
Computer Science Department
University of Crete

An EDA Tool for the Timing Analysis, Optimization and Timing Validation of
Asynchronous Circuits

Master’s Thesis

Kasapaki Evangelia

April 2008
Heraklion, Greece

An EDA Tool for the Timing Analysis, Optimization and Timing Validation of
Asynchronous Circuits

by

Evangelia Kasapaki

Master’s Thesis

Department of Computer Science

University of Crete

Abstract

Synchronous circuits have enjoyed, since the mid-80’s, a constantly maturing EDA tool/flow

framework, which enabled the implementation of multi-million transistor chips, and sustains the pace

of the electronics industry. The cornerstones of EDA, which triggered itswide adoption are twofold,

i.e. Timing Analysis and Timing Analysis-Driven Optimization. Unfortunately, conventional Static

Timing Analysis cannot be directly applied to asynchronous circuits, as the latter are closed-loop

systems.

The primary reason why Asynchronous Design approaches are not attempted today is the lack of

any viable and complete EDA flow. This work presents a complete Asynchronous Timing Analysis

algorithm implementation, suitable for EDA, which is capable of analyzing the timing of any asyn-

chronous circuit. This work also demonstrates closed-loop Timing Analysis-Driven optimization for

asynchronous circuits.

The TA algorithm has its foundations in prior theoretical work on algorithms for deriving accu-

rate bounds for the separation time between events of concurrent systems. Several insufficient and

incomplete aspects of that work were clarified, completed and improved and acomplete and efficient

implementation has been achieved.

Results on several asynchronous circuits demonstrate the viability of the implemented algorithm,

and the capability to automatically optimize selectively the timing-critical subparts of an asynchronous

circuit for timing and the other non-timing critical subparts for area.

Thesis Supervisor:Manolis Katevenis, Professor

Thesis Vice-Supervisor:Christos P. Sotiriou, Collaborating Researcher ICS-FORTH

ii

Ergale�o EDA gia Qronik An�lush, Beltistopo�hsh kai Qronik EpikÔrwsh AsÔgqronwn Kuklwm�twnEuaggel�a Kasap�khMetaptuqiak Ergas�aTm ma Epist mh Upologist¸nPanepist mio Kr thPer�lhyhTa sÔgqrona kukl¸mata, apì ta mèsa th dekaet�a tou '80, apolamb�noun mia diark¸ wri-m�zousa ro ergale�wn HlektronikoÔ SqediastikoÔ AutomatismoÔ (EDA), h opo�a arqik� ka-tèsthse dunat thn ulopo�hsh oloklhrwmènwn kuklwm�twn me poll� ekatommÔria tranz�stor,en¸ s mera diathre� ton rujmì an�ptuxh th hlektronik biomhqan�a. Oi dÔo "akrogwnia�oil�joi� tou EDA e�nai h Qronik An�lush ka� h Beltistopo�hsh twn kuklwm�twn b�sh aut .Dustuq¸, h sumbatik Statik Qronik An�lush, h kajierwmènh dhlad diadikas�a, den mpore�na efarmoste� �mesa se asÔgqrona kukl¸mata, kaj¸ ta teleuta�a perièqoun p�nta an�drashkai ètsi e�nai kuklik�, dhlad kleistoÔ brìqou.O kÔrio lìgo gia ton opo�o den qrhsimopoioÔntai prosegg�sei AsÔgqronh Sqed�ashe�nai h èlleiyh oloklhrwmènwn kai bi¸simwn automatopoihmènwn ro¸n. H paroÔsa ergas�a pa-rousi�zei ènan oloklhrwmèno algìrijmo gia AsÔgqronh Qronik An�lush, kat�llhlo gia EDA,pou mpore� na efarmoste� gia thn an�lush tou qronismoÔ opoioud pote asÔgqronou kukl¸ma-to. Epiplèon, parousi�zetai diadikas�a betistopo�hsh, h opo�a ektele�tai se kleistì brìgqokai kajodhge�tai apì th qronik an�lush.O sugkekrimèno algìrijmo qronik an�lush èqei ta jemèli� tou se prohgoÔmenh jew-rhtik ergas�a, h opo�a aforoÔse an�ptuxh algor�jmwn upologismoÔ or�wn w pro th qronik apìklish sumb�ntwn par�llhlwn susthm�twn. Shmantikì arijmì apì elle�yei kai anep�r-keie th prohgoÔmenh ergas�a diasafhn�sthkan, o orismì kai ta qarakthristik� tou algo-r�jmou oloklhr¸jhkan all� kai belti¸jhkan, kai epiteÔqjhke telik¸ m�a apodotik ulopo�hsh.Apotelèsmata apì thn an�lush di�forwn asÔgqronwn kuklwm�twn epideiknÔoun thn apodo-tikìthta tou ulopoihmènou algor�jmou kai thn ikanìtht� tou na belti¸nei autìmata kai epilekti-k�, ta mèn qronik¸ kr�sima tm mata enì asÔgqronou kukl¸mato w pro thn kajustèrhsh,
iii

ta dè upìloipa tm mata w pro to embadì.Epìpth Metaptuqiak Ergas�a: Manìlh Kateba�nh, Kajhght Epiblèpwn Metaptuqiak Ergas�a: Qr sto Swthr�ou, Sunergazìmeno Ereunht IP-ITE

iv

Acknowledgments

Firstly, I would like to thank my parents for their support all these years. Ifit was not for their

help I would have never made it to here.

I would like to recognize the contribution of my supervisor, Dr. Christos Sotiriou and thank him

for his guidance and support, throughout this work. Additionally, i wouldlike to thank all the people

with whom I have worked during this thesis for their constructive remarks and sharing of ideas.

This work was conducted in collaboration with the ICS-FORTH and funded by it.

Last but not least, I would like to thank my friends for their support, through difficult times.

v

vi

Contents

1 Introduction 1

2 Timing Analysis of Asynchronous Circuits 3

2.1 Electronic Design Automation (EDA) and Hardware Design 3

2.2 Timing Analysis Methods . 4

2.3 Specification Models for Asynchronous Timing Behavior 5

2.3.1 Petri-Nets . 5

2.3.2 STGs . 6

2.3.3 Event Rule (ER) System . 7

2.4 Timing Separation of Events . 7

3 Timing Separation of Events in Concurrent Systems 11

3.1 Specification Model .11

3.1.1 Execution Modeling . 12

3.1.2 Problem Definition . 13

3.2 Acyclic TSE Algorithm . 14

3.2.1 m-values and M-values . 14

3.2.2 Acyclic TSE Algorithm . 15

3.3 TSE Algorithm . 16

3.3.1 Backwards Unfolding and Functions .16

3.3.2 Bounding the Maximum Separation Time 18

3.3.3 Repetition Parameters . 19

3.3.4 Function Matrices . 20

3.4 Open issues . 21

vii

4 Analysis, Clarifications and Improvements on the Timing Separationof Events (TSE)

Algorithm 23

4.1 Specification Model .24

4.2 Critical Cycles and Repetition Parameters .. 24

4.2.1 Ratio’ed Cycles and Maximum Ratio Cycles 25

4.2.2 Calculation ofǫ∗ . 26

4.2.3 Calculation ofk∗ . 27

4.2.4 Examples . 28

4.3 Cutsets . 29

4.4 Closure . 30

4.4.1 Closure in Closed Semirings . 30

4.5 Relation Matrices . 31

4.6 Minimum Separation Analysis . 32

4.6.1 m-values andM -values . 32

4.6.2 Cycles and Repetition Parameters . 34

4.6.3 Functions . 35

4.7 Implementation and Complexity . 36

4.7.1 Acyclic TSE Version . 36

4.7.2 Complete TSE Version . 37

4.7.3 Minimun Analysis . 41

4.7.4 Floating Point Arithmetic . 41

4.8 TSE Analysis vs. worst-case analysis 41

5 Application of TSE tool 43

5.1 Optimization . 43

5.1.1 Circuit Specification . 45

5.1.2 Asynchronous Timing Analysis (ATA) and Optimization 48

5.2 Relative Timing Constraints (RTC) Validation .49

5.3 An automated tool for optimization . 49

5.3.1 Technology Library . 49

5.3.2 Input Netlist . 50

5.3.3 Input Signal Transition Graph (STG) .51

5.3.4 Optimization Process . 51

viii

6 Results 55

6.1 Experimental Procedure .. . 55

6.2 Two-phase Overlapping Desynchronization Controller 57

6.2.1 Scale of 1 ring controller . 58

6.2.2 Scale of 3 ring controllers . 59

6.2.3 Scale of 3 ring controllers including wire delays60

6.2.4 Fork-join Pipeline Structure . 60

6.3 Relative-Timed Burst Mode (RTBM) Controller 61

6.4 C-Muller Pipeline . 67

6.5 VME Bus controller . 67

7 Conclusions 71

References 72

ix

x

List of Figures

2.1 Transition firing in a Petri-net .. 6

2.2 xyz STG Model . 7

2.3 An ER System . 8

3.1 An example Process Graph. .. . 12

3.2 Unfolded graph of Figure 3.1 with upper delay bound D assignment to allevents. . . 13

3.3 Unfolded graph of Figure 3.1 withm- andM -value annotation. 16

3.4 Portion of the backwards unfolded process graph for the processgraph 17

3.5 Bounding TSE . 18

4.1 Portion of the backwards unfolded graph for the Process Graph ofFigure 3.1 labeled

with m-values fors(β)=a(1) . 25

4.2 Process graphG∗ of maximum ratio cycles on two different strongly connected com-

ponets. The edges in dotted lines are the edges of the initial process graphG′ that are

