Computer Science Department
University of Crete

An EDA Tool for the Timing Analysis, Optimization and Timing Validation of
Asynchronous Circuits

Master’'s Thesis

Kasapaki Evangelia

April 2008
Heraklion, Greece

An EDA Tool for the Timing Analysis, Optimization and Timing Validation of
Asynchronous Circuits

by

Evangelia Kasapaki

Master’'s Thesis

Department of Computer Science
University of Crete

Abstract

Synchronous circuits have enjoyed, since the mid-80’s, a constantly intaaDA tool/flow
framework, which enabled the implementation of multi-million transistor chips, astdisis the pace
of the electronics industry. The cornerstones of EDA, which triggerasitse adoption are twofold,
i.e. Timing Analysis and Timing Analysis-Driven Optimization. Unfortunately,\aortional Static
Timing Analysis cannot be directly applied to asynchronous circuits, as ttez ke closed-loop
systems.

The primary reason why Asynchronous Design approaches ardteoted today is the lack of
any viable and complete EDA flow. This work presents a complete Asynobsofiming Analysis
algorithm implementation, suitable for EDA, which is capable of analyzing the timiragyp asyn-
chronous circuit. This work also demonstrates closed-loop Timing Anal)sen optimization for
asynchronous circuits.

The TA algorithm has its foundations in prior theoretical work on algorithmgléwiving accu-
rate bounds for the separation time between events of concurrent sysseweral insufficient and
incomplete aspects of that work were clarified, completed and improved esalete and efficient
implementation has been achieved.

Results on several asynchronous circuits demonstrate the viability of thenmepied algorithm,
and the capability to automatically optimize selectively the timing-critical subpartsagynchronous

circuit for timing and the other non-timing critical subparts for area.

Thesis Supervisor:Manolis Katevenis, Professor

Thesis Vice-Supervisor:Christos P. Sotiriou, Collaborating Researcher ICS-FORTH

Epyaketo EAA yia Xpovixry Avdhuon, Behtiotonoinomn xar Xpovixrnc
Endpwonc Aclyyeoveov Kuxhwudtomy

Evayyela Kaoordxn
Merantuytoxr Epyaoia

Turuo Emotiune Trohoyotov
[avemothuo Kerne

ITepiindn

Ta oOyypova xuxhouata, and to péoa tng dexaetiog Tou 80, anolopBdvouy yio Slapx®ds wet-
udlouoa pory epyaheiwv Hhextpovixod Lyediaotivol Autopatiopot (EDA), v onofa apyixd xa-
€0 TNoE HUVATY TNV UAOTOMOT OMOXANPOUEVLY XUXAGUATWY UE TOANE exatouulpia Tpaviictop,
eVO orjuepa Statneel Tov puipd avdntuing tne nhextpovixhc Prounyaviag. Ot 600 “axpoywviaiol
Aot tou EDA eivan 1 Xpovixy) Avdhuon xal 1 Behtiotonoinon tov xuxheudtov Bdorn authc.
Avotuyog, n ougfotie Ytatixr) Xpovixh, Avdluor, 1 xadhiepopévr dnhady, Suadixacio, dev unopel
VoL EQUPUOCTEL QUECH OE AT VY YEOVI XUXAGUATI, xAVWS Ta TEAEUTALO TEQIEYOUY VT AvAdpaoT
xat 1ot efvan xuxhixd, dnhad xhewstol Pedyou.

O xbploc Adyog Yo tov onolo dev ypnotponootvta npoceyyioeic Aclyypovng Xyediaong
elvon 1 EAAeLn ohoxhnpwuévey ot Breoiumy autogatotomnuévey powy. H napoloa epyacio na-
pouctdlet évav ohoxAnpwuévo alydpriuo yia Actyypovn Xpovixr Avdhuon, xatdAinho yia EDA,
ToU Unopel Vo EQapROGTEL Yot TNV AVEAUGT, TOU YPOoVIoUoU 0TooUdHTOTE aolyYYEOVOU XUXAGUA-
toc. Emmiéov, napouaidletar dradixacia Betiotonoinong, n onolo exteheltar o€ xAeto 16 Ppodyyo
xat xododnyeiton and TN yeovixy| avaiuc.

O ovyxexpévoc alyopriuog ypovixfic avdhuong €yet ta Yeuéhd Tou o€ TponYolUeVT Yew-
entxt| epyaota, 1 onola agopoloe avdntuln alyopiluwy UTOAOYIOUOU 0plwV KBS TEOS TN YEOVIXT
andxhior, GLUBAVTOY TAPEAATAWY UG TAUATWY. LNPavTinog aprludc and eAlelels xar ovendp-
XEIES TNS TPONYOVUEVNS pYaslag DlacapnVio TNXAY, 0 OPIGUOS Xl TA YARAXTNPEIO TIXA TOU OAYO-
elttuou ohoxnpddnxay ahhd xou Behtiainxay, xat emtedydnxe Tehxde uio anodotixr vhorolno.

Arnoteréopata and TNV aVIAUGT) SLAGOEWY ACVDYYPOVOY XUXAGUAT®Y ETLOEXVIOUY TNV ATOB0-
TIXOTNTA TOU LAOTOMUEVOU ahyopllou xon TNV XavOTNTA TOU Vo BEATIOVEL AUTOUOTO XAl ETLAEXTL-

x4, ToL PEV YPOVIXGWS xplotpa TUAUATA EVOC aoUYYPOVOU XUXADUATOC OC TEo¢ TNV xouc tépnor,

ot O€ LTONOLTAL TUAUITA WS TPOG TO EYSBO.

Enéntne Metantuytonic Epyoaoiag: Mavorne KatePaivne, Kadnyntic

Emnpiénwv Metantuytaxfic Epyaoiog: Xprotog Lwtnplov, Yuvepyalduevoe Egevvnirc III-ITE

Acknowledgments

Firstly, | would like to thank my parents for their support all these years vias not for their
help I would have never made it to here.

I would like to recognize the contribution of my supervisor, Dr. Christos ®atiand thank him
for his guidance and support, throughout this work. Additionally, i wdiklel to thank all the people
with whom | have worked during this thesis for their constructive remankissharing of ideas.

This work was conducted in collaboration with the ICS-FORTH and fungeitl b

Last but not least, | would like to thank my friends for their support, thiodidficult times.

Vi

1 Introduction

2 Timing Analysis of Asynchronous Circuits

2.1
2.2
2.3

2.4

Electronic Design Automation (EDA) and Hardware Design
Timing Analysis Methods

Specification Models for Asynchronous Timing Behavior

231 Petri-Nets
232 STGS . . .
2.3.3 EventRule (ER)System
Timing Separationof Events

3 Timing Separation of Events in Concurrent Systems

3.1

3.2

3.3

3.4 Openissues

SpecificationModel oL
3.1.1 ExecutionModeling
3.1.2 Problem Definition L
Acyclic TSE Algorithm
3.21 m-valuesandM-values
3.2.2 Acyclic TSE Algorithm
TSE Algorithm
3.3.1 Backwards Unfolding and Functions

3.3.2 Bounding the Maximum Separation Time
3.3.3 Repetition Parameters

3.3.4 Function Matrices,

Vii

Contents

4 Analysis, Clarifications and Improvements on the Timing Separationof Events (TSE)

Algorithm 23

4.1 SpecificationModel 24

4.2 Critical Cycles and Repetition Parameters 24
4.2.1 Ratio’ed Cycles and Maximum RatioCycles 25
4.2.2 Calculation of* 26
4.2.3 Calculationok™ 27
424 Examples 28

4.3 CUSetS. 29

4.4 CIOSUre o 30
441 ClosureinClosed Semirings o v v i i 30

4.5 RelationMatrices 31

4.6 Minimum Separation Analysis 32
4.6.1 m-valuesandV/-values 32
4.6.2 Cycles and Repetition Parameters 34
4.6.3 FUNCHiONS 35

4.7 Implementation and Complexity 36
4.7.1 Acyclic TSEVersion e 36
4.7.2 Complete TSEVersion i 37
4.7.3 Minimun Analysis 41
4.7.4 Floating Point Arithmetic 41

4.8 TSE Analysisvs. worst-case analysis- 41

5 Application of TSE tool 43

5.1 Optimization e 43
5.1.1 Circuit Specification o 45
5.1.2 Asynchronous Timing Analysis (ATA) and Optimization 48

5.2 Relative Timing Constraints (RTC) Validation. 49

5.3 Anautomated tool for optimization. 49
5.3.1 Technology Library 49
5.3.2 InputNetlist 50
5.3.3 Input Signal Transition Graph (STG) 51
5.3.4 Optimization Process 51

6 Results 55

6.1 Experimental Procedure. 55
6.2 Two-phase Overlapping Desynchronization Controller 57
6.2.1 Scaleoflringcontroller 58
6.2.2 Scaleof3ringcontrollers 59
6.2.3 Scale of 3ring controllers including wiredelays 60
6.2.4 Fork-join Pipeline Structure L 60
6.3 Relative-Timed Burst Mode (RTBM) Controller 61
6.4 C-MullerPipeline e 67
6.5 VMEBuscontroller. 76
7 Conclusions 71
References 72

List of Figures

2.1 TransitionfiringinaPetri-net. 6
2.2 xyzSTGModel 7
2.3 AnERSystem. e 8
3.1 Anexample ProcessGraph.. e 12
3.2 Unfolded graph of Figure 3.1 with upper delay bound D assignment ¢vetits. . . 13
3.3 Unfolded graph of Figure 3.1 with- and M -value annotation. 16
3.4 Portion of the backwards unfolded process graph for the prgcaph 17
3.5 BoundingTSE 18
4.1 Portion of the backwards unfolded graph for the Process Grapiguaife 3.1 labeled

with m-values fors gy=a(yy oo 25
4.2 Process grap* of maximum ratio cycles on two different strongly connected com-

ponets. The edges in dotted lines are the edges of the initial process(grapt are

not part of a maximumratiocycle. 27
4.3 Process grapG™* of maximum ratio cycles with two cycles having a common event. 27
4.4 Processgrapls 29
4.5 Unfolded process graph labeled with m-valuessfer=aqy 29
4.6 Unfolded process graph labeled with m-valuessfgy=b¢) 29
4.7 Time axis for maximum separationanalysis. 33
4.8 Time axis for minimum separationanalysis. 4 3
4.9 Evaluation ofn- and M -values in maximum and minimum separation analysis. .. 35
4.10 Unfolded process graph with worst-case timing analysis annotation 42

4.11 Unfolded process graph with maximum timing separation analysis betweeise;

Xi

51
5.2
5.3
5.4
5.5
5.6
5.7

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19

Optimization flow using ATA. 44
Optimization flow using ATA. 45
controllernetlist 6 4
State Graph Analysis of the controller 46
Signal Transition Graph of RTBM controller 47
Validation flow using ATA. e 05
Optimizationtool process e 25
Experimental Procedure Flow. 56
Desynchronization controller STG 58
Desynchronization controllernetlist 58
Two-phase desynchronization controller netlistin 1-scalering 59
Two-phase desynchronization controller netlistin 3-scalering 59

A fork-join desynchronization controllers’ structure 62
Time/area results of desynchronization controllér-gtalering. 63
Time/area results of desynchronization controlleéd-gtalering. 63
Time/area results of desynchronization controlled-gtale ring, with wire delay. . . 64
Time/area results of desynchronization controller in fork-join pipeline. 64
RTBM controller netlistin-scaleringtopology 65
Signal Transition Graph of RTBM controller 65
Time/area results of RTBM controllerirscalering. 66
Time/area results of RTBM controllerdascalering. 67
C-muller gate implementation 68
C-mullerpipeline e 68
Time/area results offascale c-Muller pipeline. 69
STG of aread operationinavme buscontroller 69
Time/area results of a VME Bus Controller. 70

Xii

6.1

6.2
6.3
6.4
6.5

List of Tables

Desynchronization controller in 1-scale, 3-scale ring and 3-scajeénafuding wire

delaysresults. e 61
Desynchronization controller in fork-join pipelineresults. 62
RTBM controller in 1-scale and 4-scaleringresults. 66
C-Muller pipelineresults 8 6
VME Bus controllerresults 70

Xiii

XV

Introduction

The defacto methodology for digital circuit design and implementation is SynohsoTiming, which
requires the existence of the clock signal. Clock signals enable the cirsyitshronization and the
clock cycle is the minimum time unit. The performance of any synchronousitcis;itherefore,
determined by it. Based on the notion of clock cycle, a well-defined and haghlithmated procedure
is implanted in contemporary Electronic Design Automation (EDA). This constigyeshronous
design as highly appealing methodology.

On the other hand, asynchronous design, while theoretically presenigtiout the years, still
has not been concretely defined and developed in an EDA flow.In lasymaus design, the notion
of the clock is absent and the synchronization is local based on hamdshhis indicates a dynamic
functionality and a more fine-grained control of the circuit, resulting in alitigbmanding design

procedure, but also some key advantages over the synchronoysjoitnese are in terms of

e performance: their dynamic behaviour takes advantage of the aveasg®foperation.

e variability tolerance: their timing can adapt through variations in manufactyriogess, tem-
perature or voltage

e reduced electromagnetic emissions.

2 CHAPTER 1. INTRODUCTION

The complex process required for asynchronous design imposed limitgiomvitie acceptance.
The main obstacle in the use of asynchronous design is the absence ab&BAised in the design
and implementation process. In contrast, there is a variety of such toolepesdor synchronous
design. Using the existing EDA tools developed for synchronous dasigmplement asynchronous
circuits is challenging. The latter were developed focusing on specifectspf synchronous design,
therefore either providing inadequate information or being non-applicaleyether. This demon-
strates the need for developing EDA tools specifically targeted to asyrmlsaircuits.

The aim of this master’s thesis has been the development and implementatiomng Analy-
sis algorithm in the field of EDA tools for asynchronous circuits. A main reguent of this algorithm
has been the ability to handle cyclic circuits, a characteristic of asynchsariccuits. An algorithm
for calculating exact bound on the timing separation of events that was iddnfifinis work analysed,
improved and extended unexplored areas, leading from theoretidgssn® the implementation of
a tool for the timing analysis of asynchronous circuits. This tool for the timmajyais was incor-
porated in a simple mapping tool, also implemented in this work, performing optimizaticmsgh
gate resizing. The technique was applied to some asynchronous costaoitethe results were com-
pared to the ones that came from existing tools for timing analysis, synthesigptindzation of
synchronous circuits.

This master’s thesis is organized as follows: In Chapter 2, a review on timadgsas is presented
and how it is applied for synchronous and asynchronous circuitsitidddlly, specification models
for the timing behavior of asynchronous circuits are examined, as wek@isrmance metrics for
their performance evaluation. In Chapter 3, previous work on an algofibh the timing separation
of events in concurrents systems is presented, with the issues that anedefiplete or unclear. In
Chapter 4, these issues are addressed, as they were studied in thjseadisig to a complete picture
of the algorithm. An implementation of an EDA Timing Analysis (TA) tool for asymeious circuits
is, also, presented, which is based on the particular algorithm, with its compésstitpation. In
Chapter 5, applications of this TA tool are examined, and flows are peodpos the optimization of
asynchronous circuits and validation of Relative Timing Constraints (RT@% implementation of
an optimization tool is also described. Optimization of several asynchranausts was performed,
using the implemented optimization tool in the proposed flow and the results, aasatblk experi-
mental procedure are presented in Chapter 6. Finally, the conclusing thom the described work

with some suggestions for future work are included in Chapter 7.

Timing Analysis of Asynchronous Circuits

This chapter covers the subjects of Timing Analysis and Performancedialfor Asynchronous
circuits. Methods for Timing Analysis are presented and alternative appes suitable for asyn-
chronous design are examined. Due to the particular characteristiogahagnous design, different
specification models and different performance metrics are requiretk sbwhich are presented in

this chapter.

