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Abstract

This research aims to answer the question: what is the best preprocessing pipeline for

radiomics analysis of prostate cancer MRI images and how can that benefit the performance

of a radiomics model. To achieve this ~80 papers were compared on their respective

preprocessing pipeline, study design , results and limitations. Through this process a pipeline

proposal was formed which included bias field correction, normalization and resampling.

This pipeline was then tested on the ProstateX dataset which included MRI scans from 66

patients, prostate segmentations and True/False labels for clinical significance. Following

preprocessing the radiomics features were extracted and utilized as the input for model

building. After comparing different classifiers, Logistic Regression was selected as a stand

out. Hyperparameter tuning was used in order to find the best parameters for the model by

utilizing 5-fold repeated stratified cross-validation. The dataset was used to create two

models. The first was divided into a train (70%) set and a test(30%) set. The training set was

used for the tuning and the training whereas the test set was used only at the end for

evaluation of the final model. The model achieved an accuracy of 80.4% on the training, 75%

on the test set and an AUC of 0.867 on the training and 0.791 on the test set. To reduce

overdiagnosing it is important to focus on the precision metrics too. On the training set an

76.9% precision was achieved compared to a 60% on the test set. This difference means that

although on the training set the model was fairly good at avoiding false positives, its

performance on the test set was lacking a bit in comparison. The second model divided the

dataset into 80% training and 20% hold-out set. The training set was utilized the exact same

way as before while the hold-out set was kept aside and used to evaluate the performance

of the trained model. This model did perform worse due to the “unseen data” aspect.

Precision in the training set was 80% but dropped to 50% on the hold-out and AUC went

92,2% to 68,9%. This finding demonstrates clearly the necessity of creating larger publicly

accessible datasets in order to create more reliable models that may eventually be

implemented in clinical settings. Conclusively, this research was successful in proposing an

effective preprocessing pipeline that achieved notable performance results on the final

radiomics model test set but did not do as good on unseen data. Still, this work represents a

significant step forward and may pave the way for more studies and future clinical

applications.
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Περίληψη

Αυτή η έρευνα στοχεύει να απαντήσει στο ερώτημα: ποια είναι η καλύτερη
προ-επεξεργαστική διαδικασία για την ανάλυση ακτινονομικών δεδομένων MRI του
καρκίνου του προστάτη και πώς μπορεί αυτό να ωφελήσει την απόδοση ενός
ακτινομικού μοντέλου. Για την επίτευξη αυτού του στόχου, συγκρίθηκαν περίπου 80

μελέτες ως προς την προ-επεξεργαστική τους διαδικασία, τον σχεδιασμό της μελέτης,
τα αποτελέσματα και τους περιορισμούς τους. Μέσα από αυτή τη διαδικασία
σχηματίστηκε μια πρόταση για προ-επεξεργασία. Αυτή η διαδικασία δοκιμάστηκε στο
σύνολο δεδομένων ProstateX, το οποίο περιλάμβανε MRI σαρώσεις από 66 ασθενείς,
τμηματοποιήσεις προστάτη και True/False ετικέτες για κλινική σημασία. Μετά την
προ-επεξεργασία, τα ραδιομικά χαρακτηριστικά εξήχθησαν και χρησιμοποιήθηκαν ως
είσοδος για την κατασκευή του μοντέλου. Μετά από σύγκριση διαφορετικών classifiers,

επιλέχθηκε η Logistic Regression ως η καλύτερη. Έγινε ρύθμιση υπερ-παραμέτρων για
την εύρεση των καλύτερων παραμέτρων για το μοντέλο χρησιμοποιώντας five-fold

repeated stratified cross-validation. Το σύνολο δεδομένων χρησιμοποιήθηκε για τη
δημιουργία δύο μοντέλων. Το πρώτο διαιρέθηκε σε ένα σετ εκπαίδευσης (70%) και ένα
σετ δοκιμής (30%). Το σετ εκπαίδευσης χρησιμοποιήθηκε για τη ρύθμιση και την
εκπαίδευση, ενώ το σετ δοκιμής χρησιμοποιήθηκε μόνο στο τέλος για την αξιολόγηση
του τελικού μοντέλου. Το μοντέλο πέτυχε ακρίβεια 80,4% στο σύνολο εκπαίδευσης, 75%
στο σύνολο δοκιμής και AUC 0,867 στο σύνολο εκπαίδευσης και 0,791 στο σύνολο
δοκιμής. Για τη μείωση των υπερδιαγνώσεων είναι σημαντικό να επικεντρωθούμε και
στις μετρικές ακρίβειας. Στο σύνολο εκπαίδευσης επιτεύχθηκε ακρίβεια 76,9% σε
σύγκριση με 60% στο σύνολο δοκιμής. Αυτή η διαφορά σημαίνει ότι, αν και στο σύνολο
εκπαίδευσης το μοντέλο ήταν αρκετά καλό στην αποφυγή ψευδώς θετικών
αποτελεσμάτων, η απόδοσή του στο σύνολο δοκιμής ήταν λίγο κατώτερη σε σύγκριση.
Το δεύτερο μοντέλο διαιρέθηκε σε ένα σετ εκπαίδευσης 80% και ένα σετ επαλήθευσης
20%. Το σετ εκπαίδευσης χρησιμοποιήθηκε με τον ίδιο ακριβώς τρόπο όπως πριν, ενώ
το σετ επαλήθευσης κρατήθηκε στην άκρη και χρησιμοποιήθηκε για την αξιολόγηση
της απόδοσης του εκπαιδευμένου μοντέλου. Αυτό το μοντέλο απέδωσε χειρότερα
λόγω του ότι δοκιμάστηκε σε δεδομένα καινούρια που δεν είχε “ξαναδεί”. Η ακρίβεια
στο σετ εκπαίδευσης ήταν 80% αλλά έπεσε στο 50% στο σύνολο επαλήθευσης και το
AUC από 92,2% έπεσε στο 68,9%. Αυτό το εύρημα δείχνει ξεκάθαρα την ανάγκη
δημιουργίας μεγαλύτερων δημόσια προσβάσιμων συνόλων δεδομένων για τη
δημιουργία πιο αξιόπιστων μοντέλων που μπορεί να εφαρμοστούν τελικά σε κλινικές
ρυθμίσεις. Συμπερασματικά, αυτή η έρευνα ήταν επιτυχής στην πρόταση μιας
αποτελεσματικής προ-επεξεργαστικής διαδικασίας που πέτυχε αξιοσημείωτα
αποτελέσματα απόδοσης στο τελικό ακτινομικό μοντέλο, αλλά δεν ήταν εξίσου καλή σε
νέα δεδομένα. Παρ' όλα αυτά, αυτή η εργασία αντιπροσωπεύει ένα σημαντικό βήμα
για μελλοντικές έρευνες και μπορεί να ανοίξει το δρόμο για περισσότερες μελέτες και
μελλοντικές κλινικές εφαρμογές.
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Chapter 1: Introduction

Prostate cancer (PCa) is the sixth among cancer-related male deaths and is the second most

common type of cancer to be diagnosed with the risk of developing it increasing with age.

Beginning in 1989, transrectal ultrasound-guided biopsy has been the standard diagnostic

tool for prostate cancer however it can cause serious side effects such as hematuria and

rectal bleeding. Another important tool for the diagnosis process is Magnetic Resonance

Imaging (MRI) as it reduces the need for unnecessary biopsies on low-risk lesions and

minimizes over-diagnosing which is a significant problem in prostate cancer. However, it has

its own drawbacks as different experts could look at the same MRI scan and come to a

different conclusion. Even the same expert looking at the same scan on different days could

come to a different conclusion. To address the above issues, radiomics analysis can be a very

valuable tool for achieving a more accurate and reliable diagnosis.

The goal of this study is to develop a pre-processing pipeline for prostate cancer MRI images

to address the lack of standardization of this step in the radiomics process, aiming to

improve the reproducibility and performance of radiomic classification models. The inclusion

of a classification radiomics model in a clinical setting could help physicians in the diagnosis

process, in decision making and minimize inter-reader variability-related issues.

Therefore for this study the following questions need to be addressed :

➢ What is the most effective preprocessing pipeline according to the literature ?

➢ How strong is the performance of the final radiomics classification model?

This research is divided into two phases. The first phase is a literature review which involves

a comparative analysis of ~80 studies on their preprocessing pipeline, study design and final

result for the purpose of proposing the most effective pipeline. The second phase is the

model development which includes the implementation of the preprocessing steps on a

prostate MRI dataset, the ProstateX , the extraction of radiomic features and the

development of a model for classification on clinical significance.

The thesis begins with a state-of-the-art that discusses relevant literature on prostate cancer,

diagnosis methods, MRI and radiomics. Following that, the Methodology chapter describes

the research design, the dataset, the preprocessing pipeline proposal, and its

implementation for developing a model. Then, the Analysis chapter contains all the details

of the research process and the results. The Discussion chapter discusses the research

results and compares it to relevant literature. Finally the Conclusion summarizes the

findings, their contributions and limitations, and includes suggestions for future research.
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Chapter 2: State-of-the-art

2.1 Introduction

Prostate cancer (PCa) is estimated to be the sixth leading cause of cancer related deaths

among men while also being the second most commonly diagnosed cancer among them.

Statistically, the risk of a man developing prostate cancer increases as he ages with the

average age of diagnosis being 67. The risk is higher for those who have family history with

the disease. Although a lot of research has gone into alternative accurate and reliable

diagnostic methods, transrectal ultrasound-guided biopsy has been the golden standard

since 1989. There are, however, drawbacks that accompany an invasive procedure such as a

biopsy, most common ones in the case of prostate cancer being hematuria and rectal

bleeding.

Due to the increased probability of diagnosis with age, the potential benefits of routine

screening have been looked into in order to secure an early-stage diagnosis. Although results

show that it could help reduce death rates in certain cases, it also increases the risk of

overdiagnosis of low-risk lesions. Loeb and Bjurlin et al. in 2014 compared a number of

studies based on epidemiology, clinical factors and biopsy data conducted in order to

address overdiagnosis However, the estimates fall between a very wide range from 1.7% up

to 67%, highlighting the need of careful screening and treatment planning. Avoiding such

drawbacks is vital as low-risk tumors can be harmless. Treating them with aggressive and

intensive therapies could cut the patient's life short or simply not make any difference on

their lifespan, all while reducing their quality of life.

Studies have been conducted attempting to look into the potential of MRI as a diagnostic

tool compared to biopsy. In those, MRI was proven to be noninferior to biopsy in diagnosing

clinically significant cancer. With imaging, overdiagnosis was lessened and biopsy was able to

be avoided in some cases. Ahmed et al. compared the diagnostic accuracy of MRI and TRUS

biopsy and found that utilizing MRI lowers the amount of men that need a biopsy by 27%.

Kasivisvanathan et al. conducted a study including 500 men and divided them into two

random groups : MRI and TRUS biopsy. In the cases of a positive diagnosis through MRI, a

biopsy was performed as well. In the following 30 days the complications reported by the

patients were a lot more rare in the MRI group.

Due to this, the suggestion to update guidelines and move towards an image-based

diagnostic procedure for prostate cancer has been brought about. However caution is

necessary when considering such a change. A notable study in 2018 by Rouviere O. et al.

showed that when comparing the diagnostic accuracy of MRI and biopsy, 5.2% of clinically

significant prostate cancer would have been missed had there not been a biopsy performed.
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Combining MRI and biopsy was found to be the most reliable diagnostic method. This

highlights the risk of some patients getting a negative diagnosis despite having cancer. Also,

in general, studies often specifically include men with high prostate-specific antigen PSA

levels meaning they are more likely to be positively diagnosed and thus the study could be

biased. Issues also arise when considering human error which is to be expected especially in

fast paced, high stress environments. Low interobserver agreement has been documented in

clinical settings which can interfere with decision-making and could possibly lead to

unnecessary treatments. It is therefore essential to find additional tools to lower the risk

misclassification before moving away from biopsy.

The above highlights the need for a diagnostic approach that could potentially limit the need

for invasive biopsy procedures, lessen overdiagnosing and overtreating while also being

equally (if not more) reliable in identifying clinical significant prostate cancer. MRI-radiomics

and image analysis has been shown to be a strong contender in the search for reliable

biomarkers as it promises to limit the need for biopsies and overcome issues that stem from

inter-reader disagreement.

2.2 Medical Imaging in Prostate Cancer

Nuclear Resonance Imaging (NMR), or Magnetic Resonance Imaging (MRI) as it is known

today, was first used to image the prostate in 1982 using a magnet of 0.08 Tesla (T). With the

advancements of technology the hardware and the software were updated over the

following decades which led to the introduction of higher field strength of 1.5 and 3.0 T.

These advancements have not only increased the image resolution but also reduced the

amount of time needed to obtain the image. A magnet of ≥1.5 T is considered necessary for

the prostate while most research centers support that 3 T is the ideal field strength.

An endorectal coil is a medical device that can be inserted into a patient’s rectum aiding in

proper placement of the prostate during an MRI examination. An inflatable balloon attached

to a probe lessens local movement in an effort to acquire higher quality images. It was first

introduced back in 1989 but as MRI technology has improved, its use has gone down. A lot

of research has attempted to conclude whether its use is necessary. It has been shown that

especially for 3T it could be omitted and notable results have also been achieved even with

1.5T. The patients' examination experience and comfort has been greatly enhanced as a

result of this.

During an MRI a number of sequences are acquired. Biparametric (bp) MRI combines T1- and

T2-weighted (T1W, T2W) sequences with Diffusion Weighted Images (DWI). Multiparametric

(mp) MRI adds Dynamic Contrast Enhanced imaging(DCE).
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○ The T2W imaging sequence gives high-resolution pictures of prostate anatomy,

exhibiting normal peripheral zone signal intensity as well as cancer signal intensity.

However, it has decreased accuracy in the transitional and anterior zones due to

lower baseline T2 signal and benign prostatic hyperplasia (BPH) nodules. Functional

sequences are necessary because T2W alone lacks the sensitivity and specificity

necessary to locate prostate cancer.

○ The T1W imaging sequence assists in distinguishing between a tumor and

post-biopsy hemorrhage.

○ The DWI sequence assesses water diffusion in prostate cancer, which has lower

diffusion due to closely packed cells when compared to healthy tissue. When paired

with T2WI, apparent diffusion coefficient (ADC) maps yield sensitivity and specificity

that are 85–90% higher than those obtained after radical prostatectomy.

○ Finally, a T1 sequence, intravenous gadolinium bolus, and fast scans are employed to

obtain the DCE image. Cancer symptoms include increased blood flow,

neovascularity, and leaky capillaries. As a result, a perfusion vs. time curve is

produced and used as a diagnostic tool. There are three types of curves: normal

prostate tissue, BPH or prostatitis, and high grade prostate cancer.

As previously stated, bpMRI protocols, in contrast to mpMRI protocols, lack DCE. As a result,

it offers three primary advantages: faster examination times, reduced expenses, and an

absence of side effects involving contrast agents.

A grading system was created to evaluate MRI images to be utilized as a diagnostic and

treatment planning tool. The system is called Prostate Imaging-Reporting and Data System

(PI-RADS). The latest version, v2, was published in 2019. According to radiopedia, after

obtaining the MRI images, each lesion will be graded on a 1-5 scale that indicates the

probability of clinically significant cancer. The grades translate as follows :

PI-RADS 1: very low

PI-RADS 2: low

PI-RADS 3: intermediate

PI-RADS 4: high

PI-RADS 5: very high

PI-RADS v2 prostate MRI offers a high sensitivity and relatively low specificity in identifying

clinically significant prostate cancer. A systematic evaluation of 21 trials discovered a

sensitivity of 89 percent and a specificity of 73% to confirm a prostate cancer diagnosis. The

PRECISION trial found that rates of detection for clinically relevant prostate cancer in men

with no prior biopsy ranged from 12 to 60%. However, the reported sensitivities are lower

(75-85 percent), implying that MRI-guided biopsy for only PI-RADS 3 lesions or higher could

fail to identify some prostate malignancies.

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 12 of 95



Application Grade Thesis

PI-RADS 3 lesions are generally thought to be indicative of clinically significant malignancy,

although the importance of these malignancies is contradictory. Depending on the lesion,

the diagnostic yield of biopsy varies. Some doctors advocate using PSA density to guide

decision-making. An MRI graded as PI-RADS 3 or lower could serve as a justification to avoid

biopsy in older patients with substantial morbidities, however this is not accepted practice.

It is evident that although MRI examinations are an important tool for prostate cancer

patients, it, alone, cannot be a reliable guide for clinical decision making as its interpretation

heavily depends on (and varies based on) radiologists.

The question then becomes whether there is a better imaging method for prostate cancer.

Ultrasound(US) is used to identify and diagnose prostate cancer in the early stages. It can be

performed in an office setting, it is widely available, low-cost, and allows for real-time

imaging. However, the tissue contrast between malignant and benign tissue is limited. A

solution that gets around some of the drawbacks of the separate modalities is mpMRI-US

fusion imaging. However, it is relatively expensive and necessitates either fusion-device

specialized training or extensive experience. Registration mistakes may also occur during

MRI-ultrasound fusion.

Another imaging modality is Computed Tomography(CT). Because of its poor soft-tissue

contrast and lack of molecular information, CT is not the primary imaging modality for

prostate cancer. It is used to evaluate nodal and distant metastases, but its efficacy is limited

when compared to sophisticated hybrid imaging approaches like PET/CT. Furthermore,

unlike MRI, it exposes the patient to radiation, which has the potential to cause cancer.

Despite its limitations, CT is still part of the recommendations by the American Urological

Association for individuals with intermediate- to high-risk PCa.

PET or Positron Emission Tomography provides supplementary data for tumor stage,

characterisation, and metastatic involvement. However, it is costly and presents

technological (e.g., attenuation correction) and/or clinical problems (e.g., radiation

exposure). Hybrid approaches exist like PET/CT, as mentioned before, and PET/MRI. The

latter is considered superior due its higher soft tissue contrast and lower radiation exposure.

However both modalities are not very widely available and require specially trained

professionals.

1.3 Radiomics Analysis

In nuclear medicine in particular and in medical imaging generally, the topic of radiomics has

drawn considerable interest. Despite the lack of a precise definition, the objective of

radiomics is to extract quantitative information from medical images by recognizing intricate

patterns that are difficult for the human eye to interpret or measure.
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Radiomics is the study of tumor phenotypes using a wide range of image-derived,

quantitative data such as intensity, shape, texture, and so on. Radiomics tools derive image

features from immense patient datasets, assessing tumor shape, size, and gray level

intensity distribution. They aid in the understanding of the correlations between tumor

imaging features, genetic traits, phenotype, and treatment responses. Radiomic examination

of tumor subvolumes or habitats offers an imaging measurement for tumor heterogeneity,

revealing different tumor cell clones.

Oncology radiomic studies include classification tasks as well as clinical outcome prediction

using time-to-event analysis. Classification is the process of categorizing a population into

groups such as benign versus malignant, clinically significant versus insignificant, tumor

stage, and metastases. Based on clinical outcomes, predictive models classify individuals into

risk groups. Therefore, radiomics has the ability to act as a “virtual biopsy” because, unlike

traditional biopsies, it uses noninvasive imaging that allows for assessment of the entire

tumor and can be applied at various points in time.

As previously stated, the problem with PCa diagnosis is the invasive procedures and lack of

ability to entirely rely on MRI imaging. Radiomics may be able to provide a solution to both

by doing a "virtual biopsy" using tools that can uncover patterns with diagnostic value that

the human eye cannot. Future therapy planning and diagnosis for patients with prostate

cancer may take a different path attributable to the extraction of features from MRI images.

The extraction of high-dimension feature data to describe attributes of ROIs is the core of

radiomics. In actuality, radiomics extracts two kinds of features: "semantic" and "agnostic"

features. Semantic features are frequently utilized in the radiology vocabulary to describe

ROIs as they are linked to anatomical or physiological properties of the imaged tissue.

