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Abstract

We suppose that the wave propagation inside a medium is modelled by a well

posed mathematical problem. Specifically, the adopted model consists of:

1. the properties of the medium (e.g., density, wave speed, attenuation, etc.)

2. the properties and the location of the source

3. the boundary conditions

4. the propagated field.

We choose to write the above problem in terms of a system of partial differential

equations with initial and boundary conditions.

The task of specifying the propagated field when the properties of the medium,

the properties and the location of the source as well as the boundary conditions

are assumed to be known, is called the Direct Problem. We suppose that we

can obtain a numerical solution for this problem, using an appropriate model.

On the other hand, an Inverse Problem arise when the propagated field

is assumed to be known by experimental measurements and the objective is to

recover the properties of the medium, or find the location and the properties of

the source, or even determine the boundary conditions. A solution for the Inverse

problem can be derived by minimizing the misfit between the measured field and

the field predicted by the model using as control parameters the unknown model

parameters.

In this work, the wave propagation in a waveguide is modelled via the parabolic

approximation and a non-local boundary condition in the form of a Neumann to

Dirichlet map is used. An Optimal Control Method using the Adjoint Operator

of the problem is exhibited for recovering the properties of the medium.
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Chapter 1

Introduction

Inverse problems arise in a variety of fields such as medical imaging, electro-

magnetic tomography, remote sensing, characterization of materials, seismology,

meteorology, geophysics, computational fluid dynamics and underwater acoustics.

According to [20], a fundamental step in the solution of most non-linear in-

verse problems is to establish a relationship between changes in the adopted

model and resulting changes in the forward modelled data. Once this relation-

ship has been established, we can refine an initial model in order to obtain an

improved fit to the observed data. In linearized analysis, the Fréchet deriva-

tive is the connecting link between changes in the model and changes in data,

i.e. evaluate quantitatively how a change in the model affects the data. There

are various techniques, e.g., standard perturbation method, sensitivity-equation

method, adjoint-equation method, etc., to derive an analytic expression for the

Fréchet derivative. However, for more complicated problems it is necessary to

parameterize the model and solve numerically for the sensitivities, i.e. partial

derivatives of the data with respect to a finite number of model parameters.

An optimal control approach to the solution of the inverse problem requires

the definition of a global error functional which quantifies the discrepancy between

8
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the measured data and the data predicted by the model, [24], [25]. The objective

is to minimize the error functional, with the unknown model parameters playing

the role of control parameters. The functional gradient (Fréchet derivative) of the

global error with respect to the unknown parameters is coupled to an iterative

scheme so as to indicate in what direction to update the model parameters in

order to reduce the global error at each iteration. In other words, the gradient

points “downhill” on the error surface in a multidimensional parameter space,

and we seek the minimum by iteratively descending on this surface. The steepest

descent or the conjugate-gradient (quasi-Newton) algorithm can be implemented

for this purpose. The point is to compute the functional gradient of the error.

A brute force approach to compute the gradient is to vary the unknown pa-

rameters in some systematic way and compute the resulting change in the error,

e.g., for a finite number of unknown parameters (say N), the partial derivatives of

the error with respect to the N parameters can be estimated by finite differences.

This requires at least N solutions by the forward model per iteration.

Adjoint method gives an analytically exact expression for the gradient which

can be computed by solving numerically two problems per iteration: the forward

and the adjoint problem. Therefore, adjoint method reduces round-off error, since

it generates derivatives at a point rather than approximating them using finite

differences at two points. It is also vastly more efficient, since it is independent

of the number of the unknown parameters.

Adjoint method is general and applicable to problems governed by a vari-

ety of field equations, time-dependent or time-independent in any number of

dimensions, e.g., the electrical potential inverse problem [20], the inverse heat-

conduction problem [21], the electromagnetic induction inverse problem [22],[23],

the inverse transport problem [24], the inverse wave propagation problem [25],

etc. The method is also independent of the geometry, source, boundary condi-

tions or data-acquisition scenarios.
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When the global error is driven to a minimum, one obtains the true values

of the unknown parameters. Convergence to a local minimum is a possibility,

but this can usually be recognized by the gradient vanishing at a location where

the global error is not small. When this happens, one can restart the descent

algorithm at a new location. Another difficulty comes from the fact that inverse

problems are ill-posed, i.e. the solutions are very sensitive to changes in input data

resulting from measurement and modelling errors, hence may not be unique. In

this case, one can impose a priori constraints upon the unknown parameters to

face out the problem.

In this work, we suppose that the wave propagation inside a medium is mo-

delled by a well posed mathematical problem. Specifically, the adopted model

consists of:

1. the properties of the medium (e.g., density, wave speed, attenuation, etc.)

2. the properties and the location of the source

3. the boundary conditions

4. the propagated field.

We choose to write the above problem in terms of a system of partial differential

equations with initial and boundary conditions.

The task of specifying the propagated field when the properties of the medium,

the properties and the location of the source as well as the boundary conditions

are assumed to be known, is called the Direct Problem. We suppose that we

can obtain a numerical solution for this problem, using an appropriate model.

On the other hand, an Inverse Problem arise when the propagated field

is assumed to be known by experimental measurements and the objective is to
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recover the properties of the medium, or find the location and the properties of

the source, or even determine the boundary conditions.

In chapter 2, we present the forward model we will use in this work for the

inversion: the wave propagation in a waveguide is modelled via the parabolic

approximation and a non-local boundary condition in the form of a Neumann to

Dirichlet map is used. In chapter 3, an optimal control method using the adjoint

operator of the problem is exhibited for recovering the properties (sound speed,

density and attenuation) of the medium, given a set of observations along a verti-

cal array. Three cost functions independent of the source strength are introduced.

Two of them are the most interesting, since they make use of the amplitude of

the observed field, only, and thus avoid errors due to inherent noise in the measu-

rements. In chapter 4, an illustration is attempted from the field of underwater

acoustic propagation. Adjoint method coupled to the steepest-descent algorithm

deals with experimental data and convergence to the true values of the unknown

parameters is achieved.



Chapter 2

The Direct problem

In this chapter we present the model we adopt for the wave propagation in

a waveguide. In section 2.1 we derive the Parabolic Equation approximation

method that the model is based on. In section 2.2 the model is constructed and

the direct problem is given in terms of an initial boundary value problem. The

way we obtain a numerical solution for the direct problem is described in section

2.3.

2.1 The Parabolic Approximation

In the twentieth century, an important contribution to the modelling of wave

propagation prediction is the Parabolic Equation (PE) approximation method.

PE models energy propagating in a cone centered on the paraxial direction.

According to [1], [2] and [3], it was Leontovich and Fock, who first applied

the method to the problem of radio wave propagation in the atmosphere, in the

mid-1940’s, in order to calculate the diffraction caused by the spherical shape of

the earth. The method was rapidly extended to more complicated cases involving

12
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atmospheric refraction. Still in the 1940’s, Malyuzhinets combined the parabolic

approximation method with geometrical optics to develop a powerful theory of

diffraction by obstacles. Russian workers pioneered the idea of simplifying the

wave equation for certain types of radio waves propagation problems and solved a

number of these problems in terms of special functions. The method was applied

to many other diffraction problems, such as high frequency scattering by obstacles

of various shapes. It has also been extensively applied to the theory of microwave,

resonators, waveguides, and antennas.

In the early 1960’s when coherent sources of optical radiation (lasers) were

developed, PE method was naturally adopted for problems of laser beam propa-

gation. In this field, the PE is called the “quasi-optical” equation. In nonlinear

optics where the index of refraction depends on the intensity, parabolic method

gives an equation known as “nonlinear Schroedinger” equation. The PE method

has also been applied to nonlinear optical pulse propagation in dielectric fibers.

Since about 1968, the parabolic method has been extensively used to study

the abstract problem of beam propagation in random media. The beams may

consist of radio waves (radars), acoustic waves (sonars), optical waves (lasers),

and so forth. This problem is equivalent to the quantum mechanical problem

of the motion of a particle in a random potential, and has been investigated by

many scientists and applied mathematicians.

In 1970’s, parabolic equations were used in several branches of physics, such

as water wave propagation, optics, seismics, underwater acoustics and latter, in

plasma physics. The progress of digital computers open the way for scientists to

search numerical solutions rather than closed-form expressions. In 1973, Hardin

and Tappert introduced the very efficient split-step Fourier algorithm, based on

fast Fourier transforms, for the solution of the PE, whereas Claerbout developed

finite-difference codes for geophysics applications. Many workers in the field of

underwater acoustics took up the PE method and huge advances were made. PE
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approximation has been proven to be a very effective model for computer imple-

mentation in a variety of fields and has been derived to deal with complicated

problems such as acoustic wave propagation in poro-elastic media or optics in

anisotropic waveguides.

Since then, interest in PE techniques has grown steadily, to the point that

now it is widely known that PE computer models give fast and accurate results

to a large class of problems.

For the following subsections, we will be based on [1], [4] and [5].

2.1.1 Derivation of Helmholtz Equation from the Wave

Equation

Starting from the hyperbolic type, homogeneous wave equation, in Cartesian

coordinates, which describes the wave propagation inside a medium of constant

density

∇2P (x, t)− 1

c2(x)

∂2

∂t2
P (x, t) = 0, x = (x, y, z), t > 0 (2.1)

and considering a point harmonic source of time-dependence e−iωt, we obtain the

elliptic type, time-independent, Helmholtz equation

∇2p(x) +
ω2

c2(x)
p(x) = 0, (2.2)

where P (x, t) = p(x) e−iωt is the propagated field, ρ is the density of the medium,

c is the propagation speed of the wave and ω is the circular frequency of the

source. It should be noted that c is time-independent, in other words we suppose

that the temporal variations of the medium are slow relative to the propagation

of the wave.