2.1 EDA and Hardware Design

The development of hardware design in recent years owes its improvihg tse of EDA tools. The
success of EDA tools is due to the automated procedure that provides iarthvegne design process.
The designer is provided with the means to reach an implementation without beiogreed with
every specific aspect of the design implementation, whereas they candnarchitectural and de-
signing issues. A description of the circuit is required in a Hardware iijggm Language (HDL)
form and by specifying some parameters and using a technology libréngué can be automatically
synthesized by an EDA tool. In other words, the specification is made indepeof the implemen-
tation but the implementation is conformed by it.

Moreover, various implementations can be derived from the same syseaification, with dif-

3

4 CHAPTER 2. TIMING ANALYSIS OF ASYNCHRONOUS CIRCUITS

ferent characteristics,e. minimum area, performance and power. The space of all possible imple-
mentations is explored using an EDA tool, resulting to the most suitable for emehie. EDA

is the means to move along the Pareto curve through different implementatitres sime design.
Additionally, the specification is independent from the implementing technothgy,to the use of
technology libraries in synthesizing. Thus, changes in technology aily @aported in designs, as
they don't require re-designing of every system for the new techgplmgy by re-synthesizing the
system using the new library.

It is apparent that an EDA tool is not merely a translator of a circuit spetifin to the imple-
mentation. It is a tool that performs various complex procedures, durinigimgmtation. Apart from
mapping functionality to implementation units, it performs analysis on the systevaifious charac-
teristics, such as for timing, area or power, exploring trade-offs tdraaoptimized implementation,
for a given set of constraints. For the development of an EDA tool noumseslgorithms need to be
examined and implemented.

Contemporary EDA tools focus on synchronous hardware desigmugEDA tools have been
developed focusing on specific aspects of synchronous designisTiusthe case with asynchronous
hardware design. Asynchronous design is not used today, due tadhthét a complete and ma-
ture design flow does not exist. Hence, designing of asynchronaustsirequires manual work on
implementation and trade-off exploration.

The most important factor both in the design and in the implementation process,dsduit’s
timing. Apart from providing information for the attainable performance giecgic implementation,
it provides guidelines for timing-drive optimizations. Thus, a TA engine 8ynahronous circuits is

a cornerstone for any viable asynchronous EDA flow.

2.2 Timing Analysis Methods

In synchronous design timing analysis of circuits is performed by Static Timirady&is (STA). STA
considers all the paths of the circuit netlist and identifies a path of maximum. d&peecifically, the
circuit is partitioned into stages of combinational logic separated by regidearsh combinational
logic stage is considered and analyzed individually. The performancécrsethe maximum clock
cycle time,i.e. the longest path of any combinational stage, required to complete a compu&iIn
is typically performed by a Depth-First-Search (DFS) algorithm

Another method for performing timing analysis in synchronous design aimimgkitcorner es-
timations is Statistical Static Timing Analysis (SSTA). This method follows the sameipliescas
STA but incorporates probability in the delay of gates. STA considersconger of analysis usu-

ally worst-case, while SSTA considers delays with a probability, accotdisgatistical information.

2.3. SPECIFICATION MODELS FOR ASYNCHRONOUS TIMING BEHAVIOR 5

Reseach studies the probability relations when following a path, and thethgstical model.

In asynchronous design, no well-established methodology for timing asalyists. Commonly,
timing analysis is performed by applying point-to-point STA. In asynchusreircuits the processing
and forwarding of computational data is controlled locally through hardisgd1], i.e. event-driven
control. Therefore, the control along stages is determined by the timing of eachutatiopal stage
and the timing of its neighbors. Moreover, asynchronous timing depentieednteraction with the
environment and may exhibit transient behaviour during timing state charides implies a large
amount of timing dependencies throughout the circuit, and furthermorndepcies are cyclic and
closed-loops, as signals often depend back on themselves. The STAdued@ot account for cyclic
dependencies, as it cuts the dependencies whenever they are locatgghtiut a netlist. Whenever,
a cyclic dependency is identified, the loop is cut in a non-deterministic veaythe point of cutting
depends on the sequence the netlist is traversed and not on the netliskritaglf case, the cutting of
a dependency leads to a timing estimation error.

Another way of performing timing analysis in asynchronous circuits is by sitioualaHowever,
this serves only performance evaluation and doesn’t provide the meaaptimizations, moreover

to form the basis for an EDA tool.

2.3 Specification Models for Asynchronous Timing Behavior

As asynchronous circuits are essentially hardware implementations afrcencsystems, their be-
havior and its specification are often modelled by concurrent models ofidatign, such as Petri-nets

[2] or Process Algebras. This work focuses on Petri-net modeling rdsthe. graph modelling.
2.3.1 Petri-Nets

A Petri Net is a formal model for the description and analysis of conauggstems, such as asyn-
chronous circuits, distributed and parallel systems. A Petri Net defyrsésms behavior as a directed
graph with two kinds of nodes, places and transitions, and tokens thrasesph data values that can
move through the arcs of the graph. It is widely used for the specificatiasyinchronous design.

Specifically, a Petri Net is a directed, weighted graph with two kinds of sigglaces and tran-
sitions and an initial marking. Arcs of the graph are either from a place tonaitien or from a
transition to a place. As it appears in the example Petri-net of Figure 2.1spdaeaepresented as
circles, while transitions are represented as bars or boxes. A markiing Betri-net assigns a number
of tokens in places and represents the current state of the system. rélrepiesented as black dots
in places.

Tokens can move independently from each other through the arcs agibie changing the state of

6 CHAPTER 2. TIMING ANALYSIS OF ASYNCHRONOUS CIRCUITS

the system. The presence of a token in a place represents that a datsetisfies the corresponding

constraint. Each transition has a set of input places,pre-conditionsand a set of output places,

i.e. post-conditionsA transition is enabled,e. the corresponding event may occur, only if all the

preconditions are satisfiede. only if all the input places contain at least one token. The firing of the

transition,i.e. the actual occurrence of the event, takes place with the removing of oee fiakn all

the input places and placing one token in every output place, resultingeiw enarking,.e. state [2].
Figure 2.1 shows a Petri-net with an enabled transition on the left. Evemringitiona may occur

since preconditiongl, p2 are satisfied. The transition has fired in the Petri-net on the right.

o o
@/ . Q/ .

a a

Figure 2.1: Transition firing in a Petri-net

Petri-nets are complex mathematical models to specify any behavior. Usubliyasses of Petri-

nets are used, according to specific applications. Some classes aibeatbkere:

State Machines Petri-nets such that each transition has exactly one input place and exsctytput

place.

Marked Graphs Petri-nets such that each place has exactly one input transition and exaetly

output transition.

2.3.2 STGs

Signal Transition Graphs (STGs) are also graph models able to repties@oncurrent behavior and
causality in asynchronous circuits, as in other concurrent systemsg.arée particular type of Petri-
nets, specifically they are Marked Graphs with no choice. Transitionssaeeiated with changes of
the values of binary variables.

Since STGs are Marked Graph®. each place has a single input and a single output transition,
places can be omitted. Thus, an Signal Transition Graph (STG) is repeddsy a graph, where the

nodes represent binary transitions of signals, while the arcs reptbserausality of two events.

2.4. TIMING SEPARATION OF EVENTS 7

Inheriting form the definition of Petri-nets, STGs contain tokens, placedcwat the graph. A
token placed on an ang means that the source transitionrofias fired, and the target transition of
r is enabled to fire. A transition is enabled to fire when all arcs that reach #msition contain a
token. The firing of this transition takes place with the removing of one token &ach input arc and
the placing of one token in each output arc. The tokens that appear ipgbiication of the system
represent its initial statég. its initial marking [3].

Figure 2.2 shows an example of an STG. This STG specifies that, initiallyjttoans+ will fire.
Since,x+ has fired, transitions+ andy+ are enabled and they may fire concurrently. Moreover,

transitionz— will be enabled as soon as transitiarns y+ fire.

2+t—= X—

X+ y+ z-

y

Figure 2.2: xyz STG Model

2.3.3 Event Rule (ER) System

An ER System is a Marked Graph labeled with a delay range on its arcs. AS3s Slaces can be,
also, omitted. Transitions or events, in general, are represented asindtie graph. The arcs of
the graph represent the causality between events, as well as timing ctnspesaified by the delay
ranges on the arcs. The STG can be translated into an ER System, by syvéabmtransition to a
single event, removing tokens and assigning each arc with a delay rangappears in Figure 2.3

The practical meaning of an arc, for example— b, is that for evend to occur, eventt must
have occurred first. Delay rangél, D2] of the arc means that since evenbccurs, the necessary
processing for evertto occur requires at leagl and at mosD?2 time units. Accordingly, for event
to occur, events andd must have occurred and at leastx(d3, d5) time and at mostiax (D3, D5)

time must have passed.

2.4 Timing Separation of Events

After defining the specification model for a design behavior, a timing metric beuspecified for the
performance evaluation. One possible performance metric is the total timesgkfpr a computation.

However, this depends on the characteristics and the complexity of the tatiopu Moreover, it

8 CHAPTER 2. TIMING ANALYSIS OF ASYNCHRONOUS CIRCUITS

d2,D2
b % C

[d1,D1] [d3,D3]
a/[d4,D4l d \

@505 %
%’\f A

Figure 2.3: An ER System

can’t provide an estimation on how much time is consumed in various parts oégignd Another
possibility is the time between consequent occurrences of an event sitilasi.e. cycle period of
the signal, or generally the time between any two events. The cycle periagnalisis used as a
performance metric for concurrent systems.

Timing separation between events can be a useful tool in asynchroesigs ¢hrocess. It can form
the basis for a timing analysis tool and moreover, can be used for optimiz&enforming timing
analysis on a circuit specification provides information and directionsgtimization. Optimization
functionality can be applied through a closed loop. In every iteration timintysisas performed
and optimizations are applied according to the given directions. Once the agtfoniz are applied,
the Timing Separation of Events (TSE) analysis step confirms the effeeisesf the changes and

provides directions for further optimizations.

TSE analysis can also be used for RTC validation. RTC are assumptiomsthéoelative timing
of events. Such assumption can lead to simplifications on the specificatiosighge A simplified
specification with RTC can lead to improved implementation of circuits [4]. The impieedecircuit,
however, will only operate correctly, if the RTCs are valid, which may mogbaranteed by all stages
of the implementation. TSE analysis can be applied after the implementation of thit @ird based

on the timing of the specific implementation to prove the validity of the assumed dotstra

An alternative of timing separation of events for the timing analysis would b&dinfy the circuit
several times and applying DFS algorithms for traversing the circuit. Haw#vie accounts only
for a single value in the delay of each component. Moreover, it isn't ¢cfearequired number of
unfoldings until an accurate estimation is reached. An other alternativeRetoiynet simulation. A
Petri-net is simulated starting from initial marking and following each possibte steange caused
by the moving of each token. The great amount of possible states impoggs@mplexity on the
solution resulting in an Integer Linear Programming (ILP) problem, which iscbifaplete. Thus,

attetntion is drawn at TSE.

2.4. TIMING SEPARATION OF EVENTS 9

In [5] an algorithm for the evaluation of bounds on the timing separation efitsvis presented.
It considers ER Systems with concurrent behavior and delay rangesngiraints and evaluates tight
bounds on the timing separation of events. This algorithm can handle cyapbgand can also take
into account infinite execution of the system. This is achieved using algebalels and structures

that will be analyzed in following chapters.

10

CHAPTER 2. TIMING ANALYSIS OF ASYNCHRONOUS CIRCUITS

Timing Separation of Events in Concurrent Systems

Timing Separation of Events (TSE) appears as important metric for the analyd evaluation of
asynchronous designs. Alternative approach of timing analysis appea#ractive, so an algorithm
for the TSE. The algorithm studied, as it is presented in [5], concerrthéoeetical analysis behind
the timing separation of events in concurrent systems. The specific algdréhdies graphs with
cyclic dependencies, a characteristic of concurrent systems sushirasheonous circuits, scheduling
protocols, parallel systems and others. Additionally, it considers theetiealrinfinite execution of
such a system, calculating tight minimum and maximum bounds on the timing sepaffadion set
of events. However, [5] focuses on the evaluation of timing separatiartt@soretical problem and
was incomplete in certain aspects with respect to providing a complete pictthre afgorithm and
for leading to an efficient implementation. In this Chapter the algorithm for the tis@paration of

events is presented as it appears in [5], along with its inefficiencies.

3.1 Specification Model

The specification model describing the concurrent system that is coegdide [5] is the Process

Graph. The Process Graph is an ER System and it is defined as:

11

12 CHAPTER 3. TIMING SEPARATION OF EVENTS IN CONCURRENT SYSTEM

Definition 1 A PG is is a directed grapl’ = (E’, R'), where:
o [is afinite set of events, the vertices

e R'is a set of rule templates, the arcs

Each arc is labelled with a delay rangk D] and an occurrence index offset The delay range
has integer bound$ (< d < D) and the occurrence index offset Z, indicates the index difference
between the events for a rule template, the rule connects events withunfoldings difference. For
example, an index difference afbetween two events indicates that the final event depends on the
occurrence of the initial event of one unfolding back. The set ofsvaiwvays includes a unique static
event, called-oot, which is used to specify the initial state of events of the system. Eventmust
reach every other event in the Process Graph and no event is allowealcto-oot. Moreover, the
specific analysis considers connected Process Graphs that(have 0 for all cyclesc, i.e. the sum
of all e values of the arcs of cycle(e(c)) must be positive.

A simple example of a Process Graph appears in Figure 3.1. The verticaldinéhe edges

represent the number of the occurrence index offset

root

[0,0] l [L.2]

/\m
[4,10] a\M b@ [5,20]

[1.6]

Figure 3.1: An example Process Graph.

The semantics of a process graph modeling a concurrent system dictada theenty may only
occur when all the events that posses a rule leading to the eveaie occurred, according to the
timing and indexing constraints. For example, for a nuleu — v with [d, D], then the constraints
imposed by the rule require timet : d < ¢t < D, after eventu has occurred, before eventmay

occur.
3.1.1 Execution Modeling

The execution of the system can be modeled by a process graph byingfiiid graph to an acyclic
directed graph. This process is called the execution of the Procesk.@aph event of the process

graph may occur several times on the execution, so every event in thieeshigraph is labeled with

3.1. SPECIFICATION MODEL 13

an occurrence index. The first occurrence of an evestlabeled with occurrence indéX(vy), the
second withl (v1), etc Additionally, the edges with an occurrence index oftset 5 connect events
with an index differences.

Moreover, the occurrence of an evemntimplies a time of occurrence, denoteddsy). There-
fore, a timing assignment defines an execution instance of a process gtaig timing assignment
must be consistent with the timing constraints of the rules. According to the §emaiithe execution

this timing assignments must satisfy the following equation:

maz{T(ug_c¢) + dlug_e — ux € R} < 7(vg) < max{r(ug—e) + D|ug_e — ux € R} (3.1)

An execution, of the process graph of Figure 3.1 appears in Figure The. specific timing
assignment is based on the upper delay bound for all the rules of the efitiee graph. By looking
at the timing assignment, it is apparent that the difference between sant@egemences, initially,
change, as we move towards further unfoldings and, finally, reachesyawhere the difference is

stabilized.
10 28 48 68 88 108

/) \bO/ a:I-\\§b1/4 6‘2\\§b2/d ad\ b.’:‘/d aé\bll/ abe/ a\G\TJG

root

2 22 42 62 82 102 122

Figure 3.2: Unfolded graph of Figure 3.1 with upper delay bound D assghto all events.

