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Abstract 

 

Following programming languages, Integrated Development Environments (IDEs) are 

considered as the next decisive factor for effective software development, playing a 

critical role in the software lifecycle, especially when it targets medium-to-large-scale 

systems. In this context, the subject of this Thesis is Sparrow; an IDE for the dynamic, 

object-based programming language – Delta. Sparrow was developed with the 

following two key objectives: (a) to support extensibility of features, allowing such 

extensions to be developed using Sparrow, i.e. it is a circular IDE, and (b) to facilitate 

open deployment by third parties to build domain-oriented IDEs, i.e. it is a meta-IDE. 

 

In this Thesis, the design and implementation of a large part of Sparrow has been 

carried out – corresponding roughly to half of the system’s implementation, – 

addressing the following issues: (a) the implementation of the basic component 

framework for extensibility, enabling developers dynamically introduce IDE 

components, (b) the implementation of the mechanism for remote deployment, 

enabling third-party applications dynamically utilize the IDE in a domain specific 

manner, (c) the implementation of a component introspection User Interface, enabling 

users interactively review and invoke the underlying functionality of all IDE 

components, and (d) the implementation of the source code editor supporting real-

time, true syntax highlighting during editing, relying on quick incremental parsing 

particularly suited to the Delta language. 

 

The work reported in this Thesis enabled the Sparrow IDE to play the role of an open 

platform capable of dynamically hosting IDE functionality, reflecting the tabula rasa 

concept. Along these lines, we expect future IDEs to move towards these directions, 

delivering more flexible and open infrastructures by enabling users introduce 

extensions and customizations reflecting their individual programming habits or any 

emerging programming techniques. 
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Περίληψη 

 

Μετά τις γλώσσες προγραµµατισµού, τα Ολοκληρωµένα Περιβάλλοντα Ανάπτυξης 

(Integrated Development Environments - IDEs)  θεωρούνται ο σηµαντικότερος 

παράγοντας για την ανάπτυξη λογισµικού, παίζοντας κρίσιµο ρόλο στον κύκλο 

ανάπτυξης προγραµµάτων, ιδιαίτερα δε για τα µεσαίας και µεγάλης κλίµακας 

συστήµατα. Σε αυτό το πλαίσιο, το θέµα της παρούσας εργασίας είναι το σύστηµα 

Sparrow, ένα IDE για τη δυναµική οντοκεντρική γλώσσα Delta. Το Sparrow 

κατασκευάστηκε ακολουθώντας δύο κύριους στόχους: (α) να υποστηρίζει 

επεκτασιµότητα των λειτουργιών του, επιτρέποντας να αναπτυχθούν οι επεκτάσεις 

αυτές χρησιµοποιώντας το ίδιο το Sparrow, δηλαδή είναι ένα κυκλικό IDE, και (β) να 

υποστηρίζει τη χρήση του από τρίτα συστήµατα διευκολύνοντας τη δηµιουργία IDEs 

εξειδικευµένων στο εκάστοτε πεδίο εφαρµογών, δηλαδή είναι ένα µετα-IDE. 

 

Στο πλαίσιο αυτής της εργασίας, αναπτύχθηκε ένα µεγάλο µέρος του Sparrow, που 

αντιπροσωπεύει περίπου το ήµισι της υλοποίησης του όλου συστήµατος, και αφορά 

στα παρακάτω ζητήµατα: (α) την υλοποίηση της βασικής δοµής διαχείρισης 

τµηµάτων λογισµικού που υποστηρίζει την επεκτασιµότητα του συστήµατος, η οποία 

καθιστά δυνατή τη δυναµική εισαγωγή και χρήση των τµηµάτων από τους 

προγραµµατιστές, (β) την υλοποίηση του µηχανισµού ελέγχου µέσω δικτύου, ο 

οποίος επιτρέπει σε εξωτερικές εφαρµογές να χρησιµοποιούν δυναµικά το IDE ως 

τµήµα, µε τρόπο που εξαρτάται από το εκάστοτε πεδίο εφαρµογών, (γ) την 

υλοποίηση διεπαφής ενδοσκόπησης των τµηµάτων κώδικα, η οποία επιτρέπει στους 

προγραµµατιστές να βλέπουν και να καλούν τις λειτουργίες των τµηµάτων του IDE 

κατά τη διάρκεια της χρήσης του, και (δ) την υλοποίηση του συντάκτη κώδικα, ο 

οποίος µπορεί να παρουσιάζει σε πραγµατικό χρόνο µε γραφικό τρόπο τα τµήµατα 

του πηγαίου κώδικα σύµφωνα µε το συντακτικό της γλώσσας, υλοποιώντας µία 

µέθοδο γρήγορης, αυξητικής συντακτικής ανάλυσης ειδικά σχεδιασµένης για τη 

γλώσσα Delta. 

 

Η παρούσα εργασία κατέστησε εφικτή την ανάπτυξη του Sparrow ως µία ανοικτή και 

επεκτάσιµη πλατφόρµα λογισµικού, ακολουθώντας τη φιλοσοφία tabula rasa, ώστε 
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να υποστηρίζει ευέλικτα τη λειτουργικότητα ενός IDE υλοποιώντας ένα γενικό 

αρχιτεκτονικό πλαίσιο που υποστηρίζει τη δυναµική συρραφή των λειτουργικών 

τµηµάτων. Σε αυτές τις γραµµές, αναµένουµε τα µελλοντικά IDEs να κινηθούν σε 

παρόµοιες κατευθύνσεις, προσφέροντας ακόµη πιο ευέλικτες και ανοικτές υποδοµές, 

επιτρέποντας στους προγραµµατιστές να εισάγουν επεκτάσεις και προσαρµογές 

σύµφωνα µε τις ιδιαίτερές τους προγραµµατιστικές συνήθειες καθώς και τις εκάστοτε 

αναδυόµενες προγραµµατιστικές τεχνικές. 
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1. Introduction 
 

Computer programs follow completely different architectural and implementation 

strategies in relation to the problem being solved, the available resources, and the way 

users interact with them. This multi-modality that inevitably characterizes software 

systems not only increases their complexity, but also impedes the formalization of 

concrete guidelines and “recipes” for approaching the construction of a program. 

 

The plethora of available programming languages and development tools clearly 

reflect the aforementioned lack of formalization of the development process. Whereas 

the advancements in high-level languages have undisputedly allowed software 

systems to become much more sophisticated, Integrated Development Environments 

have enabled programmers to produce more robust programs in a smaller time frame. 

An Integrated Development Environment (IDE) is basically a program that assists the 

process of software authoring by (a) disengaging the programmer from source code 

maintenance operations, (b) visually annotating and validating the syntactical 

structures of a program, (c) aiding the debugging process, and (d) automating some 

aspects of the code manipulation operations. 

 

The final product of this project – dubbed Sparrow – is an IDE for the dynamic 

object-based programming language, Delta. The project’s goal was not only to create 

a full fledged development environment for the Delta language, but also to explore the 

usage of various programming techniques for implementing a dynamically 

configurable, remotely deployable, and extensible software platform. 

 

1.1 Objectives 

 

An IDE, besides being a program that aids the developer by automating tedious 

programming tasks, ought to provide a concrete platform on which developers can 

build custom tool-chains and extend its functionality. This was viewed as the most 

critical factor when designing Sparrow. The provision of a sensible, intuitive meta-
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development platform that can leverage the effectiveness of the offered facilities is 

missing from most contemporary IDEs. 

 

1.1.1 Common features 

 

Sparrow aims to be a full-fledged IDE. Hence, its features that are similar to the ones 

offered by many existing Integrated Development Environments are the following: 

• Source code editor with highlighting support that annotates and validates 

Delta’s syntactic constructs on-the-fly 

• Workspace manager for managing the collection of source files that comprise 

a Delta program and their properties 

• Source-level debugger for the Delta language 

• Extensibility interface for extending all aspects of the IDE’s functionality 

through both C++ and Delta languages 

• Deployment interface for accessing part of the IDE’s functionality from other 

programs 

• Support for a multi-lingual interface 

 

1.1.2 Novel features 

 

This Thesis focuses on four aspects of Sparrow, namely: extensibility through its 

component-based architecture, remote deployment capabilities, interactive 

introspection facility, and Delta source code editor. These subsystems correspond 

roughly to half of the IDE’s code volume and functionality. 

 

Sparrow offers a concrete component-based architecture that clearly separates the 

different parts of the IDE’s user interface and functionality, while automatically 

exposing their facilities through its extensibility Application Programming Interface 

(API). This explicit componentization of Sparrow not only enhances its 

maintainability, but also allows for well-defined and straightforward extensions to the 

IDE by either activating different components at run-time or enhancing those already 

available through Delta or native extensions. Additionally, Sparrow offers a 
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centralized Undo subsystem that simplifies to a large degree the provision of 

Undo/Redo functionality by components. 

 

To make it easier for third-party applications to deploy the IDE, Sparrow provides a 

mechanism that allows an arbitrary number of processes – that can even run on 

remote machines – to utilize the functionality that is exposed by the available 

components. 

 

Additionally, Sparrow offers a graphical component that is able to extract and display 

all the introspection data that are encapsulated into its components. This tool offers to 

the extension programmer a comprehensive reference of (a) all the supported 

functions, (b) the components’ metadata, and (c) their active instances. Through the 

provided interface, programmers are able to interactively manipulate many aspects of 

the IDE on-the-fly. 

 

Lastly, Sparrow’s source code editor features a complete Delta language parser that 

retains the whole syntactical structure of Delta programs and exposes it to the 

extension scripts. The supplied Delta parser is able to parse the target programs 

incrementally. A change in the target program will trigger the reevaluation of only the 

parts of the program that are affected by this change rather than the whole source file. 

The facilities of the editor that are based on the internal representation of the edited 

program include: (a) syntax highlighting and code folding, (b) visualization of the 

program, (c) syntax validation, (d) automatic symbol completion, and (e) informative 

tooltips on language constructs. 

 

1.2 Architecture 

 

At the most basic level, Sparrow is comprised of a set of loosely-coupled components 

that communicate with each other through message passing. In this sense, Sparrow 

follows a tabula rasa approach; the core of the IDE, its component system, provides 

the basic functionality in order to accommodate the various components that infuse 

the functionality and the graphical user interface to the IDE. Sparrow’s components 
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can be implemented in either C++ (Sparrow’s native language) or Delta. A schematic 

representation of this notion can be seen in Figure 1. 

 

 
Figure 1 - Sparrow as a collection of components 

 

Essentially, Sparrow is bootstrapped by the “Shell” component which constitutes the 

basic skeleton that initially instantiates the desired components – read from a 

configuration file. This skeleton also implements a graphical frame under which the 

top-level components, such as the editor and the project manager, present their 

interface. Delta components, which are indistinguishable from native components, are 

managed by a separate component, dubbed “Delta Component Proxy.” 

 

1.2.1 Circularity 

 

Sparrow’s circularity refers to its ability to incorporate in its environment the Delta 

components that are developed in the IDE itself. Generally, the facilities that enable 

the implementation and usage of C++ components are referred to as the native 

extensibility layer, and, correspondingly, the facilities that allow the deployment of 

Delta components as the circular extensibility layer (see Figure 2.) 

 

Circularity, in this context, is different from the circularity offered by environments 

that target the same language they are built in. It is evident that any program can be 

extended through the language it is written in. Sparrow, however, while targeting the 
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Delta language, is programmed in C++. Under this realization, it can be inferred that 

the Sparrow platform offers true circularity. 