Assuming that the wave phenomenon is taking place in an axially symmetric
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environment, we can write Eq. (2.2) in cylindrical coordinates as

∂2

∂r2
p(r, z) +

1

r

∂

∂r
p(r, z) +

∂2

∂z2
p(r, z) + k2

0 n2(r, z) p(r, z) = 0, (2.3)

where z is the depth measured vertically, r is the range measured horizontally,

k0 = ω/c0 is the reference wave number, c0 is the reference propagation speed

and n(r, z) = c0/c(r, z) is the index of refraction.

2.1.2 From an Elliptic to a Parabolic Equation

Following Tappert [1], we can assume that the solution of Eq. (2.3) takes the

form

p(r, z) = H
(1)
0 (k0r) u(r, z), (2.4)

where u(r, z) is an envelope function, slowly varying in range r and H
(1)
0 (k0r)

is the zeroth order Hankel function of the first kind which satisfies the Bessel

differential equation

∂2H
(1)
0

∂r2
+

1

r

∂H
(1)
0

∂r
+ k2

0H
(1)
0 = 0. (2.5)

Substituting Eq. (2.4) into Eq. (2.3) and making use of Eq. (2.5), we obtain

∂2u

∂r2
+


 2

H
(1)
0

∂H
(1)
0

∂r
+

1

r


∂u

∂r
+

∂2u

∂z2
+ k2

0(n
2 − 1)u = 0. (2.6)

Using, next, the asymptotic form of the Hankel function for k0r À 1,

H
(1)
0 (k0r) ≈

√
2

πk0r
ei(k0r−π

4
)

and observing that

∂H
(1)
0

∂r
= H

(1)
0

2ik0r − 1

2r
≈ H

(1)
0 k0i, for k0r À 1,

Eq. (2.6) gives the simplified elliptic equation

∂2u

∂r2
+ 2ik0

∂u

∂r
+

∂2u

∂z2
+ k2

0(n
2 − 1)u = 0. (2.7)
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If we define the two operators as in [4] and [5]

P =
∂

∂r
, Q =

√
n2 +

1

k2
0

∂2

∂z2
,

Eq. (2.7) becomes

(P 2 + 2ik0P + k2
0(Q

2 − 1))u = 0 (2.8)

which is factored as follows

(P + ik0 − ik0Q)(P + ik0 + ik0Q)u− ik0(PQ−QP )u = 0. (2.9)

We observe that for range-independent media where n = n(z), PQ ≡ QP . Hence,

ignoring the last term of Eq. (2.9) and selecting only the outgoing wave component

we take

Pu = ik0(Q− 1)u

or

∂u

∂r
= ik0

(√
n2 +

1

k2
0

∂2

∂z2
− 1

)
u. (2.10)

Eq. (2.10), known as the General Parabolic Equation (GPE), is a non-local

parabolic approximation to Helmholtz’ s equation. It is important to note that

GPE is exact within the limits of the far-field approximation (k0r À 1), for range-

independent environments where only one-way wave propagation is present. In

the sequel, we assume that the range-dependence of n(r, z) is weak enough that

we can ignore the term ik0(PQ− QP )u and backscattering is negligible enough

that we can keep only the outgoing waves.

GPE is the basis for obtaining various forms of parabolic approximations, i.e.

partial differential equations in first order with respect to r. Indeed, there exist

an infinity of parabolic approximations to the elliptic equation. In the sequel, we

will present those which are preferable in numerical implementations.
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Rational Linear PE approximations

First, we write the square-root operator of the GPE in the form

√
1 + q, where q = n2 +

1

k2
0

∂2

∂z2
− 1.

It can be proven that the operator q is a function of the source radiation angle.

Rational-function approximations to the square-root operator are given by

√
1 + q ≈ a0 + a1q

b0 + b1q
, (2.11)

where the coefficients a0, a1, b0 and b1 can be chosen so as to minimize the error

over a given angle interval. We give, below, two common paraxial approximations:

• If we choose a0 = 1, a1 = 0.5, b0 = 1 and b1 = 0 we obtain the following

approximation
√

1 + q ≈ 1 + 0.5q.

Substituting this expression for the square-root operator into the GPE,

Eq. (2.10), we arrive at a PE of the form

2ik0ur + uzz + k2
0(n

2 − 1)u = 0, (2.12)

which is known as the Narrow-Angle or Standard PE (SPE). SPE

is considered accurate only for propagation angles within 10 − 15◦ off the

horizontal. A two-term Taylor expansion of the square-root operator around

q = 0 can also lead to this approximation, since q is small for propagation

near the horizontal.

• Selecting a0 = 1, a1 = 0.75, b0 = 1 and b1 = 0.25 yields

√
1 + q ≈ 1 + 0.75q

1 + 0.25q
,

which leads to the Wide-Angle PE (WAPE)

2ik0

[
1 +

1

4
(n2 − 1)

]
ur + uzz + k2

0(n
2 − 1)u +

i

2k0

urzz = 0, (2.13)

due to Claerbout. WAPE is valid for propagation angles up to about 40◦.
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2.1.3 Elliptic versus Parabolic

The principal advantage of the parabolic wave equation over the elliptic Helmholtz

equation is that the PE is a one-way wave equation which can be solved by a

range-marching solution technique. Since PE is in first order with respect to r,

the field is advanced one step at a time in range using only information about

the field at previously computed ranges. Furthermore, one solves for the slowly

varying envelope function u(r, z) itself, so the computations do not have to be

done on the scale of wavelength. Consequently, PE solution is much cheaper to

obtain than solving the elliptic Helmholtz equation both in memory and running

time savings.

In contrast with the parabolic initial boundary value problem, the elliptic

boundary value problem requires a specification of vertical boundaries conditions,

around the source. In addition, the usual outgoing radiation condition does

not apply to an environment with horizontal variations and therefor difficulties

arise when a range-dependent environment with non-horizontal boundaries must

be handled. The method most commonly used in this case is the parabolic

approximation method.

Nevertheless, we must not forget that PE is an approximation to the elliptic

Helmholtz equation and is derived under some assumptions. Thus, it must be

kept in mind that the error could be large whenever a PE is used.

2.2 The model

It should be useful to recapitulate the assumptions and approximations we have

made in section 2.1, since in the sequel, the wave propagation is modelled by

the parabolic equation. Firstly, we are in a two dimensional (axially symmetric)

environment, where a monochromatic source is located. Inside the propagation
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medium the index of refraction can depend on depth but it is strictly weakly

range-dependent. Secondly, we make the far-field assumption, in other words,

we are interesting in the propagated field at a range much greater than the

wavelength. We also neglect the backscattered field. Finally, we assume that the

source radiation angle is small.

We can now specify the waveguide, the source and the boundary conditions,

in order to obtain a well-posed initial boundary value problem.

2.2.1 The Waveguide

In this work, we consider a semi-infinite domain D = {0 ≤ r < ∞, 0 ≤ z < ∞},
Fig. 2.1, which can consist of L + 1, horizontal layers:

• a layer D1 = {0 ≤ r < ∞, 0 ≤ z ≤ z1}, of depth z1, constant density ρ1 and

propagation speed c1(r, z) varying in both range r and depth z. The index

of refraction is n1(r, z) = c0/c1(r, z), where c0 is the reference propagation

speed. n1 is assumed to be weakly range-dependent.

• L− 1 intermediate layers Dl = {0 ≤ r < ∞, zl−1 ≤ z ≤ zl} for l = 2, ..., L,

of constant density ρl and propagation speed cl. For the index of refraction

we have

n2
l =

(
c0

cl

)2

(1 + iαβl) ,

where βl is the attenuation in Dl. The thickness of each layer is dl = zl−zl−1.

• a semi-infinite lower layer DL+1 = {0 ≤ r < ∞, zL ≤ z < ∞}, of constant

density ρL+1 and propagation speed cL+1. For the index of refraction we

have

n2
L+1 =

(
c0

cL+1

)2

(1 + iαβL+1) ,

where βL+1 is the attenuation in DL+1.
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ρ1, c1(r, z), β1
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ρ2, c2, β2

z2
...
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zS source•

Figure 2.1: The waveguide.

α is a constant depending on the units of the attenuation. Here the attenuation

is measured in dB/wavelength, so α =
1

27.287527
.

The initial field at range r = 0 is given by a point harmonic source which is

located at range r = 0 and depth z = zs inside D1. We also suppose that at depth

z = 0 there exist a perfectly reflecting interface, whereas at z →∞ Sommerfeld

radiation condition holds. This means that the energy which is radiated from the

source scatters to infinity and no energy may be radiated from infinity into the

field.

2.2.2 The Source

Analytic or numerical sources can be used in order to model a point source.

Particularly, we need a beam-limited source with an aperture that is compatible

with the angular limitations of the PE.

A numerical source can be obtained by using as initial data a numerical solu-

tion of the elliptic wave equation in a small range containing the source.

In this work we will prefer an analytic source. The analytic source functions
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are designed to closely match the far-field result for a point source solution of the

Helmholtz equation. For the SPE, Tappert [1] propose a Gaussian source of the

form

u(0, z) =
√

k0 e−k2
0(z−zs)2/2.

However, WPE require a more wide-angle source. According to [5], a good choice

is a weighted Gaussian source of the form

u(0, z) =
√

k0

(
1.4467− 0.4201k2

0(z − zs)
2
)
e−k2

0(z−zs)2/3.0512,

known as Greene’s source.

