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The availability of strong, short pulse duration and high frequency (XUV and be-
yond) radiation through recent FEL sources opens up new prospects in the explo-
ration of the strong driving of Autoionization (AI) resonances through photoab-
sorption experiments. However, such sources exhibit strong stochastic fluctuations
leading to a finite bandwidth, that, until now, have not been considered in the the-
oretical literature of the excitation of AI resonances, simply because the traditional
photoabsorption studies of AI states have been carried out mainly by means of weak,
practically monochromatic synchrotron radiation sources. As shown in this thesis, a
formulation of the problem including the effects of the stochastic character of the ra-
diation fields reveals that under certain values of the relevant parameters the result-
ing AI profiles can be distorted dramatically and bear no resemblance to traditional
Fano resonances.
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Chapter 1

Introduction

Autoionizing (AI) states, also referred to as resonances, in atoms and molecules be-
long to a rich field of Atomic Molecular and Optical (AMO) physics, representing
a paradigm of discreet states embedded in continua. Typically, they can be excited
either by photoabsorption or by collisions with electrons. The simplest case in point
is represented by a so-called isolated AI resonance, which means that the width of
its excitation profile is much smaller than the energy distance from the nearest AI
resonance. A textbook example of an isolated resonance is provided by the dou-
bly excited 2s2p state of Helium, which has been studied in exhaustive detail, both
theoretically and experimentally, over the last 60 or so years [1].

Traditional photoabsorption studies of AI resonances have been carried out mainly
by means of synchrotron radiation, where weak, practically monochromatic radia-
tion excites the resonance. The observed quantity, as a function of the photon energy,
can be either the amount of photoabsorption or photoelectron energy, as well as an-
gular distribution, spectrum. The availability of strong radiation sources, such as
lasers, motivated the exploration of the behavior of resonant transitions, driven by
strong, pulsed and possibly non-monochromatic radiation. Over the last 35 years
or so, a plethora of related studies have addressed issues such as AC Stark splitting
in strongly driven bound states in double optical resonance, including the effect of
field fluctuations [2, 3]. These studies were limited to the optical or near UV spectral
region, in which sources of sufficient intensity were at the time available. The strong
driving of AI states, such as the 2s2p in Helium, which requires radiation in the XUV
range, were beyond the reach of those sources. Nevertheless, some initial theoreti-
cal exploration of the expected behavior of a strongly driven AI state, as well as the
case of double resonance, involving the strong coupling of two AI states were pub-
lished as early as 1981 [4] and revisited much later [5], when short wavelength Free
Electron Lasers (FEL) began delivering strong radiation in the XUV and beyond. Ex-
tension of that work to triply excited hollow states followed a few years later [6–8].
To the best of our knowledge, there are two examples [9, 10] of experimental work
providing some evidence of the strong coupling of two AI states.

We need to define the notion of strong coupling in AI states. A formulation of an
AI state, particularly valid for an isolated resonance, involves the superposition of a
discreet state and the continuum to which it is coupled via intra-atomic interaction.
Diagonalization of the relevant part of the Hamiltonian leads to a modification of
the position of the discreet part and a decay rate, referred to as AI width, as it cor-
responds to the width of the profile of the resonance. As discussed in detail in next
sections, the dipole matrix element coupling a bound state to the discreet part of the
AI resonance multiplied by the electric field amplitude, to within some coefficients,
represents an effective Rabi frequency characterizing the strength of the coupling.
Under traditional synchrotron radiation experiments, that Rabi frequency in much
smaller than the AI width. That is what we shall call weak coupling, in which case
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the interaction is describable in terms of a transition probability per unit time (rate),
as given by Fermi’s golden rule. The coupling is strong when the above condition is
reversed, which means the Rabi frequency is larger than the AI width. When an EM
field couples two AI states, as for example in refs.[4, 5, 11], the field is strong when
the Rabi frequency between the two AI states is larger than the AI width of at least
one of the resonances.

The availability of strong, short pulse duration, short wavelength (XUV and be-
yond) radiation through the recent Free Electron Laser (FEL) sources provides the
opportunity to explore the behavior of strongly driven AI resonances. For a pulse of
high peak intensity, the pulse duration enters as an important parameter paired to
the intensity. Clearly, under any intensity, given sufficiently long time exposure of
any system to the radiation, complete ionization will ensue. When the intensity is
high, even a seemingly short pulse duration can cause significant ionization, to the
extent of distorting the resonance profile. This effect was noted in the early paper by
Lambropoulos and Zoller [4], referred to as “time saturation”, has until now been of
only academic interest. But as shown in this thesis, a dramatic manifestation of its
role has now been observed.

In addition to the high intensity and short pulse duration, at least at the present
time, FEL’s exhibit strong intensity fluctuations [2]. This means that the radiation
seen by the atom has a non-zero bandwidth, while the Rabi frequency undergoes
stochastic fluctuations. The influence of the bandwidth has not been considered in
the theoretical literature, until now, simply because AI resonances tend to be much
broader than the bandwidths of synchrotron sources. Under FEL radiation, how-
ever, that is no longer the case, which requires a formulation that accounts for the
stochastic fluctuations of the field. Depending on the strength of the coupling to
the radiation, it may be that only the bandwidth is of importance. In the most gen-
eral case of strong driving, in the sense defined above, accounting for the intensity
fluctuations becomes imperative, as discussed in next sections.

This work was motivated by ongoing experimental investigations on the excita-
tion of the 2s2p AI resonance of He under radiation by FLASH, the interpretation
of which turned out to require a reformulation of the existing theoretical treatments.
As demonstrated in the sections that follow, hitherto “academic” effects such as time
broadening have been found to cause dramatic distortion of the profile. While the
theory of an AI resonance driven strongly by a stochastic field, with intensity fluc-
tuations, poses challenging problems not readily amenable to the theoretical tools
developed for strongly driven transitions between bound states [2].
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Chapter 2

Autoionizing States - Theoretical
Review

Autoionization is a process by which an atom or a molecule in an excited state spon-
taneously emits one of its electrons due to its interaction with a continuum. The most
common example of an autoionizing state (or autoionizing resonance) is a bound
state which involves the excitation of two electrons with total energy larger than the
one-electron ionization threshold. Such states are unstable and will eventually de-
cay non-radiatevely due to their interaction with the continuum. After the decay of
such a state, we end up with one electron in the ground state of the remaining ion
and one electron ejected from the atom. Contrary to the usual case of exponentially
decaying states resulting Lorentzian line-shapes, AIS line-shapes’ are asymmetric.
This asymmetry arises from the interference of the direct ionization path (from the
ground state of the atom) and the ionization via the AIS due to its interaction with
the continuum, usually referred as configuration interaction.

In this chapter we will present the basic theoretical tools that enable the study of
AIS resonances as well as some basic results concerning their behaviour in presence
of electromagnetic radiation.

2.1 Fano’s Theoretical Treatment

The first theoretical study of autoionization resonances’ lineshapes was held by Ugo
Fano in 1935 [12], with a theory that describes the interference between an autoion-
izing state (AIS) and a continuum. This theory was not completed until 1961, where
Fano extended his own theory by taking also into account the energy dependence of
the AIS - continuum interaction [13]. Fano’s work is time-independent and valid in
the weak coupling limit where Rabi cycling and strong field phenomena do not take
place. He begins by considering an interaction V between a discrete state |ϕ〉 and
a non-degenerate set of states |ψE〉. Due to this interaction, the Hamiltonian in the
|ϕ〉 , |ψE〉 basis is no longer diagonal, with its matrix elements given by:

〈ϕ|H |ϕ〉 = Eϕ
〈ψE′ |H |ϕ〉 = VE′

〈ψE′ |H |ψE′′〉 = E′δ(E′′ − E′)
(2.1)

where the ground state is assumed energetically far away from the AIS and is, for
the moment, neglected .
The vector that diagonalises our Hamiltonian is expressed as

|ΨE〉 = aE |ϕ〉+

∫
dE′bE′ |ψE′〉 (2.2)
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thus the eigenvalue problem H |ΦE〉 = E |ΦE〉 leads to a set of coupled equations:

EϕaE +
∫
dE′V ∗E′bE′ = EaE

VE′aE + E′bE′ = EbE′
(2.3)

that need to be solved in order to find the eigenvector of the new Hamiltonian. With
proper algebraic manipulations, one can find that the formal solution of the second
equation is

bE′ =

[
1

E − E′
+ z(E)δ(E − E′)

]
VE′aE (2.4)

Now we can get the resulting expressions of the unknown coefficients:

aE =
sin ∆

πVE
(2.5)

bE′ =
VE′

πVE

sin ∆

E − E′
− cos ∆δ(E − E′) (2.6)

where we defined

∆ = − arctan
π|VE |2

E − Eϕ − F (E)
(2.7)

The energy shift F (E) is given by

F (E) = P

∫
dE′
|VE′ |2

E − E′
(2.8)

with P denoting the principal value part of the integral. Substituting (2.5) and (2.6)
back to (2.2) , we find that the eigenvector of the Hamiltonian is

|ΨE〉 =
sin ∆

πVE
|ϕ〉+ P

∫
dE′

[
VE′

πVE

sin ∆

E − E′
− cos ∆δ(E − E′)

]
|ψE′〉

≡ sin ∆

πVE
|Φ〉 − cos ∆ |ψE〉 (2.9)

The probability of excitation may be represented in terms of an suitable operator T
relevant to mechanism of the excitation. The probability would be proportional to
the squared matrix element of this operator between the initial state and |ΨE〉. In
view of the above, this matrix element can be expressed as:

〈ΨE|T |i〉 =
1

πV ∗E
〈Φ|T |i〉 sin ∆− 〈ψE |T |i〉 cos ∆ (2.10)

Since sin ∆ is an even function of E − Eϕ − F and cos ∆ an odd function of this
variable, the contributions to 〈Φ|T |i〉 and 〈ψE |T |i〉 are interfering with opposite
phase on the two sides of the resonance. There is a value of ∆ (call it ∆0) where the
transition probability vanishes, obeying

tan ∆0 =
πV ∗E0

〈ψE |T |i〉
〈Φ|T |i〉

(2.11)

Inverting equation (2.11) one gets,

1

tan ∆0
=

〈Φ|T |i〉
πV ∗E0

〈ψE |T |i〉
≡ q (2.12)
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This equation defines the Fano asymmetry parameter q, which is a measure of the
relative strength between the two interfering channels. Defining the dimensionless
reduced energy variable

ε =
E − Eϕ − F (E)

Γ/2
(2.13)

where Γ = 2π|VE |2 is the inverse lifetime of the AIS, we can express the ratio of the
transitions probabilities |〈ΨE |T |i〉|2 and |〈ψE |T |i〉|2 as:

|〈ΨE |T |i〉|2

|〈ψE |T |i〉|2
=

(q + ε)2

1 + ε2
(2.14)

The resonant part of the absorption cross section is proportional to the factor (q+ε)2

1+ε2
,

which is responsible for the asymmetric character of the line-shape, as seen in figure
1. Notice that for negative values of q the destructive interference takes place for
positive values of ε and vice versa. For q = 0 the profile is symmetric while for
q →∞ in the sense that q � ε, the resulting profile is Lorentzian.

