University of Crete
Computer Science Department

CIRCULAR META-IDE FOR THE DELTA LANGUAGE:
DYNAMIC EXTENSIBILITY, REMOTE DEPLOYMENT, INTERACTIVE INTROSPECTION
AND SYNTAX DIRECTED EDITOR

by
YANNIS GEORGALIS

MASTER S THESIS

Heraklion, October 2007

University of Crete
Computer Science Department

CIRCULAR META-IDE FOR THE DELTA LANGUAGE:
DYNAMIC EXTENSIBILITY, REMOTE DEPLOYMENT, INTERACTIVE INTROSPECTION
AND SYNTAX DIRECTED EDITOR

by
YANNIS GEORGALIS

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

Author:

Yannis Georgalis

Board of enquiry:

Supervisor

Constantine Stephanidis, Professor
Supervisor

Anthony Savidis, Associate Professor
Member

Evangelos Markatos, Professor
Member

Mema Roussopoulos, Assistant Professor

*The board of enquiry judged that the present Thissalso given the characterization
With Distinction.

Approved by:

Panos Trahanias, Professor,
Chairman of the Graduate Studies Committee

Heraklion, October 2007

Abstract

Following programming languages, Integrated Devalept Environments (IDEs) are
considered as the next decisive factor for effecgoftware development, playing a
critical role in the software lifecycle, especialiyen it targets medium-to-large-scale
systems. In this context, the subject of this ThesSparrow; an IDE for the dynamic,
object-based programming language — Delta. Spam@s developed with the

following two key objectives: (a) to support extdrgy of features, allowing such

extensions to be developed using Sparrow, i.e.atdircular IDE, and (b) to facilitate

open deployment by third parties to build domaimated IDES, i.e. it is a meta-IDE.

In this Thesis, the design and implementation ddérge part of Sparrow has been
carried out — corresponding roughly to half of thgstem’s implementation, —
addressing the following issues: (a) the implem@naof the basic component
framework for extensibility, enabling developers ndgnically introduce IDE

components, (b) the implementation of the mechanismremote deployment,

enabling third-party applications dynamically wdithe IDE in a domain specific
manner, (c) the implementation of a component sgeation User Interface, enabling
users interactively review and invoke the undedyifunctionality of all IDE

components, and (d) the implementation of the sowade editor supporting real-
time, true syntax highlighting during editing, relg on quick incremental parsing

particularly suited to the Delta language.

The work reported in this Thesis enabled the SpaftRE to play the role of an open
platform capable of dynamically hosting IDE funcidity, reflecting theaabula rasa

concept. Along these lines, we expect future IDEEsbve towards these directions,
delivering more flexible and open infrastructureg bnabling users introduce
extensions and customizations reflecting theinvigial programming habits or any

emerging programming techniques.

MepiAnyn

Metd Tig YA®ooeg mpoypappatiopoy, ta OhokAnpopéva Ilepifdiiovta Avantoéng
(Integrated Development Environments - IDES)ewpodviar 0 onpaviikdtepog
TOPAYOVTAG Yo TNV OVATTLEN AOYISUIKOV, Tailovtag Kpiocywo porlo otov KOKAO
AVATTUENG TPOYPOUUATOV, 10laiTepa O Yoo TO pecoiog Kot HeYOANG KAIpoKOG
oLOTHUOTA. Z€ OVTO TO TAMIG10, TO BEpHa TG Tapovsag epyaciag gival To cVGTNUA
Sparrow, éva. IDE yia ™) Svvouikn ovtokevipikny ylwoco Delta. To Sparrow
KOTAoKEVAoTNKe akoAovBmvtag ovo kvplovg otdyovg: (o) va vmootnpilet
EMEKTAGIUOTNTA TOV AETOVPYIDV TOV, EMITPEMOVIONG VO AVATTUYOOVV Ol EMEKTAGELS
AVTEG YPNOILOTOLDVTAS TO 1010 To Sparrow dniadn eivat éva kokhkd IDE, kau (B) va
vrootnpilel T ¥pNoM TOL Ao TPiTe, GLGTNATO dlEVKOAVVOVTOG TN onpovpyio IDES

eEE10IKEVUEVOV GTO EKACTOTE TTESTO EPapPLOY®V, OnAadn eivon éva peta-IDE.

10 mAOIG10 OLTNG TNG epyociag, avamthynke éva peydio pépog Tov Sparrow,mov
AVTUTPOCMOTEVEL TEPITOV TO NUIGL TNG VAOTOINGMG TOV GAOV GLOTNHLATOG, KOl OPOPdL
oto. mapokato (nrauoate: (o) v viomoinon TG Pooikng doung Swoyeiplong
TUNUATOV AOYIGUIKOD OV VTOGTNPIlel TNV EMEKTAGIUATNTA TOV GUOGTHUOTOC, 1] OOl
KaO1oTd dvvathy TN OLVOUIKY] E00Yy®YN Kol ¥PNon TV TUNUATOV omd TOLG
npoypappotiotés, (B) v viomoinon Tov pUNXAVIGHOD EAEYYOL HEC® BIKTOOV, O
omoiog emtpénel oe eEMTEPIKEG EPOPLOYES VO ¥pnoipomotlovv dvvaukd to IDE wg
TUNUA, HE TPOTO TOL €EAPTATOL OO TO EKAGTOTE 7Tedio ePapuoymdv, (y) v
vAOTOINoY SlEMAPNG EVOOCKOTNONG TOV TUNUATOV KMOIKA, 1| OTOi0 EMTPENEL GTOVG
TPOYPOUUOTIOTES Vo BAETOLV KOl VO, KOAODV TIG AglTovpyieg Twv tunudtov tov IDE
KOTA TN O1GpKELN TNG XPNONE TOL, Kal (3) TNV LAOTOINCN TOL GLVIAKTN KOJOKO, O
omoiog pmopel va mapovctdlel e mpaypaTikod ¥pOvVo UE YPUPIKO TPOTO TO TUNLOTO
TOV TNYOOL KAOJIKA GOUE®VE HE TO GUVIOKTIKO NG YADOOOG, LAOTOU®VTOG Mio
péBodo YpMyopNns, OWENTIKNG CLVTIOKTIKNG OVAALONG €101KA OYESIOOUEVIC Yo TN

yAoooo Delta.

H napovoa epyacio KotéoTnoe QKT TV AVATTLEN TOL SPArroWmS pio ovolKTY| Kot

EMEKTAOIUT TAOTOEOPUO AOYIGHIKOD, akolovbmvtag T @lhocogia tabula rasa oote

va vrootnpilel gvédikta ™ Aettovpywkotnta evog IDE vAomowwvrog €va yevikod
OPYITEKTOVIKO TTAOUG10 7OV VTOGTNPILEL TN OLVOIKT] GLPPOPYT] TOV AETOVPYIKMV
TUNUATOV. X& oVTEG TIG YPOUUES, avapévoupe ta peAlovikd IDES va kivnBovv ce
TOPOUOIEG KOTEVOVVGELS, TPOGPEPOVTOS KON TTLO EVEMKTEG KOl OVOIKTEG VITOOOUEG,
EMTPENOVTIONG GTOVG TPOYPOULOTIOTEG VO EIGAYOLV EMEKTAGELS KOl TPOGOUPUOYES
COUPMVO, LE TIG WOWUTEPES TOVG TPOYPOUUATIOTIKEG GLVNOELEG KABMG Kol TI EKAGTOTE

AVOOVOUEVES TTPOYPOUUUOTIOTIKES TEXVIKEG.

Vi

EuxapioTieg

Oa NBela Vo ELYOPIOTNC® TOVG EMOMTEG TNG UETOMTTVYLOKNG LOV €pYOciog AVIDOVIO
Yafpion kot Kovotavtivo Ztepavion yoo v cvveyn kabodrynon kot vrootpién
TOVG T TEAEVLTOAOL TEGGEPAUIOL YPOVIOL GTO TAMICIO TNG OLVEPYOCIOG HOG OTO
Epyootiplo Emkowomviag AvOpodmov-Yrnoroyiot, tov Ivetitobtov [TAnpogopiknig

tov 1dpvpatog Texvoroyiog kot Epgvvag.

Eniong, 6o n0eha va gvyopiomom tov Ogpiotokiy Mrovpdéva e tov omoio glya
xopd vo cvvepydlopal cuvolkd Tpio ypovia, daitepa 0 TOLG TEAELTAIOVG EMTA
WVES 6TO TAOUGLO TNG EKTOVIIONG TMOV UETOMTUYOKAOV OGS EPYOCLOV OV ELYOV G

Kowd otdY0 TV avantuén tov Sparrow IDE.

Evyopiotd, 1€A0¢, TNV 01KOYEVELD LoV KOt TOVG GIAOVG LoV OV LE VTEPEPOY KoL LE

ompi&av Oda avTd Ta YpoVIaL.

vii

Table of contents

LIS OF fIQUIES ..ttt ettt e e e e e e X
LISt Of tADIES ... —————— Xii
LISt Of tADIES ... ———— Xii
I [01 o o 1§ [ox [o USRI 1
1.1 ODJECHIVES ...ttt ettt e e e e e e e e e e e e e eeeteeeennneeseenee 1
111 COoMMON TRALUIESceee e 2.
1.1.2 NOVEI FEATUIES ...ttt 2
1.2 AICNITECIUIE. ...ttt e e e e e e e e e e eeeeee b bennnneeseeeee 3
1.2.1 (O] (ol U] = 41 YRR TRPPR 4
1.2.2 1YL= = PP 5
1.3 V=Y T (o] [Yo)Y/ 6
2. REIAIEA WOIK ..ot e e e e e e eaeaeaee 7
2.1 The Delta LAnQUAQEuuuuuuuiiiaai e ettt a e e e 7
2.2 EXISHNG IDEScii ittt e e e e e e e e e e e e e nnnnnrannne 9
221 ViSUAI STUAIO......ooiiiiiiiie e 10
2.2.2 ECHPSE i 11
2.2.3 KDEVEIOP ..ttt ettt e e e e e e e e e e e eeeesaneees 11
224 (0] 3] o =T 5] o USSR 12
3. Dynamic EXtENSIDIILYuuiiiiiie e e e 14
3.1 COMPONENTS ...ttt i ettt e e e et et e e e e e eeeneeeaeennneees 14
3.2 Existing Component FrameWOrKS............ccaeeieeeiiiiiiiiiiinneee e e e eeeeeee 15
3.3 Proposed Component FrameworK..........ccceveeiiiiiiiiiiiiiiiiiiiieee e 16
3.3.1 Primary REQUIFEMENTSuueeiiii it e e e e e
3.3.2 TeChNICal OVEIVIEWiiiiiieiie e 8.1
3.3.3 Implementation DetailS.............iiiieiiiiiiieiiiier s
3.3.3.1 INNEIMANCE.....ciiiiiiiiiieeee et 24
3.3.3.2 INVOCALIONS ...cviiiiiiiiiiiiieee ettt 26
3.3.3.3 NOUfICAtIONS.....coiiiiiieiiiii e 27

3.3.3.4 Component Specification Language cceeeeeeeeeeeeeeennnnnnnn. 29
3.4 Extending COMPONENTS......ccciiiiiiiiiiicceeeeeeeeeenentrs e e e e e e e e e e e e aeeeeeeaenees 32

3.5 Global and Local UNdO / REAO oo eeeeiiiiiiiiiiiieeeeeeeeeee e 34
4. Remote Component DeploymMeNt.........coooicccceeeeeveeeeeviiiieee e e e 37
4.1 Technical APProaCheiiii i 37
4.2 Implementation DetallS..............iiieeremeiiiie e 38
4.3 IDE Deployment APL.........coooiiieieeeeeeeeeeeeeesss s e e e e e e e e e e e aeeeeaenannnes 40
4.4 EXamMPIeS Of USEccoiiiiiiiiiiiiiieie o s s e e e e e e e e aaeeeeeesaeasannnnnn e 41
5. Interactive INtrOSPECLIONcoeiiiiicemmmmeie e e 42
5.1 Technical APProach ... 42
5.2 Implementation DetailS.............uuuieeeeeeiiiiiiiiiie e e e e e ee e ennnes 44
5.3 USEI INTEITACE ... i 45
6. Syntax Directed EdItOr..........cooiiiiiiimmmmmeeee e 48
6.1 AIFCHITECIUIE.. ..ot 48
6.2 Grammar OVEIVIEWocoiiiiiiiiiiiiiiiiiieeee et e e e 51
6.3 ADSLract SYNtaXx TrEESccvvvvvvveertmmmmmmm e eeeeeeeeeeeeeearer e e e e e e e e eeeees 52
6.4 INcremental Parsingoooovviiivsmmmn e eeeeeeeeiiiiiaas e e e e e e e e e e eeeeeeeeeees 54
6.5 RENAEING ... e e e e 57
6.5.1 [T | 1T |1 1] o SRR 58
6.5.2 o] 1Y/ =T g (] o O 58
6.5.3 Code UNit FOIAING......ceuuiiiiiiii s e e e e e e e e e eeeeeneeennnee 59
6.54 AST VIBW ittt e e e e e e e aeees 60
6.5.5 10T} 117 o 1 60
6.6 AULO COMPIELION. . .uuiiii i ceeeee e e e e e e 61
7. Summary and CONCIUSIONScooiiiiiiiiiiiei e e e 64
7.1 SUMIMABIY ...t e et e e e e e et e e e e e e et e e e e e e e srmme e eas 64
7.2 CONCIUSIONS.. ...ttt e e e e e e e e e e e eeannes 64
RETEIEINCES ...ttt ettt ettt e e e e e e e e e e e e et r e e e e e e e e e e e e 67

List of figures

Figure 1 - Sparrow as a collection of COMPONENLS.....uuueeiiiiriieeieeiiiieeeeeiiiiiiiees 4
Figure 2 - Native and Circular extension l[ayerSparrow...........ccceeeevvvveeeeevvvvnnnnnnnn 5
Figure 3 - Horizontal and Vertical extensibility 8parrow............ccccevvvvvvvviviiiiienenennn. 6
Figure 4 - Screenshot of Sparrow with various kayponents active........................ 7
Figure 5 - The basic building blocks of a SparroanmPonentcccoeevveeeeeeeennnne. 22
Figure 6 - Runtime dependencies between the baslidity blocks of Sparrow's
COMPONENE FrAMEWOIK ... e e e e e e e e e e e e e e e aaeerennnneeeannnes 24
Figure 7 - The recursive lookup algorithm for coment functions............cccc..uuee.e. 25