The perfectly reflecting interface at z = 0 produce a negative image of the

source and therefore an appropriate initial condition is given by

u(0, z)− u(0, z + 2zs).

2.2.3 The Boundary Conditions

As pointed out in subsection 2.1.3, numerical solutions of a Parabolic Equation

are achieved by marching the field in the r-direction. The perfectly reflecting in-

terface of the considered waveguide can be simulated by imposing a zero Dirichlet

condition at z = 0, which is easily implemented in any numerical solution scheme.

The simulation of the lower boundary condition is more complicated, since a

semi-infinite problem in the z-direction with a radiation condition at infinity, must

be transformed to a problem in a finite domain with an appropriate boundary

condition.

Radiation conditions are typically handled with a false layer, [4], [5]. Speci-

fically, a common approach is to add an artificial absorption layer at a depth zf

below the lower interface. The thickness df of the absorption layer is given by

df = zc − zf . A zero boundary condition is imposed at the computational boun-

dary zc. The absorption layer is usually modelled by introducing an exponentially
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increasing with depth in the layer, wave attenuation in the index of refraction.

Although zc must be placed several wavelengths below zf , so as to ensure that

no significant energy is reflected from the boundary, there is not a prescribed

depth zf , where the artificial absorption layer should be located. Nevertheless,

this approach is sufficient for most practical applications.

Correct computational boundary conditions were first introduced by Papadakis

in the PE Workshop I (March 1982) [7], in the form of a non-local impedance con-

dition for the SPE. Exact non-local bottom boundary conditions for the WAPE

have presented by Papadakis in the PE Workshop II (May 1991) [8] and in [9].

Impedance boundary conditions have also derived for the case of an elastic lower

layer, [10], as well as for a slopping lower interface, [11].

In particular, in Papadakis’ approach the impedance boundary condition is

given in terms of an integral along the lower interface of the semi-infinite domain,

or along a computational horizontal interface, below the actual, lower interface.

The basic assumption in this approach is that below the interface (actual or com-

putational) the medium is homogeneous. This technique avoids the introduction

of an artificial absorption layer and consequently reduces the computational do-

main as well as the computing time, since the computational boundary is placed

at the lower interface or a few ∆z below this.

Different forms of non-local boundary conditions have also been introduced

into the parabolic equations models, [12], [13], [14], [15], [16].

2.2.4 Impedance Formulation

In this work, we will make use of a non-local impedance boundary condition,

due to Papadakis. We follow the same process as in [7] and [10]. We choose to

place the computational boundary at some depth z = zc with zc ≥ zL, where

the impedance condition is imposed on. Doing so, we suppose that the wave
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penetrate the intermediate layers Dl, for l = 2, ..., L and the reflections come

mainly from DL+1.

Derivation of the Impedance Boundary Condition for the SPE

Firstly, we assume that the wave propagation inside the considered waveguide is

described by Eq. (2.12) (SPE). Next, we divide the semi-infinite domain D into

the interior domain DI = {0 < r < ∞, 0 ≤ z ≤ zc} and the exterior domain

DE = {0 < r < ∞, z ≥ zc}. We can write now the continuity conditions that

must hold across the interface at zc

uI(r, zc) = uE(r, zc),
1

ρI

uI
z(r, zc) =

1

ρE

uE
z (r, zc) (2.14)

where uI and uE, as well as ρI and ρE are the field and the density in DI and

DE, respectively.

Secondly, we consider the following Fourier transform pair

F (λ) =
∫ ∞

−∞
e−ik0(λ−1)r/2 f(r) dr, (2.15)

f(r) =
k0

4π

∫ ∞

−∞
eik0(λ−1)r/2 F (λ) dλ. (2.16)

Applying the transform of Eq. (2.15) to Eq. (2.12) and making use of the following

Fourier transform properties

dn

drn
f(r) =

(
ik0

2
(λ− 1)

)n

F (λ) and f(r) g(r) = (F ∗G)(λ),

where ∗ denotes convolution, we obtain

U I
zz(λ, z) + k2

0 (N2
I ∗ U I)(λ, z)− k2

0 λ U I(λ, z) = 0, for z < zc. (2.17)

UE
zz(λ, z) + k2

0 (n2
E − λ) UE(λ, z) = 0, for z ≥ zc. (2.18)

where N2
I (λ, z), U I(λ, z) and UE(λ, z) is the Fourier transform of n2

I(r, z), uI(r, z)

and uE(r, z), respectively. nI and nE is the index of refraction in DI and DE,

respectively.
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The solution of Eq. (2.18) which satisfies the radiation condition at z → ∞
is given by

UE(λ, z) = A(λ) eik0(n2
E−λ)1/2z. (2.19)

By applying the transform to the Eqs. in (2.14) and then taking the quotient of

the two equations, we obtain

U I
z (λ, zc)

ρIU I(λ, zc)
=

UE
z (λ, zc)

ρEUE(λ, zc)
. (2.20)

Finally, the substitution of UE(λ, zc) and UE
z (λ, zc) by the Eq. (2.19) in Eq. (2.20),

leads to the impedance condition

U I(λ, zc) = − i

k0

ρE

ρI

(n2
E − λ)−1/2 U I

z (λ, zc). (2.21)

Applying now the inverse transform to Eq. (2.21) we get

u(r, zc) = − i

4π

ρE

ρI

∫ ∞

−∞
eik0(λ−1)r/2 (n2

L+1 − λ)−1/2 Uz(λ, zc) dλ, (2.22)

where we have dropped the superscript I , ρE and nE have been replaced by ρL+1

and nL+1, the density and the index of refraction of the lower layer, respectively,

whereas ρI is given by

ρI =

{
ρL, if zc = zL;

ρL+1, if zc > zL.
.

Using the transform representation of Uz(λ, zc), interchanging the order of

integration and taking into account that u(r, zc) = 0 for r ≤ 0, Eq. (2.22) gives

u(r, zc) = − i

4π

ρL+1

ρI

∫ r

0
uz(s, zc)

∫ ∞

−∞
eik0(λ−1)(r−s)/2 (n2

L+1 − λ)−1/2 dλ ds. (2.23)

Making use of the Fourier integral tables in [17] for the inside integral of Eq. (2.23),

we get

u(r, zc) =
∫ r

0
uz(s, zc) G(r − s, zc) ds, (2.24)

where

G(r − s, zc) = −
√

i

2πk0

ρL+1

ρI

eik0(n2
L+1−1)(r−s)/2 (r − s)−1/2, (2.25)
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which is the desired impedance condition for the problem. This condition gives

the field at a range r on the computational interface at zc in terms of its normal

derivative, multiplied by a phase factor depending on the characteristics of DE,

and integrated along the computational interface, from range zero to the present

range.

In [8], Papadakis applies the impedance boundary condition for the SPE to

the WAPE boundary value problem with excellent results. This is justified by

the fact that both SPE and WAPE are approximations to the GPE. In the sequel

we will follow this combination for convenience, since the derivative of G with

respect to the unknown parameters must be calculated for the inversion.

2.2.5 The Initial Boundary Value Problem

We can write now, the well posed initial boundary value problem, modelling the

wave propagation in the waveguide of Fig. 2.1, in the operator form

Lu = 2ik0

[
1 +

1

4
(n2 − 1)

]
ur + uzz + k2

0(n
2 − 1)u +

i

2k0

urzz = 0

u(0, z) = S(z, zS), source condition at z = zS

u(r, 0) = 0, surface condition

u(r, zc) =
∫ r

0
uz(s, zc) G(r − s, zc) ds for z = zc





(2.26)

where S(z, zS) is the Greene’s source described in subsection 2.2.2.

The non-local boundary condition along the computational boundary at z =

zc above, is called Neumann to Dirichlet (NtD) map because it is in the form of

a convolution integral. The kernel G(r − s, zc) is the restriction of the Greene’s

function, of the parabolic operator in the region {0 < r < ∞, z ≥ zc}, along

the computational boundary at z = zc. As we justified in subsection 2.2.4, in

the sequel we assume that the parabolic operator in this region, is the standard

parabolic operator, hence G is given by Eq. (2.25).
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2.3 Numerical Implementation

A variety of finite-difference schemes (explicit or implicit) can be applied to the

parabolic wave equation. Implicit finite-difference methods are faster than ex-

plicit ones. They are also unconditionally stable. IFD code developed by Lee

and Botseas [18] implements an implicit finite-difference scheme and gives ac-

curate numerical solutions for both narrow and wide angle PE. The Impedance

boundary condition for the SPE, due to Papadakis, has been incorporated in the

IFD code, [19]. The parabolic code used in this work is the latest version of

the IFD+Impedance code developed at IACM in FORTH. This code implements

impedance boundary conditions for both SPE and WAPE.

For the following subsections, we will be based on [5].

2.3.1 Interface Treatment

The correct treatment of wave reflection and transmission at the horizontal in-

terfaces of a stratified medium with density, propagation speed and attenuation

contrasts is of paramount importance to a realistic modelling of propagation in

a waveguide.

We consider the far-field Helmholtz equation given by Eq. (2.7). The conti-

nuity conditions that must hold across the interfaces at zl are

ul(r, zl) = ul+1(r, zl),
1

ρl

ul
z(r, zl) =

1

ρl+1

ul+1
z (r, zl), for l = 1, ..., L. (2.27)

L is the number of the horizontal interfaces separating the medium, see Fig. 2.1.

We next define the computational domain Dcomp = {0 ≤ r ≤ R, 0 ≤ z ≤ zc}
and discretize it in N ×M equal grids of dimension ∆r ×∆z, so that r = n∆r,

for n = 0, ..., N and z = m∆z, for m = 0, ...,M . Note that R = N∆r is the max

range and zc = M∆z is the max computational depth. We also define Ml so that
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zl = Ml∆z, for l = 1, ..., L.