not part of a maximum ratio cycle. 27

4.3 Process graphG∗ of maximum ratio cycles with two cycles having a common event. 27

4.4 Process graphG2 . 29

4.5 Unfolded process graph labeled with m-values fors(β)=a(1) 29

4.6 Unfolded process graph labeled with m-values fors(β)=b(1) 29

4.7 Time axis for maximum separation analysis. .33

4.8 Time axis for minimum separation analysis. 34

4.9 Evaluation ofm- andM -values in maximum and minimum separation analysis. . . 35

4.10 Unfolded process graph with worst-case timing analysis annotation 42

4.11 Unfolded process graph with maximum timing separation analysis between eventsa5

anda6 . 42

xi

5.1 Optimization flow using ATA. 44

5.2 Optimization flow using ATA. 45

5.3 controller netlist . 46

5.4 State Graph Analysis of the controller .. 46

5.5 Signal Transition Graph of RTBM controller 47

5.6 Validation flow using ATA. 50

5.7 Optimization tool process . 52

6.1 Experimental Procedure Flow. .. . 56

6.2 Desynchronization controller STG .. . 58

6.3 Desynchronization controller netlist .. . 58

6.4 Two-phase desynchronization controller netlist in 1-scale ring 59

6.5 Two-phase desynchronization controller netlist in 3-scale ring 59

6.6 A fork-join desynchronization controllers’ structure 62

6.7 Time/area results of desynchronization controller in1-scale ring. 63

6.8 Time/area results of desynchronization controller in3-scale ring. 63

6.9 Time/area results of desynchronization controller in3-scale ring, with wire delay. . . 64

6.10 Time/area results of desynchronization controller in fork-join pipeline.. 64

6.11 RTBM controller netlist in1-scale ring topology . 65

6.12 Signal Transition Graph of RTBM controller 65

6.13 Time/area results of RTBM controller in1-scale ring. 66

6.14 Time/area results of RTBM controller in4-scale ring. 67

6.15 C-muller gate implementation . 68

6.16 C-muller pipeline . 68

6.17 Time/area results of a4-scale c-Muller pipeline. 69

6.18 STG of a read operation in a vme bus controller 69

6.19 Time/area results of a VME Bus Controller. .. . 70

xii

List of Tables

6.1 Desynchronization controller in 1-scale, 3-scale ring and 3-scale ring including wire

delays results. 61

6.2 Desynchronization controller in fork-join pipeline results. 62

6.3 RTBM controller in 1-scale and 4-scale ring results. 66

6.4 C-Muller pipeline results . 68

6.5 VME Bus controller results .70

xiii

xiv

1
Introduction

The defacto methodology for digital circuit design and implementation is Synchronous Timing, which

requires the existence of the clock signal. Clock signals enable the circuits’synchronization and the

clock cycle is the minimum time unit. The performance of any synchronous circuit is, therefore,

determined by it. Based on the notion of clock cycle, a well-defined and highlyautomated procedure

is implanted in contemporary Electronic Design Automation (EDA). This constitutessynchronous

design as highly appealing methodology.

On the other hand, asynchronous design, while theoretically present throughout the years, still

has not been concretely defined and developed in an EDA flow.In asynchronous design, the notion

of the clock is absent and the synchronization is local based on handshakes.This indicates a dynamic

functionality and a more fine-grained control of the circuit, resulting in a highly demanding design

procedure, but also some key advantages over the synchronous one[1]. These are in terms of

• performance: their dynamic behaviour takes advantage of the average case of operation.

• variability tolerance: their timing can adapt through variations in manufacturingprocess, tem-

perature or voltage

• reduced electromagnetic emissions.

1

2 CHAPTER 1. INTRODUCTION

The complex process required for asynchronous design imposed limits on their wide acceptance.

The main obstacle in the use of asynchronous design is the absence of EDAtools used in the design

and implementation process. In contrast, there is a variety of such tools developed for synchronous

design. Using the existing EDA tools developed for synchronous design,to implement asynchronous

circuits is challenging. The latter were developed focusing on specific aspects of synchronous design,

therefore either providing inadequate information or being non-applicablealltogether. This demon-

strates the need for developing EDA tools specifically targeted to asynchronous circuits.

The aim of this master’s thesis has been the development and implementation of a Timing Analy-

sis algorithm in the field of EDA tools for asynchronous circuits. A main requirement of this algorithm

has been the ability to handle cyclic circuits, a characteristic of asynchronous circuits. An algorithm

for calculating exact bound on the timing separation of events that was identified. This work analysed,

improved and extended unexplored areas, leading from theoretical analysis to the implementation of

a tool for the timing analysis of asynchronous circuits. This tool for the timing analysis was incor-

porated in a simple mapping tool, also implemented in this work, performing optimizationsthrough

gate resizing. The technique was applied to some asynchronous controllers and the results were com-

pared to the ones that came from existing tools for timing analysis, synthesis andoptimization of

synchronous circuits.

This master’s thesis is organized as follows: In Chapter 2, a review on timing analysis is presented

and how it is applied for synchronous and asynchronous circuits. Additionally, specification models

for the timing behavior of asynchronous circuits are examined, as well as performance metrics for

their performance evaluation. In Chapter 3, previous work on an algorithm for the timing separation

of events in concurrents systems is presented, with the issues that are leftincomplete or unclear. In

Chapter 4, these issues are addressed, as they were studied in this thesis, leading to a complete picture

of the algorithm. An implementation of an EDA Timing Analysis (TA) tool for asynchronous circuits

is, also, presented, which is based on the particular algorithm, with its complexityestimation. In

Chapter 5, applications of this TA tool are examined, and flows are proposed for the optimization of

asynchronous circuits and validation of Relative Timing Constraints (RTC).The implementation of

an optimization tool is also described. Optimization of several asynchronouscircuits was performed,

using the implemented optimization tool in the proposed flow and the results, as wellas the experi-

mental procedure are presented in Chapter 6. Finally, the conclusions drawn from the described work

with some suggestions for future work are included in Chapter 7.

2
Timing Analysis of Asynchronous Circuits

This chapter covers the subjects of Timing Analysis and Performance Evaluation for Asynchronous

circuits. Methods for Timing Analysis are presented and alternative approaches suitable for asyn-

chronous design are examined. Due to the particular characteristics of asynchronous design, different

specification models and different performance metrics are required, some of which are presented in

this chapter.

2.1 EDA and Hardware Design

The development of hardware design in recent years owes its improving tothe use of EDA tools. The

success of EDA tools is due to the automated procedure that provides in the hardware design process.

The designer is provided with the means to reach an implementation without being concerned with

every specific aspect of the design implementation, whereas they can focus on architectural and de-

signing issues. A description of the circuit is required in a Hardware Description Language (HDL)

form and by specifying some parameters and using a technology library a circuit can be automatically

synthesized by an EDA tool. In other words, the specification is made independent of the implemen-

tation but the implementation is conformed by it.

Moreover, various implementations can be derived from the same system specification, with dif-

3

4 CHAPTER 2. TIMING ANALYSIS OF ASYNCHRONOUS CIRCUITS

ferent characteristics,i.e. minimum area, performance and power. The space of all possible imple-

mentations is explored using an EDA tool, resulting to the most suitable for each case,i.e. EDA

is the means to move along the Pareto curve through different implementations ofthe same design.

Additionally, the specification is independent from the implementing technology,due to the use of

technology libraries in synthesizing. Thus, changes in technology are easily imported in designs, as

they don’t require re-designing of every system for the new technology, only by re-synthesizing the

system using the new library.

It is apparent that an EDA tool is not merely a translator of a circuit specification to the imple-

mentation. It is a tool that performs various complex procedures, during implementation. Apart from

mapping functionality to implementation units, it performs analysis on the system forvarious charac-

teristics, such as for timing, area or power, exploring trade-offs to reach an optimized implementation,

for a given set of constraints. For the development of an EDA tool numerous algorithms need to be

examined and implemented.

Contemporary EDA tools focus on synchronous hardware design. Various EDA tools have been

developed focusing on specific aspects of synchronous design. Thisis not the case with asynchronous

hardware design. Asynchronous design is not used today, due to the fact that a complete and ma-

ture design flow does not exist. Hence, designing of asynchronous circuits requires manual work on

implementation and trade-off exploration.

The most important factor both in the design and in the implementation process, is the circuit’s

timing. Apart from providing information for the attainable performance of a specific implementation,

it provides guidelines for timing-drive optimizations. Thus, a TA engine for asynchronous circuits is

a cornerstone for any viable asynchronous EDA flow.

2.2 Timing Analysis Methods

In synchronous design timing analysis of circuits is performed by Static Timing Analysis (STA). STA

considers all the paths of the circuit netlist and identifies a path of maximum delay. Specifically, the

circuit is partitioned into stages of combinational logic separated by registers. Each combinational

logic stage is considered and analyzed individually. The performance metric is the maximum clock

cycle time,i.e. the longest path of any combinational stage, required to complete a computation. STA

is typically performed by a Depth-First-Search (DFS) algorithm

Another method for performing timing analysis in synchronous design aiming atmulti-corner es-

timations is Statistical Static Timing Analysis (SSTA). This method follows the same principles as

STA but incorporates probability in the delay of gates. STA considers onecorner of analysis usu-

ally worst-case, while SSTA considers delays with a probability, accordingto statistical information.

2.3. SPECIFICATION MODELS FOR ASYNCHRONOUS TIMING BEHAVIOR 5

Reseach studies the probability relations when following a path, and the beststatistical model.

In asynchronous design, no well-established methodology for timing analysis exists. Commonly,

timing analysis is performed by applying point-to-point STA. In asynchronous circuits the processing

and forwarding of computational data is controlled locally through handshaking [1], i.e. event-driven

control. Therefore, the control along stages is determined by the timing of each computational stage

and the timing of its neighbors. Moreover, asynchronous timing depends onthe interaction with the

environment and may exhibit transient behaviour during timing state changes. This implies a large

amount of timing dependencies throughout the circuit, and furthermore dependencies are cyclic and

closed-loops, as signals often depend back on themselves. The STA model does not account for cyclic

dependencies, as it cuts the dependencies whenever they are located throughout a netlist. Whenever,

a cyclic dependency is identified, the loop is cut in a non-deterministic way,i.e. the point of cutting

depends on the sequence the netlist is traversed and not on the netlist itself. In any case, the cutting of

a dependency leads to a timing estimation error.

Another way of performing timing analysis in asynchronous circuits is by simulation. However,

this serves only performance evaluation and doesn’t provide the means for optimizations, moreover

to form the basis for an EDA tool.

2.3 Specification Models for Asynchronous Timing Behavior

As asynchronous circuits are essentially hardware implementations of concurrent systems, their be-

havior and its specification are often modelled by concurrent models of computation, such as Petri-nets

[2] or Process Algebras. This work focuses on Petri-net modeling methods,i.e. graph modelling.

2.3.1 Petri-Nets

A Petri Net is a formal model for the description and analysis of concurrent systems, such as asyn-

chronous circuits, distributed and parallel systems. A Petri Net defines system behavior as a directed

graph with two kinds of nodes, places and transitions, and tokens that represent data values that can

move through the arcs of the graph. It is widely used for the specification inasynchronous design.