Figure 8 - Runtime model of classes and instances iscenario that utilizes

(ofo] ga] oTo] L= gl AT] g =T] =T o ol S 25
Figure 9 - Inter-component communication througlssage passingccc........ 27
Figure 10 - A Sparrow component implementation #¥C.............ccccoeeeviiiviniiiinnnns 31
Figure 11 - Constructing a component instance atiohg its methods 31
Figure 12 - A C++ Sparrow component that supportddJRedocceevvvvvnnees 36
Figure 13 - Remote component iNVOCAtION.......cccceeeeiiiiveieeeiiiiiiiiee e 39
Figure 14 - Generic remote INVOCALIONo eeeeeeeeeeeeeiiiiiiiiiiianaaaeeeeeeeeeaeaens 41
Figure 15 - Using the deployment APl ... 41
Figure 16 - Interactive component introSpectioRIfACEevvvvviiiiiieiiieeeeeennnn. 43
Figure 17 — Displaying the data of @ COMPONENT caeeeevvvvveiieieiiieieeieeeeeeeeeeiiiie 46
Figure 18 — Displaying the documentation of a congm function................cc........ 46
Figure 19 - Displaying a component instance higharc................uiciiiiineieeeeeeenn. 47
Figure 20 - Architecture of Sparrow's Source EditOr.............veiiiiiiieiieeeeeeen. 50.
Figure 21 - Architecture of Editor's extension plador Delta.................cccoevvveeenns 51
Figure 22 - The top level rules of Delta's grammaBNFcccovviiiiiiiiiinnnennn. 51
Figure 23 - Abstract syntax tree for a simple Dplagramccccoevveeeeeeeiiinnnnnne. 53
Figure 24 - Difference in AST in case of error;tlehcremental parsing, right: full
=T £ 1 o 56
Figure 25 - Incremental parsing of text after pagtielse” ..., 57
Figure 26 - Editor Syntax highlighting ..o 59
Figure 27 - Editor Tooltips under the mouse PoINter............viviiiiiiieeeeeeeeeeen, 61

Figure 28 - Automatic completion of symbols, angecbmembers as ids and strings

Xi

List of tables

Table 1 - Comparison Of IDESouuuuiiiiiiiiieas e s 13
Table 2 - Standard internal component notificatians.............ccevvvvvvviviccieeeennn. 28.
Table 3 - The exported Deployment APL.......co oo eeeeiieieeeeeee e 40
Table 4 - The AST nodes used in the representafiarDelta program.................... 52

Xii

1. Introduction

Computer programs follow completely different atebtural and implementation
strategies in relation to the problem being solvkd,available resources, and the way
users interact with them. This multi-modality thagévitably characterizes software
systems not only increases their complexity, bab ampedes the formalization of

concrete guidelines and “recipes” for approachirgdonstruction of a program.

The plethora of available programming languages dedelopment tools clearly
reflect the aforementioned lack of formalizatiorntltoé development process. Whereas
the advancements in high-level languages have puididly allowed software
systems to become much more sophisticated, Ineghidevelopment Environments
have enabled programmers to produce more robugtgns in a smaller time frame.
An Integrated Development Environment (IDE) is bally a program that assists the
process of software authoring by (a) disengagimgptogrammer from source code
maintenance operations, (b) visually annotating amdidating the syntactical
structures of a program, (c) aiding the debuggiracess, and (d) automating some

aspects of the code manipulation operations.

The final product of this project — dubbed Sparrews an IDE for the dynamic
object-based programming language, Delta. The gifejgoal was not only to create
a full fledged development environment for the Bédinguage, but also to explore the
usage of various programming techniques for impleng a dynamically
configurable, remotely deployable, and extensibfeasare platform.

1.1 Objectives

An IDE, besides being a program that aids the d@ezl by automating tedious
programming tasks, ought to provide a concretefgrtat on which developers can
build custom tool-chains and extend its functiayalThis was viewed as the most

critical factor when designing Sparrow. The prommsiof a sensible, intuitive meta-

development platform that can leverage the effeatgs of the offered facilities is

missing from most contemporary IDES.

1.1.1 Common features

Sparrow aims to be a full-fledged IDE. Hence, dattires that are similar to the ones
offered by many existing Integrated DevelopmentiEemments are the following:
e Source code editor with highlighting support thainetates and validates
Delta’s syntactic constructs on-the-fly
e Workspace manager for managing the collection af@ofiles that comprise
a Delta program and their properties
e Source-level debugger for the Delta language
e Extensibility interface for extending all aspectstbe IDE’s functionality
through both C++ and Delta languages
e Deployment interface for accessing part of the Pftinctionality from other
programs

e Support for a multi-lingual interface

1.1.2 Novel features

This Thesis focuses on four aspects of Sparrow,ehanextensibility through its
component-based architecture, remote deployment abd#pes, interactive
introspection facility, and Delta source code editbhese subsystems correspond

roughly to half of the IDE’s code volume and funcility.

Sparrow offers a concrete component-based architec¢hat clearly separates the
different parts of the IDE’s user interface and dtimnality, while automatically
exposing their facilities through its extensibilipplication Programming Interface
(API). This explicit componentization of Sparrow tnamnly enhances its
maintainability, but also allows for well-defineddstraightforward extensions to the
IDE by either activating different components at-time or enhancing those already

available through Delta or native extensions. Adddlly, Sparrow offers a

2

centralized Undo subsystem that simplifies to aydadegree the provision of

Undo/Redo functionality by components.

To make it easier for third-party applications tptby the IDE, Sparrow provides a
mechanism that allows an arbitrary number of preeges- that can even run on
remote machines — to utilize the functionality thatexposed by the available

components.

Additionally, Sparrow offers a graphical compon#rdt is able to extract and display
all the introspection data that are encapsulatedii® components. This tool offers to
the extension programmer a comprehensive referafcéa) all the supported
functions, (b) the components’ metadata, and (eir thctive instances. Through the
provided interface, programmers are able to interely manipulate many aspects of
the IDE on-the-fly.

Lastly, Sparrow’s source code editor features apteta Delta language parser that
retains the whole syntactical structure of Deltagoams and exposes it to the
extension scripts. The supplied Delta parser i® dbl parse the target programs
incrementally. A change in the target program mgiger the reevaluation of only the
parts of the program that are affected by this ghamather than the whole source file.
The facilities of the editor that are based onittiernal representation of the edited
program include: (a) syntax highlighting and cod&lihg, (b) visualization of the

program, (c) syntax validation, (d) automatic syidmmpletion, and (e) informative

tooltips on language constructs.

1.2 Architecture

At the most basic level, Sparrow is comprised sétof loosely-coupled components
that communicate with each other through messagsimga In this sense, Sparrow
follows atabula rasaapproach; the core of the IDE, its component sysigrovides

the basic functionality in order to accommodate Yhgous components that infuse

the functionality and the graphical user interfa@eéhe IDE. Sparrow’s components

can be implemented in either C++ (Sparrow’s naliwgyuage) or Delta. A schematic

representation of this notion can be seen in Figure

Native components Sparrow Shell

l 1

Delta Component
Proxy

Project | | Source
Manager Editor

l l

|| Editor Debug Project Line
Tooltips Counter
|

Delta components

Figurel - Sparrow as a collection of components

Essentially, Sparrow is bootstrapped by the “Shatihponent which constitutes the
basic skeleton that initially instantiates the osi components — read from a
configuration file. This skeleton also implementgraphical frame under which the
top-level components, such as the editor and tlgeglr manager, present their
interface. Delta components, which are indistingaide from native components, are

managed by a separate component, dubbed “Delta @mwmmpProxy.”

1.2.1 Circularity

Sparrow’s circularity refers to its ability to ingmrate in its environment the Delta
components that are developed in the IDE itselhegaly, the facilities that enable
the implementation and usage of C++ componentsrefexred to as thaative

extensibility layer, and, correspondingly, the fiéies that allow the deployment of

Delta components as tlegcular extensibility layer (see Figure 2.)

Circularity, in this context, is different from tharcularity offered by environments
that target the same language they are built iis. évident that any program can be

extended through the language it is written in.r&we, however, while targeting the

Delta language, is programmed in C++. Under thadization, it can be inferred that

the Sparrow platform offertsue circularity.

1. Dynamic Link 2. Delta Bytecode -

Libraries - Developed using
Developed using a Sparrow IDE
C++ IDE
Y i
o Delta Delta .
b Extension Component b,
Librar Prox

C++ Component v v i Delta

%, Component

Component Subsystem

Native Extension Base Functionality Circular Extension

Figure 2 - Native and Circular extension layers in Sparrow

1.2.2 Meta

The metanotion of Sparrow emphasizes its facilitation é@en deployment by third-

party tools that can customize and extend the qlatf— essentially producing a
development environment that is better suited &rtproblem domain. The idea is
that for applications relying on the Delta langudgg). games, mobile applications,
etc.,) the IDE should deliver the basic programmiaglities, while enabling the

incorporation of functionality through the develogpmh of extension components or
customization of the existing ones. This const#ute driving factor behind Sparrow,

whose architecture evolved, or rati@elligently designedaround this notion.

For this purpose, Sparrow (a) enables its remotplogment by third-party
applications, (b) allows every integrated comporneriie replaced as long as it obeys
the original API (runtime consistency), and prowdeelated semantic behavior
(semantic consistency), and (c) allows the incafon of new components that can
extend the functionality of the existing ones. Aabfially, some integrated
components (e.g. the source editor,) support tbein configuration switches and
APIs so that they can be extended orthogonalliiedSparrow platform.

Categorizing the aforementioned extension mechanisincan be inferred that
Sparrow supports two types of domain-specific esitars:
e Horizontal extensions

e Vertical extensions

This principle is outlined in Figure 3. Generallyertical extensions refer to the
incorporation of new components that basicallyadtrce new functionality to the
IDE; whereas substitutions or extensions of exgsttomponents are regarded as

horizontal extensions.

5. All components may be
freely managed in a
domain-specific fashion

(deployment) « o — —
\ —

. 2. Components can be
.~ modified or customized
(horizontal extension)

1.The basic |DE is
= = made up as an
open collection of
compaonenis

3. Components may be
dynamically substituted
(horizontal extension)

4. Domain-specific compaonents

~ y Mmay be introduced as layers of
> 3 functionality (verfical

extension)

Figure 3 - Horizontal and Vertical extensibility in Sparrow

1.3 Methodology

Unarguably, the implementation of an IDE constsgute very large development
effort. Under this realization, the choice of thegramming libraries and techniques
was very important for the successful completionhef project within the bounds of
the desired time-frame. Apart from Delta, throughickh Sparrow can be extended,
the core development language was decided to be C++ was chosen for the
project because of (a) its ubiquity, (b) the langenber and high quality of its third
party libraries, (c) its support for a variety afogramming paradigms (especially

Generic programming [2] and Object Oriented prograng [18],) and (d) because of

the fact that Delta itself is written in C++, artetefore can be easily deployed in

C++-based applications.

For the development of Sparrow, the Boost libraflgswere used, along with the
Standard Template Library (STL,) while the wxWidgébrary [29] was used for the

implementation of the Graphical User Interface (GUI

File Edit View Buld Debug
‘@ 2¢ aiApPE | BOEB
1x ax ax
Project Manager %| | | Introspection X || | Adaptations
b3 E8 O E =1 Autnor: [
) Giannis Georgalis jgsoraali@ics forth ar
(= {8 Functions Versiom:
void nitiaize 0.1a
void CleanlUp E ‘ dofa
Derived classe: efa
void Open (String ur
% CIZ:E:) aur)) default_profie.dsc
i simple
String GetURI
) tes m‘gsmo 0 . -1} smple_profik.dsc
) tes B
= b bool SaveAs (String uri) Ziby
& dText 0 Background color] fess,
i] 2 String GetLineText (intine)] Foreground color | [00 v
A
Al Ecitor Manager x
i o
]
fest2dsc | testdsc | bigFledsc | restore_worl =X
R d dsc | bigFie.d: ._workspace.dsc
a] s function gecuri() { |
fp = fileopen("last_workspace”, "rbe): |
ax
Delta Component Directory | X
]
& DebugTooltips
(“H]
[l
<], ()
o]
[l (2])
3 x 3 x
Output x| | | Errors | callStack
Stopped running: _/config_scripts/default_profile.dbe % Description File Line
Ready ln10 Co1 i

Figure 4 - Screenshot of Sparrow with various key compasantive

2. Related work

2.1 The Delta Language

The Delta programming language [23] is an impeeatscripting language that
encompasses (a) dynamically typed variables, (b)ime classes, (c) functions as

first-class values, (d) unnamed functions, (e) dyicahandling of actual arguments,

and (f) extensible operator semantics. The aforéioveed features are available in
most modern dynamic languages. However, Delta dstethese features by
introducing:

e Prototypes with member functions being independeaitable first-class
values, as atomic pairs holding both the functiddrass and the alterable
owner instance

e Dynamic inheritance, having exclusively runtime satics, in comparison to
the traditional compile-time inheritance operators

¢ An enhanced operator overloading technique

In the Delta language, prototypes are runtime cladses, from which instances are
dynamically produced through replication. In thisntext, following the recipe of
existing dynamic languages, object classes neyaFaapwithin the source code in the
form of compile-time manifested types, but onlyfiast-class runtime values called
prototypes. The main characteristic of prototypethe Delta language is that they are
essentially associative table objects. Having raigbype-specialized compile-time or
run-time semantics, prototypes are normal objesthimces chosen by programmers to
play the role of class-instance generators, tthesy tire effectively a design pattern

[8] combined with a deployment contract.

In Delta, inheritance is a runtime function applied instances, establishing an
augmented member-binding context for derived insgan The metaphori¢sA
connotation of base and derived classes is notegntadopted in Delta, since
inherit(x, y)does not state thatisA y neither thak depends implementation-wise on
y; it only defines augmented member binding for betandy, i.e. if a member

requested fox ory is not found irx (derived,) then it is searchedyirfbase.)