 

 
Figure 2 - Native and Circular extension layers in Sparrow 

 

1.2.2 Meta 

 

The meta notion of Sparrow emphasizes its facilitation for open deployment by third-

party tools that can customize and extend the platform – essentially producing a 

development environment that is better suited to their problem domain. The idea is 

that for applications relying on the Delta language (e.g. games, mobile applications, 

etc.,) the IDE should deliver the basic programming facilities, while enabling the 

incorporation of functionality through the development of extension components or 

customization of the existing ones. This constitutes the driving factor behind Sparrow, 

whose architecture evolved, or rather intelligently designed, around this notion. 

 

For this purpose, Sparrow (a) enables its remote deployment by third-party 

applications, (b) allows every integrated component to be replaced as long as it obeys 

the original API (runtime consistency), and provides related semantic behavior 

(semantic consistency), and (c) allows the incorporation of new components that can 

extend the functionality of the existing ones. Additionally, some integrated 

components (e.g. the source editor,) support their own configuration switches and 

APIs so that they can be extended orthogonally to the Sparrow platform. 
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Categorizing the aforementioned extension mechanisms, it can be inferred that 

Sparrow supports two types of domain-specific extensions: 

• Horizontal extensions 

• Vertical extensions 

 

This principle is outlined in Figure 3. Generally, vertical extensions refer to the 

incorporation of new components that basically introduce new functionality to the 

IDE; whereas substitutions or extensions of existing components are regarded as 

horizontal extensions. 

 

 
Figure 3 - Horizontal and Vertical extensibility in Sparrow 

 

1.3 Methodology 

 

Unarguably, the implementation of an IDE constitutes a very large development 

effort. Under this realization, the choice of the programming libraries and techniques 

was very important for the successful completion of the project within the bounds of 

the desired time-frame. Apart from Delta, through which Sparrow can be extended, 

the core development language was decided to be C++. C++ was chosen for the 

project because of (a) its ubiquity, (b) the large number and high quality of its third 

party libraries, (c) its support for a variety of programming paradigms (especially 

Generic programming [2] and Object Oriented programming [18],) and (d) because of 
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the fact that Delta itself is written in C++, and therefore can be easily deployed in 

C++-based applications. 

 

For the development of Sparrow, the Boost libraries [4] were used, along with the 

Standard Template Library (STL,) while the wxWidgets library [29] was used for the 

implementation of the Graphical User Interface (GUI.) 

 

 
Figure 4 - Screenshot of Sparrow with various key components active 

 

2. Related work 
 

2.1 The Delta Language 

 

The Delta programming language [23] is an imperative scripting language that 

encompasses (a) dynamically typed variables, (b) runtime classes, (c) functions as 

first-class values, (d) unnamed functions, (e) dynamic handling of actual arguments, 
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and (f) extensible operator semantics. The aforementioned features are available in 

most modern dynamic languages. However, Delta extends these features by 

introducing: 

• Prototypes with member functions being independent callable first-class 

values, as atomic pairs holding both the function address and the alterable 

owner instance 

• Dynamic inheritance, having exclusively runtime semantics, in comparison to 

the traditional compile-time inheritance operators 

• An enhanced operator overloading technique 

 

In the Delta language, prototypes are runtime class values, from which instances are 

dynamically produced through replication. In this context, following the recipe of 

existing dynamic languages, object classes never appear within the source code in the 

form of compile-time manifested types, but only as first-class runtime values called 

prototypes. The main characteristic of prototypes in the Delta language is that they are 

essentially associative table objects. Having no prototype-specialized compile-time or 

run-time semantics, prototypes are normal object instances chosen by programmers to 

play the role of class-instance generators, thus, they are effectively a design pattern 

[8] combined with a deployment contract. 

 

In Delta, inheritance is a runtime function applied to instances, establishing an 

augmented member-binding context for derived instances. The metaphoric isA 

connotation of base and derived classes is not entirely adopted in Delta, since 

inherit(x, y) does not state that x isA y, neither that x depends implementation-wise on 

y; it only defines augmented member binding for both x and y, i.e. if a member 

requested for x or y is not found in x (derived,) then it is searched in y (base.) 

 

Additionally, in Delta, the semantics of all binary operators are dynamically 

extensible for table object instances through the following implementation technique: 

• For binary operators, if a member of a table instance t1 is named op and is 

actually a function f, the result of the evaluation t1 op t2 is f(t1, t2). Otherwise, 

the original semantics of t1 op t2 are applied 
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• For unary operators, if a member of a table instance t1 is named op and is 

actually a function f, the result of the evaluation op t1 is f(t1). Otherwise, the 

original semantics of op t1 are applied 

 

2.2 Existing IDEs 

 

There is a very large number of high quality Integrated Development Environments 

available. Nonetheless, they all follow similar patterns and interaction metaphors. 

Hence, their supported functionality has many common features, and it generally 

includes the following: 

• Source code highlighting and completion 

• Automation of source code maintenance 

• Source-level debugger 

• Extensibility interface for adding or substituting functionality and automating 

common tasks 

 

In addition, some of the contemporary IDEs support: 

• Remote (inter-process) deployment interface 

• Refactoring tools for the target languages 

• Highly configurable user interface 

 

The overview of the IDEs presented in this section is based on the set of features that 

are related to the ones considered in this Thesis for Sparrow. Specifically, the 

following characteristics are examined: 

• Extensibility, which refers to how easily the IDE can be extended to 

incorporate additional functionality 

• Deployability, which refers to the level of the IDE’s functionality which is 

exposed to third party applications 

• Syntax analysis, which refers to the level of assistance the IDE provides to the 

programmer in relation to the syntactical structure of the supported languages 
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The majority of contemporary IDEs support more than one language under their 

interface. Thus, the aforementioned characteristics are considered for the main 

language of each IDE, that is, the most supported language.  

 

2.2.1 Visual Studio 

 

Microsoft’s Visual Studio [13] for the Windows operating system constitutes the 

primary development tool for the company’s .NET platform. As such, many different 

languages are supported and more are being added – or at least announced – as 

incremental updates to the platform. In addition to the .NET environment, Visual 

Studio also targets the native Windows platform through the Visual C++ tool-chain; 

nonetheless, the .NET languages are better supported. Therefore, the most popular 

.NET language, C#, is considered as the IDE’s main language. 

 

Visual Studio is built on top of the COM [6] component framework. Extensions to it 

come in the form of macros, add-ins, and packages. Macros represent repeatable tasks 

and actions that developers can record programmatically to automate common tasks. 

Add-ins enable languages that support COM (i.e. C++, Visual Basic and .NET 

languages) to be used for extending the functionality of the IDE and controlling 

existing Visual Studio elements. Finally, packages fully expose the platform’s C++ 

interfaces to programmers who can use them to build complete replacements for all 

the elements that are available to Visual Studio. Actually, all the languages that are 

supported in Visual Studio are developed as packages. 

 

Despite the fact that COM supports the remote invocation of its objects through the 

IDispatch interface – a technology dubbed Object Linking and Embedding (OLE) 

automation [11] – Visual Studio does not provide any documentation for the usage of 

these interfaces, making hard its deployment from other processes. 

 

Visual Studio’s editor validates and maintains the syntactic structure of the edited 

program by exploiting the information that is provided by the language’s compiler. 

That enables the environment to indicate potential errors in the structure of the 
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program, support automatic completion for object members, and provide a set of 

refactoring tools. 

 

2.2.2 Eclipse 

 

Eclipse Foundation’s Eclipse IDE [26], originally designed and implemented by IBM, 

aims to offer a comprehensive service platform for integrating development and 

deployment tools for a variety of programming languages. The Eclipse platform, 

however, mainly constitutes a complete IDE for the language it is written in – Java. 

 

Eclipse employs a component framework based on the OSGi [21] specification in 

order to provide all of its functionality on top of its platform. Though that mechanism, 

Eclipse can be fully extended in the Java language as it essentially allows 

programmers to access the platform’s components and replace them by implementing 

their Java abstract interfaces. 

 

Through the mechanisms specified by the underlying OSGi standard, Eclipse can be 

deployed from other languages that implement the specification even when they are 

invoked from other processes. 

 

Lastly, Eclipse’s editor for the Java programming language utilizes the compiler to 

validate the edited program’s syntax. By using the compiler’s internal representation 

of the program, the editor provides refactoring tools and automatic symbol completion 

for Java objects. 

 

2.2.3 KDevelop 

 

KDE project’s KDevelop [16] is the official IDE of the KDE desktop environment. 

As such, it is heavily based on KDE and Qt [26] technologies. KDevelop targets 

mainly the C++ programming language but can accommodate other languages as 

well. 
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KDevelop uses the KParts [17] framework in order to support its component-based 

architecture. Through this framework, the programmer can access, extend, or replace 

completely the existing components of the IDE in C++. In addition, Kdevelop embeds 

the Python [22] interpreter in order to enable the construction of extensions in the 

Python language. 

 

Additionally, KDevelop uses KDE’s DCop [15] technology to allow the inter-process 

deployment of the IDE. However, DCop does not automatically expose a 

component’s interface; so the programmer needs to maintain a DCop interface in 

addition to the KPart-enabled one. 

 

As far as the editor is concerned, KDevelop does not retain the program’s structure 

and, thus, cannot validate the structure of the edited text. Nonetheless, it employs a 

lightweight C++ parser in order to extract the relevant symbols from the hosted 

project’s source files and present them in a completion list to the programmer when 

needed. This approach is analogous to the approach of Visual Studio’s Intellisense 

tool – for the Visual C++ language – whose only function is the extraction of the 

relevant symbols. In any case the edited program’s structure is discarded as soon as 

the symbols are extracted. 

 

2.2.4 Comparison 

 

Table 1 summarizes the aforementioned traits of the featured IDEs, including 

Sparrow. A scale from zero to three is used to evaluate the support level of each 

characteristic for each of the IDEs. The attributed grades have the following meaning: 

0. The feature is not implemented 

1. The feature is available, but it requires substantial effort in order to be utilized 

2. The feature is supported 

3. The feature is supported and can be efficiently utilized 
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Table 1 - Comparison of IDEs 

 Visual Studio Eclipse Sparrow KDevelop 

Main language C# Java Delta C++ 

Component framework COM OSGi 
Sparrow 

component 
framework 

KParts 

Extensibility 3 3 3 3 

Deployability 1 3 3 2 

Syntax analysis 3 3 3 0 

 

Comparing the evaluated IDEs with Sparrow, there are a few things worth noting. 

First of all, Sparrow’s architecture has very similar goals and capabilities with the 

Eclipse IDE. They both enforce the Aristotelian tabula rasa concept and support 

extensibility and deployment efficiently and effectively. Their main difference, apart 

from the implementation language, is the usage of components. Whereas Eclipse uses 

static interfaces for enforcing a communication protocol between components, 

Sparrow is inherently more dynamic allowing the construction and extension of 

component interfaces at runtime. Additionally, while Eclipse enables other 

programming languages to be used for the extension of the platform only when they 

implement the whole OSGi specification, Sparrow requires only an inter-component 

proxy and a target-language library to achieve the same goal. 

 

Secondly, there are fundamental architectural differences, as far as deployment is 

concerned, in Sparrow’s approach compared to the approaches of Visual Studio and, 

especially, KDevelop. Whereas Sparrow automatically exports the interface of all its 

components to both other components and remote processes, Visual Studio and 

KDevelop utilize separate mechanisms for interface exporting in these two instances. 