3.1.2 Problem Definition

The problem of calculating the maximum or minimum timing separation of events @wtagw graph
with delay ranges on the arcs requires identifying the bounds that limit the tirejpgration in a
range. So, considering a source eveand a target everitin £ with an occurrence index separation
B, the minimum/maximum timing separation will be the difference,) — 7(sx—g), according to
delay assignments. Minimum and maximum integéi@nd A can be determined that bound this
difference as

0 <7(ty) — 7(sp—p) < A (3.2)

The problem that is addressed in [5] is the evaluation of the maximum timingstepabetween
two eventsj.e. evaluating an upper bounl on the difference in the above equation. The key idea
is to choose a timing assignment that will maximize the differen@g) — 7(sx—3). The timing

assignment to do that is one that forces the source event to occur onligstgaossible time and

14 CHAPTER 3. TIMING SEPARATION OF EVENTS IN CONCURRENT SYSTEM

(based on this timing assignment to force) the terminal event to occur on itspasesble time, for
all possible occurrences.
Itis claimed in [5] that minimum separation analysis can be addressed as a maggparation

analysis with a mathematical transformation in the equatienas

T(sk) = T(th—(—p)) < =9
However, the formulation presented is incomplete and insufficient to minimuaratgn analysis.

This problem was addressed in this thesis and is presented in the neterchap

3.2 Acyclic TSE Algorithm

Two approaches are followed for the evaluation of an upper boundSkhanalysis. The first and
simplest considers only a portion of an execution instance of a systemd Baghis portion, the ..
addresses the TSE ... of identifying the upper bafspdor the timing separation of two specific event
occurrencess,—z andt,. For example, considering eventandb of the process graph of Figure 3.2,
as source and target, respectively, and an index separatiof, the separatior; can be evaluated
as an upper bound at{b;) — 7(a1). Accordingly, the separatiofA, can be evaluated as upper bound

ont(by) — 7(az), theA; ast(b;) — 7(a;), etc
3.2.1 m-values and M-values

Intuitively, the algorithm must identify a timing assignment that forces the soewrent to occur at the
earliest possible time and based on this timing assignment to force the terminat@wecur at the

latest possible time. In [5] the earliest and latest execution time are modeledhhiming variables

m- and M-values, in relation to the source and target event, respec@Bpgifically, the m-values of
an eventy; represent the maximum offset delay between the event in question analtice gvent,

using the lower delay bounds of the edges. So, they are calculated inmétatite source event, g

as follows:

m(vg) = max {d(h) | all pathsy, LN sa_g} (3.3)

The M-values of an event, represent the maximum offset delay between the event in question
and the target event, using the upper delay bounds of the edges. rEhegleulated in relation to

previous occurrences of other events, through the following equation.

max ¢ min(0, M (u;) + D + m(vy) — m(uy)) | u; 14D, vk} if v, has path te,_g

M (vg) = @.D] }

max § M(uj) + D+ m(vg) — m(uj) | uj —— v if vy, has no path te,,_g

3.2. ACYCLIC TSE ALGORITHM 15

3.2.2 Acyclic TSE Algorithm

The acyclic algorithm determines the maximum separation between two speeifit@currences
sq—p andt,, of afinite portionG, of the unfolded process graph, wherés the number of unfoldings.

The steps of the algorithm are:

1. Froms,_g to root assign timing values using the lower bound on delays
2. Fromroot to t, assign timing values using the upper bound on delays

3. Use assignments to estimate the TSEofz andt,,

The algorithm in more detail is presented followingly.

ATSE(Ga , Sa—p » ta)

1: for w; in reverse topological order @f, do

2:

0 if Uj = Sa—p

0 if u; has no path ta,_g

m(u;) = [d,D]
maz{d+ m(vg) | uj —— vV, V; ~> Sa_g}
if u; has path ta,_g

3: end for
4: M(root) <0

5: for v, in normal topological order aofr,, do

6: if vy has path te,_z then

7 M (vg) < max {min(O,M(uj) + D —m(u;) + m(ve)) | uj [d,D] Uk}
8: else
[d.D]
5 M (vy) — maz {M(“j)+D_m(uj)+m(Uk)> | uy —>vk}
10: endif
11: end for

12: return M (t,) — m(ta)

For example, consider the Process Graph of Figure 3.1 and the probferding the maximum
separatiom\; of eventsas andas as source and target, respectively-values are calculated from
source to root and/-values are computed from root to target. The unfolded graph with the ch- an

M-value annotation appears in Figure 3.3. The result is M (a3) — m(az) = 25 — 0 = 25.

16 CHAPTER 3. TIMING SEPARATION OF EVENTS IN CONCURRENT SYSTEM

SOURCE TARGET
M=0 M=25

root ——= b04‘> bi ———= b2 ———= b3
m=8 m=6 m=1 m=0
M=0 M=0 M=0 M=19

Figure 3.3: Unfolded graph of Figure 3.1 with- and M -value annotation.

3.3 TSE Algorithm

The approach presented above estimates an upper bound on the timirggisepaf two specific
occurrences of events,_g andt,, of a portion of an unfolded process gragh. However, the issue
of estimating the TSE of two events of a Process Graph concerns thetepaiver all possible
occurrences rather than two specific ones. The issue must be gesektalizake into account infinite
execution. The infinite possible occurrences are represented thssggiential unfoldings of the

initial process graph and the maximum TSE is defined as
A = max{Ay : k > maz(0,5)} (3.4)

which implies infinite number of applications of the previous algorithm. Insteadiapalgebraic

structures are used for the modeling and analysis of infinite execution.
3.3.1 Backwards Unfolding and Functions

The infinite differentA; analyses imply infinite different source and terminal events for each anal-
ysis and consequently different m- and M-values in each unfolding.vom aecalculation in each
unfolding, backward unfolding is used and timing functions are definee\ery event.

Backwards unfolding follows the same concepts as normal unfolding bt#tad of considering
root as a steady unique reference point, it considers the target&véimé steady unique reference
point. This only causes a change in the numbering of event occurrehideskeeping the source and
target events unique for every unfolding. Instead of numbering ewtaitsng from root event and
proceeding to the source and terminal evests ¢, t,), events are numbered relative to target event
to as the reference event. For every evettte relative occurrence indexds— k and is writtenv).

The relative occurrence index fog is 0 and fors,_g is 3. For each unfolding: a differentroot

event is considered and is denoted-ast;,.

3.3. TSE ALGORITHM 17

Following this method, Figure 4.5 illustrates a portion of the backward unfgddecess graph of
Figure 3.1.

27 22 17 12 8 4 0
a(l) a(0)

\/\/\/\/\/\/\/\

= b(6) = b(5) = b(4) =>h(3) =>b(2) 1)
26 21 16 11 6 1

Figure 3.4: Portion of the backwards unfolded process graph forrtdeegs graph

Timing functionsare defined as a set of pai§:, w1), ..., (I, wy,)} and corresponds to the func-

tion:

f(x) = max{min(z + l;,w;) | 1 <i<n}

Moreover, specific operators are defined over the timing functions ctleumcomposition ©)
relates the functions along a path of the graph and is definéd asg)(z) = g(f(x)). Function
maximization () relates functions of two different paths merging in one and is definedtamsn,

(f @ g)(x) = fUg.
To model the TSE problem with functionsgge functiong;. are associated with each edge, based

on delays of the rules and whether there is a path to source events or not.

) {0, 0)} if u, has path ta,—g
= {(l,,00)} if uy has no path te,_z
wherel, = D — m(ug—_.) + m(vg)

Using the operators of maximization and compositioming functionst’ can be defined for each
event, in relation to other events. The main characteristic/attribute of thesgofumis that when
evaluated, they provide the M-value for the specific event, in relation tottiex event recursively,
through all the paths between them. For example, the M-value of gyeah be evaluated relatively

to the M-value ofroot;, with the function:

M (to) = Froot,—to(M(root)) = Froot,—t,(0)

Moreover,A;, = M (tg) — m(to) = Ak = Froot,—t,(0) — m(tp). So, TSE can be also evaluated
through m-values and timing functions. Combined with backward unfoldingalmeg and relative

functions are calculated once for each unfolding step and incrementaégadét additional unfolding.

18 CHAPTER 3. TIMING SEPARATION OF EVENTS IN CONCURRENT SYSTEM

3.3.2 Bounding the Maximum Separation Time

A key observation of several examples is that by unfolding several tipexass graph the maximum
TSE A, of two events will eventually reach a constant value or exhibit periodiatieh However,
when continuously unfolding, a means of determining convergence iseeqd herefore, along with
unfolding the graph, upper and lower bounds &rare computed for each iteration. When these

bounds converge then the converging value is the maximum separatiomlbvef values, as in

B e

Figure 3.5.

upper bound

Figure 3.5: Bounding TSE

The pseudocode of an algorithm evaluating the TSE based on relatisiofusmand bounds ap-

pears below.

TSE-Unfold(G,5.t,3kmax)
1: k — max(0,3)
20 A+ — —0
3 AT — 400
4: while AL < AL Ak < ko dO
5 ConstructGy,
6: Ay — Froot,—t,(0) —m(to)
7. At — new lower bound value
8: AT «— new upper bound value
9 k+—k+1
10: end while
11: return (AL AT)

The lower bound is evaluated as the maximum\gfuntil the current unfolding. The upper bound
is evaluated using recursive functions and cutsets. A cutset n [6Eiseefto as a set of relative event

occurrences, such that for every further unfoldifig, j > k, every path fromroot; to ¢y goes through

3.3. TSE ALGORITHM 19

an element of the cutset. For a given cutSefor G, the functionF,.,., ., is defined as:
D Froote—u, ® Fuy—tglu; € X}
The upper bound is computed as:
AT = maz{F,, . (0)|vx € X} —m(to)

The choice of cutset in not clarified enough. The definition and the atteenzhoices for cutset are

examined in the next chapter.
3.3.3 Repetition Parameters

The algorithm presented above may exhibit some inefficiencies, in somesgrgcaphs. These are
that the bounds may not converge or it may require an indefinite numberfoldings to reach a
convergence. Therefore a mathematical theory is developed to givepmemise answers. The basis
on which this theory works is that unfoldings are determined by a steadyitieg system, which

eventually will locks in a repetition with specific period.

Repetition of m-values
As defined in [5] the ration of a cycleis %. A maximum ratio cycle c is a cycle with maximum
in 4
ratio 75
In a strongly-connected graph, all nodes have a path to a maximum ralg agd the maximum
ratio cycles have a path to a source ned@his guarantees that the-values of all nodes eventually
are determined repetitively by maximum ratio cycles and thus eventually repeata strongly-

connected process grapt there exist integers* ande* such that:

Mm(Vgter) —m(vg) = e, Vb > k" + (3.5)

k* is the number of unfoldings (relative to source event) before the repetiticurs and* is the
period of this repetition. So, for every additiordlunfoldings, after the first* + ¢* unfoldings, the
analysis of m-values will (be the same) as the previdumfoldings.

As it appears in Figure 4.5 the m-values repeat when:
m(vgy1) — m(vg) = rex = 5.

This is true form(as) — m(a4) and for increasing occurrences. So, after= 3 unfoldings relative

to a; (source event), m-values repeat with peréied= 1.

20 CHAPTER 3. TIMING SEPARATION OF EVENTS IN CONCURRENT SYSTEM

3.3.4 Function Matrices

The form of function matrices is also widely used. A function matrix is a matrik siat its elements
are timing functions as defined previously. For two cutsets X, Y a maitix.y is comprised of the
timing functions from all vetrices of cutset X to those of cutset Y. Each elémegosition [i,j] of the
matrix represents the timing function from the i-th element of source cutset »tptthelement of
the destination cutset Ye. F;, ., forz; € X, y; €Y.

Addition of function matrices is defind as the conventional matrix addition bitgaasof scalar
addition, function maximization is used. Multiplication of function matrices is defame(@d, ®)
multiplication, i.e. traditional matrix multiplication using function maximization and composition
instead of scalar addition and multiplication, respectively. By multiplying twotionanatrices, the
relation functions are composed. For example, .y x Fy_.z produces the functions from vertices
of cutset X to those of cutset Z.

The matrices used for the analysis are thi®eR; andS;. Let X be the cutset after which the
repetitive behaviour of the system starts. T represents the relation fasiétam cutsetX to ¢y, i.e.
the target event.R; represents the relation functions frafot; to cutsetX; and.S; the functions
from X, 1 to X;. The matrix-multiplication ofR; x S; x S;_1x ... xSy x T results in the function
F; relating eventroot; with target event,. Now the maximumf£; is needed for the evaluation of
M-values.

Since m-values repeat for unfoldings> k* with periode*, the difference in m-values between
any two nodes of the unfolded graph is the same as the difference ofrtteerssles™ occurenc es
back, from (3.2).

M(Vpper) — M(Ujper) = m(vg) — m(uy)

Consequently, the functions relating these two events will be the sadfi@asurenc es back. So, the
graph only needs to be unfolded an analyzed:fo# ¢* unfoldings. What is need is the evaluation of
T, RiVi € [0,€") andSiVi € [0, €*).
The maximumk; is evaluated as
Frow = RS™T (3.6)

T doesn’t change through unfolding and is evaluated as:
T = Fx_y, (3.7)
R and S are evaluated as follows:

R = @{RiSi_lSi_z...So\() <i< 6*} (38)

3.4. OPEN ISSUES 21

S = S Ser_1...50 (3.9)

S* is the matrix closure of, which is a method to evaluate the convergence of an operation over an
infinite number of operands.

In conclusion the final algorithm appears below.

TSE(G,s,t,8,kmaz)

1. computek*
computec*
TSE-UnfoldG,s,t,0,k* + 3)
if At >AT then

5. return AL

E S A

6: end if

7: computel’

8: for i — 0,1,...,¢* do
9: computeR;

10: computes;

11: end for

12: computeS*

13: F' — RS*T

14: Apaz < F(0) — m(to)

15: return maz(Apmaz, A)

3.4 Openissues

In this chapter the theory of the TSE algorithm of [5] was presented. Té@sdical analysis requires
knowledge of various mathematical tools and leaves a long way through dmeiretion of every
theoretical aspect to the implementation of the algorithm. Moreover, varioussisgquire further
clarification, concerning the application of this algorithm for the timing analysiasgnchronous
circuits.

Specifically, the calculation of repetition parameterandk* are is not clarified enough. Ways
are proposed, but are not completely analyzed, in respect to applieatibeffectiveness. Moreover,
the concept of cutset is not accurately defined, nor is its identificatiorefféist, also needs further
examination. One more concept that is insufficiently defined and analyttesidgkosure. The practical

meaning of this mathematical tool is unclear. Some additional stydying needsdonieeon the

22 CHAPTER 3. TIMING SEPARATION OF EVENTS IN CONCURRENT SYSTEM

application of the specific algorithm for the timing analysis of asynchronioasits, as, it is targeted
for concurrent systems, in general. Questions that need answegifay axample, how appropriate is
the model TSE algorithm examines, for the modelling of asynchronous cirouitdat modifications
are needed. Finally, an issue that is not addressed in [5] is minimum Bepaaaalysis. A full
analysis on this subject was developed in this thesis.

These issues are presented in detail in the following chapters as thegtwdied in this thesis.

The gap is, also, covered between theory and implementation for timing anaflggisuits.

Analysis, Clarifications and Improvements on the
TSE Algorithm

The previous chapter presented an overview of an algorithm for the timeipayation of events that
appears in [5]. However, [5] contains several unclear issues evata aspects need further ex-
amination. This work tried to clarify the concepts that needed clarificatignipexthe aspects that
weren’'t examined and extend the TSE algorithm to form a complete timing analgsisthm. The
advanced issues, that were studied, are in terms of theoretical cofré¢htscomplete understanding
of the mathematical formulation of the algorithm, theoretical extensions on thethig@and special-
ized application on asynchronous circuits. The clarification of theoretmatepts refer to ideas like
cutsets, closure and evaluation of repetition parameters. These isseeasudficiently defined and
analyzed in the previous work. Theoretical extensions were develspeld as minimum timing sep-
aration analysis. Moreover, all the specific aspects are studied to ttmvgap between theoretical

analysis and practical implementation of a timing analysis EDA tool for asynolisocircuits.