Additionally, in Delta, the semantics of all binamgperators are dynamically
extensible for table object instances through thlewing implementation technique:
e For binary operators, if a member of a table instat is namedop and is
actually a functiori, the result of the evaluatidh op t2is f(t1, t2) Otherwise,

the original semantics ¢f op t2are applied

e For unary operators, if a member of a table ingdhas namedop and is
actually a functiorf, the result of the evaluatiarp tlis f(t1). Otherwise, the

original semantics afp tlare applied

2.2 Existing IDEs

There is a very large number of high quality Ineggd Development Environments
available. Nonetheless, they all follow similar tpats and interaction metaphors.
Hence, their supported functionality has many comnfeatures, and it generally
includes the following:

e Source code highlighting and completion

e Automation of source code maintenance

e Source-level debugger

e Extensibility interface for adding or substitutifignctionality and automating

common tasks

In addition, some of the contemporary IDEs support:
e Remote (inter-process) deployment interface
e Refactoring tools for the target languages

e Highly configurable user interface

The overview of the IDEs presented in this sectsobased on the set of features that
are related to the ones considered in this ThewmisSparrow. Specifically, the
following characteristics are examined:
e Extensibility, which refers to how easily the IDEarc be extended to
incorporate additional functionality
e Deployability, which refers to the level of the IBEunctionality which is
exposed to third party applications
e Syntax analysis, which refers to the level of dasige the IDE provides to the

programmer in relation to the syntactical structfréhe supported languages

The majority of contemporary IDEs support more tlmre language under their
interface. Thus, the aforementioned characteristics considered for the main

language of each IDE, that is, the most suppoeerduage.

2.2.1 Visual Studio

Microsoft's Visual Studio [13] for the Windows opging system constitutes the
primary development tool for the company’s .NETtjglan. As such, many different

languages are supported and more are being addwdat least announced — as
incremental updates to the platform. In additionthie .NET environment, Visual

Studio also targets the native Windows platfornotigh the Visual C++ tool-chain;

nonetheless, the .NET languages are better suppadrteerefore, the most popular
.NET language, C#, is considered as the IDE’s rizaiguage.

Visual Studio is built on top of the COM [6] compart framework. Extensions to it
come in the form of macros, add-ins, and packagasros represent repeatable tasks
and actions that developers can record programatigtio automate common tasks.
Add-ins enable languages that support COM (i.e. ,C¥isual Basic and .NET
languages) to be used for extending the functignalf the IDE and controlling
existing Visual Studio elements. Finally, packafidl/ expose the platform’s C++
interfaces to programmers who can use them to lmaiidplete replacements for all
the elements that are available to Visual Studictudlly, all the languages that are

supported in Visual Studio are developed as package

Despite the fact that COM supports the remote iation of its objects through the
IDispatch interface — a technology dubbed Objectkinig and Embedding (OLE)
automation [11] — Visual Studio does not providg dncumentation for the usage of

these interfaces, making hard its deployment frémeroprocesses.
Visual Studio’s editor validates and maintains #yatactic structure of the edited

program by exploiting the information that is ped by the language’s compiler.

That enables the environment to indicate poterdgrabrs in the structure of the

10

program, support automatic completion for objectntbers, and provide a set of

refactoring tools.

2.2.2 Eclipse

Eclipse Foundation’s Eclipse IDE [26], originallgsigned and implemented by IBM,
aims to offer a comprehensive service platform ifdegrating development and
deployment tools for a variety of programming laages. The Eclipse platform,
however, mainly constitutes a complete IDE forldregguage it is written in — Java.

Eclipse employs a component framework based onOB&i [21] specification in
order to provide all of its functionality on top i$ platform. Though that mechanism,
Eclipse can be fully extended in the Java languageit essentially allows
programmers to access the platform’s componentsepidce them by implementing

their Java abstract interfaces.

Through the mechanisms specified by the underl@&gsi standard, Eclipse can be
deployed from other languages that implement tleeifipation even when they are

invoked from other processes.

Lastly, Eclipse’s editor for the Java programmiagduage utilizes the compiler to
validate the edited program’s syntax. By using ¢bmpiler’s internal representation
of the program, the editor provides refactoringsa@nd automatic symbol completion

for Java objects.

2.2.3 KDevelop

KDE project’'s KDevelop [16] is the official IDE dhe KDE desktop environment.
As such, it is heavily based on KDE and Qt [26]htemlogies. KDevelop targets
mainly the C++ programming language but can accodat®o other languages as

well.

11

KDevelop uses the KParts [17] framework in ordesstpport its component-based
architecture. Through this framework, the programoas access, extend, or replace
completely the existing components of the IDE intCh addition, Kdevelop embeds
the Python [22] interpreter in order to enable toastruction of extensions in the

Python language.

Additionally, KDevelop uses KDE’s DCop [15] techngl to allow the inter-process
deployment of the IDE. However, DCop does not autically expose a
component’s interface; so the programmer needs amtain a DCop interface in

addition to the KPart-enabled one.

As far as the editor is concerned, KDevelop dodsreiain the program’s structure
and, thus, cannot validate the structure of théeddiext. Nonetheless, it employs a
lightweight C++ parser in order to extract the vale symbols from the hosted
project’s source files and present them in a cotigoldist to the programmer when
needed. This approach is analogous to the approfttsual Studio’s Intellisense
tool — for the Visual C++ language — whose onlychion is the extraction of the
relevant symbols. In any case the edited progratniscture is discarded as soon as

the symbols are extracted.

2.2.4 Comparison

Table 1 summarizes the aforementioned traits of feedured IDEs, including
Sparrow. A scale from zero to three is used touatal the support level of each
characteristic for each of the IDEs. The attribugeades have the following meaning:
0. The feature is not implemented
1. The feature is available, but it requires substhefifort in order to be utilized
2. The feature is supported
3. The feature is supported and can be efficientlyzet

12

Table 1 - Comparison of IDEs

Visual Studio Eclipse Sparrow KDevelop
Main language C# Java Delta C++
, Sparrow
Component framework COM OSGi component KParts
framework
Extensibility 3 3 3 3
Deployability 1 3 3
Syntax analysis 3 3 3 0

Comparing the evaluated IDEs with Sparrow, theee arfew things worth noting.
First of all, Sparrow’s architecture has very sanifoals and capabilities with the
Eclipse IDE. They both enforce the Aristotelitabula rasaconcept and support
extensibility and deployment efficiently and efiigety. Their main difference, apart
from the implementation language, is the usageofponents. Whereas Eclipse uses
static interfaces for enforcing a communication tpcol between components,
Sparrow is inherently more dynamic allowing the stomction and extension of
component interfaces at runtime. Additionally, whilEclipse enables other
programming languages to be used for the extersdfidhe platform only when they
implement the whole OSGi specification, Sparrowursgs only an inter-component
proxy and a target-language library to achievestitae goal.

Secondly, there are fundamental architectural iffees, as far as deployment is
concerned, in Sparrow’s approach compared to theoaphes of Visual Studio and,
especially, KDevelop. Whereas Sparrow automaticadiyorts the interface of all its
components to both other components and remoteegses, Visual Studio and
KDevelop utilize separate mechanisms for interfaxgorting in these two instances.
Additionally, the differences in component usaga twere outlined for Eclipse above
are true for both Visual Studio and KDevelop. Intfall three systems follow similar

mechanics for utilizing their components.
Lastly, Visual Studio and Eclipse, which supporntsx analysis of the edited

program, achieve this goal by utilizing the compiknd evaluating the whole

program each time they need to construct a stredtuepresentation. In contrast,

13

Sparrow evaluates only the parts of the text tifatathe representation and does so

every time the edited program is modified in theéad

3. Dynamic Extensibility

Sparrow’s core extensibility capabilities are faated by its component-based
architecture. By disseminating the IDE’s functiotyalin distinct well-defined
modules that expose a sensible control Applicaiosgramming Interface (API), not
only enhances the maintainability and robustnesth®fIDE, but also provides the
means to alter its functionality at runtime. Heraiymamic extensibility in this context
refers to the ability of the IDE to extend and mlits functionality at runtime by

means of vertical and horizontal extensions.

In the following sub-sections, the component irtfiasture of Sparrow, the facilities
it provides for extensibility and the main subsystethat were built on top of it will

be presented.

3.1 Components

Software components (or Components) [7] are seitained, reusable software units
that encapsulate and expose a well-defined setiradtibnality. Components do not
share state with other components, can be useddifietbin different contexts, and

communicate only through their exported interfaces.

Typically, components have the following traits:
e Can be used by different applications written iwaaiety of programming
languages
¢ Do not have source code or binary dependenciesaothigr components
e Communicate with each other by exchanging messages

e Can be distributed over the network

14

The difference between components and class objéttsObject-Oriented
Programming (OOP) languages is two-dimensional. tBa one hand, OOP
encourages classes and their objects to be usethddeling real-world entities,
taxonomies, and the interaction between them wkeceaponent-oriented design
just aims to group functionality and is indifferenttaxonomical disseminations. On
the other hand, objects usually tend to depend shnadle state with other objects

whereas, by definition, components are completsiated and self-contained.

Thus, components are considered a higher levetaasin than objects. Essentially,
components can be modeled and implemented by O@detsbHowever, that does

not mean that all objects fulfill the requiremeotsomponents.

3.2 Existing Component Frameworks

The Common Request Broker Architecture (CORBA) [i54 standard that defines a
set of specifications for creating and using sofewaomponents that can be
distributed over the network. CORBA uses an Int&fBefinition Language (IDL) to
specify the exported interface of its componentse TDL interface is subsequently
mapped to specific languages that implement the B®ORtandard. That way,
components can be created in any of the suppodrdulges and interoperate
seamlessly with each other. The IDL meta-compsgarded to generate automatically
the stubs and skeletons that are essential fordemg@nd decoding respectively the
objects that participate in a method invocationrapen. In addition to the component
infrastructure, the standard also defines a lagjeok services that can be used by
CORBA-enabled applications.

Java Remote Method Invocation (Java RMI) [24] imechanism for enabling the
invocation of methods that belong to distributedal@bjects. Java RMI initially

supported only objects written in the Java programymlanguage. However,

subsequent releases enabled the interoperatiorowjigicts written in other languages
as well. Java RMI does not utilize an IDL meta-cderpand achieves the automatic
generation of skeletons and stubs through the sixtenntrospection data that are
built into the language. This mechanism along veitset of rules that a java class

15

must adhere to (e.g. Java Beans [25] and OSGi Bandl],) essentially define a

complete component framework.

While the aforementioned systems are more focusegroviding a middleware
solution for distributed systems, Microsoft's Compat Object Model (COM) [6]
and Mozilla Foundation’s Cross-platform Componeifjegdt Model (XPCOM) [27]
target mainly desktop applications that run on raglsi machine. Both COM and
XPCOM derive their architecture from the CORBA slard, implementing a subset
of its specifications. Therefore, those system® aise an IDL meta-compiler to
achieve the automatic generation of object stulus skeletons and can be used for

writing components in different programming langesg

3.3 Proposed Component Framework

Sparrow is a large scale system. However, it capdsdly decomposed into distinct
functional units with clearly defined roles andpessibilities. Consequently, it was

decided to model these units using the componesttaadtion.

After reviewing the major component frameworks thatre available at the time of
designing the IDE (see section 3.2,) it becamerdieat none of them would be
suitable for the intended purposes. On one haneyag not possible to use the
component frameworks that target the Java progragnainguage, since Sparrow is
implemented in C++. On the other hand, the two moltist and widely used C++
frameworks, COM and XPCOM, were unable to elegargftisfy the set of

requirements that were set for Sparrow’'s comporgtem. The rationale is

presented throughout the following sections.

3.3.1 Primary Requirements

The requirements that drove the design and implétien of Sparrow’s component
infrastructure are the following:

e Ease of use

16

¢ Runtime and memory efficiency

e Ability to load and unload components at runtime

e Ability to extend or reduce a component’s expoitgdrface at runtime

e Ability to make components automatically visible tther programming
languages

e Ability to program components in other programmiagguages

The first two goals for the component architectare apparent. Any software
subsystem should be efficient and easy to use. Bugrh so when it constitutes a

central part of the program and is intended todeliextensively in it.

Loading and unloading components at runtime waendiss for implementing
runtime adaptation and dynamic extensibility. Emapthe components that comprise
the interface and the functionality of the IDE te lbaded and unloaded while it is

running allows for many fundamental and diverseatams.

Another goal for the subsystem is the runtime esiten or reduction of a
component’s interface by adding or removing methodse author of a specific
component may choose to enable or disable sonte fifrictionality at some point in
time, depending on the changes of the environmedémuwhich the IDE is running.
E.g., an online-poker-game component may choosédo a “Bet” method as long as
the user’s credit card has not reached its limit disable it if it has. A discussion of
whether poker functionality would be useful forl®k, however, is beyond the scope
of this Thesis.

Making components automatically visible to othelogramming languages and
especially to the Delta programming language isy venportant. Forcing the
programmer of a component to make it available ieitiyl to all the supported
languages via wrappers is tedious and error prAdditionally, if a new extension
language is added at a latter time to Sparrowmthallavailable component wrappers

would need to be updated.

17

Apart from allowing extension languages to intenaith the existing components, a
complete extension language mechanism should @aHewoding of new components

in the extension language itself.

3.3.2 Technical Overview

Essentially, a Sparrow component denotes a modwdéware unit that provides
encapsulated reusable functionality to the IDE at&l extensions. Sparrow
components are typically, but not always, visualhature and have the following

characteristics:

e They can communicate with other components onlputh synchronous
exchange of encoded messages

e They can be loaded and unloaded at runtime as theie is compiled as a
Dynamic Link Library (DLL) [12] or as Delta byteced

e They can form component hierarchies

e They can emit signals that trigger the invocatidnsimt methods that are
contained inside the components that are interestid

e They can inherit functionality from other comporgent

e They encapsulate a property map, a hierarchicattstre of user commands,

and versioning metadata

Sparrow components are completely isolated fronm edlecer. Even if they use other
components, they do not have hard coded dependewdie them. This is achieved
by allowing the components to invoke the methodsthier components only by
sending messages. This isolation is further empbddy the fact that a component is
compiled into a DLL or Delta byte code and is lchdd runtime by the system

whenever it is needed.
Components are designed to support the constructioantainment hierarchies. This

was done to ease the management of visual compomect provide an intuitive
model for combining different components in ordemptroduce Sparrow’s Graphical

18

User Interface (GUI). As is the case with the widgaetaphor in most GUI libraries,
Sparrow’s components can have another componeatpasent and any number of
child components. That way, components that beltmghe same hierarchical
structure can be notified from their parent or @t@h about various events (see
section 3.3.3.3) and can be automatically destrayeen their parent component is

destroyed.

Signals and Slots are a flexible and intuitive nagabm for notifying interested
clients about the occurrence of a specific evenis lalso particularly useful in
implementing the ubiquitous Observer pattern [8]pai®ow’'s component
infrastructure enables components to emit any numbke signals that are
differentiated by a unique identifier. At the othend, any component that is
interested in a specific signal can register, atinbe, an exported method that is part
of its interface as a slot to that signal. Thessloft all the interested components are

called as soon as the signal is emitted.

