Existing Component Frameworks..15

3.3 Proposed Component Framework..16

3.3.1 Primary Requirements ...16

3.3.2 Technical Overview...18

3.3.3 Implementation Details..20

3.3.3.1 Inheritance..24

3.3.3.2 Invocations...26

3.3.3.3 Notifications...27

3.3.3.4 Component Specification Language ..29

3.4 Extending Components..32

ix

3.5 Global and Local Undo / Redo ..34

4. Remote Component Deployment...37

4.1 Technical Approach...37

4.2 Implementation Details..38

4.3 IDE Deployment API...40

4.4 Examples of Use ..41

5. Interactive Introspection ..42

5.1 Technical Approach...42

5.2 Implementation Details..44

5.3 User Interface...45

6. Syntax Directed Editor...48

6.1 Architecture..48

6.2 Grammar Overview ...51

6.3 Abstract Syntax Trees ..52

6.4 Incremental Parsing ...54

6.5 Rendering...57

6.5.1 Highlighting ...58

6.5.2 Error Marking ..58

6.5.3 Code Unit Folding..59

6.5.4 AST View ..60

6.5.5 Tooltips ..60

6.6 Auto Completion..61

7. Summary and Conclusions ..64

7.1 Summary..64

7.2 Conclusions..64

References..67

x

List of figures

Figure 1 - Sparrow as a collection of components...4

Figure 2 - Native and Circular extension layers in Sparrow..5

Figure 3 - Horizontal and Vertical extensibility in Sparrow..6

Figure 4 - Screenshot of Sparrow with various key components active........................7

Figure 5 - The basic building blocks of a Sparrow Component22

Figure 6 - Runtime dependencies between the basic building blocks of Sparrow's

component framework ...24

Figure 7 - The recursive lookup algorithm for component functions..........................25

Figure 8 - Runtime model of classes and instances in a scenario that utilizes

component inheritance...25

Figure 9 - Inter-component communication through message passing27

Figure 10 - A Sparrow component implementation in C++ ..31

Figure 11 - Constructing a component instance and calling its methods31

Figure 12 - A C++ Sparrow component that supports Undo/Redo36

Figure 13 - Remote component invocation..39

Figure 14 - Generic remote invocation ..41

Figure 15 - Using the deployment API ..41

Figure 16 - Interactive component introspection interface ..43

Figure 17 – Displaying the data of a component ...46

Figure 18 – Displaying the documentation of a component function..........................46

Figure 19 - Displaying a component instance hierarchy ...47

Figure 20 - Architecture of Sparrow's Source Editor...50

Figure 21 - Architecture of Editor's extension plug-in for Delta51

Figure 22 - The top level rules of Delta's grammar in BNF ..51

Figure 23 - Abstract syntax tree for a simple Delta program53

Figure 24 - Difference in AST in case of error; left: incremental parsing, right: full

parsing..56

Figure 25 - Incremental parsing of text after pasting "else" ..57

Figure 26 - Editor Syntax highlighting ..59

Figure 27 - Editor Tooltips under the mouse pointer...61

xi

Figure 28 - Automatic completion of symbols, and object members as ids and strings

..63

xii

List of tables

Table 1 - Comparison of IDEs...13

Table 2 - Standard internal component notifications...28

Table 3 - The exported Deployment API...40

Table 4 - The AST nodes used in the representation of a Delta program....................52

1

1. Introduction

Computer programs follow completely different architectural and implementation

strategies in relation to the problem being solved, the available resources, and the way

users interact with them. This multi-modality that inevitably characterizes software

systems not only increases their complexity, but also impedes the formalization of

concrete guidelines and “recipes” for approaching the construction of a program.

The plethora of available programming languages and development tools clearly

reflect the aforementioned lack of formalization of the development process. Whereas

the advancements in high-level languages have undisputedly allowed software

systems to become much more sophisticated, Integrated Development Environments

have enabled programmers to produce more robust programs in a smaller time frame.

An Integrated Development Environment (IDE) is basically a program that assists the

process of software authoring by (a) disengaging the programmer from source code

maintenance operations, (b) visually annotating and validating the syntactical

structures of a program, (c) aiding the debugging process, and (d) automating some

aspects of the code manipulation operations.

The final product of this project – dubbed Sparrow – is an IDE for the dynamic

object-based programming language, Delta. The project’s goal was not only to create

a full fledged development environment for the Delta language, but also to explore the

usage of various programming techniques for implementing a dynamically

configurable, remotely deployable, and extensible software platform.

1.1 Objectives

An IDE, besides being a program that aids the developer by automating tedious

programming tasks, ought to provide a concrete platform on which developers can

build custom tool-chains and extend its functionality. This was viewed as the most

critical factor when designing Sparrow. The provision of a sensible, intuitive meta-

2

development platform that can leverage the effectiveness of the offered facilities is

missing from most contemporary IDEs.

1.1.1 Common features

Sparrow aims to be a full-fledged IDE. Hence, its features that are similar to the ones

offered by many existing Integrated Development Environments are the following:

• Source code editor with highlighting support that annotates and validates

Delta’s syntactic constructs on-the-fly

• Workspace manager for managing the collection of source files that comprise

a Delta program and their properties

• Source-level debugger for the Delta language

• Extensibility interface for extending all aspects of the IDE’s functionality

through both C++ and Delta languages

• Deployment interface for accessing part of the IDE’s functionality from other

programs

• Support for a multi-lingual interface

1.1.2 Novel features

This Thesis focuses on four aspects of Sparrow, namely: extensibility through its

component-based architecture, remote deployment capabilities, interactive

introspection facility, and Delta source code editor. These subsystems correspond

roughly to half of the IDE’s code volume and functionality.

Sparrow offers a concrete component-based architecture that clearly separates the

different parts of the IDE’s user interface and functionality, while automatically

exposing their facilities through its extensibility Application Programming Interface

(API). This explicit componentization of Sparrow not only enhances its

maintainability, but also allows for well-defined and straightforward extensions to the

IDE by either activating different components at run-time or enhancing those already

available through Delta or native extensions. Additionally, Sparrow offers a

3

centralized Undo subsystem that simplifies to a large degree the provision of

Undo/Redo functionality by components.

To make it easier for third-party applications to deploy the IDE, Sparrow provides a

mechanism that allows an arbitrary number of processes – that can even run on

remote machines – to utilize the functionality that is exposed by the available

components.

Additionally, Sparrow offers a graphical component that is able to extract and display

all the introspection data that are encapsulated into its components. This tool offers to

the extension programmer a comprehensive reference of (a) all the supported

functions, (b) the components’ metadata, and (c) their active instances. Through the

provided interface, programmers are able to interactively manipulate many aspects of

the IDE on-the-fly.

Lastly, Sparrow’s source code editor features a complete Delta language parser that

retains the whole syntactical structure of Delta programs and exposes it to the

extension scripts. The supplied Delta parser is able to parse the target programs

incrementally. A change in the target program will trigger the reevaluation of only the

parts of the program that are affected by this change rather than the whole source file.

The facilities of the editor that are based on the internal representation of the edited

program include: (a) syntax highlighting and code folding, (b) visualization of the

program, (c) syntax validation, (d) automatic symbol completion, and (e) informative

tooltips on language constructs.

1.2 Architecture

At the most basic level, Sparrow is comprised of a set of loosely-coupled components

that communicate with each other through message passing. In this sense, Sparrow

follows a tabula rasa approach; the core of the IDE, its component system, provides

the basic functionality in order to accommodate the various components that infuse

the functionality and the graphical user interface to the IDE. Sparrow’s components

4

can be implemented in either C++ (Sparrow’s native language) or Delta. A schematic

representation of this notion can be seen in Figure 1.

Figure 1 - Sparrow as a collection of components

Essentially, Sparrow is bootstrapped by the “Shell” component which constitutes the

basic skeleton that initially instantiates the desired components – read from a

configuration file. This skeleton also implements a graphical frame under which the

top-level components, such as the editor and the project manager, present their

interface. Delta components, which are indistinguishable from native components, are

managed by a separate component, dubbed “Delta Component Proxy.”

1.2.1 Circularity

Sparrow’s circularity refers to its ability to incorporate in its environment the Delta

components that are developed in the IDE itself. Generally, the facilities that enable

the implementation and usage of C++ components are referred to as the native

extensibility layer, and, correspondingly, the facilities that allow the deployment of

Delta components as the circular extensibility layer (see Figure 2.)

Circularity, in this context, is different from the circularity offered by environments

that target the same language they are built in. It is evident that any program can be

extended through the language it is written in. Sparrow, however, while targeting the

5

Delta language, is programmed in C++. Under this realization, it can be inferred that

the Sparrow platform offers true circularity.

Figure 2 - Native and Circular extension layers in Sparrow

1.2.2 Meta

The meta notion of Sparrow emphasizes its facilitation for open deployment by third-

party tools that can customize and extend the platform – essentially producing a

development environment that is better suited to their problem domain. The idea is

that for applications relying on the Delta language (e.g. games, mobile applications,

etc.,) the IDE should deliver the basic programming facilities, while enabling the

incorporation of functionality through the development of extension components or

customization of the existing ones. This constitutes the driving factor behind Sparrow,

whose architecture evolved, or rather intelligently designed, around this notion.

For this purpose, Sparrow (a) enables its remote deployment by third-party

applications, (b) allows every integrated component to be replaced as long as it obeys

the original API (runtime consistency), and provides related semantic behavior

(semantic consistency), and (c) allows the incorporation of new components that can

extend the functionality of the existing ones. Additionally, some integrated

components (e.g. the source editor,) support their own configuration switches and

APIs so that they can be extended orthogonally to the Sparrow platform.

6

Categorizing the aforementioned extension mechanisms, it can be inferred that

Sparrow supports two types of domain-specific extensions:

• Horizontal extensions

• Vertical extensions

This principle is outlined in Figure 3. Generally, vertical extensions refer to the

incorporation of new components that basically introduce new functionality to the

IDE; whereas substitutions or extensions of existing components are regarded as

horizontal extensions.

Figure 3 - Horizontal and Vertical extensibility in Sparrow

1.3 Methodology

Unarguably, the implementation of an IDE constitutes a very large development

effort. Under this realization, the choice of the programming libraries and techniques

was very important for the successful completion of the project within the bounds of

the desired time-frame. Apart from Delta, through which Sparrow can be extended,

the core development language was decided to be C++. C++ was chosen for the

project because of (a) its ubiquity, (b) the large number and high quality of its third

party libraries, (c) its support for a variety of programming paradigms (especially

Generic programming [2] and Object Oriented programming [18],) and (d) because of

7

the fact that Delta itself is written in C++, and therefore can be easily deployed in

C++-based applications.

For the development of Sparrow, the Boost libraries [4] were used, along with the

Standard Template Library (STL,) while the wxWidgets library [29] was used for the

implementation of the Graphical User Interface (GUI.)