FIGURE 2.1: Fano’s asymmetric line-shapes. Red Line: q = −1.5, Blue
Line: q = 0, Green Line: q = 2, Yellow Line: q = 3

2.2 Basic Formulations

Although Fano’s theory interprets successfully the asymmetric character of the AIS
lineshapes, it is not directly applicable in the strong field limit. When the electro-
magnetic field that couples the ground state to the AIS becomes sufficiently large in
the sense that the Rabi frequency becomes comparable to the AIS width, the tran-
sition can not be described necessarily in terms of a transition probability per unit
time. In this case a treatment involving the calculation of the relevant matrix element
between the ground state and the AIS is not adequate, and a dynamical approach
has to be considered. The problem can be formulated in terms of the Schrödinger’s
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equation / Resolvent Formalism [4] or in terms of the density matrix [14, 15]. In this
section we discuss all the possible theoretical treatments of the problem.

2.2.1 Schrödinger’s equation

We begin by considering the eigenstates of the atomic part of the Hamiltonian H0.
The ground state is denoted by |g〉, the intermediate AIS by |a〉 and |c〉 is a set of
continuum states. The energies of those states are denoted by Eg,Ea and Ec, respec-
tively. The Hamiltonian of the compound system (atom + field) in a semi-classical
approach can be expressed as H = H0 + V + D, where D is the coupling to the
radiation field and V the configuration interaction. It is often helpful to introduce
the projection operators to the ground and the intermediate state, namely

P ≡ |g〉 〈g| (2.15)

and
Q = |a〉 〈a|+

∫
dEc |c〉 〈c| (2.16)

respectively. The orthonormality of the eigenstates of the atomic part of the Hamil-
tonian reflects in the relations

P 2 = P PQ = 0 = QP Q2 = Q (2.17)

The two projection operators sum to unity in the approximation that assumes that
other discrete states are energetically sufficiently far from |a〉 and can be neglected.
The Hamiltonian in terms of the projection operators is written as:

H = (P +Q)H(P +Q) = PHP + PHQ+QHP +QHQ (2.18)

The radiation field couples |g〉 to both |a〉 and |c〉, while |a〉 and |c〉 are coupled only
via the configuration interaction. The matrix elements of the Hamiltonian in the
basis of the eigenstates of H0 are:

〈a|H |a〉 = 〈a|QHQ |a〉 = 〈a|H0 |a〉 = Ea (2.19)

〈g|H |g〉 = 〈g|PHP |g〉 = 〈g|H0 |g〉 = Eg (2.20)

〈c|H
∣∣c′〉 = 〈c|QHQ

∣∣c′〉 = 〈c|H0
∣∣c′〉 = Ecδ(Ec − Ec′) (2.21)

〈c|H |a〉 = 〈c|QHQ |a〉 = 〈c|V |a〉 ≡ Vca (2.22)

〈a|H |g〉 = 〈a|QHP |g〉 = 〈a|D |g〉 ≡ Dag (2.23)

〈c|H |g〉 = 〈c|QHP |g〉 = 〈c|D |g〉 ≡ Dcg (2.24)

We are now ready to consider the time evolution of the system. We assume that at
t = 0 the atom is in its ground state |g〉. At every time t > 0 the state of the system is
expressed as:

|Ψ(t)〉 = Ug(t) |g〉+

∫
dẼ′UẼ′(t)

∣∣ΨẼ′
〉

(2.25)

where according to the procedure leading to (2.9)
∣∣ΨẼ′

〉
in our formulation is ex-

pressed as ∣∣ΨẼ′
〉

=
sin ∆(Ẽ)

πVẼ

∣∣ΦẼ′
〉
− cos ∆(Ẽ) |c〉 (2.26)
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with ∣∣ΦẼ′
〉

= |a〉+ P

∫
dEc

Vca(Ec)

Ẽ − Ec
|c〉 (2.27)

Ug(t) and UẼ′(t) are the corresponding time evolution operators of the states |g〉 and∣∣ΨẼ′
〉
. The dynamical evolution of the wavefunction is determined by Schrödinger’s

equation, namely

ih̄ ∂
∂t |Ψ(t)〉 = H |Ψ(t)〉 |Ψ(0)〉 = |g〉 (2.28)

which upon substitution of (2.25) yields:

∂

∂t
Ug(t) |g〉+

∫
dẼ′

∂

∂t
UẼ′(t)

∣∣ΨẼ′
〉

= − i
h̄
HUg(t) |g〉 −

i

h̄

∫
dẼ′HUẼ′(t)

∣∣ΨẼ′
〉

(2.29)

We can now take the inner product of (2.29) with 〈g| and
〈
ΨẼ′

∣∣ separately, and obtain
the following set of equations:

∂

∂t
Ug(t) = − i

h̄
EgUg(t)−

i

h̄

∫
dẼ′ 〈g|PHQ

∣∣ΨẼ′
〉
UẼ′(t) (2.30)

∂

∂t
UE(t) = − i

h̄
Ẽ′UẼ′(t)−

i

h̄

〈
ΨẼ′

∣∣QHP |g〉Ug(t) (2.31)

with the initial conditions Ug(0) = 1 and UẼ′(0) = 0. We will now introduce a new
pair of coefficients defined as

ug(t) ≡ Ug(t)eiωgt uω̃(t) ≡ Uω̃(t)eiω̃t (2.32)

where ωg ≡ Eg/h̄, ω̃ ≡ Ẽ/h̄ and Uω̃ ≡ h̄1/2UẼ . Substitution of (2.32) back to (2.30)
and (2.31) yields terms proportional to ei[ω±(ω̃−ωg)]t. For ω tuned around the vicin-
ity of the difference ω̃ − ωg, the exponent ei[ω+(ω̃−ωg)]t lead to terms that are anti-
resonant with the photon frequency, while the opposite is true for the exponent
ei[ω−(ω̃−ωg)]t. For such frequencies the neglect of the anti-resonant terms stand as
a very good approximation, also known as rotating wave approximation (RWA).
The adoption of the RWA leads to the following set of equations:

∂

∂t
ug(t) = −i

∫
dω̃M∗ω̃gε0e

i[ω−(ω̃−ωg)]tuω̃(t) (2.33)

∂

∂t
uω̃(t) = −iMω̃gε

∗
0e
−i[ω−(ω̃−ωg)]tug(t) (2.34)

whereMω̃g ≡
〈
ΨẼ

∣∣µ |g〉 h̄−1/2 = h̄−1/2(
µ̃Ẽg

V ∗
Ẽ

sin∆−µcgcos∆) and µ̃Ẽg ≡
〈
ΦẼ

∣∣µ |g〉. By

µwe denote the projection of the dipole operator of the atom to the polarization vec-
tor of the radiation and by ε0, the amplitude of the electric field E(t) = ε0e

iωt + ε∗0e
−iωt.

We have also used the fact the radiation interaction is written as D = ~µ ·~εE(t) where
~ε is the polarization vector of the external electric field. We note that the integration
over all ω̃ involved in (2.33) does not dispute the validity of the RWA due to the
peaked nature of Mω̃g seen as a function of ω̃.

The solution of the system of equations (2.33) and (2.34) leads to the expressions
for ug(t) and uω̃(t) and therefore, eventually, for Ug(t) and Uω̃(t). The time evolution
of operator of the intermediate state is connected to Uω̃(t) via

Ua(t) = h̄−1/2
∫
dω̃
Uω̃(t) sin ∆

πVẼ
(2.35)
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according to the the relations (2.26) and (2.27). Finding the expressions for Ug(t) and
Ua(t), one can form the quantity

P (t) = 1− |Ug(t)|2 − |Ua(t)|2 (2.36)

which is the probability of ionization at every time. We are usually concerned with
calculating the ionization probability at a time after the atom-field interaction time,
denoted by T . An equivalent expression for the ionization probability can be given
by an integration over the whole continuum:

P (t) =

∫
dEc|Uc(t)|2 (2.37)

We have to notice that in time T, some population would be in state |a〉. Since
the rate of autoionization is much bigger than the spontaneous decay rate, this pop-
ulation will decay, non-radiatevely, into the continuum via the interaction V. To ac-
count for this population, the proper expression of the ionization probability at a
time t > T should be

P (t > T ) = 1− |Ug(T )|2 − |Ua(T )|2e−Γ(t−T) (2.38)

In the long-time limit Γ(t− T )� 1, the ionization probability can be simplified to

P (t > T ) = 1− |Ug(T )|2 (2.39)

2.2.2 Resolvent Operator Formalism

In order to have a complete overview of the different theoretical treatments we can
use to formulate our problem, we will now present the formulation in terms of the
resolvent operator [4] which is equivalent to the Schrödinger’s equation formal-
ism. This time, we will treat the radiation field quantum mechanically, therefore
the Hamiltonian would be H = H0 + V +D, with H0 containing an atomic part HA

and a radiation partHR, i.e. H0 = HA+HR. The eigenstates of the radiation part are
the well-known photon-number states |n〉, while the eigenstates of the atomic part
were defined in the previous subsection. The eigenstates of the compound system
(atom + radiation) are tensor products of the above eigenstates. The initial state state
of the system is |g;n〉 which is connected to |α;n− 1〉 via the absorption/emission
of one photon. The initial state is also coupled to |c;n− 1〉 via the same mechanism.
Also a transition from |α;n− 1〉 to |c;n− 1〉 can take place due to the presence of the
configuration interaction V; therefore it is a non-radiative transition.

Since we treat the radiation field quantum mechanically, the Hamiltonian is time
dependent and the time evolution of the wavefunction is given by

|Ψ(t)〉 = e−iHt/h̄ |Ψ(0)〉 ≡ U(t) |Ψ(0)〉 (2.40)

We now define the resolvent operator G(z) according to:

G(z) ≡ 1

z −H
=

1

z −H0 − V −D
(2.41)
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that is related to the time evolution operator via

U(t) = − 1

2πi

+∞∫
−∞

dxe−ixtG+(x) (2.42)

with G+(x) = lim
η→0+

G(x+ iη). The wavefunction of the system at every time t > 0 is

given by

|Ψ(t)〉 = Ugg(t) |g;n〉+ Uag(t) |α;n− 1〉+

∫
dEcUcg |c;n− 1〉 (2.43)

If the relevant matrix elements of the resolvent operator are found, then we can find
the matrix elements of the time evolution operator via (2.42) and the problem is
solved. The Resolvent operator satisfies the equation

(z −H)G = 1⇔ (z −H)(P +Q)GP = P (2.44)

We multiply (2.44) two times from the left, one with P and one with Q and use the
properties of the projection operators to obtain the set:

(z − PHP )(PGP )− (PHQ)(QGP ) = P (2.45)

(z −QHQ)(QGP )− (QHP )(PGP ) = 0 (2.46)

Taking inner products of (2.45) and (2.46) with the atomic eigenstates one can easily
find

(z − E′g)Ggg −DgaGag −
∫
dE′cDgcGcg = 1 (2.47)

−DagGgg + (z − E′a)Gag −
∫
dE′cVacGcg = 0 (2.48)

−DcgGgg − VcaGag + (z − E′c)Gcg = 0 (2.49)

where we used the relations Ggg = 〈g|PGP |g〉, Gag = 〈a|QGP |g〉 and Gcg =
〈c|QGP |g〉. The energies E′i, i = g, a, c contain the atomic energies and an energy
h̄ω multiplied by the number of photons that occupy the relevant mode. Solving
(2.49) for Gcg, one gets

Gcg =
1

z − E′c
(DcgGgg + VcaGag) (2.50)

The substitution of (2.50) to (2.47) and (2.48) leads to a coupled system of Ggg and
Gag, whose solution is