Specifically, a Petri Net is a directed, weighted graph with two kinds of nodes, places and tran-

sitions and an initial marking. Arcs of the graph are either from a place to a transition or from a

transition to a place. As it appears in the example Petri-net of Figure 2.1 places are represented as

circles, while transitions are represented as bars or boxes. A marking ofthe Petri-net assigns a number

of tokens in places and represents the current state of the system. They are represented as black dots

in places.

Tokens can move independently from each other through the arcs of the graph changing the state of

6 CHAPTER 2. TIMING ANALYSIS OF ASYNCHRONOUS CIRCUITS

the system. The presence of a token in a place represents that a data valuesatisfies the corresponding

constraint. Each transition has a set of input places,i.e. pre-conditions, and a set of output places,

i.e. post-conditions. A transition is enabled,i.e. the corresponding event may occur, only if all the

preconditions are satisfied,i.e. only if all the input places contain at least one token. The firing of the

transition,i.e. the actual occurrence of the event, takes place with the removing of one token from all

the input places and placing one token in every output place, resulting in a new marking,i.e. state [2].

Figure 2.1 shows a Petri-net with an enabled transition on the left. Event or transitiona may occur

since preconditionsp1, p2 are satisfied. The transition has fired in the Petri-net on the right.

a

p1

p2a

p1

p2

p3
p3

Figure 2.1: Transition firing in a Petri-net

Petri-nets are complex mathematical models to specify any behavior. Usually, subclasses of Petri-

nets are used, according to specific applications. Some classes are described here:

State Machines Petri-nets such that each transition has exactly one input place and exactlyone output

place.

Marked Graphs Petri-nets such that each place has exactly one input transition and exactlyone

output transition.

2.3.2 STGs

Signal Transition Graphs (STGs) are also graph models able to represent the concurrent behavior and

causality in asynchronous circuits, as in other concurrent systems. They are a particular type of Petri-

nets, specifically they are Marked Graphs with no choice. Transitions areassociated with changes of

the values of binary variables.

Since STGs are Marked Graphs,i.e. each place has a single input and a single output transition,

places can be omitted. Thus, an Signal Transition Graph (STG) is represented by a graph, where the

nodes represent binary transitions of signals, while the arcs represent the causality of two events.

2.4. TIMING SEPARATION OF EVENTS 7

Inheriting form the definition of Petri-nets, STGs contain tokens, placed to arcs of the graph. A

token placed on an arcr, means that the source transition ofr has fired, and the target transition of

r is enabled to fire. A transition is enabled to fire when all arcs that reach this transition contain a

token. The firing of this transition takes place with the removing of one token from each input arc and

the placing of one token in each output arc. The tokens that appear in the specification of the system

represent its initial state,i.e. its initial marking [3].

Figure 2.2 shows an example of an STG. This STG specifies that, initially, transition x+ will fire.

Since,x+ has fired, transitionsz+ andy+ are enabled and they may fire concurrently. Moreover,

transitionz− will be enabled as soon as transitionsx− y+ fire.

y−

x+

z+

y+

x−

z−

Figure 2.2: xyz STG Model

2.3.3 Event Rule (ER) System

An ER System is a Marked Graph labeled with a delay range on its arcs. As in STGs places can be,

also, omitted. Transitions or events, in general, are represented as nodes in the graph. The arcs of

the graph represent the causality between events, as well as timing constaints specified by the delay

ranges on the arcs. The STG can be translated into an ER System, by switching each transition to a

single event, removing tokens and assigning each arc with a delay range, as it appears in Figure 2.3

The practical meaning of an arc, for examplea → b, is that for eventb to occur, eventa must

have occurred first. Delay range[d1, D2] of the arc means that since eventa occurs, the necessary

processing for eventb to occur requires at leastd1 and at mostD2 time units. Accordingly, for evente

to occur, eventsc andd must have occurred and at leastmax(d3, d5) time and at mostmax(D3, D5)

time must have passed.

2.4 Timing Separation of Events

After defining the specification model for a design behavior, a timing metric mustbe specified for the

performance evaluation. One possible performance metric is the total time required for a computation.

However, this depends on the characteristics and the complexity of the computation. Moreover, it

8 CHAPTER 2. TIMING ANALYSIS OF ASYNCHRONOUS CIRCUITS

f

a

b

d

c

e

[d1,D1]

[d2,D2]
[d3,D3]

[d5,D5]

[d6,D6][d7,D7]

[d4,D4]

Figure 2.3: An ER System

can’t provide an estimation on how much time is consumed in various parts of the design. Another

possibility is the time between consequent occurrences of an event or transition, i.e. cycle period of

the signal, or generally the time between any two events. The cycle period of signals is used as a

performance metric for concurrent systems.

Timing separation between events can be a useful tool in asynchronous design process. It can form

the basis for a timing analysis tool and moreover, can be used for optimization.Performing timing

analysis on a circuit specification provides information and directions for optimization. Optimization

functionality can be applied through a closed loop. In every iteration timing analysis is performed

and optimizations are applied according to the given directions. Once the optimizations are applied,

the Timing Separation of Events (TSE) analysis step confirms the effectiveness of the changes and

provides directions for further optimizations.

TSE analysis can also be used for RTC validation. RTC are assumptions about the relative timing

of events. Such assumption can lead to simplifications on the specification of designs. A simplified

specification with RTC can lead to improved implementation of circuits [4]. The implemented circuit,

however, will only operate correctly, if the RTCs are valid, which may not be guaranteed by all stages

of the implementation. TSE analysis can be applied after the implementation of the circuit and based

on the timing of the specific implementation to prove the validity of the assumed constraints.

An alternative of timing separation of events for the timing analysis would be unfolding the circuit

several times and applying DFS algorithms for traversing the circuit. However, this accounts only

for a single value in the delay of each component. Moreover, it isn’t clearthe required number of

unfoldings until an accurate estimation is reached. An other alternative is byPetri-net simulation. A

Petri-net is simulated starting from initial marking and following each possible state change caused

by the moving of each token. The great amount of possible states imposes a high complexity on the

solution resulting in an Integer Linear Programming (ILP) problem, which is NP-complete. Thus,

attetntion is drawn at TSE.

2.4. TIMING SEPARATION OF EVENTS 9

In [5] an algorithm for the evaluation of bounds on the timing separation of events is presented.

It considers ER Systems with concurrent behavior and delay ranges onconstraints and evaluates tight

bounds on the timing separation of events. This algorithm can handle cyclic graphs and can also take

into account infinite execution of the system. This is achieved using algebraicmodels and structures

that will be analyzed in following chapters.

10 CHAPTER 2. TIMING ANALYSIS OF ASYNCHRONOUS CIRCUITS

3
Timing Separation of Events in Concurrent Systems

Timing Separation of Events (TSE) appears as important metric for the analysis and evaluation of

asynchronous designs. Alternative approach of timing analysis appearunattractive, so an algorithm

for the TSE. The algorithm studied, as it is presented in [5], concerns thetheoretical analysis behind

the timing separation of events in concurrent systems. The specific algorithmhandles graphs with

cyclic dependencies, a characteristic of concurrent systems such as asynchronous circuits, scheduling

protocols, parallel systems and others. Additionally, it considers the theoretical infinite execution of

such a system, calculating tight minimum and maximum bounds on the timing separation of any set

of events. However, [5] focuses on the evaluation of timing separation asa theoretical problem and

was incomplete in certain aspects with respect to providing a complete picture ofthe algorithm and

for leading to an efficient implementation. In this Chapter the algorithm for the timingseparation of

events is presented as it appears in [5], along with its inefficiencies.

3.1 Specification Model

The specification model describing the concurrent system that is considered in [5] is the Process

Graph. The Process Graph is an ER System and it is defined as:

11

12 CHAPTER 3. TIMING SEPARATION OF EVENTS IN CONCURRENT SYSTEMS

Definition 1 A PG is is a directed graphG′ = 〈E′, R′〉, where:

• E′ is a finite set of events, the vertices

• R′ is a set of rule templates, the arcs

Each arc is labelled with a delay range[d, D] and an occurrence index offsetǫ. The delay range

has integer bounds (0 ≤ d ≤ D) and the occurrence index offsetǫ ∈ Z, indicates the index difference

between the events for a rule template,i.e. the rule connects events withǫ unfoldings difference. For

example, an index difference of1 between two events indicates that the final event depends on the

occurrence of the initial event of one unfolding back. The set of events always includes a unique static

event, calledroot, which is used to specify the initial state of events of the system. Eventroot must

reach every other event in the Process Graph and no event is allowed toreachroot. Moreover, the

specific analysis considers connected Process Graphs that haveǫ(c) > 0 for all cyclesc, i.e. the sum

of all ǫ values of the arcs of cyclec (ǫ(c)) must be positive.

A simple example of a Process Graph appears in Figure 3.1. The vertical lines on the edges

represent the number of the occurrence index offsetǫ.

a b[4,10]

[1,2]

[5,20]

[1,6]

[0,0]

root

Figure 3.1: An example Process Graph.

The semantics of a process graph modeling a concurrent system dictate that an eventv may only

occur when all the events that posses a rule leading to the eventv have occurred, according to the

timing and indexing constraints. For example, for a ruler : u → v with [d, D], then the constraints

imposed by the ruler require timet : d ≤ t ≤ D, after eventu has occurred, before eventv may

occur.

3.1.1 Execution Modeling

The execution of the system can be modeled by a process graph by unfolding the graph to an acyclic

directed graph. This process is called the execution of the Process Graph. Each event of the process

graph may occur several times on the execution, so every event in the unfolded graph is labeled with

3.1. SPECIFICATION MODEL 13

an occurrence index. The first occurrence of an eventv is labeled with occurrence index0 (v0), the

second with1 (v1), etc. Additionally, the edges with an occurrence index offsetǫ = β connect events

with an index differenceβ.

Moreover, the occurrence of an eventvk implies a time of occurrence, denoted asτ(vk). There-

fore, a timing assignment defines an execution instance of a process graph. This timing assignment

must be consistent with the timing constraints of the rules. According to the semantics of the execution

this timing assignments must satisfy the following equation:

max{τ(uk−ǫ) + d|uk−ǫ → uk ∈ R} ≤ τ(vk) ≤ max{τ(uk−ǫ) + D|uk−ǫ → uk ∈ R} (3.1)

An execution, of the process graph of Figure 3.1 appears in Figure 3.2.The specific timing

assignment is based on the upper delay bound for all the rules of the edges of the graph. By looking

at the timing assignment, it is apparent that the difference between same event occurrences, initially,

change, as we move towards further unfoldings and, finally, reaches apoint where the difference is

stabilized.