Figure 4 - Screenshot of Sparrow with various key components active

2. Related work

2.1 The Delta Language

The Delta programming language [23] is an imperative scripting language that

encompasses (a) dynamically typed variables, (b) runtime classes, (c) functions as

first-class values, (d) unnamed functions, (e) dynamic handling of actual arguments,

8

and (f) extensible operator semantics. The aforementioned features are available in

most modern dynamic languages. However, Delta extends these features by

introducing:

• Prototypes with member functions being independent callable first-class

values, as atomic pairs holding both the function address and the alterable

owner instance

• Dynamic inheritance, having exclusively runtime semantics, in comparison to

the traditional compile-time inheritance operators

• An enhanced operator overloading technique

In the Delta language, prototypes are runtime class values, from which instances are

dynamically produced through replication. In this context, following the recipe of

existing dynamic languages, object classes never appear within the source code in the

form of compile-time manifested types, but only as first-class runtime values called

prototypes. The main characteristic of prototypes in the Delta language is that they are

essentially associative table objects. Having no prototype-specialized compile-time or

run-time semantics, prototypes are normal object instances chosen by programmers to

play the role of class-instance generators, thus, they are effectively a design pattern

[8] combined with a deployment contract.

In Delta, inheritance is a runtime function applied to instances, establishing an

augmented member-binding context for derived instances. The metaphoric isA

connotation of base and derived classes is not entirely adopted in Delta, since

inherit(x, y) does not state that x isA y, neither that x depends implementation-wise on

y; it only defines augmented member binding for both x and y, i.e. if a member

requested for x or y is not found in x (derived,) then it is searched in y (base.)

Additionally, in Delta, the semantics of all binary operators are dynamically

extensible for table object instances through the following implementation technique:

• For binary operators, if a member of a table instance t1 is named op and is

actually a function f, the result of the evaluation t1 op t2 is f(t1, t2). Otherwise,

the original semantics of t1 op t2 are applied

9

• For unary operators, if a member of a table instance t1 is named op and is

actually a function f, the result of the evaluation op t1 is f(t1). Otherwise, the

original semantics of op t1 are applied

2.2 Existing IDEs

There is a very large number of high quality Integrated Development Environments

available. Nonetheless, they all follow similar patterns and interaction metaphors.

Hence, their supported functionality has many common features, and it generally

includes the following:

• Source code highlighting and completion

• Automation of source code maintenance

• Source-level debugger

• Extensibility interface for adding or substituting functionality and automating

common tasks

In addition, some of the contemporary IDEs support:

• Remote (inter-process) deployment interface

• Refactoring tools for the target languages

• Highly configurable user interface

The overview of the IDEs presented in this section is based on the set of features that

are related to the ones considered in this Thesis for Sparrow. Specifically, the

following characteristics are examined:

• Extensibility, which refers to how easily the IDE can be extended to

incorporate additional functionality

• Deployability, which refers to the level of the IDE’s functionality which is

exposed to third party applications

• Syntax analysis, which refers to the level of assistance the IDE provides to the

programmer in relation to the syntactical structure of the supported languages

10

The majority of contemporary IDEs support more than one language under their

interface. Thus, the aforementioned characteristics are considered for the main

language of each IDE, that is, the most supported language.

2.2.1 Visual Studio

Microsoft’s Visual Studio [13] for the Windows operating system constitutes the

primary development tool for the company’s .NET platform. As such, many different

languages are supported and more are being added – or at least announced – as

incremental updates to the platform. In addition to the .NET environment, Visual

Studio also targets the native Windows platform through the Visual C++ tool-chain;

nonetheless, the .NET languages are better supported. Therefore, the most popular

.NET language, C#, is considered as the IDE’s main language.

Visual Studio is built on top of the COM [6] component framework. Extensions to it

come in the form of macros, add-ins, and packages. Macros represent repeatable tasks

and actions that developers can record programmatically to automate common tasks.

Add-ins enable languages that support COM (i.e. C++, Visual Basic and .NET

languages) to be used for extending the functionality of the IDE and controlling

existing Visual Studio elements. Finally, packages fully expose the platform’s C++

interfaces to programmers who can use them to build complete replacements for all

the elements that are available to Visual Studio. Actually, all the languages that are

supported in Visual Studio are developed as packages.

Despite the fact that COM supports the remote invocation of its objects through the

IDispatch interface – a technology dubbed Object Linking and Embedding (OLE)

automation [11] – Visual Studio does not provide any documentation for the usage of

these interfaces, making hard its deployment from other processes.

Visual Studio’s editor validates and maintains the syntactic structure of the edited

program by exploiting the information that is provided by the language’s compiler.

That enables the environment to indicate potential errors in the structure of the

11

program, support automatic completion for object members, and provide a set of

refactoring tools.

2.2.2 Eclipse

Eclipse Foundation’s Eclipse IDE [26], originally designed and implemented by IBM,

aims to offer a comprehensive service platform for integrating development and

deployment tools for a variety of programming languages. The Eclipse platform,

however, mainly constitutes a complete IDE for the language it is written in – Java.

Eclipse employs a component framework based on the OSGi [21] specification in

order to provide all of its functionality on top of its platform. Though that mechanism,

Eclipse can be fully extended in the Java language as it essentially allows

programmers to access the platform’s components and replace them by implementing

their Java abstract interfaces.

Through the mechanisms specified by the underlying OSGi standard, Eclipse can be

deployed from other languages that implement the specification even when they are

invoked from other processes.

Lastly, Eclipse’s editor for the Java programming language utilizes the compiler to

validate the edited program’s syntax. By using the compiler’s internal representation

of the program, the editor provides refactoring tools and automatic symbol completion

for Java objects.

2.2.3 KDevelop

KDE project’s KDevelop [16] is the official IDE of the KDE desktop environment.

As such, it is heavily based on KDE and Qt [26] technologies. KDevelop targets

mainly the C++ programming language but can accommodate other languages as

well.

12

KDevelop uses the KParts [17] framework in order to support its component-based

architecture. Through this framework, the programmer can access, extend, or replace

completely the existing components of the IDE in C++. In addition, Kdevelop embeds

the Python [22] interpreter in order to enable the construction of extensions in the

Python language.

Additionally, KDevelop uses KDE’s DCop [15] technology to allow the inter-process

deployment of the IDE. However, DCop does not automatically expose a

component’s interface; so the programmer needs to maintain a DCop interface in

addition to the KPart-enabled one.

As far as the editor is concerned, KDevelop does not retain the program’s structure

and, thus, cannot validate the structure of the edited text. Nonetheless, it employs a

lightweight C++ parser in order to extract the relevant symbols from the hosted

project’s source files and present them in a completion list to the programmer when

needed. This approach is analogous to the approach of Visual Studio’s Intellisense

tool – for the Visual C++ language – whose only function is the extraction of the

relevant symbols. In any case the edited program’s structure is discarded as soon as

the symbols are extracted.

2.2.4 Comparison

Table 1 summarizes the aforementioned traits of the featured IDEs, including

Sparrow. A scale from zero to three is used to evaluate the support level of each

characteristic for each of the IDEs. The attributed grades have the following meaning:

0. The feature is not implemented

1. The feature is available, but it requires substantial effort in order to be utilized

2. The feature is supported

3. The feature is supported and can be efficiently utilized

13

Table 1 - Comparison of IDEs

 Visual Studio Eclipse Sparrow KDevelop

Main language C# Java Delta C++

Component framework COM OSGi
Sparrow

component
framework

KParts

Extensibility 3 3 3 3

Deployability 1 3 3 2

Syntax analysis 3 3 3 0

Comparing the evaluated IDEs with Sparrow, there are a few things worth noting.

First of all, Sparrow’s architecture has very similar goals and capabilities with the

Eclipse IDE. They both enforce the Aristotelian tabula rasa concept and support

extensibility and deployment efficiently and effectively. Their main difference, apart

from the implementation language, is the usage of components. Whereas Eclipse uses

static interfaces for enforcing a communication protocol between components,

Sparrow is inherently more dynamic allowing the construction and extension of

component interfaces at runtime. Additionally, while Eclipse enables other

programming languages to be used for the extension of the platform only when they

implement the whole OSGi specification, Sparrow requires only an inter-component

proxy and a target-language library to achieve the same goal.

Secondly, there are fundamental architectural differences, as far as deployment is

concerned, in Sparrow’s approach compared to the approaches of Visual Studio and,

especially, KDevelop. Whereas Sparrow automatically exports the interface of all its

components to both other components and remote processes, Visual Studio and

KDevelop utilize separate mechanisms for interface exporting in these two instances.

Additionally, the differences in component usage that were outlined for Eclipse above

are true for both Visual Studio and KDevelop. In fact all three systems follow similar

mechanics for utilizing their components.

Lastly, Visual Studio and Eclipse, which support syntax analysis of the edited

program, achieve this goal by utilizing the compiler and evaluating the whole

program each time they need to construct a structured representation. In contrast,

14

Sparrow evaluates only the parts of the text that affect the representation and does so

every time the edited program is modified in the editor.

3. Dynamic Extensibility

Sparrow’s core extensibility capabilities are facilitated by its component-based

architecture. By disseminating the IDE’s functionality in distinct well-defined

modules that expose a sensible control Application Programming Interface (API), not

only enhances the maintainability and robustness of the IDE, but also provides the

means to alter its functionality at runtime. Hence, dynamic extensibility in this context

refers to the ability of the IDE to extend and alter its functionality at runtime by

means of vertical and horizontal extensions.

In the following sub-sections, the component infrastructure of Sparrow, the facilities

it provides for extensibility and the main subsystems that were built on top of it will

be presented.

3.1 Components

Software components (or Components) [7] are self-contained, reusable software units

that encapsulate and expose a well-defined set of functionality. Components do not

share state with other components, can be used unmodified in different contexts, and

communicate only through their exported interfaces.

Typically, components have the following traits:

• Can be used by different applications written in a variety of programming

languages

• Do not have source code or binary dependencies with other components

• Communicate with each other by exchanging messages

• Can be distributed over the network

15

The difference between components and class objects in Object-Oriented

Programming (OOP) languages is two-dimensional. On the one hand, OOP

encourages classes and their objects to be used for modeling real-world entities,

taxonomies, and the interaction between them whereas component-oriented design

just aims to group functionality and is indifferent to taxonomical disseminations. On

the other hand, objects usually tend to depend and share state with other objects

whereas, by definition, components are completely isolated and self-contained.

Thus, components are considered a higher level abstraction than objects. Essentially,

components can be modeled and implemented by OOP objects. However, that does

not mean that all objects fulfill the requirements of components.

3.2 Existing Component Frameworks

The Common Request Broker Architecture (CORBA) [19] is a standard that defines a

set of specifications for creating and using software components that can be

distributed over the network. CORBA uses an Interface Definition Language (IDL) to

specify the exported interface of its components. The IDL interface is subsequently

mapped to specific languages that implement the CORBA standard. That way,

components can be created in any of the supported languages and interoperate

seamlessly with each other. The IDL meta-compiler is used to generate automatically

the stubs and skeletons that are essential for encoding and decoding respectively the

objects that participate in a method invocation operation. In addition to the component

infrastructure, the standard also defines a large set of services that can be used by

CORBA-enabled applications.