Agnostic features, on the other hand, are data-driven and aim to identify lesion

heterogeneity using quantitative descriptors. They are derived without prior knowledge of

the underlying anatomical or physiological properties.

Some commonly calculated features in radiomics analysis are :

● Shape Features:
Volume: The space occupied by a region of interest in the image.
Surface Area: The total area of the boundary surface of a structure in the
image.

● Intensity Features:
Mean Intensity: The average pixel intensity value within a defined region.
Standard Deviation: A measure of the spread or dispersion of intensity values
within a region.
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● Texture Features:
Entropy: A measure of randomness or disorder in pixel intensities.
Contrast: The difference in intensity between neighboring pixels.
Homogeneity: Describes the similarity of intensity values in an image region.

● Statistical Features:
Skewness: Indicates the asymmetry of the intensity distribution.
Kurtosis: Measures the "tailedness" of the intensity distribution.

● Histogram-Based Features:
Percentile: The value below which a given percentage of intensity values fall.
Mean Absolute Deviation: The average absolute difference between each
intensity value and the mean.

● Spatial Features:
Gray-Level Co-occurrence Matrix (GLCM) Features: Descriptive statistics
capturing relationships between pixel pairs in an image.
Run Length Matrix Features: Quantifies the length and occurrence of
homogeneous runs of pixels.

● Wavelet Features:
Wavelet Energy: Represents the energy distribution in different frequency
components of the image.

1.4 Preprocessing in Radiomics

Harmonization, though less extensively researched in MRI than in PET and CT, is important

because of MRI's technical limitations and dependence on a number of parameters. As far as

possible, inconsistencies between images that are directly related to the acquisition process

must be removed in order for radiomics to be able to extract meaningful information. The

technical difficulties with MRI include non-standard signal intensities that can be affected by

differences in scanner models, coils, sequence types, acceleration and acquisition

parameters. Additionally, all vendors will introduce noise to the images, meaning signal

variability that is not part of the desired signal, to some extent. As a result, numerous

solutions to this problem have been developed and are discussed in the following

paragraphs.

● Normalization: Signal intensity normalization is used to account for inter-scanner and

inter-patient variations by adjusting the range of signal intensities within a Region Of

Interest (ROI). This is accomplished by either transforming the ROI histogram to

match a reference signal intensity histogram or by computing the mean and standard

deviation of the signal intensity gray-levels within the ROI. No official guidelines have

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 15 of 95



Application Grade Thesis

been created, despite the fact that several articles in the imaging literature have

underlined the fundamental value of intensity normalization. In 2014, Russell T.

Shinohara and colleagues took the initiative to propose a set of seven principles,

dubbed the Statistical Principles of Image Normalizing (SPIN), with the aim of

defining the normalizing process and establishing specific objectives. According to

their proposal, the normalization process should result in images 1. that have a

consistent interpretation across multiple locations throughout the same tissue, 2. are

repeatable, 3. maintain the intensity ranking, 4. have comparable distributions of the

same ROIS within and between patients, 5. are unaffected by biological anomalies or

variations in population, 6. are not impacted too much by noise or artifacts, and 7.

do not result in loss of diagnostic information.

● Interpolation: Radiomics analysis commonly incorporates image interpolation, which

is a method of image resizing through upsampling and downsampling. This improves

texture feature extraction and assures an unbiased representation of spatially related

radiomics features. With this method a series of high-resolution organ or tissue

images is obtained , which is commonly used in medical applications in imaging

modalities such as CT and MRI. Heterogeneous voxel sizes, structural breaks and

even surfaces include problems that arise due to the fact that the distance between

slices is usually larger than the pixel size. By interpolating multiple slices, this method

helps generate volume data with isotropic dimensions, and it solves image resolution

problems by providing a detailed and accurate picture of the target structures.

● Bias field correction: The bias field is a low signal that can blur the MRI image and

make them inhomogeneous. This bias field varies not only among centers and

vendors, but also between patients, even when using the same vendor or acquisition

parameters. The bias field reduces repetitive image features such as edges and

patterns and it also changes the intensity values ​​of the image pixels, resulting in

different gray level distributions in the image for the same tissue. This not only

impacts the accuracy of image processing algorithms that rely on gray-level values of

pixels, but also any method that depends on the assumption of spatial invariance in

the processed image. Before inputting MRI images into any algorithms, it is necessary

to first apply a correction pre-processing step to account for the bias field. There are

several methods of correction, the most common being the N4 Bias Field Correction.

With its fast execution and multiresolution process it effectively addresses the image

inhomogeneities.

● Discretization: Discretization is another step in the pre-processing of MRI images

which converts the original intensity values into a set of gray levels. This process then

results in what is called an intensity histogram that is made up of intensity bins. Two
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types of discretization methods exist. In the Fixed Bin Number (FBN) method the

number of bins is predetermined, but the bin width may vary depending on the

range of the data. The goal is to divide the data into a pre-specified number of bins.

On the other hand, in the Fixed Bin Size (FBS) method, the width of each bin is the

predetermined value and it remains constant throughout the histogram. No hard

evidence has been found to favor one method or the other yet. However the

selection of the ideal values is crucial as these methods were developed for weighted

MRI data with no reference point or voxel value for intensity standardization. As a

result, even seemingly insignificant changes in discretization method intensity range

and gray level count have been shown to have a negative impact on the

reproducibility of the resulting radiomic features.

● Registration and alignment: The process of aligning images spatially with one

another is known as image registration. Images can be registered into the same

coordinate system to produce fusion images and enable a variety of quantitative

analyses. In medical imaging, registration serves the purpose of aligning multiple

images to ensure anatomy correspondence. Algorithms for registration can be

classified as linear or non-linear. Non-linear registration allows for local deformation

with elasticity, whereas linear registration includes rigid or affine transformations.

● Noise reduction: Noise artifacts in MRI images include body temperature, subject

time, and thermal variables. The subject's time within the MR machine is inversely

correlated with the thermal factor of the machine, and extended exposure can raise

body temperature. MRI noise can visually deteriorate images and lead to a false

diagnosis. If a particular tissue or location has a low signal to noise ratio (SNR), it also

impairs quantitative imaging and reduces the usefulness of MRI. For this reason,

improving both qualitative and quantitative metrics requires an effective MRI

reconstruction procedure that makes use of denoising techniques. Although some

sources use the phrase more generally to mean anything that eliminates noise, noise

reduction—also referred to as noise suppression or denoising—commonly refers to

the numerous algorithmic ways to reduce the aforementioned noise in image files

once they are formed. Various approaches, primarily filtering techniques, are applied

to images including morphological filters, statistical filters, frequency filters (discrete

Fourier transform), and spatial filters (convolutions).

1.5 Future Directions and Challenges: A Look into Literature

In 2020, Simon Bernatz et al. conducted a comparative analysis of many machine learning

algorithms that used radiomics and clinical parameters to predict clinically-significant PCa.
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Regarding pre-proprecessing, they make reference to a crucial point that applies to all cancer

studies, not just those on prostate cancer. They state that the Imaging Biomarkers

Standardization Initiative (IBSI) does not cover image preprocessing. Although the IBSI does

explain the definitions and the general consensus of a lot of preprocessing techniques, it

does not recommend which to use first, which to use next, or even which techniques to use

at all. It does urge the readers to include thorough explanations of the preprocessing steps

of their research to counter the difficulty in reproducing radiomics studies. To ensure

integrity and comparability, the researchers in the aforementioned work chose to use

unaltered images without any preprocessing.

A number of other papers have also either skipped the pre-processing step altogether or

performed limited preprocessing.

In 2019, Florent Tixier et al. explored the potential of preoperative MRI-radiomics features

to enhance the prediction of survival in glioblastoma patients. They admit to a possible lack

of prognostic value for their research due to a lack of preprocessing. However, they clarify

that this was a purposeful decision to allow their findings to be used in a clinical context.

In 2022, Cui Feng et al. created a radiomics nomogram for grade prediction of Bladder

Cancer. They went with a zero preprocessing method but did mention that MRI scanners can

cause inhomogeneities and background interferences. It is their opinion however that those

systematic errors cannot be completely eliminated.

In 2023, Mohammad Mirza-Aghazadeh-Attari et al. studied the additive value of radiomics

features in staging Hepatocellular Carcinoma. Although they did perform some minor

preprocessing (registration and normalization), they referred to it as a possible contributor

to reduced reproducibility.

In 2023 Maria-Fatima Chilaca-Rosas et al. studied the diagnostic performance of selected

MRI-derived radiomics in distinguishing progression-free and overall survival in patients with

midline glioma and the H3F3AK27M mutation. They chose to limit the data to only 2

scanners because any more scanners require harmonisations due to different acquisition

parameters and variations, termed the "scanner effect". They also refer to bias field

correction methods as a promising solution to this and highlight the need for standardization

of such methods in order to be used for future research.

Finally, a notable mention would be a paper by Sandra Fiset et al that,in 2019, studied the

repeatability of radiomics features in cervical cancer. A 4-step preprocessing pipeline was

performed on the images. However, lack of bias field correction was mentioned as a
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limitation and the writers underlined the need for research on the field’s effect on

reproducibility.

The evaluated studies stress the pivotal role of image preprocessing in radiomics research,

recognizing its diverse methodologies and impact on clinical relevance. With initiatives like

IBSI lacking specific guidelines, researchers must detail preprocessing methods for enhanced

reproducibility. Some studies intentionally opt for minimal preprocessing for clinical utility,

emphasizing the need for standardization in techniques to ensure reliable and comparable

outcomes in future radiomics research.

1.6 Radiomics in Prostate Cancer Diagnosis: Bridging Gaps, Addressing Challenges, and

Shaping the Future

Following an examination of existing literature in radiomics, it is clear that the approaches

used in preprocessing have a major impact on the reproducibility and clinical relevance of

research. The lack of precise criteria by organizations such as the Imaging Biomarkers

Standardization Initiative (IBSI), emphasizes the need for researchers to be transparent and

disclose their preprocessing methods in order to improve the reproducibility of their

findings. While some studies purposefully use little or no preprocessing to coincide with

clinical settings, others consider the implications for prognostic value and reproducibility. In

order to ensure strong and reproducible results for future radiomics research, there needs

to be for standardization of the preprocessing pipeline.

As previously discussed the typical transrectal ultrasound-guided biopsy, despite being a

historical gold standard, has a number of limitations such as invasiveness and associated

problems. The exploration of routine screening aims to acquire early-stage diagnoses, but

the risk of overdiagnosis of low-risk lesions arises further concerns regarding unnecessary

treatments. Recent studies comparing the diagnosis accuracy of MRI versus biopsy reveal

that MRI has the potential to be a non-inferior option in finding clinically significant cancer.

The use of MRI and diagnostic techniques shows promise in terms of reducing the need for

invasive biopsies and minimizing associated consequences.

Despite the above, caution is advised when relying on image-based diagnostic procedures.

Studies show potential limitations, including missed diagnoses which creates the need of

combining both MRI and biopsies to improve reliability of the results. The limitations of MRI

are highlighted further by human error, low inter-reader agreement, and potential biases in

study populations. Due to this, the use of MRI-radiomics as predictive biomarkers is a

promising option for decreasing invasive procedures and overdiagnosis and, also, improving

the precision of diagnosing prostate cancer. As research on radiomics continues, a balance

between quality of life, clinical relevance, study reproducibility, and diagnostic accuracy will

be critical factors in determining the best practices.
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Chapter 3: Research methodology

3.1 Introduction

In this chapter the methodology of the research will be described step-by-step. It begins

with an overview of the entire process and then the following paragraphs go into more

depth on the specifics of each step.

3.2 Overview

This research is divided in two phases, a comprehensive comparative literature review

followed by an experimental application and validation phase. The design aims to compare

existing preprocessing pipelines and develop a pipeline proposal for prostate cancer MRI

images. The rationale behind this design is to take advantage of established methodologies,

create a proposal and test it.

➢ Phase 1: Comparative Literature Review

In the first phase, a thorough comparative analysis of approximately 80 research papers was

conducted. This review included:

● Scope and selection criteria: ~ 80 papers were selected on the premise that they

specified the preprocessing steps they used on MRI images. Half of those were

dedicated to prostate cancer while the rest to different cancers. This was done due

the limited amount of literature on prostate cancer that explicitly discussed

preprocessing in order to obtain a larger view of the recent practices on

preprocessing pipelines.

● Analysis Parameters: The selected papers were compared on multiple parameters

namely, cohort size, multi/single center design, multi/single vendor design,

evaluation metrics and limitations. This comparison aimed to identify preprocessing

pipelines used in the studies with the best design and results and with the minimum

limitations.

● Outcome: Based on this comparative analysis, a preprocessing pipeline for prostate

cancer MRI images was proposed, and it included the most effective and widely used

techniques identified in the literature.

➢ Phase 2: Experimental Testing and Validation

The proposed preprocessing pipeline was implemented and validated, according to the

following steps:

● Dataset selection: The ProstateX dataset, public prostate cancer MRI dataset was

selected.

● Pipeline Application: The proposed preprocessing pipeline was applied to the

ProstateX dataset, and preprocessing and model-building were fully implemented in

Python.
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● Model Development: After the extraction of the radiomics features they were used as

input to create a radiomics classification model to predict clinically significant

prostate cancer. A number of classifiers were compared and evaluated on their

performance. The best one, Logistic Regression, was used to develop the final model.

● Training and Validation: The dataset was divided into a train set, used for tuning and

training and a test set used for final evaluation (70/30) to create a train-test model. It

was also divided into 80/20 for a train and hold-out model where the latter was kept

as unseen data.

3.3 Establishing the Preprocessing Pipeline

In the literature review the papers were divided into sub-groups with similar objectives. 1-2

papers of each group were selected for standing out based on the results and the overall

design of the study. Then from those the final proposal of the preprocessing steps was

concluded upon.

Following the comparative literature review, the following pipeline was established :

● Bias field correction was applied to correct intensity non-uniformities within the MRI

images. The N4ITK algorithm, implemented using SimpleITK in Python, was utilized

for this correction. This step is important for enhancing the homogeneity of the

images, in order to improve the reliability of intensity-based features.

● Z-score normalization was used to lessen the impact of differences in images and

patients on feature extraction by calculating the mean and standard deviation of

image intensities and adjusting pixel values accordingly.

● Resampling was used to ensure that all pictures and segmentations shared the same

voxel size and dimensions. SimpleITK was utilized to perform resampling, with

segmentation masks serving as the reference size.

3.4 Dataset Description

This study employed the ProstateX dataset, which is a large, publicly available collection

intended exclusively for prostate cancer imaging studies. It is offered via the SPIE-AAPM-NCI

Prostate MR Image Cancer Detection Challenge.

➢ Prostate X Dataset:

● Source: The Cancer Imaging Archive (TCIA) hosts the ProstateX dataset.

● Content: The dataset contains multiparametric MRI (mpMRI) scans from 346 people.

The imaging modalities include T2-weighted (T2W) MRI, diffusion-weighted imaging
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(DWI), dynamic contrast-enhanced (DCE) MRI, and proton density-weighted (PD-W)

MRI. We used the T2W modality for the analysis.

● Annotations: The dataset includes annotations from radiologists of lesion locations

coordinates, and clinical significance based on biopsy Gleason score. However,

segmentation masks are only provided for 66 patients, which is critical for radiomics

feature extraction. Each patient may have one or more lesions, located in their

prostate.

➢ Dataset Utilization :

● Preprocessing Pipeline Application: The proposed preprocessing pipeline, developed

from the comparative literature review, was applied to the ProstateX dataset.

● Label Aggregation: The dataset was imbalanced (approximately a 2:1 ratio of False to

True labels, 43:23) and there needs to be sufficient data for training, so for this

reason labels were aggregated instead of creating separate models for each prostate

region. Initially, labels were lesion-based, with each patient having 1-5 labels

corresponding to individual lesions located in the same or different prostate zones.If

a patient had at least one True (= clinically significant) lesion, the patient was

assigned a True label. Patients with only False labels on their lesion(s) were given a

False label. This way all available data was used to build the prediction model

although it resulted in the loss of the spatial information.

● Feature Extraction: The segmented prostates were utilized to extract the radiomics

features. including shape, texture and intensity, using PyRadiomics.

● Model Development and Validation: The extracted features were used as input for

developing the classification radiomics model for clinical significance.

3.5 Model Development

Pipeline Design

The model was developed wth the Pipeline class from scikit-learn and included the following

For standardization, the StandardScaler was used to scale the features with a mean of 0 and

a standard deviation of 1. For feature reduction, Principal Component Analysis (PCA) was

used to reduce the feature space. For feature selection , a Random Forest classifier was used

to select the most relevant features for the classification task. For a classifier, after

comparing multiple classifiers on their performance for the dataset, Logistic Regression was

selected as the best one.
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Hyperparameter Optimization

Hyperparameter tuning was performed using RandomizedSearchCV. The parameter

distributions included:

● Number of PCA components.

● Number of estimators in the Random Forest.

● Regularization strength in Logistic Regression.

Cross-Validation

To ensure strong performance metrics, repeated stratified k-fold cross-validation was

employed with 5-folds, in order to address class imbalance by maintaining the same

proportion of each class in each fold. It was utilized during the hyperparameter tuning of the

model with the training set.

Model Training and Validation

● Data Splitting: The dataset was split into training and test sets (70-30) and also into

training and hold-out sets (80/20)

● Evaluation: The first model was tuned on the training set and trained also on the

training set. The final evaluation was done on the test set. Optimal classification

thresholds were calculated using precision-recall curves and performance metrics

were calculated on both the training and test sets including accuracy, precision,

recall, F1-score and AUC. For the second mode, the exact process was followed with

the only difference being the hold-out set being kept as unseen data.
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Chapter 4: Analysis

4.1 Introduction

In this section, the Analysis, the implementation of the previously described methodology

will be presented and analysed. The first two paragraphs will compare prostate cancer and

multiple cancer papers, respectively, on their preprocessing pipelines and their results.

Following that, the final preprocessing proposal is explained. Then, the remaining

paragraphs in this section will discuss the implementation of the pipeline and the

consecutive creation of a classification model.

4.2 Grouping the studies on Prostate Cancer based on their objective

Group # Description # of Papers

1 Predicting Clinically Significant Prostate Cancer - Focused on developing and
validating models to predict clinically significant prostate cancer.

9

2
Prostate Cancer Detection and Characterization - Concentrates on prostate
cancer detection and characterization through various imaging techniques and
radiomics.

10

3
Radiomics Model Generalization - Examines the generalizability of radiomics
models across different datasets and scenarios.

5

4
Prostate Cancer Detection and Machine Learning - Explores the use of
machine learning and imaging classifiers in prostate cancer diagnosis.

8

5
PI-RADS 3 Lesion Characterization - Specifically targets the characterization of
PI-RADS 3 lesions, aiming to distinguish between benign and malignant cases.