Additionally, the differences in component usage that were outlined for Eclipse above 

are true for both Visual Studio and KDevelop. In fact all three systems follow similar 

mechanics for utilizing their components. 

  

Lastly, Visual Studio and Eclipse, which support syntax analysis of the edited 

program, achieve this goal by utilizing the compiler and evaluating the whole 

program each time they need to construct a structured representation. In contrast, 
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Sparrow evaluates only the parts of the text that affect the representation and does so 

every time the edited program is modified in the editor. 

 

3. Dynamic Extensibility 
 

Sparrow’s core extensibility capabilities are facilitated by its component-based 

architecture. By disseminating the IDE’s functionality in distinct well-defined 

modules that expose a sensible control Application Programming Interface (API), not 

only enhances the maintainability and robustness of the IDE, but also provides the 

means to alter its functionality at runtime. Hence, dynamic extensibility in this context 

refers to the ability of the IDE to extend and alter its functionality at runtime by 

means of vertical and horizontal extensions. 

 

In the following sub-sections, the component infrastructure of Sparrow, the facilities 

it provides for extensibility and the main subsystems that were built on top of it will 

be presented. 

 

3.1 Components 

 

Software components (or Components) [7] are self-contained, reusable software units 

that encapsulate and expose a well-defined set of functionality. Components do not 

share state with other components, can be used unmodified in different contexts, and 

communicate only through their exported interfaces. 

 

Typically, components have the following traits: 

• Can be used by different applications written in a variety of programming 

languages 

• Do not have source code or binary dependencies with other components 

• Communicate with each other by exchanging messages 

• Can be distributed over the network 
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The difference between components and class objects in Object-Oriented 

Programming (OOP) languages is two-dimensional. On the one hand, OOP 

encourages classes and their objects to be used for modeling real-world entities, 

taxonomies, and the interaction between them whereas component-oriented design 

just aims to group functionality and is indifferent to taxonomical disseminations. On 

the other hand, objects usually tend to depend and share state with other objects 

whereas, by definition, components are completely isolated and self-contained. 

 

Thus, components are considered a higher level abstraction than objects. Essentially, 

components can be modeled and implemented by OOP objects. However, that does 

not mean that all objects fulfill the requirements of components. 

 

3.2 Existing Component Frameworks 

 

The Common Request Broker Architecture (CORBA) [19] is a standard that defines a 

set of specifications for creating and using software components that can be 

distributed over the network. CORBA uses an Interface Definition Language (IDL) to 

specify the exported interface of its components. The IDL interface is subsequently 

mapped to specific languages that implement the CORBA standard. That way, 

components can be created in any of the supported languages and interoperate 

seamlessly with each other. The IDL meta-compiler is used to generate automatically 

the stubs and skeletons that are essential for encoding and decoding respectively the 

objects that participate in a method invocation operation. In addition to the component 

infrastructure, the standard also defines a large set of services that can be used by 

CORBA-enabled applications. 

 

Java Remote Method Invocation (Java RMI) [24] is a mechanism for enabling the 

invocation of methods that belong to distributed Java objects. Java RMI initially 

supported only objects written in the Java programming language. However, 

subsequent releases enabled the interoperation with objects written in other languages 

as well. Java RMI does not utilize an IDL meta-compiler and achieves the automatic 

generation of skeletons and stubs through the extensive introspection data that are 

built into the language. This mechanism along with a set of rules that a java class 
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must adhere to (e.g. Java Beans [25] and OSGi Bundles [21],) essentially define a 

complete component framework. 

 

While the aforementioned systems are more focused on providing a middleware 

solution for distributed systems, Microsoft’s Component Object Model (COM) [6] 

and Mozilla Foundation’s Cross-platform Component Object Model (XPCOM) [27] 

target mainly desktop applications that run on a single machine. Both COM and 

XPCOM derive their architecture from the CORBA standard, implementing a subset 

of its specifications. Therefore, those systems also use an IDL meta-compiler to 

achieve the automatic generation of object stubs and skeletons and can be used for 

writing components in different programming languages. 

 

3.3 Proposed Component Framework 

 

Sparrow is a large scale system. However, it can be easily decomposed into distinct 

functional units with clearly defined roles and responsibilities. Consequently, it was 

decided to model these units using the component abstraction. 

  

After reviewing the major component frameworks that were available at the time of 

designing the IDE (see section 3.2,) it became clear that none of them would be 

suitable for the intended purposes. On one hand, it was not possible to use the 

component frameworks that target the Java programming language, since Sparrow is 

implemented in C++. On the other hand, the two most robust and widely used C++ 

frameworks, COM and XPCOM, were unable to elegantly satisfy the set of 

requirements that were set for Sparrow’s component system. The rationale is 

presented throughout the following sections. 

 

3.3.1 Primary Requirements 

 

The requirements that drove the design and implementation of Sparrow’s component 

infrastructure are the following: 

• Ease of use 
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• Runtime and memory efficiency 

• Ability to load and unload components at runtime 

• Ability to extend or reduce a component’s exported interface at runtime 

• Ability to make components automatically visible to other programming 

languages 

• Ability to program components in other programming languages 

 

The first two goals for the component architecture are apparent. Any software 

subsystem should be efficient and easy to use. Even much so when it constitutes a 

central part of the program and is intended to be used extensively in it. 

 

Loading and unloading components at runtime was essential for implementing 

runtime adaptation and dynamic extensibility. Enabling the components that comprise 

the interface and the functionality of the IDE to be loaded and unloaded while it is 

running allows for many fundamental and diverse variations. 

 

Another goal for the subsystem is the runtime extension or reduction of a 

component’s interface by adding or removing methods. The author of a specific 

component may choose to enable or disable some of its functionality at some point in 

time, depending on the changes of the environment under which the IDE is running. 

E.g., an online-poker-game component may choose to offer a “Bet” method as long as 

the user’s credit card has not reached its limit and disable it if it has. A discussion of 

whether poker functionality would be useful for an IDE, however, is beyond the scope 

of this Thesis. 

 

Making components automatically visible to other programming languages and 

especially to the Delta programming language is very important. Forcing the 

programmer of a component to make it available explicitly to all the supported 

languages via wrappers is tedious and error prone. Additionally, if a new extension 

language is added at a latter time to Sparrow, all the available component wrappers 

would need to be updated. 
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Apart from allowing extension languages to interact with the existing components, a 

complete extension language mechanism should allow the coding of new components 

in the extension language itself. 

 

3.3.2 Technical Overview 

 

Essentially, a Sparrow component denotes a modular software unit that provides 

encapsulated reusable functionality to the IDE and its extensions. Sparrow 

components are typically, but not always, visual in nature and have the following 

characteristics: 

 

• They can communicate with other components only through synchronous 

exchange of encoded messages 

• They can be loaded and unloaded at runtime as their code is compiled as a 

Dynamic Link Library (DLL) [12] or as Delta bytecode 

• They can form component hierarchies 

• They can emit signals that trigger the invocation of slot methods that are 

contained inside the components that are interested in it 

• They can inherit functionality from other components 

• They encapsulate a property map, a hierarchical structure of user commands, 

and versioning metadata 

 

Sparrow components are completely isolated from each other. Even if they use other 

components, they do not have hard coded dependencies with them. This is achieved 

by allowing the components to invoke the methods of other components only by 

sending messages. This isolation is further emphasized by the fact that a component is 

compiled into a DLL or Delta byte code and is loaded at runtime by the system 

whenever it is needed. 

 

Components are designed to support the construction of containment hierarchies. This 

was done to ease the management of visual components and provide an intuitive 

model for combining different components in order to produce Sparrow’s Graphical 
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User Interface (GUI). As is the case with the widgets metaphor in most GUI libraries, 

Sparrow’s components can have another component as a parent and any number of 

child components. That way, components that belong to the same hierarchical 

structure can be notified from their parent or children about various events (see 

section 3.3.3.3) and can be automatically destroyed when their parent component is 

destroyed. 

 

Signals and Slots are a flexible and intuitive mechanism for notifying interested 

clients about the occurrence of a specific event. It is also particularly useful in 

implementing the ubiquitous Observer pattern [8]. Sparrow’s component 

infrastructure enables components to emit any number of signals that are 

differentiated by a unique identifier. At the other end, any component that is 

interested in a specific signal can register, at runtime, an exported method that is part 

of its interface as a slot to that signal. The slots of all the interested components are 

called as soon as the signal is emitted. 

 

Although inheritance mechanisms are not common in other component frameworks, 

Sparrow’s components are able to inherit and reuse functionality from other 

components. However, the component inheritance does not denote an isA relationship 

between the participating components. In fact an isA relationship, as discussed in 

section 3.1, is not meaningful or desired in component-oriented architectures. 

Therefore the component inheritance in Sparrow provides a way to reuse the 

functionality of specific components in case different components exhibit similar 

properties and functionality. Sparrow makes extensive use of component inheritance. 

 

Sparrow’s components incorporate a property map that associates a property with a 

specific value. Those property values are visible to the user, who is able to change 

their value and modify the behavior of a component. The property mechanism 

provides yet another means for the user to change the behavior of the IDE at runtime. 

 

Additionally, a hierarchical structure of user commands is included in each 

component. A user command is simply a named callback to an exported method that 

is part of a component’s interface. As soon as a component is loaded, its user 

commands are merged with the existing commands and appear as options to the IDE’s 
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GUI, available for its user to invoke them. The author of a component can decide 

whether a user command will appear to the IDE’s menu-bar, its toolbar, or in a 

context menu. Despite the close connection between user commands and some visual 

elements of the IDE’s GUI, it is essential to point out that user commands by them-

selves do not have any connection with these visual elements nor depend on the 

specific GUI library that is used in Sparrow. They merely contain platform 

independent data that are interpreted by their container and are subsequently realized 

as visual elements.  

 

Lastly, each component contains a set of metadata that provide the human friendly 

name of the component, a short description of its functionality and role in the system, 

the identity of its author, and its version. These data on one hand are used for the self-

documentation of the system (see section 5) and on the other hand provide versioning 

information to the user of a component; and someone to blame when the component 

fails to work as expected. 

 

3.3.3 Implementation Details 

 

The usage of Sparrow components closely resembles the usage of COM and XPCOM 

component models. However, an Interface Definition Language (IDL) compiler is not 

utilized for the specification of the interface of a Sparrow component. Sparrow 

components do not implement a static interface; they essentially construct their 

interface at runtime by exposing a set of native methods. Thus, it can be inferred that 

Sparrow components implement a concept rather than an interface. Therefore, in 

Sparrow, a component’s concept essentially constitutes that component’s API. 

 

Sparrow’s component system makes a distinction between component classes and 

component instances. The relationship between classes and instances has solely 

runtime semantics. That means that a component instance that belongs to a specific 

class maintains a reference to a structure that is constructed at runtime and plays the 

role of its class. Thus, a Sparrow component, at a lower level, is essentially the 

runtime model of a specific component instance and its corresponding component 

class. Multiple instances of the same class share the same component class object. 
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As seen in Figure 5, a component class contains the following: (a) a set of all the 

available functions that a component exports, (b) a list of the slots that are triggered 

whenever a signal is emitted, (c) a list of signals that the component emits, (d) a set of 

properties that affect the functionality of the component, (e) a hierarchical structure of 

user commands, (f) a list of the component instances that are associated with the 

specific component class, (g) versioning metadata, (h) a reference to the base 

component class of the current class, and (i) a list of references to the component 

classes that derive from the current class. 