Java Remote Method Invocation (Java RMI) [24] is a mechanism for enabling the

invocation of methods that belong to distributed Java objects. Java RMI initially

supported only objects written in the Java programming language. However,

subsequent releases enabled the interoperation with objects written in other languages

as well. Java RMI does not utilize an IDL meta-compiler and achieves the automatic

generation of skeletons and stubs through the extensive introspection data that are

built into the language. This mechanism along with a set of rules that a java class

16

must adhere to (e.g. Java Beans [25] and OSGi Bundles [21],) essentially define a

complete component framework.

While the aforementioned systems are more focused on providing a middleware

solution for distributed systems, Microsoft’s Component Object Model (COM) [6]

and Mozilla Foundation’s Cross-platform Component Object Model (XPCOM) [27]

target mainly desktop applications that run on a single machine. Both COM and

XPCOM derive their architecture from the CORBA standard, implementing a subset

of its specifications. Therefore, those systems also use an IDL meta-compiler to

achieve the automatic generation of object stubs and skeletons and can be used for

writing components in different programming languages.

3.3 Proposed Component Framework

Sparrow is a large scale system. However, it can be easily decomposed into distinct

functional units with clearly defined roles and responsibilities. Consequently, it was

decided to model these units using the component abstraction.

After reviewing the major component frameworks that were available at the time of

designing the IDE (see section 3.2,) it became clear that none of them would be

suitable for the intended purposes. On one hand, it was not possible to use the

component frameworks that target the Java programming language, since Sparrow is

implemented in C++. On the other hand, the two most robust and widely used C++

frameworks, COM and XPCOM, were unable to elegantly satisfy the set of

requirements that were set for Sparrow’s component system. The rationale is

presented throughout the following sections.

3.3.1 Primary Requirements

The requirements that drove the design and implementation of Sparrow’s component

infrastructure are the following:

• Ease of use

17

• Runtime and memory efficiency

• Ability to load and unload components at runtime

• Ability to extend or reduce a component’s exported interface at runtime

• Ability to make components automatically visible to other programming

languages

• Ability to program components in other programming languages

The first two goals for the component architecture are apparent. Any software

subsystem should be efficient and easy to use. Even much so when it constitutes a

central part of the program and is intended to be used extensively in it.

Loading and unloading components at runtime was essential for implementing

runtime adaptation and dynamic extensibility. Enabling the components that comprise

the interface and the functionality of the IDE to be loaded and unloaded while it is

running allows for many fundamental and diverse variations.

Another goal for the subsystem is the runtime extension or reduction of a

component’s interface by adding or removing methods. The author of a specific

component may choose to enable or disable some of its functionality at some point in

time, depending on the changes of the environment under which the IDE is running.

E.g., an online-poker-game component may choose to offer a “Bet” method as long as

the user’s credit card has not reached its limit and disable it if it has. A discussion of

whether poker functionality would be useful for an IDE, however, is beyond the scope

of this Thesis.

Making components automatically visible to other programming languages and

especially to the Delta programming language is very important. Forcing the

programmer of a component to make it available explicitly to all the supported

languages via wrappers is tedious and error prone. Additionally, if a new extension

language is added at a latter time to Sparrow, all the available component wrappers

would need to be updated.

18

Apart from allowing extension languages to interact with the existing components, a

complete extension language mechanism should allow the coding of new components

in the extension language itself.

3.3.2 Technical Overview

Essentially, a Sparrow component denotes a modular software unit that provides

encapsulated reusable functionality to the IDE and its extensions. Sparrow

components are typically, but not always, visual in nature and have the following

characteristics:

• They can communicate with other components only through synchronous

exchange of encoded messages

• They can be loaded and unloaded at runtime as their code is compiled as a

Dynamic Link Library (DLL) [12] or as Delta bytecode

• They can form component hierarchies

• They can emit signals that trigger the invocation of slot methods that are

contained inside the components that are interested in it

• They can inherit functionality from other components

• They encapsulate a property map, a hierarchical structure of user commands,

and versioning metadata

Sparrow components are completely isolated from each other. Even if they use other

components, they do not have hard coded dependencies with them. This is achieved

by allowing the components to invoke the methods of other components only by

sending messages. This isolation is further emphasized by the fact that a component is

compiled into a DLL or Delta byte code and is loaded at runtime by the system

whenever it is needed.

Components are designed to support the construction of containment hierarchies. This

was done to ease the management of visual components and provide an intuitive

model for combining different components in order to produce Sparrow’s Graphical

19

User Interface (GUI). As is the case with the widgets metaphor in most GUI libraries,

Sparrow’s components can have another component as a parent and any number of

child components. That way, components that belong to the same hierarchical

structure can be notified from their parent or children about various events (see

section 3.3.3.3) and can be automatically destroyed when their parent component is

destroyed.

Signals and Slots are a flexible and intuitive mechanism for notifying interested

clients about the occurrence of a specific event. It is also particularly useful in

implementing the ubiquitous Observer pattern [8]. Sparrow’s component

infrastructure enables components to emit any number of signals that are

differentiated by a unique identifier. At the other end, any component that is

interested in a specific signal can register, at runtime, an exported method that is part

of its interface as a slot to that signal. The slots of all the interested components are

called as soon as the signal is emitted.

Although inheritance mechanisms are not common in other component frameworks,

Sparrow’s components are able to inherit and reuse functionality from other

components. However, the component inheritance does not denote an isA relationship

between the participating components. In fact an isA relationship, as discussed in

section 3.1, is not meaningful or desired in component-oriented architectures.

Therefore the component inheritance in Sparrow provides a way to reuse the

functionality of specific components in case different components exhibit similar

properties and functionality. Sparrow makes extensive use of component inheritance.

Sparrow’s components incorporate a property map that associates a property with a

specific value. Those property values are visible to the user, who is able to change

their value and modify the behavior of a component. The property mechanism

provides yet another means for the user to change the behavior of the IDE at runtime.

Additionally, a hierarchical structure of user commands is included in each

component. A user command is simply a named callback to an exported method that

is part of a component’s interface. As soon as a component is loaded, its user

commands are merged with the existing commands and appear as options to the IDE’s

20

GUI, available for its user to invoke them. The author of a component can decide

whether a user command will appear to the IDE’s menu-bar, its toolbar, or in a

context menu. Despite the close connection between user commands and some visual

elements of the IDE’s GUI, it is essential to point out that user commands by them-

selves do not have any connection with these visual elements nor depend on the

specific GUI library that is used in Sparrow. They merely contain platform

independent data that are interpreted by their container and are subsequently realized

as visual elements.

Lastly, each component contains a set of metadata that provide the human friendly

name of the component, a short description of its functionality and role in the system,

the identity of its author, and its version. These data on one hand are used for the self-

documentation of the system (see section 5) and on the other hand provide versioning

information to the user of a component; and someone to blame when the component

fails to work as expected.

3.3.3 Implementation Details

The usage of Sparrow components closely resembles the usage of COM and XPCOM

component models. However, an Interface Definition Language (IDL) compiler is not

utilized for the specification of the interface of a Sparrow component. Sparrow

components do not implement a static interface; they essentially construct their

interface at runtime by exposing a set of native methods. Thus, it can be inferred that

Sparrow components implement a concept rather than an interface. Therefore, in

Sparrow, a component’s concept essentially constitutes that component’s API.

Sparrow’s component system makes a distinction between component classes and

component instances. The relationship between classes and instances has solely

runtime semantics. That means that a component instance that belongs to a specific

class maintains a reference to a structure that is constructed at runtime and plays the

role of its class. Thus, a Sparrow component, at a lower level, is essentially the

runtime model of a specific component instance and its corresponding component

class. Multiple instances of the same class share the same component class object.

21

As seen in Figure 5, a component class contains the following: (a) a set of all the

available functions that a component exports, (b) a list of the slots that are triggered

whenever a signal is emitted, (c) a list of signals that the component emits, (d) a set of

properties that affect the functionality of the component, (e) a hierarchical structure of

user commands, (f) a list of the component instances that are associated with the

specific component class, (g) versioning metadata, (h) a reference to the base

component class of the current class, and (i) a list of references to the component

classes that derive from the current class.

A component instance (Figure 5), contains the following elements: (a) a

monotonically increasing serial number that identifies different instances, (b) a

reference to the parent component instance, (c) a list of references to the child

instances, (d) a set of properties that affect the functionality of the specific instance,

and (d) a reference to the component class in which the current instance belongs.

A component function (Figure 5), contains four elements: (a) the return type of the

current function as string, (b) a vector of strings that represent the types of the

function’s arguments, (c) a documentation string that describes the function, and (d) a

native function pointer to the actual low level function that is called whenever the

component function is invoked.

22

Figure 5 - The basic building blocks of a Sparrow Component

Most of the contained elements of the basic building blocks of a Sparrow component

(Component Class, Component Instance, and Component Function) are described in

the previous section. Nonetheless, some of the elements and their purpose in the

Sparrow component model require some clarification.

The monotonically increasing serial number that is part of an instance is essential for

referencing a specific component since it is merely the runtime model of a component

instance and its corresponding class. Thus, Sparrow components can be uniquely

referenced by the pair (component class, serial number) which represents a handle to

a single component. Whenever a client wants to communicate with a component, it

just needs to obtain or construct a handle to it. Using handles as a means to reference

components has many advantages over using raw pointers. Dangling handle

references that may be kept by a client do absolutely no harm to the system when

accessed, whereas if raw pointers were used, the whole system would crash in case

they were dereferenced. Additionally, handles have the advantage of being capable of

referencing components that may reside in a different process or in a different

language or both.

23

Property maps are present in both classes and instances. This redundancy enables the

user to either affect the functionality of a specific component instance or the

functionality of all the instances that belong to the same class. E.g., a source editor

component will usually have class-wide properties for controlling the look of

highlighted text, so that all the editors will have consistent appearance. However, it is

preferred to have a “toggle highlight” property only as an instance property, so that

changes to its value will affect just a specific editor.

The component function structure holds the types of the target function’s arguments

and return value. These records are used for supplying introspection information to

the component system and are essential for bridging the native C++ types to the types

of other programming languages (e.g. Delta) so that inter-language component

communication can be realized. Again, the documentation string is used for the self-

documentation of the IDE. The structure also holds a pointer to the actual native

function that is finally invoked. The native function though, is actually the skeleton

for the real component function that is invoked. The responsibilities of the skeleton

are the following:

• Decode from the supplied message the arguments of the real function

• Invoke the real function which may be a Delta or C++ function supplying the

decoded arguments

• Encode the return value of the function as a message

Component functions can be either static or member. The difference between them is

that member functions must be called inside the context of a specific component

instance, whereas static functions do not require any instance. Thus, a Sparrow

component, in addition to being the runtime model of a class and an instance, can also

be realized simply by a component class object that holds exclusively static functions.