7

1. Grouping of Prostate Cancer studies

Group 1 : Predicting Clinically Significant Prostate Cancer (csPCa)

# doi Title and Date # of Patients Pre-Processing Classifier

1 10.33
89/fon
c.2022
.9188
30

“Prediction of clinically
significant prostate cancer with
a multimodal MRI-based
radiomics nomogram”, 2022

201
normalization,
resampling

LR

2 10.21
037/qi

“Radiomics prediction model for
the improved diagnosis of 381

normalization,
gray-level

quantisation,
LR
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ms.20
19.12.
06.

clinically significant prostate
cancer on biparametric MRI”,
2020

resampling

3 10.10
02/jm
ri.259
83

“Radiomic features on MRI enable
risk categorization of prostate
cancer patients on active
surveillance: Preliminary
Findings”, 2018

56
resampling, bias

field correction, drift
correction

QDA, RF and
SVM

4 10.33
90/ap
p1001
0338

“A Hybrid End-to-End Approach
Integrating Conditional Random
Fields into CNNs for Prostate
Cancer Detection on MRI”, 2020

344
interpolation,

registration, z-score
normalization

CRF-CNN

5 10.33
90/jim
aging7
10021
5

“A Combined Radiomics and
Machine Learning Approach to
Distinguish Clinically Significant
Prostate Lesions on a Publicly
Available MRI Dataset”, 2021

299

resampling, z-score
normalization,
discretisation,

Laplacian Gaussian
filtering and wavelet

decomposition

NB, KNN and
RF

6 10.33
90/ca
ncers1
32461
99

“Prediction of Clinically Significant
Cancer Using Radiomics Features
of Pre-Biopsy of Multiparametric
MRI in Men Suspected of Prostate
Cancer”, 2021

200
resampling,

normalization,
co-registration

LR

7 10.10
16/j.m
edia.2
021.1
02155

“End-to-end prostate cancer
detection in bpMRI via 3D CNNs:
Effects of attention mechanisms,
clinical priori and decoupled false
positive reduction”, 2021

1950
b-spline

interpolation,
normalization

CNN

8 10.33
89/fon
c.2021
.7924
56

“MRI Based Radiomics Compared
With the PI-RADS V2.1 in the
Prediction of Clinically Significant
Prostate Cancer: Biparametric vs
Multiparametric MRI”, 2022

204

normalization,
b-spline

interpolation,
discretisation

SVM

9 10.33
90/ca
ncers1
40100
12

“Classification of Clinically
Significant Prostate Cancer on
Multi-Parametric MRI: A
Validation Study Comparing Deep
Learning and Radiomics”, 2021

644
resampling,

registration, z-score
normalization

LR, SVM, RF,
NB, LDA and

QDA

2. Group 1 : Predicting Clinically Significant Prostate Cancer (csPCa)

Group 1 includes papers with the end goal of detecting clinically significant prostate cancer

(csPCA). When examining the sample size Paper 7 stands out. It boasts the largest patient

cohort, featuring 1950 individuals. This multicenter study, involving a single vendor, aimed to

create a multi-stage 3D CAD model for automated localization of clinically significant

prostate cancer. Paper 2 follows with 381 patients. This is a single-center, single-vendor

study . Paper 4 features a substantial cohort of 344 patients, also adopting a single-center,
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single-vendor approach. Paper 5 utilizes a single-center, single-vendor dataset with 299

patients. Paper 8 conducted in a single-center, single-vendor setting, included a cohort of

204 patients. Paper 1 features 201 patients within a single-center, multivendor setup. Paper

6 follows with a single-center, single-vendor approach and includes 200 patients. Finally,

Paper 3 stands out with the smallest cohort of 56 patients, maintaining a single-center,

single-vendor approach. Due to its smaller size its findings may be less transferable to other

clinical settings due to its limited diversity.

Regarding preprocessing, papers 1 through 6 and paper 9 apply normalization and

resampling. Papers 2 and 12 additionally employ gray-level quantization. Paper 5 has a more

extensive approach, with z-score normalization, discretization, Laplacian Gaussian filtering,

and wavelet decomposition. Paper 3 applies bias field correction and drift correction. Papers

6 and 9 include registration as a preprocessing step. Paper 7 involved b-spline interpolation

and normalization as did Paper 8 along with discretisation.

In terms of results, Paper 2 and Paper 1 achieved the best metrics. Paper 2 achieves an

impressive AUC of 0.98 for both the radiomics model and the clinical-radiomics combined

model, performing better than the clinical model significantly. Paper 1 an AUC of 0.942,

showing the nomogram's potential in performing better than subjective evaluation. Paper 5

follows closely with accuracies of 80% and an AUC of around 0.80 . Paper 3, despite having a

smaller cohort, achieved a significant overall accuracy improvement of up to 80% when

compared to PIRADS v2.0 alone. In Paper 6 radiomic features outperformed PIRADS and

PSAD by 35.0% and 34.4% in predicting clinically significant prostate cancer. For Paper 7, the

results were promising, with M1 detecting clinically significant prostate cancer with a low

false positive rate the highest detection sensitivity on the testing datasets, with an AUC of

0.836. In the 8th study, both the radiomics model based on bpMRI and mpMRI signatures

demonstrated high predictive efficiency, although there were no significant differences

between them. (AUC = 0.975 vs 0.981 in the training cohort, and 0.953 vs 0.968 in the

testing cohort, respectively) Importantly, both models outperformed the PI-RADS v2.1

scoring system in diagnosing csPCa. Finally, Paper 9, compared a radiomics and a deep

learning model. The results showed notable differences between the two approaches. The

radiomics model achieved AUCs of 0.88, 0.91, and 0.65 on independent test sets, while the

deep-learning model achieved AUCs of 0.70, 0.73, and 0.44 on the same test sets.

Each paper in this group utilizes a single-vendor, single-center approach, except for Paper 1,

which uses a multi vendor dataset and paper 7 which utilized a multicenter setting. Despite

their achievements, each study has its specific limitations that can affect the generalizability

of the results . Paper 1, despite notable results, used a relatively small dataset. Paper 2,

although it did utilize a bigger dataset, is a single-center study. Paper 3, which focuses on

active surveillance patients, leaves out cases with a PIRADS score of 3, which can impact its
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ability to be broadly applied. Paper 4 introduces high variability in performance, and Paper

5, despite achieving good results, does not conclude on a clear link between Gleason grading

and clinical outcomes. Additionally, Paper 6 did manual segmentations and it is a

single-center study. Paper 7 although it did include a very high number of patients from

various institutes, it only included data from one vendor which could affect generalizability.

Paper 8, noted that they did not distinguish between PCa occurring in the peripheral zone

(PZ) and transition zone (TZ) which could affect the possible applications and generalizability

again. Lastly, Paper 9, did not account for clinical data and co-existing benign prostatic

diseases and relied on a single clinician for reference, which could introduce biases.

Group 2 : Prostate Cancer Detection and Characterization

# doi Title and Date # of
Patients

Pre-Processing Classifier

1 10.339
0/cance
rs1208
2200

“Combination of Peri-Tumoral and
Intra-Tumoral Radiomic Features
on Bi-Parametric MRI Accurately
Stratifies Prostate Cancer Risk: A
Multi-Site Study”, 2020

231

resampling ,
interpolation, drift
correction, bias field

correction

QDA

2 10.100
7/s132
46-021-
01022-
1

“Bi-parametric magnetic
resonance imaging based
radiomics for the identification of
benign and malignant prostate
lesions: cross-vendor validation”,
2021

459
z-score normalization,

resampling
RF, SVM and

LASSO

3 10.100
7/s003
30-020-
07227-
4

“Advanced zoomed
diffusion-weighted imaging vs.
full-field-of-view
diffusion-weighted imaging in
prostate cancer detection: a
radiomic features study”, 2021

136
normalization,
discretisation LASSO

4 10.100
2/acm2
.12992

“Voxel-based supervised machine
learning of peripheral zone
prostate cancer using noncontrast
multiparametric MRI”, 2020

17

bias correction (N4ITK),
noise reduction,
standardization,
co-registration

SVM

5 10.183
83/j.to
m.2018
.00033

“Gleason Probability Maps: A
Radiomics Tool for Mapping
Prostate Cancer Likelihood in MRI
Space”, 2019

48 normalization, alignment N/A

6 10.265
02/jrci.
280906
1

“Radiomic Features on Prostatic
Multiparametric Magnetic
Resonance Imaging Enable
Progression Risk in Patients on

55 normalization LR
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Active Surveillance: A Pilot Study”,
2022

7 10.110
9/ISBI.2
019.87
59217

“Classification of Prostate Cancer :
Low Grade vs. High Grade using a
Radiomics Approach”, 2019

40 resampling, registration SVM

8 10.103
8/s415
98-019-
45766-z

“Repeatability of Multiparametric
Prostate MRI Radiomics Features”,
2019

15

bias field correction(N4),
normalization,
discretisation,
registration

N/A

9 10.100
2/jmri.
25562

“Radiomic features for prostate
cancer detection on MRI differ
between the transition and
peripheral zones: Preliminary
findings from a multi-institutional
study”, 2017

80

B-spline elastic
registration,

computationally analyzed
at the same resolution,
correction for acquisition
artifacts (intensity drift

and bias field correction -
N3 - for endorectal coil)

LR

10 10.338
9/fonc.
2021.7
18155

“A Fully Automatic Artificial
Intelligence System Able to Detect
and Characterize Prostate Cancer
Using Multiparametric MRI:
Multicenter and Multi-Scanner
Validation”, 2021

131

de-noising (Gaussian
filter), N4 bias correction,
intensity normalization,

interpolation,
discretisation

SVM

3. Group 2 : Prostate Cancer Detection and Characterization

Group 2 includes studies about the detection and characterization of prostate cancer. Paper

2, aims to develop a multi-center, multivendor radiomics model for prostate cancer risk

stratification and has the largest dataset of 459 patients. Paper 1, focuses on development

of a radiomics model for prostate cancer detection through a multicenter, multivendor

study, involved 231 patients. In contrast, Paper 3 utilized a smaller cohort of 136 patients

and was limited to a single-center, single-vendor setup. Paper 4 also has a single-center,

single-vendor dataset with only 17 patients in an attempt to characterize clinically significant

prostate cancer. Paper 6 includes 55 patients and a single-center , single-vendor approach

while aiming to identify imaging biomarkers for prostate cancer diagnosis. Meanwhile, Paper

7, focuses on radiomics features for distinguishing between prostate cancer and benign

prostatic hyperplasia, has one of the smallest cohorts, 40 patients, and also has a

single-center, single-vendor design. Paper 5, has a single-center, single-vendor design with

48 patients and focuses on generating new image contrasts by learning unique image

signatures associated with prostate cancer. Paper 8, wants to assess the repeatability of

radiomics features utilizing the smallest dataset (15 patients ) with a single-center,

single-vendor approach. Paper 9 aims to assess whether radiomic features for prostate

cancer detection from 3 Tesla mpMRI differ between the transition zone (TZ) and peripheral
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zone (PZ). This multicenter, multivendor study involved 80 patients. Lastly, Paper 10 wants to

develop and validate a fully automated computer-aided diagnosis (CAD) system for the

detection and characterization of prostate cancers based on their aggressiveness. This

multicenter, multivendor study included 131 patients .

The selected papers employ various preprocessing techniques to enhance the quality and

consistency of their data. Normalization is the only preprocessing utilized in Paper 6, Papers

2, 3, and 5 also employ normalization but also additional steps too. Paper 2 includes

resampling, while Paper 3 includes discretisation. Paper 5 includes alignment. Interpolation

is employed in Paper 1 along with drift correction and bias field correction. Paper 7 employs

resampling and registration. Paper 4, utilizes bias field correction , noise reduction,

standardization and co-registration. Paper 8, on the other hand, performed bias field

correction (N4), normalization, discretization, and registration. Paper 9 utilizes B-spline

elastic registration, drift correction and bias field correction ( N3 - for endorectal coil). Paper

10 , with the most extensive approach, includes de-noising (Gaussian filter), N4 bias

correction, intensity normalization, interpolation and discretisation.

When considering the results, Paper 2 had the strongest performance. Its biparametric

radiomics model performed better than single-parametric models, achieving an AUC of

0.833. The comprehensive diagnostic model achieved an AUC of 0.911. Paper 1 also shows

robust performance, with an AUC of 0.87, especially when peri- and intra-tumoral radiomic

features were combined. Paper 4 achieved an e AUROC of 0.93 for prostate cancer detection

using T2WI, DWI, and DTI models, however it used a small dataset of only 17 patients. Paper

3 achieved AUCs of 0.93 and 0.94 in its mp-MRI model and mixed model, respectively,

despite its relatively smaller cohort size. Paper 6 also has a limited sample size, but its

radiomic shape feature extracted from DWI maps achieved an AUC of 0.76 for predicting

progression to clinically significant prostate cancer. Paper 5 developed stable Gleason

probability maps that outperform conventional clinical imaging (AUC = 0.79). Paper 7

achieved an AUC of 0.77 for classifying high-grade and low-grade prostate cancer lesions.

Paper 8, showed significant variability in the repeatability of radiomics features. The authors

suggested to not rely on prior studies for selection of radiomics features due to the impact

of image type, preprocessing, and region of interest on repeatability and the study was

unable to conclude on any universal features or preprocessing pipelines. Paper 9 found that

a zone-aware classifier significantly improved cancer detection accuracy in the PZ compared

to a zone-ignorant classifier, with AUC values ranging from 0.61 to 0.71 when evaluated on

MRI data from multiple institutions. Lastly, in Paper 10, the CAD system achieved a high ROC

curve with an AUC of 0.96 in distinguishing between low and high-aggressive tumors in the

training set and an AUC of 0.81 in the validation set.

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 29 of 95



Application Grade Thesis

However, each paper has its set of drawbacks. Paper 1 points to its small validation set,

which could affect the reliability of its results. Paper 2, despite its strong performance,has

limitations due to its single-center and limited-vendor approach, which could affect its

generalizability. Paper 3 had a small dataset for the the insignificant prostate cancer

category, which could limit its predictive ability. Paper 4 had a small number of patients as

well and relied only on radiologists for classification and validation. Also, it focused only on

intermediate and high-grade tumors, limiting its application to all grades. Paper 6 limitations

include a single-center, single-vendor design and the lack of DCE sequences. Moving to

Paper 7, it relied on Gleason score as the ground truth, which can vary between

pathologists. Furthermore, it was conducted in a single-center, single-vendor setting, and

tumor locations are not included as features. Paper 5 had unlabeled non-cancer confounding

diseases in its dataset, which may lead to errors. Additionally, its single-vendor approach and

the use of an endorectal coil might affect its generalizability. Paper 8, even though it couldn't

establish universally stable feature and preprocessing recommendations, it found specific

features with high repeatability that could be considered for radiomics signatures, and

suggested further research to assess their predictive power on different datasets. Paper 9 ,

due to its multicenter, multivendor design had limitations due to variations in MRI

acquisition parameters and the unavailability of ground truth. Paper 10 completely left out

TZ tumors. It, also, categorized all aggressive tumors as non-indolent, potentially leading to

over-treatment or additional investigations.

Group 3 : Radiomics Model Generalization

# doi Title and Date # of Patients Pre-Processing Classifier

1 10.339
0/diag
nostics
11020
369

“A Multi-Center, Multi-Vendor
Study to Evaluate the
Generalizability of a Radiomics
Model for Classifying Prostate
cancer: High Grade vs. Low
Grade”, 2021

204
registration,

resampling, ComBat
WORC*

2 10.118
6/s132
44-021
-01099
-y

“Single-center versus
multi-center biparametric MRI
radiomics approach for clinically
significant peripheral zone
prostate cancer”, 2021

262
normalization , gray
level discretisation

XGBoost

3 10.212
03/rs.3
.rs-180
726/v1

“Integration of Clinical
identifications With Deep
Transferrable Imaging Feature
Representations Can Help Predict
Prostate Cancer Aggressiveness
and Outcome”, 2021

1442 normalization

KNN, AB, RF,
LR and SVM
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4 10.339
0/jcm1
20101
40

“A Framework of Analysis to
Facilitate the Harmonization of
Multicenter Radiomic Features in
Prostate Cancer”, 2022

210

normalization, b-spline
interpolation (isotropic

resampling),
discretisation

LogitBoost, RF,
KNN, and DT

5 10.100
7/s132
46-019
-00720
-1

“An inter-center statistical scale
standardization for quantitatively
evaluating prostate tissue on
T2-weighted MRI”, 2019

51

bias correction (N4ITK),
noise reduction,

intensity
standardization

N/A

4. Group 3 : Radiomics Model Generalization

*Workflow for Optimal Radiomics Classification (WORC) platform, an open-source machine learning software specifically

designed for radiomics applications.

This group focused on generalizability. Paper 3 had the largest and most comprehensive

dataset among the group, with 1442 patients across multiple centers but a single-vendor

design. Its goal is to develop a generalizable machine learning platform for PCa Gleason

grade and PIRADS prediction. Paper 4 also has a multicenter, single-vendor design with 210

patients to develop a framework for harmonizing radiomic features extracted from

T2-weighted MRI. Paper 1, also involved multiple centers and also multiple vendors with 204

patients, and focuses on evaluating the generalizability of radiomics models for prostate

cancer classification. Paper 2 had a dataset of 262 patients, and compared multi-center,

multi-vendor data to single-center, single-vendor data for the classification of clinically

significant PZ prostate cancer. Finally, Paper 5, comprising the smallest dataset, aims to

assess different candidate biological reference tissues for standardizing T2-weighted MRI

intensity distributions. It is a multicenter, single-vendor study involving 51 patients.

Turning to preprocessing, Papers 3, 2 and 4 employ normalization. On top of that, Paper 2

and Paper 4 employ discretisation, with Paper 4 also utilizing b-spline interpolation. Paper 1

uses registration, resampling and ComBat. Finally Paper 5 employs N4 bias correction, noise

reduction and intensity standardization.

Regarding results, Paper 3 stands out by integrating clinicians' prior identifications with deep

transferable imaging feature representations, demonstrating promising performance in risk

stratification for PCa Gleason grade. Paper 4's use of ComBat for harmonization achieves

70% accuracy and 78% AUC, which is notable. Paper 2 exhibits a significant performance

reduction when transitioning from a single-center, single-vendor dataset (ScSv - AUC=0.82)

to a multi-center, multi-vendor (McMv - AUC = 0.75 )dataset, highlighting the challenges of

data heterogeneity. Still the McMv model achieves a notable result. Paper 1 evaluates

radiomics models against radiologists. The three single-center models obtained a mean AUC

of 0.75, (which decreased to 0.54 when the model was applied to the external data), the

radiologists obtained a mean AUC of 0.46. In the multicenter setting, the radiomics model
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obtained a mean AUC of 0.75 while the radiologists obtained a mean AUC of 0.47.Paper 5

demonstrated that the ischioanal fossa had the highest reproducibility among the

standardization methods, with a%interCV of 18.9 for center 1 and 11.2 for center 2. These

findings imply that the ischioanal fossa could serve as a reference tissue for standardizing

T2WI intensities.

Moving to drawbacks, Paper 1 is limited by the fact that the ground truth grading was done

by a single pathologist/center and the fact that it utilized a relatively small number of

patients. Additionally, it does not include clinical data or epidemiological factors. Paper 2

used different biopsy techniques resulting in a non-uniform gold standard for labeling. Paper

3 used MRI-guided biopsy as the reference standard and relied on center slices instead of

the full 3D volumes. Paper 4, despite its promise, relies on a small sample size and needs

external validation with more patients and cancer types. Paper 5, also has a very limited

cohort size . The authors also note the exclusion of healthy subjects, and potential artifacts

from patient movement as possible limitations.

Group 4 : Prostate Cancer Detection and Machine Learning

# doi Title and Date # of Patients Pre-Processing Classifier

1 10.3389
/fonc.2
022.934
108

“Evaluation of the Efficiency of
MRI-Based Radiomics Classifiers in
the Diagnosis of Prostate Lesions”,
2022

238
normalization,
resampling,
discretisation

DT, Gaussian
NB, XGBoost,

LR, RF and SVM

2 10.1002
/jmri.27
204

“Deep-Learning-Based Artificial
Intelligence for PI-RADS
Classification to Assist
Multiparametric Prostate MRI
Interpretation: A Development
Study”, 2020

687
alignment,
resampling,

normalization
CNN

3 10.3390
/diagno
stics110
40594

“Advanced Imaging Analysis in
Prostate MRI: Building a Radiomic
Signature to Predict Tumor
Aggressiveness”, 2021

102

bias field
correction(N4),

intensity
standardization

SVM

4 10.3389
/fonc.2
020.631
831

“Use of Radiomics to Improve
Diagnostic Performance of
PI-RADS v2.1 in Prostate Cancer”,
2021

203
normalization,
resampling

LR

5 10.1038
/s41598
-021-81
272-x

“Utility of T2-weighted MRI
texture analysis in assessment of
peripheral zone prostate cancer
aggressiveness: a single-arm,
multicenter study”, 2021

128

co-registration,
bias correction

(N4),
normalization

SVM
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6 10.1002
/jmri.27
793

“Integrative Machine Learning
Prediction of Prostate Biopsy
Results From Negative
Multiparametric MRI ”, 2022

230

bias field
correction (N4),

z-score
normalization

SVM

7 10.3390
/cancer
s12020
390

“Multiparametric MRI for Prostate
Cancer Detection: New Insights
into the Combined Use of a
Radiomic Approach with Advanced
Acquisition Protocol”, 2020

65
registration,

normalization,
discretisation

LR

8 10.1007
/s10278
-018-01
60-1

“A Deep Learning-Based Approach
for the Detection and Localization
of Prostate Cancer in T2 Magnetic
Resonance Images”, 2019

19 normalization CNN

5. Group 4 : Prostate Cancer Detection and Machine Learning

This group focuses on cancer detection. Paper 1 is a single-center, single-vendor study of 238

patients to assess various imaging classifiers for prostate disease diagnosis in the future.