12282 102

88 10868

62

48

42

28

222

0

root

10

a0 a1 a2 a3 a4 a5 a6

b6b5b4b2 b3b1b0

Figure 3.2: Unfolded graph of Figure 3.1 with upper delay bound D assignment to all events.

3.1.2 Problem Definition

The problem of calculating the maximum or minimum timing separation of events on a process graph

with delay ranges on the arcs requires identifying the bounds that limit the timing separation in a

range. So, considering a source events and a target eventt in E′ with an occurrence index separation

β, the minimum/maximum timing separation will be the differenceτ(tk) − τ(sk−β), according to

delay assignments. Minimum and maximum integersδ and∆ can be determined that bound this

difference as

δ ≤ τ(tk)− τ(sk−β) ≤ ∆ (3.2)

The problem that is addressed in [5] is the evaluation of the maximum timing separation between

two events,i.e. evaluating an upper bound∆ on the difference in the above equation. The key idea

is to choose a timing assignment that will maximize the differenceτ(tk) − τ(sk−β). The timing

assignment to do that is one that forces the source event to occur on its earliest possible time and

14 CHAPTER 3. TIMING SEPARATION OF EVENTS IN CONCURRENT SYSTEMS

(based on this timing assignment to force) the terminal event to occur on its latest possible time, for

all possible occurrences.

It is claimed in [5] that minimum separation analysis can be addressed as a maximum separation

analysis with a mathematical transformation in the equation,i.e. as

τ(sk)− τ(tk−(−β)) < −δ

However, the formulation presented is incomplete and insufficient to minimum separation analysis.

This problem was addressed in this thesis and is presented in the next chapter.

3.2 Acyclic TSE Algorithm

Two approaches are followed for the evaluation of an upper bound on TSE analysis. The first and

simplest considers only a portion of an execution instance of a system. Based on this portion, the ..

addresses the TSE ... of identifying the upper bound∆α for the timing separation of two specific event

occurrences,sα−β andtα. For example, considering eventsa andb of the process graph of Figure 3.2,

as source and target, respectively, and an index separationβ = 0, the separation∆1 can be evaluated

as an upper bound onτ(b1)− τ(a1). Accordingly, the separation∆2 can be evaluated as upper bound

on τ(b2)− τ(a2), the∆i asτ(bi)− τ(ai), etc.

3.2.1 m-values and M-values

Intuitively, the algorithm must identify a timing assignment that forces the source event to occur at the

earliest possible time and based on this timing assignment to force the terminal event to occur at the

latest possible time. In [5] the earliest and latest execution time are modeled through timing variables

m- and M-values, in relation to the source and target event, respectively.Specifically, the m-values of

an eventvk represent the maximum offset delay between the event in question and the source event,

using the lower delay bounds of the edges. So, they are calculated in relation to the source eventsα−β

as follows:

m(vk) = max
{

d(h) | all pathsvk
h
−→ sα−β

}

(3.3)

The M-values of an eventvk represent the maximum offset delay between the event in question

and the target event, using the upper delay bounds of the edges. They are calculated in relation to

previous occurrences of other events, through the following equation.

M(vk) =

max

{

min(0, M(uj) + D + m(vk)−m(uj)) | uj
[d,D]
−−−→ vk

}

if vk has path tosα−β

max

{

M(uj) + D + m(vk)−m(uj) | uj
[d,D]
−−−→ vk

}

if vk has no path tosα−β

3.2. ACYCLIC TSE ALGORITHM 15

3.2.2 Acyclic TSE Algorithm

The acyclic algorithm determines the maximum separation between two specific event occurrences

sα−β andtα of a finite portionGα of the unfolded process graph, whereα is the number of unfoldings.

The steps of the algorithm are:

1. Fromsα−β to root assign timing values using the lower bound on delays

2. Fromroot to tα assign timing values using the upper bound on delays

3. Use assignments to estimate the TSE ofsα−β andtα

The algorithm in more detail is presented followingly.

ATSE(Gα , sα−β , tα)

1: for uj in reverse topological order ofGα do

2:

m(uj) =

0 if uj = sα−β

0 if uj has no path tosα−β

max{d + m(vk) | uj
[d,D]
−−−→ vk, vi ; sα−β}

if uj has path tosα−β

3: end for

4: M(root)← 0

5: for vk in normal topological order ofGα do

6: if vk has path tosα−β then

7: M(vk)← max

{

min(0, M(uj) + D −m(uj) + m(vk)) | uj
[d,D]
−−−→ vk

}

8: else

9: M(vk)← max

{

M(uj) + D −m(uj) + m(vk)) | uj
[d,D]
−−−→ vk

}

10: end if

11: end for

12: return M(tα)−m(tα)

For example, consider the Process Graph of Figure 3.1 and the problem of finding the maximum

separation∆3 of eventsa2 anda3 as source and target, respectively.m-values are calculated from

source to root andM -values are computed from root to target. The unfolded graph with the m- and

M-value annotation appears in Figure 3.3. The result is∆ = M(a3)−m(a2) = 25− 0 = 25.

16 CHAPTER 3. TIMING SEPARATION OF EVENTS IN CONCURRENT SYSTEMS

root

a0 a1 a2 a3

b2 b3b1b0

m=0m=4

m=8

M=0

M=0

m=8

m=6

m=0

m=1 m=0

M=0 M=0 M=25

M=0 M=0 M=19

SOURCE TARGET

Figure 3.3: Unfolded graph of Figure 3.1 withm- andM -value annotation.

3.3 TSE Algorithm

The approach presented above estimates an upper bound on the timing separation of two specific

occurrences of eventssα−β andtα of a portion of an unfolded process graphGα. However, the issue

of estimating the TSE of two events of a Process Graph concerns the separation over all possible

occurrences rather than two specific ones. The issue must be generalized to take into account infinite

execution. The infinite possible occurrences are represented throughsequential unfoldings of the

initial process graph and the maximum TSE is defined as

∆ = max{∆k : k ≥ max(0, β)} (3.4)

which implies infinite number of applications of the previous algorithm. Instead special algebraic

structures are used for the modeling and analysis of infinite execution.

3.3.1 Backwards Unfolding and Functions

The infinite different∆k analyses imply infinite different source and terminal events for each anal-

ysis and consequently different m- and M-values in each unfolding. To avoid recalculation in each

unfolding, backward unfolding is used and timing functions are defined for every event.

Backwards unfolding follows the same concepts as normal unfolding but instead of considering

root as a steady unique reference point, it considers the target eventas the steady unique reference

point. This only causes a change in the numbering of event occurrenceswhile keeping the source and

target events unique for every unfolding. Instead of numbering eventsstarting from root event and

proceeding to the source and terminal events (sα−β , tα), events are numbered relative to target event

tα as the reference event. For every eventv the relative occurrence index isα− k and is writtenv(k).

The relative occurrence index fortα is 0 and forsα−β is β. For each unfoldingk a differentroot

event is considered and is denoted asrootk.

3.3. TSE ALGORITHM 17

Following this method, Figure 4.5 illustrates a portion of the backward unfoldedprocess graph of

Figure 3.1.

a(0)

b(0)

a(1)

b(1)

a(2)

b(2)

a(3)

b(3)

a(4)

b(4)

a(5)

b(5)

a(6)

b(6)

a(7)

b(7)
16 1

4 08

11

12

16

17

21

22

26

27

Figure 3.4: Portion of the backwards unfolded process graph for the process graph

Timing functionsare defined as a set of pairs{〈l1, w1〉, ..., 〈ln, wn〉} and corresponds to the func-

tion:

f(x) = max{min(x + li, wi) | 1 ≤ i ≤ n}

Moreover, specific operators are defined over the timing functions. Function composition (⊗)

relates the functions along a path of the graph and is defined as(f ⊗ g)(x) = g(f(x)). Function

maximization (⊕) relates functions of two different paths merging in one and is defined as set union,

(f ⊕ g)(x) = f ∪ g.

To model the TSE problem with functions,edge functionsfr are associated with each edge, based

on delays of the rules and whether there is a path to source events or not.

fr =

{〈lr, 0〉} if uk has path tosα−β

{〈lr,∞〉} if uk has no path tosα−β

wherelr = D −m(uk−ǫ) + m(vk)

Using the operators of maximization and compositiontiming functionsF can be defined for each

event, in relation to other events. The main characteristic/attribute of these functions is that when

evaluated, they provide the M-value for the specific event, in relation to the other event recursively,

through all the paths between them. For example, the M-value of eventt0 can be evaluated relatively

to the M-value ofrootk with the function:

M(t0) = Frootk→t0(M(root)) = Frootk→t0(0)

Moreover,∆k = M(t0) − m(t0) ⇒ ∆k = Frootk→t0(0) − m(t0). So, TSE can be also evaluated

through m-values and timing functions. Combined with backward unfolding, m-values and relative

functions are calculated once for each unfolding step and incrementally for each additional unfolding.

18 CHAPTER 3. TIMING SEPARATION OF EVENTS IN CONCURRENT SYSTEMS

3.3.2 Bounding the Maximum Separation Time

A key observation of several examples is that by unfolding several times aprocess graph the maximum

TSE∆k of two events will eventually reach a constant value or exhibit periodic behavior. However,

when continuously unfolding, a means of determining convergence is required. Therefore, along with

unfolding the graph, upper and lower bounds on∆ are computed for each iteration. When these

bounds converge then the converging value is the maximum separation overall ∆k values, as in

Figure 3.5.

upper bound

lower bound

max TSE

Figure 3.5: Bounding TSE

The pseudocode of an algorithm evaluating the TSE based on relative functions and bounds ap-

pears below.

TSE-Unfold(G,s,t,β,kmax)

1: k ← max(0, β)

2: ∆⊥ ← −∞

3: ∆⊤ ← +∞

4: while ∆⊥ < ∆⊥ ∧ k < kmax do

5: ConstructGk

6: ∆k ← Frootk→t0(0)−m(t0)

7: ∆⊥ ← new lower bound value

8: ∆⊤ ← new upper bound value

9: k ← k + 1

10: end while

11: return (∆⊥, ∆⊤)

The lower bound is evaluated as the maximum of∆k until the current unfolding. The upper bound

is evaluated using recursive functions and cutsets. A cutset n [6] is referred to as a set of relative event

occurrences, such that for every further unfolding,Gj , j ≥ k, every path fromrootj to t0 goes through

3.3. TSE ALGORITHM 19

an element of the cutset. For a given cutsetX for Gk the functionFrootk→t0 is defined as:

⊕

{Frootk→uj
⊕ Fuj→t0 |uj ∈ X}

The upper bound is computed as:

∆⊤ = max{Fvk→t0(0)|vk ∈ X} −m(t0)

The choice of cutset in not clarified enough. The definition and the alternative choices for cutset are

examined in the next chapter.