Dl: The field ul(r, zl) in Dl on the interface at z = zl satisfies Eq. (2.7)

∂2ul

∂r2
+ 2ik0

∂ul

∂r
+

∂2ul

∂z2
+ k2

0(n
2
l − 1)ul = 0. (2.28)

Denoting ul by un
Ml

, we can introduce a Taylor series expansion of un
Ml−1

upon un
Ml

un
Ml−1 = un

Ml
−∆z

∂un
Ml

∂z
+

(∆z)2

2

∂2un
Ml

∂z2
+ ...

and solve for the second derivative of ul to obtain

∂2ul

∂z2
= − 2

(∆z)2
(ul − un

Ml−1) +
2

∆z

∂ul

∂z
.

Substituting the above expression for the second derivative in Eq. (2.28) we

can write

∂ul

∂z
= −∆z

2

[
∂2ul

∂r2
+ 2ik0

∂ul

∂r
+ k2

0(n
2
l − 1)ul − 2

(∆z)2
(ul − un

Ml−1)

]
.

(2.29)

Dl+1: Let ul+1(r, zl) be the field on the interface at z = zl, in Dl+1. If we

introduce a Taylor series expansion of un
Ml+1 upon un

Ml
, such that

un
Ml+1 = un

Ml
+ ∆z

∂un
Ml

∂z
+

(∆z)2

2

∂2un
Ml

∂z2
+ ...

or

∂2ul+1

∂z2
=

2

(∆z)2
(un

Ml+1 − ul+1)− 2

∆z

∂ul+1

∂z
,

it is easy to derive for ul+1 a similar equation as above.

∂ul+1

∂z
=

[
∂2ul+1

∂r2
+ 2ik0

∂ul+1

∂r
+ k2

0(n
2
l+1 − 1)ul+1 +

2

(∆z)2
(un

Ml+1 − ul+1)

]

×∆z

2
. (2.30)
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In order to satisfy the interface conditions in Eqs. (2.27), we require that

ul = ul+1 = u in Eqs. (2.29) and (2.30). Next we multiply Eq. (2.29) by
1

ρl

and

Eq. (2.30) by
1

ρl+1

and equate the two right-hand-sides to obtain

∂2u

∂r2
+ 2ik0

∂u

∂r
− k2

0u +
ρl+1

ρl + ρl+1

(
n2

l +
ρl

ρl+1

n2
l+1

)
k2

0u

+
2

(∆z)2

ρl+1

ρl + ρl+1

(
un

Ml−1 −
ρl + ρl+1

ρl+1

un
Ml

+
ρl

ρl+1

un
Ml+1

)
= 0 (2.31)

This is the far-field Helmholtz equation valid along the horizontal interfaces at

z = zl, for l = 1, ..., L. Inside the layers where n and ρ are constant, Eq. (2.31)

reduces to

∂2u2

∂r2
+ 2ik0

∂u2

∂r
+ k2

0(n
2 − 1)u2 +

un
m−1 − 2un

m + un
m+1

(∆z)2
= 0,

for m = 0, ..., M1 − 1,M1 + 1, ..., ML − 1,ML + 1, ..., M

which is the Eq. (2.7) with the second depth derivative replaced by a central

finite-difference form.

If we set

Γzzu =
2

(∆z)2

ρl+1

ρl + ρl+1

(
un

Ml−1 −
ρl + ρl+1

ρl+1

un
Ml

+
ρl

ρl+1

un
Ml+1

)
,

n =
ρl+1

ρl + ρl+1

(
n2

l +
ρl

ρl+1

n2
l+1

)
− 1

and

G = k2
0n + Γzz,

we can write Eq. (2.31) in the form

∂2u

∂r2
+ 2ik0

∂u

∂r
+ Gu = 0

which, with

G = k2
0(Q

2 − 1),
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is identical to Eq. (2.8). Following the same procedure as in subsection 2.1.2 we

can write the one-way wave equation (GPE)

∂u

∂r
= ik0(Q− 1)u

= ik0

(√
1 + q − 1

)
u, (2.32)

where q =
G

k2
0

.

2.3.2 The Numerical Scheme

IFD code solves Eq. (2.32) using a Crank-Nicolson finite-difference scheme

un − un−1

∆r
= ik0

(√
1 + q − 1

)
un + un−1

2

or [
1− ik0∆r

2

(√
1 + q − 1

)]
un =

[
1 +

ik0∆r

2

(√
1 + q − 1

)]
un−1.

A rational-function approximation to the square-root operator is used, given by

Eq. (2.11). Taking into account the definition of q, assuming that the operator

b0+b1(n+
Γzz

k2
0

) remains constant across a range step, making use of the expressions

for Γzz and n, and after some calculations, we obtain

un
Ml−1 + Xun

Ml
+ Run

Ml+1 =
w2

w′
2

(
un−1

Ml−1 + Y un−1
Ml

+ Run−1
Ml+1

)
(2.33)

where

X =
ρl + ρl+1

ρl+1

[
k2

0(∆z)2

2

(
w′

1

w′
2

)
− 1

]
+

k2
0(∆z)2

2

[
(n2

l − 1) +
ρl

ρl+1

(n2
l+1 − 1)

]
,

Y =
ρl + ρl+1

ρl+1

[
k2

0(∆z)2

2

(
w1

w2

)
− 1

]
+

k2
0(∆z)2

2

[
(n2

l − 1) +
ρl

ρl+1

(n2
l+1 − 1)

]
,

R =
ρl

ρl+1
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and

w1 = b0 +
ik0∆r

2
(a0 − b0),

w′
1 = b0 − ik0∆r

2
(a0 − b0),

w2 = b1 +
ik0∆r

2
(a1 − b1),

w′
2 = b1 − ik0∆r

2
(a1 − b1).

We can complete the IFD formulation if we extend the solution given by Eq. (2.33)

and collect the solution over M mesh points in depth, into a global matrix solution



X1 R1

1 X2 R2

. . . . . . . . .

1 XM−2 RM−2

1 XM−1







u1

u2

...

uM−2

uM−1




n

+




u0

0
...

0

uM




n

=

(
w2

w′
2

)




Y1 R1

1 Y2 R2

. . . . . . . . .

1 YM−2 RM−2

1 YM−1







u1

u2

...

uM−2

uM−1




n−1

+




u0

0
...

0

uM




n−1

(2.34)

where un−1
0 = un

0 = 0, according to the surface condition and un−1
M , un

M is the

field at zc in the initial and the advanced range level, respectively. Note that this

solution involves two tridiagonal matrices, which can be easily symmetrized by

multiplying through row-wise by the appropriate density ratios, i.e. R1 in row 2,

R2 in row 3, etc. IFD computer code solves Eq. (2.34) for every step in range,

until the max range R.

2.3.3 Boundary Treatment

This subsection is based on [9], [10] and [19].
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In order to incorporate the impedance boundary condition in the above nu-

merical scheme, we make use of the convolution property and write Eq. (2.24) in

the form

u(r, zc) = K
∫ r

0
uz(r − s, zc) eiks s−1/2 ds, (2.35)

where K = −
√

i

2πk0

ρL+1

ρI

and k =
k0

2
(n2

L+1 − 1).

Discretizing, we have

u(n∆r, zc) = K
n−1∑

j=0

∫ (j+1)∆r

j∆r
uz(n∆r − s, zc) eiks s−1/2 ds

≈ K
n−1∑

j=0

eikj∆r uz((n− j)∆r, zc)
∫ (j+1)∆r

j∆r
s−1/2 ds

= 2K
√

∆r
n−1∑

j=0

eikj∆r uz((n− j)∆r, zc) (
√

j + 1−
√

j)

= 2K
√

∆r uz(n∆r, zc)

+ 2K
√

∆r
n−1∑

j=1

eikj∆r uz((n− j)∆r, zc) (
√

j + 1−
√

j).

(2.36)

We suppose that Eq. (2.36) holds in a small neighborhood of the computational

interface and specifically for zc−∆z < z < zc, where ∆z is the depth step. Thus,

we obtain a differential equation of the form

uz(n∆r, z)−(2K
√

∆r)−1 u(n∆r, z) = −
n−1∑

j=1

eikj∆r uz((n−j)∆r, z) (
√

j + 1−
√

j).

(2.37)

If we multiply the two parts of Eq. (2.37) by e−(2K
√

∆r)−1z and then integrate

from zc −∆z to zc we obtain

uz(n∆r, zc) = e(2K
√

∆r)−1∆z u(n∆r, zc −∆z)

− e(2K
√

∆r)−1zc

n−1∑

j=1

eikj∆r (
√

j + 1−
√

j) (2.38)

×
∫ zc

zc−∆z
uz((n− j)∆r, z) e−(2K

√
∆r)−1zdz.
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We can approximate the integral in the right-hand side of the Eq. (2.38) by

∫ zc

zc−∆z
uz((n− j)∆r, z) e−(2K

√
∆r)−1zdz ≈ e−(2K

√
∆r)−1(zc−∆z/2)∆z

×u((n− j)∆r, zc)− u((n− j)∆r, zc −∆z)

∆z
.

Substituting this expression for the integral in Eq. (2.38) we finally take

u(n∆r, zc) = e(2K
√

∆r)−1∆z u(n∆r, zc −∆z)

− e(4K
√

∆r)−1∆z
n−1∑

j=1

eikj∆r (
√

j + 1−
√

j)

× [u((n− j)∆r, zc)− u((n− j)∆r, zc −∆z)].

or

un
M = E1un

M−1 −
√

E1SUM1, (2.39)

where

E1 = e(2K
√

∆r)−1∆z

and

SUM1 =
n−1∑

j=1

eikj∆r
(√

j + 1−
√

j
)(

un−j
M − un−j

M−1

)
.