Paper 2, on the contrary, is a multicenter, multivendor study with 687 patients that aimed to

develop an artificial intelligence (AI) solution for PI-RADS classification. Paper 3, a

single-center, single-vendor study of 102 patients, wants to develop a reproducible radiomic

pipeline for prostate cancer aggressiveness prediction. Paper 4 has a single-center,

single-vendor design with 203 patients and aims to develop a radiomics model to improve

the performance of PI-RADS v2.1. Paper 5 used a multicenter, single-vendor dataset of 128

patients to examine textural features for assessing prostate cancer aggressiveness. Paper 6,

which has 230 patients, utilized a single-center, single-vendor setup to identify patients who

could safely avoid prostate biopsy using a radiomics-based machine learning approach.

Paper 7, with 65 patients, did a single-center, single-vendor study to compare standard and

advanced radiomic models for prostate cancer detection, by taking into account 2D and 3D

lesion segmentation. Paper 8 wants to create a deep convolutional encoder-decoder

architecture capable of segmenting the prostate, its anatomical structures, and malignant

lesions all at the same time. It was done at a single center with a single vendor, and had the

smallest dataset of the group with 19 patients.

In terms of preprocessing, Paper 1 applied normalization, resampling, and discretization .

Paper 2 used alignment, resampling, and normalization. Paper 3 employed bias field

correction (N4) and intensity standardization. Paper 4 employed normalization and

resampling. Paper 5 implemented co-registration, bias correction (N4), and normalization.

Paper 6 used bias field correction (N4) and z-score normalization. Paper 7 applied

registration, normalization, and discretization while Paper 8, only used normalization.

In terms of results, Paper 1 had high diagnostic abilities with the random forest classifier

performing the best with an AUC of 0.88. Paper 2 compared AI PI-RADS scoring with
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radiologist-assigned PI-RADS scoring and found no statistically significant differences for

clinically significant prostate cancer. Paper 3 produced an accuracy of 0.88 in predicting PCa

aggressiveness. Paper 4 combined Rad-score with PI-RADS and significantly improved PCa

diagnosis, with AUC of 0.931 in the validation set. Paper 5 achieved the best accuracy (84%)

by using ADC + T2W features. Moving to Paper 6, the machine learning radiomics model

achieved 98.3% and 98.0% negative predictive values (NPVs). In Paper 7, both the standard

and advanced radiomic models showed significant diagnostic accuracy with an AUC up to

0.99, with the 3D segmentation model performing the best. Finally, in the Paper 8, AUC,

accuracy, and recall were 0.995, 0.894, and 0.928, respectively.

Every study had its own drawbacks. Paper 1's limitations include the single-center design

and the lack of follow-up data. In Paper 2, the AI model required manual segmentation of

the lesions. Furthermore, the study's retrospective approach and use of multi-center data

raise questions about potential biases. Because the sample was small yet homogeneous,

Paper 3 had limitations. Selection bias may have been induced by Paper 4's retrospective

design, which also lacked external and prospective validation. The cohort in Paper 5 lacked

comparisons with clinical readings including PI-RADS scores and had an unbalanced

distribution of cancer aggressiveness classes.Paper 6's dataset was relatively small and

showed an imbalance between positive and negative biopsies. Paper 7 highlighted the need

for MR-guided biopsy techniques to address uncertainties in histological radiological

correlations and featured a small sample size, limiting its ability to evaluate non-binary

classification tasks and method reproducibility. Paper 8, as noted by the authors themselves,

had a very limited cohort of only 19 patients. Although it achieved very high AUC values, the

small number of patients more than likely will lead to lack of generalizability.

Group 5 : PI-RADS 3 Lesion Characterization

# doi Title and Date # of
Patients

Pre-Processing

1 10.338
9/fonc.
2022.8
40786

“Utility of Clinical–Radiomic Model
to Identify Clinically Significant
Prostate Cancer in Biparametric
MRI PI-RADS V2.1 Category 3
Lesions”, 2022

103

histogram-based
intensity

standardization,
resampling,
registration

LR

2 10.100
2/jmri.
27692

“Magnetic Resonance Imaging
Radiomics-Based Machine
Learning Prediction of Clinically
Significant Prostate Cancer in
Equivocal PI-RADS 3 Lesions”, 2021

240
normalization,
discretisation,
interpolation

RF

3 10.118 “Machine learning-based 463 resampling, intensity SVM
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6/s128
80-023
-01002
-9

radiomics model to predict benign
and malignant PI-RADS v2.1
category 3 lesions: a retrospective
multi-center study”, 2023

discretisation, Z-score
normalization

4 10.338
9/fonc.
2021.8
25429

“Development and Validation of a
Radiomics Nomogram for
Predicting Clinically Significant
Prostate Cancer in PI-RADS 3
Lesions”, 2022

306
Z-score

standardization
LR

5 10.100
7/s002
61-020
-02678
-1

“A radiomics machine
learning‑based redefining score
robustly identifies clinically
significant prostate cancer in
equivocal PI‑RADS score 3 lesions”,
2020

263
normalization,
discretisation

SVM

6 10.339
0/jcm1
121630
4

“Radiomics in PI-RADS 3
Multiparametric MRI for Prostate
Cancer Identification: Literature
Models Re-Implementation and
Proposal of a Clinical–Radiological
Model”, 2022 116

(1st model):
normalization,
resampling,
discretisation
(2nd model):

standardization,
resampling,
discretisation
(3rd model):

normalization, b-spline
interpolation,
discretisation

linear discriminant,
linear, quadratic,

and cubic SVM, CT,
and KNN

7 10.103
8/s415
98-020
-80749
-5

“Evaluation of a multiparametric
MRI radiomic-based approach for
stratification of equivocal PI-RADS
3 and upgraded PI-RADS 4
prostatic lesions”, 2021

80
registration,
normalization

LR

6. Group 5 : PI-RADS 3 Lesion Characterization

The goal of the five research in this group was to create radiomics models for the detection

of clinically significant prostate cancer (csPCa) in PI-RADS 3 lesions. In Paper 1, 103 patients

from a single center and vendor were included in a dataset that was largely used to assess

clinical variables in conjunction with radiomics. Paper 2 also used a single-center,

single-vendor dataset with 240 patients and focused on T2WI radiomics. Papers 3 and 4 on

the other hand used multicenter, multivendor datasets. The former included 463 patients

and tried to differentiate PI-RADS 3 tumors that were benign from those that were

malignant. The latter created a radiomics nomogram for csPCa prediction within PI-RADS 3

lesions and comprised 306 patients. The objective of Paper 5, a 263 patient single-center,

single-vendor trial, was to exclude csPCa in ambiguous PI-RADS score 3 categories.Paper 6, a

single-center, single-vendor study involving 116 patients, investigated the utility of radiomics

in detecting prostate cancer lesions in PI-RADS 3 lesions and peripheral PI-RADS 3 lesions
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upgraded to PI-RADS 4. The purpose of Paper 7 was to develop a model to aid in the clinical

management of prostate lesions classified as PI-RADS 3. This study involved 80 participants

and was carried out at a single center using a single vendor.

When it comes to preprocessing, Paper 1 employed histogram-based intensity

standardization,resampling and registration. Paper 2 and paper 5 utilized normalization and

discretization. Paper 2 , additionally, employed interpolation. Paper 3 focused on

resampling, intensity discretization, and Z-score normalization. Paper 4 applied Z-score

standardization. Paper 6 employed registration and normalization. Lastly, Paper 7, included 3

models with 3 different preprocessing approaches; Model 1 : normalization, resampling,

discretisation Model 2: standardization, resampling, discretisation, Model 3: normalization,

b-spline interpolation, discretisation.

The studies' diagnostic performances were high. Paper 1 used a clinical-radiomics model to

reach an AUC of 0.88, whereas Paper 2 used T2WI radiomics to get an AUC of 0.76.An

integrated model for the prediction of csPCa was developed in Paper 3, with a mean AUC of

0.803. The radiomics nomogram generated in Paper 4 , with an AUC of 0.939, had strong

calibration and discrimination abilities. The Radiomics Machine Learning (RML) model

presented in Paper 5 has an AUC of 0.89. With an AUC of 80%, Paper 6 found that

second-order models for PI-RADS 3 stratification outperformed first-order models.

Conversely, for upPI-RADS 4 stratification, first-order models outperformed superior-order

models with an AUC of 89%. In Paper 7 biopsy results were strongly associated with specific

radiomic features, depending on the model used. Clinically significant cancers could be

predicted with a 66% sensitivity and 71% specificity using PSA density alone. The proposed

model combined PSA density and radiomic features achieved a 76% specificity and an 80%

sensitivity.

Some limitations that were shared by all of the studies were single-center, single-vendor

datasets, small sample numbers, and retrospective study designs. In Paper 1, only PSA and

age were included as clinical variables. Paper 2 explained that the focus on PI-RADS 3

lesions, may restrict the generalizability of the findings but this is what all the papers also did

in this group. Paper 3 did not consider lesion location, whereas Paper 4 depended on

manual radiologist segmentation. Paper 5 used subjectively given PI-RADS values from two

radiologists and introduced selection bias by eliminating non-follow-up patients. Paper 6

also has its limitations due to unbalanced datasets, the lack of a separate analysis

concentrating on clinically relevant PCa lesions, the absence of features from DCE-MRI

parameters, and the possibility of inter-observer heterogeneity in feature extraction.
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4.3 Grouping the studies on Different Cancers based on their objective

Group Description # of papers

1 Image Preprocessing Impact on Radiomics Features - the effects of
various image preprocessing methods on the stability and reliability of
radiomic features in various cancer types

5

2 Radiomic Features for Survival Prediction - use of radiomic features to
predict survival outcomes and stratify patients in various cancer types

8

3 Radiomics for Cancer Risk Assessment - analysis of radiomic features to
establish predictive models that can identify individuals at higher risk of
developing cancer.

6

4 Radiomics for Cancer Detection - using radiomic features for the
detection of cancer in patients enhance early diagnosis and timely
intervention for cancer patients

7

5 Radiomics for Cancer Grading - establishment of predictive models and
radiomic signatures for grading cancer, facilitating precise
characterization

5

6 Radiomics for Prognosis - assessing the prognosis of cancer patients by
incorporating radiomic features and clinical factors in predictive models

7

7. Grouping of Different Cancer studies

Group 1 : Image Preprocessing Impact on Radiomics Features

# doi Title and Date # of
Patients

Pre-Processing Classifier

1 10.1088/1

361-6560/

ab2f44

“Impact of image preprocessing

on the scanner dependence of

multi-parametric MRI radiomic

features and covariate shift in

multi-institutional glioblastoma

datasets”, 2019

161

8-bit global rescaling

(discretisation), bias field

correction, histogram

standardization, isotropic

resampling

N/A

2 10.1002/ac

m2.12795
“Impact of image preprocessing

methods on reproducibility of

radiomic features in multimodal
262

co-registration, resampling,

skull stripping, noise

reduction, bias field

gradient

boosting
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magnetic resonance imaging in

glioblastoma”, 2019

correction, intensity

normalization
multi-class

classification

3 10.1002/m

p.14368
“Repeatability of radiomic

features in magnetic resonance

imaging of glioblastoma:

Test–retest and image

registration analyses” , 2020

17

registration,N4/N3 bias

correction, wavelet transform,

binning (discretisation) N/A

4 10.3390/ca

ncers1202

0518

“The Impact of Normalization

Approaches to Automatically

Detect Radiogenomic

Phenotypes Characterizing

Breast Cancer Receptors Status”

, 2020

91

7 different normalization

methods

SVM, RF, and

NB

5 10.1038/s4

1598-020-

69298-z

“Standardization of brain MR

images across machines and

protocols: bridging the gap for

MRI‑based radiomics” , 2020
20 +

243

bias field correction (N4),

resampling, skull stripping,

co-registration, normalization

(three methods - Nyul,

WhiteStripe, Z-Score),

discretisation (two methods -

fixed bin size and fixed bin

number)

NN, RF, SVM,

LR, NB

8. Group 1 : Image Preprocessing Impact on Radiomics Features

The main objective of the studies in Group 1 is to investigate different preprocessing

methods and pipelines in order to establish the best possible one for radiomics. The first 3

papers study glioblastoma tumors. Paper 1 aims to assess the impact of common image

preprocessing methods on MRI radiomic features in a multicenter and multivendor study

involving 161 patients. Paper 2 investigates the effect of intensity inhomogeneity correction

and noise filtering, on the robustness and reproducibility of radiomic features in a

multicenter, multi-vendor dataset of 262 patients which is the largest of this group. On the

other hand, Paper 3 with the smallest dataset, assesses the repeatability of radiomic

features in MRI in a single-center, single-vendor study involving 17 patients. Paper 4

compares three normalization strategies for predicting clinical phenotypes in a 91-patient

dataset from multiple centers and a single vendor. Finally, Paper 5 compares three distinct

intensity normalization methods and two approaches for intensity discretization in brain

MRIs for future radiomic research. It featured two datasets, the first with 20 patients and

the second with 243.

Moving to preprocessing, all studies utilized a number of preprocessing methods and

examined them for their impact on radiomic features. To begin, Paper 1 examined

discretisation, bias field correction, histogram standardization, and isotropic resampling.
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Paper 2 in comparison examined co-registration, resampling, skull stripping, noise reduction,

bias field correction, and intensity normalization. Paper 3 employed registration,N3 and N4

bias correction, wavelet transform, discretization. Paper 4 compared 7 different methods of

normalization. Lastly, Paper 5’s different steps included N4 bias field correction, resampling,

skull stripping, co-registration, normalization, and discretization.

When looking at results, beginning with Paper 1, they concluded that GLSZM features were

more dependent on scanner parameters than Haralick features and magnetic field strength

has a greater impact than the vendor. Image preprocessing methods had varying effects on

feature dependence, with Laplacian Gaussian filtering being the most dependent feature.

Covariate changes were seen in response to bin numbers and image preprocessing, with

histogram standardization having the most impact. 8-bit-local-rescaling was the most

effective in predicting overall survival. Paper 2 concluded that necrosis characteristics (n ̅
~449/1461, 30%) are connected with glioma survival and mutations. Local binary pattern

filtered pictures are affected the least by intensity inhomogeneity and have the most

repeatable features. Also, the reproducible features increased after bias field correction. In

Paper 3, the results demonstrate the highest repeatability for Laplacian of Gaussian image

processing (mean 78.9%) and Full Affine transformation with 12 degrees of freedom (mean

32.4%) among registration techniques, and no differentiation for N4, N3, or no bias

correction. Paper 4 demonstrated the strong relationships between non-normalized

radiomic characteristics and techniques such as scaling, z-score, robust z-score, and upper

quartile normalization. Conversely, the correlations of the more aggressive approaches

(log-transformation, quantile normalization, and whitening normalization) are weak,

indicating that they should be used with caution. Finally, the results of Paper 5 showed that

the performance of classification models and the robustness of first-order features were

improved by intensity normalization. The accuracy of tumor grade classification increased

from 0.67 to 0.82 with Nyul, WhiteStripe, and Z-Score normalization techniques.

When it comes to limitations , Paper 1 mentions that feature repeatability and the impact of

other factors, such as receiver coils, on radiomic characteristics, were not assessed. Paper 2,

concluded that more validation is required to determine the best preprocessing technique

for standardizing MR images. Paper 3 highlights the need for validation in a more extensive

multicenter dataset. Paper 4 states that the dataset's images were acquired more than ten

years ago and this could mean that the techniques were evaluated using outdated

equipment and may not be relevant in the modern era, highlighting the need for additional

validation. The necessity for additional validation was also mentioned in Paper 5 as a study

limitation.

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 39 of 95



Application Grade Thesis

Group 2 : Radiomic Features for Survival Prediction

# doi Title and Date # of

Patients
Pre-Processing Classifier

1 10.1148/ra

diol.20181

80200

“Radiomic MRI Phenotyping of

Glioblastoma: Improving

Survival Prediction”, 2018
217

skull stripping,

registration, N4 bias

correction,

normalization

RSF

2 10.1148/ra

diol.20161

60845

“Radiomic Profiling of

Glioblastoma: Identifying an

Imaging Predictor of Patient

Survival with Improved

Performance over Established

Clinical and Radiologic Risk

Models”, 2016

119

registration, N4 bias

correction, intensity

normalization,discret

e and stationary or

undecimated

wavelet

transformations

Supervised Principal

Component Analysis

3 10.3389/f

ncom.201

9.00058

“A Multi-parametric

MRI-Based Radiomics

Signature and a Practical ML

Model for Stratifying

Glioblastoma Patients Based

on Survival Toward Precision

Oncology”, 2019

163

co-registration,

smoothing,

interpolation,

skull-stripping,

intensity

standardization(MRI

intensity rescaling)

Linear SVM, Gaussian

SVM,

Coarse Gaussian SVM,

KNN, Coarse KNN, Cosine

KNN, Medium, KNN,

Discrimination analysis,

Linear Discriminant,

Ensemble Learning,

Subspace Discrimination

4 10.1007/s

00330-020

-07089-w

“Radiomics risk score may be a

potential imaging biomarker

for predicting survival in

isocitrate dehydrogenase

wild-type lower-grade gliomas

”, 2020

117

resampled, N4 bias

correction,

registration,

normalization
Radiomics Risk Score

(RRS)

5 10.1016/j.

ejrad.2019

.07.010

“Improving survival prediction

of high-grade glioma via

machine learning techniques

based on MRI radiomic,

genetic and clinical risk

factors”, 2019

147

N4 correction bias,

skull striping

resampling, isotropic

resampling, intensity

normalization

Radiomics Risk Score

(RRS)

6 10.1016/j.

ebiom.202

0.103093

“Incremental prognostic value

and underlying biological

pathways of radiomics

patterns in medulloblastoma”,

2020

172

N4 bias field

distortion correction,

isotropic resampling,

registration,

histogram matching

(for intensity

not specified
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normalization),

discretisation

7 10.18383/j

.tom.2018.