 

A component instance (Figure 5), contains the following elements: (a) a 

monotonically increasing serial number that identifies different instances, (b) a 

reference to the parent component instance, (c) a list of references to the child 

instances, (d) a set of properties that affect the functionality of the specific instance, 

and (d) a reference to the component class in which the current instance belongs. 

 

A component function (Figure 5), contains four elements: (a) the return type of the 

current function as string, (b) a vector of strings that represent the types of the 

function’s arguments, (c) a documentation string that describes the function, and (d) a 

native function pointer to the actual low level function that is called whenever the 

component function is invoked. 
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Figure 5 - The basic building blocks of a Sparrow Component 

 

Most of the contained elements of the basic building blocks of a Sparrow component 

(Component Class, Component Instance, and Component Function) are described in 

the previous section. Nonetheless, some of the elements and their purpose in the 

Sparrow component model require some clarification. 

 

The monotonically increasing serial number that is part of an instance is essential for 

referencing a specific component since it is merely the runtime model of a component 

instance and its corresponding class. Thus, Sparrow components can be uniquely 

referenced by the pair (component class, serial number) which represents a handle to 

a single component. Whenever a client wants to communicate with a component, it 

just needs to obtain or construct a handle to it. Using handles as a means to reference 

components has many advantages over using raw pointers. Dangling handle 

references that may be kept by a client do absolutely no harm to the system when 

accessed, whereas if raw pointers were used, the whole system would crash in case 

they were dereferenced. Additionally, handles have the advantage of being capable of 

referencing components that may reside in a different process or in a different 

language or both. 
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Property maps are present in both classes and instances. This redundancy enables the 

user to either affect the functionality of a specific component instance or the 

functionality of all the instances that belong to the same class. E.g., a source editor 

component will usually have class-wide properties for controlling the look of 

highlighted text, so that all the editors will have consistent appearance. However, it is 

preferred to have a “toggle highlight” property only as an instance property, so that 

changes to its value will affect just a specific editor. 

 

The component function structure holds the types of the target function’s arguments 

and return value. These records are used for supplying introspection information to 

the component system and are essential for bridging the native C++ types to the types 

of other programming languages (e.g. Delta) so that inter-language component 

communication can be realized. Again, the documentation string is used for the self-

documentation of the IDE. The structure also holds a pointer to the actual native 

function that is finally invoked. The native function though, is actually the skeleton 

for the real component function that is invoked. The responsibilities of the skeleton 

are the following: 

• Decode from the supplied message the arguments of the real function 

• Invoke the real function which may be a Delta or C++ function supplying the 

decoded arguments 

• Encode the return value of the function as a message 

 

Component functions can be either static or member. The difference between them is 

that member functions must be called inside the context of a specific component 

instance, whereas static functions do not require any instance. Thus, a Sparrow 

component, in addition to being the runtime model of a class and an instance, can also 

be realized simply by a component class object that holds exclusively static functions. 

 

Sparrow’s basic component framework is complemented by the Component Registry, 

the Component Loader, and the Component Factory. The Component Registry is 

responsible for holding and managing all the available component classes in the 

system. Its main role is actually being the entry point for accessing the components. 

The Component Loader is able to load Delta and C++ (DLL) components from the 
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disk on demand (see section 3.3.3.3) and register them to the Component Registry so 

that they can be used by the IDE. Lastly, the Component Factory is responsible for 

creating and initializing component instances of a given component class. It handles 

the creation of each instance by querying its corresponding class from the Component 

Registry and retrieving its constructor function; which is included in all non-static 

Component Class objects. The basic architecture of the Sparrow’s component 

subsystem can be seen in Figure 6. It is worth noting that the aforementioned 

elements are realized as Singletons [8]. 

 

 
Figure 6 - Runtime dependencies between the basic building blocks of Sparrow's component 

framework 

 

3.3.3.1 Inheritance 

 

As mentioned in section 3.3.2, component inheritance in Sparrow provides the means 

to reuse functionality between components. A component class object can inherit 

another class object. By doing so, it automatically inherits (a) the component 

functions, (b) the slots, (c) the properties, and (d) the user commands of its base class. 

 

The functions and slots are not copied to the derived class object and any base class 

function can be overridden. Therefore, the calling mechanics of the functions in a 
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component inheritance hierarchy are implemented by the message dispatching 

algorithm. Specifically, the simple lookup algorithm used for retrieving a function, 

can be seen in Figure 7. Section 3.3.3.2, additionally, outlines an example invocation 

of a function in an inheritance hierarchy. 

 

 
lookup (component, func) { 
 if func is found in component.functions then 
  return component.functions[func] 
 else if component has base class then 
  return lookup(component.baseClass, func) 
 else 
  return nil 
} 
 

Figure 7 - The recursive lookup algorithm for component functions 

 

The properties of a base class are copied verbatim to the derived class object. 

Similarly, the user commands are also copied, but with a small modification: the 

callback part of the user command, which typically comprises of the pair (component 

class, component function), is altered to reference the most derived class. Obviously, 

the component function part remains unchanged. That way the user commands point 

always to the correct function in case one is overridden. Lastly, because of the fact 

that all the user commands and properties are added to the component class object at 

runtime, it is essential for the system to synchronize their additions and removals in 

the whole inheritance hierarchy. This is the main reason why the component class 

objects maintain references to their base and derived classes (see Figure 8.) 

 

 
Figure 8 - Runtime model of classes and instances in a scenario that utilizes component inheritance 
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3.3.3.2 Invocations 

 

Sparrow components are only allowed to interact with other components through 

message passing. Thus, each exchanged message must contain (a) a reference to the 

destination object, (b) the name of object’s method that needs to be called, and (c) a 

list of values that are used as the function’s arguments. Provided that a function can 

have any type and number of arguments, the value list that is embedded inside the 

message is encoded as a data buffer and is decoded at the destination function’s 

skeleton. Messages between components are exchanged only within the IDE’s process 

(i.e. within the same address space.) Thus, whenever component A wants to call a 

specific function that belongs to component B, it simply sends a message to B 

containing the name of the method that it wants to invoke along with an encoded 

argument list that is passed to that function. Subsequently, component B returns the 

result of the invocation, i.e. the return value of the function, as an encoded buffer. 

 

The communication between the components is arbitrated by an entity called Message 

Router. Message Router is responsible for receiving requests for component 

invocations and dispatching them to the appropriate component function. The 

message exchange process through the Message Router is synchronous. That way, 

actual component functions can have “regular” function semantics: they can return 

any value that the component author wishes, and they can conveniently throw 

exceptions. This is not the case in COM or XPCOM in which all the functions return 

a predefined status value that indicates whether the invocation was successful, 

exceptions are prohibited by law, and potential return values are typically passed as 

reference-to-lvalue arguments. Allowing the component functions to have “regular” 

function semantics was deemed as important for achieving the “ease of use” goal for 

the component subsystem. 
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Figure 9 - Inter-component communication through message passing 

 

The message dispatching process can be seen clearly in the example shown in Figure 

9; where the component C wants to call the function “func”  of component B. In that 

scenario, the following steps are performed: 

1. Message Router (MR) receives a request to call function “func” of instance B1 

2. Through the Component Registry MR retrieves “Class B” entry 

3. MR queries “Class B” entry to find “func” 

4. In an unfortunate turn of events, “func” is not contained in “Class B” so the 

lookup algorithm searches for “func” recursively in its base classes and locates 

it in “Class A” 

5. MR searches and retrieves instance B1 

6. MR invokes “func” in the context of component instance B1 

 

3.3.3.3 Notifications 

 

Sparrow’s component framework implements an internal notification mechanism that 

enables components and other subsystems to be notified about changes in the state of 
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the component infrastructure. Three notification contexts are distinguished: (a) the 

context of the current instance in which an event takes place, (b) the context of the 

child instance (which is part of a containment hierarchy) in which an instance learns 

of an event that happened in one of its children, and (c) the global context in which 

events from all the components are mirrored. 

 

In Table 2 all the internal notifications that are supported by the component system 

can be seen in the leftmost column. The other columns, that reference the different 

notification contexts, indicate whether the notification is supported in a specific 

context. 

 

Table 2 - Standard internal component notifications 

Notification description Current Instance Child Instance Global 

Requested access to nonexistent class � � � 
Registered a component class � � � 

Unregistered a component class � � � 
Created first instance of class � � � 

Destroyed last instance of class � � � 
Created instance � � � 

Destroyed instance � � � 
Added a component instance to a 

hierarchy � � � 

Removed a component instance from 
the hierarchy � � � 

Destroyed a component instance � � � 
Added a component instance to a 

hierarchy as first of its class � � � 

Removed a component instance from 
a hierarchy as last of its class � � � 

Destroyed a component instance as 
last of its class � � � 

Component instance focused � � � 
Applied changed properties � � � 

Added a property � � � 
Removed a property � � � 

Added a function � � � 
Removed a function � � � 

Added a user command � � � 
Removed a user command � � � 
Merged user commands � � � 

Unmerged user commands � � � 
Added signal � � � 

Removed signal � � � 
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One issue worth discussing here is the “Requested access to nonexistent class” 

notification. This specific notification is triggered whenever a component class is 

requested from the Component Registry (e.g. as a result of a call to a specific 

component function, or a Component Factory construction operation) and is not 

available among the registered classes. On the other hand, the Component Loader 

“listens” for this specific event and when it is triggered it tries to load the missing 

component from the disk. Thus, only when the Component Loader fails to retrieve the 

missing component, the initial operation, that triggered the signal in the first place, 

fails. 

 

3.3.3.4 Component Specification Language 

 

Having the components being constructed entirely at runtime introduces many 

difficulties when authoring their code. The programmer is required to write 

boilerplate code for exporting each function that is part of a component’s interface, 

for registering user commands, for registering signals and slots, and even for creating 

the skeletons for all the functions. This is not only extremely tedious but also highly 

error-prone. 

 

Other component systems, such as COM and XPCOM, mitigate the aforementioned 

problem by having static interfaces1 and by utilizing their IDL meta-compiler that 

generates most of the boilerplate code. However, the use of an IDL meta-compiler 

was not a viable option for Sparrow. Having an immutable interface for each of the 

components, on one hand would limit their flexibility, and on the other hand would 

necessitate the implementation of an IDL for each of the supported extension 

languages (i.e., Delta.) Also, the fact that such an approach would not allow the 

extensibility of a component’s exported API at runtime, further justifies the argument 

against the deployment of an IDL meta-compiler in Sparrow. 

 

                                                 

 
1 Actually, COM and XPCOM support the construction of an interface at runtime, but in this case they 

do not provide any means to eliminate boilerplate code 



30 

Sparrow automates the generation of all the boilerplate code by introducing a Domain 

Specific Language (DSL) for authoring components. The term DSL, generally, 

describes a micro language that provides an intuitive syntax and semantics for solving 

problems that reside in a very specific and constrained domain. Sparrow’s Component 

Description DSL is implemented using a mixture of C++ templates and preprocessor 

macros (utilizing the boost preprocessor library.) To paraphrase a famous saying: “A 

snippet of code is worth a thousand and twenty four words,” hence, the basic aspects 

and usage of Sparrow’s component description DSL are shown in Figure 10. 

 

The aforementioned DSL was also extended to allow an intuitive syntax for calling 

component functions. That aspect of the DSL, effectively, automates the creation of 

function stubs. This is shown in Figure 11. 