Sparrow’s basic component framework is complemented by the Component Registry,

the Component Loader, and the Component Factory. The Component Registry is

responsible for holding and managing all the available component classes in the

system. Its main role is actually being the entry point for accessing the components.

The Component Loader is able to load Delta and C++ (DLL) components from the

24

disk on demand (see section 3.3.3.3) and register them to the Component Registry so

that they can be used by the IDE. Lastly, the Component Factory is responsible for

creating and initializing component instances of a given component class. It handles

the creation of each instance by querying its corresponding class from the Component

Registry and retrieving its constructor function; which is included in all non-static

Component Class objects. The basic architecture of the Sparrow’s component

subsystem can be seen in Figure 6. It is worth noting that the aforementioned

elements are realized as Singletons [8].

Figure 6 - Runtime dependencies between the basic building blocks of Sparrow's component

framework

3.3.3.1 Inheritance

As mentioned in section 3.3.2, component inheritance in Sparrow provides the means

to reuse functionality between components. A component class object can inherit

another class object. By doing so, it automatically inherits (a) the component

functions, (b) the slots, (c) the properties, and (d) the user commands of its base class.

The functions and slots are not copied to the derived class object and any base class

function can be overridden. Therefore, the calling mechanics of the functions in a

25

component inheritance hierarchy are implemented by the message dispatching

algorithm. Specifically, the simple lookup algorithm used for retrieving a function,

can be seen in Figure 7. Section 3.3.3.2, additionally, outlines an example invocation

of a function in an inheritance hierarchy.

lookup (component, func) {
 if func is found in component.functions then
 return component.functions[func]
 else if component has base class then
 return lookup(component.baseClass, func)
 else
 return nil
}

Figure 7 - The recursive lookup algorithm for component functions

The properties of a base class are copied verbatim to the derived class object.

Similarly, the user commands are also copied, but with a small modification: the

callback part of the user command, which typically comprises of the pair (component

class, component function), is altered to reference the most derived class. Obviously,

the component function part remains unchanged. That way the user commands point

always to the correct function in case one is overridden. Lastly, because of the fact

that all the user commands and properties are added to the component class object at

runtime, it is essential for the system to synchronize their additions and removals in

the whole inheritance hierarchy. This is the main reason why the component class

objects maintain references to their base and derived classes (see Figure 8.)

Figure 8 - Runtime model of classes and instances in a scenario that utilizes component inheritance

26

3.3.3.2 Invocations

Sparrow components are only allowed to interact with other components through

message passing. Thus, each exchanged message must contain (a) a reference to the

destination object, (b) the name of object’s method that needs to be called, and (c) a

list of values that are used as the function’s arguments. Provided that a function can

have any type and number of arguments, the value list that is embedded inside the

message is encoded as a data buffer and is decoded at the destination function’s

skeleton. Messages between components are exchanged only within the IDE’s process

(i.e. within the same address space.) Thus, whenever component A wants to call a

specific function that belongs to component B, it simply sends a message to B

containing the name of the method that it wants to invoke along with an encoded

argument list that is passed to that function. Subsequently, component B returns the

result of the invocation, i.e. the return value of the function, as an encoded buffer.

The communication between the components is arbitrated by an entity called Message

Router. Message Router is responsible for receiving requests for component

invocations and dispatching them to the appropriate component function. The

message exchange process through the Message Router is synchronous. That way,

actual component functions can have “regular” function semantics: they can return

any value that the component author wishes, and they can conveniently throw

exceptions. This is not the case in COM or XPCOM in which all the functions return

a predefined status value that indicates whether the invocation was successful,

exceptions are prohibited by law, and potential return values are typically passed as

reference-to-lvalue arguments. Allowing the component functions to have “regular”

function semantics was deemed as important for achieving the “ease of use” goal for

the component subsystem.

27

Figure 9 - Inter-component communication through message passing

The message dispatching process can be seen clearly in the example shown in Figure

9; where the component C wants to call the function “func” of component B. In that

scenario, the following steps are performed:

1. Message Router (MR) receives a request to call function “func” of instance B1

2. Through the Component Registry MR retrieves “Class B” entry

3. MR queries “Class B” entry to find “func”

4. In an unfortunate turn of events, “func” is not contained in “Class B” so the

lookup algorithm searches for “func” recursively in its base classes and locates

it in “Class A”

5. MR searches and retrieves instance B1

6. MR invokes “func” in the context of component instance B1

3.3.3.3 Notifications

Sparrow’s component framework implements an internal notification mechanism that

enables components and other subsystems to be notified about changes in the state of

28

the component infrastructure. Three notification contexts are distinguished: (a) the

context of the current instance in which an event takes place, (b) the context of the

child instance (which is part of a containment hierarchy) in which an instance learns

of an event that happened in one of its children, and (c) the global context in which

events from all the components are mirrored.

In Table 2 all the internal notifications that are supported by the component system

can be seen in the leftmost column. The other columns, that reference the different

notification contexts, indicate whether the notification is supported in a specific

context.

Table 2 - Standard internal component notifications

Notification description Current Instance Child Instance Global

Requested access to nonexistent class � � �
Registered a component class � � �

Unregistered a component class � � �
Created first instance of class � � �

Destroyed last instance of class � � �
Created instance � � �

Destroyed instance � � �
Added a component instance to a

hierarchy � � �

Removed a component instance from
the hierarchy � � �

Destroyed a component instance � � �
Added a component instance to a

hierarchy as first of its class � � �

Removed a component instance from
a hierarchy as last of its class � � �

Destroyed a component instance as
last of its class � � �

Component instance focused � � �
Applied changed properties � � �

Added a property � � �
Removed a property � � �

Added a function � � �
Removed a function � � �

Added a user command � � �
Removed a user command � � �
Merged user commands � � �

Unmerged user commands � � �
Added signal � � �

Removed signal � � �

29

One issue worth discussing here is the “Requested access to nonexistent class”

notification. This specific notification is triggered whenever a component class is

requested from the Component Registry (e.g. as a result of a call to a specific

component function, or a Component Factory construction operation) and is not

available among the registered classes. On the other hand, the Component Loader

“listens” for this specific event and when it is triggered it tries to load the missing

component from the disk. Thus, only when the Component Loader fails to retrieve the

missing component, the initial operation, that triggered the signal in the first place,

fails.

3.3.3.4 Component Specification Language

Having the components being constructed entirely at runtime introduces many

difficulties when authoring their code. The programmer is required to write

boilerplate code for exporting each function that is part of a component’s interface,

for registering user commands, for registering signals and slots, and even for creating

the skeletons for all the functions. This is not only extremely tedious but also highly

error-prone.

Other component systems, such as COM and XPCOM, mitigate the aforementioned

problem by having static interfaces1 and by utilizing their IDL meta-compiler that

generates most of the boilerplate code. However, the use of an IDL meta-compiler

was not a viable option for Sparrow. Having an immutable interface for each of the

components, on one hand would limit their flexibility, and on the other hand would

necessitate the implementation of an IDL for each of the supported extension

languages (i.e., Delta.) Also, the fact that such an approach would not allow the

extensibility of a component’s exported API at runtime, further justifies the argument

against the deployment of an IDL meta-compiler in Sparrow.

1 Actually, COM and XPCOM support the construction of an interface at runtime, but in this case they

do not provide any means to eliminate boilerplate code

30

Sparrow automates the generation of all the boilerplate code by introducing a Domain

Specific Language (DSL) for authoring components. The term DSL, generally,

describes a micro language that provides an intuitive syntax and semantics for solving

problems that reside in a very specific and constrained domain. Sparrow’s Component

Description DSL is implemented using a mixture of C++ templates and preprocessor

macros (utilizing the boost preprocessor library.) To paraphrase a famous saying: “A

snippet of code is worth a thousand and twenty four words,” hence, the basic aspects

and usage of Sparrow’s component description DSL are shown in Figure 10.

The aforementioned DSL was also extended to allow an intuitive syntax for calling

component functions. That aspect of the DSL, effectively, automates the creation of

function stubs. This is shown in Figure 11.

// File: HelloWorld.h

class HelloWorld : public Component {
 DECLARE_COMPONENT(HelloWorld);

public:
 DECLARE_EXPORTED_MEMBER(void, SetValue, (const str ing& value));
 DECLARE_EXPORTED_MEMBER_(const string&, GetValue, (void),
 _(“Retrieves the value”));
 DECLARE_EXPORTED_MEMBER(void, Print, (void));
 DECLARE_EXPORTED_STATIC(void, PrintValue, (const s tring& value));
 DECLARE_EXPORTED_MEMBER(void, Show, (void));
 DECLARE_EXPORTED_MEMBER(void, SlotStringShown, (vo id));

private:
 string m_value;
};

31

// File: HelloWorld.cpp

COMPONENT_METADATA(
 HelloWorld, // class
 "HelloWorld", // name
 "Says hello world with style", // description
 "Yannis Georgalis <jgeorgal@ics.forth.gr>", // aut hor
 "1.0" // version
);
IMPLEMENT_COMPONENT(HelloWorld);

COMPONENT_SET_PROPERTIES_FUNCTION(HelloWorld, table)
 { /* We do not need any properties */ }

EXPORTED_MEMBER(HelloWorld, void, SetValue, (const string& value))
 { m_value = value; }

EXPORTED_MEMBER(HelloWorld, const string&, GetValue , (void))
 { return m_value; }

EXPORTED_MEMBER(HelloWorld, void, Print, (void))
 { PrintValue(m_value); }

EXPORTED_STATIC(HelloWorld, void, PrintValue, (cons t string& value))
 { cout << "Hello world, " << value << endl; }

EXPORTED_SIGNAL(HelloWorld, StringShown, (const str ing& str));

EXPORTED_CMD_MEMBER(HelloWorld, Show, _(“/View/Show ”), MT_MAIN)
{
 this->Print();
 sigStringShown(m_value);
}
EXPORTED_SLOT_MEMBER(HelloWorld, void, SlotStringSh own, (), “StringShown”)
{
 cout << “Signal StringShown TRIGGERED” << endl;
}

Figure 10 - A Sparrow component implementation in C++

// File: HelloWorldCaller.cpp

Component* component = ComponentFactory::Instance() .Create(“HelloWorld”);

Call<void (string)>(component, “SetValue”) func;
func(“Innit?”);

cout << Call<string ()>(component, “GetValue”)() << endl; // Prints: Innit?

Call<void ()>(component, “Print”)(); // Prints: Hel lo world, Innit?

Call<void (string)>(“HelloWorld”, “PrintValue”) sta ticFunc;
staticFunc(“hey?”); // Prints: Hello world, hey?