23

24CHAPTER 4. ANALYSIS, CLARIFICATIONS AND IMPROVEMENTS ON TH TSE ALGORITHM

4.1 Specification Model

The specification model which is used to describe the concurrent syste@lasrthe Process Graph.
Process Graph is an ER System, so, it can be used to specify asyouhoorcuits. However, the most
common way of specifying asynchronous circuits are Petri-nets or MaBtaphs. The following

statements apply to Process Graphs modelling circuits and compare andictregm to Process

Graphs and Marked Graphs:

e PGs:Vv € E' : ¢(v) € [0,1],i.e. e can either be 0 or 1, but not greater. This holds for PGs that

model circuits, as circuits cannot store state prior to one value.

e PGs: rule templates.e. edges labelled with = 0 model dependence between events of the
same index, whereas edges labelled wita 1 model parallelism between events of the same

index and dependenc es across indices.

e PGs/MGs: Edges with = 1, along with theroot event, are equivalent to the initial token
marking of MGs. Loops in MGs must contain at least one token [7] for thetblBe live.

Similarly, for every cycle in the PG it should hold that 1, otherwise the PG would deadlock.

e PGs/STGs: events in PGs are not labelled as “+” or “-”; this is necessaRGs that model

circuits and lead to a similar representation as STGs.

4.2 Critical Cycles and Repetition Parameters

The open questions about the repetitive behavior of a Process Gyapérn mainly when it will be
reached, with what period it is repeated and how these parametersarated.

As mentioned in the previous chapter, thevalue annotations of the unfolded graph represent the
distance of a vertex from the source evegnt They are computed backwards from it using the lower
delay boundd. Positive m-values of an evenimply that there is a path in the graph from everto
source event. Zero m-values imply either that eveistthe source event or that there is no path from
eventy to source event, i.e the timing ofdoesn’t affect the timing of 5.

Them-values are calculated only based on the lower delay bounds of thesantgng this event.

By repeatedly unfolding the graph the-values of the events are determined by a repetitive system.
So, they will eventually reach an equilibrium state determined by maximum ratiescy&s appears
in Figure 4.1, considering as source the everthe difference of m-values between successive occur-
rences ob are:1,5,5, 5, ... and between successive occurrencesare4, 4, 5, 5, 5, Thisindicates

that repetition with respect to m-values is reached aftedttieunfolding.

4.2. CRITICAL CYCLES AND REPETITION PARAMETERS 25

27 22 17 12 8 4 0
a(7) > a(6) = a(5) = a(4) =a(3) > a(2) = a(1) = a(0)
NSNS NS NS N
b(7) = b(6) = b(5) = b(4) =b(3) = b(2) = b(1) = b(0)
26 21 16 11 6 1 1

Figure 4.1: Portion of the backwards unfolded graph for the Procesgsh®f Figure 3.1 labeled with

m-values f0r8(5)=a(1)

The evaluation of the period and the initial transient behavior are analgliedingly.
4.2.1 Ratio’ed Cycles and Maximum Ratio Cycles

A ratio cycle is defined as a simple cycle where the sum ofith&ues is ratio’ed by thevalues and
the ratio of the cycle is:

r(c) = d(©) | wherec is simple cycle inG’ 4.1)

€(c)
A maximum ratio cycle is the ratio’ed cycle with the maximum ratio r, which is:
d(c) , . o
Tmaz = mam(@) | Ve wherec's are simple cycles igr 4.2)
€
In a strongly connected graph, the maximum ratio r is unique, which meanthéhataximum
ratio cycles have the same ratie. the maximum ratio, which is the one determining the timing of
the circuit.
The equation (3.4) for the repetition of the-values can also be interpreted as follows to clarify

the concept of maximum ratio cycles:

Mm(Vgter)—m(vg) = re’,Vk > E*+5 = m(vgyer)—m(vr) = d(c), where ¢ is the maximum ratio cycle

The fact that then-values of all events are determined by maximum ratio cycles points that a
change in the delays on all these cycles, reducing the maximum ratio, weuild irethe decrease
in the separation of events analysis. As far as actual circuits are c@u;ex maximum ratio cycle
in the specification graph would (yields) a path or a tree in the circuit thaitisatito the timing of
the circuit. In accordance to critical paths in synchronous circuits, dritigdes in the specification
graph of asynchronous circuits are the ones determining the cycle péadcgignal transitions. This

provides a specific target for optimization procedure.

26CHAPTER 4. ANALYSIS, CLARIFICATIONS AND IMPROVEMENTS ON TH TSE ALGORITHM

4.2.2 Calculation ofe*

As mentioned in [6], by using digraph algorithms [8] it is possible to extracthallcycles in the
process grapli:’ and then find which of them are maximum ratio cycles. The calculatior &f
complicated by the potential existence of multiple maximum ratio cyaletem-values for different
events may use different maximum ratio cycleshe trivial case of one unique maximum ratio cycle
¢, €°=¢(c).

If more ration cycles exist in the process graph a different analysigjisresl. G*, is created as
the subgraph ofi’ containing only the edges of the maximum ratio cycles@pds denoted as the ith
strongly connected component@f. If an eventp, can get itsn-value from two different maximum
ratio cyclese.g. cl andc2 and these are in different strongly connected components pthen the

occurrence period af, €*(v) is calculated as the Lowest Common Multiplecdfandc2:

€*(v) = LOM (e(cl), e(c2)) (4.3)

If ¢c1 andc2 are part of the same strongly connected componeft*otthe occurrence period is

calculated as the Greater Common Divisorbfindc2:

€' (v) = GCD(e(cl),e(c2)) (4.4)

By enumerating all cycles we get:

€ =LCM(GCD(e(c) | c € GY)) (4.5)

For the clarification of the meaning ef examples aiding intuition are provided. The event graph
G* shown in Figure 4.2 consists of two different strongly connected compenéhne dotted lines are
part of the initial process grapgh’ but not of process grapfi*, i.e. they are not part of any maximum

ratio cycle. There are two independent maximum ratio cyeleg?2 consisting the graplt*, such

thatr(cl) = ‘j((ﬁ)) = 8 = 2andr(e2) = f((jg)) = 8 = 2. In this case, the execution of eventn
the initial process graph is constrained by events of two different maxinatimaycles (c, d) but its
m-value is eventually determined (afterunfoldings) by cycle c2, since the edgie— a is not part of
a maximum ratio cycle. The events of cycles c1, c¢2 will occur independemdiydl be synchronized
everyLC'M (e(cl),e(c2)). So, the occurrence periodds(v) = LCM (e(cl),€(c2)). In the example
graph of Figure 4.2*(v) = LCM (e(cl), e(c2)) = LCM(4,3) = 12.

The graphG* shown in Figure 4.3 consists of two maximum ratio cycles that have a common

event,i.e. a. In this case, the m-values of a are determined by both cycles c1, c2 t8are is a

4.2. CRITICAL CYCLES AND REPETITION PARAMETERS 27

SN
M j T \p
Figure 4.2: Process gragh* of maximum ratio cycles on two different strongly connected com-

ponets. The edges in dotted lines are the edges of the initial process@répdt are not part of a

maximum ratio cycle.

synchronization point at which the events of the graph will be synchedrézeryGC D (e(cl), e(c2)),
the occurrence period 8 (v) = GCD(e(cl), e(c2)). In the example graph of Figure 4.3ifcl) =
dlel) — 8 — 2 andr(c2) = 42 — 2 — 2 thene* (v) = GCD(e(cl), e(c2)) = GCD(4,2) = 2.

KXM
\\XW

Figure 4.3: Process gragh* of maximum ratio cycles with two cycles having a common event.

4.2.3 Calculation ofk*

Based on the above discussion it is possible to calcafatEhe calculation of* is based on whether
m-values for an unfolding are calculated from maximum ratio cycles. If ren farther unfoldings
are needed. If yes, the value &fis critical. If ¢* is 1, then it is certain thah-values of subsequent
unfoldings are being repeatedly calculated depending on the maximum rate dyowever, for
larger values ot* and particularly for multiplen-value calculations and multiple maximum ratio

cycles,k* can be determined as a solution to the Frobenius problem as:

k*(v) = ko + Frobeniuse(c) | c € G (4.6)
The Frobenius Problem and Number

The Frobenius number is the largest vabuier which the Frobenius equation; 1 + aszo + ... +

anTy = b, wherea; are positive integers and the solutiansare nonnegative integers, has no solution.

28CHAPTER 4. ANALYSIS, CLARIFICATIONS AND IMPROVEMENTS ON TH TSE ALGORITHM

The Frobenius number is intimately related to the so called Coin Problem, whbeelaygest sum of
money which cannot be formed from a quantity of coins of different ves®ught.

However, for more than two variableise. cycles, the Frobenius problem has no exact solution.
Thus, a solution to the Frobenius problem wasn't a focus of this wodted t* is evaluated with
unfoldings. Since the values &f and maximum ratie,,,,,. are known, the graph is initially unfolded

e* times. For every further unfolding the equation
m(v;) — m(vi_e) = re*

is checked. Ifitis true theh* = 4. If it is false, £* unfolding isn’'t reached and further unfoldings are

needed. This is a way of accurately evaluatifigvithout increasing the complexity of the algorithm.
4.2.4 Examples

The calculation of the* andk* variables and the repetition of m-values as it was examined through
this work are further clarified in the folowing examples.
In Figure 3.1 we can see a process graph with four simple cycles. €ycle{a — a}, cycle

2 ={a —b— a},cyclec3 = {b — a — b} and cyclec4 = {b — b}. The ratio of each cycle is

r(cl) = f((g)) =4,r(c2) = g((g)) =2,7r(c3) = i((g?? = 2andr(c4) = ‘Z((i)) = 5. So,r = 5is the

maximum ratio and cycle c4 is the maximum ratio cycle. In this example there is onipaxienum

ratio cycle, sog* = e(c4) = 1. The process graph of Figure 3.1 is unfolded and the m-values are
computed. Since the m-values are computed in reverse topological ordargsteom the source
event, backward unfolding method is followed in the representation of tfuddamd graph.

Following this method, Figure 4.1 illustrates a portion of the unfolded procegh@f Figure 3.1

and the behaviour of the m-values. The m-values repeat when
m(vgs1) — m(vg) = re’ = 5. 4.7)

This is true form(as) — m(a4) and for increasing occurrences. So, aftér= 3 unfoldings relative
to a; (source event), m-values repeat with peridd= 1.

Figure 4.4 shows a second example of a process graph. One cyckrappthis process graph
with r(c) = % = 7.5. This is the maximum ratio cycle, and = ¢(c) = 2. The repetition of
m-values appears in the unfolded process graph of Figure 4.5. i&fter2 unfoldings relative ta,

m-values repeat with period = 2 and
m(vgs2) — m(vg) = re’ = 15.

This is apparent as each event occurs depending only on the otmeroeeairrence of one previous

index and on two previous index occurrences of the same event.

4.3. CUTSETS 29

[5,10]
m

a b

[10,14]

Figure 4.4: Process gragky

35 30 20 15 0 0 0
a(6) a(s) a(4)><a(3)><a(2)><a(l)><a(0)
b(5)><b(5)><b(4) b(3) b(2) b(1) b(0)
40 30 25 15 10 0 0

Figure 4.5: Unfolded process graph labeled with m-values fgra ;)

If a different event is chosen as the source vertex, the analysis Wweulte same as the maximum
ratio cycle won't change. The variabd& is a function of the maximum ratio cycle and the minimum
delays of the edges. These parameters don’t change among diffainendf source-terminal vertices,
soc* will be the same. However, the variablé can change. The unfolded process graph appears

again in Figure 4.6 fog5)=b). " is still 2 and afterk™ = 1 unfoldings m-values repeat with

m(Vgt2) — m(vg) = rex = 15. (4.8)
35 30 20 15 5 0 0
a(6) a(s) a(4) a(3)><a(2) a(1) a(0)
b(6)><b(5)><b(4) b(3) b(2) b(1) b(0)
40 30 25 15 10 0 0

Figure 4.6: Unfolded process graph labeled with m-values fgrb;)

4.3 Cutsets

The notion of cutset was not fully defined in the previous work and is @drifi this thesis. The

identifying of the cutset was, also, not specified. Another questiontahuasets is on the effect of

30CHAPTER 4. ANALYSIS, CLARIFICATIONS AND IMPROVEMENTS ON Tl TSE ALGORITHM

different cutsets on the algorithm.

In graph theory, for a strongly connected gragh= (V, E), S is a k-vertex cutset it C V,
|S| = k andG — S is not connected [9]. In our analysis, we are interested in the conitectfwoot
with the target eventy. So, we consider cutsét, as the k-vertex cutset, such thatC V, |S| = k
andG — S has no path from root to target event.

Various set selections satisfy the cutset definition. In various unfoldsohgG;, the set of the
current unfolding events;, Vv € V, is a cutset of the graph. However, the choice of cutset can affect
the complexity of the algorithm, which is a function of the size of the selectedtciises, the whole
unfolding is not an efficient choice of cutset. The best choice would deninimum cutseti.e. the
cutset with minimum size, but it refers to a graph theory problem, that intesdadigh complexity
on the algorithm.

Instead of identifying a minimum cutset, a minimal cutset can be efficient, leadicgrtect
solutions of the problem.A minimal cutset, that can be easily deduced is theesetr§{v|v — ¢y €
R}. This is not a minimum of cutset, but it is a minimal cutset with insignificant complexitys T

choice was adopted in this work.

4.4 Closure

In mathematics, a set is said to be closed under some operation if the operat@mmibers of the set
produces a member of the set. Given an operation on a closéd sefe can define the closufg.S)
of a subsetS in X to be the smallest subset closed under that operation that costaias subset.
The closure of sets, with respect to some operation, defines a closnsapon the subsets &f .
The closed sets can be determined from the closure operator; a seteid ifldds equal to its own

closure [9].
4.4.1 Closure in Closed Semirings

A closed semiring is a systelfb, +,.,0,1) where S is a set of elements ang and. are binary

operators ord satisfying the following properties:

1. (S,+,0) and(S, ., 1) are monoidsi.e. closed under the operator, are associatieea + (b +
¢) = (a+b)+ c and have the identity property fori.e.a+0 = a+ 0 = a, and1 respectively.

0 is also an annihilator for
2. + must be commutative.e. a + b = b + a, and idempoteni,e.a +a = a

3. - must distribute ove#-,i.e.a- (b+c¢)=a-b+a-cand(b+c)-a=b-a+c-a

4.5. RELATION MATRICES 31

4. Finite and infinite sums, using, must exist and be unique. Associativity, commutativity and

idempotence must apply to infinite and finite sums

5. - must distribute over countably infinite sums as well as finite ones

Thus, based on the above, the following equation holds:

(Z a;) - (Z bj) = Zai b= (O (ai-b;)) (4.9)

[] i
For example, conside§, = (R, MIN, +, +00,0), whereR is the set of non-negative real num-
bers includingt-occ. It is easy to verify that-co is the identity under MIN, whereas 0 is the identity

under+:

MIN (a,+00) = MIN(+00,a) =a,a+0=04+a=a

The closure operatiom« =) .° yields:

0% = MIN(0) =0

as the inner operator of the closure formulaHgthe outer isMIN) and addition zero times,

yields 0. Based ofix the closure of anyx can be calculated as follows; for anye Ss:
ax = MIN(0,a,a+a,a+a+a,..)=0

ThusVa € R, ax = 0.