00052

“Multiparameter MRI

Predictors of Long-Term

Survival in Glioblastoma

Multiforme”, 2019

22

resampling ,

co-registration,

intensity calibration N/A

8 10.1093/n

euonc/nox

188

“Radiomic subtyping improves

disease stratification beyond

key molecular, clinical, and

standard imaging

characteristics in patients with

glioblastoma ”, 2018

181

intensity

normalization,

registration
N/A

9. Group 2 : Radiomic Features for Survival Prediction

The papers in this group attempt to predict survival for different cancers. Paper 1 aims to

investigate whether integrating radiomic features from MRI with clinical and genetic profiles

could improve survival prediction in patients with glioblastoma. The study was conducted at

a single-center, using data from a single vendor, and included 217 patients - the largest

dataset of the group. Paper 2 looked into whether radiomic feature-based MRI signatures

could predict survival and classify patients with newly diagnosed glioblastoma more

accurately than established clinical and radiologic models. The study was conducted at a

single-center with data from a single vendor and included 119 patients. Paper 3, a

multicenter study with 163 patients, wanted to create a radiomics signature and compare

several machine learning models to classify patients into groups based on overall survival

using pre-operative mpMRI of patients with glioblastoma. Paper 4 aimed to evaluate

whether radiomics from MRI could predict overall survival in patients with IDHwt

lower-grade gliomas and investigate the added prognostic value of radiomics over clinical

features. This single-center study included 117 patients. Paper 5 , a multicenter study with

147 patients, aims to develop a radiomics signature to predict overall survival in patients

with high-grade glioma and create a nomogram combining radiomic, genetic, and clinical risk

factors. Paper 6 aims to develop a radiomics signature for predicting overall survival (OS) and

progression-free survival (PFS) in patients with medulloblastoma (MB) and investigate the

prognostic value and biological pathways of radiomics patterns. It was a single-center study

that included 172 patients. Following that, Paper 7, with the smallest dataset , utilized

radiomic analysis of standard-of-care mpMRI scans to subdivide glioblastoma tumors into

distinct regions called "habitats". The study involved only 22 patients in a single-center

training cohort and a multicenter validation cohort. Finally, Paper 8, a single-center study

involving 181 patients with glioblastoma, analyzed radiomic features extracted from mpMRI

scans. The goal is to develop a radiomic signature for predicting progression-free and overall

survival (PFS and OS) .
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Regarding preprocessing, most papers had an extensive pipeline. In Papers 1 and 5 the

prep-processing included skull stripping, registration, N4 bias correction, normalization, with

Paper 5 also adding resampling as a step. Paper 2 employed registration, N4 bias correction,

normalization, and discrete and stationary or undecimated wavelet transformations. Paper

3’s preprocessing steps included co-registration, smoothing, interpolation, skull-stripping,

and intensity standardization. Paper 4 utilized resampling, N4 bias correction, registration

and normalization. Paper 8, with the least preprocessing steps, did intensity normalization

and registration. Paper 7, also with fewer steps, included resampling, co-registration, and

intensity calibration. And lastly, Paper 6 used N4 bias field correction, isotropic resampling,

registration, histogram matching (normalization), and discretization.

Moving to the results , begining with Paper 1, the study suggests that adding a radiomics

model to clinical and genetic profiles improves survival prediction compared to models

utilizing only clinical and genetic data, with an AUC of 0.782. In Paper 2, the radiomic model

outperformed both radiologic and clinical risk models in the prediction of progression-free

survival (PFS) and overall survival (OS). More specifically, the Supervised Principal

Component (SPC) analysis model achieved an OS Integrated Brier Score (IBS) of 0.149 and an

AUC of 0.654, while the PFS IBS was 0.138 with an AUC of 0.611. When paired with clinical

data, the SPC analysis model improved more, with an OS IBS of 0.142 and an AUC of 0.696,

and a PFS IBS of 0.132 with an AUC of 0.637. Paper 3 produced promising results and

attempted but did not manage to validate the radiomic signature they created.

Nevertheless, the ensemble model showed superior performance in predicting survival

classes, with an overall accuracy of 57.8% and AUC values of 0.81 for short-, 0.47 for

medium-, and 0.72 for long-survivors. The radiomic signature produced in Paper 4, on the

other hand, showed that radiomic signature scores independently predicted survival with

hazard ratios of 9.479 and 6.148, enhancing the model's performance for predicting overall

survival by increasing iAUC to 0.780–0.797 from 0.726. In Paper 5, the radiomic signature,

along with IDH status and age, were proved to be independent risk factors, and the

nomogram combining these factors improved overall survival estimation with AUC values of

0.764 and 0.758 in the training and test cohorts, respectively.In Paper 6, it was found that

the combined radiomics and clinical signature performed better than individual signatures,

with an AUC of 0.762 for predicting OS and 0.697 for PFS. Also, 9 pathways showed a strong

correlation with the radiomics signature. Paper 7 discovered that the fractional tumor

volume in habitat 6 around the time of diagnosis was the strongest predictor of future

survival, therefore improving overall survival rates. In both the discovery and validation

cohorts, the fractional tumor volume in habitat 6 was 35% ± 6.5% and 34% ± 4.8%,

respectively. Finally, Paper 8 showed that the radiomic signature enhanced accuracy of

predictions for PFS and OS, reducing errors by 36% and 37%, respectively.
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All papers come with their respective limitations. A lot of them include a small dataset or a

single-center study (or both) which reduces generalizability but these are not the only

drawbacks. Paper 1 notes a lack of semi-automatic tumor outlining, lack of external

validation, and points out the heterogeneous nature of GBM tumors, and their inability to

consider the effects of various treatments on tumor progression. Paper 2 highlights that the

final post processing workflow and statistical processing have multiple steps and require

approximately 60 minutes of computation time per patient. Paper 3 has limitations as well

due to its small dataset and the absence of information on tumor resection status.

Additionally, they didn't manage to validate their model. Paper 4 also points out the

retrospective nature of their data, and the possible variations in images acquired over

several years with different acquisition parameters. For Paper 5 the drawbacks included the

retrospective nature of the study as well, and the inclusion of only T1W1 and T2-FLAIR

images. Paper 6 notes the lack of volumetric MRI data and Paper 7 admits to the inability to

draw strong conclusions due to the very limited sample of 22 patients. Lastly, Paper 8

underlines the use of non-automatic segmentation and a long post processing time as

limitations.

Group 3 : Radiomics for Cancer Risk Assessment

# doi Title and Date # of

Patients

Pre-Processing Classifier

1 10.3390/jpm

12111854
“Preoperative Tumor Texture

Analysis on MRI for High-Risk

Disease Prediction in Endometrial

Cancer: A Hypothesis-Generating

Study”, 2022

96

resampling

LR

2 10.3390/can

cers1508220

9

“Prediction of Deep Myometrial

Infiltration, Clinical Risk Category,

Histological Type, and

Lymphovascular Space Invasion in

Women with Endometrial Cancer

Based on Clinical and

T2-Weighted MRI Radiomic

Features”, 2023

413

non-uniformity

correction (N4),

resampling, intensity

normalization

fitcauto method
(an automated

classifier training
function in
MATLAB)

selected the

Compact
Classification
Ensemble
Classifier

3 10.1186/s13

244-022-011

56-0

“MRI-based radiomics analysis

improves preoperative diagnostic

performance for the depth of

stromal invasion in patients with

early stage cervical cancer”, 2022

234

normalization

LR
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4 10.18383/j.t

om.2019.000

29

“Radiomic Features of

Multiparametric MRI Present

Stable Associations With

Analogous Histological Features

in Patients With Brain Cancer”,

2020

16

registration,

intensity

normalization Linear Mixed-

Effects model

5 10.7150/jca.

50872
“MRI-Based Radiomic Model for

Preoperative Risk stratification in

Stage I Endometrial Cancer”,

2021

102

normalization

LR

6 10.1148/radi

ol.212873
“Development and Validation of

Multiparametric MRIbased

Radiomics Models for

Preoperative Risk Stratification of

Endometrial Cancer ”, 2022

157

resampling,

normalization,

discretisation RF

10. Group 3 : Radiomics for Cancer Risk Assessment

The studies of this group attempt to do risk stratification for a variety of cancers. Paper 1 is a

multicenter study with 96 women that aims to develop and validate an MRI-based radiomics

model for preoperative prediction of high-risk endometrial cancer. The objective is to

estimate deep myometrial invasion (DMI), predict lymphovascular space invasion (LVSI), and

differentiate between low-risk and other risk categories. Paper 2, a multicenter and

multivendor study involving 413 patients, the primary goal was to predict various clinical

parameters, including risk, in women with endometrial cancer using machine learning

classification methods based on clinical and image signatures extracted from T2-weighted

MR images. Paper 3, aims to develop and validate a T2WI-based radiomics model for the

detection of middle or deep stromal invasion in early-stage cervical cancer. It is a

single-center study with 234 patients. Paper 4, is a single center study involving a

multivendor dataset of 16 patients - the smallest from the group - with brain cancer. The

goal is to investigate the localized relationship between MR-derived radiomic features and

histology-derived "histomic" features. Paper 5 boasts a larger dataset of 102 patients in a

single-center setting. The objective was to establish a risk classification model for

endometrial cancer based on MRI and clinical factors. Finally, Paper 6, a multicenter,

multivendor study encompassing data from 157 patients, aims to evaluate the performance

of mpMRI three-dimensional radiomics-based machine learning models. The models should

be able to differentiate between low- and high-risk histopathologic markers in

advanced-stage endometrial carcinoma.

Most papers in this group included one step in their preprocessing . One exception is Papers

2 and 7 that included resampling and normalization. Paper 2 also employed N4 bias field

correction and Paper 7, discretisation. Another exception is Paper 5 which utilized
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registration and normalization. Paper 1 and Paper 4 performed only resampling. Paper 3 and

6 performed only normalization.

Moving to results, for Paper 1 the results showed that whole-tumor radiomic models

achieved an AUC of 0.85 for DMI estimation, 0.92 for LVSI prediction, and 0.84 for

differentiating low-risk from other risk classes. The model in Paper 2, achieved notable AUCs

of 0.79, 0.82, 0.91, and 0.85 for different classifications. The corresponding 95% confidence

intervals demonstrated the robustness of these results. Paper 3’s radiomics model achieved

an AUC of 0.879 in the validation cohort, outperforming radiologists and maximal tumor

diameter (MTD), both with sensitivity and specificity of 87.9% and 84.6%. Paper 4 showed

that while the overall findings were heterogeneous, several radiomic features demonstrated

strong associations with their histomic counterparts, especially those derived from FLAIR

and post-contrast T1W images.Paper 5 concluded that the risk-classification radiomic model

performed better than the model based on clinical and conventional MRI characteristics,

with an AUC of 0.946. Furthermore, the combined model (radiomic features and tumor size)

showed the best predictive performance, with AUCs of 0.955 in the training and 0.889 in the

validation cohorts. Lastly, in Paper 6, the radiomics models showed excellent performance,

with AUCs ranging from 0.74 to 0.84 in the test set. It is important to note that radiomics

outperformed radiologist readings in identifying deep myometrial invasion.

The studies have their respective limitations. A small dataset, and a single-center or

single-vendor design are common limitations noted between a number of them but they are

not the only ones. Paper 1 notes a potential selection bias, and data inhomogeneity due to

a decade-long data collection period from 2009 to 2019. Additionally, they mention the lack

of automated segmentation and not integrating other routine sequences like DWI and

contrast-enhanced MRI. The latter are the same limitations underlined in Paper 3. Paper 2’s

team highlights the limitations through their future goals including exploring different

classifiers, and incorporating additional evaluation metrics. Paper 4 was constrained by its

very small sample size of only 16, focusing solely on primary brain cancer patients, and the

use of a tile-based prediction method, which left out the utilization of shape- and size-based

radiomic features. Paper 5 notes a number of varied limitations; the study's retrospective

design with varying scanning parameters, the use of only one sequence for texture analysis,

and the omission of prognostic information in the models. Lastly, Paper 6, explains that the

drawbacks of the study included variations in ROIs due to them being drawn by two different

radiologists, which then were compared to radiomics, and an imbalance in the distribution

of histopathologic features.
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Group 4 : Radiomics for Cancer Detection

# doi Title and Date # of Patients Pre-Processing Classifier

1 10.3390/d

iagnostics

12051085

“MRI-Based Radiomic Features

Help Identify Lesions and

Predict Histopathological

Grade of Hepatocellular

Carcinoma”, 2022

97

normalisation

LR

2 10.3390/c

ancers141

02372

“Fully Automatic

Whole-Volume Tumor

Segmentation in Cervical

Cancer”, 2022

131

resampling, z-score

normalization U-Net

(CNN)

3 10.3390/d

iagnostics

11060919

“Radiomics and Machine

Learning with Multiparametric

Breast MRI for Improved

Diagnostic Accuracy in Breast

Cancer Diagnosis”, 2021

93

discretisation, ComBat

Gaussian

SVM

4 10.3390/a

pp101761

09

“Breast Cancer Mass Detection

in DCE–MRI Using

Deep-Learning Features

Followed by Discrimination of

Infiltrative vs. In Situ

Carcinoma through a

Machine-Learning Approach”,

2020

55

resampling, normalization

MLP-ANN

5 10.1016/j.

ejrad.201

9.108755

“Machine Learning-Based

Multiparametric MRI

Radiomics for Predicting the

Aggressiveness of Papillary

Thyroid Carcinoma ”, 2020

120

N4 bias correction, image

intensity rescale, 8 image

filters (Wavelet, Laplacian of

Gaussian, Square, Square

Root, Logarithm, Local

Binary Pattern, Gradient

Magnitude and Exponential)

22 tested

-> best :

GBC, LR,

PAC, LSVC

6 10.1016/j.

ejrad.201

9.04.004

“Preliminary utilization of

radiomics in differentiating

uterine sarcoma from atypical

leiomyoma: Comparison on

diagnostic efficacy of MRI

features and radiomic features

”, 2019

78

isotropic resampling,

discretisation

LR
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7 10.1007/s

10278-02

0-00336-y

“MRI Radiomics for the

Prediction of Fuhrman Grade

in Clear Cell Renal Cell

Carcinoma: a Machine

Learning Exploratory Study”,

2020

32

isotropic resampling,

normalization,

discretisation, filters

(Laplacian of Gaussian

filters, Wavelet

decomposition)

DT

11. Group 4 : Radiomics for Cancer Detection

Group 4 includes studies with the objective of detecting different types of cancer. Paper 1 is

a multicenter, multivendor study involving 97 patients with the goal to develop an

MRI-based radiomics approach for the preoperative detection of hepatocellular carcinoma

(HCC) and the prediction of its histological grade. Paper 2 aims to train a deep learning

algorithm for the automatic segmentation of primary tumors in cervical cancer patients. It is

a multicenter, multivendor study with 131 patients. Paper 3, also a multicenter, multivendor

study, with the goal to assess radiomics analysis in conjunction with machine learning of DCE

and DWI radiomics models separately and in combination as multiparametric MRI for

improved breast cancer detection. The study involved 93 patients. Paper 4 on the other

hand is single-center, single-vendor study with 55 patients. It presents a prototype of a

computer-aided detection/diagnosis (CAD) system aimed at assisting radiologists in

discriminating between in situ and infiltrating breast cancer tumors. Paper 5, also a

single-center, single-vendor study, investigates the predictive capability of machine

learning-based multiparametric MRI radiomics for evaluating the aggressiveness of papillary

thyroid carcinoma (PTC) preoperatively. The study comprised 120 patients. Paper 6 is a

multicenter, multivendor study involving 78 patients. the objective is to explore whether

MRI and radiomic features could differentiate uterine sarcoma from atypical leiomyoma and

compare the diagnostic performance of a radiomic model with radiologists. Finally, Paper 7

is a single-center, single-vendor study with the smallest cohort of 32 patients. The goal is to

assess a combined approach of radiomics and machine learning based on MRI for

non-invasively predicting Fuhrman grade Clear Cell Renal Cell Carcinoma, more specifically

distinguishing high- from low-grade tumors and assessing grade.

Preprocessing pipelines in this group, just like the previous one, are fairly simple. Papers 2

and 4 utilized resampling and normalization. Conversely Paper 6 employed resampling and

discretization. Paper 1 only had one step ; normalization. Paper 3 employed discretization

and ComBat. Papers 5 and 7 are the exceptions with a lot more extensive pipelines. Paper 5

included N4 bias correction, image intensity rescale and 8 different filters. Paper 7 included

resampling, normalization, discretisation, and 2 different filters.

Turning to results, Paper 1 achieved promising outcomes from radiomic prediction models,

with the best AUCs ranging from 71% to 96%. Radiomics based on T2 and DCE showed
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potential for both HCC detection and grading. The deep learning algorithm in Paper 2

performed better than the two independent radiologists in tumor segmentation, with

median dice scores of 0.60 and 0.58 compared to 0.78 for the radiologists laying the ground

for its future use as a detection tool. However agreement amongst raters was better than

between the deep learning method and raters. Paper 3’s multiparametric radiomics model

that combined DCE and DWI extracted features achieved the best AUC of 0.85 and

diagnostic accuracy of 81.7%. The CAD system in Paper 4 achieved a sensitivity of 75% for

mass detection and an AUC of 0.70 for distinguishing between in situ and infiltrative tumors.

In Paper 5, the combination of feature selection and a Gradient Boosting Classifier achieved

an AUC of 0.92 for predicting PTC aggressiveness, outperforming clinical characteristics

alone which achieved an AUC of 0.56. In Paper 6, radiologists' diagnostic performance based

on MRI achieved an AUC of 0.752, sensitivity of 58.6%, specificity of 91.8%, and accuracy of

79.5% while the best radiomic model achieved an AUC of 0.830, a sensitivity of 76.0%, a

specificity of 73.2% on average, and an accuracy of 73.9%. Lastly, the ensemble methods in

Paper 7 achieved accuracy greater than 90% in differentiating high- and low-grade tumors,

with the best accuracy (84.4%) achieved by random forest.

Besides the common limitations, all Papers highlighted additional ones, Paper 1 pointed out

the unbalanced patient population, a lack of standardization in radiomic investigations, and

a lack of reproducibility of radiomic features. The drawbacks mentioned in Paper 2 were the

extensive preprocessing, which could impact data quality, and the variability in acquisition

methods and scanners. Paper 3 explained that due to the inclusion of small tumors they had

to lower the data to 16 gray levels and as a result they had to exclude lesions with less than

40 pixels which could introduce selection biases. Paper 4’ only highlighted drawback was its

single-center nature. Paper 5 admitted to limitations regarding the lack of validation. Paper 6

mentions its retrospective nature, which could introduce selection bias, the reliance on

radiologist-selected imaging features, and the use of manual segmentations. Paper 7 also

mentioned its retrospective nature of the study, and manual segmentations. Additionally

they pointed to the lack of reproducibility analysis.

Group 5 : Radiomics for Cancer Grading

# doi Title and Date # of Patients Pre-Processing Classifier

1 10.338

9/fonc.

2020.0

0459

“Preoperative Prediction of

Extramural Venous Invasion in

Rectal Cancer: Comparison of the

Diagnostic Efficacy of Radiomics

Models and Quantitative Dynamic

Contrast-Enhanced Magnetic

Resonance Imaging”, 2020

106

registration, resampling

LR
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2 10.339

0/brain

sci1306

0912

“Predicting Histopathological

Grading of Adult Gliomas Based

On Preoperative Conventional

Multimodal MRI Radiomics: A

Machine Learning Model”, 2023

500

registration, resampling,

normalization
Gaussian NB,

KNN, RF, AB,

SVM,

MLP-ANN

3 10.339

0/jcm9

061853

“Non-Invasive Assessment of

Breast Cancer Molecular Subtypes

with Multiparametric Magnetic

Resonance Imaging Radiomics”,

2020

91

normalization

MLP-ANN

4 10.101

6/j.ebio

m.2019

.08.059

“Tumor grading of soft tissue

sarcomas using MRI-based

radiomics”, 2019

122

N4 bias field correction,

intensity normalization,

discretisation, isotropic

resampling (b-spline

interpolation),

reconstruction (wavelet

decomposition filtering

and Laplacian of

Gaussian)

LR

5 10.100

2/jmri.

27532

“Magnetic Resonance

Imaging-Based Radiomics

Nomogram for Prediction of the

Histopathological Grade of Soft

Tissue Sarcomas: A Two-Center

Study ”, 2021

181

Gray-level quantization,

isotropic resampling,

ComBat
LR

12. Group 5 : Radiomics for Cancer Grading

In this group the Papers focus on cancer grading. Paper 1 deals with rectal cancer and aims

to develop and validate an MRI-based radiomics model to preoperatively predict high-risk

endometrial cancer. It was conducted as a single-center study, with data from a single MRI

vendor, and included 106 patients. Paper 2 focuses on glioma grading. This study has the

objective of developing a predictive model for classifying adult gliomas into grades 2–4

based on preoperative conventional multimodal MRI radiomics. It included 500 patients,

making it the largest cohort.However, it was a single-center study with data from a single

MRI vendor. Paper 3 focuses on breast cancer subtypes and has the objective of classifying

breast cancer molecular subtypes It was conducted as a single-center study with data from a

single-vendor MRI system, involving 91 patients. Paper 4 addresses soft tissue sarcoma

grading. The multicenter and multivendor study developed MRI-based radiomics grading

models to differentiate between low-grade and high-grade soft tissue sarcoma (STS). The

study included 122 patients and had a multicenter and multivendor design. Lastly, Paper 5

aims to assess the potential of radiomics for disease stratification beyond key molecular,
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clinical, and standard imaging features in glioblastoma. It included 181 patients from a

single-center study using data from one MRI vendor.