DCall<void>(component, “SetValue”)(string(“said the component”));
const string val = DCall<string>(component, “GetVal ue”)();

// Prints: Hello world, said the component
//
DCall<void>(“HelloWorld”, “PrintValue”)(val);

Figure 11 - Constructing a component instance and calling its methods

32

There are a few issues worth noting in the above examples:

• Component function declarations are very similar to the declarations of C++

class functions and they also have variants for supporting a documentation

string to be attached to them

• The declared component functions are also legal C++ functions, and can be

called as such

• The part of the DSL that automates the creation of stubs has two variants: the

“Call”, and the “DCall”. The difference is that while the Call requires the

provision of the full signature of a component function, the DCall only needs

its return type. However, DCall has the disadvantage of not knowing how to

convert the types of its arguments if they are different from the component

function’s argument types

• A slot to a specific signal can take fewer arguments than the signal; however,

it cannot change their order. This functionality closely resembles Qt library’s

[28] slots

Using the DSL, the amount of the code for exporting the interface of a component is

in fact less than that required by COM or XPCOM; apart from the IDL description,

which is quite verbose, the programmer is also required to derive from the generated

interface in order to implement the component’s functionality. Also, since the DSL

provides facilities for exporting user commands and describing signals and slots, it

further reduces the amount of the required boilerplate code.

3.4 Extending Components

The creation of components, through the Component Factory, and the invocation of

component functions, through message passing, do not impose any dependencies to

concrete implementations. All the dependencies between implementations are

implicit. That allows replacement or augmentation of components at runtime

(horizontal extensibility). Actually, a component can be fully replaced by any other

implementation as long as it (a) exports the same API or a superset of it, (b) emits the

same signals or a superset of them, and (c) the functions and the signals, that are

33

replacing the originals, have similar semantic behavior in respect to the caller’s

assumptions.

Vertical extensibility through the component system is straightforward. New

components can be registered and deployed at any time. Regardless of the

programming language they were written in, they can use any of the other available

components without any restriction.

As mentioned above, Sparrow’s component framework, mainly due to its runtime

nature, provides facilities to export components to different programming languages.

Typical approaches for achieving this – apart from porting the whole component

framework, which is CORBA’s approach – utilize a separate tool that automates the

process of inter-language interface exporting by generating wrapper code for the

target language. Meta-compilers, such as SWIG [3] generate wrappers by parsing the

source language’s interface code. Sparrow’s architecture, on the other hand, enables

third-party languages to invoke any component function by implementing and

exporting a library to the target language (e.g. Delta) that is able to perform the

following tasks: (a) export the component construction and query mechanism, (b)

encode and decode the exchanged messages, and (c) perform conversions between the

types that take part in an invocation operation (i.e. argument types and the return

type). A language that provides the means to implement these functions is capable of

calling and interacting with any component that is available to Sparrow.

Other than the one-way communication support, the framework’s architecture also

facilitates the construction of components in other languages, in order to enable the

extendibility of the IDE through them. Thus, language developers can extend the

component infrastructure with a proxy that: (a) manages the creation and destruction

of components that are built in the other language, and (b) dispatches the component

calls that are directed to the managed components. The proxy, along with the

component exporting mechanism described above, effectively completes the

requirements of a Sparrow extension mechanism through third party languages.

The Delta Extensibility Layer [5] was implemented by utilizing these facilities. That

two-way communication appoints Delta as an equal to C++ for extending the IDE’s

34

functionality. However, since Delta lacks an implementation of a Graphical User

Interface (GUI) extension library, it cannot be used for the implementation of visual

components.

3.5 Global and Local Undo / Redo

Another goal for Sparrow was the provision of an undo mechanism that is capable of

undoing and redoing the effects – visual or not – of any operation that changes the

state of the IDE. Sparrow achieves such goal by providing an unobtrusive undo

subsystem, orthogonal to the component infrastructure, that is able to record and

replay inter-component undo invocations.

The main module of the undo subsystem is the Undo Manager. The Undo Manager

offers an interface for components to register messages – as if they were calling a

certain component function – that, when dispatched, have as an effect the cancellation

of the current operation. Certain problems emerge, however, when, inside a single

component invocation, multiple component functions in the call stack attempt to

register their undo message.

In the case where function F invokes function G (F → G) and F’, G’ are the reverse

functions for F and G respectively, the registration of both the undo calls F’ and G’

may introduce problems when F’ also cancels the effects of G. The main assumption

made in Sparrow’s undo subsystem is that this will always be the case. That is

whenever F → G then F’ should always imply G’; so the registration of G’ by G will

be discarded. In case, however, F’ is not provided then G’ can serve as a reverse

function for both F and G. That is true for any invocation depth (F → G → H → …)

Additionally, when F → G and F → H (F→ G, H) and F’ is not provided, then

essentially the linear combination of G’ and H’ can serve as reverse calls for F. Again,

that is true for any invocation breadth (F → G, H,…)

Hence, Sparrow’s undo subsystem automatically enforces the aforementioned

assumptions in order to provide an efficient – for the component programmer -

undo/redo mechanism. By making the provision of an F’ for every function F

35

optional, the undo subsystem successfully minimizes the amount of code that is

needed for supporting universal undo/redo functionality in Sparrow, while

maximizing reusability. The code needed for registering an action to the Undo

Manager can be seen in Figure 12.

The multilevel characterization of the undo subsystem is attributed to its ability to

maintain multiple undo queues (in addition to the global one) for every component

that initiates a specific invocation. Thus, while a global undo operation cancels the

effects of the latest invocation, an undo operation for a component cancels the effects

of that specific component’s latest invocation. This functionality is very useful in a

dynamic system, like Sparrow, where the addition of a faulty component can leave the

system in an inconsistent state. Using the undo subsystem, an extension language

proxy can cancel the changes that are imposed by a faulty script that exits prematurely

with a runtime error.

36

// File: FakeWindow.h

class FakeWindow : public Component {
 DECLARE_COMPONENT(FakeWindow);

public:
 DECLARE_EXPORTED_MEMBER_(void, SetTitle, (const st ring& title),
 _(“Sets the title of the window”));

 DECLARE_EXPORTED_MEMBER_(const string&, GetTitle, (void),
 _(“Retrieves the title of the window”));

 DECLARE_EXPORTED_MEMBER(void, ClearTitle, (void));

private:
 string m_title;
};

// File: FakeWindow.cpp

COMPONENT_METADATA(
 FakeWindow, // class
 "Fake Window", // name
 "Represents a window with undoable actions", // de scription
 "Yannis Georgalis <jgeorgal@ics.forth.gr>", // aut hor
 "1.0" // version
);
IMPLEMENT_COMPONENT(FakeWindow);

COMPONENT_SET_PROPERTIES_FUNCTION(FakeWindow, table)
 { /* We do not need any properties */ }

EXPORTED_MEMBER(FakeWindow, void, SetTitle, (const string& title))
{
 Undo<void (string)>(this, "SetTitle")(m_title);
 m_title = title;
}

EXPORTED_MEMBER(FakeWindow, void, ClearTitle, (void))
{
 Undo<void (string)>(this, "SetTitle")(m_title);
 m_title.clear();
}

EXPORTED_MEMBER(FakeWindow, const string&, GetTitle , (void))
 { return m_title; }

Figure 12 - A C++ Sparrow component that supports Undo/Redo

37

4. Remote Component Deployment

The “meta” dimension of Sparrow is mainly enforced by creating or extending

existing components in order to assemble a tool-chain that serves the development

needs of specific problem domains. Nonetheless, Sparrow’s component framework,

while being easy to extend and use, can be too intrusive for incorporating into existing

software systems. Existing software systems may employ their own set of libraries,

frameworks, or even use a completely different programming language. Reorganizing

or rewriting the code of these systems for making them suitable to be hosted under the

Sparrow tool-chain may be prohibitively expensive.

To overcome the aforementioned barriers, Sparrow provides a method to deploy the

IDE from other programs and exploit its functionality without requiring major

changes in their infrastructure. In the following sections, the design, implementation,

and functionality of Sparrow’s remote deployment subsystem will be presented.

4.1 Technical Approach

The ability to interact with the available components from other processes was

deemed essential for the realization of the inter-process deployment goal. Enabling

another process to invoke all the functions that are exported by Sparrow – that runs in

its own process – allows for the complete remote manipulation of the IDE.

By definition, the remote deployment of the IDE from third-party applications

requires an Inter-Process Communication (IPC) mechanism. When designing the

deployment mechanism of Sparrow, it was considered useful that the inter-process

communication be implemented over a network protocol. This would enable the

programs that deploy the IDE to run on a remote computer – different from the one

that would run Sparrow. Thus, the remote deployment mechanism was implemented

over a lightweight TCP/IP protocol.

38

Such implementation makes all the available components accessible to any remote

process that can establish a connection to Sparrow’s process. However, it was also

observed that for most remote deployment needs just a small subset of Sparrow’s

functionality would be enough. For that reason, a library that simplifies the tasks that

were considered essential for the deployment of the IDE was also implemented. This

library essentially offers higher level abstractions for managing Sparrow as it

encapsulates higher-level tasks that require more than one component invocation.

4.2 Implementation Details

The key elements of the remote deployment subsystem are the Message Router Client

(MRC) and the Message Router Server (MRS). MRS runs in the same process as the

IDE and encompasses the functionality of a TCP/IP server that listens to a predefined

port. All established connections to Sparrow are managed by MRS which is also

responsible for dispatching the received messages through the Message Router – the

central point of the inter-component communication. On the other hand, the MRC is

responsible for connecting to the MRS and forwarding all the requests submitted by

its clients.

Because all the components in Sparrow interact with each other through messages, no

conversions need take place during the life time of a remote call. The initial message

submitted by the remote caller is a well formed invocation message for a specific

component that resides in the IDE process. The only job of MRC is, thus, to forward

the message to the MRS and MRS in its turn just forwards it to the Message Router.

39

Figure 13 - Remote component invocation

The remote invocation process is explained in Figure 13, where the Caller wants to

call the function “func” of component B. In that scenario, the following steps are

performed:

1. Message Router Client (MRC) receives a request to call function “func” of

instance B1

2. The message that encodes the request is forwarded unmodified to the Message

Router Server (MRS)

3. MRS dispatches the message through the Message Router

4. MRS subsequently sends through the connection, on which the request arrived

in the first place, the result of the invocation (i.e. whether it was successful or

not) and the return value of the invocation

Another thing worth noting, concerning the implementation of the remote deployment

subsystem, is that, while the TCP/IP server of MRS is running in its own thread inside

the Sparrow process, the message dispatching process - through the Message Router -

is actually executed from the main thread. That way, potential race conditions are

eliminated and component programmers are not burdened with the unnecessary – in

this context - overhead of multithreaded programming.

40

4.3 IDE Deployment API

As mentioned above, it was expected that the majority of applications that would like

to deploy Sparrow would require only a small subset of its functionality. Thus, in

order to make it easier for programmers, Sparrow offers an API that encapsulates the

most common functionality. The set of functions that are available to applications that

deploy the IDE appears in Table 3.