The practical meaning of closure is that an operation on an infinite seguéredements (of a
closed set) results in a well-defined finite element that, also, belongs to theseam8&o, it is a
mathematical tool to model and evaluate infinite operations. In the preseragianthe set of
functions is a closed semiring, under the operations of maximizatiyrafd composition®), with
identity elements) = and1 = (0, +oc), respectively. So, a closure can be defined for functions
set. Consequently, the set of matrices is a closed semiring, as it is compyifattcbons, on which

maximization and composition are performed.

4.5 Relation Matrices

Relation matrices are matrices that are comprised of relation functions aedeapall the paths from
one cutset to another. When the starting cutset containsthh@vent and the ending cutset the get

event, the relation matrix isiedimensional array with functiof,,..—.+,. This abstract definition may

32CHAPTER 4. ANALYSIS, CLARIFICATIONS AND IMPROVEMENTS ON T TSE ALGORITHM

lead to inaccuracies in the construction of matrices from functions. On¢ giodharification is that
the function-elements of a matrid x_.y should not include paths from a vertexs X with vertices
of the same cutset as intermediate nodes. This needs to hold for one otghtscin order not to

include multiple appearances of the same path. As a convention it is kepéfsiattiing cutset.

4.6 Minimum Separation Analysis

The problem definition of Minimum Separation Analysis is to estimate the minimum timeadepa
i.e. 6, between two events.e. s andt, with a separation in occurrenceg. 3, over all possible

occurrences, as it appears in the following equation.
8 < 7(tr) — T(s1-p) (4.10)

The problem theoretically can be addressed using maximum separatiosisaiaalg mathematical

transformation of the equation (3.1) as:
7(sk) = T(tg—(-p)) < =0 (4.11)

This is true in theory, but could not be applied in practice. It cannot Ive dilo practice using
the same algorithm just by changing the signs. This would imply negative umgslénd wouldn'’t
respect the relative ordering of source and target events. Minimulysedoesn’t follow the same
semantics of the maximum analysis based on m- and M-values as describedigyeresulting in
non-deterministic behavior or inaccurate estimations.

A different analysis was developed for the estimation of the minimum time sepalaioveen
events, during this work. The minimum analysis following the same baselines asttimum timing
separation analysis. The key idea is to force the source event to atdsrlatest possible time and
based on this timing assignment to force the target event to occur on itsgaobsthle time. In order

to understand the changes in minimum analysis a closer look should be takeaad M -values.
4.6.1 m-values andM-values

m-~- and M -values are used in the maximum analysis to model the minimum and the maximum offset
delay in relation to source event and root event. Specificallynthealues represent the relative
timing separation between the event in question and the source event, for migietays. Thel/-
values represent the collective relative delay of events startingsfeormevent, considering minimum
time occurrences for events that have a path to source event and maximuoctunences for events
that don’t have a path to source event. This appears better in Figure 4.7.

The line represents the time axis with source events as the reference argvdnts are placed

on the axis on the time of their occurrence-value annotation places the events on their minimum

4.6. MINIMUM SEPARATION ANALYSIS 33

D
S
dm dM
- i i B— it B
t1 t2 3 S

v(k) v(k+1)

Figure 4.7: Time axis for maximum separation analysis.

time of occurrence in reference to source event. Point® on the axis are the:-values of events,,
anduvy 1, respectively. Thé//- values are computed based»anrvalues in normal topological order
on the graph. Consider a rute: vy, — vi41, Wherev, andvg; can be either different occurrences
of the same event or different eventén on Figure 4.7 represents the offset minimum delay of the
two eventsj.e. dm = m(vi) — m(vk1) anddM = D — dm. The practical meaning is that if event
vg OCCUrs on its minimum possible time, event.; may occur in the time rang@)/ if there is no
other constraint)/-value ofvy, 1 is calculated ad/ (vi11) = M(vg) + D — m(vg) + m(vg41) =
M (v) + dM. If there is a path to source event, this value is minimized WithA positive value
would imply that eventy; would occur with a time delay greater than its minimum possible. This
is not consistent with the definition of the analysis which forces the the elsamtiig to source event
to occur on their earliest time. The maximization is to include all the constraints teeai e

The calculation ofn- and M-values in minimum analysis should follow the same principle and
be consistent with the definition of the analysis. Thevalues are estimated with the same equation

but using the upper delay bounésthrough the following equation:

0 ifvp = sp—p
m(vg) =< 0 if v, has no path te;,_s

max{D + m(v;) | vy — v;,v; has path tes,_g} if v, has path te,—s

The equation of thé/-values should be the same with before but using the lower bounds. How-
ever, a minimization witt) wouldn’t agree with the analysis. The case now is thavalues smaller
than—m(v) should be increased tom(v). This is explained by looking at the time axis again. Now
considert1 andt3 as them-values of events;, andvy 1, respectively, which now represent the max-
imum delays relative to the source event. Agéin = m(vy) — m(vgs1) anddM = d — dm. As

it appears in Figure 4.84M + M (vx)| < m(vg) should always hold. Otherwise, event,; would

34CHAPTER 4. ANALYSIS, CLARIFICATIONS AND IMPROVEMENTS ON Tl TSE ALGORITHM

occur after eventy, which doesn’t agree with the specification model, since- vy, € R.

dm
d dM
- i i B— it B
t1 t2 3 S

v(k) v(k+1)

Figure 4.8: Time axis for minimum separation analysis.

So, theM-values of any event;, estimated through the following equation:

M (up) = maz {max(—m(vy), M (v;) + di—i, + m(vy) —m(v;)) | vi — v} if vy, has path te;,_g3
max {M (v;) + d;— + m(vg) — m(v;) | v; — vi} if v, has no path te,_g

An example that shows the evaluationmef and M -values on a graph for minimum and maximun
separation analysis appears in Figure 4.9.

Minimum and maximum separatiofs = by — a9 is estimated. Greater value is observed on
minimum than maximum separation because separation for only two unfoldingssslered. More
accurate and tight bounds will be estimated using the TSE version for infimisddings. One more
thing to be noted is that with single delay values instead of rangeslues as well ad/-values of
minimum and maximum separation analysis are evaluated the same, as it exipeatéel; to lead to

same minimum and maximum separation.
4.6.2 Cycles and Repetition Parameters

The execution of an event is also determined by the execution of its latelggessor.e. for each
event to occur, it must wait for all the events that have edges to this éwertcur. So, timing
assignments, consequently m- and M-values, are also determined by the mavdtimucycles. The
maximum ratio cycles are enumerated based on the initial process grapleysar¢hthe same for
minimum and maximum analysis.

As for the the maximum analysis, the m-values are determined repetitively by maxiatio
cycles and will eventually repeat. The period of the repetitidn,s also unchanged for the same
initial graph, thus, the same for minimum and maximum analysis.

The number of unfoldings until the repetition occuk$, may be different and it is evaluated

within the unfoldings.

4.6. MINIMUM SEPARATION ANALYSIS 35

MAXIMUM SEPARATION ANALYSIS

M =0 M =0 M =0 M =0 M=0
m =10, m=6, m=4 5 m=2, M=0q5n-p
a0 cO al cl—=(az2----- > Cc2
. 7
% 123 [2.3 N
root o D2=2
m = 10 3,5 3,5
M=0 O S
bo do b1— d1 — @ —————— > d2
m=10 2 m=83 m=5 m=0 m= o ARGET
M=0 M=0 M=0 M= -1 M =2
M= - MINIMUM SEPARATION ANALYSIS
m=13 m=6 m=4 m=2 m=0
SOURCE

2 2 2 2
a0 cO al ck @ ————— > c2

m:13\ [3.5 RN

0 e 3\

M=0 bO do b1 d1 @ ————— ~ d2
m=12 2 m=10 3 m = m 3 TARGET
M=-1 M = — M=-1 M 0

Figure 4.9: Evaluation af.- and M -values in maximum and minimum separation analysis.

4.6.3 Functions

Functions are used in maximum time separation analysis to evaluate the relativepianat®n be-
tween events recursively. In minimum analysis, the same structures akeBeekward unfolding is
also used and the functions are estimated in relation to target event in oqglevide the M-value
when evaluated. Because the M-values have different meaning in minimalgsen a different eval-
uation function is needed to provide the minimum delay offset. The new evaidatiotion is defined

as

for | = {li,wi)
f(z) = max{maz(x + l;, w;)|1 <i < n} (4.12)

A different composition functioi®) is also needed to provide for the minimum analysis meaning.

36CHAPTER 4. ANALYSIS, CLARIFICATIONS AND IMPROVEMENTS ON Tl TSE ALGORITHM

It is defined as
for f = {(li,w1) and g = (l2, w2)
(f®9g)(z) = {{l1 + l2, maz(wy + la,w2))} (4.13)

The maximization functiol®) is the same. The optimizations implemented in maximum analysis
are also applicable in minimum analysis.

One more thing that is needed is a change in the direction in the conditional isomzi.e.
<> in every processing/operation over the relation functions and matriceslas w

The minimum time separation that is estimated, represents the minimum time separation afte
the execution reaches its repetitive behavior. This assumption ignores thddlays observed in
the initial unfoldings of the graph. These might provide for a smaller time a@iparbetween events.
However, these delays do not appear during the execution and angashbf the transitional behavior

of the circuit on reset.

4.7 Implementation and Complexity

Based on the TSE analysis, an Asynchronous Timing Analysis (ATA) tasl wplemented for the
timing analysis of asynchronous circuits, based on TSE analysis. Thetddlfenumerates about
3500 lines of C code for its implementation. It requires a specification of theitin Process Graph
format and implements all the described functionality. It evaluates the maximum épagagion
between two events, as well as the minimum time separation. Moreover, it teamied to support
floating point arithmetic, in addition to integer arithmetic.

The ATA tool was developed as two versions, following the theoreticdlaisa The first version,
acyc-tse supports the evaluation of maximum and minimum timing separatigrf two event oc-
currencesof an unfolded process graph,. Invocations of this version will provide an estimation
of TSE of specific unfoldings. The second version is the compéetapplication. It designates the
critical cycles of the process grapte. the maximum ratio cycles, evaluates the repetition parameters
and provides exact bounds maximum and minimum on the timing separation of éntsewer all

possible executions of the system.
4.7.1 Acyclic TSE Version

The Acyclic TSE version requires the process gréflas a command line argument. Subsequently,
prompts for the source and target events of the process graph, threeswe index separation and the
required number of unfoldings for the estimation of TSE to be applied. Tkeatipn is comprised
of two main steps. The first is to unfold the input process g@plo an acyclic grapiti, and the

second is to evaluate the maximum TSE between two specific event ocasiaitbel,,. The steps

4.7. IMPLEMENTATION AND COMPLEXITY 37

described above are repeated until the desired number of unfoldiregectsad and the TSE is reported
for each unfolding.

The unfolding operation is implemented as forward unfolding of the pragessh by incremen-
tally adding the elements of each new unfolding. The evaluatiah.oin each unfolding is based on
the ATSE algorithm presented in Chapter 3. The topological order of the graphyisrad through
DFS iteration of the graph.

Considering a Process Graphrof/ertices andn edges, the complexity AATSE is determined
by the DFS invocations and @(n + m). For each unfolding the complexity is, alsO(n + m).
Thus, for unfolding the graph times the complexity i) (k(n + m)).

4.7.2 Complete TSE Version

The complete TSE version also requires the process gid@s a command line argument. Sub-
sequently, prompts for the source and target events of the proceds aynd the occurrence index

separation. This version operates in three main phases, as it appeapsetiiocode below.

TSE(G,s,t,3)
1: extract cycles front?
2. G* «+ evaluate maximum cycles
3: computec*
while A+ < AT or k* not reachedio
k « TSE-Unfold(G,s,t,3)
6. (AL AT) « processUnfolding

B

7. end while

8 if AL > AT then
9: return AL

10: end if

11: create cutset’

12: createl’

13: createR

14: createS

15: computeS*

16: F — RS*T

17: Apaz < F(0) — m(to)

18: return maz(Amaz, A)

38CHAPTER 4. ANALYSIS, CLARIFICATIONS AND IMPROVEMENTS ON Tl TSE ALGORITHM

The critical cycles are evaluated first, as well as the repetition pararfet@his processing is
over the Process Graph, not on the unfolded acyclic graph, so it ipendent of the unfoldings.
On the next phase, the graph is unfolded, evaluating m-values, timing fos&ia bounds for each
unfolding. The unfoldings continue until the bounds convergé ot ¢* unfoldings are reached. If
bounds converge, the converging value is reported as the solution teabation. If they don'tj.e.
repetitive state is reached the algebraic processing is applied. The funidces are evaluated and

closure is applied in order to reach a mathematically evaluated result.

Unfolding

The unfolding operation is implemented as backwards unfolding of the §s@&@ph by constructing
an acyclic graph and incrementally adding the elements of the new unfoldifigs.operation is
applied in the same way as forward unfolding but with a difference in théiwvelaumbering, as
explained in the previous chapter. In each unfolding step, the m-vallgsfothe additional events
are evaluated, as well as the edge and timing functions for the additionalrétent@onsidering a
Process Graph with size of vertex $€t = n and size of edge séE'| = m, the unfolding process
requires time)(n + m).

Similarly, aAy is evaluated in each unfolding, based on m-values and functions estimaiiegl du
the unfolding. DFS iteration is also used to find the topological order of thghgand the processing
afterwards is applied on every node of the unfolding. DFS is accomplish@de O(n + m), i.e. it
is only applied on events of the new unfolding. The processing on eartisels completed in linear

time. So, the complexity of unfolding 19(n + m), for a single unfolding step.

Timing Functions

The functions for every edge are represented as a struct of two iirftelgis (I, w). Theoco is rep-
resented with the macro definition MAXINT, which is the maximum integer that fits eéniikeger
type. A data structure library was implemented that supports all the negdgaationality for the

functions. Maximization4), composition &) and evaluation are supported.

The timing functions for each event are represented as a list of funddiios, @s defined previ-
ously. An efficiency optimization, that is proposed in [5] and is implemented iliAetool of this
thesis, is based on the observation that it /; andw; > w; for two edge functiong; = (l;, w;) and
fi = (;,w;) then f; subsumeg;. This is a direct consequence of the definition of the functien,
f(x) = max{min(xz + l;,w;)|1 < i < n}, since for all xmin(x + l;, w;) < min(x + 1, w;). So,

every function can be represented as an ordered list, which holdslitheifg order:

4.7. IMPLEMENTATION AND COMPLEXITY 39

lh <ly<..<l,andw > wy > ..> w,. (4.14)

The function elements of the list that are subsumed by others are redamdiignored.

By preserving the previous order the operations of maximization and catiopcasre performed
efficiently in linear time. Maximization of two functiong, ¢ is a set union and is completed in
O(ny + ny) time, where| f| = ny and|g| = ny. To keep the order for the above optimization, the
function elements that are subsumed by others are removed and the newtslamneeadded in the
appropriate position in list. Composition is, also, performed in linear timgf as g| < |f| + |g|.

which is proved by induction.
Cutsets

The construction of cutset is constructed, as proposed in this thesig setth= {v|v — tp € R},

whereTj is the target event of the analysis. The complexity of this operatioi{dgg(to)).
Relation Matrices

The relation matrices are implemented as one- or two-dimensional arraystatdacture library
was, also, implemented offering matrix addition, multiplication and closure furatigrconsidering
all points mentioned in the above sections.

Let X be the cutset after which the repetitive behaviour of the system starteonisguction of
matricesI’, S and R can be done after unfolding the graph+ 5+ ex times. The construction @f is
trivial as it consists of timing function’,,, _.;,, already calculated as part of the unfolding step. Matrix

S is constructed a§ = S.«S.«_1...Sy. EachS; consists of functiong’, wherezx; 11 € X141

i1 T
andz; € X; (X;11 and X; cutsets as defined previously). Functidis,, .., can be calculated
using a DFS algorithm to find all paths from each ; to eachz;. Accordingly, R is constructed as
R = ®&{R;Si—15i-2...50|0 < i < €*}. Each elemenR; represents functions, .., ., Which can,
also, be calculated using a DFS algorithm to find all paths from evenf to eachz;.