We can derive from Eq. (2.34) the following equation

un
M−2 + XM−1u

n
M−1 =

w2

w′
2

(
un−1

M−2 + YM−1u
n−1
M−1

)
+ un−1

M − un
M ,

which using Eq. (2.39) becomes

un
M−2 + (XM−1 + E1)un

M−1 =
w2

w′
2

(
un−1

M−2 + YM−1u
n−1
M−1

)
+ un−1

M +
√

E1SUM1

and the matrix equation is modified so that it can be solved for the unknown

vector un.



Chapter 3

The Inverse Problem

In this chapter the Inverse Problem is manipulated via the Optimal Control

Adjoint Method. Specifically, in Section 3.1 the inversion problem is put into the

form of an optimization scheme. In Section 3.2 the adjoint problem to the direct

problem is formulated, and the necessary adjoint non-local boundary conditions

are derived, which also have the form of a NtD map. In Sections 3.3 and 3.4 the

tangent linear model and three choices of cost functions are defined which lead

to three different initial conditions for the adjoint problem. In Section 3.4 the

desired formula for evaluating the gradient of the cost function is derived and an

analytic multiple frequency adjoint formulation is attempted. In Section 3.5, the

numerical implementation of the inversion scheme is described, for both a single

and multiple frequency cases.

This chapter is based on [26] and [27].

33
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Figure 3.1: The optimal control problem.

3.1 The Optimal Control Method

Assume that an experiment is conducted in a waveguide, as in Fig. 3.1, with the

objective to recover the parameters ρL+1, cL+1 and βL+1 (density, wave speed

and attenuation) of the lower layer from the observed complex field uobs(R, z)1=

u(ρL+1, cL+1, βL+1, R, z) measured by a vertical array of receivers at a range R

from the source.

Given an initial guess (ρ0, c0, β0) of the parameters of the lower layer, an ap-

plication of the propagation model of Eq. (2.26) will give the predicted complex

field u(ρ, c, β, R, z) at the range R. At this point a cost function J(ρ, c, β) is intro-

duced, which is a measure of the mismatch between the observed field uobs(R, z)

and the predicted field u(ρ, c, β, R, z).

The task of recovering ρL+1, cL+1 and βL+1 from uobs, can be viewed as a con-

trol problem, with dynamics the parabolic boundary value problem, the control

parameters being ρ, c and β varying over a compact domain of the Euclidean

space and the cost function as defined below.

1In the sequel uobs represents the observed parabolic field, i.e. the quotient of the observed

field divided by the outgoing Hankel function.
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The cost function of a control problem is usually a quadratic function of

the difference u(ρ, c, β, R, z) − uobs(R, z), so that, in seeking the optimal vec-

tor (ρL+1, cL+1, βL+1) a minimization process can be applied leading to a local

minimum of the function J(ρ, c, β).

One choice of J(ρ, c, β) is

J(ρ, c, β) =
1

2

∫ H

0
|u(ρ, c, β, R, z)− uobs(R, z)|2 dz . (3.1)

From the above expression it is clear that

J(ρL+1, cL+1, βL+1) = 0 and ∇J(ρL+1, cL+1, βL+1) = 0.

It can be also observed that in the domains

{ρ, c, β | ρ ≥ ρL+1, c ≥ cL+1, β ≤ βL+1}

and

{ρ, c, β | ρ ≤ ρL+1, c ≤ cL+1, β ≥ βL+1}

as well as in a small neighborhood of (ρL+1, cL+1, βL+1),

∇J(ρ, c, β) ≥ 0 and ∇J(ρ, c, β) ≤ 0, respectively.

Hence, for each choice of (ρ, c, β) in the above neighborhood, if

∇J(ρ, c, β) =

(
∂J

∂ρ
,
∂J

∂c
,
∂J

∂β

)

could be computed, then J(ρ, c, β) could be driven to zero through the sequences

ρn+1 = ρn − αρ
∂J(ρn, cn, βn)

∂ρ

cn+1 = cn − αc
∂J(ρn, cn, βn)

∂c
(3.2)

βn+1 = βn − αβ
∂J(ρn, cn, βn)

∂β

where α = (αρ, αc, αβ) a scaling factor. As n → ∞, then lim
n→∞ ρn = ρL+1,

lim
n→∞ cn = cL+1 and lim

n→∞ βn = βL+1.

The adjoint method enables us to compute ∇J(ρ, c, β) for each choice of ρ,c,β

from the direct field u(ρ, c, β, r, zc) and the adjoint field v(ρ, c, β, r, zc).
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3.2 The Adjoint Problem

We write the operator L of the WAPE in (2.26), in the form

Lu = Aur + uzz + Bu +
i

2k0

urzz = 0, (3.3)

where A = 2ik0

[
1 +

1

4
(n2 − 1)

]
and B = k2

0(n
2 − 1). In the sequel the adjoint

boundary value problem to the direct problem in (2.26) is formulated, using as

inner product

(f, g) =
∫ R

0

∫ zc

0
f(r, z) g(r, z) dz dr,

Applying this inner product in Eq. (3.3), we obtain

(Lu, v) = 0. (3.4)

Now let L? represent the adjoint operator to the operator L. L? is defined by

the following identity

(Lu, v) = (u, L?v) . (3.5)

In order to specify L?, we take the first part of (3.5), integrate by parts and use

the surface condition of the direct problem, in (2.26). After some calculations we

obtain

(Lu, v) = (u, L′v)

+
∫ zc

0

(
Au +

i

2k0

uzz

)
v dz

∣∣∣∣
R

r=0

+
∫ R

0
(uzv − uvz) dr

∣∣∣∣∣
z=zc

(3.6)

− i

2k0

∫ R

0
(uzvr − uvrz) dr

∣∣∣∣∣
z=zc

−
∫ R

0

(
uzv − i

2k0

uzvr

)
dr

∣∣∣∣∣
z=0

,

where

L′v = (A′v)r + vzz + B′v +
i

2k0

vrzz
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and

A′ = 2ik0

[
1 +

1

4

(
n2 − 1

)]
, B′ = k2

0

(
n2 − 1

)

or

(Lu, v) = (u, L′v) + Integrals along the lines r = 0, r = R

+ Boundary integrals along z = 0, z = zc.

If we choose appropriate conditions, so that the boundary integrals along z = 0

and z = zc in the above equation cancel out, then according to the identity (3.5),

L′ ≡ L?.

Firstly, we observe that if we set v(r, 0) = 0 as the adjoint surface condition,

the integral along z = 0 in Eq. (3.6) vanishes. Next, in order to eliminate the

first integral along z = zc in Eq. (3.6) we require

∫ R

0
uzv dr

∣∣∣∣∣
z=zc

=
∫ R

0
uvz dr

∣∣∣∣∣
z=zc

(3.7)

The substitution of u(r, zc) in Eq. (3.7) by the non-local boundary condition at

z = zc of the direct problem in (2.26), yields

∫ R

0
uz(r, zc) v(r, zc) dr =

∫ R

0
vz(r, zc)

∫ r

0
uz(s, zc) G(r − s, zc) ds dr

=
∫ R

0

∫ R

s
vz(r, zc) uz(s, zc) G(r − s, zc) dr ds

=
∫ R

0

∫ R

r
vz(s, zc) uz(r, zc) G(s− r, zc) ds dr

=
∫ R

0
uz(r, zc)

∫ R

r
vz(s, zc) G(s− r, zc) ds dr.

The last equation leads to the adjoint boundary condition

v(r, zc) =
∫ R

r
vz(s, zc) G(s− r, zc) ds, (3.8)

which also has the form of a NtD map.

It is easy to see that choosing this boundary condition for the adjoint problem

the second integral along z = zc of Eq. (3.6) vanishes. Specifically, integrating by
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parts we can write this integral in the form

− i

2k0

[∫ R

0
(uzvr + urvz) dr

∣∣∣∣∣
z=zc

− u(R, zc)vz(R, zc)

]
(3.9)

Using the Leibniz integral rule we obtain

ur(r, zc) =
∫ r

0
uz(s, zc) Gr(r − s, zc) ds + uz(r, zc)G(0, zc) (3.10)

and

vr(r, zc) =
∫ R

r
vz(s, zc) Gr(s− r, zc) ds− vz(r, zc)G(0, zc), (3.11)

for the boundary condition of the direct and the adjoint problem respectively.

Substituting now ur(r, zc) and vr(r, zc) in (3.9), by the expressions in Eq. (3.10)

and (3.11) respectively, we obtain

u(R, zc)vz(R, zc)− u(0, zc)vz(0, zc), (3.12)

where u(0, zc) = 0 and u(R, zc)vz(R, zc) is a negligible quantity for our numerical

computations.

Hence, the adjoint boundary value problem is formulated as follows

L?v = A′vr + vzz + B′v +
i

2k0

vrzz = 0

v(r, 0) = 0, surface condition

v(r, zc) =
∫ R

r
vz(s, zc) G(s− r, zc) ds

Initial conditions at r = R, 0 ≤ z ≤ zc ,





(3.13)

where we have supposed that n(r, z) is weakly range-dependent, so that (A′v)r

can be written as A′vr. The initial condition will be determined in the sequel so

that the optimal control adjoint method will work. We must note that if the index

of refraction n is a real number (no attenuation is assumed), then the operator

of (3.13) is L itself.
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3.3 The Tangent Linear Model

Since the objective is to calculate the gradient of J(ρ, c, β) with respect to the

control variables ρ, c, β, from the definition of J we see that we need the directio-

nal derivatives of the field u(ρ, c, β, r, z) in the direction of the control variables

ρ, c, β.