Although inheritance mechanisms are not commontlierocomponent frameworks,
Sparrow’s components are able to inherit and refusetionality from other

components. However, the component inheritance doedenote arsA relationship

between the participating components. In factis relationship, as discussed in
section 3.1, is not meaningful or desired in congmiroriented architectures.
Therefore the component inheritance in Sparrow idess a way to reuse the
functionality of specific components in case diéier components exhibit similar
properties and functionality. Sparrow makes extanase of component inheritance.

Sparrow’s components incorporate a property map desociates a property with a
specific value. Those property values are visibléhe user, who is able to change
their value and modify the behavior of a componértie property mechanism

provides yet another means for the user to chdmgbedhavior of the IDE at runtime.

Additionally, a hierarchical structure of user coamds is included in each
component. A user command is simply a named cdlba@n exported method that
is part of a component’s interface. As soon as mpument is loaded, its user

commands are merged with the existing commandsppeéar as options to the IDE’s

19

GUI, available for its user to invoke them. Thehautof a component can decide
whether a user command will appear to the IDE’s urlear, its toolbar, or in a

context menu. Despite the close connection betwsencommands and some visual
elements of the IDE’s GUI, it is essential to pamit that user commands by them-
selves do not have any connection with these visl&hents nor depend on the
specific GUI library that is used in Sparrow. Theyerely contain platform

independent data that are interpreted by theiratoet and are subsequently realized

as visual elements.

Lastly, each component contains a set of metadiatiaprovide the human friendly
name of the component, a short description ofuitetionality and role in the system,
the identity of its author, and its version. Thdaga on one hand are used for the self-
documentation of the system (see section 5) anti@other hand provide versioning
information to the user of a component; and someoridame when the component

fails to work as expected.

3.3.3 Implementation Details

The usage of Sparrow components closely resemidesstage of COM and XPCOM
component models. However, an Interface Definitianguage (IDL) compiler is not
utilized for the specification of the interface af Sparrow component. Sparrow
components do not implement a static interfacey tessentially construct their
interface at runtime by exposing a set of nativéhoes. Thus, it can be inferred that
Sparrow components implementcanceptrather than annterface Therefore, in

Sparrow, a componentnceptessentially constitutes that component’s API.

Sparrow’s component system makes a distinction émtwcomponent classes and
component instances. The relationship between edassid instances has solely
runtime semantics. That means that a componeranostthat belongs to a specific
class maintains a reference to a structure thebnstructed at runtime and plays the
role of its class. Thus, a Sparrow component, &weer level, is essentially the

runtime model of a specific component instance asdorresponding component

class. Multiple instances of the same class sih@&sdme component class object.

20

As seen in Figure 5, a component class containgall@ving: (a) a set of all the

available functions that a component exports, (b$taof the slots that are triggered
whenever a signal is emitted, (c) a list of sigriaég the component emits, (d) a set of
properties that affect the functionality of the qgmment, (e) a hierarchical structure of
user commands, (f) a list of the component instartbat are associated with the
specific component class, (g) versioning metadé, a reference to the base
component class of the current class, and (i) taoligeferences to the component

classes that derive from the current class.

A component instance (Figure 5), contains the Wwilhyg elements: (a) a
monotonically increasing serial number that ideesif different instances, (b) a
reference to the parent component instance, (dstaof references to the child
instances, (d) a set of properties that affectftimetionality of the specific instance,

and (d) a reference to the component class in whielturrent instance belongs.

A component function (Figure 5), contains four edents: (a) the return type of the
current function as string, (b) a vector of strinipat represent the types of the
function’s arguments, (c) a documentation strirgg thescribes the function, and (d) a
native function pointer to the actual low level étion that is called whenever the

component function is invoked.

21

Component Instance

Component Class

Serial
Component Functions Parent Component Instance
. Slots Child Component Instances
. Signals Properties
Properties '

I Component Class
User Commands

Component Instances

Component Function

Metadata Return Type String

Arguments String Vector

Base Component Class

[Documentation Strin
Derived Component Classes | g

Native Function Pointer

Figure5 - The basic building blocks of a Sparrow Component

Most of the contained elements of the basic buydiocks of a Sparrow component
(Component Class, Component Instance, and Compdnarttion) are described in
the previous section. Nonetheless, some of the exlesmand their purpose in the

Sparrow component model require some clarification.

The monotonically increasing serial number thagidd of an instance is essential for
referencing a specific component since it is metiedyruntime model of a component
instance and its corresponding class. Thus, Spaomwponents can be uniquely
referenced by the pajcomponent class, serial numbevhich represents laandleto

a single component. Whenever a client wants to conicate with a component, it
just needs to obtain or construct a handle tosing handles as a means to reference
components has many advantages over using raw epginDangling handle
references that may be kept by a client do abdglue harm to the system when
accessed, whereas if raw pointers were used, tlodevdystem would crash in case
they were dereferenced. Additionally, handles haeeadvantage of being capable of
referencing components that may reside in a diffeqgocess or in a different

language or both.

22

Property maps are present in both classes andaestaThis redundancy enables the
user to either affect the functionality of a specitomponent instance or the
functionality of all the instances that belong e tsame class. E.g., a source editor
component will usually have class-wide properties €ontrolling the look of
highlighted text, so that all the editors will has@nsistent appearance. However, it is
preferred to have a “toggle highlight” property ymis an instance property, so that
changes to its value will affect just a specifict@d

The component function structure holds the typetheftarget function’s arguments
and return value. These records are used for simgpigtrospection information to
the component system and are essential for bridh@gative C++ types to the types
of other programming languages (e.g. Delta) so th&dr-language component
communication can be realized. Again, the docuntiemiatring is used for the self-
documentation of the IDE. The structure also hadpointer to the actual native
function that is finally invoked. The native furmti though, is actually the skeleton
for the real component function that is invokedeTesponsibilities of the skeleton
are the following:

e Decode from the supplied message the argumente okal function

¢ Invoke the real function which may be a Delta orGunction supplying the

decoded arguments

e Encode the return value of the function as a messag

Component functions can be eittstatic or member The difference between them is
that member functions must be called inside thetesdnof a specific component
instance, whereas static functions do not requimg iastance. Thus, a Sparrow
component, in addition to being the runtime model olass and an instance, can also

be realized simply by a component class objecthbhits exclusively static functions.

Sparrow’s basic component framework is complemehtethe Component Registry,
the Component Loader, and the Component Factorg. Cbmponent Registry is
responsible for holding and managing all the awéélacomponent classes in the
system. Its main role is actually being the entynpfor accessing the components.
The Component Loader is able to load Delta and ({3HL) components from the

23

disk on demand (see section 3.3.3.3) and regiséen to the Component Registry so
that they can be used by the IDE. Lastly, the Camepb Factory is responsible for
creating and initializing component instances @iveen component class. It handles
the creation of each instance by querying its gpoading class from the Component
Registry and retrieving itsonstructorfunction; which is included in all non-static
Component Class objects. The basic architecturehef Sparrow’s component
subsystem can be seen in Figure 6. It is worthngothat the aforementioned

elements are realized as Singletons [8].

: Component
Component Loader Instance
l Component Component
: Class Instance
Component [:
Reg istry : M ; ...
Component
T : Class Component
--- FunCtion
Component Factory ;
: Component
Function

Figure 6 - Runtime dependencies between the basic buildilogkb of Sparrow's component

framework

3.3.3.1 Inheritance

As mentioned in section 3.3.2, component inhergancSparrow provides the means
to reuse functionality between components. A corepbrclass object can inherit
another class object. By doing so, it automaticafijrerits (a) the component
functions, (b) the slots, (c) the properties, afidife user commands of its base class.

The functions and slots are not copied to the édridlass object and any base class

function can be overridden. Therefore, the callmgchanics of the functions in a

24

component inheritance hierarchy are implementedthy message dispatching
algorithm. Specifically, the simple lookup algorithused for retrieving a function,
can be seen in Figure 7. Section 3.3.3.2, additignautlines an example invocation

of a function in an inheritance hierarchy.

lookup (component, func) {
if func is found in component.functions then
return component.functions[func]
else if component has base class then
return lookup(component.baseClass, func)
else
return nil

}

Figure7 - The recursive lookup algorithm for componentdtions

The properties of a base class are copied verbatdirthe derived class object.
Similarly, the user commands are also copied, bith & small modification: the
callback part of the user command, which typicallynprises of the paicomponent
class, component functign} altered to reference the most derived clagsidDsly,
the component function part remains unchanged. Wagtthe user commands point
always to the correct function in case one is ostden. Lastly, because of the fact
that all the user commands and properties are ambdéite component class object at
runtime, it is essential for the system to synchmeriheir additions and removals in
the whole inheritance hierarchy. This is the maason why the component class

objects maintain references to their base and el@classes (see Figure 8.)

Class A Instance Al ‘
Class B | Class C

O~ |

Instance Bl Instance B2 Instance C1

Figure 8 - Runtime model of classes and instances in aasitethat utilizes component inheritance

25

3.3.3.2 Invocations

Sparrow components are only allowed to interachvather components through
message passing. Thus, each exchanged messageamiash (a) a reference to the
destination object, (b) the name of object’'s mettiat needs to be called, and (c) a
list of values that are used as the function’s engpits. Provided that a function can
have any type and number of arguments, the vatit¢hat is embedded inside the
message is encoded as a data buffer and is de@idéd destination function’s
skeleton. Messages between components are exchankyadithin the IDE’s process
(i.e. within the same address space.) Thus, whermmmaponentA wants to call a
specific function that belongs to componddt it simply sends a message Bo
containing the name of the method that it wantsntwke along with an encoded
argument list that is passed to that function. 8qbently, componerB returns the

result of the invocation, i.e. the return valughaf function, as an encoded buffer.

The communication between the components is arbiray an entity called Message
Router. Message Router is responsible for receivieguests for component
invocations and dispatching them to the appropriedenponent function. The
message exchange process through the Message Fowstgrchronous. That way,
actual component functions can have “regular” fiomctsemantics: they can return
any value that the component author wishes, angt ttaa conveniently throw
exceptions. This is not the case in COM or XPCONwvhich all the functions return
a predefined status value that indicates whether itivocation was successful,
exceptions are prohibited by law, and potentialnretvalues are typically passed as
reference-to-lvalue arguments. Allowing the comparfenctions to have “regular”
function semantics was deemed as important foreatig the “ease of use” goal for

the component subsystem.

26

Component

._.-" Registry

Class A v
@ 4 Lookup(“func®)

Class C — Class B I.

} {
Instance C1 Instance Bl

.""‘---.?;..L.‘?F_’k“p(B“ 3 Lookup(‘func’)

1. Msg(B1, “func’) """

1
2. Lookup(B) ****++-ee... Message Router
6. func(B1)

Figure9 - Inter-component communication through messagsipg

The message dispatching process can be seen dleénky example shown in Figure

9; where the compone wants to call the functiotfunc” of componenB. In that

scenario, the following steps are performed:

1.

Message Router (MR) receives a request to caltifmméfunc” of instance B1

2. Through the Component Registry MR retrieves “CBSssntry
3.
4

MR queries “Class B” entry to find “func”

In an unfortunate turn of events, “func” is not taned in “Class B” so the
lookup algorithm searches for “func” recursivelyitsibase classes and locates
it in “Class A”

5. MR searches and retrieves instance B1

6. MR invokes “func” in the context of component insta B1

3.3.3.3 Notifications

Sparrow’s component framework implements an inlemoéfication mechanism that

enables components and other subsystems to beedatlfout changes in the state of

27

the component infrastructure. Three notificatiomteats are distinguished: (a) the
context of the current instance in which an evakes place, (b) the context of the
child instance (which is part of a containment &iehy) in which an instance learns
of an event that happened in one of its childrex, @) the global context in which

events from all the components are mirrored.

In Table 2 all the internal notifications that amgpported by the component system
can be seen in the leftmost column. The other cofyrthat reference the different
notification contexts, indicate whether the notfion is supported in a specific

context.

Table 2 - Standard internal component notificaton

Notification description Current Instance | Child Instance | Global

Requested access to nonexistent clpss

x
AN

Registered a component class

Unregistered a component class

Created first instance of class

Destroyed last instance of class

Created instance

Destroyed instance

Added a component instance to a
hierarchy

Removed a component instance frgm
the hierarchy

IR EENEANENENANAN

Destroyed a component instance

Added a component instance to a
hierarchy as first of its class

x

Removed a component instance frgm
a hierarchy as last of its class

x

Destroyed a component instance gs
last of its class

Component instance focused

Applied changed properties

Added a property

Removed a property

Added a function

Removed a function

Added a user command

Removed a user command

Merged user commands

Unmerged user commands

Added signal

N A A A R AR A R R R R R Y Y S Y RN BRI R R R R
SRR A A A A A R R A R RN RN AN RN N R

NE A AR R AR RRRRE

Removed signal

28

One issue worth discussing here is the “Requestegsa to nonexistent class”
notification. This specific notification is trigged whenever a component class is
requested from the Component Registry (e.g. assaltref a call to a specific
component function, or a Component Factory constmcoperation) and is not
available among the registered classes. On the btidred, the Component Loader
“listens” for this specific event and when it isgtyered it tries to load the missing
component from the disk. Thus, only when the Corepbih.oader fails to retrieve the
missing component, the initial operation, thatgeged the signal in the first place,

fails.

3.3.3.4 Component Specification Language

Having the components being constructed entirelyrusitime introduces many
difficulties when authoring their code. The prograer is required to write
boilerplate code for exporting each function trepart of a component’s interface,
for registering user commands, for registering aig@and slots, and even for creating
the skeletons for all the functions. This is nolycextremely tedious but also highly

error-prone.

Other component systems, such as COM and XPCOMgatetthe aforementioned
problem by having static interfadeand by utilizing their IDL meta-compiler that
generates most of the boilerplate code. However,uge of an IDL meta-compiler
was not a viable option for Sparrow. Having an ineble interface for each of the
components, on one hand would limit their flexilgiliand on the other hand would
necessitate the implementation of an IDL for eadhth® supported extension
languages (i.e., Delta.) Also, the fact that suohapproach would not allow the
extensibility of a component’s exported API at iomd, further justifies the argument

against the deployment of an IDL meta-compiler praiBow.