The matricesS andR for thee* unfoldings can be constructed recursively as shown in the follow-
ing pseudocode.

The cost in this case is the cost to calculBteand.S; for e* times, two matrix multiplications and
a matrix addition foe* — 1 times. Letc be the size of the chosen cutsethe number of vertices and
m the number of edges of one unfolding. Based on this, the cost to cal&lae?2(n + m) (c?
DFS pairs of source-destination vertices, each DFS considers veatidesdges of two consequent
unfoldings,thug(n+m)). Respectively, the cost @; is c(n+m) (c DFS pairs, for each DFS vertices

and edges of one unfolding). Moreovéy,- S requiresc® operations, the maximizatiaii?; - S) ® R

40CHAPTER 4. ANALYSIS, CLARIFICATIONS AND IMPROVEMENTS ON T TSE ALGORITHM

S =Sy

R =Ry
fori=1toe* —1do
R=R;-S®R
S=5;-8

end for

requires2c operations and; - S requiresc? operations. The collective cost is
€*2¢%(n +m) + e'c(n+m) + (" — 1) + (¢ — 1)c? +2(¢* — 1)c (4.15)

Another way of constructing matricésand R is by exploiting the observation that the multipli-
cation of two function matrice$'x .y x Fy_,z results in the the function matrikx_,» for X, Y,
Z cutsets of consequent unfoldings. For examfles S.-S.«_1...Sp can be constructed as a single
matrix performing DFS to find all the paths for the source-destination pairertites of cutsetX .-
to Xy, avoiding the additional matrix multiplications. This requie$ + 1)c?(n + m) operations
(c? DFS pairs of source-destination vertices, each DFS considers veatidesdges of* + 1 conse-
quent unfoldings) R can be constructed by evaluating each element and performing the maximization
R = ®{R;S;-15i—2..-50|0 < i < ex} using again DFS between pairs of cuts&tsto X, where
0 < i < ex. In this way, the construction d® requires(1 + ... + €*)c(n + m) + €*c operations {*
elements of maximization, each elemeént. ¢ DFS pairs of source-destitution, wheye< i < €*).

The collective cost is
(" +1D)Pn+m)+ (1 +...+)e(n+m)+ e (4.16)

The problem scales with sizes m andc. It is clear now how the choice of cutset determines
the complexity of the algorithm. The size of cutset is always smaller than totalenuwhibodes plus
edges of the graphe. ¢ < n+ m. So, the complexity of both approaches is’f» + m). However,

for great numbers of* the second approach is a constant number of operations better.
Overall Complexity

The overall complexity can be derived by looking at the pseudocod&Ef Considering a Process
GraphG and the size of vertex set 88| = n and edge set d¥| = m. The extraction of cycles on
line 1 is performed by DFS on the Process Graph. This processing is pedanén+m) time. The
second step of evaluating the maximum ratio cycles requiresdifiig, whereL is the total number

of cycles in graplG. It holds thatl < n. The computation o* requires the construction of graph

4.8. TSE ANALYSIS VS. WORST-CASE ANALYSIS 41

G*, as defined previously. Considering andm* the size of vertex and edge set®@f, respectively,
the construction of* is performed inO(n* 4+ m*) and the actual computation ef in O(n* +m*),

as it requires a DFS application @r*. The unfolding and the processing of the unfolding in lines
5 and6 requireO(n + m) time each. The unfoldings that will be applied &fe+ ¢* + 3. The the
complexity of the computation so far@((k* + €* + 8)(n + m)).

With a high probability the algorithm will terminate in ling so with high probability further
computation won't be required. If the execution continues the size oftdetdee determining factor
for the complexity. LetC' be the size of the cutset. The creation of the cutset is performéddh
time. Matrix 7" is Cz1 array and is constructed in tin@(C'). Accordingly, matrices? and.S are
CzC arrays and are constructed in tifC?)(n + m). The reason for this, is that DFS is applied
to find all paths from vertices of one cutset to another. The closufeikvaluated irO(C?) time.
The matrix multiplications on liné6 are performed irO(C?) time. The last computation requires

constant time. Sinc€ < (n + m), the final complexity of TSE algorithm ©(C?)(n + m).
4.7.3 Minimun Analysis

For the implementation of minimum analysis the same structures and methods as foximeima
analysis are used with the appropriate changes to fit the change of méanmmgaximum to mini-

mum timing separation. The minimum analysis was implemented in both versions of B®adIS
4.7.4 Floating Point Arithmetic

The implemented tool for the TSE was expanded to accommodate floating pithmbetic,. The
presented theory coveres integer values, however, in practice the fines @dreal; circuits are hardly
ever integers. So all of the involved fields in the implementation were changedXTEGER type
to DOUBLE type. This change required, a careful change due to the wide use iof theory,
especially in the conditional control, where comparisons toxtherere used, and in operations with
oo. The representation of the also changed frofMAXINT to FLT _MAX .

4.8 TSE Analysis vs. worst-case analysis

Special notice should be taken in the difference of meaning of TSE anatysigared to worst-case
analysis that is the standard timing analysis process. The differencens shimugh an example of
both analysis on the graph of Figure 3.1.

If worst-case analysis is followed, each event occurrence is askijadatest possible time value.
So, for every edge the higher delay D is chosen. A portion of the urdajdeph of the example graph
of Figure 3.1 is shown in Figure 4.10, with a worst-case timing assignmentd@vént occurrences.

It is clear that, for evend, after a number of occurrences, the time value,0f always defined as

42CHAPTER 4. ANALYSIS, CLARIFICATIONS AND IMPROVEMENTS ON Tl TSE ALGORITHM

t(a;) = t(a;—1) + 20 and is always determined by the edge> a and the upper bound of deldy.

10 28 48 68 88 108
root > h > p1 > h2 > p3 > b4 > b5 > b6
2 22 42 62 82 102 122

Figure 4.10: Unfolded process graph with worst-case timing analysigatiom

However, if maximum timing separation between events is evaluated, a diftereng assign-
ment policy must be followed. For example, if timing separation between eugrasdag is to be
estimated, for the event occurrences frepat until a; minimum delay assignment is followed (for
each edge the minimum delay is chosen), while fegrto ag maximum delay assignment is followed.
This assignment is shown in Figure 4.11. This results in a timing separatizi) wfhile worst-case
analysis results in a separationagf. This is because worst-case analysis assumes maximum delay

for the preceding event occurences, while this isn’t the case in maximum ejpaeation analysis.

)) o) Al) o)))= 20
\/ \/ N\ \/\/ \/ \/\
= h(5) = b(1)
26 21 16 11 6 1 1

Figure 4.11: Unfolded process graph with maximum timing separation anakysieén eventas

andag

One more thing to be noticed is that the maximum ratio cycle in this graph-isb, and it is
the edge); — b;;1 that determines the delay in both analyses. This indicates that by optimizing the
elements that affect these edges will improve the overall timing of the circuit.

In this chapter were presented all the theoretical aspects of the prevaokishat were examined
in this thesis, in order to form a complete picture of the TSE algorithm. Moreowpiementation
issues were examined as well as the estimated complexity of the algorithm. The imfzameof
TSE accomplished during this work was described, as a ATA tool fordsgnous circuits. In the
following chapter application of this ATA tool is examined, within well-definedAfobws, for the

optimization and RTC validation.

Application of TSE tool

As mentioned in Chapter 2 TSE analysis can be useful for optimization othsymous circuits
or for the validation of some imposed RTCs. In this Chapter the use of the m&8lis&s will be

presented within a flow for optimization, compared and contrasted with thespannding flow in the
synchronous design process. The implemented ATA tool was used foptingization of real designs

through the presented flow.

5.1 Optimization

The optimization flow that is followed in synchronous design appears in &igur. The designer
provides a description of the circuit in HDL. The circuit is synthesized ingpecific technology
using a library of gates. STA is performed on the mapped netlist. STA prevwidermation on
the timing of the circuit and on critical paths, which are used for optimizatioin® dptimizations
are changes on the netlist, depending on the information of STA and theoteghiibrary that is
being used. The optimized netlist is again analyzed to evaluate the new implenreatadiverify
the effectiveness of the applied optimizations. Optimizations are applied in edelogp of timing
analysis and changing the implemented netlist, until a satisfactory implementatiacl®de

An analogous procedure is followed in the flow presented in this work apéaas in Figure 5.2.

43

44 CHAPTER 5. APPLICATION OF TSE TOOL

HDL specification

Technology
Library Mapping

gate netlist

!

STA

critical paths

gate netlist

g Optimization ———»| optimized netlist

..

Figure 5.1: Optimization flow using ATA.

Initially, an asynchronous specification is provided and it is mapped in thieedeechnology library.
The mapped netlist is analyzed using ATA. Based on this analysis the ciroptifsized and analyzed
again until it reaches an accepted timing performance or cannot berfogtimized. The flow is
the same with synchronous design, changing the particular steps of thevitlovappropriate for
asynchronous design techniques. For example, STA is replaced with AiA specification, also,
requires the STG of the design. Moreover, the concept of critical patleplaced with critical cycles
as a target for optimizations. The steps of the flow are described in moiikidete next sections

along with application on real designs.

5.1. OPTIMIZATION 45

Technology .
Library Mapping
gate netlist

Timing
Analysis

'

critical cycles

gate netlist

Optimization —— = | optimized netlist

Figure 5.2: Optimization flow using ATA.

5.1.1 Circuit Specification

As examined in Chapter 4, the required specification model for ATA is theegsograph. Models
specifying the behavior of circuits were also presented in Chapter Zspdwfication used throughout
this work for the modeling of asynchronous circuit behavior is the STG medth a delay range
labelling on the edges. However, the most direct description of a circuii$ibL netlist form. The
STG model, describes the behavior of the circuit as well as the behavibe @environment and the
interface protocol. An STG can be derived from a circuit, having an HiB&cription, the interface
protocol, and an indication or specification of the behavior of the envirahndne conversion from

a netlist to STG is presented through an example.

Figure 5.3 shows a netlist of an Relative-Timed Burst Mode (RTBM) ctietrd10]. This con-
troller implements a handshake protocol on the right and a handshake taftthigle. The circuit

implements the following boolean equations.

46 CHAPTER 5. APPLICATION OF TSE TOOL

ra

ap rr
b
di
la
® ra
ra .
- i0

Figure 5.3: controller netlist

la=rst' +(r-ra_-y)+(r-la-ra’)+(Ir-la-y’) (5.1)
rr=rst' + (ra_-lr-y_)+ (ra_-rr- ')+ (ra_-rr-y_) (5.2)
ra-=ra (5.3)

y.= (la+rr) (5.4)

Based on the netlist (boolean equations) and the interface protocol, thgsiph of Figure 5.4
can be constructed. The protocol followedris;, — acky — req. — ack_. The red arcs on
Figure 5.4 represent a race condition present on the circuitr Qria andrr, will occur. However,
if la, occurs beforer, , a race will take place betwegn— andrr. . If y_— occurs beforer, rr.

will not occur. With appropriate gate delays the race is avoided.

ra=0 ra=1
01
1 éﬁ%%w“ :
. ‘ ! la

01 110 /N | T

A |
7 001 101 Ir

RESET
000 100

Figure 5.4: State Graph Analysis of the controller

The corresponding STG of Figure 5.5 can be derived from the presi@te graph. The main idea

is that each transition towards one direction on the state graph corresfmoadsignal transition on

5.1. OPTIMIZATION a7

the STG. Examining the state space, we can observe that each transitiodsttineasame direction,

i.e. one transition on the STG, is able to occur only if specific conditions holdekample, forla.

to occur,lr must be risen angla must be fallen. This means that there are two edges on the STG that
lead tola,, iry — lay andra_ — lay . Similarly, forrr_ to occur,ra must be risen, leading to one
edge on the STGyay — rr_.

Moreover, tokens are required to model the correct behavior of thteadler. They must be placed
on appropriate edgese. where they are required to initiate the handshakes after reset. Some rules
must be followed, such as, each cycle on the STG must contain a tokeiw aadumdant tokens must
be placed on the STG.

[r+ rr+
la ra+
Ir— rr—
!
la— ra—

Figure 5.5: Signal Transition Graph of RTBM controller

The delays on the edges are derived from the gate delays of the pathfttlaived on the circuit,
for this signal transition to occur. For example, the efige — la. indicates a rising transition of
signallr which will lead to a rising transition of signa&, through the gaté0 of the circuit. Thus,
the delays of this edge will be the delays of gdfie Accordingly, the edgea_ — la, refer to the
pathi0 — d0, so the delays will be the delays of gatésanddo0.

Some edges refer to the behavior of the environment sué,as~ Ir_ or rry — ra,. These
edges will be assigned delays depending on model to be simulated. If tagidnehof the controller
irrelevant of its environment is wanted, then zero delays will be assidhtadt or slow environment
handshaking is required then appropriate delays will be assigned. dbtfieoller is connected with

some other logic then the delays will depend on this logic.

48 CHAPTER 5. APPLICATION OF TSE TOOL

5.1.2 ATA and Optimization

Since the design specification is available, ATA can be applied. The siepeotdifferent events can
be analyzed. What is useful is the cycle period of the circuit that is the tiriveela a successive
rising or falling transition of a signal. In the specific case of an asynduscontroller a useful event

separation is between consequent rising and falling transition of thestesjgeal.

Whatever the event separation is evaluated, the repetition parameterl as the critical cy-
cles of the analyzed circuit are the same. Moreover, the critical cyclédseoS8TG are those that
mainly determine the timing of the circuit. Thus, critical cycles indicate a targetdtmizations, in

correspondence to a critical path in synchronous design.

Let's assume the controller of Figure 5.3 with zero delay environment andgatdsi0, n0 of
1-unit delay while gated0, d1 of 2-units delay. Running the ATA tool on any event separation will
provide the critical cycles of the circuit. In the specific example evaluatingwaet separatioh ;. —

Ir, yields a maximum timing separation 6funits, while the event separation,. — la, yields4
units maximum separation. The critical cycle appears todbe— rry — ray — rr— — ra_. This
indicates that optimizations must target this specific cycle of the $€Gthe gates0 anddl. By
changing gaté@1 from 2-units to 1-unit delay gate and evaluating the same event separdticesuit

in reduced delays. The evaluationiof. — [r, gives5 units of maximum timing separation, while
lry — lay gives3 units maximum separation. Not only the transitions that are directly depeodent
the optimized gatel{t, — [r,) are effected but others as well-{ — la.). This is expected since

as explained previously the critical cycles are the ones determining thersalitiming of the design.

The critical cycle is the same after the optimizations but it could as well haveyelan a different
example or for different timing specifications. Optimizations based on critycdés could be further

applied if allowed by the technology used.

Now, let’s assume-unit delay gatel1, while changing gate0 to 1-unit delay gate. By performing
ATA, the event separatioir, — Iry is still estimated a$ time units and the event separation
lry — lay is still estimated ad units maximum separation. This indicates that by changing a gate

outside the critical cycle doesn’t lead to optimizing the overall timing of the circuit.

The flow described provides a well-defined optimization procedure tmabedollowed for the
optimization of asynchronous circuits. Provides ways to optimize only criticahie timing parts of
the circuit, while keeping the other as they are. So, by initially implementing therd&signinimum
area and then optimizing it for time on the critical parts, the resulting implementatiorbevidin

intermediate trade-off,e. a point on the Pareto curve.