We define
∂u

∂p i
= wi, for i = 1, 2, 3

where p 1 = ρ, p 2 = c, p 3 = β are the unknown parameters.

Taking the directional derivatives of the equations in (2.26) we have

∂Lu

∂p i
= Lwi +

∂L

∂p i
u = 0

wi(0, z) = 0,

wi(r, 0) = 0,

wi(r, zc) =
∫ r

0
wi

z(s, zc) G(r − s, zc) ds +
∫ r

0
uz(s, zc) gi(r − s, zc) ds





(3.14)

where

gi =
∂G

∂p i
and

∂L

∂p i
= 0 for i = 1, 2, 3.

If we take the inner product of the first equation in (3.14) we obtain
(

∂Lu

∂p i
, v

)
=

(
Lwi, v

)
= 0. (3.15)

Taking now the second part of Eq. (3.15), integrating by parts and using the zero

surface boundary conditions for wi and v, as well as the zero initial condition for

wi, we have

(
Lwi, v

)
=

(
wi, L?v

)

+
∫ zc

0

(
Awi +

i

2k0

wi
zz

)
v dz

∣∣∣∣
r=R

(3.16)

+
∫ R

0

(
wi

zv − wivz − i

2k0

wi
zvr +

i

2k0

wivrz

)
dr

∣∣∣∣∣
z=zc

.
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Substituting Eq. (3.16) in (3.15) and taking into account that
(
wi, L?v

)
= 0, we

obtain

∫ zc

0

(
Awi +

i

2k0

wi
zz

)
v dz

∣∣∣∣
r=R

= −
∫ R

0

(
wi

zv − wivz − i

2k0

wi
zvr − i

2k0

wi
rvz

)
dr

∣∣∣∣∣
z=zc

− i

2k0

w(R, zc)vz(R, zc). (3.17)

3.3.1 Elimination of the directional derivative of the Field

The next step is to eliminate the tangent field w, from Eq. (3.17) and express

it in terms of u and v, the direct and the adjoint field, respectively. Note that

u and v can be computed from the model. To accomplish this, we use the

adjoint non-local boundary condition, derived in section 3.2 and the non-local

boundary condition of the tangent problem. Specifically, we substitute v(r, zc)

and vr(r, zc) by Eqs. (3.8) and (3.11), respectively, as well as wi(r, zc) by the

boundary condition in (3.14). For wi
r(r, zc) we use the Leibniz rule

wi
r(r, zc) =

∫ r

0
wi

z(s, zc) Gr(r − s, zc) ds + wz(r, zc)G(0, zc)

+
d

dr

∫ r

0
uz(s, zc) gi(r − s, zc) ds.

Hence the integral along z = zc of the right-hand side in Eq. (3.17) yields

−
[∫ R

0
wi

z(r, zc)
∫ R

r
vz(s, zc) G(s− r, zc) ds dr

−
∫ R

0
vz(r, zc)

∫ r

0
wi

z(s, zc) G(r − s, zc) ds dr

−
∫ R

0
vz(r, zc)

∫ r

0
uz(s, zc) gi(r − s, zc) ds dr

+
i

2k0

∫ R

0
wi

z(r, zc)

(∫ R

r
vz(s, zc) Gs−r(s− r, zc) ds + vz(r, zc)G(0, zc)

)
dr

− i

2k0

∫ R

0
vz(r, zc)

(∫ r

0
wi

z(s, zc) Gr−s(r − s, zc) ds + wz(r, zc)G(0, zc)
)
dr

− i

2k0

∫ R

0
vz(r, zc)

d

dr

∫ r

0
uz(s, zc) gi(r − s, zc) ds dr

]
.
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We observe that interchanging the order of integration, the first and second term,

as well as the fourth and fifth term above, cancel out. So the integral along z = zc

of Eq. (3.17) takes the form

∫ R

0
vz(r, zc)

[∫ r

0
uz(s, zc) gi(r − s, zc) ds +

i

2k0

d

dr

∫ r

0
uz(s, zc) gi(r − s, zc) ds

]
dr,

for i = 1, 2, 3.

Finally, if we choose to integrate by parts the second term in the integral of

the first part in Eq. (3.17) along 0 ≤ z ≤ zc and using the above expression for

the integral along z = zc, we get

∫ zc

0

(
−A′v − i

2k0

vzz

)
wi dz

∣∣∣∣∣
r=R

=
∫ R

0
vz(r, zc)

[∫ r

0
uz(s, zc) gi(r − s, zc) ds

+
i

2k0

d

dr

∫ r

0
uz(s, zc) gi(r − s, zc) ds

]
dr

− i

2k0

w(R, zc)vz(R, zc) (3.18)

which will lead to the initial condition for the adjoint problem as well as the

derivative of the cost function.

3.4 The choice of the Cost Function

If we define the following inner product

(u, v) =
∫ zc

0
uv dz

∣∣∣∣
r=R

,

we introduce the following cost functions which are independent of the source

strength

• J(p1, p2, p3) =
1

2


‖u‖2 −

(
u,

uobs

‖uobs‖

)2

 , which we call Full Projection

cost function.

Making use of the amplitude of the field only we set
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• J(p1, p2, p3) =
1

2


‖u‖2 −

(
|u|, |uobs|

‖uobs‖

)2

 , which we call Amplitude Pro-

jection cost function, and

• J(p1, p2, p3) =
1

2

∫ zc

0

(
|u| − ‖u‖

‖uobs‖|uobs|
)2

dz, which we call Normalized

L1 cost function and becomes from the common L1 norm

J(p1, p2, p3) =
1

2

∫ zc

0
(|u| − |uobs|)2 dz.

We note that u = u(p1, p2, p3, R, z) and uobs = uobs(R, z).

3.4.1 Full Projection cost function

Taking now the derivative of J with respect to pi, for i = 1, 2, 3 we have:

∂J

∂p i
= Re

∫ zc

0
wi

[
u− uobs

‖uobs‖2
(u, uobs)

]
dz

∣∣∣∣∣
r=R

(3.19)

Comparing Eq. (3.18) with Eq. (3.19) we observe that if we choose as initial

condition for the Adjoint Problem the solution v(R, z) of the following ordinary

differential equation

−A′v(R, z)− i

2k0

vzz(R, z) = u(R, z)− uobs(R, z)

‖uobs(R, z)‖2
(u(R, z), uobs(R, z)) (3.20)

then we can obtain the derivative of J in terms of u and v

∂J

∂p i
= Re

∫ R

0
vz(r, zc)

[∫ r

0
uz(s, zc) gi(r − s, zc) ds

+
i

2k0

d

dr

∫ r

0
uz(s, zc) gi(r − s, zc) ds

]
dr, (3.21)

neglecting
i

2k0

w(R, zc)vz(R, zc).

3.4.2 Amplitude Projection cost function

The derivative of J with respect to pi, for i = 1, 2, 3 is:

∂J

∂p i
= Re

∫ zc

0
wiu

[
1− |uobs|

|u|‖uobs‖2
(|u|, |uobs|)

]
dz

∣∣∣∣∣
r=R

. (3.22)
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If we choose as initial condition for the Adjoint Problem the solution v(R, z) of

the following ordinary differential equation

−A′v(R, z)− i

2k0

vzz(R, z) = u(R, z)[1 − |uobs(R, z)|
|u(R, z)|‖uobs(R, z)‖2

× (|u(R, z)|, |uobs(R, z)|)] , (3.23)

then the derivative of J with respect to pi, for i = 1, 2, 3 is given by the Eq. (3.21).

3.4.3 Normalized L1 cost function

The derivative of J with respect to pi, for i = 1, 2, 3 is

∂J

∂p i
= Re

∫ zc

0
wiu

[
1

|u|

(
|u| − ‖u‖

‖uobs‖ |uobs|
)
− 1

‖u‖‖uobs‖

×
∫ zc

0
|uobs|

(
|u| − ‖u‖

‖uobs‖ |uobs|
)

dz

]
dz

∣∣∣∣∣
r=R

. (3.24)

For this case, the initial condition for the Adjoint Problem is given by the solution

of the following ordinary differential equation

−A′v(R, z)− i

2k0

vzz(R, z) = u(R, z)

[
1

|u(R, z)| U(R, z) − 1

‖u(R, z)‖‖uobs(R, z)‖

×
∫ zc

0
|uobs(R, z)|U(R, z)dz

]
, (3.25)

where

U(R, z) = |u(R, z)| − ‖u(R, z)‖
‖uobs(R, z)‖ |uobs(R, z)|.

The derivative of J with respect to pi, for i = 1, 2, 3 is given by the Eq. (3.21).

3.4.4 Multiple Frequency

We assume now, that we can repeat the experiment described in section 3.1 for

a set of different source frequencies. It is believed that when the information
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at the receivers becomes from different frequencies, a more reliable and accurate

prediction for the unknown parameters can be obtained. Therefor, we use as cost

function the summary of the cost functions for each frequency

Jtotal(p
1, p2, p3) =

No.offrequencies∑

f=1

Jf (p1, p2, p3),

so that the derivative of the cost function with respect to pi, for i = 1, 2, 3 is

given by

∂Jtotal

∂pi
=

No.offrequencies∑

f=1

∂Jf

∂pi
,

where Jf is given by Eq. (3.21) and f indicates the frequency.