! Actually, COM and XPCOM support the constructidran interface at runtime, but in this case they

do not provide any means to eliminate boilerplatgec

29

Sparrow automates the generation of all the bddégprode by introducing a Domain
Specific Language (DSL) for authoring componentbe Tterm DSL, generally,
describes a micro language that provides an imtuglyntax and semantics for solving
problems that reside in a very specific and comstchdomain. Sparrow’s Component
Description DSL is implemented using a mixture effGemplates and preprocessor
macros (utilizing the boost preprocessor librafmo)paraphrase a famous saying: “A
snippet of code is worth a thousand and twenty feands,” hence, the basic aspects
and usage of Sparrow’s component description D8lshown in Figure 10.

The aforementioned DSL was also extended to allovintuitive syntax for calling
component functions. That aspect of the DSL, effett, automates the creation of
function stubs. This is shown in Figure 11.

/I File: HelloWorld.h

class HelloWorld : public Component {
DECLARE_COMPONENT(HellowWorld);

public:
DECLARE_EXPORTED_MEMBER(void, SetValue, (const str ing& value));
DECLARE_EXPORTED_MEMBER_(const string&, GetValue, (void),
_(“Retrieves the value™));
DECLARE_EXPORTED_MEMBER(void, Print, (void));

DECLARE_EXPORTED_STATIC(void, PrintValue, (const s tring& value));
DECLARE_EXPORTED_MEMBER(void, Show, (void));
DECLARE_EXPORTED_MEMBER(void, SlotStringShown, (vo id));

private:

string m_value;

h

30

/I File: HelloWorld.cpp

COMPONENT_METADATA(

HelloWorld, /I class
"HelloWorld", /I name

"Says hello world with style", // description

"Yannis Georgalis <jgeorgal@ics.forth.gr>", /[aut hor
"1.0" [l version

);
IMPLEMENT_COMPONENT (HelloWorld);

COMPONENT_SET_PROPERTIES_FUNCTION(HelloWorld, table)

{/* We do not need any properties */ }

EXPORTED_MEMBER(HelloWorld, void, SetValue, (const
{ m_value = value; }

EXPORTED_MEMBER(HelloWorld, const string&, GetValue
{ return m_value; }

EXPORTED_MEMBER(HelloWorld, void, Print, (void))
{ PrintValue(m_value); }

EXPORTED_STATIC(HelloWorld, void, PrintValue, (cons
{ cout << "Hello world, " << value << endl; }

EXPORTED_SIGNAL(HelloWorld, StringShown, (const str
EXPORTED_CMD_MEMBER(HelloWorld, Show, _(“/View/Show
{

this->Print();

sigStringShown(m_value);

}
EXPORTED_SLOT_MEMBER(HelloWorld, void, SlotStringSh
{

}

cout << “Signal StringShown TRIGGERED” << endl|;

string& value))

» (void))

t string& value))

ing& str));

"), MT_MAIN)

own, (), “StringShown”)

Figure 10 - A Sparrow component implementation in C++

/I File: HelloWorldCaller.cpp
Component* component = ComponentFactory::Instance()

Call<void (string)>(component, “SetValue”) func;
func(“Innit?");

cout << Call<string ()>(component, “GetValue”)() <<
Call<void ()>(component, “Print”)(); // Prints: Hel

Call<void (string)>(“HelloWorld”, “PrintValue”) sta
staticFunc(“hey?”); // Prints: Hello world, hey?

DCall<void>(component, “SetValue”)(string(“said the
const string val = DCall<string>(component, “GetVal

// Prints: Hello world, said the component
Il
DCall<void>(“Helloworld”, “PrintValue”)(val);

.Create(“Helloworld");

endl; // Prints: Innit?
lo world, Innit?
ticFunc;

component”));

ue”)();

Figure 11 - Constructing a component instance and callisgniéthods

31

There are a few issues worth noting in the aboaenges:

e Component function declarations are very similath® declarations of C++
class functions and they also have variants foperumg a documentation
string to be attached to them

e The declared component functions are also legal fof¢tions, and can be
called as such

e The part of the DSL that automates the creatiostabs has two variants: the
“Call”, and the “DCall”. The difference is that waithe Call requires the
provision of the full signature of a component fume, the DCall only needs
its return type. However, DCall has the disadvaatafynot knowing how to
convert the types of its arguments if they areedéht from the component
function’s argument types

e A slot to a specific signal can take fewer arguraehan the signal; however,
it cannot change their order. This functionalitpsgly resembles Qt library’s
[28] slots

Using the DSL, the amount of the code for exportimg interface of a component is
in fact less than that required by COM or XPCOMaragrom the IDL description,
which is quite verbose, the programmer is alsoireduo derive from the generated
interface in order to implement the component’scfiomality. Also, since the DSL
provides facilities for exporting user commands aedcribing signals and slots, it

further reduces the amount of the required boisegptode.

3.4 Extending Components

The creation of components, through the Componeantdfy, and the invocation of
component functions, through message passing, dompmse any dependencies to
concrete implementations. All the dependencies é&etwimplementations are
implicit. That allows replacement or augmentatioh ammponents at runtime
(horizontal extensibility). Actually, a componerdrcbe fully replaced by any other
implementation as long as it (a) exports the safkdk a superset of it, (b) emits the

same signals or a superset of them, and (c) thetifuns and the signals, that are

32

replacing the originals, have similar semantic beérain respect to the caller's

assumptions.

Vertical extensibility through the component systdm straightforward. New
components can be registered and deployed at ang. tRegardless of the
programming language they were written in, they gaa any of the other available

components without any restriction.

As mentioned above, Sparrow’s component frameworainly due to its runtime
nature, provides facilities to export componentslifeerent programming languages.
Typical approaches for achieving this — apart frporting the whole component
framework, which is CORBA'’s approach — utilize paete tool that automates the
process of inter-language interface exporting byegating wrapper code for the
target language. Meta-compilers, such as SWIG ¢Begate wrappers by parsing the
source language’s interface code. Sparrow’s amcthite, on the other hand, enables
third-party languages to invoke any component fionctby implementing and
exporting a library to the target language (e.gltd)ethat is able to perform the
following tasks: (a) export the component constarctand query mechanism, (b)
encode and decode the exchanged messages, amdfdcinmpconversions between the
types that take part in an invocation operatioa. (argument types and the return
type). A language that provides the means to imetdrthese functions is capable of

calling and interacting with any component thavsilable to Sparrow.

Other than the one-way communication support, taenéwork’s architecture also
facilitates the construction of components in otlaguages, in order to enable the
extendibility of the IDE through them. Thus, langaadevelopers can extend the
component infrastructure with a proxy that: (a) ages the creation and destruction
of components that are built in the other languane, (b) dispatches the component
calls that are directed to the managed compondiits. proxy, along with the
component exporting mechanism described above,cteffédy completes the

requirements of a Sparrow extension mechanism giiwrthird party languages.

The Delta Extensibility Layer [5] was implementegd Wttilizing these facilities. That

two-way communication appoints Delta as an equal+e for extending the IDE’s

33

functionality. However, since Delta lacks an imp&tation of a Graphical User
Interface (GUI) extension library, it cannot be dier the implementation of visual

components.

3.5 Global and Local Undo / Redo

Another goal for Sparrow was the provision of adamechanism that is capable of
undoing and redoing the effects — visual or noff -aroy operation that changes the
state of the IDE. Sparrow achieves such goal byigimmg an unobtrusive undo

subsystem, orthogonal to the component infrastractthat is able to record and

replay inter-component undo invocations.

The main module of the undo subsystem is the Undodder. The Undo Manager
offers an interface for components to register agss — as if they were calling a
certain component function — that, when dispatchasle as an effect the cancellation
of the current operation. Certain problems emehgsyever, when, inside a single
component invocation, multiple component functionsthe call stack attempt to

register their undo message.

In the case where function F invokes function GHKFG) and F’, G’ are the reverse
functions for F and G respectively, the registratad both the undo calls F and G’
may introduce problems when F’ also cancels theceffof G. The main assumption
made in Sparrow’s undo subsystem is that this alilays be the case. That is
whenever F— G then F’ shoulaglwaysimply G’; so the registration of G’ by G will
be discarded. In case, however, F' is not provithezh G’ can serve as a reverse
function for both F and G. That is true for anyanation depth (~ G—> H — ...)
Additionally, when F— G and F— H (F— G, H) and F’ is not provided, then
essentially the linear combination of G’ and H’ amve as reverse calls for F. Again,
that is true for any invocation breadth-+G, H,...)

Hence, Sparrow’s undo subsystem automatically eeforthe aforementioned
assumptions in order to provide an efficient — fbe component programmer -

undo/redo mechanism. By making the provision of Rnfor every function F

34

optional, the undo subsystem successfully minimites amount of code that is
needed for supporting universal undo/redo functignain Sparrow, while
maximizing reusability. The code needed for registge an action to the Undo
Manager can be seen in Figure 12.

The multilevel characterization of the undo submysis attributed to its ability to
maintain multiple undo queues (in addition to thebgl one) for every component
that initiates a specific invocation. Thus, whilegglabal undo operation cancels the
effects of the latest invocation, an undo operattwra component cancels the effects
of that specific component’s latest invocation. sThunctionality is very useful in a
dynamic system, like Sparrow, where the additioa tdulty component can leave the
system in an inconsistent state. Using the undeystibém, an extension language
proxy can cancel the changes that are imposeddylty script that exits prematurely

with a runtime error.

35

/I File: FakeWindow.h

class FakeWindow : public Component {
DECLARE_COMPONENT(FakeWindow);

public:
DECLARE_EXPORTED_MEMBER_(void, SetTitle, (const st ring& title),
_(“Sets the title of the window"));
DECLARE_EXPORTED_MEMBER_(const string&, GetTitle, (void),
_(“Retrieves the title of the window"));

DECLARE_EXPORTED_MEMBER(void, ClearTitle, (void));
private:

string m_title;

I3
I File: FakeWindow.cpp
COMPONENT_METADATA(

FakeWindow, /I class

"Fake Window", /I name

"Represents a window with undoable actions”, // de scription

"Yannis Georgalis <jgeorgal@ics.forth.gr>", I/l aut hor

"1.0" I/ version
);

IMPLEMENT_COMPONENT (FakeWindow);
COMPONENT_SET_PROPERTIES_FUNCTION(FakeWindow, table)

{/* We do not need any properties */ }
EXPORTED_MEMBER(FakeWindow, void, SetTitle, (const string& title))
{

Undo<void (string)>(this, "SetTitle")(m_title);

m_title = title;

}
EXPORTED_MEMBER(FakeWindow, void, ClearTitle, (void)
{
Undo<void (string)>(this, "SetTitle")(m_title);
m_title.clear();
}
EXPORTED_MEMBER(FakeWindow, const string&, GetTitle , (void))

{ return m_title; }

Figure 12 - A C++ Sparrow component that supports Undo/Redo

36

4. Remote Component Deployment

The “meta” dimension of Sparrow is mainly enforcley creating or extending
existing components in order to assemble a toahctiaat serves the development
needs of specific problem domains. Nonethelessir@wa component framework,
while being easy to extend and use, can be toosive for incorporating into existing
software systems. Existing software systems mayl@nipeir own set of libraries,
frameworks, or even use a completely different paogning language. Reorganizing
or rewriting the code of these systems for makiregt suitable to be hosted under the

Sparrow tool-chain may be prohibitively expensive.

To overcome the aforementioned barriers, Sparrawiges a method to deploy the
IDE from other programs and exploit its functiobaliwithout requiring major
changes in their infrastructure. In the followirgcgons, the design, implementation,

and functionality of Sparrow’s remote deploymertiststem will be presented.

4.1 Technical Approach

The ability to interact with the available compotserirom other processes was
deemed essential for the realization of the intec@ss deployment goal. Enabling
another process to invoke all the functions thateaported by Sparrow — that runs in

its own process — allows for the complete remotaimdation of the IDE.

By definition, the remote deployment of the IDE rfrothird-party applications
requires an Inter-Process Communication (IPC) nmsha When designing the
deployment mechanism of Sparrow, it was consideiszful that the inter-process
communication be implemented over a network prdto¢bis would enable the
programs that deploy the IDE to run on a remotemger — different from the one
that would run Sparrow. Thus, the remote deploynme&thanism was implemented

over a lightweight TCP/IP protocol.

37

Such implementation makes all the available comptsnaccessible to any remote
process that can establish a connection to Sparpwscess. However, it was also
observed that for most remote deployment needsgusiall subset of Sparrow’s
functionality would be enough. For that reasonpeaty that simplifies the tasks that
were considered essential for the deployment olDitewas also implemented. This
library essentially offers higher level abstractofor managing Sparrow as it

encapsulates higher-level tasks that require ni@ie bhe component invocation.

4.2 Implementation Details

The key elements of the remote deployment subsyaterthe Message Router Client
(MRC) and the Message Router Server (MRS). MRS minise same process as the
IDE and encompasses the functionality of a TCP&ives that listens to a predefined
port. All established connections to Sparrow arenagad by MRS which is also

responsible for dispatching the received messdgesidh the Message Router — the
central point of the inter-component communication. the other hand, the MRC is
responsible for connecting to the MRS and forwagdail the requests submitted by

its clients.

Because all the components in Sparrow interact @atth other through messages, no
conversions need take place during the life tima cémote call. The initial message
submitted by the remote caller is a well formedoitation message for a specific
component that resides in the IDE process. The johlyf MRC is, thus, to forward
the message to the MRS and MRS in its turn justdaods it to the Message Router.

38

.................
..............
......
.......

4. Result._.-""- 2. Msg(B1, “func”

y K

Message Router m Message Router
Client SN Server

4

o

: 3. Msg(B1, “func™
1. Msg(B1, “func”) :

Caller Message Router

Process #1 Sparrow Process

Figure 13 - Remote component invocation

The remote invocation process is explained in EdL8, where th€aller wants to
call the function“func” of componentB. In that scenario, the following steps are
performed:
1. Message Router Client (MRC) receives a requesialiofunction “func” of
instance B1
2. The message that encodes the request is forwargeddified to the Message
Router Server (MRS)
3. MRS dispatches the message through the MessagerRout
4. MRS subsequently sends through the connection,lochwthe request arrived
in the first place, the result of the invocatior (iwhether it was successful or

not) and the return value of the invocation

Another thing worth noting, concerning the impleitagion of the remote deployment
subsystem, is that, while the TCP/IP server of MR&Inning in its own thread inside
the Sparrow process, the message dispatching greteough the Message Router -
is actually executed from the main thread. That,wmtential race conditions are
eliminated and component programmers are not beddenth the unnecessary — in

this context - overhead of multithreaded prograngnin

39

4.3 IDE Deployment API

As mentioned above, it was expected that the ntgjofiapplications that would like
to deploy Sparrow would require only a small subseits functionality. Thus, in
order to make it easier for programmers, Sparrderefan API that encapsulates the
most common functionality. The set of functionsttiige available to applications that

deploy the IDE appears in Table 3.