Table 3 - The exported Deployment API

Function Description

void OpenWorkspace (string uri)
Opens the workspace that is referenced by the

given URI
void CloseWorkspace (void) Closes the current workspace

void NewWorkspace (void)
Creates a new workspace and makes it the

current

void RenameWorkspace (string name)
Renames the current workspace to the given

name

void AddProject (string uri)
Adds a project, referenced by the given URI,

to the current workspace
void RemoveProject (string name) Removes the project with the given name
void NewProject (string name) Creates a new project with the given name
void RenameProject (string name,
 string newName)

Renames the project with the given name to
the given new name

void AddFile (string projectName,
 string uri)

Adds the file, referenced by the given URI, to
the given project

void RemoveFile (string projectName,
 string name)

Removes the file with the given name from
the given project

void NewFile (string projectName,
 string name)

Creates a new file with the given name and
adds it to the given project

void RenameFile (string projectName,
 string name, string newName)

Renames a file, which is contained inside the
given project, with the given name to the

given new name
void LoadProfile (string name) Loads the profile with the given name

The deployment API has two end-points. On the client side, where the application that

deploys Sparrow resides, the API is exported as a Dynamic Link Library (DLL). The

same API is also mirrored at the server side, where the Sparrow process resides. In the

Sparrow process, the deployment API is realized as a typical component - loaded on

demand. Essentially, the client deployment API is a wrapper for the remote invocation

of the “Deployment API” component. That way the deployment API itself maintains

the “meta” attribute of the IDE, since in case Sparrow is deployed in a different

41

context, the API can be extended or replaced to reflect the specific needs of the

problem domain like any other component.

4.4 Examples of Use

The deployment infrastructure of Sparrow enables a remote process to

programmatically invoke the components that reside in the IDE using a similar

method as the one used for inter-component communication. The generic method for

calling any component through the facilities provided by the deployment library can

be seen in Figure 14, while the use of the equivalent wrapper functions is displayed in

Figure 15.

The wrapper functions’ code is just shorthand for the invocations presented in Figure

14. They also serve as a means to minimize the compile-time dependencies and

include files needed for the applications that deploy Sparrow.

// File: RemoteCaller.cpp

ext::DeploymentAPI::Initialize(_T("localhost"));

RCall<void (void)>("DeploymentAPI", "NewWorkspace") ();

RCall<void (string)> openWs("DeploymentAPI", "OpenW orkspace");
openWs("C:\Etc\Passwd");

// Any component can be invoked remotely
RCall<void (string)>("Editor", "OpenFile")("C:\Etc\ Passwd");

ext::DeploymentAPI::CleanUp();

Figure 14 - Generic remote invocation

// File: RemoteCallerDeploymentAPI.cpp

ext::DeploymentAPI::Initialize(_T("localhost"));

ext::DeploymentAPI::NewWorkspace();
ext::DeploymentAPI::OpenWorkspace("C:\Etc\Passwd");

ext::DeploymentAPI::CleanUp();

Figure 15 - Using the deployment API

42

5. Interactive Introspection

The primary roles of the interactive introspection tool are the documentation and

debugging of the system. Interactive introspection serves as a tool to extract and

display the documentation that describes the components of the IDE and their

functions. Also, by being interactive, it allows the programmer to fiddle with the

components that are currently active in the system and observe their behavior in real

time.

Interactive introspection is mainly targeted at the component programmers that wish

to extend or deploy Sparrow; it proved to be an indispensable tool during the

development of Sparrow, as it made it possible to immediately test and observe the

functionality of the components that were being developed.

In the following sections the design, implementation, and usage of Sparrow’s

interactive introspection will be presented.

5.1 Technical Approach

Interactive introspection is implemented in Sparrow as a component offering a

graphical user interface. The said component, tentatively named Component Spy

(CS,) extracts and displays all the built-in introspection data that are embedded inside

components. Specifically, CS displays the following information for each component:

• Documentation

• Author’s name and e-mail

• Version

• Base component class

• Derived component classes

• Properties

• Exported functions

o Documentation

o Return type

43

o Argument types

• Signals

o Argument types

o The slots that are connected to it

• Created instances

o Serial number

o Child instances

o Properties

This kind of information is provided explicitly or implicitly by the programmer when

constructing components - using the component description DSL (see section 3.3.)

The method of information registration for components implemented in Delta is

described in [5].

The provided information and the way it is presented offers programmers a

comprehensive reference for invoking components, connecting slots to existing

signals, and understanding the organization of Sparrow’s architectural elements.

Figure 16 - Interactive component introspection interface

44

In addition to viewing the introspection data that are encapsulated in the components,

users can perform the following actions:

• Unload a component

• Configure a component by changing its properties

• Invoke a component function

• Remove a component function

• Delete a component instance

• Remove a signal from the component

These actions were found to be very useful for debugging the system, or to test its

behavior under corner cases. Unloading a component removes it from the memory

and deletes all its instances. Removing a component function essentially makes it

inaccessible from that point on. Correspondingly, removing a signal prevents the

component from emitting it, and slots can no longer connect to it. Deleting a

component instance forces the system to release its resources, remove any graphical

elements that are associated with it, and delete all its contained child instances

recursively. These destructive operations can be proved valuable in testing how

components behave if one or more of the elements they depend on cease to exist. On

the other hand, through Component Spy, the user can invoke any component function

and see the effects of its invocation immediately.

5.2 Implementation Details

When Component Spy is instantiated, it queries all the components that are currently

active and extracts all the relevant data. It subsequently builds a tree-view structure to

organize the component data and their contained elements. After the successful

construction of the tree-view interface, Component Spy registers itself as a listener to

the Component Registry (see section 3.3) in order to monitor the component

infrastructure for changes that affect its visualization structures. Specifically,

Component Spy listens for all the global notifications (see section 3.3.3.3) and

45

updates the tree-view to reflect the current state of the components in order to

maintain it synchronized. That way the visualized data are always consistent.

5.3 User Interface

The interface of Component Spy is comprised of a tree-view widget and a text-view

widget. The text-view structure displays: (a) the components as top-level nodes, (b)

the component instances as child nodes of the component nodes, and (c) the signals as

child nodes of the component nodes. The component instances are organized in a sub-

tree that exposes their containment hierarchy (see Figure 19.) The text-view structure,

on the other hand, displays context sensitive information that depend on the selected

tree-view item.

The text-view in Figure 17 provides additional information on the selected

component, which is – in this case – Component Spy. Figure 18 displays the

documentation of a function, whereas Figure 19 presents information on the selected

instance. The icon that appears on the left of each component function is a subtle but

bold reminder that all functions are potential bug-hives.

46

Figure 17 – Displaying the data of a component

Figure 18 – Displaying the documentation of a component function

47

Figure 19 - Displaying a component instance hierarchy

48

6. Syntax Directed Editor

The central part of any IDE is its source code editor. This is the tool that programmers

use most of the time when developing applications. The role of an editor is to assist

the programmer in the process of source code authoring. Typically, source code editor

implementations in contemporary IDEs assist the programmer by providing the

following facilities:

• Syntax Highlighting

• Code Folding

• Auto-Completion

• Syntax Validation

Sparrow’s source code editor is, by design, language-agnostic, i.e., it is not restricted

to editing only Delta code. On the other hand, the primary target of the IDE was

Delta, and as such, Delta is the language with the most supported features. However,

Sparrow’s source code editor can be straightforwardly extended to provide more

enhancements for other programming languages. Hence, the editor supports all the

aforementioned facilities for the Delta language. For other languages it supports only

syntax highlighting and code folding. Its main contributions, however, are the real-

time syntax validation of the source code, the maintenance of the complete structure

of the source code in an Abstract Syntax Tree form, and the ability to parse only the

affected segments of the text during an edit operation – instead of parsing the whole

file. The latter is the common approach that editors follow in order to support syntax

validation. In the following sections, the architecture, implementation, and the most

important features of Sparrow’s editor will be presented.

6.1 Architecture

Sparrow’s editor is implemented as a component and, thus, exports its interface to

other components and to the applications that deploy the IDE. In order for the editor

component to implement the functionality and user interface of a source code editor, it

uses the “Editor Base” library that was implemented specifically for Sparrow but at

49

the same time is not bound to it. Therefore, the core functionality of the editor is

provided by the “Editor Base” library. The editor component constitutes a lightweight

wrapper for the editing interface that is exposed by the library and has the following

responsibilities: (a) it exposes the configuration options as component properties (see

section 3.3) and uses them to affect the functionality of the library, (b) it reads the

language descriptions that are contained in a configuration file and configures the

library accordingly, and (c) it emits signals to notify other components about the

occurrence of significant editing events (e.g., the current line and column of the

cursor, whether the file is modified, etc.)

The “Editor Base” library is based on and extends the Scintilla editing framework

[14]. On the one hand, it wraps Scintilla in a class that simplifies the most common

tasks and exposes a uniform configuration interface for affecting its functionality. On

the other hand, the “Editor Base” library implements a plug-in mechanism –

orthogonal to Scintilla’s functionality – that enables the extensibility of every aspect

of the editor’s functionality through dynamically loaded plug-ins. Scintilla, by default,

supports only the modular handling of syntax highlighting and code folding that are

implemented by independent pieces of code, called “Lexers.” The library, of course,

maintains this mechanism for supporting the aforementioned functionality in

languages for which Scintilla includes suitable Lexers, but, at the same time, through

the plug-in interface, allows for many more language-specific adaptations. Sparrow’s

editor decides on which Lexer to install and/or which language module to load by

looking at the extension of the edited file and executing the instructions that are

included in its “Language Descriptions” file – an XML encoded configuration that

describes the supported editor languages. All these architectural elements are

displayed in Figure 20.

50

Figure 20 - Architecture of Sparrow's Source Editor

For the support of the Delta programming language, the plug-in functionality of the

“Editor Base Library” is exclusively used. Thus, the rest of this chapter will focus on

the design and the implementation of Delta’s language module, which, in essence,

implements all the editor features that were mentioned at the beginning of this chapter

for the Delta programming language.

In Figure 21 the architecture of Delta’s editor language module is displayed. The

Delta Editor Interface is the entry point for the invocation of the module’s functions

from the “Editor Base” library. The Program Description element is the structure that

holds a hierarchical representation of the Delta program (see section 6.4.) The Delta

Parser is the unit responsible for parsing the editor’s text and producing a convenient

representation of the contained Delta program, i.e. a “Program Description” structure.

Lastly, the Abstract Syntax Tree (see section 6.3) Visualizer and the Delta Scintilla

Styler are responsible for providing a visualization of the program’s structure and

affecting the visual representation of the source code respectively. More details about

the role of each of these elements will be presented throughout the subsequent

sections.

51

Figure 21 - Architecture of Editor's extension plug-in for Delta

6.2 Grammar Overview

As far as the editor is concerned, the most critical aspect of Delta is its grammar. The

top level rules of Delta’s grammar, as well as an example that conforms to each rule

can be seen in Figure 22. The complete reference of Delta’s grammar can be found in

[23]. A delta program is essentially a set of “statements.” The realization of this

decomposition is essential for the implementation of the incremental parsing

functionality of the syntax-directed editor (see section 6.4.)