3.5 Numerical Implementation
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Figure 3.2: Flow diagram of the iterative scheme.
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The direct and the adjoint problems are solved numerically by a Crank-

Nicolson finite-difference scheme on an Intel Core Duo 3.0GHz, 32bit, PC pro-

cessor. The parabolic code used is the latest version of the IFD+Impedance code

developed at IACM in FORTH.

All the above cost functions have been used for the inversion. The initial field

for the adjoint is given by (3.20) for the Full Projection cost function, by (3.23)

for the Amplitude Projection cost function and by (3.25) for the Normalized L1

cost function. In order to be able to define it correctly, a full array of receivers

at each node of the Crank-Nicolson scheme is needed. However, if the number of

receivers is much smaller than the number of nodes, as it is usually the case, then

the right-hand side of the differential equations in (3.20), (3.23) and (3.25), is

multiplied by a Gaussian source function at each receiver, as it has been defined

in [1].

A steepest descent algorithm is implemented: we start with an initial guess

(p1
0, p

2
0, p

3
0) ≡ (ρ0, c0, β0) of the parameters of the lower layer. We propagate the

field in the r–direction. We use Eq. (3.20), (3.23) or (3.25) to find the initial field

for the adjoint. We propagate through the adjoint operator backwards in r and

compute the ∇J(p1
0, p

2
0, p

3
0). We correct the initial guess p1

0, p
2
0, p

3
0 as in Eq. (3.2)

and we repeat the process with p1
1, p

2
1, p

3
1. This process is exhibited in the flow

diagram in Fig. 3.2.

The algorithm described above has been modified appropriately for the case

of a broad range of frequencies: we use the forward and adjoint models in order to

compute the ∇J(p1, p2, p3), for each frequency. The corrections to the unknown

parameters are taking place in the direction of ∇Jtotal(p
1, p2, p3).



Chapter 4

Numerical Results

In this chapter, we exhibit some examples from the field of underwater acoustic

propagation. The main reason for doing so is that at this time the available

experimental data are coming from the sea. Nevertheless, we must point out that

the Optimal Control Adjoint Method we have developed and used, is derived from

a general technique which is applicable to inverse problems of all descriptions,

provided only that solutions to the forward and adjoint problems can be found

numerically.

4.1 Examples

For the following Test Cases, Full Projection cost function gives accurate results

for the observed values obtained by the solution of Eq. (2.26), derived by the

IFD+Impedance code. However, when we try it with observed values obtained

by the solution of the elliptic equation using a Normal Mode code, Full Proje-

ction cost function cannot give a minimum. This is justified by the fact that

the parabolic approximation changes the phase of the field. For observed val-

ues by Experimental measurements where the noise changes the phase, the Full

46
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Figure 4.1: Environment of Test Case I.

Projection cost function also fails to drive us to a minimum.

Since the objective is to recover the true bottom layer with experimental

data, we expose the results obtained by the two of three cost functions defined in

section 3.4: Amplitude Projection and Normalized L1. These cost functions are

phase-free since they are making use of the amplitude of the field, only.

4.1.1 Test Case I

In this test case we consider an oceanic environment as shown in Fig. 4.1.

The initial values introduced into the scheme are ρ0 = 3.0, c0 = 1580.0 m/sec

and β0 = 0.0 dB/λ. The true values are ρB = 2.1, cB = 1520.0 m/sec and

βB = 0.5 dB/λ, where the subscript B denotes the bottom. Inversions were

performed for a frequency of 50 Hz with 13 receivers and for 200 Hz with 25

receivers. The equidistant receivers are placed at a range of 3 km.
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Frequency No. of Calculated Calculated Calculated Time

source (Hz) Iterations value of ρ value of c value of β (sec)

50 11611 2.15954566 1518.78112793 0.41337642 582

200 6695 2.10009289 1520.00073242 0.50000596 445

Table 4.1: Observed values from the IFD code. Amplitude Projection cost fun-

ction.

Frequency No. of Calculated Calculated Calculated Time

source (Hz) Iterations value of ρ value of c value of β (sec)

50 15066 2.11150312 1521.53698730 0.58567387 755

200 14365 2.10027885 1520.00756836 0.49979678 952

Table 4.2: Observed values from the IFD code. Normalized L1 cost function.

In Tables 4.1 and 4.2 the observed values at the receiver array were obtained

by solving Eq. (2.26) using the IFD+Impedance code. The multipliers used are

αρ = 1, αc = 5000 and αβ = 1, for 50 Hz with both two cost functions. For

200 Hz we used αρ = 1, αc = 10000 and αβ = 1 with the Amplitude Projection

cost function whereas αρ = 1, αc = 5000 and αβ = 1 for the Normalized L1 cost

function.

In Tables 4.3 and 4.4 the observed values at the receiver array were obtained

from a Normal Mode (NM) code. The multipliers used for 50 Hz are αρ = 10,

αc = 10000 and αβ = 1, for the Amplitude Projection cost function and αρ = 1,

αc = 5000 and αβ = 1 for the Normalized L1 cost function. For 200 Hz we used

αρ = 1, αc = 10000 and αβ = 1 with the Amplitude Projection cost function

whereas αρ = 1, αc = 5000 and αβ = 1 for the Normalized L1 cost function.

In Figs. 4.2, 4.3, 4.4 and 4.5 we present the sound speed, density and attenu-

ation plots versus the number of iterations for the two frequencies of Test Case I

for both the two types of observed values.
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Figure 4.2: Sound speed, density and attenuation plots versus number of itera-

tions for Test Case I with 50 Hz. Observed values from the IFD code.
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Figure 4.3: Sound speed, density and attenuation plots versus number of itera-

tions for Test Case I with 200 Hz. Observed values from the IFD code.
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Frequency No. of Calculated Calculated Calculated Time

source (Hz) Iterations value of ρ value of c value of β (sec)

50 1967 1.99163198 1524.10607910 0.49045381 98

200 13123 2.05241036 1518.40014648 0.42595682 874

Table 4.3: Observed values from a NM code. Amplitude Projection cost function.

Frequency No. of Calculated Calculated Calculated Time

source (Hz) Iterations value of ρ value of c value of β (sec)

50 10795 2.17805433 1521.24389648 0.35005012 540

200 12177 1.93570197 1518.36547852 0.47537878 808

Table 4.4: Observed values from a NM code. Normalized L1 cost function.
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Figure 4.4: Sound speed, density and attenuation plots versus number of itera-

tions for Test Case I with 50 Hz. Observed values from a NM code.
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Figure 4.5: Sound speed, density and attenuation plots versus number of itera-

tions for Test Case I with 200 Hz. Observed values from a NM code.

4.1.2 Test Case II

This test case was proposed by M. Meyer and J.P. Hermand [29]. It consists of

a realistic sea environment of South Elba and is based on acoustic parameters

obtained by full-field inversions for the YELLOW SHARK 94 experiments in the

area south of the island of Elba, Italy, during an oceanographic survey with a

towed-oscillating CTD profiler [28].

The waveguide consists of a water column with an average depth of 113.1 m,

where the density is 1.03 g/cm3. The range average of the sound speed profiles,

measured during one of the experimental runs, is strongly downward refracting

as shown in Fig. 4.6. A sediment layer of clay with thickness 7.5 m follows,

with density ρs=1.5 g/cm3 and attenuation βs = 0.03 dB/λ. At the top of

the sediment layer the sound speed is 1470 m/sec whereas at the bottom is

1485 m/sec. The homogeneous fluid half-space, which extends below 120.6 m,
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Figure 4.6: Physical properties of the sea environment of Test Case II (based

on YELLOW SHARK’94 experiment simulation of the South Elba physical

environment[28]).

consists of silty clay with sound speed 1530 m/sec, density ρB =1.8 g/cm3 and

attenuation βB = 0.15 dB/λ. The source was located in a depth of 69.2 m. 32

equidistant hydrophones were placed from 37.2 m to 99.2 m in depth, at a range

of 9.026 km. A set of 6 frequencies was used: 250 Hz, 315 Hz, 400 Hz, 500 Hz,

630 Hz, 800 Hz.

In Table 4.5 and 4.6 the observed values at the receiver array were obtained by

solving Eq. (2.26) using the IFD+Impedance code. The values of the multipliers

for 250, 315, 400 and 630 Hz are αρ = 10, αc = 10000 and αβ = 0.1, for both

cost functions, whereas for 500 and 800 Hz we used αρ = 100, αc = 10000 and

αβ = 1.

In Table 4.7 and 4.8 the observed values at the receiver array were obtained
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Frequency No. of Calculated Calculated Calculated Time

source (Hz) Iterations value of ρ value of c value of β (sec)

250 2051 1.79984426 1529.99841309 0.14983325 811

315 8966 1.80174923 1530.01098633 0.15071066 3550

400 1096 1.81675851 1531.06774902 0.15896057 1468

500 1751 1.80031848 1529.99914551 0.14997886 2360

630 1081 1.80047941 1529.99731445 0.15004224 1500

800 1507 1.80424428 1530.00988770 0.15015587 2064

Table 4.5: Observed values from the IFD code. Amplitude Projection cost fun-

ction.

from a NM code. The values of the multipliers for 250 and 315 Hz were αρ = 10,

αc = 10000 and αβ = 0.1 for the Amplitude Projection cost function, whereas

for the Normalized L1 cost function we used αρ = 10, αc = 5000 and αβ = 0.1.

For 400 Hz we used αρ = 2, αc = 10000 and αβ = 1, for both cost functions.