Table 3 - The exported Deployment API

Function Description

void OpenWorkspace (string uri) Opens the workspace that is referenced by the

given URI
void CloseWorkspace (void) Closes the current workspace
void NewWorkspace (void) Creates a new workspace and makes it the
current
void RenameWorkspace (string name) Renames the currr(::;rtn v(;/orkspace to the given

Adds a project, referenced by the given URI,

void AddProject (string uri) to the current workspace

void RemoveProject (string name) Removes the project with the given name

void NewProject (string name) Creates a new project with the given name

void RenameProject (string name, Renames the project with the given name|to
string newName) the given new name

void AddFile (string projectName, Adds the file, referenced by the given URI,|to
string uri) the given project

void RemoveFile (string projectName, Removes the file with the given name from
string name) the given project

void NewFile (string projectName, Creates a new file with the given name and
string name) adds it to the given project

Renames a file, which is contained inside the
given project, with the given name to the
given new hame

void RenameFile (string projectName,
string name, string newName)

void LoadProfile (string name) Loads the profile with the given hame

The deployment API has two end-points. On the tkate, where the application that
deploys Sparrow resides, the API is exported agreaic Link Library (DLL). The
same API is also mirrored at the server side, whexe&Sparrow process resides. In the
Sparrow process, the deployment API is realized fgical component - loaded on
demand. Essentially, the client deployment APIvarapper for the remote invocation
of the “Deployment API” component. That way the ldgment API itself maintains
the “meta” attribute of the IDE, since in case $paris deployed in a different

40

context, the API can be extended or replaced teatthe specific needs of the

problem domain like any other component.

4.4 Examples of Use

The deployment infrastructure of Sparrow enables reanote process to
programmatically invoke the components that residehe IDE using a similar

method as the one used for inter-component comratioic The generic method for
calling any component through the facilities praddoy the deployment library can
be seen in Figure 14, while the use of the equital@apper functions is displayed in

Figure 15.

The wrapper functions’ code is just shorthand & invocations presented in Figure
14. They also serve as a means to minimize the ibe#mme dependencies and

include files needed for the applications that dg@parrow.

/I File: RemoteCaller.cpp
ext::DeploymentAPI::Initialize(_T("localhost"));
RCall<void (void)>("DeploymentAPI", "NewWorkspace") 0;

RCall<void (string)> openWs("DeploymentAPI", "OpenW orkspace");
openWs("C:\Etc\Passwd");

/I Any component can be invoked remotely
RCall<void (string)>("Editor", "OpenFile")("C:\Etc\ Passwd");

ext::DeploymentAPI::CleanUp();

Figure 14 - Generic remote invocation

// File: RemoteCallerDeploymentAPl.cpp
ext::DeploymentAPI::Initialize(_T("localhost"));

ext::DeploymentAPI::NewWorkspace();
ext::DeploymentAPI::OpenWorkspace("C:\Etc\Passwd");

ext::DeploymentAPI::CleanUp();

Figure 15 - Using the deployment API

41

5. Interactive Introspection

The primary roles of the interactive introspectimol are the documentation and
debugging of the system. Interactive introspecienves as a tool to extract and
display the documentation that describes the coewsnof the IDE and their
functions. Also, by being interactive, it allowsetiprogrammer to fiddle with the
components that are currently active in the systdaoh observe their behavior in real

time.

Interactive introspection is mainly targeted at doenponent programmers that wish
to extend or deploy Sparrow; it proved to be anisipehsable tool during the
development of Sparrow, as it made it possiblentmediately test and observe the

functionality of the components that were beingedeped.

In the following sections the design, implementatiand usage of Sparrow’s
interactive introspection will be presented.

5.1 Technical Approach

Interactive introspection is implemented in Sparra& a component offering a
graphical user interface. The said component, tigetg named Component Spy
(CS,) extracts and displays all the built-in infrestion data that are embedded inside
components. Specifically, CS displays the followinfprmation for each component:

e Documentation

e Author's name and e-mail

e Version

e Base component class

e Derived component classes

e Properties

e Exported functions

o Documentation

0 Return type

42

0 Argument types
e Signals

0 Argument types

0 The slots that are connected to it
e Created instances

o Serial number

o Child instances

o Properties

This kind of information is provided explicitly amplicitly by the programmer when
constructing components - using the component gser DSL (see section 3.3.)
The method of information registration for compoisemmplemented in Delta is
described in [5].

The provided information and the way it is presdntaffers programmers a
comprehensive reference for invoking componentsinecting slots to existing

signals, and understanding the organization ofr8pés architectural elements.

Introspection H
+-1 BaseConfigResource A IDEComponent
=i ComponentSpy
+-{Z5] Functions Component name:
+-{35] Instances IDE Component
=-{35) Signals
woid TestStatic (std::string dassId) Description:

Base class of all the IDE components that provides some

void TestMember (Handle companent) !
common functions

+-3ds DMSLCompiler
#-ig DeltaComponentDirectory Author:
+- i DeltaScriptConfig Giannis Geergalis jgecrgal@ics. forth.gr
+- ik DeltavM
+|- i DockableComponent Version:
-4 EditorManager 0.1a
+|-i4p Errorlist
j Derived classes:
SR IDEComponen
== Functions * DockableComponent
F void AddCommand (String path, UserCommandDesc desc) + Shell

F void CleanUp + TreetemComponent
F UserCommandDesc GetCommand (String path)
¥ Stringlist GetDedisions (String component, String profile)
i void Initialize ()
wr void RemoveCommand (String path)
[Instances
[Signals
4 ListViewComponent
+- ik Output
F
s

Properties:

2k Profile |
& ProfileConfia sl

Figure 16 - Interactive component introspection interface

43

In addition to viewing the introspection data the¢ encapsulated in the components,
users can perform the following actions:

e Unload a component

e Configure a component by changing its properties

e Invoke a component function

e Remove a component function

e Delete a component instance

e Remove a signal from the component

These actions were found to be very useful for dglmg the system, or to test its
behavior under corner cases. Unloading a compamenbves it from the memory
and deletes all its instances. Removing a compoherdtion essentially makes it
inaccessible from that point on. CorrespondingBmoving a signal prevents the
component from emitting it, and slots can no longennect to it. Deleting a
component instance forces the system to releasestairces, remove any graphical
elements that are associated with it, and deldtaetsalcontained child instances
recursively. These destructive operations can lwveao valuable in testing how
components behave if one or more of the elemertsdepend on cease to exist. On
the other hand, through Component Spy, the usemeake any component function

and see the effects of its invocation immediately.

5.2 Implementation Details

When Component Spy is instantiated, it queriesh&llcomponents that are currently
active and extracts all the relevant data. It sgbestly builds a tree-view structure to
organize the component data and their containethezles. After the successful
construction of the tree-view interface, Compor@py registers itself as a listener to
the Component Registry (see section 3.3) in ordermbnitor the component
infrastructure for changes that affect its visuagti@n structures. Specifically,
Component Spy listens for all the global notifioas (see section 3.3.3.3) and

44

updates the tree-view to reflect the current st#tehe components in order to

maintain it synchronized. That way the visualizathdare always consistent.

5.3 User Interface

The interface of Component Spy is comprised oka-triew widget and a text-view
widget. The text-view structure displays: (a) tlmnponents as top-level nodes, (b)
the component instances as child nodes of the coempamodes, and (c) the signals as
child nodes of the component nodes. The componstdrices are organized in a sub-
tree that exposes their containment hierarchy Esgare 19.) The text-view structure,
on the other hand, displays context sensitive médion that depend on the selected

tree-view item.

The text-view in Figure 17 provides additional imf@tion on the selected
component, which is — in this case — Component Jpgure 18 displays the
documentation of a function, whereas Figure 19entssinformation on the selected
instance. The icon that appears on the left of eachmponent function is a subtle but

bold reminder that all functions are potential thges.

45

Introspection b
g ;:::;:‘;;E:;‘:Eze 1] componentspy finhenits) DockableComponent
=E Component name:

=l Introspection

EI Instances Description:

“i% ComponentSpy#1 Shamelessly exposes and manipulates the component

EI ;_i_gnals introspection data

o void TestStatic (std::string dassld) Author:
“4y void TestMember (Handle component) Giannis Georgalis jgeorgal@ics. forth.qr
[~ DMSLCompiler
[#-is DeltaComponentDirectory _| version:
-4 DeltaSeriptConfig | 0a
- DeltavM _
-4 DockableComponent Derived classes:
(-3 EditorManager
[Errorlist Properties:
[IDEComponent active color | [l 0.0, 150
- i ListViewComponent Dockarea | center
-3 Output
-3 Profile
-3k ProfileConfig
-5 ProfileRoot |
- ProjectManager
(-3 Shel
-4 TreeCtriComponent
[TreeltemComponent
-5 DeltaCallstackview [v]
Ready
Figure 17 — Displaying the data of a component
X

Introspection x

(-3 BaseConfigResource

I_——_Iﬁ ComponentSpy

' Functions

Instances

= (= Signals

= void TestStatic (std::string dassId)
-~ void TestMember {Handle component)

DMSLCompiler

DeltaComponentDirectory

]
.
DeltaScriptConfig
]
:

DeltaVM

DockableComponent
ﬁ EditorManager
ik Errorlist
—jﬁ IDEComponent

={&5] Functions
void AddCommand (String path, UserCommandDesc desc)

-
-
-
[=
E

void CleanUp

void Initialize ()

void RemoveCommand (String path)
-{&5] Instances
{5 Signals
-3k ListViewComponent
(-5 Output
£
T

i Profile
-k ProfileConfia

UserCommandDesc GetCommand (String path)
StringList GetDedsions (String component, String profile)

[

Add s ussr command to the componsnt

Function:
AddCommand

Return type:
void
Arguments:
+ String path
+ UszerCommandDesc desc

Ready

Figure 18 — Displaying the documentation of a component tionc

46

ng conditional_breakpoints.dsc

L@j ExpressionWatches.dsc
4] DebugTooltips.dsc

! 4] Breakpointsiiew.dsc

=11 ProjectManager£2
(=11 Workspace #2
=1 Project#3
© Ll soript13
U Seript#14
i Script#15
W8 Saipt#16
8 Seript#17
1! Project#4
8 Seript#18
8 Script#19
Y seript#20
U Seript#21
S} Script#22
8 sariptF24

ﬂ Signals

7% 1 x

|_lrrlj:ct_ﬂmager | % | Introspection | Editor Manager e
| 2 @ ﬁ % | @r’a’ I‘Bﬁ' ProfileConfig lil Class:
= i ProfieRoot ;
[] sparrow_extensions.wsp gg P::jeiﬁ\l'lanager]
=Re=| suanqwt_em:;n&dwm S8 Furictions Serial number:

% Dﬂﬂm_rSE"’Ef- 5C s void CloseWaorkspace () 2

] restore_workspace Handle GetWorkspace ()

ng line_counter.dsc void NewProject Children:

4] runtime_exception_repert.dsc bool OpenWWorkspace (String uri) 1

i oid OpeniWarkspaceDi = s

debug_extensions.dproj Void ;NJEI"IA"WK?DE w0 e

: @J table_watch.dsc vo.d T

! _watch. id Savell

4] auto_function_retval.dsc] :ood VIEE\:GMWCE d

-L@j watch_alphabetical_sort.dsc Dﬂ Tnstaniss

Ready

Figure 19 - Displaying a componeinrtstance hierarchy

47

Lni Col 1 INS

6. Syntax Directed Editor

The central part of any IDE is its source codeagdithis is the tool that programmers
use most of the time when developing applicatidi role of an editor is to assist
the programmer in the process of source code anthdrypically, source code editor
implementations in contemporary IDEs assist thegmmmer by providing the
following facilities:

e Syntax Highlighting

e Code Folding

e Auto-Completion

e Syntax Validation

Sparrow’s source code editor is, by design, langtegnostic, i.e., it is not restricted
to editing only Delta code. On the other hand, phenary target of the IDE was
Delta, and as such, Delta is the language withrthst supported features. However,
Sparrow’s source code editor can be straightforlyaextended to provide more
enhancements for other programming languages. Héheeeditor supports all the
aforementioned facilities for the Delta languager &ther languages it supports only
syntax highlighting and code folding. Its main admitions, however, are the real-
time syntax validation of the source code, the te@mance of the complete structure
of the source code in an Abstract Syntax Tree fa@mndl, the ability to parse only the
affected segments of the text during an edit operat instead of parsing the whole
file. The latter is the common approach that edifotlow in order to support syntax
validation. In the following sections, the architee, implementation, and the most

important features of Sparrow’s editor will be meted.

6.1 Architecture

Sparrow’s editor is implemented as a component #nds, exports its interface to
other components and to the applications that getple IDE. In order for the editor
component to implement the functionality and uségrface of a source code editor, it
uses the “Editor Base” library that was implemengedcifically for Sparrow but at

48

the same time is not bound to it. Therefore, thee danctionality of the editor is
provided by the “Editor Base” library. The edit@mmeponent constitutes a lightweight
wrapper for the editing interface that is exposgdhe library and has the following
responsibilities: (a) it exposes the configuratoptions as component properties (see
section 3.3) and uses them to affect the functiynaf the library, (b) it reads the
language descriptions that are contained in a gordtion file and configures the
library accordingly, and (c) it emits signals totifyo other components about the
occurrence of significant editing events (e.g., twerent line and column of the

cursor, whether the file is modified, etc.)

The “Editor Base” library is based on and exterfus $cintilla editing framework
[14]. On the one hand, it wraps Scintilla in a sléisat simplifies the most common
tasks and exposes a uniform configuration interfacaffecting its functionality. On
the other hand, the “Editor Base” library implenserda plug-in mechanism —
orthogonal to Scintilla’s functionality — that edeb the extensibility of every aspect
of the editor’s functionality through dynamicallydded plug-ins. Scintilla, by default,
supports only the modular handling of syntax higfiing and code folding that are
implemented by independent pieces of code, callexérs.” The library, of course,
maintains this mechanism for supporting the aforgimoeed functionality in
languages for which Scintilla includes suitable &es but, at the same time, through
the plug-in interface, allows for many more langeragecific adaptations. Sparrow’s
editor decides on which Lexer to install and/or ebhlanguage module to load by
looking at the extension of the edited file and ceximg the instructions that are
included in its “Language Descriptions” file — arMK encoded configuration that
describes the supported editor languages. All thasdhitectural elements are

displayed in Figure 20.