Ggg = 1/Λ(z) (2.51)

Gαg =
Dag +

∫
dE′c

VacDcg
z−E′c

(z − E′a −
∫
dE′c

|Vac|2
z−E′c )Λ(z)

(2.52)

where

Λ(z) = z−E′g−
∫
dE′c

|Dcg|2

z − E′c
−

(Dga +
∫
dE′c

DgcVca
z−E′c )(Dag +

∫
dE′c

VacDcg
z−E′c )

z − E′a −
∫
dE′c

|Vac|2
z−E′c

(2.53)

Assuming that the matrix elements involved in the integrals over E′c are slowly
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varying functions of E′c in the vicinity of the resonance, we can replace z by E′g + iε,
with ε→ 0+. Using the formula 1

x−x0+iε = P 1
x−x0

− iπδ(x− x0), we get

1

z − E′c
= lim

ε→0+

1

E′g − E′c + iε
= P

∫
dE′c

E′g − E′c
− iπδ(E′g − E′c) (2.54)

The substitution of (2.54) back to the integrals leads to the following shifts and
widths:∫

dE′c
|Dcg|2

z − E′c
' P

∫
dE′c

|Dcg|2

E′g − E′c
− iπ

∣∣Dcg(E
′
g)
∣∣2 ≡ Sg − i1

2
γg (2.55)

∫
dE′c

|Vca|2

z − E′c
' P

∫
dE′c

|Vca|2

E′g − E′c
− iπ

∣∣Vca(E′g)∣∣2 ≡ Fa − i1
2

Γα (2.56)

The quantities Sg and Fa represent the shifts of the states |g〉 and |α〉, respectively
while γg is the ionization width of the ground state due to its direct coupling to the
continuum and Γα is the AIS width. From the solution of the system of equations
(2.51) and (2.52), we can find the expressions for Ugg(t) and Uag(t) and form the
ionization probability at times t > T as before:

P (t > T ) = 1− |Ugg(T )|2 − |Uag(T )|2e−Γa(t−T ) (2.57)

2.2.3 Density Matrix Formulation

In this subsection we will present the treatment of the problem in terms of the den-
sity matrix [14, 15]. The formulation in terms of the density matrix is the suitable
formulation in order to deal with cases where the external field undergoes stochas-
tic fluctuations, a case where the Schrödinger’s equation formalism is not directly
applicable. This particular case is studied with exclusive detail in following chap-
ters.

We slightly change the notation introduced in the previous subsection and de-
note the ground state with |1〉 and the AIS state with |2〉. Our total Hamiltonian is
still the same as defined above, i.e. H = H0 + V +D. The equation of motion of the
density operator is

ih̄ρ̇ =
[
H0 +D + V, ρ

]
(2.58)

from which we obtain the set of equations that determine the time evolution of its
matrix elements:

ρ̇11 = −ih̄−1

(
D12ρ21 +

∑
c

D1cρc1 − c.c.
)

(2.59)

ρ̇22 = −ih̄−1

(
D21ρ12 +

∑
c

V2cρc2 − c.c.
)

(2.60)

ρ̇21 = −iω21ρ21 − ih̄−1

(
D21ρ11 +

∑
c

V2cρc1 − ρ22D21 −
∑
c

ρ2cDc1

)
(2.61)

ρ̇c1 = −iωc1ρc1 − ih̄−1

(
Dc1ρ11 +

∑
c

Vc2ρ21 −
∑
c

ρc2D21

)
(2.62)
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ρ̇c2 = −iωc2ρc2 − ih̄−1

(
Dc1ρ12 +

∑
c

Vc2ρ22 −
∑
c

ρc1D12

)
(2.63)

where the summations
∑
c

are over all virtual states and ωij ≡ ωi − ωj .

|1> 

|2> 

Γ 

γ 

Δ 

ω 

Ionization Potential 

Continuum 

FIGURE 2.2: Density Matrix Formulation - Energy levels Diagram

The single dipole matrix elements can be expressed as a product of the dipole
moment and the electric field amplitude, namely Dij = µijE(t). The electric field
is defined as E = E(t)eiωt + c.c. We now introduce a new set of slowly varying
amplitudes σij , satisfying the relations ρii = σii (i = 1, 2), ρ21 = σ21e

−iωt, ρc1 =
σc1e

−iωt and ρc2 = σc2. Under the adoption of the Rotating Wave Approximation the
set of equations (2.59) to (2.63) for the new variables become:

σ̇11 = −ih̄−1

(
µ12E(t)σ21 +

∑
c

µ1cE(t)σc1 − c.c.
)

(2.64)

σ̇22 = −ih̄−1

(
µ21E∗(t)σ12 +

∑
c

V2cσc2 − c.c.
)

(2.65)

σ̇21 = i(ω − ω21)σ21 − ih̄−1

[
µ21E(t)(σ11 − σ22) +

∑
c

V2cσc1 −
∑
c

µc1E(t)σ2c

]
(2.66)

σ̇c1 = i(ω − ωc1)σc1 − ih̄−1 (µc1E∗(t)σ11 + Vc2σ21 − µ21E∗(t)σc2) (2.67)
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σ̇c2 = −iωc2σc2 − ih̄−1 (µc1E∗(t)σ12 + Vc2σ22 − µ12E(t)σc1) (2.68)

In the last two equations we can apply the adiabatic approximation and set the time
derivatives equal to zero. After solving the resulting system for σc1 and σc2 we find:

σc1 '
1

h̄(ω − ωc1) + iε
(µc1E(t)σ11 + Vc2σ21) (2.69)

σc2 '
−1

h̄ωc2 − iε
(µc1E∗(t)σ12 + Vc2σ22) (2.70)

where we introduced ε as a very small positive number. Substituting (2.69) back to
(2.64) one gets

σ̇11 = 2h̄−1Im

[∑
c

|µ1cE(t)|2

h̄(ω − ωc1)
σ11

]
+ 2h̄−1Im

[
µ12E(t) +

∑
c

µ1cE(t)Vc2
h̄(ω − ωc1)

σ21

]
(2.71)

We now define the following quantities:

Ω(t) ≡ µ12E(t)

h̄
+ P

∑
c

µ1cE(t)Vc2

h̄2(ω − ωc1)
(2.72)

q ≡ Ω(t)

πh̄−2(µ1cE(t)Vc2)ωc=ω1+ω

(2.73)

S1 −
i

2
γ(t) ≡ h̄−2

∑
c

|µ1cE(t)|2

ω − ωc1 + iε
(2.74)

that represent the Rabi frequency of the driving |1〉 ↔ |2〉, the asymmetry parameter
introduced in previous subsections, the Stark shift of the ground state and the rate of
the direct transition to the continuum, respectively. In view of the above, equation
(2.71) can be written in the form:

∂tσ11(t) = −γ(t)σ11(t) + 2Im

{
Ω(t)

(
1− i

q

)
σ21(t)

}
(2.75)

Following the same procedure, we can bring the equation that governs the time
evolution of σ22(t), in the form

∂tσ22(t) = −Γσ22(t)− 2Im

{
Ω(t)

(
1 +

i

q

)
σ21(t)

}
(2.76)

where we introduced the definition

S2 −
i

2
Γ ≡ h̄−2

∑
c

|Vc2|2

ω − ωc1 + iε
(2.77)

reflecting the Stark shift of state |2〉 and its non-radiative decay to continuum via the
configuration interaction, respectively. Finally, the time evolution of the off-diagonal
matrix element σ21 is determined by[

∂t − i∆ +
1

2
(γ(t) + Γ)

]
σ21(t) = −iΩ(t)

(
1− i

q

)
σ11(t) + iΩ(t)

(
1 +

i

q

)
σ22(t)

(2.78)
where ∆ ≡ ω − [(ω2 + S2)− (ω1 + S1)]. An inspection of the system of equations
(2.75), (2.76) and (2.78) reveals that the system is driven by a generalized complex
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Rabi frequency Ω̃(t) ≡ Ω(t)
(
1− i

q

)
that contains the asymmetry parameter q. Again,

the ionization yield at a time t > T is given by:

P (t) = 1− σ11(T )− σ22(T )e−Γ(t−T ) (2.79)

An interesting result arises in the case of weak driving, where the photoioniza-
tion profile is expressed in terms of transition rate. We will show that this rate is pro-
portional to the Fano factor (2.14). The weak driving implies the relations σ11(t) ≈ 1,
σ22(t) ≈ 0 and σ̇21(t) ≈ 0, therefore equation (2.78) becomes:

σ21 =
−i

−i∆ + (γ + Γ)/2
Ω

(
1− i

q

)
(2.80)

Substitution of equation (2.79) back to (2.75), leads to the following rate:

σ̇11 = −γ − 1

1 + ε2

{
Ω2

q2Γ/2
(q + ε)2 − (ε2 + 1)

Ω2

q2Γ/2

}
(2.81)

where we defined the dimensionless detuning ε ≡ ∆
(Γ/2) . It is important to note

that the quantities γ, Γ, Ω and q are always related via the expression 4Ω2 = q2γΓ.
After some algebraic manipulations of (2.80), it is straightforward to show that the
photoionization rate, which is the rate of depopulation of state |1〉 (Fermi’s Golden
Rule), is expressed as:

R = −σ̇11 ∝
(q + ε)2

ε2 + 1

Ω2

q2Γ/2
(2.82)

Therefore the photoionization lineshape in the weak field limit follows the typical
Fano profile.

2.3 Basic Results

In this section we will make a brief review of the basic results of the study of AIS
driven by electromagnetic fields.

As we discussed earlier, although Fano’s treatment provide a good understand-
ing of the behaviour of AIS under Electromagnetic radiation and the arise of the
asymmetric profile, it is only valid within the weak coupling limit. The first leap
from Fano’s weak field theory to a complete time dependent approach, that is valid
irrelevant of the strength of the coupling, was held by P. Lambropoulos and P. Zoller
in 1981 [4]. The theory was cast in terms of Schrodinger’s equation / Resolvent Op-
erator (see previous section) and included both the cases of a single (isolated) AI
resonance and the coupling between two AIS.

In figure 2.3 they show the effects of the time of interaction T to the AI lineshape
for a medium intensity field (Ω = Γ). As long as the interaction time is sufficiently
larger than the inverse AI lifetime, the typical asymmetric AI profile arises. However
for small interaction times (in the order of the AI lifetime) the atom is not exposed
to radiation sufficiently enough time for ionization to occur, therefore the profile is
almost flat.

In the strong field limit the situation changes dramatically. The effects of the
strong field coupling to an AI profile become evident in figure 2.4 where AI line-
shapes are shown as function of the Rabi frequency, for an interaction time T = 5Γ−1.
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FIGURE 2.3: Line shape of an AI resonance as a function of the dy-
namical detuning, for various times of interaction. [4]

FIGURE 2.4: Line shape of an AI resonance as a function of the dy-
namical detuning, for various intensities. [4]

For medium intensities the typical profile is still clear. As the intensity increases
the ionization tends to become unity, irrelevant of the value of the dynamical detun-
ing and as a consequence the maximum no longer exists. The probability of ioniza-
tion changes slower in the region around the minimum, but the minimum also tends
to approach unity. The position of the minimum is also altered due to the intensity
dependence of the transition amplitudes that interfere destructively to give rise to
this minimum, therefore this effect should not be regarded as a Stark shift effect.
For smaller interaction times ionization also occurs if the intensity is sufficient large.
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Also, under any intensity the exposure of the atom to the radiation field for suffi-
ciently long time will ensue ionization. In view of the above, it was concluded that
it is the interplay between pulse duration and intensity that determines the shape of
the profile, an effect that was referred as “time saturation”. As we will see in next
chapters this effect plays very important role in the determination of the profile of
AI states under stochastic Electromagnetic fields.