Program: ε
 | Stmts
 ;

Stmts: Stmts Stmt
 | Stmt
 ;

Stmt: Expression ';' // e.g. a = 2 * c.pi * circle ["radius"];
 | AssertStmt // e.g. assert a and b or c;
 | WhileStmt // e.g. while (false == true) {}
 | ForStmt // e.g. for (i = 0; i < 1821; ++i) {}
 | IfStmt // e.g. if (a / 5 == 3) {}
 | ReturnStmt // e.g. return back;
 | Compound // e.g. {}
 | LoopCtrlStmt ';' // e.g. continue;
 | TryStmt // e.g. try foo() trap exception {}
 | ThrowStmt // e.g. throw this;
 | Function // e.g. function foo (arg1, arg1) {}
 | ';' // e.g. ;
 ;

Figure 22 - The top level rules of Delta's grammar in BNF

52

6.3 Abstract Syntax Trees

An Abstract Syntax Tree (AST) is a finite directed, acyclic, tree data structure, where

each parent node denotes a language operator and each of its child nodes represent its

operands. ASTs are very popular as a means of representing the hierarchical structure

of a language’s source. As such, they are ubiquitous as an intermediate representation

of a program in compilers, where they are used for performing optimizations and

producing the final, executable, code of the compiled program.

Whereas, typically, ASTs do not contain nodes that represent syntactic constructs that

do not affect the semantics of the program, the implementation reported here contains

them. This “lossless” representation of a Delta program was deemed important during

the design of the editor, since future extensions may introduce refactoring or

formatting tools for which the complete syntactic representation of a program is

essential.

An exhaustive list of the AST nodes that are used for the representation of any Delta

program can be seen in Table 4. Apparently, nodes that represent more than one

syntactic constructs contain enough information so that they can be uniquely

identified. Additionally, an example AST representation of a simple Delta program

can be seen in Figure 23.

Table 4 - The AST nodes used in the representation of a Delta program

AST Node Description

StmtsASTNode A set of Delta statements
ExpressionListASTNode An expression list
ArgListASTNode An argument list (a list of ids)
UnaryKwdASTNode All unary keywords (e.g. assert)
LeafKwdASTNode All leaf keywords (e.g. break)
WhileASTNode While statement
ForASTNode For statement
IfASTNode If statement
ElseASTNode The “else” part of an if statement
CompoundASTNode A list of statements enclosed in ‘{‘ ‘}’
TryASTNode Try statement

53

TrapASTNode The “trap” part of a try statement
FunctionASTNode A function definition
FunctionNameASTNode The name of a function’s definition
TernaryASTNode The ternary operator (a ? b : c)
PrefixOpASTNode All prefix operators (e.g. prefix ++)
SuffixOpASTNode All suffix operators (e.g. suffix --)
BinaryOpASTNode All binary operators (e.g. +)
UnaryOpASTNode All unary operators (e.g. unary -)
CallASTNode A call expression
VariableASTNode A variable instantiation
ConstASTNode A constant expression
ArgASTNode An argument (id)
TableElemASTNode A table element
TableElemsASTNode A list of table elements
TableIndexListASTNode A table indexed list
TableConstructASTNode A table construction expression
TableConstKeyASTNode A constant table key
OtherStmtASTNode A poorly named expression statement (e.g. a = 3;)

Figure 23 - Abstract syntax tree for a simple Delta program

One last issue worth noting is that the program’s representation as a tree structure

simplifies considerably its manipulation. Using the Visitor pattern [8] on the AST

structure provides an intuitive way for interacting with the program’s representation.

Furthermore, the code that manipulates the AST is separated and modularized

effectively without resorting to tedious and error-prone switch-case constructs.

54

6.4 Incremental Parsing

The Delta parser, along with the “Program Description” structure, is the central piece

of the Delta language module. It parses a stream of text and produces a “Program

Description” instance that contains a complete, easily processed, view of the Delta

program that is enclosed in the editor. Specifically, the program description structure

contains the following:

• The AST of the Delta program that was parsed successfully

• A list of parse errors that were encountered while parsing the Delta program

• A list of comments that appear in the program

• A list of text excerpts that could not be parsed

All these elements encapsulate a range structure that denotes the absolute positions of

the referenced syntactical constructs inside the editor. The difference between the list

of parse errors and the list of excerpts that could not be parsed is that the former

contains only the text that triggered the error, whereas the latter includes also the text

that was discarded by the parser in order to continue parsing from a consistent state;

hence, the former is a subset of the latter.

The parser is implemented using the Bison parser generator [10] and the Flex lexical

scanner generator [9]. Bison’s grammar rules for the Delta language are responsible

for constructing AST nodes and building the resulting AST, bottom-up, as the

grammatical rules are being recognized. Flex generates the lexical scanner as a C++

class so that it can read its input stream from a standard C++ input stream

(std::istream.) Sparrow’s editor provides a specialization of the input stream for

enabling clients to read the contents of the editor through the standard well-known

interface of a C++ input stream. Thus, the resulting parser is able to parse the text

directly from the editor’s buffer.

The main trait of syntax directed editing is the maintenance of the edited program’s

structure in a format that can be easily manipulated programmatically. As such,

Sparrow’s editor permits the free-editing of the editor’s text, while maintaining a

consistent view of the program in a “Program Description” structure.

55

A trivial method for achieving the aforementioned functionality would be the

reevaluation of the whole text of the editor after every single change. Apparently,

“changes” include the insertion/deletion of characters by the user, the invocation of

cut/paste commands, and the insertion/deletion of text programmatically (by other

components or applications that deploy Sparrow.) This is a perfectly viable option

when the edited files are kept small, i.e., less than 7,000 Lines of Code (LOC.)

However, when files get bigger, the responsiveness of the editor deteriorates

significantly; even more so, when the visualization of the program’s AST is active

(see section 6.5.4.) This decline in responsiveness is also evident in the editors of

other IDEs that maintain internally a hierarchical representation of the program’s

structure, e.g., in Eclipse’s Java source code editor. Additionally, it is important to

note that an optimization in the speed of the – already fast – Bison/Flex generated

parser would make no difference, as the primary bottleneck of the evaluation process

is the generation of the graphical elements of the AST visualization.

Consequently, the editor’s extension for the Delta language succeeds in eliminating

the decrease in responsiveness when editing large files by evaluating after each

change only the parts of the text that are affected by it. The resulting representation is

identical to the representation that would be generated if the whole text was

reevaluated; that is when the text constitutes a correct Delta program. When the

parsed text contains an error, in which case the entire text is not a valid Delta program

either, the resulting representation differs. An example of this “inconsistency” can be

seen in Figure 24, where the user has just entered the text “f = /*” in the editor.

However, these inconsistencies, in case of input that does not conform to the Delta

grammar, do not render the incremental parsing approach inferior to the full-parsing

one. In fact, the resulting representation in the case of partial-parsing is preferable, as

it constrains potential errors in a smaller text area.

56

Figure 24 - Difference in AST in case of error; left: incremental parsing, right: full parsing

That said, the algorithm used by the Delta language support module to partially parse

only the affected text after every modification, comprises of the following steps:

• Update the absolute position of all the elements that are affected by the change

o Update the position of the AST nodes

o Update the position of the errors

o Update the position of the text that could not be parsed

o Update the position of the comments

• Remove all the adjacent elements that are affected by the change

o Remove the minimum Delta statement that contains the changed text

o If there is text that could not be parsed before the statement

� Remove it and also remove the statement before it

o Otherwise, remove also the statement before the minimum statement

o If there is text that could not be parsed after the statement

� Remove it and also remove the statement after it

o Otherwise, remove also the statement after the minimum statement

o Remove all the comments and errors that are contained in the region of

the removed elements

57

• Parse only the minimum region that contains the removed elements

• Merge the resulting representation of the newly parsed region with the main

representation

An example execution of the algorithm can be seen in Figure 25, where the

representation of the Delta program can be seen before and after the pasting of the

“else” text. The stylish green underline marks the region of the text that is parsed after

a text modification. The marking of the regions of text that are parsed after a

modification is, by default, disabled; it can be enabled, however, by pressing

simultaneously the keys Alt-Control-P.

Obviously, the operations that change the appearance of the edited text (i.e. syntax

highlighting and folding,) as well as the update of the visual representation of the

AST happen only in the incrementally parsed region.

Figure 25 - Incremental parsing of text after pasting "else"

6.5 Rendering

58

6.5.1 Highlighting

Syntax highlighting is a function supported by all contemporary editors. It essentially

varies the visual style of text excerpts that represent different syntactical structures of

the target language. To be precise, syntax highlighting differentiates the visual

representation of the types of the lexicographical tokens that constitute the

“vocabulary” of a programming language.

Despite the fact that other editors, e.g., Visual Studio’s and Eclipse’s source code

editors, base their highlighting on the recognized lexicographical tokens, Sparrow

editor’s Delta extension highlights the different language constructs based on their

syntactical context. For Delta, hence, identical lexicographical tokens can have a

completely different style depending on what they represent in a Delta program. E.g.,

in Figure 26, ids that appear as “object members” have different color from the ids

that appear as variables. Additionally, in the same example, strings that appear as

“table keys” (which is actually another way of accessing “object members,”) have

different color from strings that appear as plain expressions.

Syntax highlighting is implemented by an AST traversal that applies the

corresponding style on the text whose location is indicated by the absolute positions

that are encapsulated in AST nodes. Comments, that are separate from the AST, are

styled by traversing the comment list of the “Program Description” structure and the

parts of text that could not be parsed are styled lexicographically. This lexicographical

styling is essential for giving immediate feedback to programmers when they are

typing; otherwise, e.g., the “if” keyword of an incomplete “if” construct would be

highlighted only after it became a complete statement and not as soon as it was typed.

6.5.2 Error Marking

Error marking refers to the ability of the editor to recognize and mark the syntactical

errors that are present in the source code of a program, i.e., the parts of the program

that do not conform to the target language’s grammar. Syntax validation is usually

implemented, in editors that support it, with the help of the language’s compiler.

59

Visual Studio for the .NET languages and Eclipse for the Java language support

syntax validation by invoking the compiler with the edited file as input, and obtain

from it the parts of the text that do not conform to the grammar. Although this method

can also recognize semantic errors, it is not immediate. The validation of the program

is deferred until its compilation. In Sparrow’s Delta editor, syntactic errors are marked

as such instantly – as the user types.

As seen in Figure 26, errors are indicated by a wavy red underline. The

implementation of the error marking functionality is straightforward: the contents of

the error list field of the “Program Description” structure (see section 6.4) are styled

with the red underline.

Figure 26 - Editor Syntax highlighting

6.5.3 Code Unit Folding

Code unit folding provides the means for programmers to toggle the visibility of

source code segments corresponding to specific syntactic elements. Its typical usage is

60

hiding the body of functions or classes so that programmers can concentrate

undistracted on the parts of the source code they are editing.

Sparrow’s Delta editor supports code folding for the following constructs:

• While statements

• For statements

• If – Else statements

• Try statements

• Function definitions

• Table construction statements

Code folding is again implemented by an AST traversal, so the syntactic context of

the structures that can be “folded” is known, and thus, it does not depend on isolated

character sequences.