 

 
// File: HelloWorld.h 
 
class HelloWorld : public Component { 
 DECLARE_COMPONENT(HelloWorld); 
 
public: 
 DECLARE_EXPORTED_MEMBER(void, SetValue, (const str ing& value)); 
 DECLARE_EXPORTED_MEMBER_(const string&, GetValue, (void), 
  _(“Retrieves the value”)); 
 DECLARE_EXPORTED_MEMBER(void, Print, (void)); 
 DECLARE_EXPORTED_STATIC(void, PrintValue, (const s tring& value)); 
 DECLARE_EXPORTED_MEMBER(void, Show, (void)); 
 DECLARE_EXPORTED_MEMBER(void, SlotStringShown, (vo id)); 
 
private: 
 string m_value; 
}; 
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// File: HelloWorld.cpp 
 
COMPONENT_METADATA( 
 HelloWorld,      // class 
 "HelloWorld",      // name 
 "Says hello world with style",   // description 
 "Yannis Georgalis <jgeorgal@ics.forth.gr>", // aut hor 
 "1.0"       // version 
); 
IMPLEMENT_COMPONENT(HelloWorld); 
 
COMPONENT_SET_PROPERTIES_FUNCTION(HelloWorld, table ) 
 { /* We do not need any properties */ } 
 
EXPORTED_MEMBER(HelloWorld, void, SetValue, (const string& value)) 
 { m_value = value; } 
 
EXPORTED_MEMBER(HelloWorld, const string&, GetValue , (void)) 
 { return m_value; } 
 
EXPORTED_MEMBER(HelloWorld, void, Print, (void)) 
 { PrintValue(m_value); } 
 
EXPORTED_STATIC(HelloWorld, void, PrintValue, (cons t string& value)) 
 { cout << "Hello world, " << value << endl; } 
 
EXPORTED_SIGNAL(HelloWorld, StringShown, (const str ing& str)); 
 
EXPORTED_CMD_MEMBER(HelloWorld, Show, _(“/View/Show ”), MT_MAIN) 
{ 
 this->Print(); 
 sigStringShown(m_value); 
} 
EXPORTED_SLOT_MEMBER(HelloWorld, void, SlotStringSh own, (), “StringShown”) 
{ 
 cout << “Signal StringShown TRIGGERED” << endl; 
} 
 

Figure 10 - A Sparrow component implementation in C++ 

 

 
// File: HelloWorldCaller.cpp 
 
Component* component = ComponentFactory::Instance() .Create(“HelloWorld”); 
 
Call<void (string)>(component, “SetValue”) func; 
func(“Innit?”); 
 
cout << Call<string ()>(component, “GetValue”)() <<  endl; // Prints: Innit? 
 
Call<void ()>(component, “Print”)(); // Prints: Hel lo world, Innit? 
 
Call<void (string)>(“HelloWorld”, “PrintValue”) sta ticFunc; 
staticFunc(“hey?”); // Prints: Hello world, hey? 
 
DCall<void>(component, “SetValue”)(string(“said the  component”)); 
const string val = DCall<string>(component, “GetVal ue”)(); 
 
// Prints: Hello world, said the component 
// 
DCall<void>(“HelloWorld”, “PrintValue”)(val); 
 

Figure 11 - Constructing a component instance and calling its methods 
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There are a few issues worth noting in the above examples: 

• Component function declarations are very similar to the declarations of C++ 

class functions and they also have variants for supporting a documentation 

string to be attached to them 

• The declared component functions are also legal C++ functions, and can be 

called as such 

• The part of the DSL that automates the creation of stubs has two variants: the 

“Call”, and the “DCall”. The difference is that while the Call requires the 

provision of the full signature of a component function, the DCall only needs 

its return type. However, DCall has the disadvantage of not knowing how to 

convert the types of its arguments if they are different from the component 

function’s argument types 

• A slot to a specific signal can take fewer arguments than the signal; however, 

it cannot change their order. This functionality closely resembles Qt library’s 

[28] slots 

 

Using the DSL, the amount of the code for exporting the interface of a component is 

in fact less than that required by COM or XPCOM; apart from the IDL description, 

which is quite verbose, the programmer is also required to derive from the generated 

interface in order to implement the component’s functionality. Also, since the DSL 

provides facilities for exporting user commands and describing signals and slots, it 

further reduces the amount of the required boilerplate code. 

 

3.4 Extending Components 

 

The creation of components, through the Component Factory, and the invocation of 

component functions, through message passing, do not impose any dependencies to 

concrete implementations. All the dependencies between implementations are 

implicit. That allows replacement or augmentation of components at runtime 

(horizontal extensibility). Actually, a component can be fully replaced by any other 

implementation as long as it (a) exports the same API or a superset of it, (b) emits the 

same signals or a superset of them, and (c) the functions and the signals, that are 
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replacing the originals, have similar semantic behavior in respect to the caller’s 

assumptions. 

 

Vertical extensibility through the component system is straightforward. New 

components can be registered and deployed at any time. Regardless of the 

programming language they were written in, they can use any of the other available 

components without any restriction. 

 

As mentioned above, Sparrow’s component framework, mainly due to its runtime 

nature, provides facilities to export components to different programming languages. 

Typical approaches for achieving this – apart from porting the whole component 

framework, which is CORBA’s approach – utilize a separate tool that automates the 

process of inter-language interface exporting by generating wrapper code for the 

target language. Meta-compilers, such as SWIG [3] generate wrappers by parsing the 

source language’s interface code. Sparrow’s architecture, on the other hand, enables 

third-party languages to invoke any component function by implementing and 

exporting a library to the target language (e.g. Delta) that is able to perform the 

following tasks: (a) export the component construction and query mechanism, (b) 

encode and decode the exchanged messages, and (c) perform conversions between the 

types that take part in an invocation operation (i.e. argument types and the return 

type). A language that provides the means to implement these functions is capable of 

calling and interacting with any component that is available to Sparrow. 

 

Other than the one-way communication support, the framework’s architecture also 

facilitates the construction of components in other languages, in order to enable the 

extendibility of the IDE through them. Thus, language developers can extend the 

component infrastructure with a proxy that: (a) manages the creation and destruction 

of components that are built in the other language, and (b) dispatches the component 

calls that are directed to the managed components. The proxy, along with the 

component exporting mechanism described above, effectively completes the 

requirements of a Sparrow extension mechanism through third party languages. 

 

The Delta Extensibility Layer [5] was implemented by utilizing these facilities. That 

two-way communication appoints Delta as an equal to C++ for extending the IDE’s 
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functionality. However, since Delta lacks an implementation of a Graphical User 

Interface (GUI) extension library, it cannot be used for the implementation of visual 

components. 

 

3.5 Global and Local Undo / Redo 

 

Another goal for Sparrow was the provision of an undo mechanism that is capable of 

undoing and redoing the effects – visual or not – of any operation that changes the 

state of the IDE. Sparrow achieves such goal by providing an unobtrusive undo 

subsystem, orthogonal to the component infrastructure, that is able to record and 

replay inter-component undo invocations. 

 

The main module of the undo subsystem is the Undo Manager. The Undo Manager 

offers an interface for components to register messages – as if they were calling a 

certain component function – that, when dispatched, have as an effect the cancellation 

of the current operation. Certain problems emerge, however, when, inside a single 

component invocation, multiple component functions in the call stack attempt to 

register their undo message. 

 

In the case where function F invokes function G (F → G) and F’, G’ are the reverse 

functions for F and G respectively, the registration of both the undo calls F’ and G’ 

may introduce problems when F’ also cancels the effects of G. The main assumption 

made in Sparrow’s undo subsystem is that this will always be the case. That is 

whenever F → G then F’ should always imply G’; so the registration of G’ by G will 

be discarded. In case, however, F’ is not provided then G’ can serve as a reverse 

function for both F and G. That is true for any invocation depth (F → G → H → …) 

Additionally, when F → G and F → H (F→ G, H) and F’ is not provided, then 

essentially the linear combination of G’ and H’ can serve as reverse calls for F. Again, 

that is true for any invocation breadth (F → G, H,…) 

 

Hence, Sparrow’s undo subsystem automatically enforces the aforementioned 

assumptions in order to provide an efficient – for the component programmer - 

undo/redo mechanism. By making the provision of an F’ for every function F 
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optional, the undo subsystem successfully minimizes the amount of code that is 

needed for supporting universal undo/redo functionality in Sparrow, while 

maximizing reusability. The code needed for registering an action to the Undo 

Manager can be seen in Figure 12. 

 

The multilevel characterization of the undo subsystem is attributed to its ability to 

maintain multiple undo queues (in addition to the global one) for every component 

that initiates a specific invocation. Thus, while a global undo operation cancels the 

effects of the latest invocation, an undo operation for a component cancels the effects 

of that specific component’s latest invocation. This functionality is very useful in a 

dynamic system, like Sparrow, where the addition of a faulty component can leave the 

system in an inconsistent state. Using the undo subsystem, an extension language 

proxy can cancel the changes that are imposed by a faulty script that exits prematurely 

with a runtime error. 
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// File: FakeWindow.h 
 
class FakeWindow : public Component { 
 DECLARE_COMPONENT(FakeWindow); 
 
public: 
 DECLARE_EXPORTED_MEMBER_(void, SetTitle, (const st ring& title), 
  _(“Sets the title of the window”)); 
 
 DECLARE_EXPORTED_MEMBER_(const string&, GetTitle, (void), 
  _(“Retrieves the title of the window”)); 
 
 DECLARE_EXPORTED_MEMBER(void, ClearTitle, (void));  
 
private: 
 string m_title; 
}; 
 
 
// File: FakeWindow.cpp 
 
COMPONENT_METADATA( 
 FakeWindow,      // class 
 "Fake Window",     // name 
 "Represents a window with undoable actions", // de scription 
 "Yannis Georgalis <jgeorgal@ics.forth.gr>", // aut hor 
 "1.0"       // version 
); 
IMPLEMENT_COMPONENT(FakeWindow); 
 
COMPONENT_SET_PROPERTIES_FUNCTION(FakeWindow, table) 
 { /* We do not need any properties */ } 
 
EXPORTED_MEMBER(FakeWindow, void, SetTitle, (const string& title)) 
{ 
 Undo<void (string)>(this, "SetTitle")(m_title); 
 m_title = title; 
} 
 
EXPORTED_MEMBER(FakeWindow, void, ClearTitle, (void )) 
{ 
 Undo<void (string)>(this, "SetTitle")(m_title); 
 m_title.clear(); 
} 
 
EXPORTED_MEMBER(FakeWindow, const string&, GetTitle , (void)) 
 { return m_title; } 
 

Figure 12 - A C++ Sparrow component that supports Undo/Redo 
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4. Remote Component Deployment 
 

The “meta” dimension of Sparrow is mainly enforced by creating or extending 

existing components in order to assemble a tool-chain that serves the development 

needs of specific problem domains. Nonetheless, Sparrow’s component framework, 

while being easy to extend and use, can be too intrusive for incorporating into existing 

software systems. Existing software systems may employ their own set of libraries, 

frameworks, or even use a completely different programming language. Reorganizing 

or rewriting the code of these systems for making them suitable to be hosted under the 

Sparrow tool-chain may be prohibitively expensive. 

 

To overcome the aforementioned barriers, Sparrow provides a method to deploy the 

IDE from other programs and exploit its functionality without requiring major 

changes in their infrastructure. In the following sections, the design, implementation, 

and functionality of Sparrow’s remote deployment subsystem will be presented. 

 

4.1 Technical Approach 

 

The ability to interact with the available components from other processes was 

deemed essential for the realization of the inter-process deployment goal. Enabling 

another process to invoke all the functions that are exported by Sparrow – that runs in 

its own process – allows for the complete remote manipulation of the IDE. 