For preprocessing, in Paper 1, the preprocessing was relatively straightforward ; registration

and resampling. Paper 2, also followed the same steps but also added normalization. Paper 3

only employed normalization. Paper 4, included various preprocessing steps : N4 bias field

correction, intensity normalization, discretisation, isotropic resampling , and reconstruction

(wavelet decomposition filtering and Laplacian of Gaussian). Lastly, Paper 5, with a simpler

pipeline, utilized Gray-level quantization, isotropic resampling, and ComBat.

The results of these studies highlight the capabilities of radiomics in cancer grading. In Paper

1, radiomics models predicted extramural venous invasion with AUCs of 0.826 and 0.872 in

the training cohort. Paper 2 produced an AUC of 0.81 for glioma grade categorization in the

validation set. Paper 3, which focused on breast cancer subtypes, had a total AUC of 0.86 for

triple-negative subtype categorization. Paper 4 achieved AUCs for soft tissue sarcoma

grading ranging from 0.69 to 0.78 for various MRI sequences, demonstrating the models'

potential clinical value.In Paper 5 several models for prediction of clinical outcomes were

compared. The RS-Combined model was the best with an AUC of 0.829 on the external

validation set while the radiomics nomogram which combined the model with risk variables

achieved AUC of 0.879 (external validation).

All of the studies had drawbacks. Paper 1 noted many issues, including manual ROI

segmentation, a small sample size, single-center data, and the use of only one

contrast-enhanced phase for tumor image segmentation. Paper 2 pointed to its

retrospective nature, single-center design, and small sample size. Paper 3 had its own

limitations. These were its retrospective design, single-center data, and the manual

segmentation of the images. Paper 4 highlighted the need for a larger cohort with either

numerous subtypes or enough data to support a single one. Paper 5's problems were

non-automatic segmentation and a long post-processing time, which might limit clinical

applications.

Group 6 : Radiomics for Prognosis

# doi Title and Date # of

Patie

nts

Pre-Processing Classifier

1 10.3390

/cancers

1408185

8

“Measurement of Perfusion

Heterogeneity within Tumor Habitats on

Magnetic Resonance Imaging and Its

Association with Prognosis in Breast

Cancer Patients”, 2022

455

original images -> b-spline

interpolation

ROIS -> nearest-neighbor

interpolation

Histogram-matching ->

not

specified
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harmonization of MRI

intensities

2 10.3390

/genes1

4010028

“Identifying Associations between

DCE-MRI Radiomic Features and

Expression Heterogeneity of Hallmark

Pathways in Breast Cancer: A

Multi-Center Radiogenomic Study”, 2022

174

z-score normalization,

discretisation

RF

3 10.3390

/cancers

1422550

7

“Unsupervised Analysis Based on

DCE-MRI Radiomics Features Revealed

Three Novel Breast Cancer Subtypes with

Distinct Clinical Outcomes and Biological

Characteristics”, 2022

246

registration, N4 bias

correction, b-spline

resampling, normalization,

histogram remapping
RF

4 10.3390

/cancers

1210295

8

“Baseline MRI-Radiomics Can Predict

Overall Survival in Non-Endemic

EBV-Related Nasopharyngeal Carcinoma

Patients”, 2020
136

image denoising (Gaussian

filter and bias correction N4),

z-score standardization,

resampling (b-spline

interpolation), histogram

discretisation

N/A

5 10.1038

/s41416-

019-070

6-0

“MRI-based radiomics model for

preoperative prediction of 5-year survival

in patients with hepatocellular

carcinoma”, 2020

201

intensity normalization,

resampling
RF

6 10.1038

/s41598-

018-227

39-2

“Radiomic MRI signature reveals three

distinct subtypes of glioblastoma with

different clinical and molecular

characteristics, offering prognostic value

beyond IDH1”, 2018

208

co-registration, smoothing,

correction for magnetic field

in-homogeneities, skull

stripping
N/A

7 10.1002

/jmri.27

444

“Whole-Volume Tumor MRI Radiomics for

Prognostic Modeling in Endometrial

Cancer”, 2020

138

z-score normalization

LR

13. Group 6 : Radiomics for Prognosis

Group 6, contains studies that estimate cancer patients' prognosis by combining radiomic

features and clinical data. Paper 1 a multicenter study involving 455 patients that aims to

identify perfusional subregions sharing similar kinetic characteristics from DCE-MRI using

data-driven clustering. Additionally, it attempts to evaluate the effect of perfusion

heterogeneity based on these subregions on patients' survival outcomes. Paper 2 , also a

multicenter study, involves 174 patients. The main goal is to investigate the relationship

between DCE-MRI radiomic features and the expression activity of hallmark pathways in

breast cancer. It also sought to develop prediction models of pathway-level heterogeneity. A
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third multicenter study, paper 3, aims to reveal the heterogeneity of dynamic (DCE-MRI in

breast cancer, identify its prognosis values, and explore its molecular characteristics. It

encompasses 246 patients. Paper 4, on the other hand, is a single-center study involving 136

patients amining to train an MRI-based radiomic signature as a prognostic factor in

Nasopharyngeal Carcinoma patients. Paper 5 , a multicenter study, involves 201 patients

with hepatocellular carcinoma and aims to develop a radiomics model incorporating a

radiomics signature and clinical risk factors to evaluate prognosis. Paper 6 , a single-center

study, and utilizing a single MRI vendor, involved 208 patients with de novo glioblastoma.

The primary objective is to explore the imaging heterogeneity within glioblastoma using

radiomic analysis of pre-operative multiparametric MRI (mpMRI) data. The study aimed to

gain insights into disease subtypes, risk stratification, and improved treatment planning.

Finally, Paper 7 wants to develop MRI-based whole-volume tumor radiomic signatures to

predict aggressive endometrial cancer disease for accurate preoperative staging and

prognostication. It is a multicenter , single-vendor involving 138 patients.

In Paper 1 interpolation and histogram matching were used as preprocessing . Paper 2's

preprocessing included z-score normalization and discretization. In Paper 3, on the other

hand,it was more extensive, with registration, bias correction, resampling, normalizing, and

histogram remapping. In Paper 4 it included denoising, normalization, resampling, and

histogram discretization. Paper 6 included co-registration, smoothing, magnetic field

inhomogeneities correction, and skull stripping. In Paper 5 preprocessing included intensity

normalization and resampling. Finally, only z-score normalization was used in Paper 7 to

prepare the data for analysis.

Moving on to results; Paper 1 identified five distinct habitats (ie perfusion patterns). The

high-risk habitat (HRS) was found to be an independent risk factor for predicting worse

disease-free survival (DFS) outcomes in both the HRS-only risk model and combined habitat

risk model. In the validation cohort, the combined habitat risk model (hazard ratio = 4.128, p

= 0.003, AUC = 0.760) outperformed the other five risk models. In Paper 2, the prediction

model for the mTORC1 signaling pathway obtained the best results, with mean absolute

errors of 27.29% and 28.61% in internal and external test sets, respectively. Paper 3

discovered τhree imaging subtypes that showed high repeatability. The tumor sizes and

enhancement patterns varied significantly between subtypes, with significant outcomes in

the discovery cohort (p = 0.024) and prognosis datasets (p ranged from 0.0001 to 0.0071).

The poorest outcomes were typically seen in tumors with large diameters and fast growth.

This study gives valuable insights into the heterogeneity of breast cancer as indicated by

DCE-MRI, which has important prognostic implications. Paper 4 showed that the

radiomics-based signature exhibited good predictive potential for overall survival and

loco-regional recurrence-free survival, with AUC values of 0.68 and 0.72, respectively.In all

cases, combining radiomics with clinical characteristics improved prognostic performance. In
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Paper 5, the top 30 survival-related radiomics traits were chosen for the radiomics signature.

The model showed excellent calibration and discrimination, with a mean AUC of 0.9804 in

the training set and 0.7578 in the validation set. Paper 6 , through an extensive analysis of

267 radiomic features extracted from various glioblastoma subregions, was able to find

three distinct clusters: rim-enhancing, irregular, and solid. Remarkably, they achieved an 88%

clustering assignment reproducibility. Of significant clinical importance, they found that the

rim-enhancing subtype exhibited the longest survival, even surpassing existing molecular

estimates. Paper 7, demonstrated that whole-tumor radiomic signatures achieve AUCs of

0.84/0.76 (training/validation) for DMI, 0.73/0.72 for LNM, 0.71/0.68 for FIGO III + IV,

0.68/0.74 for NE histology, and 0.79/0.63 for E3 tumor. Conversely, single-slice radiomics

achieve similar training AUCs, but worse validation AUCs for LNM and FIGO III + IV.

Additionally, tumor volume achieves comparable training AUC to the whole-tumor radiomic

signatures, but worse for E3 tumors.

The studies all have their own limitations though. In Paper 1, there are concerns regarding

the accuracy of the results due to the lack of robust pathological connections with

image-based segmentations. Confounding factors may also be introduced if an

inhomogeneous patient cohort is used. In Paper 2 the possible problems with the existing

dataset's representativeness are highlighted, which underlines the need for better

preprocessing and larger datasets for validation.While the study in Paper 3 reveals that

imaging features have promising predictive value, it is obvious that these findings need to be

validated in bigger datasets, and the lack of specific metrics like C-indices or hazard ratios

does not allow for evaluation of the findings.The study in Paper 4, exclusively included

patients with N-positive diseases and did not include an independent validation cohort.

Paper 5, although it achieved notable results, had a retrospective nature and lacked genetic

traits, which would offer a more reliable result. Finally, Paper 6 is limited by the lack of

genetic and histopathologic data, which restricts the applications of the research, and Paper

7 by the omission of some picture sequences, which may affect how generalizable the

results are.
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4.4 Proposal for a Preprocessing Pipeline in Prostate Cancer Radiomics Research

In the following graph the occurrences of each preprocessing step are presented with the

most common methods being normalization, resampling, registration, bias field correction

and discretization.

1. Histogram of number of papers that included each preprocessing method

There were also a few papers that stood out for their results along with their study design or

sizable cohort or both. In the 2021 “Bi-parametric magnetic resonance imaging based

radiomics for the identification of benign and malignant prostate lesions: cross-vendor

validation”, Xuefu Ji et al. using a multi-center and multi-vendor dataset of 459 patients,

performed normalization and resampling and achieved an AUC of 0.833 for their prostate

cancer risk stratification model. In another 2021 study “Integration of Clinical identifications

With Deep Transferrable Imaging Feature Representations Can Help Predict Prostate Cancer

Aggressiveness and Outcome”, Jie Bao et al. did normalization on their impressive

single-vendor, 1442 patients dataset derived from multiple institutions. They achieved an

average AUC of 0.85 for models on the external testing set when trying to predict PIRADS

scores. In the 2022 study “Evaluation of the Efficiency of MRI-Based Radiomics Classifiers in

the Diagnosis of Prostate Lesions'', Linghao Li et al. conducted a single-vendor, single-center

study with 238 patients to test the performance of various classifiers for prostate cancer

diagnosis. After applying normalization, resampling and discretisation and testing a number

of classifiers they conclude that the random forest classifier performed the best with an AUC

of 0.88. In the 2021 study “Use of Radiomics to Improve Diagnostic Performance of PI-RADS
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v2.1 in Prostate Cancer”, Mou Li et al. utilized a single-center, single-vendor design with 203

patients to develop a radiomics model to better the performance of PI-RADS v2.1. They

performed normalization and resampling and concluded that combining the radiomics score

with the PIRADS score produced the best results with an AUC of 0.931 in the validation set.

In the 2022 study“Development and Validation of a Radiomics Nomogram for Predicting

Clinically Significant Prostate Cancer in PI-RADS 3 Lesions” Tianping Li et al. , used a

multi-center and multivendor dataset consisting of 306 patients to create radiomics

nomogram for clinically significant PCa prediction in PI-RADS 3 lesions. They performed

normalization as the sole pre-processing step and the final nomogram achieved an AUC of

0.939.

In an older study in 2018 “Radiomic MRI Phenotyping of Glioblastoma: Improving Survival

Prediction” Sohi Bae et al. investigated whether integrating radiomic features from MRI with

clinical and genetic profiles could improve survival prediction in patients with glioblastoma.

To do this they chose a single-center, single-vendor dataset of 217 patients and performed

skull stripping, registration, N4 bias correction and normalization. The results showed that

the combined model improves survival prediction compared to models utilizing only clinical

and genetic data, with an AUC of 0.782. A more recent study from 2023 titled “Prediction of

Deep Myometrial Infiltration, Clinical Risk Category, Histological Type, and Lymphovascular

Space Invasion in Women with Endometrial Cancer Based on Clinical and T2-Weighted MRI

Radiomic Features”, Xingfeng Li et al. in a multicenter and multivendor study involving 413

patients to predict various clinical outcomes in women with endometrial cancer using

machine learning classification methods based on clinical and radiomics features. They

performed bias field correction, resampling, normalization and achieved an AUC of 0.879 in

the validation cohort, outperforming radiologists. The final study, also in 2023, titled

“Predicting Histopathological Grading of Adult Gliomas Based On Preoperative Conventional

Multimodal MRI Radiomics: A Machine Learning Model”, Peng Du et al. had the goal of

developing a predictive model for classifying adult gliomas into grades 2–4 based. It included

500 patients from one center and one vendor. Registration, resampling and normalization

were employed on the MRI images. The final model produced an AUC of 0.81 for glioma

grade categorization in the validation set.

From the above we can derive the conclusion that most studies, including the most notable

ones, perform normalization and resampling with bias field correction and registration

following close by. Normalization was chosen as one of the preprocessing steps to ensure

that the intensities of all images are standardized. Resampling was chosen as a necessary

step due to the difference in size between the MRI images and their corresponding

segmentations. Since the dataset images were acquired at the same center, using one

vendor and modality, registration was deemed unnecessary to minimize preprocessing

steps. Finally bias field correction was selected over registration due the importance of
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removing vendor-derived artifacts which could introduce biases or problems during

radiomics feature extraction.

4.5 Pipeline Implementation

Bias Field Correction

The Bias Field correction script was implemented with the simpleITK. After testing different

iteration counts, it was determined that 10 iterations provided the best results as more than

10 iterations led to a very harsh over-correction. The shrink factor was selected to be 1

(default) as there was no benefit to lessening the image sizes since the dataset is small and

causes no computational concerns. The number of fitting levels was also selected as its

default value of 4.

shrink_factor = 1 # default=1
num_iterations = 10 # default = 50
num_levels = 4 #default=4

The corrected images are saved in a separate file in .nrrd format.

In the following figure, the bias field is represented in a histogram as the difference of the

before and after correction images.

2. The bias field histogram

Due to the higher quality of the MRI images the bias field cannot be easily visually inspected,

however images of before and after N4 bias field correction as well as the bias field itself are

provided below. The software used for viewing the images was Slicer 3D.
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3. Image Before bias field correction

4. Image of The bias field

5. Image After Bias field correction

Appendix A & B contains the python scripts for the N4 correction and the subtraction

respectively

Normalization, Resampling & Radiomics Feature Extraction

The radiomics feature extraction was performed with the pyradiomics library. Before the

extraction two functions were used to normalize and resample the images respectively.

Steps:

● Files: The function checks for the existence of the N4-corrected image and the

segmentation mask files.
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● Image compatibility: The segmentation mask is a DICOM file, but the N4-corrected

image is an NRRD file so it is converted to an image format in order for them to be

compatible.

● Normalization: Z-score normalization is applied to normalize the intensity values of

the N4-corrected image using simpleITK and numpy according to the formulα:

𝑥' = 𝑥−μ
σ

where x’ is the normalized data, x is the original, is the μ mean intensity and σ the

standard deviation.

● Resampling: The N4-corrected image is resampled so that it matches the

segmentation mask’s dimensions in terms of spacing, origin, and direction.

● Mask Application: The resampled image is masked to focus on the prostate region.

● Feature Extraction: The N$ corrected images were nrrd files and had to be

transformed into image files to be able to be used alongside the segmentations

which were DICOM files. Radiomic features were extracted using the pyradiomics

library, with all features enabled and images processed in 3D.

The extracted radiomic features were 116, and included:

First Order Statistics: Mean, Median, Minimum, Maximum, Standard Deviation, Variance,

Skewness, Kurtosis, Energy, Entropy

Shape-based Features: Volume, Surface Area, Sphericity, Compactness, Maximum 3D

Diameter, Major Axis Length, Minor Axis Length, Elongation

Texture Features:

Gray Level Co-occurrence Matrix (GLCM): Contrast, Dissimilarity, Homogeneity,

Energy, Correlation, ASM (Angular Second Moment)

Gray Level Run Length Matrix (GLRLM): Short Run Emphasis (SRE), Long Run

Emphasis (LRE), Gray Level Non-Uniformity (GLN), Run Length Non-Uniformity (RLN),

Run Percentage (RP)

Gray Level Size Zone Matrix (GLSZM): Small Area Emphasis (SAE), Large Area

Emphasis (LAE), Gray Level Non-Uniformity (GLN), Zone Percentage (ZP)

Neighborhood Gray Tone Difference Matrix (NGTDM): Coarseness, Contrast,

Busyness, Complexity, Strength

Appendix C contains the python script that performs Normalisation and Resampling as well

as Radiomic Feature Extraction
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Model Development

Data Preprocessing:

The csv was loaded and preprocessed by removing non-feature columns and by spliting

3-dimensional data columns into separate columns for size and spacing. This way the

dataframe could be utilized for model training.

Classifier Selection:

Several classifiers were compared : SVM, Random Forest, Logistic Regression, KNN, and

Gradient Boosting, using stratified k-fold cross-validation with 5 folds. Performance metrics

were calculated for each and included accuracy, precision, recall, F1 score, AUC, and F-beta

score . The best classifier, Logistic Regression, was selected based on these metrics and used

for model development.

Hyperparameter Tuning:

The pipeline included a standard scaler, PCA, feature selection with Random Forest and the

Logistic Regression classifier. In order to find the best prarameters for each, the

RandomizedSearchCV was utilized with repeated stratified k-fold cross-validation of 5 folds

and it concluded on the following :

Best parameters train-holdout : {'PCA__n_components':
0.9921607745818374, 'classifier__C': 8.09397348116461,
'feature_selection__estimator__n_estimators': 50}

Best parameters train-test: {'PCA__n_components':
0.9834529727696003, 'classifier__C': 0.894925020519195,
'feature_selection__n_estimators': 200}

Model Training and Evaluation:

For the train test model the dataset was split into 70% training and 30% test set. The training

set was used for hyperparameter tuning with repeated stratified 5-fold cross validation and

then used to fit the model while the test set was used for final evaluation of the model.

Optimal thresholds were calculated using precision-recall curves and for both training and

test and metrics were calculated, including accuracy, precision, recall, F1 score, and AUC. The

model was then saved.

For the train-holdout model the data were split into 80% training and 20% holdout set. The

training set was utilized exactly in the same way as previously, while the hold-out set was
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kept as unseen data to assess the model’s performance. The same metrics were calculated

as before and the model was also saved.

Performance Metrics of the two models:

Set Accuracy Precision Recall F1 AUC

Training (80%) 0.827 0.8 0.667 0.727 0.922

Hold-out (20%) 0.643 0.5 0.4 0.444 0.689

Training (70%) 0.804 0.769 0.625 0.690 0.867

Test (30%) 0.750 0.600 0.857 0.706 0.791

14. Final Classification Models Metrics

Appendix D contains the python scripts for the data preprocessing, the classifier selection,

the hyperparameter tuning and the model development
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Chapter 5: Discussion and analysis of findings

In the the train-test model, in the training set the model achieved an overall AUC of 0.867,

an accuracy of 80.4%, precision of 76.9%, which is important for minimizing false positives, a

sensitivity(recall) of 62.5% and an F1 score, showing the balance between sensitivity and

precision , of 0.690. This shows the models ability to successfully classify most patients and

avoid a lot of false positives. In the test set, most metrics, besides recall and F1, were slightly

lower which is to be expected. In this case, the model achieved an overall AUC of 0.791, an

accuracy of 75%, precision of 60%, a sensitivity(recall) of 85.7% and an F1 score of 0.706.