The results of the AC Stark splitting [4, 5, 11] due to strong driving between two
AIS are even more striking. A set of two AIS were chosen such that the first of them
is sufficiently narrower than the second and can be regarded approximately as a
bound state. The ground state is coupled to the first AIS via a weak transition, while
a second field of varying intensity couples the two AIS. The second field is chosen
such that its frequency is resonant with the respective transition (Notice that the
term resonant implies the relation ∆ = 0 and in the figure the ionization probability
is plotted as a function of the dynamical detuning in units of Γ). While the intensity
of the second field increases we clearly begin to see the AC Stark splitting occurring.
But contrary to the case of typical AC Stark splitting in double optical resonance
between two bound states, the two peaks are unequal both in height and width.
These new effect are due to the interference between the direct ionization and the
ionization via the second state. One striking result is that as the intensity increases,
one of the peaks tends to become narrower while the other tends to broaden. The
interference can even cause the complete disappearance of one of the two peaks.

FIGURE 2.5: AC Stark Splitting of two strongly coupled AIS exactly
on resonance ∆ = 0. Notice than in x-axis the detuning is dynamical

(intensity dependant). [4]

Altough AC Stark splitting between two Autoionizing states has also been ex-
plored theoretically through the years with various formulations, the experimental
investigation of that aspect has up to now been rather limited [9, 10].

The study of the effects of the phase of an electromagnetic field driving an AI
resonance has also shown that its lineshape can be modified significantly [14, 15].
More specifically the theory was cast using a formulation in terms of the density
matrix operator, using an electric field that couples the ground state to the AIS via
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a one- and a three-photon transition. The relative phase of these transitions, which
is controllable, leads to profound alternation of the ionization profile. One of the
interesting results of the above study in the weak field limit is that the ionization
rate can be written in the compact form:

P =
2

ε2 + 1

∣∣∣∣∣ Ω(3)

q(3)(Γ/2)1/2
(q(3) + ε) + eiϕ

Ω

q(Γ/2)1/2
(q + ε)

∣∣∣∣∣
2

(2.83)

where Ω(3) is the effective three-photon Rabi frequency and q(3) the asymmetry
parameter characterizing the three-photon transition. The relative phase between
the two transitions is denoted by ϕ and ε is the normalized detuning defined as
ε ≡ ∆

(Γ/2) . Equation (2.83) reveals that if specific combinations of the coupling
strengths and the relative phase are chosen, one can achieve complete cancellation of
the direct transition to the continuum (resulting a Lorentzian lineshape) or complete
cancellation of the transition to the discrete part, leaving only the direct transition
(resulting a flat lineshape with a window at ε = 0). Some of these results are illus-
trated in figure 2.6.

FIGURE 2.6: Effects of the relative phase between a one- and a three-
photon transition to the autoionization lineshape in the weak field
limit [15]. (a) Ω(3) = 1, q(3) = 1, Ω = 1, q = −1. (b) Ω(3) = 1, q(3) = 1,
Ω = 1, q = 1. (c) Ω(3) = 1, q(3) = 5, Ω = 1, q = 1. (d) Ω(3) = 1, q(3) = 5,

Ω = 5, q = 1.

The regime of strong intensities was also explored, where both the one- and
three- photon Rabi frequencies are larger the the AI lifetime. In this case the ion-
ization is not necessarily describable in terms of a rate and therefore a complete
time-dependent calculation is inevitable. In figure 2.7 we can see that for low inten-
sities, the profile is the typical Fano-like profile except for the extreme case of ϕ = π
where the resulting profile is symmetrical. As the intensity increases the profile is
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modified significantly until it becomes completely flat, with a small window at ε = 0
in the strong field limit.

FIGURE 2.7: Effects of the relative phase between a one- and a
three-photon transition to the autoionization lineshape in the weak
to strong field limit [14]. For all graphs the chosen parameters are
q(3) = 1, q = 1, Γ = 5 and = 2. Solid line: ϕ = 0, Dotted line: ϕ = π/3,
Dashed line: ϕ = 2π/3, Dot-dashed line: ϕ = π (a) Ω(3) = 0.01,

Ω = 0.01 (b) Ω(3) = 1, Ω = 1 (c) Ω(3) = 5, Ω = 5.

Studies have also been carried out relevant to problem of the influence of au-
toionization structures on the single and double ionization signals, particularly for
the Helium atom, where the relevant cross section of the ionization of the He(1s)+

ions is of the order of the ionization of the neutral atom [16]. In this case the radia-
tion can ionize the ions via the absorption of one additional photon, and this process
can possibly be influenced by the presence of neighbouring AIS, just like |2s2p〉 and
|2s3p〉. The results of this study revealed that the presence of such neighbouring
states does not have any influence on the double ionization yield, however it can
lead to an increase of the double to single ionization ratio especially for pulses of
long duration.





19

Chapter 3

Stochastic Electromagnetic Fields

Most of the experiments that explore aspects of the interaction of electromagnetic
fields with atoms, are interpreted with theories that do not account for the stochastic
properties of the radiation fields. This is due to the fact that many of the radiation
sources used in experiments have small bandwidths and can be indeed assumed
monochromatic and purely coherent in some degree. For example, traditional pho-
toabsorption experiments on AI resonances have been carried out mainly with syn-
chrotron radiation sources, where the field is weak and approximately monochro-
matic. However, there are sources whose stochastic properties play significant role
and can not be neglected. Theories that do not account for these properties can lead
to false interpretations of such experiments, therefore the general background of
how we treat for these properties seem to be of very importance.

3.1 General Description

In this section we will present the basic features of stochastically fluctuating electro-
magnetic fields and the tools that enable us to account for these features theoretically.
Our ultimate goal is to apply some of these tools in the context of AI states to de-
velop a theory that is general and accounts for all properties that, as we will discuss
in the next section, seem to play more significant role on the determination of AI
profiles than one could expect.

The problem is cast in terms of a atomic density matrix operator coupled to a
stochastically fluctuating field of amplitude E(t) [2]. The stochastic character of the
field leads to equations of motion which are also stochastic. Therefore these equa-
tions have to averaged over the field fluctuations. The averaging process for a N-
photon transition leads to atomic-field correlations of the type

〈
E∗N (t1)EN (t2)ρii(t2)

〉
,

that can not be generally evaluated without first solving the stochastic differential
equations for the density matrix. Note that the angular brackets denote the averag-
ing over the field fluctuations. As an approximation valid under certain conditions,
one could decorrelate the atomic-field dynamics [17] by taking

〈
E∗N (t1)EN (t2)

〉
〈ρii(t2)〉.

However, there are specific models of fluctuating fields where the decorrelation is
mathematically rigorous and does not stand only as an approximation. In the fol-
lowing, we will describe two well-known and mostly used models for stochastic
fields, namely the phase-diffusion and the chaotic field model.

In the phase-diffusion (PD) model the field has non-fluctuating amplitude but its
phase is a Wiener-Levy stochastic process [18]. In this case the nth-order correlation
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function of the field is equal to [19]:

〈ε∗(t1)ε(t2)...ε∗(t2n−1)ε(t2n)〉 =
2n−1∏
j→odd

〈ε∗(tj)ε(tj+1)〉 (3.1)

with tj > tj+1.
This represents a Markovian process, with an exponential first-order correlation

function given by [18]:

〈ε∗(t1)ε(t2)〉 =
〈
|ε(t)|2

〉
exp[−1

2
γL |t1 − t2|] (3.2)

where γL is the bandwidth of the field. The mean value of the field amplitude in the
PD model is zero, i.e. 〈E(t)〉 = 0.

It has been established [17] that, in the case of the phase-diffusion model, the
decorrelation of the atom-field dynamics is rigorous without any approximation.
Physically, this is easy to understand, because for a constant amplitude, the fluc-
tuations of the phase of the field cannot affect the evolution of the populations,
but only the coherence, which means the relative phase of the coefficients repre-
senting the superposition of the states coupled by the field. And it is the correla-
tion between the time evolution of populations that is factorized in the process of
decorrelation. Formally, the decorrelation is justified due to the statistical indepen-
dence of the increments of a Wiener-Levy process. If f( ϕ1 ... ϕn ; t1 ... tn ),
t1 > t2 > ... > tn = 0 is the joint probability density of the infinite set of ran-

dom variables ϕj = ϕ(tj) and f(ϕ1, t1|ϕ2, t2) =
f( ϕ1 ... ϕn ; t1 ... tn )

f( ϕ2 ... ϕn ; t2 ... tn )
=

1

[2πγ(t1−t2)]1/2
e
− (ϕ1−ϕ2)2

2γ(t1−t2) the conditional probability density of the Markov process

ϕ(t), then we can write:

〈ω∗R(t1)ωR(t2)n(t2)〉 =
∞∫
−∞

dϕ1 ...
∞∫
−∞

dϕn f( ϕ1 ... ϕn ; t1 ... tn )ω̄2
R

×e−i(ϕ1−ϕ2)n( ϕ2 ... ϕn )

= (ω̄2
R(t2)

∞∫
−∞

dϕ1f(ϕ1, t1|ϕ2, t2)e−i(ϕ1−ϕ2))

×(
∞∫
−∞

dϕ2 ...
∞∫
−∞

dϕn f( ϕ2 ... ϕn ; t2 ... tn )n( ϕ2 ... ϕn ))

= 〈ω∗R(t1)ωR(t2)〉 〈n(t2)〉 (3.3)

In the chaotic field model the field undergoes both amplitude and phase fluc-
tuations. Its amplitude is a complex Gaussian stochastic process with its nth order
correlation function obeying [19]:

〈ε∗(t1)ε(t2)...ε∗(t2n−1)ε(t2n)〉 =
∑
P

2n−1∏
j→odd

〈
ε∗(tj)ε(tP (j+1))

〉
(3.4)

where the sum is over all possible permutations P, with tj > tj+1. The field ampli-
tude is usually written in the form E(t) = Ex(t) + iEy(t), where Ex(t) and Ey(t) are
two independent Gaussian processes with mean values equal to zero. For the sake of
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simplicity we will assume the chaotic field to be Markovian , something that it is not
necessarily satisfied for a general chaotic field. In this case the first-order correlation
function of the field is given by equation (3.2).

Contrary to the case of the phase diffusion model, the decorrelation of atomic-
field dynamics is not mathematically rigorous for a chaotic field, but stands only as
an approximation, valid in the weak field regime. The relative errors of this approx-
imation have been evaluated in a very interesting recent theoretical work [20] that
also includes systematical methods of describing fluctuating SASE-FEL pulses and
their coupling to a singe Auger resonance .