3.3.3 Repetition Parameters

The algorithm presented above may exhibit some inefficiencies, in some process graphs. These are

that the bounds may not converge or it may require an indefinite number of unfoldings to reach a

convergence. Therefore a mathematical theory is developed to give moreprecise answers. The basis

on which this theory works is that unfoldings are determined by a steady repetitive system, which

eventually will locks in a repetition with specific period.

Repetition of m-values

As defined in [5] the ration of a cyclec is d(c)
ǫ(c) . A maximum ratio cycle c is a cycle with maximum

ratio d(c)
ǫ(c) .

In a strongly-connected graph, all nodes have a path to a maximum ratio cycle, and the maximum

ratio cycles have a path to a source nodes. This guarantees that them-values of all nodes eventually

are determined repetitively by maximum ratio cycles and thus eventually repeat.For a strongly-

connected process graphG′ there exist integersk∗ andǫ∗ such that:

m(vk+ǫ∗)−m(vk) = rǫ∗,∀k ≥ k∗ + β (3.5)

k∗ is the number of unfoldings (relative to source event) before the repetitionoccurs andǫ∗ is the

period of this repetition. So, for every additionalǫ∗ unfoldings, after the firstk∗ + ǫ∗ unfoldings, the

analysis of m-values will (be the same) as the previousǫ∗ unfoldings.

As it appears in Figure 4.5 the m-values repeat when:

m(vk+1)−m(vk) = rǫ∗ = 5.

This is true form(a5) −m(a4) and for increasing occurrences. So, afterk∗ = 3 unfoldings relative

to a1 (source event), m-values repeat with periodǫ∗ = 1.

20 CHAPTER 3. TIMING SEPARATION OF EVENTS IN CONCURRENT SYSTEMS

3.3.4 Function Matrices

The form of function matrices is also widely used. A function matrix is a matrix such that its elements

are timing functions as defined previously. For two cutsets X, Y a matrixFX→Y is comprised of the

timing functions from all vetrices of cutset X to those of cutset Y. Each element in position [i,j] of the

matrix represents the timing function from the i-th element of source cutset X to the j-th element of

the destination cutset Y,i.e. Fxi→yj
for xi ∈ X, yi ∈ Y .

Addition of function matrices is defind as the conventional matrix addition but instead of scalar

addition, function maximization is used. Multiplication of function matrices is definedas (⊕,⊗)

multiplication, i.e. traditional matrix multiplication using function maximization and composition

instead of scalar addition and multiplication, respectively. By multiplying two function matrices, the

relation functions are composed. For example,FX→Y × FY →Z produces the functions from vertices

of cutset X to those of cutset Z.

The matrices used for the analysis are three,T , Ri andSi. Let X0 be the cutset after which the

repetitive behaviour of the system starts. T represents the relation functions from cutsetX0 to t0, i.e.

the target event.Ri represents the relation functions fromrooti to cutsetXi andSi the functions

from Xi+1 to Xi. The matrix-multiplication ofRi × Si × Si−1× ... ×S0 × T results in the function

Fi relating eventrooti with target eventt0. Now the maximumFi is needed for the evaluation of

M-values.

Since m-values repeat for unfoldingsj ≥ k∗ with periodǫ∗, the difference in m-values between

any two nodes of the unfolded graph is the same as the difference of the same nodesǫ∗ occurenc es

back, from (3.2).

m(vk+ǫ∗)−m(uj+ǫ∗) = m(vk)−m(uj)

Consequently, the functions relating these two events will be the same asǫ∗ occurenc es back. So, the

graph only needs to be unfolded an analyzed fork∗ + ǫ∗ unfoldings. What is need is the evaluation of

T , Ri∀i ∈ [0, ǫ∗) andSi∀i ∈ [0, ǫ∗).

The maximumFi is evaluated as

Fmax = RS∗T (3.6)

T doesn’t change through unfolding and is evaluated as:

T = FX→t0 (3.7)

R and S are evaluated as follows:

R = ⊕{RiSi−1Si−2...S0|0 ≤ i < ǫ∗} (3.8)

3.4. OPEN ISSUES 21

S = Sǫ∗Sǫ∗−1...S0 (3.9)

S∗ is the matrix closure ofS, which is a method to evaluate the convergence of an operation over an

infinite number of operands.

In conclusion the final algorithm appears below.

TSE(G,s,t,β,kmax)

1: computek∗

2: computeǫ∗

3: TSE-Unfold(G,s,t,β,k∗ + β)

4: if ∆⊥ ≥ ∆⊤ then

5: return ∆⊥

6: end if

7: computeT

8: for i← 0, 1, ..., ǫ∗ do

9: computeRi

10: computeSi

11: end for

12: computeS∗

13: F ← RS∗T

14: ∆max ← F (0)−m(t0)

15: return max(∆max, ∆⊥)

3.4 Open issues

In this chapter the theory of the TSE algorithm of [5] was presented. This theoretical analysis requires

knowledge of various mathematical tools and leaves a long way through the examination of every

theoretical aspect to the implementation of the algorithm. Moreover, various issues require further

clarification, concerning the application of this algorithm for the timing analysis of asynchronous

circuits.

Specifically, the calculation of repetition parametersǫ∗ andk∗ are is not clarified enough. Ways

are proposed, but are not completely analyzed, in respect to applicationand effectiveness. Moreover,

the concept of cutset is not accurately defined, nor is its identification. Itseffect, also needs further

examination. One more concept that is insufficiently defined and analyzed isthe closure. The practical

meaning of this mathematical tool is unclear. Some additional stydying needs to bedone on the

22 CHAPTER 3. TIMING SEPARATION OF EVENTS IN CONCURRENT SYSTEMS

application of the specific algorithm for the timing analysis of asynchronous circuits, as, it is targeted

for concurrent systems, in general. Questions that need answering are for example, how appropriate is

the model TSE algorithm examines, for the modelling of asynchronous circuits, or what modifications

are needed. Finally, an issue that is not addressed in [5] is minimum separation analysis. A full

analysis on this subject was developed in this thesis.

These issues are presented in detail in the following chapters as they werestudied in this thesis.

The gap is, also, covered between theory and implementation for timing analysisof circuits.

4
Analysis, Clarifications and Improvements on the

TSE Algorithm

The previous chapter presented an overview of an algorithm for the timing separation of events that

appears in [5]. However, [5] contains several unclear issues and several aspects need further ex-

amination. This work tried to clarify the concepts that needed clarification, explore the aspects that

weren’t examined and extend the TSE algorithm to form a complete timing analysisalgorithm. The

advanced issues, that were studied, are in terms of theoretical conceptsfor the complete understanding

of the mathematical formulation of the algorithm, theoretical extensions on the algorithm and special-

ized application on asynchronous circuits. The clarification of theoreticalconcepts refer to ideas like

cutsets, closure and evaluation of repetition parameters. These issues were insufficiently defined and

analyzed in the previous work. Theoretical extensions were developed, such as minimum timing sep-

aration analysis. Moreover, all the specific aspects are studied to coverthe gap between theoretical

analysis and practical implementation of a timing analysis EDA tool for asynchronous circuits.

23

24CHAPTER 4. ANALYSIS, CLARIFICATIONS AND IMPROVEMENTS ON THE TSE ALGORITHM

4.1 Specification Model

The specification model which is used to describe the concurrent systems in[6] is the Process Graph.

Process Graph is an ER System, so, it can be used to specify asynchronous circuits. However, the most

common way of specifying asynchronous circuits are Petri-nets or Marked Graphs. The following

statements apply to Process Graphs modelling circuits and compare and contrast them to Process

Graphs and Marked Graphs:

• PGs:∀v ∈ E′ : ǫ(v) ∈ [0, 1], i.e. ǫ can either be 0 or 1, but not greater. This holds for PGs that

model circuits, as circuits cannot store state prior to one value.

• PGs: rule templates,i.e. edges labelled withǫ = 0 model dependence between events of the

same index, whereas edges labelled withǫ = 1 model parallelism between events of the same

index and dependenc es across indices.

• PGs/MGs: Edges withǫ = 1, along with theroot event, are equivalent to the initial token

marking of MGs. Loops in MGs must contain at least one token [7] for the MGto be live.

Similarly, for every cycle in the PG it should hold thatǫ ≥ 1, otherwise the PG would deadlock.

• PGs/STGs: events in PGs are not labelled as “+” or “-”; this is necessaryfor PGs that model

circuits and lead to a similar representation as STGs.

4.2 Critical Cycles and Repetition Parameters

The open questions about the repetitive behavior of a Process Graph concern mainly when it will be

reached, with what period it is repeated and how these parameters are evaluated.

As mentioned in the previous chapter, them-value annotations of the unfolded graph represent the

distance of a vertex from the source eventsβ . They are computed backwards from it using the lower

delay bound,d. Positive m-values of an eventv imply that there is a path in the graph from eventv to

source event. Zero m-values imply either that eventv is the source event or that there is no path from

eventv to source event, i.e the timing ofv doesn’t affect the timing ofsβ .

Them-values are calculated only based on the lower delay bounds of the arcs reaching this event.

By repeatedly unfolding the graph them-values of the events are determined by a repetitive system.

So, they will eventually reach an equilibrium state determined by maximum ratio cycles. As appears

in Figure 4.1, considering as source the eventa, the difference of m-values between successive occur-

rences ofb are:1, 5, 5, 5, ... and between successive occurrences ofa are4, 4, 5, 5, 5, This indicates

that repetition with respect to m-values is reached after the4-th unfolding.

4.2. CRITICAL CYCLES AND REPETITION PARAMETERS 25

a(0)

b(0)

a(1)

b(1)

a(2)

b(2)

a(3)

b(3)

a(4)

b(4)

a(5)

b(5)

a(6)

b(6)

a(7)

b(7)
16 1

4 08

11

12

16

17

21

22

26

27

Figure 4.1: Portion of the backwards unfolded graph for the Process Graph of Figure 3.1 labeled with

m-values fors(β)=a(1)

The evaluation of the period and the initial transient behavior are analyzedfollowingly.