This indicates that the model maintains an overall good performance with a slightly lowered

ability to avoid false positives and slightly better ability to identify true positives.

However, when looking at the train-holdout model, although the metrics for the training

show a strong performance, the metrics in the hold-out set show a significant drop.

Precision went from 80% to 50% and AUC went from 92,2% to 68,9%. This could be

explained by the fact that the dataset itself is very small and therefore when creating

subsets, they will be even smaller. It is possible that 80% or even 100% of the dataset is not

enough to capture the intricate patterns in the radiomics data that would give the model

better classification abilities when faced with unseen data. Also in such a small hold-out set

each incorrect prediction has a larger impact on the overall metrics compared to a larger

dataset.

When comparing this work to existing literature, the examples are limited and typically

correlate to only one part of this study.

The closest work to this one is a study published in 2023 called “Enhancing Prostate Cancer

Classification by Leveraging Key Radiomics Features and Using the Fine-Tuned Linear SVM

Algorithm” by Metin Varan et al. which utilized the ProstateX dataset to create a

classification radiomics model. The main focus, however, was to use an SVM classifier and

then, find the best feature selector and compare them to no-feature selection. No

preprocessing is specified to have been performed on the dataset. The sole metric provided

as an evaluation of the final models is accuracy. All feature selectors achieved 90-95%

accuracy whereas using no feature selection resulted in 43.64% accuracy. These results,

while impressive, are hard to interpret due to the lack of other relevant metrics, however if

we specifically focus on accuracy of the model developed in this thesis, it is lower than the

accuracy achieved by this research paper. However, due to the different end-goals and lack

of further metrics a direct comparison is challenging.

Another notable study is the 2023 study “Weakly Supervised MRI Slice-Level Deep Learning

Classification of Prostate Cancer Approximates Full Voxel- and Slice-Level Annotation: Effect

of Increasing Training Set Size” by Cedric Weißer MD et al. In this study the PostateX was

utilized as part of the training cohort. The study did not use radiomic features but instead

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 61 of 95



Application Grade Thesis

developed a CNN model with the MRI images to classify prostate cancer. The goal was to

compare slice-level labeling and patient-level labeling along with different training cohort

sizes. The preprocessing included normalization and registration. Slice-level annotation

produced the best results with an AUC of 0.75,0.80,0.83 with a test set of 200,500,998

respectively. Patient-level annotation produced an AUC of 0.64 , 0.72 and 0.78 for the

respective testing sets. This paper, although used a different approach, highlights the value

of location-based labels as the final model had better results with this additional

information. It is also a bigger study with more patients which makes the results even more

reliable compared to the significantly smaller set of 66 patients utilized in this thesis. The

AUCs achieved in the paper are a bit higher although comparable. It is not easy however to

conclusively compare the two as this work utilized radiomics features as input for the final

model while the paper used the MRI images themselves.

A last honorable mention is the recently published study called “Prediction of Clinically

Significant Prostate Cancer Using Radiomics Models in Real-World Clinical Practice” by Jie

Bao et al. Although this study did not use the ProstateX dataset, they provide an interesting

look into the potential of radiomics for predicting clinically significant cancer and PIRADS

scores, especially when using such a large dataset of 1616 patients as they did. A portion of

those patients came from external hospitals and were kept as external test sets. For

preprocessing they mention resampling, as was done in this thesis, but they also included

denoising and discretization. They used the FeatureExplorer software (which is based on

pyradiomics) to extract the radiomics and then they compared a number of classifiers,

namely random forest (RF), support vector machine (SVM), logistic regression (LR), and

linear discriminant analysis (LDA) to conclude on the best one. The best one, random forest,

produced an AUC of 0.874, in an internal testing cohort and, 0.876 and 0.893 in external

testing cohorts. This study although did not use the same dataset is an important one as it

used a significantly larger multi-center cohort and achieved impressive results that could

serve as a step towards effective assistance to medical staff for PIRADS scoring and

predicting cancer aggressiveness.

Circling back to original research questions, the purpose of this research was, first, identify

an effective preprocessing pipeline for MRI images that could used for radiomics analysis

afterwards and second, to implement this pipeline as the first step to developing a radiomics

features classification model that could classify patients into clinically and not-clinically

significant. The results of the study showcase the final model’s ability to successfully

differentiate between these two categories despite the dataset only consisting of 66

patients. The preprocessing pipeline utilized was based on an extensive literature review and

comparison of about 80 papers in order to propose a robust pipeline. The final proposal was

simple, involving only 3 steps, bias field correction, normalization and resampling, ensuring

easier reproducibility and lower chances of preprocessing related artifacts being added to

the original images. The results on the final model highlight the pipeline’s effectiveness as

the metrics show a strong performance. The model developed was also a simple approach,

utilizing a Logistic Regression classifier, and it successfully identified most patients that had
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prostate cancer on the train and test set model. However, the train-holdout model highlights

the need for further tuning and validation on a larger dataset in order for generalizability

and practical applications.

Chapter 6: Conclusion and recommendations

The purpose of this research was to establish a preprocessing pipeline for prostate cancer

MRI radiomics analysis and then utilize this pipeline to develop a classification model that

would distinguish clinically significant from non-clinically significant prostate cancer. In order

to achieve this ~ 80 papers were compared on their preprocessing pipeline as well as their

study design (single/multi center, single/multi vendor, number of patients), the resulting

metrics and their limitations. The final proposed pipeline was applied on a 66 patient

dataset and then radiomic features were extracted to be used for the development of a

classification model. The entire method was implemented with the Python programming

language.

Through this process 3 steps (bias field correction, normalization and interpolation) were

identified as the most frequently used steps among all papers and also among the most

notable studies. After implementing this pipeline on the dataset, the radiomics features

were extracted and utilized to create two final models.

The train-test model achieved an accuracy of 80.4% and an AUC of 0.867 on the training set

while on the test set it achieved an accuracy of 75% and an AUC of 0.791. This difference is

to be expected when making predictions on the test set as it was unseen data however the

performance was still strong and showed no signs of overfitting. Of note is the precision

which is a measure of the model’s ability to avoid false negatives. On the training set the

model achieved a precision of 76.9% which is a good value, however then it dropped to 60%

on the test set which might mean that the model struggles a little more to currently identify

some cases as negative for cancer.

The train-holdout model on the other hand, performed worse due to the “unseen data”

aspect. Precision dropped from 80% to 50% and AUC from 92,2% to 68,9% from training to

hold-out. This result truly highlights the need for bigger publicly available datasets to be

used to develop more robust models that could potentially be introduced in clinical practice.

This work remains however as an important step in this direction and could open the door

for future research that focuses on generalizability and clinical applications.

The use of the proposed pipeline will aid in removing artifacts and the standardization of the

images which will result in more reliable radiomics features. The final model could be used

in a clinical setting to minimize the need for invasive biopsies and as a supplementary tool to

help avoid false positives and unnecessary treatments. This makes the whole process easier

and safer for both the doctor and the patient. The patient would only need to get an MRI
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scan and then the doctor, after segmenting the prostate, could utilize the code provided in

this research to determine whether the patient has prostate cancer. Even in cases were a

blood test or biopsy might have been conducted, it could still be useful to take advantage of

the model as it could serve as an additional confirmation (or not) of the results, ensuring

that the patient is not going to be administered with chemotherapy or radiation therapy and

possibly lose their lives when they never even had cancer to begin with.

However, there are several limitations that require discussion. Although the test-train model

achieved a strong performance, the dataset used was small (66 patients). This means that

without further testing on a larger cohort the generalizability of the results cannot be

ensured as shown with the hold-out set. Furthermore, the aggregation of the labels resulted

in the loss of spatial information which could have a useful tool for minimizing the need to

biopsy every single lesion on a patient as it could exclude some of them for being cancer

positive. Also, although the entire process is done with python instead of utilizing a number

of tools, which helps simplify the process, it still is not ideal for a clinical setting as most

practitioners would not be equipped with sufficient programming understanding to integrate

it easily and successfully in their practice. It is also important to mention that this research

utilized pre-existing segmentations and did not develop any way to automate this step.

Therefore in order to use this process in a clinical setting, there would be a need to either

train existing staff or hire new staff that would be responsible for utilizing the code along

with an experienced radiologist to take on the image segmentations.

In order to address these limitations, there are some future research suggestions that could

aid in that process. First, further validation is needed on a larger dataset and re-tuning of the

model might be necessary. A larger dataset that also has lesion-based labels, just like the

ProstateX, could allow for the creation of region-based models which could point out exactly

which lesion(s) are cancer positive. Furthermore, including images from a number of

institutions and different vendors could also be useful as it would mean that the final model

could be applied to a lot more settings around the world as well as for bigger research

incentives. Finally, the creation of a website or a software that runs the python scripts in the

background would be the final goal as it would make this process a lot easier for physicians

and erase the need for additional staff. Incorporating an automated segmentation tool in

this software would, although it would have its own limitations, completely automate this

process. This way the MRI scans would be the only prerequisite as input for the software and

the output would be the model’s prediction on the clinical significance and would ideally

also include the specific location of the cancerous lesion(s).
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Appendices

A. N4 Bias Field Correction

import SimpleITK as sitk
import sys
import os
import pydicom
import numpy as np

def resample_mask(input_image_path, mask_image_path):
# Read the input and mask images
input_image = sitk.ReadImage(input_image_path)
mask_image = sitk.ReadImage(mask_image_path)

# Create a resampler
resampler = sitk.ResampleImageFilter()

# Set the resampler parameters
resampler.SetSize(input_image.GetSize())
resampler.SetOutputOrigin(input_image.GetOrigin())
resampler.SetOutputSpacing(input_image.GetSpacing())
resampler.SetOutputDirection(input_image.GetDirection())
resampler.SetInterpolator(sitk.sitkNearestNeighbor)

# Resample the mask image
resampled_mask_image = resampler.Execute(mask_image)

# Now, resampled_mask_image should have the same size as
input_image

return resampled_mask_image

# Function to find the path of the mask corresponding to an
image with the same ID
def find_segmentation_mask_path(image_path,
segmentations_root_directory):

# Get the patient ID from the image file path
patient_id =

os.path.basename(os.path.dirname(os.path.dirname(image_path)))
print(patient_id)
# Search for the segmentation mask file within the

segmentations root directory
for root, dirs, files in

os.walk(os.path.join(segmentations_root_directory,
patient_id)):

for file in files:
if file.endswith(".dcm"): # Check for DICOM files
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# Return the full path of the segmentation
mask file

return os.path.join(root, file)

# If no matching segmentation mask is found, return None
return None

# Function to perform N4 corection for a DICOM series of one
patient
def process_series(dicom_series_path, output_folder_path,
shrink_factor, mask_image_path, num_iterations, num_levels):

print(f"Processing series in: {dicom_series_path}")
# List all files in the specified directory
all_files = os.listdir(dicom_series_path)

# Filter DICOM files
dicom_files = [file for file in all_files if

pydicom.dcmread(os.path.join(dicom_series_path, file),
stop_before_pixels=True).SOPClassUID ==
'1.2.840.10008.5.1.4.1.1.4']

if not dicom_files:
print(f"Error: No DICOM files found in

{dicom_series_path}. Skipping this series.")
return

# Sort DICOM files by Number
dicom_files.sort(key=lambda x:

pydicom.dcmread(os.path.join(dicom_series_path,
x)).InstanceNumber)

# Read the first DICOM file to get metadata
first_dicom =

pydicom.dcmread(os.path.join(dicom_series_path,
dicom_files[0]))

# Read all DICOM slices to create a 3D volume
reader = sitk.ImageSeriesReader()
dicom_series =

reader.GetGDCMSeriesFileNames(dicom_series_path)
reader.SetFileNames(dicom_series)

# Use float32 pixel type for conversion
pixel_type = sitk.sitkFloat32
input_volume = sitk.Cast(reader.Execute(), pixel_type)

# Shrink if necessary
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if shrink_factor > 1:
input_volume = sitk.Shrink(input_volume,

[shrink_factor] * input_volume.GetDimension())

# Create a mask if specified, or use an Otsu threshold
if mask_image_path and os.path.isfile(mask_image_path):

maskImage = sitk.ReadImage(mask_image_path,
sitk.sitkUInt8)

else:
maskImage = sitk.OtsuThreshold(input_volume, 0, 1,

200)

# Create a corrector instance
corrector = sitk.N4BiasFieldCorrectionImageFilter()

# Resolution levels at which the image is processed
numberFittingLevels = 4

if num_levels > 0:
numberFittingLevels = num_levels

if num_iterations > 0:

corrector.SetMaximumNumberOfIterations([num_iterations] *
numberFittingLevels)

# Execute bias field correction on the 3D volume
print("Execute bias field correction on the 3D volume")
try:

corrected_volume = corrector.Execute(input_volume,
maskImage)

print("finished bias field correction")
except Exception as e:

print(f"Error during bias field correction: {str(e)}")

# Convert the corrected volume back to the original pixel
type

corrected_volume = sitk.Cast(corrected_volume,
input_volume.GetPixelID())

# Specify the output path for corrected images
output_image_path = os.path.join(output_folder_path,

f"{os.path.basename(dicom_series_path)}_N4_corrected.nrrd")
os.makedirs(output_folder_path, exist_ok=True) # Create

the output folder if it doesn't exist

# Write the corrected volume to the specified output file
sitk.WriteImage(corrected_volume, output_image_path)

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 76 of 95



Application Grade Thesis

if shrink_factor > 1:
shrunk_output_path =

os.path.splitext(output_image_path)[0] + "-shrunk.nrrd"
sitk.WriteImage(corrected_volume, shrunk_output_path)

print(f"Processing completed for {dicom_series_path}.
Output saved to {output_image_path}")

#Function to iterate through all patients and perform N4 by
utilizing the previous function
def main(data_path, output_path, shrink_factor=1,
masks_root_directory=None, num_iterations=50, num_levels=4):

# List all patient directories
patient_directories = [d for d in os.listdir(data_path) if

os.path.isdir(os.path.join(data_path, d))]

for patient_dir in patient_directories:
# Construct the full path for the patient directory
patient_full_path = os.path.join(data_path,

patient_dir)

# Find DICOM image series folder within the patient
directory

dicom_series_folder = next((f for f in
os.listdir(patient_full_path) if
os.path.isdir(os.path.join(patient_full_path, f))), None)

if dicom_series_folder:
# Construct the full path for the DICOM image

series folder
dicom_series_path =

os.path.join(patient_full_path, dicom_series_folder)

# Specify the output path for corrected images for
this patient

output_patient_path = os.path.join(output_path,
patient_dir)

os.makedirs(output_patient_path, exist_ok=True) #
Create a folder for each patient

# Specify the output path for corrected images
output_image_path =

os.path.join(output_patient_path,
f"{patient_dir}_N4_corrected.nrrd")

image_mask =
find_segmentation_mask_path(dicom_series_path,
masks_root_directory)
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# Perform bias field correction
process_series(dicom_series_path,

output_image_path, shrink_factor, image_mask, num_iterations,
num_levels)

print("Finished processing all images")

#Data
patient_folder_path = r"/content/drive/MyDrive/data/PROSTATEx"
output_base_folder_path =
r"/content/drive/MyDrive/data/N4_corrected"
mask_images_path = r"/content/drive/MyDrive/data/Segmentations"
shrink_factor = 1 # default=1
num_iterations = 10 # default = 50
num_levels = 4 #default=4

#Run
main(patient_folder_path, output_base_folder_path, shrink_factor,
mask_images_path, num_iterations, num_levels)

B. Before and After N4 image subtraction & Histogram

import os
import SimpleITK as sitk
import matplotlib.pyplot as plt

def subtract_images(before_dicom_series_path, after_nrrd_path,
output_path):

# Load the before DICOM series
before_reader = sitk.ImageSeriesReader()
before_dicom_series =

before_reader.GetGDCMSeriesFileNames(before_dicom_series_path)
before_reader.SetFileNames(before_dicom_series)
before_image = before_reader.Execute()

after_image = sitk.ReadImage(after_nrrd_path)

# Cast pixel type of before_image to match after_image
before_image = sitk.Cast(before_image, after_image.GetPixelID())

# Subtract the after image from the before image
difference_image = sitk.Subtract(after_image, before_image)

# Write the difference image to disk
sitk.WriteImage(difference_image, output_path)
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# Paths to the DICOM series before bias field correction and the
NRRD image after correction
before_dicom_series_path =
"/content/drive/MyDrive/data/PROSTATEx/ProstateX-0004/5.000000-t2tse
tra-75680"
after_nrrd_path =
"/content/drive/MyDrive/data/5.000000-t2tsetra-75680_N4_corrected.nr
rd"
# Output path for the difference image
output_path = "/content/drive/MyDrive/data/try2.nrrd"

# Perform subtraction
subtract_images(before_dicom_series_path, after_nrrd_path,
output_path)

def plot_histogram(image):
# Flatten the image pixel values
pixel_values = sitk.GetArrayViewFromImage(image).flatten()

# Plot histogram
plt.hist(pixel_values, bins=50, color='blue', alpha=0.7)
plt.xlabel('Pixel Value Difference')
plt.ylabel('Frequency')
plt.title('Histogram of Pixel Value Differences')
plt.show()

# Create histogram
subtracted_image = sitk.ReadImage(output_path)
plot_histogram(subtracted_image)

C. Normalization, Resampling & Radiomics Feature Extraction

import os
import SimpleITK as sitk
import pandas as pd
from radiomics import featureextractor
import nrrd
import numpy as np

#Function to get all paths of the N4 corrected images
def get_image_paths(root_directory):

image_paths = []

# Iterate through patient folders
for patient_folder in os.listdir(root_directory):

# Construct the full path to the patient's directory
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patient_directory = os.path.join(root_directory,
patient_folder)

# Check if the patient's directory exists
if os.path.exists(patient_directory) and

os.path.isdir(patient_directory):
# List all files in the patient's directory
files_in_patient_directory =

os.listdir(patient_directory)

# Iterate through files in the patient's directory
for file_name in files_in_patient_directory:

# Check if the file is a directory
if os.path.isdir(os.path.join(patient_directory,

file_name)):
# Construct the full path to the subdirectory

containing the image file
subdirectory_path =

os.path.join(patient_directory, file_name)

# List all files in the subdirectory
files_in_subdirectory =

os.listdir(subdirectory_path)

# Iterate through files in the subdirectory
for subdirectory_file_name in

files_in_subdirectory:
# Check if the file is an image file
if subdirectory_file_name.endswith((".nrrd",

".dcm")):
# Construct the full path to the image

file
image_file_path =

os.path.join(subdirectory_path, subdirectory_file_name)
image_paths.append(image_file_path)

return image_paths

# Function to find the path of the mask corresponding to an image
with the same ID
def find_segmentation_mask_path(image_path,
segmentations_root_directory):

# Get the patient ID from the image file path
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patient_id =
os.path.basename(os.path.dirname(os.path.dirname(image_path)))

print(patient_id)
# Search for the segmentation mask file within the segmentations

root directory
for root, dirs, files in

os.walk(os.path.join(segmentations_root_directory, patient_id)):
for file in files:

if file.endswith(".dcm"): # Check for DICOM files
# Return the full path of the segmentation mask file
return os.path.join(root, file)

# If no matching segmentation mask is found, return None
return None

# Function for Z-score normalization of one image
def z_score_normalize(image):

# Extract image data as a numpy array
image_data = sitk.GetArrayFromImage(image)

# Calculate the mean and standard deviation of intensity
mean_intensity = np.mean(image_data)
std_intensity = np.std(image_data)

# Apply Z-score normalization
normalized_image_data = (image_data - mean_intensity) /

std_intensity

# Convert normalized data back to SimpleITK image
normalized_image = sitk.GetImageFromArray(normalized_image_data)
normalized_image.CopyInformation(image) # Copy metadata from

the original image

return normalized_image

#Function to resample a single image
def resample_image(image, reference_image):

# Create an instance of the ResampleImageFilter
resampler = sitk.ResampleImageFilter()

# Set the parameters for resampling the input image to match the
properties of the reference_image

resampler.SetSize(reference_image.GetSize())
resampler.SetOutputSpacing(reference_image.GetSpacing())
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resampler.SetOutputOrigin(reference_image.GetOrigin())
resampler.SetOutputDirection(reference_image.GetDirection())

# Execute the resampling process using the configured
ResampleImageFilter

resampled_image = resampler.Execute(image)

# Return the resampled image
return resampled_image

# Function to extract radiomics features from a single image
def extract_radiomic_features_one(corrected_image_path,
segmentation_mask_path, output_csv):

# Check if both files exist
if os.path.exists(corrected_image_path) and

os.path.exists(segmentation_mask_path):
# Print paths the image and the mask
print(f"Corrected Image Path: {corrected_image_path}")
print(f"Segmentation Mask Path: {segmentation_mask_path}")

try:
# Load DICOM segmentation mask
segmentation_mask =

sitk.ReadImage(segmentation_mask_path)

# Load NRRD corrected array and turn it to an image
corrected_image_array, corrected_header =

nrrd.read(corrected_image_path)
corrected_image =

sitk.GetImageFromArray(corrected_image_array)

# Apply Z-score normalization
normalized_image = z_score_normalize(corrected_image)

# Resample the corrected image to match the spacing,
origin, and direction of the segmentation mask

resampled_normalized_image =
resample_image(normalized_image, segmentation_mask)

# Ensure the image and mask have the same dimensions
after resampling

if resampled_normalized_image.GetSize() ==
segmentation_mask.GetSize():

# Apply the mask to the resampled image
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masked_image = sitk.Mask(resampled_normalized_image,
segmentation_mask)

# Feature extraction
extractor =

featureextractor.RadiomicsFeatureExtractor()
extractor.enableAllFeatures()
extractor.settings['label'] = 255 # Set the correct

label
extractor.settings['disableAll2D'] = True # All

images are 3D

# Extract radiomic features
features =

extractor.execute(resampled_normalized_image, segmentation_mask)

# Convert the features to a DataFrame
features_df = pd.DataFrame(list(features.items()),

columns=['Feature', 'Value'])

print("Radiomic features extracted successfully.")