3.2 Time evolution of a two-level system subject to an exter-
nal stochastic field

In this section we solve the problem of the time evolution of a two-level system
driven by a stochastic electric field [2]. We begin by considering a two-level atom
with a ground state |1〉 and an excited state |2〉 subject to an electric field of the form
E(t) = E(t)eiωt + E∗(t)e−iωt. The complex field amplitude is generally assumed to
undergo fluctuations and can be written in the form E(t) ≡ |E(t)| eiϕ(t) , with |E(t)|
and ϕ(t) the real amplitude and the phase of the field, respectively. The electric
dipole between the two states is µ12 and the transition frequency ω21. The equations
of motion of the density matrix in the RWA are

(
d

dt
+ i∆ +

1

2
Γ21)σ12(t) =

1

2
iωR(t)n(t) (3.5)

(
d

dt
+ Γ2)n(t) = −Γ2 − 2Im[ω∗R(t)σ12(t)] (3.6)

where we introduced the slowly varying amplitudes ρii(t) = σii(t), i = 1, 2 and
ρ12(t) = σ12(t)eiωt. By n(t) = σ22(t) − σ11(t), we denote the population difference
and by ∆ the detuning from the resonance, i.e. ∆ = ω − ω21. Γ2 is the spontaneous
decay rate of the excited state, while Γ21 the off-diagonal relaxation that may in-
clude decays other than Γ2 as for example in the case of elastic collisions. The Rabi
frequency ωR(t) = 2h̄−1µ12E(t) is stochastic and its mean value will be denoted by
ω̄R(t) = 2h̄−1µ12E0. Since the system is closed, the populations satisfy the normal-
ization condition σ11(t) + σ22(t) = 1.

We integrate both equations formally and eliminate σ12(t) to obtain:

n(t) = −1− Re

t∫
0

eΓ2(t1−t)dt1 ×
t1∫

0

e(i∆+ 1
2

Γ21)(t2−t1)ω∗R(t1)ωR(t2)n(t2)dt2 (3.7)

where the initial conditions σ11(0) = 1, σ22(0) = 1 and σ12(0) = 0 were used.

3.2.1 Phase-Diffusion Field

We will now assume that the model of the field is the phase-diffusion described
above, therefore the stochastic average of eqn. (3.6) over the fluctuating phase, in
view of eqn. (3.2) will yield:

〈n(t)〉 = −1− Re

t∫
0

eΓ2(t1−t)dt1 ×
t1∫

0

e(i∆+ 1
2

Γ21+γ)(t2−t1)ω̄2
R(t2) 〈n(t2)〉 dt2 (3.8)
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where γ the field bandwidth. We now take the Laplace transform of both sides of
eqn.(3.8) and find:

〈N(p)〉 = −1

p
− Re

 ω̄2
R

(p+ Γ2)
[
p+ i∆ + 1

2(Γ21 + γ)
] 〈N(p)〉

 (3.9)

where with 〈N(p)〉 we denoted the Laplace transform of 〈n(t)〉. The steady state
value of the population difference can be evaluated using the final value theorem
for the Laplace transform, namely lim

p→0
p 〈N(p)〉 = 〈n(t =∞)〉. Using this theorem

one obtains:
〈n〉PD = −1/(1 + S) (3.10)

where S is the saturation parameter given by

S =
(ω̄2
R/Γ2)1

2(Γ21 + γ)

∆2 + 1
4(Γ21 + γ)2 (3.11)

Therefore we can see that the only change that the fluctuating phase is introducing,
is the addition of the field bandwidth to the atomic linewidth Γ21. The expression
for the averaged population of the second state is

〈σ22〉PD =
1
2S

1 + S
=

1
4(Γ21 + γ)2

∆2

1+S0
+ 1

4(Γ21 + γ)2

1
2S0

1 + S0
(3.12)

where S0 is the value of S when the field is exactly on resonance with the |1〉 ↔ |2〉
transition. The profile of eqn. (3.12) is Lorentzian with FWHM equal to

√
1 + S0(Γ21+

γ).

3.2.2 Chaotic Field

If the field is chaotic, then the stochastic average of eqn. (3.7) is generally a chal-
lenging task. Therefore one has to obtain a perturbation series expansion for the cor-
rection to the decorrelation approximation [2]. Only in the case of zero bandwidth
the exact correction can be found. Note that γ = 0 implies an infinite correlation
time and the field is random with statistics independent of time. In this case the
phase of the field has a uniform distribution from 0 to 2π and its real amplitude has
a Rayleigh distribution. Hence, the stochastic average is given by:

〈n(t)〉 =

2π∫
0

∞∫
0

2 |ωR| e
−
(
|ωR|
ω̄R

)2

2πω̄2
R

n (|ωR| , ϕ, t) d |ωR| dϕ (3.13)

Taking the derivative of both sides of eqn. (3.13) with respect to ω̄2
R = 〈ω∗RωR〉 one

finds:

〈ω∗RωRn(t)〉 = 〈ω∗RωR〉 〈n(t)〉+ 〈ω∗RωR〉
2 d 〈n(t)〉
d 〈ω∗RωR〉

(3.14)

If we move the first term of the right-hand side of equation (3.14) to left-side, we
can see that the second term is equal to 〈ω∗RωRδn(t)〉 which represents the correla-
tion between the intensity of the chaotic field and the fluctuations of the population
difference around its mean value, i.e. δn(t) = n(t) − 〈n(t)〉. Using eqn. (3.14) the
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stochastic average of eqn. (3.7) leads to the relation

S2d 〈n〉
dS

+ (1 + S) 〈n〉+ 1 = 0 (3.15)

where S is given by eqn. (3.11) with γ = 0. Equation (3.15) is differential and its
solution can be written in the various forms:

〈n〉CH = −e
1/S

S

∞∫
1

e−t/S

t
dt ≡ −e

1/S

S
E1(1/S) =

∞∫
0

( −1

1 + S′

)
e−S

′/S

S
dS′ (3.16)

Equation (3.16) indicates that the mean value of the population difference of a chaotic
field with zero bandwidth can be calculated by first finding the solution for a coher-
ent field, i.e. phase-diffusion field with zero bandwidth, and then average the result
over the exponential intensity distribution of the chaotic field.

For S � 1 the asymptotic expansion of E1(1/S) results 〈n〉CH = −
∞∑
k=0

k!(−S)k

while in the case of the phase-diffusion field 〈n〉PD = −
∞∑
k=0

(−S)k. The two results

agree only to first order perturbation theory. For S � 1 the series expansion of
E1(1/S) leads to the result 〈n〉CH ' −(lnS)/S while 〈n〉PD ' −1/S. This indicates
that the chaotic field is less effective in saturating a one-photon transition than a
coherent field.

We now consider the more complex case of arbitrary bandwidth, where a non-
perturbative relation between 〈ω∗R(t1)ωR(t2)n(t2)〉 and 〈n(t2)〉 cannot be found by
simply knowing the statistics of the Rabi frequency. For Markovian chaotic fields
one can show that 〈ω∗R(t1)ωR(t2)n(t2)〉 = exp

[
−1

2γ(t1 − t2)
]
〈ω∗R(t2)ωR(t2)n(t2)〉 but

no further progress can be made. However, using a systematic method presented
here, we can develop a perturbation series of the correlation 〈ω∗R(t1)ωR(t2)n(t2)〉 that
can be summed to all orders [2]. We begin by writing n(t) = 〈n(t)〉+δn(t), which also
implies 〈δn(t)〉 = 0. Substituting this relation back to (3.7) and taking the stochastic
average one finds:

〈n(t)〉 = −1− Re

t∫
0

eΓ2(t1−t)dt1

t1∫
0

e[(i∆+ 1
2

Γ21)(t2−t1)]

× [〈ω∗R(t1)ωR(t2)〉 〈n(t2)〉+ 〈ω∗R(t1)ωR(t2)δn(t2)〉] dt2 (3.17)

Subtracting eqn. (3.17) from eqn. (3.7), one gets:

δn(t2) = −Re

t2∫
0

eΓ2(t3−t2)dt3

t3∫
0

e[(i∆+ 1
2

Γ21)(t4−t3)]

×{[ω∗R(t3)ωR(t4)− 〈ω∗R(t3)ωR(t4)〉] 〈n(t4)〉

+ [ω∗R(t3)ωR(t4)δn(t4)− 〈ω∗R(t3)ωR(t4)δn(t4)〉] dt4 (3.18)

Iterating eqn. (3.18) and eliminating δn(t2) in eqn. (3.17) we find the following series
integral equation:

〈n(t)〉 = −1− Re

t∫
0

eΓ2(t1−t)dt1

t1∫
0

e[(i∆+ 1
2

Γ21)(t2−t1)]dt2
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×[〈ω∗R(t1)ωR(t2)〉 〈n(t2)〉 − Re

t2∫
0

eΓ2(t3−t2)dt3

t3∫
0

e[(i∆+ 1
2

Γ21)(t4−t3)]dt4

×(〈ω∗R(t1)ωR(t4)〉 〈ω∗R(t3)ωR(t2)〉 〈n(t4)〉 − Re

t4∫
0

eΓ2(t5−t4)dt5

t5∫
0

e[(i∆+ 1
2

Γ21)(t6−t5)]dt6

×[〈ω∗R(t1)ωR(t6)〉 〈ω∗R(t3)ωR(t4)〉 〈ω∗R(t5)ωR(t2)〉

+ 〈ω∗R(t1)ωR(t4)〉 〈ω∗R(t3)ωR(t6)〉 〈ω∗R(t5)ωR(t2)〉

+ 〈ω∗R(t1)ωR(t6)〉 〈ω∗R(t3)ωR(t2)〉 〈ω∗R(t5)ωR(t4)〉 〈n(t6)〉 − ...])] (3.19)

Since we assumed that the field is Markovian, its first order correlation function is
exponential and the above equation is generally solvable using the Laplace trans-
form. However due to the complexity of equation (3.19) one should develop a sys-
tematic way of calculating its Laplace transform. One useful way it to express our
equation in terms of diagrams [21, 22]:

FIGURE 3.1: Diagram Representation of equation (3.19) [2]

where the straight line between two successive vertices at tj and tj+1 is associ-
ated with the factor exp [Γ2(tj+1 − tj)] while the wavy line with the factor
1
2 exp

[(
i∆ + 1

2Γ21

)
(tj+1 − tj)

]
+ c.c. A loop connecting two vertices at tj and t′j ,

with tj > t′j and j < j′ is associated with the factor ω̄2
R exp

[
−1

2γ(tj − t′j)
]
. We will

call tj and t′j the initial and the final vortex of the loop, respectively. It is impor-
tant to notice that although eqn. (3.19) may contain intersecting loops, the expo-
nential form of the first-order correlation function allows us to replace these loops
by non-intersecting ones. In example, the part of the diagram that represents the
term 〈ω∗R(t1)ωR(t4)〉 〈ω∗R(t3)ωR(t6)〉 〈ω∗R(t5)ωR(t2)〉 can be replaced equivalently by
〈ω∗R(t1)ωR(t6)〉 〈ω∗R(t3)ωR(t4)〉 〈ω∗R(t5)ωR(t2)〉. Taking the Laplace transform of the
diagram of figure 3.1 and applying the frequency-shift theorem we find:

〈N(p)〉 = −(1/p)/
[
1 +

∑
1

(p)
]

(3.20)

where

∑
1

(p) = Re
ω̄2
R

(p+ Γ2)
[
p+ i∆ + 1

2(Γ21 + γ)
]×
1− Re

ω̄2
R

(p+ Γ + γ)
[
p+ i∆ + 1

2(Γ21 + γ)
] + ...