6.5.4 AST View

This facility of the Delta editor is visible in many of this chapter’s figures (e.g. see

Figure 23.) Users can toggle the visibility of the AST visualization window by

pressing the keys: Alt-Control-V in the editor when editing a delta source file.

In addition to providing visualization of the internal AST of the edited program, this

tree is also interactive. Selecting any visualized node selects its corresponding text in

the editor. Right-clicking on a node, allows the user to perform any of the following

actions: (a) delete the node’s corresponding text, (b) copy the node’s corresponding

text, or (c) cut the node’s corresponding text.

6.5.5 Tooltips

Another feature of the editor’s extension for the Delta language is the provision of

context and function sensitive tooltips when the mouse pointer remains over the

editor’s text for a couple of seconds. When that happens, the AST node that

61

corresponds to the text under the mouse pointer is retrieved and information for that

node appears in the form of a tooltip. The text displayed by the tooltip can be

modified by extensions.

So, in the default case – where the user is editing text – the displayed tooltips give

information on the role of that text in the Delta program, i.e., they display the type of

the text’s AST node. When the mouse pointer is dwelled over text that is marked as a

syntax error, the explanation of that error – that is obtained from the generated Bison

parser – is displayed. Lastly, one of the extensions of the Delta debugger [5] takes

advantage of this functionality to display the value of variables during debugging.

Figure 27 illustrates the different realizations of the editor’s tooltips.

Figure 27 - Editor Tooltips under the mouse pointer

6.6 Auto Completion

Another universally supported function is the Auto-completion of symbols, which

refers to the automatic suggestion of valid symbols that may appear at a specific

position in the text of a program. Usually, editors of contemporary IDEs present the

suggested symbols in a drop-down selection list.

62

Automatic completion of all the valid symbols in dynamic languages such as Delta is

a very difficult issue. Delta’s objects can be extended at runtime by adding member

variables and functions. This situation is further complicated by the fact that even the

inheritance of Delta objects is a runtime function [23]. This essentially means that is

practically not possible to know an object’s members without actually running the

complete Delta program.

Instead of resorting to semi-accurate heuristics to infer the member data of a Delta

object, it was decided to offer a completion list of the symbols that were previously

used above the point where the auto-completion takes place.

The Delta editor distinguishes four kinds of symbols:

• Object members (or object keys)

• Functions

• Function arguments

• Variables

So, when the user presses the dot key (‘.’) right of an id, all the previously accessed

object members are retrieved (by traversing the AST “upwards”) and presented in a

drop-down list. As mentioned previously, the notation “object.member” in Delta, is

just a shorthand for the expression ‘object[“member”];’ thus when the user types the

text ‘[“’, all the object members are, similarly, retrieved but this time they are offered

as strings instead of plain ids. Additionally, when the user starts typing a word whose

first three letters match existing symbols of functions, function arguments, or

variables, their names are offered for auto-completion. The completion list for the

aforementioned cases, which can also be activated by pressing the keys Control-

Space, can be seen in Figure 28.

63

Figure 28 - Automatic completion of symbols, and object members as ids and strings

64

7. Summary and Conclusions

7.1 Summary

In this Thesis, we have presented a large part of Sparrow, a circular meta-IDE for the

dynamic object-based language, Delta. Initially, we have discussed the overall

component architecture and the basic facilities built on top of it, like the undo

manager and the introspector. In this context, we have outlined the primary design

philosophy regarding architectural openness, dynamic extensibility, and customized

programmable deployment. Additionally, we have shown particular component

features like the support for self-embedded documentation and the introspection

interface. Finally, we have presented the source-level editor with its multi-language

open architecture, putting emphasis on the implementation of the plug-in to

accommodate the Delta language.

7.2 Conclusions

Our choice to implement the Sparrow IDE has been dictated from various technical

reasons, linking directly to the main objectives of providing a dynamic, circular and

extensible platform. More specifically, the need to offer dynamic query and

introspection of components during runtime implied that a comprehensive component

technology could be deployed with these qualities, and we had a few choices for that,

with the most easy to use alternative being Java and OSGi. However, since we wanted

to support dynamic extensions of component methods as a standard feature for

components, a method we called vertical extensibility, we could not use such

technologies as they require that such facilities are manually introduced by

component vendors. Finally, we wanted to allow dynamic inheritance among

components, i.e. runtime inheritance, something that is not offered by any

componentware technology. Overall, while our emphasis has been to offer a typical

component infrastructure, our focus was shifted towards specific features relating to

openness and extensibility. In this sense, our component system does not aim to

compete with existing technologies, but to offer a layer of functionality optimally fit

65

to the needs of a dynamically extensible and deployable IDE. The latter implied that

our work could not be hosted by popular IDEs that genuinely rely on such

technologies, as it is the case with Visual Studio (COM backbone) or Eclipse (OSGi

backbone.) Now, the effort to introduce on top of such technologies facilities like

component editing and inheritance was far beyond our objectives. Hence, we

preferred to focus on a new compact component subsystem where the specific

required functionality would be put at place by design, rather than introduced as an

afterthought.

Along these lines, the remote deployment API, as well as the interactive introspection

had to be built on top of the basic component infrastructure. Consequently, we

introduced these facilities as extensions of our component subsystem: (a) introduce

inter-process dispatching of method invocations for remotely deployed components,

and (b) provide a direct manipulation interface to the APIs of the active components.

One of the future extensions regarding the component system is to introduce dynamic

inter-process inheritance among components, meaning a local component may inherit

on-the-fly from a remote one. In our current implementation, the latter scenario is

supported only when both components reside at the same process space, i.e. dynamic

intra-process inheritance.

One module that could be potentially implemented on top of an existing IDE platform

is the source code editor. Nevertheless, such an approach does not essentially reduce

the required code size, since it still requires an implementation from scratch of the

most critical editor part: the syntax-aware editing functionality for the Delta language.

Practically, to automate the latter it would imply the presence of true syntax-

highlighter editor generators, analogous to parser generators, the former tools

currently missing. We put particular emphasis on true syntax highlighting, since

although all existing editors offering highlighting configuration merely support lexical

highlighting, the latter is improperly referred to as syntax highlighting. So, in any

case, the implementation of this plug-in would be, for the most part, invariable. The

graphical rendering of the editor and its editing functions that would have been

provided by an underlying platform are supplied, in our implementation, by the

Scintilla framework. So, in this case, we wouldn’t have gained anything by basing the

editor on the facilities provided by other IDEs.

66

In addition to that, Sparrow will be used as an internal development tool for the

software development division of the Human Computer Interaction (HCI) laboratory

of the Institute of Computer Science (ICS) at the Foundation for Research and

Technology – Hellas (FORTH.) Thus, the decision not to base Sparrow on top of an

existing platform was further supported by the strategic decisions of the laboratory

regarding the usage of the Delta programming language. The independence of the

laboratory from external software systems was deemed essential for the deployment

of Delta in future projects.

In closing, we shall mention that our architectural and implementation strategies for

Sparrow, as a component-oriented platform that can easily accommodate diverse,

domain-specific, functionality, proved to be successful. They proved to be a robust

approach to the development of a large scale, extensible and adaptable system such as

Sparrow; and the proof for this is the resulting, fully functional, Integrated

Development Environment for the Delta language.

67

References

[1] David Abrahams and Aleksey Gurtovoy: C++ Template Metaprogramming:

Concepts, Tools, and Techniques from Boost and Beyond. Addison-Wesley,

Reading, MA, 2004. ISBN 0-321-22725-5

[2] Andrei Alexandrescu: Modern C++ Design: Generic Programming and Design

Patterns Applied. Addison-Wesley, Reading, MA, 2001. ISBN 0-201-70431-5

[3] David M. Beazley, SWIG: An Easy to Use Tool for Integrating Scripting

Languages with C and C++, 4th Annual Tcl/Tk Workshop, Monterey, CA.,

1996

[4] Boost C++ Libraries. http://www.boost.org

[5] Themistoklis Bourdenas: Circular Meta-IDE for the Delta Language:

Extensibility Layer for Delta, Debugger, Runtime adaptation, and Project

Manager. Master’s Thesis, 2007

[6] D. Box: Essential COM, Addison-Wesley, 1998. ISBN 0-201-63446-5

[7] Brad J. Cox, Andrew J. Novobilski: Object-Oriented Programming: An

Evolutionary Approach. 2nd ed. Addison-Wesley, Reading, MA, 1991. ISBN

0-201-54834-8

[8] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, Reading, MA, 1995

[9] Flex: The Fast Lexical Analyzer. http://flex.sourceforge.net

[10] Free Software Foundation: Bison – GNU Parser Generator.

http://www.gnu.org/software/bison

[11] Grimes, Richard: "ATL and COM", ATL COM, 1st edition, Wrox Press,

1998. ISBN 1-861002-4-91

68

[12] Microsoft Corporation: Dynamic-Link Libraries.

http://msdn2.microsoft.com/en-us/library/ms682589.aspx

[13] Microsoft Corporation: Visual Studio Integrated Development Environment.

http://msdn2.microsoft.com/en-us/vstudio/default.aspx

[14] Neil Hodgson: Scintilla source code editing component.

http://www.scintilla.org

[15] K Desktop Environment (KDE): KDE API Reference: The DCOP Desktop

Communication Protocol Library. http://api.kde.org/3.5-api/kdelibs-

apidocs/dcop/html/index.html

[16] K Desktop Environment (KDE): KDevelop. http://www.kdevelop.org

[17] K Desktop Environment (KDE): KParts: Creating and Using Components.

http://developer.kde.org/documentation/tutorials/kparts

[18] Bertrand Meyer: Object-Oriented Software Construction. 2nd ed. Prentice

Hall, 1997. ISBN 0-136-29155-4

[19] Object Management Group: The Common Request Broker Architecture

Specification. http://www.omg.org/technology/documents/formal

[20] William F. Opdyke: Refactoring Object-Oriented Frameworks. PhD Thesis,

Department of Computer Science, University of Illinois at Urbana-

Champaign, 1997

[21] OSGi Alliance: OSGi Service Platform – Release 4. (2005)

[22] Python Software Foundation: Python Programming Language.

http://www.python.org/

[23] Anthony Savidis: Dynamic Imperative Languages for Runtime Extensible

Semantics and Polymorphic Meta-Programming. RISE 2005: 113-128

[24] Sun Microsystems: Java Remote Method Invocation (Java RMI) Specification.

http://java.sun.com/j2se/1.5.0/docs/guide/rmi/index.html

69

[25] Sun Microsystems: JavaBeans 1.01 specification.

http://java.sun.com/products/javabeans/docs/spec.html

[26] The Eclipse Foundation: Eclipse Project. http://www.eclipse.org

[27] The Mozilla Foundation: XPCOM (Cross Platform Component Object Model)

Reference. http://www.xulplanet.com/references/xpcomref

[28] Trolltech: Qt: Cross-Platform Rich Client Development Framework.

http://trolltech.com/products/qt/

[29] wxWidgets GUI toolkit, http://www.wxwidgets.org