 

By definition, the remote deployment of the IDE from third-party applications 

requires an Inter-Process Communication (IPC) mechanism. When designing the 

deployment mechanism of Sparrow, it was considered useful that the inter-process 

communication be implemented over a network protocol. This would enable the 

programs that deploy the IDE to run on a remote computer – different from the one 

that would run Sparrow. Thus, the remote deployment mechanism was implemented 

over a lightweight TCP/IP protocol. 
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Such implementation makes all the available components accessible to any remote 

process that can establish a connection to Sparrow’s process. However, it was also 

observed that for most remote deployment needs just a small subset of Sparrow’s 

functionality would be enough. For that reason, a library that simplifies the tasks that 

were considered essential for the deployment of the IDE was also implemented. This 

library essentially offers higher level abstractions for managing Sparrow as it 

encapsulates higher-level tasks that require more than one component invocation. 

 

4.2 Implementation Details 

 

The key elements of the remote deployment subsystem are the Message Router Client 

(MRC) and the Message Router Server (MRS). MRS runs in the same process as the 

IDE and encompasses the functionality of a TCP/IP server that listens to a predefined 

port. All established connections to Sparrow are managed by MRS which is also 

responsible for dispatching the received messages through the Message Router – the 

central point of the inter-component communication. On the other hand, the MRC is 

responsible for connecting to the MRS and forwarding all the requests submitted by 

its clients. 

 

Because all the components in Sparrow interact with each other through messages, no 

conversions need take place during the life time of a remote call. The initial message 

submitted by the remote caller is a well formed invocation message for a specific 

component that resides in the IDE process. The only job of MRC is, thus, to forward 

the message to the MRS and MRS in its turn just forwards it to the Message Router. 
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Figure 13 - Remote component invocation 

 

The remote invocation process is explained in Figure 13, where the Caller wants to 

call the function “func”  of component B. In that scenario, the following steps are 

performed: 

1. Message Router  Client (MRC) receives a request to call function “func” of 

instance B1 

2. The message that encodes the request is forwarded unmodified to the Message 

Router Server (MRS) 

3. MRS dispatches the message through the Message Router 

4. MRS subsequently sends through the connection, on which the request arrived 

in the first place, the result of the invocation (i.e. whether it was successful or 

not) and the return value of the invocation 

 

Another thing worth noting, concerning the implementation of the remote deployment 

subsystem, is that, while the TCP/IP server of MRS is running in its own thread inside 

the Sparrow process, the message dispatching process - through the Message Router - 

is actually executed from the main thread. That way, potential race conditions are 

eliminated and component programmers are not burdened with the unnecessary – in 

this context - overhead of multithreaded programming. 
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4.3 IDE Deployment API 

 

As mentioned above, it was expected that the majority of applications that would like 

to deploy Sparrow would require only a small subset of its functionality. Thus, in 

order to make it easier for programmers, Sparrow offers an API that encapsulates the 

most common functionality. The set of functions that are available to applications that 

deploy the IDE appears in Table 3. 

 

Table 3 - The exported Deployment API 

Function Description 

void OpenWorkspace (string uri) 
Opens the workspace that is referenced by the 

given URI 
void CloseWorkspace (void) Closes the current workspace 

void NewWorkspace (void) 
Creates a new workspace and makes it the 

current 

void RenameWorkspace (string name) 
Renames the current workspace to the given 

name 

void AddProject (string uri) 
Adds a project, referenced by the given URI, 

to the current workspace 
void RemoveProject (string name) Removes the project with the given name 
void NewProject (string name) Creates a new project with the given name 
void RenameProject (string name, 
 string newName) 

Renames the project with the given name to 
the given new name 

void AddFile (string projectName, 
 string uri) 

Adds the file, referenced by the given URI, to 
the given project 

void RemoveFile (string projectName, 
 string name) 

Removes the file with the given name from 
the given project 

void NewFile (string projectName, 
 string name) 

Creates a new file with the given name and 
adds it to the given project 

void RenameFile (string projectName, 
 string name, string newName) 

Renames a file, which is contained inside the 
given project, with the given name to the 

given new name 
void LoadProfile (string name) Loads the profile with the given name 
 

The deployment API has two end-points. On the client side, where the application that 

deploys Sparrow resides, the API is exported as a Dynamic Link Library (DLL). The 

same API is also mirrored at the server side, where the Sparrow process resides. In the 

Sparrow process, the deployment API is realized as a typical component - loaded on 

demand. Essentially, the client deployment API is a wrapper for the remote invocation 

of the “Deployment API” component. That way the deployment API itself maintains 

the “meta” attribute of the IDE, since in case Sparrow is deployed in a different 
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context, the API can be extended or replaced to reflect the specific needs of the 

problem domain like any other component. 

 

4.4 Examples of Use 

 

The deployment infrastructure of Sparrow enables a remote process to 

programmatically invoke the components that reside in the IDE using a similar 

method as the one used for inter-component communication. The generic method for 

calling any component through the facilities provided by the deployment library can 

be seen in Figure 14, while the use of the equivalent wrapper functions is displayed in 

Figure 15. 

 

The wrapper functions’ code is just shorthand for the invocations presented in Figure 

14. They also serve as a means to minimize the compile-time dependencies and 

include files needed for the applications that deploy Sparrow. 

 

 
// File: RemoteCaller.cpp 
 
ext::DeploymentAPI::Initialize(_T("localhost")); 
 
RCall<void (void)>("DeploymentAPI", "NewWorkspace") (); 
 
RCall<void (string)> openWs("DeploymentAPI", "OpenW orkspace"); 
openWs("C:\Etc\Passwd"); 
 
// Any component can be invoked remotely 
RCall<void (string)>("Editor", "OpenFile")("C:\Etc\ Passwd"); 
 
ext::DeploymentAPI::CleanUp(); 
 

Figure 14 - Generic remote invocation 

 

 
// File: RemoteCallerDeploymentAPI.cpp 
 
ext::DeploymentAPI::Initialize(_T("localhost")); 
 
ext::DeploymentAPI::NewWorkspace(); 
ext::DeploymentAPI::OpenWorkspace("C:\Etc\Passwd");  
 
ext::DeploymentAPI::CleanUp(); 
 

Figure 15 - Using the deployment API 
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5. Interactive Introspection 
 

The primary roles of the interactive introspection tool are the documentation and 

debugging of the system. Interactive introspection serves as a tool to extract and 

display the documentation that describes the components of the IDE and their 

functions. Also, by being interactive, it allows the programmer to fiddle with the 

components that are currently active in the system and observe their behavior in real 

time. 

 

Interactive introspection is mainly targeted at the component programmers that wish 

to extend or deploy Sparrow; it proved to be an indispensable tool during the 

development of Sparrow, as it made it possible to immediately test and observe the 

functionality of the components that were being developed. 

 

In the following sections the design, implementation, and usage of Sparrow’s 

interactive introspection will be presented. 

 

5.1 Technical Approach 

 

Interactive introspection is implemented in Sparrow as a component offering a 

graphical user interface. The said component, tentatively named Component Spy 

(CS,) extracts and displays all the built-in introspection data that are embedded inside 

components. Specifically, CS displays the following information for each component: 

• Documentation 

• Author’s name and e-mail 

• Version 

• Base component class 

• Derived component classes 

• Properties 

• Exported functions 

o Documentation 

o Return type 
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o Argument types 

• Signals 

o Argument types 

o The slots that are connected to it 

• Created instances 

o Serial number 

o Child instances 

o Properties 

 

This kind of information is provided explicitly or implicitly by the programmer when 

constructing components - using the component description DSL (see section 3.3.) 

The method of information registration for components implemented in Delta is 

described in [5]. 

 

The provided information and the way it is presented offers programmers a 

comprehensive reference for invoking components, connecting slots to existing 

signals, and understanding the organization of Sparrow’s architectural elements. 

 

 
Figure 16 - Interactive component introspection interface 
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In addition to viewing the introspection data that are encapsulated in the components, 

users can perform the following actions: 

• Unload a component 

• Configure a component by changing its properties 

• Invoke a component function 

• Remove a component function 

• Delete a component instance 

• Remove a signal from the component 

 

These actions were found to be very useful for debugging the system, or to test its 

behavior under corner cases. Unloading a component removes it from the memory 

and deletes all its instances. Removing a component function essentially makes it 

inaccessible from that point on. Correspondingly, removing a signal prevents the 

component from emitting it, and slots can no longer connect to it. Deleting a 

component instance forces the system to release its resources, remove any graphical 

elements that are associated with it, and delete all its contained child instances 

recursively. These destructive operations can be proved valuable in testing how 

components behave if one or more of the elements they depend on cease to exist. On 

the other hand, through Component Spy, the user can invoke any component function 

and see the effects of its invocation immediately. 

 

5.2 Implementation Details 

 

When Component Spy is instantiated, it queries all the components that are currently 

active and extracts all the relevant data. It subsequently builds a tree-view structure to 

organize the component data and their contained elements. After the successful 

construction of the tree-view interface, Component Spy registers itself as a listener to 

the Component Registry (see section 3.3) in order to monitor the component 

infrastructure for changes that affect its visualization structures. Specifically, 

Component Spy listens for all the global notifications (see section 3.3.3.3) and 



45 

updates the tree-view to reflect the current state of the components in order to 

maintain it synchronized. That way the visualized data are always consistent. 

 

5.3 User Interface 

 

The interface of Component Spy is comprised of a tree-view widget and a text-view 

widget. The text-view structure displays: (a) the components as top-level nodes, (b) 

the component instances as child nodes of the component nodes, and (c) the signals as 

child nodes of the component nodes. The component instances are organized in a sub-

tree that exposes their containment hierarchy (see Figure 19.) The text-view structure, 

on the other hand, displays context sensitive information that depend on the selected 

tree-view item. 

 

The text-view in Figure 17 provides additional information on the selected 

component, which is – in this case – Component Spy. Figure 18 displays the 

documentation of a function, whereas Figure 19 presents information on the selected 

instance. The icon that appears on the left of each component function is a subtle but 

bold reminder that all functions are potential bug-hives. 
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Figure 17 – Displaying the data of a component 

 

 
Figure 18 – Displaying the documentation of a component function 
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Figure 19 - Displaying a component instance hierarchy 
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6. Syntax Directed Editor 
 

The central part of any IDE is its source code editor. This is the tool that programmers 

use most of the time when developing applications. The role of an editor is to assist 

the programmer in the process of source code authoring. Typically, source code editor 

implementations in contemporary IDEs assist the programmer by providing the 

following facilities: 

• Syntax Highlighting 

• Code Folding 

• Auto-Completion 

• Syntax Validation 

 

Sparrow’s source code editor is, by design, language-agnostic, i.e., it is not restricted 

to editing only Delta code. On the other hand, the primary target of the IDE was 

Delta, and as such, Delta is the language with the most supported features. However, 

Sparrow’s source code editor can be straightforwardly extended to provide more 

enhancements for other programming languages. Hence, the editor supports all the 

aforementioned facilities for the Delta language. For other languages it supports only 

syntax highlighting and code folding. Its main contributions, however, are the real-

time syntax validation of the source code, the maintenance of the complete structure 

of the source code in an Abstract Syntax Tree form, and the ability to parse only the 

affected segments of the text during an edit operation – instead of parsing the whole 

file. The latter is the common approach that editors follow in order to support syntax 

validation. In the following sections, the architecture, implementation, and the most 

important features of Sparrow’s editor will be presented. 