5.2. Relative Timing Constraints (RTC) VALIDATION 49

5.2 Relative Timing Constraints (RTC) Validation

Another application of ATA would be for the validation of RTCs. RTC areuagstions made for the
timing behavior of a circuit. The assumption that a signal will arrive befargteer or a specific unit
is faster than another may be convenient for the synthesis of the circwgtative timing assumption
may lead to various simplifications on the specification of the circuit resulting apémized imple-
mentation [4]. However, a timing assumption that is incorporated in the implementatiest hold
for the circuit to operate properlig. constitutes an operational constraint.

Currently, there is no specified way of knowing whether an implementation WichvRll respect
this constraint in all cases. The behavior of the implemented system caatoéex! through simula-
tions. Simulations, though consider single values of timing on event oco@semd cannot simulate
a system with variable delays. ATA can be applied in this area too. Since ¥daes bounds on
the timing separation of events, is a way of identifying whether an evenaappefore another. The
exact bounds provide a way to validate a relative timing assumption betweesgvemts or signals,

through the flow of Figure 5.6.

5.3 An automated tool for optimization

ATA, so far, appears as a useful tool in many directions. But to evathatpractical effectiveness of
its application, a simple optimization tool was implemented in this work. It realizes tivaiaption
flow described in previous section in an automated procedure. It sisppapping functionality from
a netlist description to a specified technology library, timing analysis using tHernmepmted ATA tool
and optimization functionality through gate resizing.

The optimization tool enumerates about 2500 lines of C code, as well asisatoipts for the
manipulation of the technology libraries. It consists of a netlist parser, Istpdiser, mapper and
optimizer. It requires the description of the circuit in basic functional uni#gs AND, OR, INV and
the specification of the behavior of the circuit in STG format. Additionally, guiees a mapping
of STG edges to functional units. This is necessary for directing optimiztbISTG cycles to

optimization of gates in the circuit.

5.3.1 Technology Library

The implemented optimizing tool supports a subset ofUMEL3 130nm library. It was acquired
through various scripts processityiC13 library in order to extract the required information and
integrate the specification of all three analysis corners (best, typicastwairthe particular subset.

This subset includes gates that implement all the basic functionality and is alglémnent any logic

50 CHAPTER 5. APPLICATION OF TSE TOOL

circuit specification

Svnthesis Relative Timing
y Contstraints
gate netlist

|

Timing
Analysis

l yes
validated netlist

Figure 5.6: Validation flow using ATA.

function. It doesn't include sequential elements, multiplexers, adders@me complex gates. The
available attributes for every cell of the library is the area it covers, thaaitance of each input pin,
and an array of gate-delays indexed by the drive capacitance oftieTdee delay array supports all
three corners of analysigd. worst, typical, best-case). Rise and fall times are not considered in the
analysis.

A parser of the library was implemented that constructs a directory of theylibedls, that pro-

vides easy search functionality indexed by the logic function of the cell.
5.3.2 Input Netlist

A parser for the input netlist was a part of the tool. The parsed netlisbean already mapped in
the same library netlist or in an HDL form. That is the description of the netlist@®ph of gates.

Specifically, the netlist graph is described using a function library, wi&ech function unit represents
a gate. The parser also supports some syntax checking functionalitynefligt is constructed as a

graph of nodes, that is later processed for mapping.

5.3. AN AUTOMATED TOOL FOR OPTIMIZATION 51

5.3.3 Input STG

The STG specification of the circuit is also required for the ATA. If theuiroetlist is available the
circuit specification in stg format is derived manually following the procegtagned in Chapter 5.
If the stg specification is available, an implementation of the circuit can be peaduMoreover, an
association of stg edges with is netlist gates required. This is a way to relateatigesrof stg edges
to gate delays. In other words, to define which part of the implementatiomudatewhich part of the
behavior of the circuit. This is also constructed manually, by examining thaevimatof the netlist in

each signal transition.

5.3.4 Optimization Process

Having all the above information the optimization process can be applied. THenmapted opti-
mization tool can apply mapping functionality aiming at specific directions. ljpcanide a mapping
of the circuit in a technology library targeting at minimizing area, minimizing timing @l@ing
intermediate solutions. The applied mapping doesn't perform restructofitige netlist, but rather
resizing of gates. The aim of the specific optimization tool was not a goodingafymctionality, but
the ability to explore good trade-offs that lie on the Pareto curve, provalitagget direction and the

means that lead to this direction.

ATA was used in this direction. As explained before, critical cycles areles that determine the
timing in asynchronous circuits. As shown through examples, a changedseldngs of critical cycles
will affect the overall timing. Moreover, the timing separation between cqumeset occurrences of
an event (cycle period) can be a performance evaluation metric. Thasacteristics of ATA were
exploited within this optimization tool. The estimated critical cycles constitutes thet taifr¢jiening
optimizations and the TSE between events is the means to decide whether a éxéttengnce is

achieved.

The optimization process follows the flow of Figure 5.7. Initially, the circuit wittsfiecification
is read and an initial mapping is produced if necessary. The delays dtbeare assigned to the STG
specification according to the specific mapping, as a pre-step of ATAhvidhihen performed using
the ATA tool. This analysis will provide a performance evaluation of the diadong with its critical
cycles. The netlist can be optimized based on those critical cycles, whialsrttest only the parts
of the netlist that affect the critical cycles will be optimized. The delays ohthe mapping are set
and ATA is again performed. The performance evaluation gives a quadiatid quantitative metric
on the optimizations performed and the current critical cycles give a newtiin for optimizations.

The closed loop of optimization and analysis will repeat until a the netlist ¢doefwirther optimized

52 CHAPTER 5. APPLICATION OF TSE TOOL

edges—delays circuit
STG .
relation netlist
e ——
]
TSE A ——
= -
Analysis Optimization Technology
Tool Library
performance critical
evaluation cycles
assign further no
new delays optimize]
l yes
Optimization
optimized

netlist

Figure 5.7: Optimization tool process

on the changes result in a worst-implementation. Changes on how the termighetisgn is taken

may lead to different ways of exploring the space of implementations.

On performing an optimization on a critical cycle of the STG, requires extattmpaths or trees
of the netlist that are associated with this cycle. When they are acquisiinceis performed in each
path starting from the endpoint towards the starting points. During this gsalrere capacity of each
gate is considered and their delays are set accordingly. If the implemeréi@ogate changes, the

gates driving the changed one are additionally optimized in order to drivestheapacitance.

The delays that are set after an optimization is performed are the delays gdittss, as they are
defined in the library, respecting the capacitance that needs to be dritlea particular mapping.
Moreover, the optimization tool can be configured to consider worstt;, liggical-case corners or a

range considering all possible cases.

5.3. AN AUTOMATED TOOL FOR OPTIMIZATION 53

In this Chapter some applications of the ATA on the asynchronous hazdiemign were pre-
sented. As shown, an ATA tool can form the basic building block in vargrosesses that will fa-
cilitate asynchronous design. It can form the base functionality for optimaizand RTC validation.
During this work, the effectiveness of ATA was studied through the impl¢atiem of an automated
optimization tool. Several asynchronous circuits were analyzed and optinnsieg the implemented

tools and the flows described. The results are presented in the followdpgech

54

CHAPTER 5. APPLICATION OF TSE TOOL

Results

This chapter demonstrates the application of the implemented tools and flow foptihezation of
real, asynchronous circuits. The conventional "point-to-point” STarojzation flow was used as a
point of reference. The results were compared and contrasted intorelealuate the effectiveness of

ATA optimization flow on asynchronous designs, compared to STA.

6.1 Experimental Procedure

The circuits used to generate comparative results were real asyoasreontrol circuits used in
practical designs. The circuit benchmarks include various types of ¢atetnollers, based on asyn-
chronous handshakes, circuits useful for desynchronizationnzhsgnous systems and a VME bus
control circuit.

The experimental procedure followed is shown in the flow diagram of Eigut. Two separate
flows were used. The conventional optimization flow, which is based onlyvide=d conventional
EDA tools and the novel proposed flow, which is based on ATA and the ogattioiztool developed
in this work.

The circuit’s description was provided in HDL. Its STG specification was/dd manually, as

described in Chapter 5. A relation between STG edges and netlist’s gaaedsoalerived manually.

55

56 CHAPTER 6. RESULTS

netlist
specification

Synopsys
Design ATA
Compiler optimization

minimum minimum/\
area

critical cycles for time
optimization

path
optimization

Simulation

timing timing
information compare information

Figure 6.1: Experimental Procedure Flow.

These were provided as inputs to the flow.

Using the implemented optimization tool the netlist was initially resized for minimum aréanW
resizing for area, smallest library elements were used, taking no coatsseto timing constraints.
Then, the optimization loop was applied on the minimum area netlist, focusing omlritces. Sev-
eral iterations of the loop produced several implementations depending amitibal cycles of the
current implementation. The terminating condition is that no further optimizatiold d@uperformed

on the critical cycle delays. Area constraints weren’t considered ghrthis optimization. However,

6.2. TWO-PHASE OVERLAPPING DESYNCHRONIZATION CONTROLLER 57

optimizing only the critical parts of the netlist leaves the remaining parts alrgatityiaed for min-
imum area. Another netlist was produced resized for minimum delay, exangatigcomponent of
the netlist. Area constraints were not considered in this implementation.

All the implemented netlists were simulated, in order to measure the actual penfierobeach
design. For the simulations the todladence Veri |l ogXL- Si nvi si on were used. One point
of inaccuracy not in favor of this flow is that rising and falling transition times @ot accounted
for. The implemented tool doesn'’t take into account transition times, as the asnmet an efficient

mapping tool but the evaluation of ATA analysis for optimization.

Alternative optimization was performed based on the conventional flow.c®heentional flow
usingSynopsys Desi gn Conpi | er performs "point-to-point” STA breaking the cycles in the
netlist, disabling cyclic dependencies. Timing optimizations must, thus, be appllgdmpaths
that aren’t disabled. Thus, the path optimizations that were consideyedemed critical paths, as
identified bySynopsys Desi gn Conpi | er, typically all paths from inputs to outputs or specific
internal netlist paths, depending on the design. This flow required mexplration for the paths to
be optimized, which were determined manually, by selecting end-points.

A further difference between the two flows is tf&tnopsys Desi gn Conpi | er performs
technology mapping on circuits, not gate resizing. In order to fairly coengberr two flows, the option

that forcesSynopsys Desi gn Conpi | er to apply resizing only was used.
Finally, all of these implementations were simulated and the results were compared

In the following sections, timing and area measurement results for each impéhdasign are
presented, as obtained from simulations, ATA and $g@opsys Desi gn Conpi | er Timing

Engine.

6.2 Two-phase Overlapping Desynchronization Controller

The desynchronization controller is a circuit which controls data flow insymhronized design,
implementing left and right handshakes and latch control signals, acgdathe STG specification
shown in Figure 6.2. The transitions which appear in blue, are input sigralgled by the environ-
ment. Thus, such signals and edges leading to them, also in blue, rephesemtironment’s behavior
and their actual delays are dictated by the environment. The controller'snmaptation is shown in
Figure 6.2.

The STG along with the circuit’s netlist and a mapping of edges to gates arigl@doas input
to the optimization tool. ATA based optimization was performed for the two-phasediler in a

number of configurations.e. 1-scale and-scale ring and a fork-join pipeline.

58 CHAPTER 6. RESULTS

Ri+

A-—=—@®—Ro+

Ri— Ao+

Ai+=——Ro-

Ao-

Figure 6.2: Desynchronization controller STG

reset

Figure 6.3: Desynchronization controller netlist

6.2.1 Scale of 1 ring controller

1-scale ring is shown in Figure 6.4 and abides with the behavior specifie@bggsbltant STG shown

at the same figure. The results of the measurements are shown in Table 6.1.

6.2. TWO-PHASE OVERLAPPING DESYNCHRONIZATION CONTROLLER 59

Ri+

¢

Ai-

Ri—

|

Ai+

Figure 6.4: Two-phase desynchronization controller netlist in 1-scale rin

6.2.2 Scale of 3 ring controllers

The desynchronization controller was, also, examined 3rsaale ring pipeline. The block digram
of the topology and the resultant STG for this configuration are shown & i6.5, while results

obtained by measurements are shown in Table 6.1.

RO R1 R2

A0 Al A2

Figure 6.5: Two-phase desynchronization controller netlist in 3-scale rin

60 CHAPTER 6. RESULTS

6.2.3 Scale of 3 ring controllers including wire delays

In order to model the delay spent on a long wire, a load was assigned ® afieeconnection. On
the design of the desynchronization controller connected in a 3-ring pépelitpad was assigned to
wires connecting the last and the first controller, modelling a long conneaftienplace and routing.
The results appear in Table 6.1.

Table 6.1 shows three rows of implemented netlists for each configuratierfirstrow includes
the netlists which were mapped and optimized using the novel, proposed AES lmptimization
tool. The first netlist of each row was resized for minimum area withoutideriag the timing of
the netlist. The second netlist was optimized focusing on critical cycles thatat¢ained using ATA
tool. The third netlist of the row was mapped focusing on minimum delay on daofreat of the
netlist individually.

The other two rows show results obtained using the conventional flow. tdeifithe second row
were obtained applying only resizing and the netlists of the third row not onbugfn resizing but
also through resynthesizing.

The first column shows simulation measurements for the implementations betwessgaent
Ri, occurrences. In the parentheses in the same column the same measurshwmbjss obtained
by the ATA tool. In the second column the corresponding area measurearergeown. Finally, in
the third column the percentage improvement of ATA-based optimization to SEaeboptimization
is shown. The comparison is between Critical Cycle Optimized netlist and thetimasg efficient

Path Optimized netlist.

6.2.4 Fork-join Pipeline Structure

A more complicated structure is shown in Figure 6.6. Timing and area results tdrmaptations,
obtained using the novel ATA and the conventional flow are shown in TBle

Based on simulation results of Tables 6.1 and 6.2 several observatiobe caade. ATA-based
optimization, based on critical cycles, is able to effectively optimize timing and iraaks produced
improved timing compared with conventional flow.

Gate delay optimization,e. optimization of every gate of the netlist, didn’t prove better than
critical cycle optimization in most cases. This is explained since the efforttimize every element
of the implementation also optimized the non critical elements. This might have dffisetedrive
load capability of gates on the critical cycles leading to worse timing and graezr

The difference of the ATA and the timing measured in simulations in the netlistsipeddhrough

ATA is an estimation error caused by rising and falling transition times. This iedusupported by

6.3. RTBM CONTROLLER 61

o Simulation Area Improvement
Desynchronization
(ns) (um?) %
Controller
Riy — Riy
Minimum Area 3.269n.5(2.046ns) 79.488m?
ATA Critical Cycle Optimization || 1.425ns(1.174ns) | 124.416um?>
Gate Delay Optimization 1.464ns(1.174ns) 129.6m?
Minimum Area 1.603ns 115.776um?
1-scale ring STA-resizing Path OptimizationA 1.718ns 89.856um> 11%
Path OptimizationB 1.627ns 91.584pm?
Minimum Area 1.664ns 77.76m?
STA-resynthesis || Path OptimizationA 1.639ns 103.68m? 5%
Path OptimizationB 1.508ns 86.4pum?
Minimum Area 2.789n.5(2n.s) 165.888m>
ATA Critical Cycle Optimization|| 1.377ns(1.204ns) | 297.216um?
Gate Delay Optimization 1.396ns(1.174ns) | 300.672um?>
Minimum Area 1.458ns 264.384um?
STA-resizing Path OptimizationA 1.66ns 224.64pm? 17 %
3-scale ring Path OptimizationB 1.682ns 238.464um?
Minimum Area 1.694ns 120.960m?
STA-resynthesis || Path OptimizationA 1.329ns 193.536um? -3%
Path OptimizationB — 139.968m?
Minimum Area 2.735ns(2ns) 176.256um?
ATA Critical Cycle Optimization|| 1.372ns(1.429ns) | 305.856m?>
3-scale ring Gate Delay Optimization 1.372ns(1.47ns) | 362.880um>
with wire delay . Minimum Area 1.78ns 267.84pm?
STA-resizing Lo
Path Optimization 1.996ns 231.552um? 31%
|| Minimum Area 1.853ns 177.984um?
STA-resynthesis o
Path Optimization 1.912ns 196.9924m> 28 %

Table 6.1: Desynchronization controller in 1-scale, 3-scale ring am@l@-sng including wire delays

results.

the fact that the difference is greater in the first netiist,optimized for minimum area, where smaller
gates can be more affected by transition times.