4.2.1 Ratio’ed Cycles and Maximum Ratio Cycles

A ratio cycle is defined as a simple cycle where the sum of thed values is ratio’ed by theǫ values and

the ratio of the cycle is:

r(c) =
d(c)

ǫ(c)
| wherec is simple cycle inG′ (4.1)

A maximum ratio cycle is the ratio’ed cycle with the maximum ratio r, which is:

rmax = max(
d(c)

ǫ(c)
) | ∀c wherec’s are simple cycles inG′ (4.2)

In a strongly connected graph, the maximum ratio r is unique, which means thatthe maximum

ratio cycles have the same ratio,i.e. the maximum ratio, which is the one determining the timing of

the circuit.

The equation (3.4) for the repetition of them-values can also be interpreted as follows to clarify

the concept of maximum ratio cycles:

m(vk+ǫ∗)−m(vk) = rǫ∗,∀k ≥ k∗+β ⇒ m(vk+ǫ∗)−m(vk) = d(c), where c is the maximum ratio cycle.

The fact that them-values of all events are determined by maximum ratio cycles points that a

change in the delays on all these cycles, reducing the maximum ratio, would result in the decrease

in the separation of events analysis. As far as actual circuits are concerned, a maximum ratio cycle

in the specification graph would (yields) a path or a tree in the circuit that is critical to the timing of

the circuit. In accordance to critical paths in synchronous circuits, critical cycles in the specification

graph of asynchronous circuits are the ones determining the cycle periodof all signal transitions. This

provides a specific target for optimization procedure.

26CHAPTER 4. ANALYSIS, CLARIFICATIONS AND IMPROVEMENTS ON THE TSE ALGORITHM

4.2.2 Calculation ofǫ∗

As mentioned in [6], by using digraph algorithms [8] it is possible to extract allthe cycles in the

process graphG′ and then find which of them are maximum ratio cycles. The calculation ofǫ∗ is

complicated by the potential existence of multiple maximum ratio cycles,as them-values for different

events may use different maximum ratio cycles.In the trivial case of one unique maximum ratio cycle

c, ǫ∗=ǫ(c).

If more ration cycles exist in the process graph a different analysis is required. G∗, is created as

the subgraph ofG′ containing only the edges of the maximum ratio cycles andG∗
i is denoted as the ith

strongly connected component ofG∗. If an event,v, can get itsm-value from two different maximum

ratio cycles,e.g. c1 andc2 and these are in different strongly connected components ofG∗, then the

occurrence period ofv, ǫ∗(v) is calculated as the Lowest Common Multiple ofc1 andc2:

ǫ∗(v) = LCM(ǫ(c1), ǫ(c2)) (4.3)

If c1 andc2 are part of the same strongly connected component ofG∗, the occurrence period is

calculated as the Greater Common Divisor ofc1 andc2:

ǫ∗(v) = GCD(ǫ(c1), ǫ(c2)) (4.4)

By enumerating all cycles we get:

ǫ∗ = LCM(GCD(ǫ(c) | c ∈ G∗

i)) (4.5)

For the clarification of the meaning ofǫ∗ examples aiding intuition are provided. The event graph

G∗ shown in Figure 4.2 consists of two different strongly connected components. The dotted lines are

part of the initial process graphG′ but not of process graphG∗, i.e. they are not part of any maximum

ratio cycle. There are two independent maximum ratio cyclesc1, c2 consisting the graphG∗, such

that r(c1) = d(c1)
ǫ(c1) = 8

4 = 2 andr(c2) = d(c2)
ǫ(c2) = 6

3 = 2. In this case, the execution of eventa in

the initial process graph is constrained by events of two different maximum ratio cycles (c, d) but its

m-value is eventually determined (afterk∗ unfoldings) by cycle c2, since the edged→ a is not part of

a maximum ratio cycle. The events of cycles c1, c2 will occur independently and will be synchronized

everyLCM(ǫ(c1), ǫ(c2)). So, the occurrence period isǫ∗(v) = LCM(ǫ(c1), ǫ(c2)). In the example

graph of Figure 4.2,ǫ∗(v) = LCM(ǫ(c1), ǫ(c2)) = LCM(4, 3) = 12.

The graphG∗ shown in Figure 4.3 consists of two maximum ratio cycles that have a common

event,i.e. a. In this case, the m-values of a are determined by both cycles c1, c2. Since there is a

4.2. CRITICAL CYCLES AND REPETITION PARAMETERS 27

a

b

d

c

c2c1f

e

g

Figure 4.2: Process graphG∗ of maximum ratio cycles on two different strongly connected com-

ponets. The edges in dotted lines are the edges of the initial process graphG′ that are not part of a

maximum ratio cycle.

synchronization point at which the events of the graph will be synchronized everyGCD(ǫ(c1), ǫ(c2)),

the occurrence period isǫ∗(v) = GCD(ǫ(c1), ǫ(c2)). In the example graph of Figure 4.3, ifr(c1) =
d(c1)
ǫ(c1) = 8

4 = 2 andr(c2) = d(c2)
ǫ(c2) = 2

4 = 2 thenǫ∗(v) = GCD(ǫ(c1), ǫ(c2)) = GCD(4, 2) = 2.

c1

e

d

c

a bc2

Figure 4.3: Process graphG∗ of maximum ratio cycles with two cycles having a common event.

4.2.3 Calculation ofk∗

Based on the above discussion it is possible to calculateǫ∗. The calculation ofk∗ is based on whether

m-values for an unfolding are calculated from maximum ratio cycles. If no, then further unfoldings

are needed. If yes, the value ofǫ∗ is critical. If ǫ∗ is 1, then it is certain thatm-values of subsequent

unfoldings are being repeatedly calculated depending on the maximum ratio cycle. However, for

larger values ofǫ∗ and particularly for multiplem-value calculations and multiple maximum ratio

cycles,k∗ can be determined as a solution to the Frobenius problem as:

k∗(v) = k0 + Frobeniusǫ(c) | c ∈ G∗

i (4.6)

The Frobenius Problem and Number

The Frobenius number is the largest valueb for which the Frobenius equation:a1x1 + a2x2 + ... +

anxn = b, whereai are positive integers and the solutionsxi are nonnegative integers, has no solution.

28CHAPTER 4. ANALYSIS, CLARIFICATIONS AND IMPROVEMENTS ON THE TSE ALGORITHM

The Frobenius number is intimately related to the so called Coin Problem, wherebythe largest sum of

money which cannot be formed from a quantity of coins of different valueis sought.

However, for more than two variables,i.e. cycles, the Frobenius problem has no exact solution.

Thus, a solution to the Frobenius problem wasn’t a focus of this work. Instead,k∗ is evaluated with

unfoldings. Since the values ofǫ∗ and maximum ratiormax are known, the graph is initially unfolded

ǫ∗ times. For every further unfoldingi, the equation

m(vi)−m(vi−ǫ∗) = rǫ∗

is checked. If it is true thenk∗ = i. If it is false,k∗ unfolding isn’t reached and further unfoldings are

needed. This is a way of accurately evaluatingk∗ without increasing the complexity of the algorithm.

4.2.4 Examples

The calculation of theǫ∗ andk∗ variables and the repetition of m-values as it was examined through

this work are further clarified in the folowing examples.

In Figure 3.1 we can see a process graph with four simple cycles. Cyclec1 = {a → a}, cycle

c2 = {a → b → a}, cyclec3 = {b → a → b} and cyclec4 = {b → b}. The ratio of each cycle is

r(c1) = d(c1)
ǫ(c1) = 4, r(c2) = d(c2)

ǫ(c2) = 2, r(c3) = d(c3)
ǫ(c3) = 2 andr(c4) = d(c4)

ǫ(c4) = 5. So,r = 5 is the

maximum ratio and cycle c4 is the maximum ratio cycle. In this example there is only onemaximum

ratio cycle, so,ǫ∗ = ǫ(c4) = 1. The process graph of Figure 3.1 is unfolded and the m-values are

computed. Since the m-values are computed in reverse topological order starting from the source

event, backward unfolding method is followed in the representation of the unfolded graph.

Following this method, Figure 4.1 illustrates a portion of the unfolded process graph of Figure 3.1

and the behaviour of the m-values. The m-values repeat when

m(vk+1)−m(vk) = rǫ∗ = 5. (4.7)

This is true form(a5) −m(a4) and for increasing occurrences. So, afterk∗ = 3 unfoldings relative

to a1 (source event), m-values repeat with periodǫ∗ = 1.

Figure 4.4 shows a second example of a process graph. One cycle appears in this process graph

with r(c) = d(c)
ǫ(c) = 7.5. This is the maximum ratio cycle, andǫ∗ = ǫ(c) = 2. The repetition of

m-values appears in the unfolded process graph of Figure 4.5. Afterk∗ = 2 unfoldings relative toa1,

m-values repeat with periodǫ∗ = 2 and

m(vk+2)−m(vk) = rǫ∗ = 15.

This is apparent as each event occurs depending only on the other event occurrence of one previous

index and on two previous index occurrences of the same event.

4.3. CUTSETS 29

a b

[5,10]

[10,14]

Figure 4.4: Process graphG2

a(0)

b(0)

a(1)

b(1)

a(2)

b(2)

a(3)

b(3)

a(4)

b(4)

0

a(5)

b(5)

a(6)

b(6)
0

00

01015

1520

253040

35 30

Figure 4.5: Unfolded process graph labeled with m-values fors(β)=a(1)

If a different event is chosen as the source vertex, the analysis wouldbe the same as the maximum

ratio cycle won’t change. The variableǫ∗ is a function of the maximum ratio cycle and the minimum

delays of the edges. These parameters don’t change among differentpairs of source-terminal vertices,

so ǫ∗ will be the same. However, the variablek∗ can change. The unfolded process graph appears

again in Figure 4.6 fors(β)=b(1). ǫ∗ is still 2 and afterk∗ = 1 unfoldings m-values repeat with

m(vk+2)−m(vk) = rǫ∗ = 15. (4.8)

a(0)

b(0)

a(1)

b(1)

a(2)

b(2)

a(3)

b(3)

a(4)

b(4)

a(5)

b(5)

a(6)

b(6)
0

00

015253040

35 520

10

1530

Figure 4.6: Unfolded process graph labeled with m-values fors(β)=b(1)

4.3 Cutsets

The notion of cutset was not fully defined in the previous work and is clarified in this thesis. The

identifying of the cutset was, also, not specified. Another question about cutsets is on the effect of

30CHAPTER 4. ANALYSIS, CLARIFICATIONS AND IMPROVEMENTS ON THE TSE ALGORITHM

different cutsets on the algorithm.