# Return the features DataFrame
return features_df

else:
raise Exception("Error: Resampled image and mask

dimensions do not match.")

except Exception as e:
raise Exception(f"Error during radiomic feature

extraction: {str(e)}")

else:
raise Exception("Error: One or both files do not exist.")

# Function to iterate through all images and extract the
corresponding radiomic features
def extract_radiomic_features_for_all_images(patient_root_directory,
segmentations_root_directory, output_csv_path):

# Get a list of image paths using the previously defined
function

features_df = pd.DataFrame()
image_paths = get_image_paths(patient_root_directory)

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 83 of 95



Application Grade Thesis

# Create an empty DataFrame to store results
results_df = pd.DataFrame()

# Iterate through image paths
for image_path in image_paths:

# Call the function to find the segmentation mask path for
the current image

segmentation_mask_path =
find_segmentation_mask_path(image_path,
segmentations_root_directory)

if segmentation_mask_path is not None:
# Call the function to extract radiomic features for the

current image and segmentation mask
features_df = extract_radiomic_features_one(image_path,

segmentation_mask_path, output_csv_path)

# Add patient information to the DataFrame
patient_id =

os.path.basename(os.path.dirname(image_path))
features_df['PatientID'] = patient_id

# Append the results to the main DataFrame
results_df = pd.concat([results_df, features_df],

ignore_index=True)
else:

print(f"Warning: No segmentation mask found for image
{image_path}")

# Save the results to a single CSV file
results_df.to_csv(output_csv_path, index=False)

# Directory containg patients N4 corrected image files
patient_root_directory = "/content/drive/MyDrive/data/N4_corrected"
# Directory containing patients corresponding segmentation files
segmentations_root_directory =
"/content/drive/MyDrive/data/Segmentations"
# Radiomics features output CSV file
output_csv_path =
"/content/drive/MyDrive/data/with_Norm_After_N4/Final-Radiomics.csv"

# run :
extract_radiomic_features_for_all_images(patient_root_directory,
segmentations_root_directory, output_csv_path)
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# Open the CSV to reshape
df =
pd.read_csv("/content/drive/MyDrive/data/with_Norm_After_N4/Final-Ra
diomics.csv")

# Pivot the DataFrame to reshape it
df_pivoted = df.pivot(index='PatientID', columns='Feature',
values='Value').reset_index()

# Save the pivoted DataFrame to a new CSV file. Now each row
corresponds to one patient.
df_pivoted.to_csv("/content/drive/MyDrive/data/with_Norm_After_N4/Fi
nal-Radiomics_pivoted_data.csv", index=False)

D. Logistic Regression Classification model

import numpy as np
import pandas as pd
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split,
RepeatedStratifiedKFold, RandomizedSearchCV
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.feature_selection import SelectFromModel
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import precision_recall_curve, precision_score,
recall_score, f1_score, roc_auc_score, accuracy_score
from scipy.stats import uniform
import joblib
import ast

# Load the dataset
df =
pd.read_csv('/content/drive/MyDrive/data/noregion_merged_radiomics_d
ataframe.csv')
df.head()

df = df.drop(columns=['PatientID',
'diagnostics_Configuration_EnabledImageTypes',
'diagnostics_Configuration_Settings',
'diagnostics_Image-original_Dimensionality',
'diagnostics_Image-original_Hash',
'diagnostics_Mask-original_BoundingBox',
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'diagnostics_Mask-original_CenterOfMass',
'diagnostics_Mask-original_CenterOfMassIndex',
'diagnostics_Mask-original_Hash', 'diagnostics_Mask-original_Size',
'diagnostics_Mask-original_Spacing',
'diagnostics_Mask-original_VolumeNum',
'diagnostics_Mask-original_VoxelNum', 'diagnostics_Versions_Numpy',
'diagnostics_Versions_PyRadiomics',
'diagnostics_Versions_PyWavelet', 'diagnostics_Versions_Python',
'diagnostics_Versions_SimpleITK'])

df.head()

# It apperas that 2 columns are 3 - dimensional.
# Check the length of the tuples in
'diagnostics_Image-original_Size'
df['diagnostics_Image-original_Size'].apply(lambda x:
len(ast.literal_eval(x))).value_counts()

# We can break it down into 3 columns and then drop the original
df[['Size_dim1', 'Size_dim2', 'Size_dim3']] =
pd.DataFrame(df['diagnostics_Image-original_Size'].apply(ast.literal
_eval).tolist(), index= df.index)
df = df.drop(columns=['diagnostics_Image-original_Size'])

df.head()

# Now we do the same for the column
'diagnostics_Image-original_Spacing'
# First we check that all the data is 3 dimensional
df['diagnostics_Image-original_Spacing'].apply(lambda x:
len(ast.literal_eval(x))).value_counts()

# We can break it down into 3 columns as well and then drop the
original
df[['Spacing_dim1', 'Spacing_dim2', 'Spacing_dim3']] =
pd.DataFrame(df['diagnostics_Image-original_Spacing'].apply(ast.lite
ral_eval).tolist(), index= df.index)
df = df.drop(columns=['diagnostics_Image-original_Spacing'])

df.head()

#Finding the best classifier
# Define classifiers
classifiers = [

('SVM', SVC(probability=True)),
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('Random Forest', RandomForestClassifier()),
('Logistic Regression', LogisticRegression()),
('KNN', KNeighborsClassifier()),
('Gradient Boosting', GradientBoostingClassifier())

]

# Split data into features (X) and target variable (y)
X = df.drop(['ProxID', 'ClinSig', 'label'], axis=1)
y = df['label']

# Define the number of splits for stratified k-fold cross-validation
n_splits = 5

# Initialize lists to store performance metrics across classifiers
classifier_performance = []

for classifier_name, classifier in classifiers:
# Initialize stratified k-fold cross-validation
skf = StratifiedKFold(n_splits=n_splits, shuffle=True,

random_state=42)

# Lists to store performance metrics across folds
cv_mean_accuracy = []
cv_std_accuracy = []
cv_mean_precision = []
cv_std_precision = []
cv_mean_recall = []
cv_std_recall = []
cv_mean_f1 = []
cv_std_f1 = []
cv_mean_auc = []
cv_std_auc = []
cv_mean_fbeta = []
cv_std_fbeta = []

for train_index, test_index in skf.split(X, y):
# Split data into train and test sets for this fold
X_train, X_test = X.iloc[train_index], X.iloc[test_index]
y_train, y_test = y.iloc[train_index], y.iloc[test_index]

# Create pipeline
pipeline = Pipeline([('scaler', StandardScaler()),

('PCA', PCA(n_components=0.95)),
('feature_selection',

SelectFromModel(RandomForestClassifier(n_estimators=100))),
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(classifier_name, classifier)])

# Fit the pipeline to the training data
pipeline.fit(X_train, y_train)

# Predict the labels of the test set
y_pred = pipeline.predict(X_test)
y_proba = pipeline.predict_proba(X_test)[:, 1]

# Calculate performance metrics for this fold
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred, zero_division=0)
recall = recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)
auc = roc_auc_score(y_test, y_proba)
fbeta = fbeta_score(y_test, y_pred, beta=0.5)

cv_mean_accuracy.append(accuracy)
cv_mean_precision.append(precision)
cv_mean_recall.append(recall)
cv_mean_f1.append(f1)
cv_mean_auc.append(auc)
cv_mean_fbeta.append(fbeta)

# Calculate mean and standard deviation of metrics across folds
mean_accuracy = np.mean(cv_mean_accuracy)
std_accuracy = np.std(cv_mean_accuracy)
mean_precision = np.mean(cv_mean_precision)
std_precision = np.std(cv_mean_precision)
mean_recall = np.mean(cv_mean_recall)
std_recall = np.std(cv_mean_recall)
mean_f1 = np.mean(cv_mean_f1)
std_f1 = np.std(cv_mean_f1)
mean_auc = np.mean(cv_mean_auc)
std_auc = np.std(cv_mean_auc)
mean_fbeta = np.mean(cv_mean_fbeta)
std_fbeta = np.std(cv_mean_fbeta)

# Store performance metrics for this classifier
classifier_performance.append({

'Classifier': classifier_name,
'Mean Accuracy': mean_accuracy,
'Std Accuracy': std_accuracy,
'Mean Precision': mean_precision,
'Std Precision': std_precision,
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'Mean Recall': mean_recall,
'Std Recall': std_recall,
'Mean F1 Score': mean_f1,
'Std F1 Score': std_f1,
'Mean AUC': mean_auc,
'Std AUC': std_auc,
'Mean F-beta Score': mean_fbeta,
'Std F-beta Score': std_fbeta

})

# Print performance metrics for each classifier
for perf in classifier_performance:

print(f"Performance metrics for {perf['Classifier']}:")
print(f"Mean Cross-validation Accuracy: {perf['Mean Accuracy']}

(Std: {perf['Std Accuracy']})")
print(f"Mean Cross-validation Precision: {perf['Mean

Precision']} (Std: {perf['Std Precision']})")
print(f"Mean Cross-validation Recall: {perf['Mean Recall']}

(Std: {perf['Std Recall']})")
print(f"Mean Cross-validation F1 Score: {perf['Mean F1 Score']}

(Std: {perf['Std F1 Score']})")
print(f"Mean Cross-validation AUC: {perf['Mean AUC']} (Std:

{perf['Std AUC']})")
print(f"Mean Cross-validation F-beta Score: {perf['Mean F-beta

Score']} (Std: {perf['Std F-beta Score']})")

#We choose Logistic Regression and we move forward

#Best test-holdout model

#Split the dataframe into features, X, and labels, y
X = df.drop(['ProxID', 'ClinSig', 'label'], axis=1)
y = df['label']

# Split the data into training and holdout sets
X_train, X_holdout, y_train, y_holdout = train_test_split(X, y,
test_size=0.2, stratify=y, random_state=42)

# Check class distribution in the training and holdout sets
print("Class distribution in training set:", np.bincount(y_train))
print("Class distribution in holdout set:", np.bincount(y_holdout))

# Define the pipeline
pipeline = Pipeline([

('scaler', StandardScaler()),
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('PCA', PCA(random_state=42)),
('feature_selection',

SelectFromModel(RandomForestClassifier(random_state=42))),
('classifier', LogisticRegression(random_state=42))

])

# Define parameter distributions for RandomizedSearchCV
param_dist = {

'PCA__n_components': uniform(0.8, 0.199), # Ensure values are
between 0.8 and 0.999

'feature_selection__estimator__n_estimators': [50, 100, 200],
'classifier__C': uniform(0.01, 10)

}

# Setup RandomizedSearchCV
rkf = RepeatedStratifiedKFold(n_splits=5, n_repeats=3,
random_state=42)
random_search = RandomizedSearchCV(pipeline,
param_distributions=param_dist, n_iter=50, cv=rkf, scoring='f1',
random_state=42, n_jobs=-1, error_score='raise')
random_search.fit(X_train, y_train)

# Print the best parameters and the best score
best_params = random_search.best_params_
best_score = random_search.best_score_

print(f"Best parameters found: {best_params}")
print(f"Best cross-validation score: {best_score}")

# Access the best estimator
best_model = random_search.best_estimator_

# Train the best model on the entire training set
best_model.fit(X_train, y_train)

# Predict probabilities on the training set
y_train_proba = best_model.predict_proba(X_train)[:, 1]

# Predict probabilities on the holdout set
y_holdout_proba = best_model.predict_proba(X_holdout)[:, 1]

# Calculate precision-recall curve for training set
precision_train, recall_train, thresholds_train =
precision_recall_curve(y_train, y_train_proba)
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# Set desired precision level
desired_precision = 0.8

# Find the optimal threshold for the desired precision
optimal_threshold_train = thresholds_train[np.argmax(precision_train
== desired_precision)]

# Predict with the optimal threshold for training set
y_train_pred_optimal = (y_train_proba >=
optimal_threshold_train).astype(int)

# Calculate performance metrics for training set
train_accuracy = accuracy_score(y_train, y_train_pred_optimal)
train_precision = precision_score(y_train, y_train_pred_optimal)
train_recall = recall_score(y_train, y_train_pred_optimal)
train_f1 = f1_score(y_train, y_train_pred_optimal)
train_roc_auc = roc_auc_score(y_train, y_train_proba)

print("Training Set Performance Metrics with Optimal Threshold:")
print(f"Accuracy: {train_accuracy}")
print(f"Precision: {train_precision}")
print(f"Recall: {train_recall}")
print(f"F1 Score: {train_f1}")
print(f"AUC: {train_roc_auc}")

# Predict with the optimal threshold for holdout set
y_holdout_pred_optimal = (y_holdout_proba >=
optimal_threshold_train).astype(int)

# Calculate performance metrics for holdout set
holdout_accuracy = accuracy_score(y_holdout, y_holdout_pred_optimal)
holdout_precision = precision_score(y_holdout,
y_holdout_pred_optimal)
holdout_recall = recall_score(y_holdout, y_holdout_pred_optimal)
holdout_f1 = f1_score(y_holdout, y_holdout_pred_optimal)
holdout_roc_auc = roc_auc_score(y_holdout, y_holdout_proba)

print("Holdout Set Performance Metrics with Optimal Threshold:")
print(f"Accuracy: {holdout_accuracy}")
print(f"Precision: {holdout_precision}")
print(f"Recall: {holdout_recall}")
print(f"F1 Score: {holdout_f1}")
print(f"AUC: {holdout_roc_auc}")

# Save the model to a file
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model_filename =
'/content/drive/MyDrive/data/best_logistic_regression_model_holdout.
joblib'
joblib.dump(best_model, model_filename)

#Best test-train model

#Divide dataset into test and train
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.3, stratify=y, random_state=42)

# Check the class distribution in the train and test sets
print("Class distribution in training set:", np.bincount(y_train))
print("Class distribution in test set:", np.bincount(y_test))
# Define the pipeline
pipeline = Pipeline([

('scaler', StandardScaler()),
('PCA', PCA(random_state=42)),
('feature_selection',

SelectFromModel(RandomForestClassifier(random_state=42))),
('classifier', LogisticRegression(random_state=42))

])

# Define parameter distributions for RandomizedSearchCV
param_dist = {

'PCA__n_components': uniform(0.8, 0.199),
'feature_selection__estimator__n_estimators': [50, 100, 200],
'classifier__C': uniform(0.01, 10)

}
# Perform RandomizedSearchCV with repeated stratified k-fold
cross-validation
rkf = RepeatedStratifiedKFold(n_splits=5, n_repeats=3,
random_state=42)
random_search = RandomizedSearchCV(pipeline,
param_distributions=param_dist, n_iter=50, cv=rkf, scoring='f1',
random_state=42, n_jobs=-1, error_score='raise')
random_search.fit(X_train, y_train)

# Best parameters and best score
best_params = random_search.best_params_
best_score = random_search.best_score_

print(f"Best parameters found: {best_params}")
print(f"Best cross-validation score: {best_score}")
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# Access the best estimator
best_model = random_search.best_estimator_

# Train the best model on the entire training set
best_model.fit(X_train, y_train)

# Predict probabilities on the training set
y_train_proba = best_model.predict_proba(X_train)[:, 1]

# Calculate precision-recall curve for training set
precision_train, recall_train, thresholds_train =
precision_recall_curve(y_train, y_train_proba)
optimal_idx_train = np.argmax(precision_train[recall_train >= 0.6])
optimal_threshold_train = thresholds_train[optimal_idx_train]

# Predict with the optimal threshold for training set
y_train_pred_optimal = (y_train_proba >=
optimal_threshold_train).astype(int)

# Calculate performance metrics for training set
train_accuracy = accuracy_score(y_train, y_train_pred_optimal)
train_precision = precision_score(y_train, y_train_pred_optimal)
train_recall = recall_score(y_train, y_train_pred_optimal)
train_f1 = f1_score(y_train, y_train_pred_optimal)
train_roc_auc = roc_auc_score(y_train, y_train_proba)

print("Training Set Performance Metrics with Optimal Threshold:")
print(f"Accuracy: {train_accuracy}")
print(f"Precision: {train_precision}")
print(f"Recall: {train_recall}")
print(f"F1 Score: {train_f1}")
print(f"AUC: {train_roc_auc}")

# Predict probabilities on the test set
y_test_proba = best_model.predict_proba(X_test)[:, 1]

# Calculate precision-recall curve for test set
precision_test, recall_test, thresholds_test =
precision_recall_curve(y_test, y_test_proba)
optimal_idx_test = np.argmax(precision_test[recall_test >= 0.6])
optimal_threshold_test = thresholds_test[optimal_idx_test]

# Predict with the optimal threshold for test set
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y_test_pred_optimal = (y_test_proba >=
optimal_threshold_test).astype(int)

# Calculate performance metrics for test set
test_accuracy = accuracy_score(y_test, y_test_pred_optimal)
test_precision = precision_score(y_test, y_test_pred_optimal)
test_recall = recall_score(y_test, y_test_pred_optimal)
test_f1 = f1_score(y_test, y_test_pred_optimal)
test_roc_auc = roc_auc_score(y_test, y_test_proba)

print("Test Set Performance Metrics with Optimal Threshold:")
print(f"Accuracy: {test_accuracy}")
print(f"Precision: {test_precision}")
print(f"Recall: {test_recall}")
print(f"F1 Score: {test_f1}")
print(f"AUC: {test_roc_auc}")

# Save the model to a file
model_filename =
'/content/drive/MyDrive/data/best_logistic_regression_model_test_tra
in.joblib'
joblib.dump(best_model, model_filename)
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