Through the ATA optimization process, several implementations of the same mettis pro-
duced, between changes on gates. Simulations were also performed@imtbemediate netlists and

the measurements appear on the graphs of Figures 6.7, 6.8, 6.9, 6.7.

6.3 RTBM Controller

RTBM controller is a Relative-Timed, Burst Mode latch controller. Its netlist 8TG were shown
in Chapter 5 and are shown again in Figure 6.11 and Figure 6.12. In thisrs@e consider its

implementation. As this circuit includes a timing assumption, it is possible for netlishization to

62 CHAPTER 6. RESULTS

Figure 6.6: A fork-join desynchronization controllers’ structure

o Simulation Area Improvement
Desynchronization
(ns) (um?) %
Controller
Riy — Riy
Minimum Area 2.875n.5(2.217ns) 345.64m?
ATA Critical Cycle Optimization|| 1.631ns(1.427ns) | 615.168um?
Gate Delay Optimization 1.762ns(1.39ns) | 615.168um?>
Minimum Area 1.664ns 537.408um?
fork-join pipeline STA-resizing Path OptimizationA 1.902ns 468.288um? 3%
Path OptimizationB 1.677ns 437.184pum?
Minimum Area 1.953ns 388.8um?
STA-resynthesis || Path OptimizationA 1.914ns 499.392um> 15%
Path OptimizationB 2.137ns 343.872um?

Table 6.2: Desynchronization controller in fork-join pipeline results.

violate it. This would result in incorrect realization. Two configurationsenstudied].e. 1-scale and
4-scale rings. The results are shown in Table 6.3.

The measurements indicatedBSILED on Table 6.3, on the simulation field, indicates that in
these cases the relative timing constraint was violated, and the designajidrétte correctly.

Similar observations can be made, with respect to this design, as they weegpirettious, based
on simulation results. The optimization performed based on critical cycles araparable, but
slightly worse, in thel-scale ring and better in thé&scale ring. The timing performance reached
through critical cycles optimization was very close to overall gate delay optiimizal he difference
between ATA and simulation measurements were apparent in this design).as we

The negative percentages of the first configurati@n,1-scale ring, and the small improvement

on the second configurationg. 4-scale ring, compare with the STA-results, are due to the STG

6.3. RTBM CONTROLLER

area

130.000
/

125.000

120.000

115.000

110.000

105.000 n

100.000

63

95.000
¥

90.000
85.000 ‘

¢ ATA-O
v STA-O(resizing)

80.000
A

75.000

70.000

65.000

60.000

55.000

50.000

1.500

45.000
1.250

1.750

\
2.000

2.250
time

2.500

2.750

3.000

3.250

3.500

A STA-O

Figure 6.7: Time/area results of desynchronization controllérsnale ring.

320.000

300.000 =

280.000

260.000

240.000

220.000

area

200.000

180.000

160.000

¢ ATA-O
v STA-O(resizing)
A STA-O

140.000

A

120.000
1.250

1.500

1.750

2.000
time

2.250

2.500

2.750

3.000

Figure 6.8: Time/area results of desynchronization controll8rsnale ring

formulation, and the edge to gate correspondence of the timing analysisngDhe construction

64

area

CHAPTER 6. RESULTS

380.000

360.000
340.000

320.000

300.000

280.000

b T * ATA-O

260.000
240.000

— v STA-O(resizing)

220.000

A STA-O

200.000

180.000

160.000
1.250

\
1.500

\ \ \ \ \ \
1.750 2.000 2.250 2.500 2.750 3.000

time

Figure 6.9: Time/area results of desynchronization controll8rsnale ring, with wire delay.

area

625.000

600.000

575.000

550.000

525.000
500.000

475.000

™ * ATA-O

450.000

v STA-O(resizing)
A STA-O

425.000

400.000

375.000

350.000

325.000
1.600

\
1.800

\ \ \ \ \ \
2.000 2.200 2.400 2.600 2.800 3.000

time

Figure 6.10: Time/area results of desynchronization controller in forkgigaline.

6.3. RTBM CONTROLLER 65

ra
Ir =
ra
—ap rr ap r
—b —b
do di
n0
la
y_

Figure 6.11: RTBM controller netlist ih-scale ring topology

Ir+ m+

la ra+
Ir— rr—
la— ra—

Figure 6.12: Signal Transition Graph of RTBM controller

of this STG, only the handshake signals were considared,lr, la, rr, ra. Thus, only timing
dependencies between the transitions of these signals are accounitethiSTG. Moreover, the
relation between STG edges and netlist gates is a defining factor for the aitomiz If a netlist
gate, is not included in the STG edgeés, it does not produce an STG signal, and is not included
in the edge-gate relation, it is simply left out of the optimization process. In pasific example,
the design’s STG hides a timing assumption, at gelteas shown in Figure 6.11. Signal is not
considered in STG formulation and gate is, thus, not considered in the optimization. This might

hide a set of optimized implementations and must be further explored.

Time/area results for all the netlists produced appear in the graphs oéFdL8 and Figure 6.14.

66

CHAPTER 6. RESULTS

RTBM Simulation Area Improvement
ns m2 %
Controller (ns) (pm) ’
Riy — Riy
Minimum Area 2.427ns(1.577ns) 84.672um?
ATA Critical Cycle Optimization|| 1.246n.s(0.8548n.s) 120.96m>
Gate Delay Optimization 1.265n.5(0.85n.5) 127.872um?
Minimum Area 1.294ns 91.584um?
. STA-resizing Path OptimizationA 1.242ns 96.768um> -0.3%
1-scale ring L
Path OptimizationB 1.242ns 96.768um?
Minimum Area 1.368ns 88.128um?
STA-resynthesis || Path OptimizationA FAILED 55.296m> -27 %
Path OptimizationB 0.974ns 76.032um?
Minimum Area 4.155n5(2.049ns) | 307.584um?>
ATA Critical Cycle Optimization|| 1.265ns(1.251ns) 423.36um?
Gate Delay Optimization 1.237ns(1.223ns) | 454.464pum?
Minimum Area 2.119ns 331.776um>
4-scale ring STA-resizing Path OptimizationA 2ns 381.888um? 3%
Path OptimizationB 1.304ns 374.976um?
Minimum Area FAILED 283.392um?
STA-resynthesis || Path OptimizationA 1.758ns 395.712um? 14 %
Path OptimizationB 1.514ns 485.568m>
Table 6.3: RTBM controller in 1-scale and 4-scale ring results.
130.000
125.000 [
120.000
115.000
110.000
@ 105.000
o \Y
@ 100.000 Ll
= \ v STA-O(resizing)
95.000 v\ A STA-O
90.000 T
85.000 e — .
80.000 /
75.000 \ \ \ \ \ \ \ \ \
0.800 1.000 1.200 1.400 1.600 1.800 2.000 2.200 2.400 2.600
time

Figure 6.13: Time/area results of RTBM controllerliscale ring.

6.4. C-MULLER PIPELINE 67

500.000

480.000

460.000

440.000 X
420.000 L* “

400.000 " TS
380.000 \' v STA-O(resizing)

v A STA-O

360.000 \
340.000

320.000 —

area

300000 T T T T T T !
1.000 1.500 2.000 2500 3.000 3.500 4.000 4.500

time

Figure 6.14: Time/area results of RTBM controllediscale ring.

6.4 C-Muller Pipeline

C-Muller Pipeline is a pipeline of controllers which synchronize stages @lipigd logic [11]. Each
controller is implemented as a C-Muller gate. A simple implementation of a C-Muller gaeass
in Figure 6.15. Each controller produces a request signal for thestagé which is also an ac-
knowledgement signal for the previous stage. A pipeline of four contsollas studied which were
connected as shown in Figure 6.16. The results of the experimentatprecare shown in Table 6.4.
The results of this design follow the main points noticed on the previous desi@rephs of

time/area measurements of all the netlists produced through optimizations appiepare 6.17.

6.5 VME Bus controller

Except from latch controllers, another control circuit was studied,a VME bus controller, which
controls read and write operations through a bus. The protocol foll@aade described with an
STG with choice. However, a read-write operation imply choice, which veasuapported in this
work. Thus, only the read operation was examined here. The write tapean be analyzed by

using a separate STG. The block digram and the STG that describes tfecmferotocol for a read

68 CHAPTER 6. RESULTS
a N
rst
y =rst’ (ab + y(a+hb))
Figure 6.15: C-muller gate implementation
C 7 ' 7 ' ! ' !
RO : R1 R2 R3
Figure 6.16: C-muller pipeline
Simulation Area Improvement
C-Muller
- (ns) (km?) %
Pipeline
Riy — Riy
Minimum Area 2.929n5(1.354ns) | 134.784um?
ATA Critical Cycle Optimization|| 1.73ns(1.134ns) 186.624m>
Gate Delay Optimization 1.641ns(1.131ns) | 196.992um?>
Minimum Area 1.714ns 141.696m?>
4-scale ring STA-resizing Path OptimizationA 2.068ns 176.256m> -1%
Path OptimizationB 1.712ns 141.696m>
Minimum Area 2.765ns 139.968um?
STA-resynthesis || Path OptimizationA 2.194ns 138.688um> 13 %
Path OptimizationB 1.985ns 139.968um?

Table 6.4: C-Muller pipeline results

operation is shown in Figure 6.18. The results for this design are shovabie 6.4.

In this design the timing results of the critical cycles optimization were the same amése

of gate delay optimization and they were slightly better than the ones prodydée bonventional

6.5. VME BUS CONTROLLER

200.000

195.000 ——

190.000
185.000 >

180.000

175.000

170.000 Ve

area

165.000 1

¢ ATA-O

160.000 i |

155.000 / .

v STA-O(resizing)
A STA-O

150.000 —

145.000

140.000 ——

135.000
130.000 \ \ I \ \

1.600 1.800 2.000 2.200 2.400
time

2.600

2.800

3.000

Figure 6.17: Time/area results oftescale c-Muller pipeline.

DSr LDS
DTACK-

S —

DTACK LDTACK

DSr+

LDS+

LDTACK+

DTACK+

DSR-

LDTACK-

LDS-

Figure 6.18: STG of a read operation in a vme bus controller

69

optimization through resizing. The netlist of this circuit is small and each sigmigtermined by one

or two gates as it is indicated by the following equations:
LDS =D+ CSC

DTACK =D

D =LDTACK -CSC

70 CHAPTER 6. RESULTS

Simulation Area Improvement
VME 5 .
Bus Controller (ns) (um?) o
Riy — Riy
4-scale ring ATA Minimum Area 1.253n(0.92ns) 31.104pm?
Critical Cycle Optimization|| 0.734ns(0.777ns) | 43.2um?
Gate Delay Optimization || 0.734ns(0.777ns) | 43.2um?
Minimum Area 0.806ns 31.104pm?
STA-resizing Path OptimizationA 0.745ns 39.744pm? 1%
Path OptimizationB 0.745ns 39.744pum?
Minimum Area 0.762ns 32.832um?
STA-resynthesis || Path OptimizationA 0.349ns 50.112pm? -61 %
Path OptimizationB 0.454ns 48.384pm?

Table 6.5: VME Bus controller results

CSC =DSR-(CSC+ LDTACK)

The specific design doesn’t contain many cycles dependencies, tfAigp8mization can be effec-

tive as well as ATA optimization. Figure 6.19 shows the timing/area results ofatigtists produced.

52.000

50.000 =
\

48.000 SN

46.000

44.000

42.000 : M

S
S 40.000 v \\ ¢ ATAO
| f \ v STA-O(resizing)
38.000 “ \ A STA-O
36.000 —
34.000 N
32.000 N
v
30.000 T T T T T T T T T \

0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000 1.100 1.200 1.300
time

Figure 6.19: Time/area results of a VME Bus Controller.

Conclusions

This work has shown that Asynchronous Timing Analysis (ATA) and optitionahrough a complete
EDA flow for asynchronous circuits is feasible. Prior work on an algorjtBvaluating exact bounds
on the Timing Separation of Events has been clarified and completed. Tibabigsues have been
examined, as well as application and complexity issues. The gap betweenahdamplementation
was covered successfully, achieving the development of a complete Eibfotahe timing analy-
sis of asynchronous circuits. A well-defined flow for the application ofAl& tool was proposed
for the optimization of asynchronous circuits and for validation of RTC. d@mization flow was
implemented within an EDA optimization tool, which was used for the optimization ofrakasyn-
chronous designs. The implemented and optimized through the ATA netlistscommgared with
implementations derived from contemporary flows of synchronous dedipe results proved the
proposed flow viable for exploring various implementations.

Future work mainly consists of extentions on the ATA algorithm and improvenientae EDA
optimization flow. Additionally to delay ranges, probabilistic functions may beaated with delay
constraints. This would be a step towards incorporation of statistical infmmia the ATA tool,i.e.
for the development of a Statistical ATA engine, and with respect to the Agévighm internals, the
direction of Symbolic Timing Analysis may be persued. Additional work is rexglior the EDA flow

71

72 CHAPTER 7. CONCLUSIONS

to handle circuit netlists automatically.Further examination is needed in the field®fughctionality
and incorporation of choice in specification. The generation of Petri:M&igh are now required to
include choice, as Free-Choice Petri-Nets, require further investigatloneover, the optimization
functionality can be further extended. Full technology-mapping fundiitymaay be implemented, as
well as full HDL parsing and library coverage. Finally, more technolatyytautes, such as transition
times, can be included in the analysis to implement a more accurate EDA tool, aletietodxplore

the implementation space of asynchronous circuits.

Bibliography

[1] Joep Kessels, Torsten Kramer, Ad Peeters, and Volker Timm. DE&CAldesign experiment

for a smart card application consuming low energy. In Jens Sparsgtewe Rurber, editors,
Principles of Asynchronous Circuit Design: A Systems Perspeathapter 13. Kluwer Aca-
demic Publishers, 2001.

[2] T. Murata. Petri Nets: Properties, analysis and applicatid®®ceedings of the IEEEpages

541-580, April 1989.

[3] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, andvakovlev. Logic Synthesis of

[4]

[5]

[6]

[7]

(8]

Asynchronous Controllers and Interface3pringer-Verlag, 2002.

Ken Stevens, Ran Ginosar, and Shai Rotem. Relative timingrdo. International Symposium
on Advanced Research in Asynchronous Circuits and Syspagss 208—-218, April 1999.

H. Hulgaard, S. M. Burns, T. Amon, and G. Borriello. An algorithnt &act bounds on the
time separation of events in concurrent systdiBEE Transactions on Computer&(11):1306—
1317, November 1995.

Henrik Hulgaard, Steven M. Burns, and Gaetano Borriello. Testsymehronous circuits: A
survey.Integration, the VLSI journall9(3):111-131, November 1995.

F. Commoner, A. W. Holt, S. Even, and A. Pnueli. Marked directeglysalournal of Computer
and System Sciengés511-523, 1971.

Steven M. BurnsPerformance Analysis and Optimization of Asynchronous CircBit® thesis,

California Institute of Technology, 1991.

[9] A. V. Aho, J. E. Hopcroft, and J. D. UllmarThe Design and Analysis of Computer Algorithms

Addison-Wesley, 1974.

73

74 BIBLIOGRAPHY

[10] Ken Stevens. Personsal contact.

[11] Ivan E. Sutherland. Micropipeline€ommunications of the ACN32(6):720—-738, June 1989.