 

6.1 Architecture 

 

Sparrow’s editor is implemented as a component and, thus, exports its interface to 

other components and to the applications that deploy the IDE. In order for the editor 

component to implement the functionality and user interface of a source code editor, it 

uses the “Editor Base” library that was implemented specifically for Sparrow but at 
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the same time is not bound to it. Therefore, the core functionality of the editor is 

provided by the “Editor Base” library. The editor component constitutes a lightweight 

wrapper for the editing interface that is exposed by the library and has the following 

responsibilities: (a) it exposes the configuration options as component properties (see 

section 3.3) and uses them to affect the functionality of the library, (b) it reads the 

language descriptions that are contained in a configuration file and configures the 

library accordingly, and (c) it emits signals to notify other components about the 

occurrence of significant editing events (e.g., the current line and column of the 

cursor,  whether the file is modified, etc.) 

 

The “Editor Base” library is based on and extends the Scintilla editing framework 

[14]. On the one hand, it wraps Scintilla in a class that simplifies the most common 

tasks and exposes a uniform configuration interface for affecting its functionality. On 

the other hand, the “Editor Base” library implements a plug-in mechanism – 

orthogonal to Scintilla’s functionality – that enables the extensibility of every aspect 

of the editor’s functionality through dynamically loaded plug-ins. Scintilla, by default, 

supports only the modular handling of syntax highlighting and code folding that are 

implemented by independent pieces of code, called “Lexers.” The library, of course, 

maintains this mechanism for supporting the aforementioned functionality in 

languages for which Scintilla includes suitable Lexers, but, at the same time, through 

the plug-in interface, allows for many more language-specific adaptations. Sparrow’s 

editor decides on which Lexer to install and/or which language module to load by 

looking at the extension of the edited file and executing the instructions that are 

included in its “Language Descriptions” file – an XML encoded configuration that 

describes the supported editor languages. All these architectural elements are 

displayed in Figure 20. 
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Figure 20 - Architecture of Sparrow's Source Editor 

 

For the support of the Delta programming language, the plug-in functionality of the 

“Editor Base Library” is exclusively used. Thus, the rest of this chapter will focus on 

the design and the implementation of Delta’s language module, which, in essence, 

implements all the editor features that were mentioned at the beginning of this chapter 

for the Delta programming language. 

 

In Figure 21 the architecture of Delta’s editor language module is displayed. The 

Delta Editor Interface is the entry point for the invocation of the module’s functions 

from the “Editor Base” library. The Program Description element is the structure that 

holds a hierarchical representation of the Delta program (see section 6.4.) The Delta 

Parser is the unit responsible for parsing the editor’s text and producing a convenient 

representation of the contained Delta program, i.e. a “Program Description” structure. 

Lastly, the Abstract Syntax Tree (see section 6.3) Visualizer and the Delta Scintilla 

Styler are responsible for providing a visualization of the program’s structure and 

affecting the visual representation of the source code respectively. More details about 

the role of each of these elements will be presented throughout the subsequent 

sections. 
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Figure 21 - Architecture of Editor's extension plug-in for Delta 

 

6.2 Grammar Overview  

 

As far as the editor is concerned, the most critical aspect of Delta is its grammar. The 

top level rules of Delta’s grammar, as well as an example that conforms to each rule 

can be seen in Figure 22. The complete reference of Delta’s grammar can be found in 

[23]. A delta program is essentially a set of “statements.” The realization of this 

decomposition is essential for the implementation of the incremental parsing 

functionality of the syntax-directed editor (see section 6.4.)  

 

 
Program: ε 
  | Stmts 
  ; 
 
Stmts:  Stmts Stmt 
  | Stmt 
  ; 
 
Stmt:  Expression ';' // e.g. a = 2 * c.pi * circle ["radius"]; 
  | AssertStmt  // e.g. assert a and b or c; 
  | WhileStmt  // e.g. while (false == true) {} 
  | ForStmt  // e.g. for (i = 0; i < 1821; ++i) {} 
  | IfStmt  // e.g. if (a / 5 == 3) {} 
  | ReturnStmt  // e.g. return back; 
  | Compound  // e.g. {} 
  | LoopCtrlStmt ';' // e.g. continue; 
  | TryStmt  // e.g. try foo() trap exception {} 
  | ThrowStmt  // e.g. throw this; 
  | Function  // e.g. function foo (arg1, arg1) {} 
  | ';'   // e.g. ; 
  ; 
 

Figure 22 - The top level rules of Delta's grammar in BNF 
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6.3 Abstract Syntax Trees 

 

An Abstract Syntax Tree (AST) is a finite directed, acyclic, tree data structure, where 

each parent node denotes a language operator and each of its child nodes represent its 

operands. ASTs are very popular as a means of representing the hierarchical structure 

of a language’s source. As such, they are ubiquitous as an intermediate representation 

of a program in compilers, where they are used for performing optimizations and 

producing the final, executable, code of the compiled program. 

 

Whereas, typically, ASTs do not contain nodes that represent syntactic constructs that 

do not affect the semantics of the program, the implementation reported here contains 

them. This “lossless” representation of a Delta program was deemed important during 

the design of the editor, since future extensions may introduce refactoring or 

formatting tools for which the complete syntactic representation of a program is 

essential. 

 

An exhaustive list of the AST nodes that are used for the representation of any Delta 

program can be seen in Table 4. Apparently, nodes that represent more than one 

syntactic constructs contain enough information so that they can be uniquely 

identified. Additionally, an example AST representation of a simple Delta program 

can be seen in Figure 23. 

 

Table 4 - The AST nodes used in the representation of a Delta program 

AST Node Description 

StmtsASTNode A set of Delta statements 
ExpressionListASTNode An expression list 
ArgListASTNode An argument list (a list of ids) 
UnaryKwdASTNode All unary keywords (e.g. assert) 
LeafKwdASTNode All leaf keywords (e.g. break) 
WhileASTNode While statement 
ForASTNode For statement 
IfASTNode If statement 
ElseASTNode The “else” part of an if statement 
CompoundASTNode A list of statements enclosed in ‘{‘ ‘}’ 
TryASTNode Try statement 
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TrapASTNode The “trap” part of a try statement 
FunctionASTNode A function definition 
FunctionNameASTNode The name of a function’s definition 
TernaryASTNode The ternary operator ( a ? b : c)  
PrefixOpASTNode All prefix operators (e.g. prefix ++) 
SuffixOpASTNode All suffix operators (e.g. suffix --) 
BinaryOpASTNode All binary operators (e.g. +) 
UnaryOpASTNode All unary operators (e.g. unary -) 
CallASTNode A call expression 
VariableASTNode A variable instantiation 
ConstASTNode A constant expression 
ArgASTNode An argument (id) 
TableElemASTNode A table element 
TableElemsASTNode A list of table elements 
TableIndexListASTNode A table indexed list 
TableConstructASTNode A table construction expression 
TableConstKeyASTNode A constant table key 
OtherStmtASTNode A poorly named expression statement (e.g. a = 3;) 
 

 
Figure 23 - Abstract syntax tree for a simple Delta program 

 

One last issue worth noting is that the program’s representation as a tree structure 

simplifies considerably its manipulation. Using the Visitor pattern [8] on the AST 

structure provides an intuitive way for interacting with the program’s representation. 

Furthermore, the code that manipulates the AST is separated and modularized 

effectively without resorting to tedious and error-prone switch-case constructs. 
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6.4 Incremental Parsing 

 

The Delta parser, along with the “Program Description” structure, is the central piece 

of the Delta language module. It parses a stream of text and produces a “Program 

Description” instance that contains a complete, easily processed, view of the Delta 

program that is enclosed in the editor. Specifically, the program description structure 

contains the following: 

• The AST of the Delta program that was parsed successfully 

• A list of parse errors that were encountered while parsing the Delta program 

• A list of comments that appear in the program  

• A list of text excerpts that could not be parsed 

 

All these elements encapsulate a range structure that denotes the absolute positions of 

the referenced syntactical constructs inside the editor. The difference between the list 

of parse errors and the list of excerpts that could not be parsed is that the former 

contains only the text that triggered the error, whereas the latter includes also the text 

that was discarded by the parser in order to continue parsing from a consistent state; 

hence, the former is a subset of the latter. 

 

The parser is implemented using the Bison parser generator [10] and the Flex lexical 

scanner generator [9]. Bison’s grammar rules for the Delta language are responsible 

for constructing AST nodes and building the resulting AST, bottom-up, as the 

grammatical rules are being recognized. Flex generates the lexical scanner as a C++ 

class so that it can read its input stream from a standard C++ input stream 

(std::istream.) Sparrow’s editor provides a specialization of the input stream for 

enabling clients to read the contents of the editor through the standard well-known 

interface of a C++ input stream. Thus, the resulting parser is able to parse the text 

directly from the editor’s buffer.  

 

The main trait of syntax directed editing is the maintenance of the edited program’s 

structure in a format that can be easily manipulated programmatically. As such, 

Sparrow’s editor permits the free-editing of the editor’s text, while maintaining a 

consistent view of the program in a “Program Description” structure. 
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A trivial method for achieving the aforementioned functionality would be the 

reevaluation of the whole text of the editor after every single change. Apparently, 

“changes” include the insertion/deletion of characters by the user, the invocation of 

cut/paste commands, and the insertion/deletion of text programmatically (by other 

components or applications that deploy Sparrow.) This is a perfectly viable option 

when the edited files are kept small, i.e., less than 7,000 Lines of Code (LOC.) 

However, when files get bigger, the responsiveness of the editor deteriorates 

significantly; even more so, when the visualization of the program’s AST is active 

(see section 6.5.4.) This decline in responsiveness is also evident in the editors of 

other IDEs that maintain internally a hierarchical representation of the program’s 

structure, e.g., in Eclipse’s Java source code editor. Additionally, it is important to 

note that an optimization in the speed of the – already fast – Bison/Flex generated 

parser would make no difference, as the primary bottleneck of the evaluation process 

is the generation of the graphical elements of the AST visualization. 

 

Consequently, the editor’s extension for the Delta language succeeds in eliminating 

the decrease in responsiveness when editing large files by evaluating after each 

change only the parts of the text that are affected by it. The resulting representation is 

identical to the representation that would be generated if the whole text was 

reevaluated; that is when the text constitutes a correct Delta program. When the 

parsed text contains an error, in which case the entire text is not a valid Delta program 

either, the resulting representation differs. An example of this “inconsistency” can be 

seen in Figure 24, where the user has just entered the text “f = /*” in the editor. 

However, these inconsistencies, in case of input that does not conform to the Delta 

grammar, do not render the incremental parsing approach inferior to the full-parsing 

one. In fact, the resulting representation in the case of partial-parsing is preferable, as 

it constrains potential errors in a smaller text area. 
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Figure 24 - Difference in AST in case of error; left: incremental parsing, right: full parsing 

 

That said, the algorithm used by the Delta language support module to partially parse 

only the affected text after every modification, comprises of the following steps: 

• Update the absolute position of all the elements that are affected by the change 

o Update the position of the AST nodes 

o Update the position of the errors 

o Update the position of the text that could not be parsed 

o Update the position of the comments 

• Remove all the adjacent elements that are affected by the change 

o Remove the minimum Delta statement that contains the changed text 

o If there is text that could not be parsed before the statement 

� Remove it and also remove the statement before it 

o Otherwise, remove also the statement before the minimum statement 

o If there is text that could not be parsed after the statement 

� Remove it and also remove the statement after it 

o Otherwise, remove also the statement after the minimum statement 

o Remove all the comments and errors that are contained in the region of 

the removed elements 
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• Parse only the minimum region that contains the removed elements 

• Merge the resulting representation of the newly parsed region with the main 

representation 

 

An example execution of the algorithm can be seen in Figure 25, where the 

representation of the Delta program can be seen before and after the pasting of the 

“else” text. The stylish green underline marks the region of the text that is parsed after 

a text modification. The marking of the regions of text that are parsed after a 

modification is, by default, disabled; it can be enabled, however, by pressing 

simultaneously the keys Alt-Control-P. 