In graph theory, for a strongly connected graphG = 〈V, E〉, S is a k-vertex cutset ifS ⊆ V ,

|S| = k andG− S is not connected [9]. In our analysis, we are interested in the connectivity of root

with the target eventt0. So, we consider cutsetS, as the k-vertex cutset, such thatS ⊆ V , |S| = k

andG− S has no path from root to target event.

Various set selections satisfy the cutset definition. In various unfolded graphsGi, the set of the

current unfolding events,vi, ∀v ∈ V , is a cutset of the graph. However, the choice of cutset can affect

the complexity of the algorithm, which is a function of the size of the selected cutset. Thus, the whole

unfolding is not an efficient choice of cutset. The best choice would be the minimum cutset,i.e. the

cutset with minimum size, but it refers to a graph theory problem, that introduces a high complexity

on the algorithm.

Instead of identifying a minimum cutset, a minimal cutset can be efficient, leading tocorrect

solutions of the problem.A minimal cutset, that can be easily deduced is the set ofevents{v|v → t0 ∈

R}. This is not a minimum of cutset, but it is a minimal cutset with insignificant complexity. This

choice was adopted in this work.

4.4 Closure

In mathematics, a set is said to be closed under some operation if the operation on members of the set

produces a member of the set. Given an operation on a closed setX, one can define the closureC(S)

of a subsetS in X to be the smallest subset closed under that operation that containsS as a subset.

The closure of sets, with respect to some operation, defines a closure operator on the subsets ofX.

The closed sets can be determined from the closure operator; a set is closed if it is equal to its own

closure [9].

4.4.1 Closure in Closed Semirings

A closed semiring is a system(S, +, ., 0, 1) whereS is a set of elements and+ and . are binary

operators onS satisfying the following properties:

1. (S, +, 0) and(S, ., 1) are monoids,i.e. closed under the operator, are associative,i.e. a + (b +

c) = (a+ b)+ c and have the identity property for0, i.e. a+0 = a+0 = a, and1 respectively.

0 is also an annihilator for·

2. + must be commutative,i.e. a + b = b + a, and idempotent,i.e. a + a = a

3. · must distribute over+, i.e. a · (b + c) = a · b + a · c and(b + c) · a = b · a + c · a

4.5. RELATION MATRICES 31

4. Finite and infinite sums, using+, must exist and be unique. Associativity, commutativity and

idempotence must apply to infinite and finite sums

5. · must distribute over countably infinite sums as well as finite ones

Thus, based on the above, the following equation holds:

(
∑

i

ai) · (
∑

j

bj) =
∑

i

ai · bj =
∑

i

(
∑

j

(ai · bj)) (4.9)

For example, considerS2 = (R, MIN, +, +∞, 0), whereR is the set of non-negative real num-

bers including+∞. It is easy to verify that+∞ is the identity under MIN, whereas 0 is the identity

under+:

MIN(a,+∞) = MIN(+∞, a) = a, a + 0 = 0 + a = a

The closure operationa∗ =
∑

∞

i=0 yields:

0∗ = MIN(0) = 0

as the inner operator of the closure formula is+ (the outer isMIN) and addition zero times,

yields 0. Based on0∗ the closure of anya∗ can be calculated as follows; for anya ∈ S2:

a∗ = MIN(0, a, a + a, a + a + a, ...) = 0

Thus∀a ∈ R, a∗ = 0.

The practical meaning of closure is that an operation on an infinite sequence of elements (of a

closed set) results in a well-defined finite element that, also, belongs to the sameset. So, it is a

mathematical tool to model and evaluate infinite operations. In the presented analysis, the set of

functions is a closed semiring, under the operations of maximization (⊕) and composition (⊗), with

identity elements,0 = and1 = 〈0, +∞〉, respectively. So, a closure can be defined for functions

set. Consequently, the set of matrices is a closed semiring, as it is comprised by functions, on which

maximization and composition are performed.

4.5 Relation Matrices

Relation matrices are matrices that are comprised of relation functions and represent all the paths from

one cutset to another. When the starting cutset contains theroot event and the ending cutset thetarget

event, the relation matrix is a1-dimensional array with functionFroot→t0 . This abstract definition may

32CHAPTER 4. ANALYSIS, CLARIFICATIONS AND IMPROVEMENTS ON THE TSE ALGORITHM

lead to inaccuracies in the construction of matrices from functions. One point of clarification is that

the function-elements of a matrixMX→Y should not include paths from a vertexx ∈ X with vertices

of the same cutset as intermediate nodes. This needs to hold for one of the cutsets, in order not to

include multiple appearances of the same path. As a convention it is kept for the starting cutset.

4.6 Minimum Separation Analysis

The problem definition of Minimum Separation Analysis is to estimate the minimum time separation,

i.e. δ, between two events,i.e. s and t, with a separation in occurrence,i.e. β, over all possible

occurrences, as it appears in the following equation.

δ ≤ τ(tk)− τ(sk−β) (4.10)

The problem theoretically can be addressed using maximum separation analysis as a mathematical

transformation of the equation (3.1) as:

τ(sk)− τ(tk−(−β)) ≤ −δ (4.11)

This is true in theory, but could not be applied in practice. It cannot be done in practice using

the same algorithm just by changing the signs. This would imply negative unfoldings and wouldn’t

respect the relative ordering of source and target events. Minimum analysis doesn’t follow the same

semantics of the maximum analysis based on m- and M-values as described previously resulting in

non-deterministic behavior or inaccurate estimations.

A different analysis was developed for the estimation of the minimum time separation between

events, during this work. The minimum analysis following the same baselines as the maximum timing

separation analysis. The key idea is to force the source event to occur on its latest possible time and

based on this timing assignment to force the target event to occur on its earliest possible time. In order

to understand the changes in minimum analysis a closer look should be taken atm- andM -values.

4.6.1 m-values andM -values

m- andM -values are used in the maximum analysis to model the minimum and the maximum offset

delay in relation to source event and root event. Specifically, them- values represent the relative

timing separation between the event in question and the source event, for minimum delays. TheM -

values represent the collective relative delay of events starting fromroot event, considering minimum

time occurrences for events that have a path to source event and maximum timeoccurrences for events

that don’t have a path to source event. This appears better in Figure 4.7.

The line represents the time axis with source events as the reference point. The events are placed

on the axis on the time of their occurrence.m-value annotation places the events on their minimum

4.6. MINIMUM SEPARATION ANALYSIS 33

s

dm dM

D

v(k+1)v(k)

t1 t2 t3

Figure 4.7: Time axis for maximum separation analysis.

time of occurrence in reference to source event. Pointst1, t2 on the axis are them-values of eventsvk

andvk+1, respectively. TheM - values are computed based onm-values in normal topological order

on the graph. Consider a ruler : vk → vk+1, wherevk andvk+1 can be either different occurrences

of the same event or different events.dm on Figure 4.7 represents the offset minimum delay of the

two events,i.e. dm = m(vk)−m(vk+1) anddM = D − dm. The practical meaning is that if event

vk occurs on its minimum possible time, eventvk+1 may occur in the time rangedM if there is no

other constraint.M -value ofvk+1 is calculated asM(vk+1) = M(vk) + D −m(vk) + m(vk+1) =

M(vk) + dM . If there is a path to source event, this value is minimized with0. A positive value

would imply that eventvk+1 would occur with a time delay greater than its minimum possible. This

is not consistent with the definition of the analysis which forces the the eventsleading to source event

to occur on their earliest time. The maximization is to include all the constraints to an event.

The calculation ofm- andM -values in minimum analysis should follow the same principle and

be consistent with the definition of the analysis. Them-values are estimated with the same equation

but using the upper delay boundsD through the following equation:

m(vk) =

0 ifvk = sk−β

0 if vk has no path tosk−β

max{D + m(vi) | vk → vi, vi has path tosk−β} if vk has path tosα−β

The equation of theM -values should be the same with before but using the lower bounds. How-

ever, a minimization with0 wouldn’t agree with the analysis. The case now is thatM -values smaller

than−m(v) should be increased to−m(v). This is explained by looking at the time axis again. Now

considert1 andt3 as them-values of eventsvk andvk+1, respectively, which now represent the max-

imum delays relative to the source event. Againdm = m(vk) −m(vk+1) anddM = d − dm. As

it appears in Figure 4.8,|dM + M(vk)| < m(vk) should always hold. Otherwise, eventvk+1 would

34CHAPTER 4. ANALYSIS, CLARIFICATIONS AND IMPROVEMENTS ON THE TSE ALGORITHM

occur after eventvk, which doesn’t agree with the specification model, sincevk → vk+1 ∈ R.

s

d dM

dm

v(k+1)v(k)

t1 t2 t3

Figure 4.8: Time axis for minimum separation analysis.

So, theM -values of any eventvk estimated through the following equation:

M(vk) =

max {max(−m(vk), M(vi) + di→k + m(vk)−m(vi)) | vi → vk} if vk has path tosk−β

max {M(vi) + di→k + m(vk)−m(vi) | vi → vk} if vk has no path tosα−β

An example that shows the evaluation ofm- andM -values on a graph for minimum and maximun

separation analysis appears in Figure 4.9.

Minimum and maximum separation∆2 = b2 − a2 is estimated. Greater value is observed on

minimum than maximum separation because separation for only two unfoldings is considered. More

accurate and tight bounds will be estimated using the TSE version for infinite unfoldings. One more

thing to be noted is that with single delay values instead of ranges,m-values as well asM -values of

minimum and maximum separation analysis are evaluated the same, as it expected,in order to lead to

same minimum and maximum separation.

4.6.2 Cycles and Repetition Parameters

The execution of an event is also determined by the execution of its latest predecessor,i.e. for each

event to occur, it must wait for all the events that have edges to this eventto occur. So, timing

assignments, consequently m- and M-values, are also determined by the maximum ratio cycles. The

maximum ratio cycles are enumerated based on the initial process graph, so they are the same for

minimum and maximum analysis.

As for the the maximum analysis, the m-values are determined repetitively by maximum ratio

cycles and will eventually repeat. The period of the repetition,ǫ∗, is also unchanged for the same

initial graph, thus, the same for minimum and maximum analysis.