In Table 4.9 and 4.10 the observed values at the receiver array were obtained

from Experimental data. The values of the multipliers for 400 Hz were αρ = 10,

αc = 5000 and αβ = 0.1, for both cost functions. For 630 Hz we used αρ = 10,

αc = 10000 and αβ = 1 for the Amplitude Projection cost function, whereas for

the Normalized L1 cost function we used αρ = 10, αc = 5000 and αβ = 0.1. The

multipliers for the multi-frequency case are αρ = 1, αc = 5000 and αβ = 0.01

The initial values were ρ0 = 3.0, c0 = 1580 m/sec and β0 = 0 dB/λ for all

cases except for 315 Hz with observed values from a NM code where we started

from ρ0 = 3.0, c0 = 1550 m/sec and β0 = 0 dB/λ.
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Frequency No. of Calculated Calculated Calculated Time

source (Hz) Iterations value of ρ value of c value of β (sec)

250 2271 1.79993451 1529.99914551 0.14989185 899

315 11146 1.80078423 1530.00463867 0.15030560 4421

400 2130 1.82643867 1530.84667969 0.16291974 2865

500 1511 1.80033088 1529.99926758 0.14998716 2033

630 484 1.80074108 1529.99768066 0.15053464 653

800 687 1.80424452 1530.00988770 0.15015595 928

Table 4.6: Observed values from the IFD code. Normalized L1 cost function.
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Figure 4.7: Sound speed, density and attenuation plots versus number of itera-

tions for Test Case II with 250 Hz. Observed values from the IFD code.
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Figure 4.8: Sound speed, density and attenuation plots versus number of itera-

tions for Test Case II with 315 Hz. Observed values from the IFD code.
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Figure 4.9: Sound speed, density and attenuation plots versus number of itera-

tions for Test Case II with 400 Hz. Observed values from the IFD code.
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Figure 4.10: Sound speed, density and attenuation plots versus number of itera-

tions for Test Case II with 500 Hz. Observed values from the IFD code.
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Figure 4.11: Sound speed, density and attenuation plots versus number of itera-

tions for Test Case II with 630 Hz. Observed values from the IFD code.
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Figure 4.12: Sound speed, density and attenuation plots versus number of itera-

tions for Test Case II with 800 Hz. Observed values from the IFD code.

Frequency No. of Calculated Calculated Calculated Time

source (Hz) Iterations value of ρ value of c value of β (sec)

250 2755 2.14878678 1528.29980469 0.14391637 1098

315 3035 1.80213368 1527.00390625 0.13148127 1208

400 1131 1.99025083 1526.93518066 0.13116714 1520

Table 4.7: Observed values from a NM code. Amplitude Projection cost function.

Frequency No. of Calculated Calculated Calculated Time

source (Hz) Iterations value of ρ value of c value of β (sec)

250 2132 2.14881325 1528.29968262 0.14397869 844

315 2786 1.79441345 1527.35888672 0.12889819 1103

400 1141 1.99037361 1526.93298340 0.13120359 1527

Table 4.8: Observed values from a NM code. Normalized L1 cost function.
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Figure 4.13: Sound speed, density and attenuation plots versus number of itera-

tions for Test Case II with 250 Hz. Observed values from a NM code.
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Figure 4.14: Sound speed, density and attenuation plots versus number of itera-

tions for Test Case II with 315 Hz. Observed values from a NM code.
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Figure 4.15: Sound speed, density and attenuation plots versus number of itera-

tions for Test Case II with 400 Hz. Observed values from a NM code.

Frequency No. of Calculated Calculated Calculated Time

source (Hz) Iterations value of ρ value of c value of β (sec)

400 1656 1.72317553 1530.02673340 0.11196246 2213

630 1204 1.62510777 1527.88000488 0.25140700 1609

400+630 4838 1.62853754 1528.26647949 0.23438135 12971

Table 4.9: Observed values from Experimental data. Amplitude Projection cost

function.
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Frequency No. of Calculated Calculated Calculated Time

source (Hz) Iterations value of ρ value of c value of β (sec)

400 1142 1.72451305 1529.96606445 0.11196236 1526

630 1155 1.64396119 1528.29260254 0.25233480 1544

400+630 1638 1.60066521 1528.22827148 0.20962268 4408

Table 4.10: Observed values from Experimental data. Normalized L1 cost fun-

ction.
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Figure 4.16: Sound speed, density and attenuation plots versus number of itera-

tions for Test Case II with 400 Hz. Observed values from Experimental data.
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Figure 4.17: Sound speed, density and attenuation plots versus number of itera-

tions for Test Case II with 630 Hz. Observed values from Experimental data.
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Figure 4.18: Sound speed, density and attenuation plots versus number of ite-

rations for Test Case II with 400+630 Hz. Observed values from Experimental

data.
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4.2 Discussion

The first observation is that for observed values from the IFD+Impedance code

the iterative scheme converges to the true zero minimum of both the cost func-

tions, since the complex pressure at the receiver array is simulated by the direct

model used in the inversion with the correct values of density, sound speed and

attenuation of the bottom. We must note that for the Test Case I with 50 Hz

there is an error in the recovered values of the parameters. This is justified by the

fact that for this frequency where the wavelength is large relative to the depth

of the water, the interaction of the wave with the bottom boundary is small,

so the information coming from the boundary condition is not sufficient for the

inversion. Results are accurate for Test Case I with 200 Hz, as well as for Test

Case II with all frequencies.

When the observed values are obtained by a Normal Mode code, the iteration

still converges to the true minimum of both the cost functions with a reasonable,

small error in the recovered values, for Test Case I with the two frequencies and

Test Case II with 250 Hz, 315 Hz and 400 Hz.

In Figure 4.19 we can see the normalized magnitude square

nms(i) =
|ui

obs|2∑32
i=1 |ui

obs|2

of the measured field, the field obtained by the IFD+Impedance code (with z2 at

120.5 m) 1 and by a Normal Mode code, at 9.026 km, from 37.2 to 99.2 m, for

the environment in Figure 4.6.

It is obvious from the definition of the two cost functions we have used (Am-

plitude Projection, Normalized L1) that comparing the normalized magnitude

square (nms) of the field from the IFD+Impedance code with the nms of the

1The true bottom of the sediment layer as it has been measured during the experiment is

at 120.6 m in depth.



4.2. DISCUSSION 63

0 0.05 0.1 0.15

−90

−80

−70

−60

−50

−40

de
pt

h 
(m

)

250 Hz

0 0.05 0.1 0.15

−90

−80

−70

−60

−50

−40

315 Hz

0 0.05 0.1 0.15

−90

−80

−70

−60

−50

−40

400 Hz

0 0.05 0.1 0.15

−90

−80

−70

−60

−50

−40

500 Hz

0 0.05 0.1 0.15

−90

−80

−70

−60

−50

−40

630 Hz

0 0.05 0.1 0.15

−90

−80

−70

−60

−50

−40

800 Hz

normalized magnitude square

Figure 4.19: Normalized Magnitude Square of modelled fields: IFD+Impedance

with z2 = 120.5 m (blue line), Normal Mode (black line) and measured fields (red

line) for the sea environment of Test Case II at 9 km.
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field from a NM code or the measured field, we can have a first estimation for

the convergence with data from a NM code or the experimental data.

For example, we observe that for the frequencies of 500, 630 and 800 Hz,

the nms of the Normal Mode data does not fit at all with the nms of the

IFD+Impedance data. Therefor, we have no hope for convergence for these

frequencies.

When the observed values are obtained by Experimental data, we have con-

vergence to the true minimum of both the cost functions only for 400 and 630

Hz, with z2 at 120.5 m. This fact can also be justified by observing the blue and

red lines in Figure 4.19.

The rate of convergence depends on the choice of the multiplier α = (αρ, αc, αβ).

The need of multiplier arises from the different scale of variation of density, sound

speed and attenuation.

The method presented, in this work, is also applicable for the case of horizontal

array measurements.

4.3 Conclusions

The NtD map of the form of a convolution integral, is proven an efficient tool

in evaluating the gradient of the cost function in an optimal control formulation

of the inversion leading to the recovering of the true bottom with experimental

data.

In general, the convergence of the iteration scheme of an optimization problem

depends on the proximity of the initial guess to the optimal values of the controls.

It is worth noticing that the proposed scheme converges to the correct bottom

parameters with initial density, sound speed and attenuation in a rather large
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neighborhood of (ρB, cB, βB).

We must also point out that both phase-independent cost functions give con-

vergent schemes.

It is believed that a better approximation to the square-root operator of GPE

as well as the calculation of the derivative of the kernel G(p1, p2, p3, r, zc) in the

NtD map with respect to p1, p2 and p3 for the WAPE, will give better results.

Application of the Optimal Control Adjoint Method for recovering the prope-

rties of the semi-infinite lower layer DL+1 as well as these of the layer DL above,

is a challenge. For this inverse problem we have 7 control parameters, i.e. two

densities, two sound speeds, two attenuation coefficients and the thickness of the

layer DL.
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Padé parabolic equations,” J. Acoust. Soc. Am. 116, 2864–2875 (2004).

[17] G. A. Cambell and R. M. Foster, Fourier Integrals for Practical Applica-

tions, (Van Nostrand, New York, 1951), p.53.

[18] D. Lee and G. Botseas, “An implicit finite-difference computer model for

solving the parabolic equation”, NUSC Tech. Report 6659 (1982).

[19] J. S. Papadakis and B. Mayfield, “IFD+IMPEDANCE Impedance boun-

dary conditions along the bottom interface incorporated in the implicit

finite-difference code for solving the parabolic equation”, IACM Report

(1986).

[20] P. R. McGillivray, D. W. Oldenburg, “Methods for Calculating Fréchet
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