 

Obviously, the operations that change the appearance of the edited text (i.e. syntax 

highlighting and folding,) as well as the update of the visual representation of the 

AST happen only in the incrementally parsed region. 

 

 
Figure 25 - Incremental parsing of text after pasting "else" 

 

6.5 Rendering 
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6.5.1 Highlighting 

 

Syntax highlighting is a function supported by all contemporary editors. It essentially 

varies the visual style of text excerpts that represent different syntactical structures of 

the target language. To be precise, syntax highlighting differentiates the visual 

representation of the types of the lexicographical tokens that constitute the 

“vocabulary” of a programming language. 

 

Despite the fact that other editors, e.g., Visual Studio’s and Eclipse’s source code 

editors, base their highlighting on the recognized lexicographical tokens, Sparrow 

editor’s Delta extension highlights the different language constructs based on their 

syntactical context. For Delta, hence, identical lexicographical tokens can have a 

completely different style depending on what they represent in a Delta program. E.g., 

in Figure 26, ids that appear as “object members” have different color from the ids 

that appear as variables. Additionally, in the same example, strings that appear as 

“table keys” (which is actually another way of accessing “object members,”) have 

different color from strings that appear as plain expressions. 

 

Syntax highlighting is implemented by an AST traversal that applies the 

corresponding style on the text whose location is indicated by the absolute positions 

that are encapsulated in AST nodes. Comments, that are separate from the AST, are 

styled by traversing the comment list of the “Program Description” structure and the 

parts of text that could not be parsed are styled lexicographically. This lexicographical 

styling is essential for giving immediate feedback to programmers when they are 

typing; otherwise, e.g., the “if” keyword of an incomplete “if” construct would be 

highlighted only after it became a complete statement and not as soon as it was typed. 

 

6.5.2 Error Marking 

 

Error marking refers to the ability of the editor to recognize and mark the syntactical 

errors that are present in the source code of a program, i.e., the parts of the program 

that do not conform to the target language’s grammar. Syntax validation is usually 

implemented, in editors that support it, with the help of the language’s compiler. 
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Visual Studio for the .NET languages and Eclipse for the Java language support 

syntax validation by invoking the compiler with the edited file as input, and obtain 

from it the parts of the text that do not conform to the grammar. Although this method 

can also recognize semantic errors, it is not immediate. The validation of the program 

is deferred until its compilation. In Sparrow’s Delta editor, syntactic errors are marked 

as such instantly – as the user types. 

 

As seen in Figure 26, errors are indicated by a wavy red underline. The 

implementation of the error marking functionality is straightforward: the contents of 

the error list field of the “Program Description” structure (see section 6.4) are styled 

with the red underline. 

 

 
Figure 26 - Editor Syntax highlighting 

 

6.5.3 Code Unit Folding 

 

Code unit folding provides the means for programmers to toggle the visibility of 

source code segments corresponding to specific syntactic elements. Its typical usage is 
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hiding the body of functions or classes so that programmers can concentrate 

undistracted on the parts of the source code they are editing. 

 

Sparrow’s Delta editor supports code folding for the following constructs: 

• While statements 

• For statements 

• If – Else statements 

• Try statements 

• Function definitions 

• Table construction statements 

 

Code folding is again implemented by an AST traversal, so the syntactic context of 

the structures that can be “folded” is known, and thus, it does not depend on isolated 

character sequences. 

 

6.5.4 AST View 

 

This facility of the Delta editor is visible in many of this chapter’s figures (e.g. see 

Figure 23.) Users can toggle the visibility of the AST visualization window by 

pressing the keys: Alt-Control-V in the editor when editing a delta source file. 

 

In addition to providing visualization of the internal AST of the edited program, this 

tree is also interactive. Selecting any visualized node selects its corresponding text in 

the editor. Right-clicking on a node, allows the user to perform any of the following 

actions: (a) delete the node’s corresponding text, (b) copy the node’s corresponding 

text, or (c) cut the node’s corresponding text. 

 

6.5.5 Tooltips 

 

Another feature of the editor’s extension for the Delta language is the provision of 

context and function sensitive tooltips when the mouse pointer remains over the 

editor’s text for a couple of seconds. When that happens, the AST node that 



61 

corresponds to the text under the mouse pointer is retrieved and information for that 

node appears in the form of a tooltip. The text displayed by the tooltip can be 

modified by extensions. 

 

So, in the default case – where the user is editing text – the displayed tooltips give 

information on the role of that text in the Delta program, i.e., they display the type of 

the text’s AST node. When the mouse pointer is dwelled over text that is marked as a 

syntax error, the explanation of that error – that is obtained from the generated Bison 

parser – is displayed. Lastly, one of the extensions of the Delta debugger [5] takes 

advantage of this functionality to display the value of variables during debugging. 

Figure 27 illustrates the different realizations of the editor’s tooltips. 

 

 
Figure 27 - Editor Tooltips under the mouse pointer 

 

6.6 Auto Completion 

 

Another universally supported function is the Auto-completion of symbols, which 

refers to the automatic suggestion of valid symbols that may appear at a specific 

position in the text of a program. Usually, editors of contemporary IDEs present the 

suggested symbols in a drop-down selection list. 
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Automatic completion of all the valid symbols in dynamic languages such as Delta is 

a very difficult issue. Delta’s objects can be extended at runtime by adding member 

variables and functions. This situation is further complicated by the fact that even the 

inheritance of Delta objects is a runtime function [23]. This essentially means that is 

practically not possible to know an object’s members without actually running the 

complete Delta program. 

 

Instead of resorting to semi-accurate heuristics to infer the member data of a Delta 

object, it was decided to offer a completion list of the symbols that were previously 

used above the point where the auto-completion takes place. 

 

The Delta editor distinguishes four kinds of symbols: 

• Object members (or object keys) 

• Functions 

• Function arguments 

• Variables 

 

So, when the user presses the dot key (‘.’) right of an id, all the previously accessed 

object members are retrieved (by traversing the AST “upwards”) and presented in a 

drop-down list. As mentioned previously, the notation “object.member” in Delta, is 

just a shorthand for the expression ‘object[“member”];’ thus when the user types the 

text ‘[“’, all the object members are, similarly, retrieved but this time they are offered 

as strings instead of plain ids. Additionally, when the user starts typing a word whose 

first three letters match existing symbols of functions, function arguments, or 

variables, their names are offered for auto-completion. The completion list for the 

aforementioned cases, which can also be activated by pressing the keys Control-

Space, can be seen in Figure 28. 
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Figure 28 - Automatic completion of symbols, and object members as ids and strings 
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7. Summary and Conclusions 
 

7.1 Summary 

 

In this Thesis, we have presented a large part of Sparrow, a circular meta-IDE for the 

dynamic object-based language, Delta. Initially, we have discussed the overall 

component architecture and the basic facilities built on top of it, like the undo 

manager and the introspector. In this context, we have outlined the primary design 

philosophy regarding architectural openness, dynamic extensibility, and customized 

programmable deployment. Additionally, we have shown particular component 

features like the support for self-embedded documentation and the introspection 

interface. Finally, we have presented the source-level editor with its multi-language 

open architecture, putting emphasis on the implementation of the plug-in to 

accommodate the Delta language. 

 

7.2 Conclusions 

 

Our choice to implement the Sparrow IDE has been dictated from various technical 

reasons, linking directly to the main objectives of providing a dynamic, circular and 

extensible platform. More specifically, the need to offer dynamic query and 

introspection of components during runtime implied that a comprehensive component 

technology could be deployed with these qualities, and we had a few choices for that, 

with the most easy to use alternative being Java and OSGi. However, since we wanted 

to support dynamic extensions of component methods as a standard feature for 

components, a method we called vertical extensibility, we could not use such 

technologies as they require that such facilities are manually introduced by 

component vendors. Finally, we wanted to allow dynamic inheritance among 

components, i.e. runtime inheritance, something that is not offered by any 

componentware technology. Overall, while our emphasis has been to offer a typical 

component infrastructure, our focus was shifted towards specific features relating to 

openness and extensibility. In this sense, our component system does not aim to 

compete with existing technologies, but to offer a layer of functionality optimally fit 
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to the needs of a dynamically extensible and deployable IDE. The latter implied that 

our work could not be hosted by popular IDEs that genuinely rely on such 

technologies, as it is the case with Visual Studio (COM backbone) or Eclipse (OSGi 

backbone.) Now, the effort to introduce on top of such technologies facilities like 

component editing and inheritance was far beyond our objectives. Hence, we 

preferred to focus on a new compact component subsystem where the specific 

required functionality would be put at place by design, rather than introduced as an 

afterthought. 

 

Along these lines, the remote deployment API, as well as the interactive introspection 

had to be built on top of the basic component infrastructure. Consequently, we 

introduced these facilities as extensions of our component subsystem: (a) introduce 

inter-process dispatching of method invocations for remotely deployed components, 

and (b) provide a direct manipulation interface to the APIs of the active components. 

One of the future extensions regarding the component system is to introduce dynamic 

inter-process inheritance among components, meaning a local component may inherit 

on-the-fly from a remote one. In our current implementation, the latter scenario is 

supported only when both components reside at the same process space, i.e. dynamic 

intra-process inheritance.  

 

One module that could be potentially implemented on top of an existing IDE platform 

is the source code editor. Nevertheless, such an approach does not essentially reduce 

the required code size, since it still requires an implementation from scratch of the 

most critical editor part: the syntax-aware editing functionality for the Delta language. 

Practically, to automate the latter it would imply the presence of true syntax-

highlighter editor generators, analogous to parser generators, the former tools 

currently missing. We put particular emphasis on true syntax highlighting, since 

although all existing editors offering highlighting configuration merely support lexical 

highlighting, the latter is improperly referred to as syntax highlighting. So, in any 

case, the implementation of this plug-in would be, for the most part, invariable. The 

graphical rendering of the editor and its editing functions that would have been 

provided by an underlying platform are supplied, in our implementation, by the 

Scintilla framework. So, in this case, we wouldn’t have gained anything by basing the 

editor on the facilities provided by other IDEs. 
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In addition to that, Sparrow will be used as an internal development tool for the 

software development division of the Human Computer Interaction (HCI) laboratory 

of the Institute of Computer Science (ICS) at the Foundation for Research and 

Technology – Hellas (FORTH.) Thus, the decision not to base Sparrow on top of an 

existing platform was further supported by the strategic decisions of the laboratory 

regarding the usage of the Delta programming language. The independence of the 

laboratory from external software systems was deemed essential for the deployment 

of Delta in future projects. 

 

In closing, we shall mention that our architectural and implementation strategies for 

Sparrow, as a component-oriented platform that can easily accommodate diverse, 

domain-specific, functionality, proved to be successful. They proved to be a robust 

approach to the development of a large scale, extensible and adaptable system such as 

Sparrow; and the proof for this is the resulting, fully functional, Integrated 

Development Environment for the Delta language. 
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