49

Editor Component [— lLanguage |
Descriptions

| |
| | Configuration Interface Editor Base <—|—-> Language Module
| :

Scintilla Lexer
Scintilla Editing Language Module

— i Framework : :
Scintilla Lexer I

Editor Base Library

Figure 20 - Architecture of Sparrow's Source Editor

For the support of the Delta programming languaige,plug-in functionality of the
“Editor Base Library” is exclusively used. Thusettest of this chapter will focus on
the design and the implementation of Delta’s lagguenodule, which, in essence,
implements all the editor features that were mewiibat the beginning of this chapter
for the Delta programming language.

In Figure 21 the architecture of Delta’'s editordaage module is displayed. The
Delta Editor Interface is the entry point for tmvacation of the module’s functions

from the “Editor Base” library. The Program Destiop element is the structure that
holds a hierarchical representation of the Deltgam (see section 6.4.) The Delta
Parser is the unit responsible for parsing theoeditext and producing a convenient
representation of the contained Delta programai.@®rogram Description” structure.

Lastly, the Abstract Syntax Tree (see section ¥i8yalizer and the Delta Scintilla

Styler are responsible for providing a visualizatiof the program’s structure and
affecting the visual representation of the soukmdecrespectively. More details about
the role of each of these elements will be presetteoughout the subsequent

sections.

50

Program
Description (AST)

| | [

|

AST Visualizer |
|

|

|

' Delta Editor Delta |
|

|

|

|

|

|

Sellelr ek I Interface Parser

|

Delta Scintilla
Styler

Delta Langvage Mcedule

Figure 21 - Architecture of Editor's extension plug-in foela

6.2 Grammar Overview

As far as the editor is concerned, the most ctiaspect of Delta is its grammar. The
top level rules of Delta’s grammar, as well as rangple that conforms to each rule
can be seen in Figure 22. The complete referenBelbd’'s grammar can be found in
[23]. A delta program is essentially a set of “staénts.” The realization of this
decomposition is essential for the implementatidn tlee incremental parsing

functionality of the syntax-directed editor (seetsm 6.4.)

Program: €
| Stmts

Stmts: Stmts Stmt
| Stmt

Stmt: Expression *;' /l e.g.a=2*c.pi * circle [‘radius"];
| AssertStmt /l e.g. asserta and b or c;
| WhileStmt /I e.g. while (false == true) {}
| ForStmt /le.g.for (i=0;i<1821; ++i) {}
| IfStmt lleg.if(@/5==3){}
| ReturnStmt Il e.g. return back;
| Compound Ileg.{}
| LoopCtriStmt ';' // e.g. continue;
| TryStmt Il e.q. try foo() trap exception {}
| ThrowStmt Il e.g. throw this;
| Function /l e.g. function foo (argl, argl) {}
[Ireg.;

Figure 22 - The top level rules of Delta's grammar in BNF

51

6.3 Abstract Syntax Trees

An Abstract Syntax Tree (AST) is a finite directaedyclic, tree data structure, where

each parent node denotes a language operator elnafeids child nodes represent its

operands. ASTs are very popular as a means ofsapirag the hierarchical structure

of a language’s source. As such, they are ubigsitmuan intermediate representation
of a program in compilers, where they are usedpfenforming optimizations and

producing the final, executable, code of the coetpprogram.

Whereas, typically, ASTs do not contain nodes tbptesent syntactic constructs that
do not affect the semantics of the program, thdempntation reported here contains
them. This “lossless” representation of a Deltagprn was deemed important during
the design of the editor, since future extensionsy nntroduce refactoring or

formatting tools for which the complete syntactepmresentation of a program is

essential.

An exhaustive list of the AST nodes that are usgdHe representation of any Delta
program can be seen in Table 4. Apparently, notas represent more than one
syntactic constructs contain enough information teat they can be uniquely
identified. Additionally, an example AST represeitia of a simple Delta program

can be seen in Figure 23.

Table4 - The AST nodes used in the representation ofle[Peogram

AST Node Description
StmtsASTNode A set of Delta statements
ExpressionListASTNode An expression list
ArgListASTNode An argument list (a list of ids)
UnaryKwdASTNode All unary keywords (e.g. assert)
LeafkwdASTNode All leaf keywords (e.g. break)
WhileASTNode While statement
ForASTNode For statement
IFASTNode If statement
ElseASTNode The “else” part of an if statement
CompoundASTNode A list of statements enclosed in ‘{" }
TryASTNode Try statement

52

TrapASTNode The “trap” part of a try statement
FunctionASTNode A function definition
FunctionNameASTNode The name of a function’s definition
TernaryASTNode The ternary operator (a? b : c)
PrefixOpASTNode All prefix operators (e.g. prefix ++)
SuffixOpASTNode All suffix operators (e.g. suffix --)
BinaryOpASTNode All binary operators (e.g. +)
UnaryOpASTNode All unary operators (e.g. unary -)
CallASTNode A call expression

VariableASTNode A variable instantiation
ConstASTNode A constant expression

ArgASTNode An argument (id)
TableElemASTNode A table element

TableElemsASTNode A list of table elements
TableIndexListASTNode A table indexed list
TableConstructASTNode A table construction expression
TableConstkeyASTNode A constant table key
OtherStmtASTNode A poorly named expression statement (e.g. a = 3;)

function £ (argl, arg)
return 4 + 3;

}

£():
=
- Statements
= Function
Function name
=] Argument List
Argument
Argument
= Compount Statement
- Statements
= Unary Keyword: return
= Binary Operation: +
Const Value
Const Value
= Other statement
= Call Statement
Variable

Figure 23 - Abstract syntax tree for a simple Delta program

One last issue worth noting is that the prograrmejsreésentation as a tree structure
simplifies considerably its manipulation. Using tWesitor pattern [8] on the AST

structure provides an intuitive way for interactwgh the program’s representation.
Furthermore, the code that manipulates the AST ejgamted and modularized

effectively without resorting to tedious and erpsone switch-case constructs.

53

6.4 Incremental Parsing

The Delta parser, along with the “Program Desaviptistructure, is the central piece
of the Delta language module. It parses a streaexdafand produces a “Program
Description” instance that contains a completejle@socessed, view of the Delta
program that is enclosed in the editor. Specifyjcalie program description structure
contains the following:

e The AST of the Delta program that was parsed sstabs

e Alist of parse errors that were encountered wpdlesing the Delta program

e A list of comments that appear in the program

e Alist of text excerpts that could not be parsed

All these elements encapsulate a range structatelénotes the absolute positions of
the referenced syntactical constructs inside thi@redhe difference between the list

of parse errors and the list of excerpts that cowdtl be parsed is that the former
contains only the text that triggered the erroremas the latter includes also the text
that was discarded by the parser in order to coatparsing from a consistent state;

hence, the former is a subset of the latter.

The parser is implemented using the Bison parseergéor [10] and the Flex lexical
scanner generator [9]. Bison’s grammar rules fer Btelta language are responsible
for constructing AST nodes and building the resgltiAST, bottom-up, as the
grammatical rules are being recognized. Flex geéegrthe lexical scanner as a C++
class so that it can read its input stream fromtandard C++ input stream
(std::istream.) Sparrow’s editor provides a spé&sibn of the input stream for
enabling clients to read the contents of the edhoough the standard well-known
interface of a C++ input stream. Thus, the resglparser is able to parse the text

directly from the editor’s buffer.

The main trait of syntax directed editing is theimenance of the edited program’s
structure in a format that can be easily manipdigbeogrammatically. As such,
Sparrow’s editor permits the free-editing of thet@ts text, while maintaining a

consistent view of the program in a “Program Dgsiyn” structure.

54

A trivial method for achieving the aforementionedndtionality would be the

reevaluation of the whole text of the editor aféeery single change. Apparently,
“changes” include the insertion/deletion of chaeastby the user, the invocation of
cut/paste commands, and the insertion/deletionextf programmatically (by other
components or applications that deploy Sparrowis T$ a perfectly viable option

when the edited files are kept small, i.e., lesntf7,000 Lines of Code (LOC.)
However, when files get bigger, the responsiveneSsthe editor deteriorates
significantly; even more so, when the visualizat@inthe program’s AST is active
(see section 6.5.4.) This decline in responsivemesdso evident in the editors of
other IDEs that maintain internally a hierarchicapresentation of the program’s
structure, e.g., in Eclipse’s Java source codeoeditdditionally, it is important to

note that an optimization in the speed of the eaaly fast — Bison/Flex generated
parser would make no difference, as the primaryldrack of the evaluation process

is the generation of the graphical elements o8& visualization.

Consequently, the editor's extension for the D&teguage succeeds in eliminating
the decrease in responsiveness when editing lalgge by evaluating after each
change only the parts of the text that are affebied. The resulting representation is
identical to the representation that would be gateer if the whole text was
reevaluated; that is when the text constitutes rmecb Delta program. When the
parsed text contains an error, in which case thieegiext is not a valid Delta program
either, the resulting representation differs. Aaraple of this “inconsistency” can be
seen in Figure 24, where the user has just entivedext “f = /*” in the editor.
However, these inconsistencies, in case of inpait does not conform to the Delta
grammar, do not render the incremental parsingaagmpr inferior to the full-parsing
one. In fact, the resulting representation in thgecof partial-parsing is preferable, as

it constrains potential errors in a smaller texdaar

55

function £ (argl, arg2) { function £ (argl, arg?l)
return argl + arg?; return argl + argZ;
} ¥
£ = f= f =
g = £(3, 4): e £{3, 4):
foo = 3; foo = 3;
<] <] 2]
= Program = Program
= Statements =|- Statements
=] Function =] Function
Function name
+- Argument List +- Argument List
+- Compount Statement +- Compount Statement
=R Cther statement
=|- Binary Operation: =
Variable
Const Value

Figure 24 - Difference in AST in case of error; left: incrental parsing, right: full parsing

That said, the algorithm used by the Delta langwsaggport module to partially parse
only the affected text after every modificationpgarises of the following steps:
e Update the absolute position of all the elemerdas @he affected by the change
o Update the position of the AST nodes
o Update the position of the errors
0 Update the position of the text that could not bespd
0 Update the position of the comments
¢ Remove all the adjacent elements that are affdptedde change
0 Remove the minimum Delta statement that contaiechtianged text
o If there is text that could not be pardeeforethe statement
= Remove it and also remove the statenbeforeit
o Otherwise, remove also the statemeforethe minimum statement
o If there is text that could not be parsdter the statement
= Remove it and also remove the statenadiar it
o Otherwise, remove also the statemeditér the minimum statement
o Remove all the comments and errors that are cadamthe region of
the removed elements

56

e Parse only the minimum region that contains theonesd elements
e Merge the resulting representation of the newlys@drregion with the main

representation

An example execution of the algorithm can be seenFigure 25, where the
representation of the Delta program can be seeomrde@ind after the pasting of the
“else” text. The stylish green underline marksbgion of the text that is parsed after
a text modification. The marking of the regions tekt that are parsed after a
modification is, by default, disabled; it can beakled, however, by pressing

simultaneously the keys Alt-Control-P.

Obviously, the operations that change the appearahthe edited text (i.e. syntax
highlighting and folding,) as well as the updatetloé visual representation of the

AST happen only in the incrementally parsed region.

function £ (argl, arg?) { function £ (argl, arg2) f{
return argl + arg?: return argl + argZ:
H H
gecond stmt = 2; gsecond stmt = 27
if (a = 1) if la == 1)
a=21: | LLE a = 1;
elsel
if (a = 2) if (a =.2)
a=2: | E a=2;
fifth stmt = 5; fifth stmt = 5;
% < | b
= Program = Program
- Statements - Statements
+- Function +]- Function
+- Other statement +1- Other statement
1 If Statement 1 If Statement
1 If Statement 1 Other statement
+- Other statement

Figure 25 - Incremental parsing of text after pasting "else”

6.5 Rendering

57

6.5.1 Highlighting

Syntax highlighting is a function supported byahtemporary editors. It essentially
varies the visual style of text excerpts that repne different syntactical structures of
the target language. To be precise, syntax higitighdifferentiates the visual
representation of the types of the lexicographitakens that constitute the

“vocabulary” of a programming language.

Despite the fact that other editors, e.g., Visuaid®’'s and Eclipse’s source code
editors, base their highlighting on the recognitexicographical tokens, Sparrow
editor's Delta extension highlights the differean§uage constructs based on their
syntactical context. For Delta, hence, identicalidegraphical tokens can have a
completely different style depending on what thegresent in a Delta program. E.g.,
in Figure 26, ids that appear as “object membess/ehdifferent color from the ids
that appear as variables. Additionally, in the sawample, strings that appear as
“table keys” (which is actually another way of assi@g “object members,”) have
different color from strings that appear as plaipressions.

Syntax highlighting is implemented by an AST traatr that applies the
corresponding style on the text whose locatiomdscated by the absolute positions
that are encapsulated in AST nodes. CommentsatBaseparate from the AST, are
styled by traversing the comment list of the “PeogrDescription” structure and the
parts of text that could not be parsed are st@>bgraphically. This lexicographical
styling is essential for giving immediate feedbdokprogrammers when they are
typing; otherwise, e.g., the “if" keyword of an omaplete “if’ construct would be

highlighted only after it became a complete stat#graed not as soon as it was typed.

6.5.2 Error Marking

Error marking refers to the ability of the editorrecognize and mark the syntactical
errors that are present in the source code of grgmo i.e., the parts of the program
that do not conform to the target language’s grami@gntax validation is usually

implemented, in editors that support it, with thelphof the language’s compiler.

58

Visual Studio for the .NET languages and Eclipse tfee Java language support
syntax validation by invoking the compiler with tledited file as input, and obtain
from it the parts of the text that do not confowrttie grammar. Although this method
can also recognize semantic errors, it is not imatedThe validation of the program
is deferred until its compilation. In Sparrow’s Eekditor, syntactic errors are marked

as such instantly — as the user types.

As seen in Figure 26, errors are indicated by a ywa®d underline. The
implementation of the error marking functionality straightforward: the contents of
the error list field of the “Program Descriptionttigcture (see section 6.4) are styled

with the red underline.

f/ A serious comment |
print_server = gpw.createcomponent ("print server™):
for (local i=0; i < 12; ++i)
print server.print("string " + i + "™} ;
restore workspace = Spw.createcomponent ("restore workspace'):
wsp = =spw_call (restore_workspace, "GetURI"™):
if (wsp '= "") {

spw_print (wsp) ;
sSpwW.components.ProjectManager. OpenWorkspace (Wwsp) -

/* The following two lines hawve the same effect */
spwW.components.ProjectManager . OpenWorkspace (wap) ;
spwW["conponents2"] ["ProjectManager™] ["OpenWorkspace™] (wWwap) ;-
vm = niﬂ

& wm = vmget ("sparrowlib"):
if (vm == nil) {

v = vmload ("scripts/sparrowlib.dbc™, "sparrowlib™):
wInrun (V) ;

<] E

Figure 26 - Editor Syntax highlighting

6.5.3 Code Unit Folding

Code unit folding provides the means for progranamer toggle the visibility of

source code segments corresponding to specifiasiynelements. Its typical usage is

59

hiding the body of functions or classes so thatgmmmmers can concentrate

undistracted on the parts of the source code thegditing.