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≡ Re
ω̄2
R

(p+ Γ2)
[
p+ i∆ + 1

2(Γ21 + γ)
] 1

1 +
∑

2 (p)
(3.21)

Equation (3.21) also defines
∑

2 (p). The recursion relation between the functions∑
i (p) is ∑

m
(p) =

Sm(p)

1 +
∑
m+1 (p)

(3.22)

with

Sm(p) = Re
(m+ 1)ω̄2

R

2
[
p+ Γ2 + 1

2(m− 1)γ
] [
p+ i∆ + 1

2(Γ21 +mγ)
] (3.23)

for m odd, or

Sm(p) = Re
mω̄2

R

2
(
p+ Γ2 + 1

2mγ
){

p+ i∆ + 1
2 [Γ21 + (m− 1) γ]

} (3.24)

for m even. The coefficients Sm are called saturation coefficients. The steady state
value of the population difference is given by

〈n〉CH = − 1

1 +
∑

1

=
−1

1 + S1

1+
S2

1+...

(3.25)

where
∑
m and Sm are given by equations (3.22), (3.23) and (3.24) by applying p = 0.

The first saturation coefficient S1 is identical to the saturation parameter defined in
eqn. (3.11) for the case of the phase-diffusion field. Therefore the relation

∑
1 < S1

implies the known result, that a chaotic field is always less effective in saturating a
one-photon transition than a phase-diffusion field. If we set γ = 0 in eqn. (3.25) we
get the continued fraction result − e1/S

S E1(1/S) of eqn. (3.16). For non-zero band-
width eqn. (3.25) converges and can be suitably truncated and summed to any de-
sired accuracy.
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Chapter 4

Autoionizing States driven by
Stochastic fields

In this section we will provide a theoretical description of the problem of an AIS
subject to an external fluctuating electromagnetic field as well as the basic results of
this study. The theory will be cast in terms of the density matrix operator, since this
formalism is suitable for taking into account the stochastic properties of the radiation
field.

4.1 Theory

We begin by considering a two-level atom whose ground state |1〉 is coupled to an
isolated autoionizing state (AIS) |2〉 via a single-photon transition, in the presence of
an external electric field E(t) = 1

2 [E(t)eiωt+ c.c.]. Its frequency ω is tuned around the
resonant frequency ω21 ≡ ω2 − ω1 and E(t) = |E(t)| exp[iϕ(t)] is in general assumed
to undergo stochastic fluctuations. The coupling to the resonance is characterized
by the complex Rabi frequency Ω̃(t) = Ω(t)(1 − i

q ) = 1
2E(t)d21(1 − i

q ), where d21 is
the electric dipole matrix element between the ground state and the discreet part of
the resonance and q the asymmetry parameter [13]. The ground state is also coupled
directly to the continuum via a dipole matrix element accounting for ionization into
the smooth continuum, leading to an ionization width denoted by γ(t) . The au-
toionization width Γ represents the rate of decay of the AI state due to the Coulomb
interaction between the two excited electrons. Spectroscopically it appears as the
width of the excitation profile of the resonance and it is equal to the inverse of the
lifetime of the AIS. The q parameter accounts for the interference between the two
paths to the continuum; the direct and the one via the discreet part.

Depending on the aspects of the problem to be addressed, the theory can be cast
either in terms of the time-dependent Schröndinger equation or the density matrix.
Since one of our objectives is to account for the effect of field fluctuations, we need
the density matrix ρ(t), within the rotating wave approximation (RWA). The dynam-
ical evolution of its slowly varying part σ(t) is expressed by the following equations
(see Chapter 2.2.3):

∂tσ11(t) = −γ(t)σ11(t) + 2Im

{
Ω(t)

(
1− i

q

)
σ21(t)

}
(4.1)

∂tσ22(t) = −Γσ22(t)− 2Im

{
Ω(t)

(
1 +

i

q

)
σ21(t)

}
(4.2)[

∂t − i∆ +
1

2
(γ(t) + Γ)

]
σ21(t) = −iΩ(t)

(
1− i

q

)
σ11(t)+iΩ(t)

(
1 +

i

q

)
σ22(t) (4.3)
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where we have introduced the slowly varying amplitudes σij(t), obeying ρii(t) =
σii(t) , i = 1, 2 and ρ21(t) = σ21(t)exp[iωt]. The detuning ∆ of the photon fre-
quency from resonance is defined by ∆ ≡ ω−ω21. Note that the left side of equation
(4.3) may in general contain additional coherence (off-diagonal) relaxation constants
which are of no relevance to our problem, in the case of monochromatic field. How-
ever, a coherence relaxation constant appears below, as we introduce field fluctua-
tions.

The matrix elements of the density matrix in the above equations are generally
fluctuating variables owing to the stochastic character of the field which imparts
fluctuations to the Rabi frequency and the ionization width. We are therefore dealing
with stochastic differential equations. The observed quantities which refer to the
atom are given by the average over the stochastic fluctuations of the field. This
requires a realistic model of the stochastic properties of the field, or a brute force
numerical integration over trajectories imitating the the fluctuations of the field. For
the time being, we will work within the first approach.

To this end, we solve equation (4.3) for σ21(t) formally, and substitute into equa-
tions (4.1) and (4.2). Then taking the stochastic averages of the resulting equations
and obtain:

∂t 〈σ11(t)〉 = −〈γ(t)σ11(t)〉+2Im

{(
1− i

q

)∫ t

0
−i
(

1− i

q

) 〈
Ω(t)Ω(t′)σ11(t′)

〉
e−κ(t−t′)dt′

+

(
1− i

q

)∫ t

0
i

(
1 +

i

q

) 〈
Ω(t)Ω(t′)σ22(t′)

〉
e−κ(t−t′)dt′

}
(4.4)

∂t 〈σ22(t)〉 = −Γ 〈σ22(t)〉−2Im

{(
1 +

i

q

)∫ t

0
−i
(

1− i

q

) 〈
Ω(t)Ω(t′)σ11(t′)

〉
e−κ(t−t′)dt′

+

(
1 +

i

q

)∫ t

0
i

(
1 +

i

q

) 〈
Ω(t)Ω(t′)σ22(t′)

〉
e−κ(t−t′)dt′

}
(4.5)

where we defined κ ≡ −i∆ + 1
2(γ + Γ).

Equations (4.4) and (4.5) involve atom-field correlation functions of the form
〈Ω(t)Ω(t′)σii(t

′)〉, i = 1, 2. Generally such correlation functions cannot be evaluated
without knowing the specific form of the fluctuations of the field. As an approxima-
tion valid under certain conditions, one could decorrelate the atomic-field dynamics
by taking 〈Ω(t)Ω(t′)σii(t

′)〉 = 〈Ω(t)Ω(t′)〉 〈σii(t′)〉. However, as discussed in detail,
there are specific models of fluctuating fields where the decorrelation is mathemati-
cally rigorous and does not stand only as an approximation.

In view of the discussion in section 3, we proceed with the decorrelation of the
atomic-field dynamics, with the resulting equations being exact for the PD model
and valid in the weak-moderate field limit for the chaotic model. Note that the
decorrelation of the product 〈γ(t)σ11(t)〉 is rigorous for the PD model, since γ(t) is
proportional to the intensity which does not undergo fluctuations. In the chaotic
field model this decorrelation is valid within the DA since the intensity is replaced
by its averaged value. After the decorrelation, equations (4.4) and (4.5) become:
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∂t 〈σ11(t)〉 = −〈γ(t)〉 〈σ11(t)〉+d2
12I(t)Im


(

1− i

q

) t∫
0

−i
(

1− i

q

) 〈
σ11(t′)

〉
e−κ̃(t−t′)dt′

+

(
1− i

q

) t∫
0

i

(
1 +

i

q

) 〈
σ22(t′)

〉
e−κ̃(t−t′)dt′

 (4.6)

∂t 〈σ22(t)〉 = −Γ 〈σ22(t)〉 − d2
12I(t)Im


(

1 +
i

q

) t∫
0

−i
(

1− i

q

) 〈
σ11(t′)

〉
e−κ̃(t−t′)dt′

+

(
1 +

i

q

) t∫
0

i

(
1 +

i

q

) 〈
σ22(t′)

〉
e−κ̃(t−t′)dt′

 (4.7)

where we have substituted the complete expression of the Rabi frequency Ω(t) =
1
2E(t)d21 and defined κ̃ ≡ κ+ 1

2γL = −i∆ + 1
2(γ + Γ + γL). In the RWA, the intensity

appearing in equations (4.6) and (4.7) is expressed in terms of the field amplitude as

I(t) =
〈|E(t)|2〉

2 .
Let us consider, for the moment, the case of constant intensity I(t) = I0, which

leads to considerable simplification enabling analytical solutions. Since the integrals
appearing in (4.6) and (4.7) are with respect to the time t, which is a real variable,
the interchange of the Imaginary (or Real) part and integration are mathematically
rigorous. Using this fact and expanding the exponential functions in the integrands
in terms of Cosine and Sine functions, we obtain:

∂t 〈σ11(t)〉 = −γ 〈σ11(t)〉+d2
12I0

(
−1 +

1

q2

) t∫
0

〈
σ11(t′)

〉
e−

1
2

(γ+Γ+γL)(t−t′) cos[∆(t−t′)]dt′

+d2
12I0

(
−2

q

) t∫
0

〈
σ11(t′)

〉
e−

1
2

(γ+Γ+γL)(t−t′) sin[∆(t− t′)]dt′

+d2
12I0

(
1 +

1

q2

) t∫
0

〈
σ22(t′)

〉
e−

1
2

(γ+Γ+γL)(t−t′) cos[∆(t− t′)]dt′ (4.8)

∂t 〈σ22(t)〉 = −Γ 〈σ22(t)〉−d2
12I0

(
−1− 1

q2

) t∫
0

〈
σ11(t′)

〉
e−

1
2

(γ+Γ+γL)(t−t′) cos[∆(t−t′)]dt′

−d2
12I0

(
−2

q

) t∫
0

〈
σ22(t′)

〉
e−

1
2

(γ+Γ+γL)(t−t′) sin[∆(t− t′)]dt′

−d2
12I0

(
1− 1

q2

) t∫
0

〈
σ22(t′)

〉
e−

1
2

(γ+Γ+γL)(t−t′) cos[∆(t− t′)]dt′ (4.9)

Note that for constant intensity, the width of the direct ionization to the continuum
is also constant, i.e γ(t) = γ. The integrals appearing in equations (4.8) and (4.9) are
now convolutions of 〈σii(t′)〉 , i = 1, 2 and the Sin/Cosine functions.
Taking now the Laplace transforms of the above equations we obtain:
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sF1(s) = −γF1(s) + d2
12I0

[(
−1 +

1

q2

)
F1(s)G1(s)− 2

q
F1(s)G2(s)

+

(
1 +

1

q2

)
F2(s)G1(s)

]
(4.10)

sF2(s) = −ΓF2(s)− d2
12I0

[(
−1− 1

q2

)
F1(s)G1(s)− 2

q
F2(s)G2(s)

+

(
1− 1

q2

)
F2(s)G1(s)

]
(4.11)

where F1(s) and F2(s) are the Laplace transforms of 〈σ11(t)〉 and 〈σ22(t)〉, while
G1(s) and G2(s) are the Laplace transforms of the functions
g1(t) = e−

1
2

(γ+Γ+γL)t cos(∆t) and g2(t) = e−
1
2

(γ+Γ+γL)tsin(∆t), respectively. It is straight-
forward to show that

G1(s) =
s+ 1

2(γ + Γ + γL)[
s+ 1

2(γ + Γ + γL)
]2

+ ∆2
(4.12)

G2(s) =
∆[

s+ 1
2(γ + Γ + γL)

]2
+ ∆2

(4.13)

The system of equations (12) and (13) can easily be solved for F1(s) and F2(s), the
inverse Laplace transform of which give us the exact time dependence of 〈σ11(t)〉
and 〈σ22(t)〉. The expressions are too lengthy and complicated to be enlightening,
but the results are discussed in later sections.

Returning now to the more general case of time-dependent intensity I(t), the
above analytical treatment using the Laplace transform does not lead to helpful ex-
pressions and even the numerical solution of equations (4.6) and (4.7) tends to be a
very difficult task. However, useful insight can be gained through the approxima-
tion,

〈σii(t′)〉 ' 〈σii(t′ = t)〉 i = 1, 2 (4.14)

which is valid in the weak field limit. Its validity rests on the realization that, un-
der weak driving, the populations do not change significantly, over times of rapid
oscillations of the rest of the integrand. As a result they can be evaluated at times
t′ = t and factored out of the integral. In that case, the integration with respect to
t′ in equations (4.6) and (4.7) can be performed, leading to the somewhat simplified
system of differential (rate) equations,

∂t 〈σ11(t)〉 = −γ(t) 〈σ11(t)〉+ d2
12I(t)Im

{
(−i)

(
1− i

q

)2 1− e−κ̃t

κ̃
〈σ11(t)〉

+i

(
1− i

q

)(
1 +

i

q

)
1− e−κ̃t

κ̃
〈σ22(t)〉

}
(4.15)

∂t 〈σ22(t)〉 = −Γ 〈σ22(t)〉 − d2
12I(t)Im

{
(−i)

(
1− i

q

)(
1 +

i

q

)
1− e−κ̃t

κ̃
〈σ11(t)〉
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+i

(
1 +

i

q

)2 1− e−κ̃t

κ̃
〈σ22(t)〉

}
(4.16)

The system of equations (4.15) and (4.16) can now be solved numerically in the
limit of weak field, as long as the the system is well below saturation. Actually, for
special forms of the time dependent I(t), analytical solutions may also exist.

We note that the method described in section 3.1.2 is not directly applicable to
our problem. The basic reasons are two: The first is that our system is not closed,
therefore the relation σ11(t) + σ22(t) = 1 which simplifies the problem a lot, is not
satisfied. The second and primary reason is that, due to the complex character of the
Rabi frequency, it is impossible to reduce the problem to a differential equation de-
scribing the time evolution of the population difference. Therefore application of the
method described in 3.1.2 would lead to two equations similar to (3.18), describing
the time evolution of fluctuations of the population of each state (δσ11(t), δσ22(t))
which are also coupled. The elimination of these fluctuations (see eqn. (3.19)) leads
to extremely complicated expressions which are marginally impossible to be han-
dled even with the diagram method described in chapter 3.

4.2 Results and Discussion

In this section we present the main results of our theoretical research on AIS in
stochastically fluctuating fields. We apply our theory to the case of Helium 2s2p
1P 0 AIS which offers a perfect example of an isolated auto-ionizing resonance.

We begin by solving the system of equations (4.10) and (4.11) and inverting the
Laplace transforms to find the expressions for 〈σ11(t)〉 and 〈σ22(t)〉. The ionization
probability at the end of the square pulse (constant intensity) at a time T would nor-
mally be given by Pion(T ) = 1 − 〈σ11(T )〉 − 〈σ22(T )〉. However, at time T there will
be population in the excited state that will decay to the continuum with a rate Γ
due to the configuration interaction (the spontaneous decay rate is negligible com-
pared to Γ). Therefore, in order to account for this population we should express the
ionization probability at times t > T as

We can now plot the ionization probability calculated at a time t > T as a func-
tion of the driving frequency around the resonance, for various intensities, laser
bandwidths and interaction times T.

However, in addition to the ionization of the neutral, the radiation can ionize the
He(1s)+ ions produced from autoionization. This process involves the absorption
of one additional photon. If it is electrons or He ions that are counted, the resulting
α-particles do not influence the observation. But in transmission, those additional
photon absorptions do contribute to the counting. The calculation must therefore
include that additional channel of photon absorption, for which the cross section is
1.2 × 10−18cm2; about the same as the one for the single-photon ionization of the
neutral, at the smooth part of the continuum away from the resonance. For the sake
of completeness, we have included that additional channel in our calculations, by
writing

Ṗ♦ion(t) = Ṗion(t)− P♦ion(t)γDI (4.17)

where P♦ion(t) is the ionization probability including the double ionization of Helium
and γDI is double ionization rate which is the product of the double ionization cross
section and the flux.
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FIGURE 4.1: Probability of ionization as a function of the driving fre-
quency for various intensities with pulse duration T = 50fs and laser
bandwidth γL = 0.0018a.u. Blue Line: I0 = 2×1013W/cm2, Red Line:
I0 = 5 × 1013W/cm2, Green Line: I0 = 1014W/cm2 and Purple Line:
I0 = 5× 1014W/cm2. In the inset, we show the standard Fano profile

for q = −2.75.

For Helium 2s2p 1P 0 AIS, the parameters involved in the theory (expressed in
atomic units) are

q = −2.75 Γ = 1.37× 10−3 Ω = 0.025E0
2 γ = 0.1775I0

For every system, the above four parameters are related through the equation
4Ω2 = q2γΓ. The values of these parameters must be obtained through an elaborate
atomic structure calculation, which has been done in numerous papers [23–25]. Note
that in the Rotating Wave Approximation (RWA), the relation between the intensity
and our definition of the electric field is I = 1

2E(t)2. Clearly Ω2 and γ are propor-
tional to the radiation intensity, which cancels out in the equation that constrains the
four parameters.

We also set ωg = 0, therefore the energy difference ωag (h̄ = 1) is equal to the
energy of the 2s2p 1P 0 AIS, namely ωag = 65.40eV ' 2.211a.u. The autoionization
lifetime is approximately 18fs.

We begin by considering an example with conditions typical to FEL-FLASH ra-
diation. In addition to the atomic parameters given above, we need values for the
peak intensity, the pulse duration and the laser bandwidth. Adopting, for the pur-
poses of this quantitative illustration, values typical to experiments at FLASH, we
obtain the results depicted in Fig.4.1. None of the four profiles, even the one for the
lowest intensity, resembles the usual textbook profile P = (q + ε)2/(1 + ε2), which is
shown in the inset of Fig.4.1. An attempt to fit even the lowest intensity (blue) curve
with the standard parameters q and ε, would lead to a totally irrelevant value of q.

A brief parenthesis is in order at this point. Since for experimental reasons, in-
stead of the ion or electron profile, often it is the photon transmission spectrum in
terms of Beer’s law that is measured, in Fig.4.2 we show the transmission spectra
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FIGURE 4.2: Absorption Spectrum as a function of the driving fre-
quency for various intensities with pulse duration T = 50fs and laser
bandwidth γL = 0.0018a.u. Blue Line: I0 = 2×1013W/cm2, Red Line:
I0 = 5 × 1013W/cm2, Green Line: I0 = 1014W/cm2 and Purple Line:

I0 = 5× 1014W/cm2.

corresponding to the parameters of Fig.4.1 for typical values of interaction length
and number density of the medium. The observed signal is now seen to decrease
with increasing intensity, simply because in Beer’s law the transmission through the
medium is divided by the incoming radiation. Nevertheless, there is a one to one
correspondence between ion (electron) signal and transmission. The distortion of
the profile is obvious in both observations. Having settled the equivalence between
ion and transmission signals, we will hereafter confine our discussion to ion spectra.

From half a century or so of laser spectroscopy, we know that driving a res-
onant transition strongly, we should expect a distortion of the excitation profile.
For bound-bound transitions, with negligible Doppler and collisional broadening,
strong driving implies a Rabi frequency larger than the dominant relaxation rate
[2, 3]. Since for bound-bound transitions the profile tends to be Lorentzian, typi-
cally the relaxation is reflected in the width at half maximum of the profile. Even
in the context of XUV or shorter wavelength radiation, where Auger decay may be
the dominant relaxation, the profile is Lorentzian [20]. In autoionization with a rela-
tively small q parameter, however, the AI width Γ does not correspond to the width
of the AI at half maximum. Even the notion of half maximum is not obvious in that
case. Let us, nevertheless, agree here to define the maximum, in relation to the back-
ground for large ε, which, in the inset of Fig.4.1, leads to a value for P equal to one.
Sidestepping straightforward mathematical details here, let us note that for the case
of He(2s2p) with q = −2.75, the width Γ of the profile is to be found slightly above
the half maximum, in the sense defined above.

For Lorentzian profiles, strong driving usually leads to what is referred to as
power broadening, which means that the profile tends to become "fatter" [26]. In
the limit of Rabi frequency much larger then the relaxation constant, we have an AC
Stark splitting, which is observable if one of the resonant (usually the upper) states,
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is probed by a weak transition to another state. As we showed in previous sec-
tions, these issues have been formulated and discussed rather extensively even for
AI states. The effect of field fluctuations, including intensity fluctuations, for strong
coupling in bound-bound transitions, has been studied in exhaustive detail [2, 3],
but not in the case of AI resonances; simply because sources for the strong driving in
the XUV and beyond did not exist, until the recent advent of the short wavelength
FEL. A step in that direction has been reported in [20], in which the behavior of an
Auger resonance driven strongly by a field with intensity fluctuations, such as those
of the FEL, has been studied in great detail. To the best of our knowledge, strong
driving of an AI state, such as the He(2s2p), under FEL radiation has not been ob-
served, but this is probably a matter of short time. And the theory of an asymmetric
AI state driven strongly by a field with intensity fluctuations, such as that of current
FEL’s turns out to be quite challenging.

Returning now to the case of driving below the strong Rabi boarder-line, we have
already shown unexpected distortion of the profile, as documented by the three low-
est intensity curves in Fig.4.1. We can safely rule out any visible contribution from
power broadening. However, although the intensity may be below the strong field,
the amount of ionization by the end of the pulse can still be substantial. The point
to be stressed, in this connection, is that for a pulsed source of significant intensity,
pulse duration and peak intensity cannot be viewed independently. For example,
a pulse of 50 fs duration may sound short and a peak intensity of 1014W/cm2 may
be below the strong coupling value. Put the two together, and substantial ioniza-
tion occurs, which means that for that intensity, a pulse of 50 fs duration is a long
pulse. In a time dependent situation, such as the one embodied in the density matrix
equations, the amount of ionization is not simply proportional to time, as in Fermi’s
golden rule. As a result the ionization on resonance increases differently than it does
in the wings of the profile; hence the profile distortion. One might conjecture that
the distortion due to pulse duration would be minimized, or even eliminated, by
decreasing the pulse duration. However, the Fourier bandwidth is lurking in that
process and eventually distortion due to the increased Fourier bandwidth, inher-
ently included in the time-dependent calculation, begins setting in. Lest the reader
be concerned with the particular temporal shape of the pulse, which has been a
Gaussian in our calculations, long experience with similar calculations, including
those in the present context, has shown that such details have minimal quantitative
effect on the main features of the problem.