Sparrow’s Delta editor supports code folding fa following constructs:
e While statements
e For statements
e If — Else statements
e Try statements
e Function definitions

e Table construction statements

Code folding is again implemented by an AST traakrso the syntactic context of
the structures that can be “folded” is known, amast it does not depend on isolated
character sequences.

6.5.4 AST View

This facility of the Delta editor is visible in marof this chapter’s figures (e.g. see
Figure 23.) Users can toggle the visibility of tA&T visualization window by

pressing the keys: Alt-Control-V in the editor whedtiting a delta source file.

In addition to providing visualization of the inted AST of the edited program, this
tree is also interactive. Selecting any visualinede selects its corresponding text in
the editor. Right-clicking on a node, allows themu® perform any of the following

actions: (a) delete the node’s corresponding {@jtcopy the node’s corresponding

text, or (c) cut the node’s corresponding text.

6.5.5 Tooltips

Another feature of the editor's extension for theltB language is the provision of
context and function sensitive tooltips when theus® pointer remains over the
editor's text for a couple of seconds. When thappeas, the AST node that

60

corresponds to the text under the mouse pointestigeved and information for that
node appears in the form of a tooltip. The texipldiged by the tooltip can be
modified by extensions.

So, in the default case — where the user is ediBrg— the displayed tooltips give
information on the role of that text in the Deltagram, i.e., they display the type of
the text's AST node. When the mouse pointer is thaebver text that is marked as a
syntax error, the explanation of that error — thatbtained from the generated Bison
parser — is displayed. Lastly, one of the exterssiohthe Delta debugger [5] takes
advantage of this functionality to display the \alof variables during debugging.

Figure 27 illustrates the different realizationglo# editor’s tooltips.

function £ (argl, arg2) {
return argl + argZ:

function £ (argl, arg2) {
return argl + argZ:
¥

o =
@ [7)e

function £ (argl, arg2) {
return argl + argZ:

(3, 4):

I Fh

[FL L]
LT

+
lala

Figure 27 - Editor Tooltips under the mouse pointer

6.6 Auto Completion

Another universally supported function is the Agtompletion of symbols, which
refers to the automatic suggestion of valid symlbkt may appear at a specific
position in the text of a program. Usually, editofscontemporary IDEs present the

suggested symbols in a drop-down selection list.

61

Automatic completion of all the valid symbols inrdynic languages such as Delta is
a very difficult issue. Delta’s objects can be exked at runtime by adding member
variables and functions. This situation is furthemplicated by the fact that even the
inheritance of Delta objects is a runtime functj@B]. This essentially means that is
practically not possible to know an object’'s mensbetthout actually running the

complete Delta program.

Instead of resorting to semi-accurate heuristice\ter the member data of a Delta
object, it was decided to offer a completion listtloe symbols that were previously

usedabovethe point where the auto-completion takes place.

The Delta editor distinguishes four kinds of synsbol
e Object members (or object keys)
e Functions
e Function arguments

e Variables

So, when the user presses the dot key (*.’) righdaroid, all the previously accessed
object members are retrieved (by traversing the Afwards”) and presented in a
drop-down list. As mentioned previously, the natati‘'object. member” in Delta, is
just a shorthand for the expression ‘object[“mertfipethus when the user types the
text ‘[, all the object members are, similarlyetrieved but this time they are offered
as strings instead of plain ids. Additionally, whte user starts typing a word whose
first three letters match existing symbols of fuma$, function arguments, or
variables, their names are offered for auto-congietThe completion list for the
aforementioned cases, which can also be activaye@réssing the keys Control-

Space, can be seen in Figure 28.

62

7 .-;.rpmz = :pw.cnmp{:nenis .'5'1"1&11'.Ad:itﬂmp:}nent'f"'E'}:ni-éc'l':ﬂhnageﬁ;-; l] z E‘
[/ comment |

Py "ProjectHanager"” [ﬁ T ("print serverv); Cal
=3 T wshelln -
l T rcomponentan® |§ 4+ Whatye
L mpo L] i
:; i R ponentc ("restore workapace®™):
T =
Wl o F-l- - "GetURI"™) ;
5 if serial
© classId
Q fileclose _}.OpenWockspace (wsp) ;
y | @ fileend v
spw|
Ay vm = vmget("sparrowlib™);

1 f/pm2 = spw.components.Shell.AddComponent ("ProjeccManager”, 1): ':_|
/f comment |
Py AddComponent jecomponent ("print server™); =

8 fo T ++1i} |
Cpenlorkspace
|_ il Ero ,IA_-,_.M,,.H_ latzing " + 4 + "\n");
r : Sheld, createcomponsnt ("restore workspacen);
W SaEpIonEARS rerkspace, "GetURIY):
8 if T CYreaTeECOmDONant
T print
T serial \ctManager,OpenWorkspace (wsp) 2
1 | T v
apw.|
v = vmget ("sparrowlib™)
{ fpm2 = apw. c'élmpanenr.a .Shell. AddComponent ("ProjectManager®, 1): L:.j

// comment

L cccomoc B ~
Efole, ri)
Work b
l v 'OPGB iR ¥ tring: ™ + i + "\no"}:
ProjectManager
T L L]
r:] ™ .5':"511 " featecomponent ("restore workspace");
wsl HOpOnensa tkspace, "GetURI™):
g if "createcomponent”™
T "princ®
T raerial® (Manager.OpenWorkapace (wsp) ;
}
, 53?“1:]

vm = vmget ("sparrowlib®):
Bif {(vm == nil) {
vm = vmload("scripts/sparrowlib.dbc™, "sparrowlib™):
vmrun (vm) ;
]

apw = vmcall (vm, "sparrow™):

gpw.components.Shell .AddComponent ("ProjectHanagez®™, 0);

gy mrommanants Shaell A8 aremanant [ThAdsnsEses s anfanacsasf b L 7\.-.-!

<] | Bl |

Figure 28 - Automatic completion of symbols, and object menstas ids and strings

63

7. Summary and Conclusions

7.1 Summary

In this Thesis, we have presented a large parpafrSw, a circular meta-IDE for the
dynamic object-based language, Delta. Initially, Wwave discussed the overall
component architecture and the basic facilitiedtbam top of it, like the undo

manager and the introspector. In this context, weehoutlined the primary design
philosophy regarding architectural openness, dyoamtensibility, and customized
programmable deployment. Additionally, we have shoparticular component
features like the support for self-embedded docuatiem and the introspection
interface. Finally, we have presented the soureelleditor with its multi-language
open architecture, putting emphasis on the impleatem of the plug-in to

accommodate the Delta language.

7.2 Conclusions

Our choice to implement the Sparrow IDE has beetatid from various technical
reasons, linking directly to the main objectivespodviding a dynamic, circular and
extensible platform. More specifically, the need affer dynamic query and
introspection of components during runtime implikdt a comprehensive component
technology could be deployed with these quali@esl we had a few choices for that,
with the most easy to use alternative being JadaC®Gi. However, since we wanted
to support dynamic extensions of component methaglsa standard feature for
components, a method we called vertical extensibitve could not use such
technologies as they require that such facilitiee aanually introduced by
component vendors. Finally, we wanted to allow dyita inheritance among
components, i.e. runtime inheritance, somethingt tisa not offered by any
componentware technology. Overall, while our emghhas been to offer a typical
component infrastructure, our focus was shiftedaiols specific features relating to
openness and extensibility. In this sense, our compt system does not aim to

compete with existing technologies, but to offdayer of functionality optimally fit

64

to the needs of a dynamically extensible and deyileyIDE. The latter implied that
our work could not be hosted by popular IDEs thanhunely rely on such

technologies, as it is the case with Visual Stdi®M backbone) or Eclipse (OSGi
backbone.) Now, the effort to introduce on top o€ls technologies facilities like

component editing and inheritance was far beyond a@jectives. Hence, we

preferred to focus on a new compact component stdrsy where the specific
required functionality would be put at place byidasrather than introduced as an
afterthought.

Along these lines, the remote deployment API, alé agethe interactive introspection
had to be built on top of the basic component siftecture. Consequently, we
introduced these facilities as extensions of ounmonent subsystem: (a) introduce
inter-process dispatching of method invocationsrénotely deployed components,
and (b) provide a direct manipulation interfaceahte APIs of the active components.
One of the future extensions regarding the composystiem is to introducgynamic
inter-process inheritancamong components, meaning a local component ninegyitn
on-the-fly from a remote one. In our current impétation, the latter scenario is
supported only when both components reside atahe gprocess space, idynamic

intra-process inheritance

One module that could be potentially implementedagnof an existing IDE platform
is the source code editor. Nevertheless, such proaph does not essentially reduce
the required code size, since it still requiresirmplementation from scratch of the
most critical editor part: the syntax-aware editingctionality for the Delta language.
Practically, to automate the latter it would impiye presence ofrue syntax-
highlighter editor generatotsanalogous to parser generators, the former tools
currently missing. We put particular emphasis tame syntax highlighting since
although all existing editors offering highlightiegnfiguration merely support lexical
highlighting, the latter is improperly referred & syntax highlighting. So, in any
case, the implementation of this plug-in would tog,the most part, invariable. The
graphical rendering of the editor and its editinopdtions that would have been
provided by an underlying platform are supplied,aar implementation, by the
Scintilla framework. So, in this case, we wouldméve gained anything by basing the

editor on the facilities provided by other IDEs.

65

In addition to that, Sparrow will be used as areiin&l development tool for the
software development division of the Human Complrnegraction (HCI) laboratory

of the Institute of Computer Science (ICS) at thmurelation for Research and
Technology — Hellas (FORTH.) Thus, the decision toobase Sparrow on top of an
existing platform was further supported by thetstgic decisions of the laboratory
regarding the usage of the Delta programming laggudhe independence of the
laboratory from external software systems was deeessential for the deployment

of Delta in future projects.

In closing, we shall mention that our architecttaatl implementation strategies for
Sparrow, as a component-oriented platform that easily accommodate diverse,
domain-specific, functionality, proved to be susfes They proved to be a robust
approach to the development of a large scale, sikienand adaptable system such as
Sparrow; and the proof for this is the resultingllyf functional, Integrated
Development Environment for the Delta language.

66

[1]

[2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

[11]

References

David Abrahams and Aleksey Gurtovoy: C++ Templatetédyprogramming:
Concepts, Tools, and Techniques from Boost and mB&yAddison-Wesley,
Reading, MA, 2004. ISBN 0-321-22725-5

Andrei Alexandrescu: Modern C++ Design: GenericgPaonming and Design
Patterns Applied. Addison-Wesley, Reading, MA, 20@BN 0-201-70431-5

David M. Beazley, SWIG: An Easy to Use Tool fordgtating Scripting
Languages with C and C++, 4th Annual Tcl/Tk Workshdonterey, CA.,
1996

Boost C++ Librarieshttp://www.boost.org

Themistoklis Bourdenas: Circular Meta-IDE for theela Language:
Extensibility Layer for Delta, Debugger, Runtimeagpthtion, and Project
Manager. Master’s Thesis, 2007

D. Box: Essential COM, Addison-Wesley, 1998. ISBI2L-63446-5

Brad J. Cox, Andrew J. Novobilski: Object-Orient&togramming: An
Evolutionary Approach. 2nd ed. Addison-Wesley, RegdMA, 1991. ISBN
0-201-54834-8

E. Gamma, R. Helm, R. Johnson, J. Vlissides. DeBigiterns: Elements of
Reusable Object-Oriented Software. Addison-Weskegding, MA, 1995

Flex: The Fast Lexical Analyzenttp://flex.sourceforge.net

Free Software Foundation: Bison - GNU Parser Géonera

http://www.gnu.org/software/bison

Grimes, Richard: "ATL and COM", ATL COM, 1st editip Wrox Press,
1998. ISBN 1-861002-4-91

67

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Microsoft Corporation: Dynamic-Link Libraries.

http://msdn2.microsoft.com/en-us/library/ms682586xa

Microsoft Corporation: Visual Studio Integrated @&pment Environment.

http://msdn2.microsoft.com/en-us/vstudio/defautbas

Neil Hodgson: Scintilla source code editing compune

http://www.scintilla.org

K Desktop Environment (KDE): KDE APl Reference: TB&€OP Desktop
Communication Protocol Library. http://api.kde.org/3.5-api/kdelibs-

apidocs/dcop/html/index.html

K Desktop Environment (KDE): KDevelopttp://www.kdevelop.org

K Desktop Environment (KDE): KParts: Creating andirlg Components.
http://developer.kde.org/documentation/tutorialstte

Bertrand Meyer: Object-Oriented Software Constarcti2nd ed. Prentice
Hall, 1997. ISBN 0-136-29155-4

Object Management Group: The Common Request Brdkehitecture

Specification http://www.omg.org/technology/documents/formal

William F. Opdyke: Refactoring Object-Oriented Feworks. PhD Thesis,
Department of Computer Science, University of disn at Urbana-
Champaign, 1997

OSGi Alliance: OSGi Service Platform — Release2006)

Python Software Foundation: Python Programming Lage.
http://www.python.org/

Anthony Savidis: Dynamic Imperative Languages famn&me Extensible
Semantics and Polymorphic Meta-Programming. RISE52013-128

Sun Microsystems: Java Remote Method Invocatiova(BaMI) Specification.

http://java.sun.com/j2se/1.5.0/docs/quide/rmi/intaxl

68

[25]

[26]

[27]

[28]

[29]

Sun Microsystems: JavaBeans 1.01 specification.

http://java.sun.com/products/javabeans/docs/spat.ht

The Eclipse Foundation: Eclipse Projéttp://www.eclipse.org

The Mozilla Foundation: XPCOM (Cross Platform Coment Object Model)

Referencehttp://www.xulplanet.com/references/xpcomref

Trolltech: Qt: Cross-Platform Rich Client Developmhe Framework.

http://trolltech.com/products/qt/

wxWidgets GUI toolkit http://www.wxwidgets.org

69