The reader may have noticed that one of the curves in Figs.4.1 and 4.2 has been
obtained with an intensity larger, by a factor of 2.5, than the strong coupling limit,
in which case the DA has began to lose its validity. From related calculations for
an Auger resonance [20], we know that the error is not sufficiently large to alter the
main features. A qualitative argument drawn for the case of bound transitions, can
be fairly convincing here. Since the Rabi frequency is proportional to the field, a
factor of 2.5 in intensity, entails a factor of about 1.58 increase in the Rabi frequency.
This would imply a factor of about 1.58 in the apparent width of the resonance. Yet
the profile for that intensity, bears no resemblance whatsoever to a Fano resonance.
Actually it looks like what is usually referred to as "window resonance", exhibiting
only a shallow minimum; a rather dramatic illustration of the interplay between
pulse duration and intensity, brought about by a mere factor of 2.5 of increase in
intensity. Obviously the reason the minimum is not sharp has to do with the band-
width of the source, as the wings of the radiation profile sample transition amplitude
around the minimum.

One might temped to say that the distortion of the profile in high intensities is
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FIGURE 4.3: Probability of ionization as a function of the driving fre-
quency for various intensities and T = 25fs, γL = 0.0018a.u. Blue
Line: I0 = 2 × 1014W/cm2, Red Line: I0 = 1015W/cm2 and Green

Line: I0 = 2× 1016W/cm2.

2.19 2.20 2.21 2.22 2.23
0.0

0.2

0.4

0.6

0.8

1.0

ΩHa.u.L

Io
n
iz

at
io

n
P

ro
b
ab

il
it

y

FIGURE 4.4: Probability of ionization as a function of the driving fre-
quency for various intensities and T = 25fs, γL = 0.0018a.u. un-
der a Gaussian pulse. Blue Line: I0 = 2 × 1014W/cm2, Red Line:
I0 = 1015W/cm2 and Green Line: I0 = 2 × 1016W/cm2. For a Gaus-

sian pulse we refer to I0 as the peak intensity.

due to the power broadening. Although the intensity plays a significant role in the
modifications of the AI profile, it is the combination of intensity and interaction time
that truly determines whether the signal will be asymmetric or flat. In figure 4.3,
we choose a smaller interaction time , i.e. T = 20fs and intensities from moderate
to high. At intensities such that the Rabi frequency is comparable to the AI width,
we can see that the profile is not flat if the interaction time is chosen so that it is
comparable to the AI lifetime. For such interaction times we can also see the ap-
pearance of some undulations, which are also evident in presence of a mid-to-strong
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non-fluctuating field [4]. The source of such undulations is the Rabi cycling between
the ground and the AI state, arising under proper combinations of interaction time
and intensities. For very high intensities I0 ≈ 1016W/cm2, even for small interaction
times, the profile is completely flat.

In order to have a quantitative comparison between the effect of the pulse shape
to the AI profile, we use equations (4.15) and (4.16) to calculate the ionization prob-
ability for a Gaussian pulse using the parameters denoted in figure 2.

The comparison between figures 2 and 3 reveal that shape of the pulse plays
practically no role on the determination of the AI profile, a result that is generally
known and used for both analytical and numerical simplifications. The disappear-
ance of the undulations in figure 3 is due to the fact that equations (4.15) and (4.16)
are rate equations. For moderate to strong fields (see Blue and Red Line) rate equa-
tions do not account for the Rabi cycling that takes place between the ground and the
AI state, resulting a smooth profile. Every figure has been tested with various types
of pulses like square, Gaussian, Lorentzian, trapezoidal etc. and the results were for
all practical purposes the same. However the use of a pulse of constant intensity
is a root for analytical solutions resulting efficiency in calculations. Therefore for
sake of simplicity, we will present our results here using constant intensities and use
Appendix A to present the same results using Gaussian pulses, in order to have a
quantitative comparison for various parameters. Comparison of figures 2 and 3 also
reveals that equations (4.15) and (4.16) provide results in very good agreement with
the exact results using a constant intensity, even for intensities such that the Rabi fre-
quency becomes comparable to the AI lifetime where the approximation (4.14) tends
to become questionable.
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FIGURE 4.5: Probability of ionization as a function of the driving
frequency for various interaction times T and I0 = 1013W/cm2,
γL = 0.0018a.u. Blue Line: T = 100fs, Red Line: T = 240fs and

Green Line: T = 480fs.

In figure 4.5 we explore the effects of the interaction time on the AI profile for
a weak field of constant intensity. As the interaction time increases, the ionization
probability generally increases, as the atom has more time available to get ionized.
The interaction times were chosen such that they are larger than the AI lifetime.
The general picture arising from figures 4.1 to 4.5 is that the ionization is mainly
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determined from whether the system is time saturated, i.e. if for a given intensity
the time that the field is present is sufficiently enough for the atom to get ionized.
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FIGURE 4.6: Probability of ionization as a function of the driving
frequency for various interaction times T and I0 = 1014W/cm2,
γL = 0.0018a.u. Blue Line: T = 5fs, Red Line: T = 10fs and Green

Line: T = 20fs.

However, if the pulse durations (interaction times) become sufficiently small (al-
ways relevant to the AIS lifetime and the coherence time), then we begin to observe
a broadening of the profile and the asymmetry tends to be less clear. In figure 4.6 the
interaction times are chosen such that they result a visible Fourier broadening. The
main reason of this distortion is not the Fourier broadening itself, but a combination
of power broadening and Fourier broadening due to short pulse durations, with the
last being the dominant broadening mechanism.

If we set the laser bandwidth equal to zero, then as discussed in chapter 3.2 the
phase-diffusion model represents a coherent field. In view of equation (3.16) we
can use an average over the intensity distribution of the chaotic field to obtain an
expression of the ionization probability for the chaotic field model with zero band-
width (implying coherence times sufficiently larger than the AI lifetime). In figure
4.7 we compare the efficiency on ionization between a coherent and a chaotic field,
using typical parameters from the weak to the strong field limit. As we can clearly
see, in all intensity regimes the chaotic field is less effective on ionization than a co-
herent field. This efficiency is enhanced when we tune the driving frequency in the
vicinity of the resonant frequency ω21.

We generally could expect no enhancement of the probability using a chaotic
field since the process is linear. It has been generally shown [27–29] that in the weak
field limit far from resonance there is an enhancement of about N! for a N-photon
process using a chaotic field instead of a coherent. Since our process involves the
absorption of 1-photon, in this regime we expect no enhancement of the process and
this is indeed reflected in the blue curves of figure 4.7 where in the off-resonance
limit they have the same behaviour. However, if the frequency is resonant with the
transition |1〉 ↔ |2〉 and/or if the intensity is large enough, this picture can change
drastically. In fact this issue was studied recently in exclusive detail for multi-photon
processes in my undergraduate thesis and the results showed that this enhancement
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FIGURE 4.7: Comparison between the probability of ionization in
presence of a coherent and a chaotic field of zero bandwidth as a func-
tion of the driving frequency for various intensities and T = 150fs
Blue Line: I0 = 1013W/cm2, Red Line: I0 = 1014W/cm2 and Green

Line: I0 = 1015W/cm2.

is modified significantly on resonance. We have also shown that there are also re-
gions where the enhancement can turn the other way around and the chaotic field
which was N! times more efficient for weak fields, can become less efficient than a
coherent field.
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FIGURE 4.8: Probability of ionization as a function of the driving
frequency for various laser bandwidths and I0 = 1013W/cm2, T =
240fs. Blue Line: γL = 0.00108a.u., Red Line: γL = 0.0036a.u. and

Green Line: γL = 0.0108a.u.

Finally, in figure 4.8 we study the effect of the field bandwidth on the AI pro-
file. We can clearly see that when the bandwidth of the field becomes sufficiently
larger than the autoionization width Γ = 1.37× 10−3a.u., the FWHM of the profile
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is mainly determined by γL. As the bandwidth increases the curve spreads and both
the minimum and the maximum tend to smooth out. For very large bandwidths
the asymmetry tends to become less visible since the profile becomes almost flat.
If the bandwidth is sufficiently smaller than the AI width then the FWHM is de-
termined mainly by Γ or by the interaction time if in general is smaller than the
AI lifetime. These effects were of no importance since all experiments were carried
out using synchrotron sources which have small bandwidths. However, the theory
shows that when the laser bandwidth is included in calculations, the resulting pro-
files can be distorted dramatically under certain combinations of the relevant param-
eters. Therefore, the interpretation of modern AI experiments using FEL sources has
to necessarily be accompanied with a theory that accounts properly for the stochastic
properties of such sources.

The picture emerging from the above results should now be clear. The excitation
of an AI resonance by a pulsed source, of intensity even below the strong coupling
limit, will exhibit a profile that depends on the combination of the source parame-
ters. Under such conditions, one cannot expect to observe the textbook Fano profile.
We have, moreover, demonstrated extreme sensitivity to the combination of source
parameters. After all, an uncertainty of a factor of 2 in the peak intensity delivered
by an FEL is not that exorbitant. The positive side of our findings is that the modi-
fied AI profile can serve as a probe of the source parameters. That is because in our
calculations, we have found that a particular profile is rather sensitive to the com-
bination of parameters compatible with its shape. For example, one may have to
decide which of the three main parameters, be it peak intensity, bandwidth, pulse
duration, is/are known with higher accuracy, so as to extract the value of one or two
of the others.
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Appendix A

Gaussian pulse shape results

In this appendix we will present our results using the same parameters as those used
in some of the figures of section 4.2 but using Gaussian pulse shapes. These results
are crucial since they will indicate whether the shape of the pulse leads to significant
changes to the AI profile.
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FIGURE A.1: Probability of ionization as a function of the driving
frequency for various intensities and T = 25fs, γL = 0.0018a.u. un-
der a Gaussian pulse. Blue Line: I0 = 2 × 1014W/cm2, Red Line:
I0 = 1015W/cm2 and Green Line: I0 = 2 × 1016W/cm2. For a Gaus-

sian pulse we refer to I0 as the peak intensity.
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FIGURE A.2: Probability of ionization as a function of the driving
frequency for various interaction times T and I0 = 1013W/cm2, γL =
0.0018a.u. under a Gaussian pulse. Blue Line: T = 100fs, Red Line:
T = 240fs and Green Line: T = 480fs. For a Gaussian pulse we refer

to I0 as the peak intensity.
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FIGURE A.3: Probability of ionization as a function of the driving
frequency for various interaction times T and I0 = 1014W/cm2, γL =
0.0018a.u. under a Gaussian pulse. Blue Line: T = 5fs, Red Line:
T = 10fs and Green Line: T = 20fs. For a Gaussian pulse we refer

to I0 as the peak intensity.
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FIGURE A.4: Probability of ionization as a function of the driving
frequency for various laser bandwidths and I0 = 1013W/cm2, T =
240fs under a Gaussian pulse. Blue Line: γL = 0.00108a.u., Red
Line: γL = 0.0036a.u. and Green Line: γL = 0.0108a.u. For a Gaussian

pulse we refer to I0 as the peak intensity.

Comparing the above the diagrams with the ones presented in chapter 4.2 we can
safely assume that the shape of the pulse generally plays no important role on the
determination of the AI profile. This result is generally known and is widely used for
analytical and numerical simplifications. However, the comparison between figure
4.6 and A.3 reveals the if the pulse durations are of the order of the AI lifetime, the
Gaussian pulse is less effective on ionization than a square pulse. This seems quite
logical since the square pulse forces the atom to be driven by a field whose intensity
is I0 over the whole duration of the pulse, whereas the Gaussian pulse has a peak
value of I0 and its wings at smaller intensities. The above results have also been
tested with trapezoidal and Lorentzian pulse shapes and the picture doesn’t differ a
lot, therefore their presentation here is not that important.
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