The number of unfoldings until the repetition occurs,k∗, may be different and it is evaluated

within the unfoldings.

4.6. MINIMUM SEPARATION ANALYSIS 35

SOURCE

TARGET

m = 2

m = 0

m = 4m = 6

m = 10

m = 10

m = 10
M = 0

M = 0 M = 0 M = 0

m = 8 m = 5 m = 0

M = −1 M = 2

M = 0 M = 0 M = 0

SOURCE

TARGET

m = 0m = 4m = 6

m = 12 m = 10 m = 7
m = 0

m = 0

m = 13

m = 13
M = −3

M = −1 M = −1 M = −1 M = 0
M = 3

c0a0 a1 c1 a2 c2

d0b0 b1 d1 b2 d2

root

0

2 2

0

2

c0a0 a1 a2 c2

d0 b1 b2 d2

root

0

2

0

2

[3,5]

[2,3]

[3,5]

[2,3]

b0

2

3
d1

c1

M= 0

M = 0
m = 0

2

32

2

[3,5]

[2,3]

2 2

3 33

m = 2

M = 0

D2 = 2

D2 = 3

MAXIMUM SEPARATION ANALYSIS

MINIMUM SEPARATION ANALYSIS

Figure 4.9: Evaluation ofm- andM -values in maximum and minimum separation analysis.

4.6.3 Functions

Functions are used in maximum time separation analysis to evaluate the relative time separation be-

tween events recursively. In minimum analysis, the same structures are used. Backward unfolding is

also used and the functions are estimated in relation to target event in order toprovide the M-value

when evaluated. Because the M-values have different meaning in minimum analysis, a different eval-

uation function is needed to provide the minimum delay offset. The new evaluation function is defined

as

for f = 〈li, wi〉

f(x) = max{max(x + li, wi)|1 ≤ i ≤ n} (4.12)

A different composition function(⊗) is also needed to provide for the minimum analysis meaning.

36CHAPTER 4. ANALYSIS, CLARIFICATIONS AND IMPROVEMENTS ON THE TSE ALGORITHM

It is defined as

for f = 〈l1, w1〉 and g = 〈l2, w2〉

(f ⊗ g)(x) = {〈l1 + l2, max(w1 + l2, w2)〉} (4.13)

The maximization function(⊕) is the same. The optimizations implemented in maximum analysis

are also applicable in minimum analysis.

One more thing that is needed is a change in the direction in the conditional comparisons,i.e.

<⇔> in every processing/operation over the relation functions and matrices as well.

The minimum time separation that is estimated, represents the minimum time separation after

the execution reaches its repetitive behavior. This assumption ignores the timedelays observed in

the initial unfoldings of the graph. These might provide for a smaller time separation between events.

However, these delays do not appear during the execution and are onlypart of the transitional behavior

of the circuit on reset.

4.7 Implementation and Complexity

Based on the TSE analysis, an Asynchronous Timing Analysis (ATA) tool was implemented for the

timing analysis of asynchronous circuits, based on TSE analysis. The ATAtool enumerates about

3500 lines of C code for its implementation. It requires a specification of the circuit in Process Graph

format and implements all the described functionality. It evaluates the maximum time separation

between two events, as well as the minimum time separation. Moreover, it was extended to support

floating point arithmetic, in addition to integer arithmetic.

The ATA tool was developed as two versions, following the theoretical analysis. The first version,

acyc-tse, supports the evaluation of maximum and minimum timing separation∆α of two event oc-

currencesof an unfolded process graphGα. Invocations of this version will provide an estimation

of TSE of specific unfoldings. The second version is the completetseapplication. It designates the

critical cycles of the process graph,i.e. the maximum ratio cycles, evaluates the repetition parameters

and provides exact bounds maximum and minimum on the timing separation of two events over all

possible executions of the system.

4.7.1 Acyclic TSE Version

The Acyclic TSE version requires the process graphG′ as a command line argument. Subsequently,

prompts for the source and target events of the process graph, the occurrence index separation and the

required number of unfoldings for the estimation of TSE to be applied. The operation is comprised

of two main steps. The first is to unfold the input process graphG′ to an acyclic graphGα and the

second is to evaluate the maximum TSE between two specific event occurrences of theGα. The steps

4.7. IMPLEMENTATION AND COMPLEXITY 37

described above are repeated until the desired number of unfoldings is reached and the TSE is reported

for each unfolding.

The unfolding operation is implemented as forward unfolding of the processgraph by incremen-

tally adding the elements of each new unfolding. The evaluation of∆α in each unfolding is based on

theATSE algorithm presented in Chapter 3. The topological order of the graph is acquired through

DFS iteration of the graph.

Considering a Process Graph ofn vertices andm edges, the complexity ofATSE is determined

by the DFS invocations and isO(n + m). For each unfolding the complexity is, also,O(n + m).

Thus, for unfolding the graphk times the complexity isO(k(n + m)).

4.7.2 Complete TSE Version

The complete TSE version also requires the process graphG′ as a command line argument. Sub-

sequently, prompts for the source and target events of the process graph and the occurrence index

separation. This version operates in three main phases, as it appears in the pseudocode below.

TSE(G,s,t,β)

1: extract cycles fromG

2: G∗ ← evaluate maximum cycles

3: computeǫ∗

4: while ∆⊥ < ∆⊤ or k∗ not reacheddo

5: k ← TSE-Unfold(G′,s,t,β)

6: (∆⊥, ∆⊤)← processUnfolding

7: end while

8: if ∆⊥ ≥ ∆⊤ then

9: return ∆⊥

10: end if

11: create cutsetC

12: createT

13: createR

14: createS

15: computeS∗

16: F ← RS∗T

17: ∆max ← F (0)−m(t0)

18: return max(∆max, ∆⊥)

38CHAPTER 4. ANALYSIS, CLARIFICATIONS AND IMPROVEMENTS ON THE TSE ALGORITHM

The critical cycles are evaluated first, as well as the repetition parameterǫ∗. This processing is

over the Process Graph, not on the unfolded acyclic graph, so it is independent of the unfoldings.

On the next phase, the graph is unfolded, evaluating m-values, timing functions and bounds for each

unfolding. The unfoldings continue until the bounds converge ork∗ + ǫ∗ unfoldings are reached. If

bounds converge, the converging value is reported as the solution to the evaluation. If they don’t,i.e.

repetitive state is reached the algebraic processing is applied. The function matrices are evaluated and

closure is applied in order to reach a mathematically evaluated result.

Unfolding

The unfolding operation is implemented as backwards unfolding of the Process Graph by constructing

an acyclic graph and incrementally adding the elements of the new unfoldings.The operation is

applied in the same way as forward unfolding but with a difference in the relative numbering, as

explained in the previous chapter. In each unfolding step, the m-values only of the additional events

are evaluated, as well as the edge and timing functions for the additional elements. Considering a

Process Graph with size of vertex set|V | = n and size of edge set|E| = m, the unfolding process

requires timeO(n + m).

Similarly, a∆k is evaluated in each unfolding, based on m-values and functions estimated during

the unfolding. DFS iteration is also used to find the topological order of the graph and the processing

afterwards is applied on every node of the unfolding. DFS is accomplishedin time O(n + m), i.e. it

is only applied on events of the new unfolding. The processing on each events is completed in linear

time. So, the complexity of unfolding isO(n + m), for a single unfolding step.

Timing Functions

The functions for every edge are represented as a struct of two integer fields (l, w). The∞ is rep-

resented with the macro definition MAXINT, which is the maximum integer that fits in the integer

type. A data structure library was implemented that supports all the necessary functionality for the

functions. Maximization (⊕), composition (⊗) and evaluation are supported.

The timing functions for each event are represented as a list of function pairs, as defined previ-

ously. An efficiency optimization, that is proposed in [5] and is implemented in theATA tool of this

thesis, is based on the observation that ifli ≥ lj andwi ≥ wj for two edge functionsfi = 〈li, wi〉 and

fj = 〈lj , wj〉 thenfi subsumesfj . This is a direct consequence of the definition of the function,i.e.

f(x) = max{min(x + li, wi)|1 ≤ i ≤ n}, since for all x,min(x + li, wi) ≤ min(x + lj , wj). So,

every function can be represented as an ordered list, which holds the following order:

4.7. IMPLEMENTATION AND COMPLEXITY 39

l1 ≤ l2 ≤ ... ≤ ln and w1 ≥ w2 ≥ ... ≥ wn. (4.14)

The function elements of the list that are subsumed by others are redundant and ignored.

By preserving the previous order the operations of maximization and composition are performed

efficiently in linear time. Maximization of two functionsf , g is a set union and is completed in

O(nf + ng) time, where|f | = nf and|g| = ng. To keep the order for the above optimization, the

function elements that are subsumed by others are removed and the new elements are added in the

appropriate position in list. Composition is, also, performed in linear time as|f ⊗ g| < |f | + |g|,

which is proved by induction.

Cutsets

The construction of cutset is constructed, as proposed in this thesis, as the setC = {v|v → t0 ∈ R},

whereT0 is the target event of the analysis. The complexity of this operation isO(deg(t0)).

Relation Matrices

The relation matrices are implemented as one- or two-dimensional arrays. A data structure library

was, also, implemented offering matrix addition, multiplication and closure functionality considering

all points mentioned in the above sections.

Let X0 be the cutset after which the repetitive behaviour of the system starts. Theconstruction of

matricesT , S andR can be done after unfolding the graphk∗+β+ǫ∗ times. The construction ofT is

trivial as it consists of timing functionsFxi→t0 , already calculated as part of the unfolding step. Matrix

S is constructed asS = Sǫ∗Sǫ∗−1...S0. EachSi consists of functionsFxi+1→xi
wherexi+1 ∈ Xi+1

andxi ∈ Xi (Xi+1 andXi cutsets as defined previously). FunctionsFxi+1→xi
can be calculated

using a DFS algorithm to find all paths from eachxi+1 to eachxi. Accordingly,R is constructed as

R = ⊕{RiSi−1Si−2...S0|0 ≤ i < ǫ∗}. Each elementRi represents functionsFrooti→xi
which can,

also, be calculated using a DFS algorithm to find all paths from eventrooti to eachxi.

The matricesS andR for theǫ∗ unfoldings can be constructed recursively as shown in the follow-

ing pseudocode.

The cost in this case is the cost to calculateRi andSi for ǫ∗ times, two matrix multiplications and

a matrix addition forǫ∗− 1 times. Letc be the size of the chosen cutset,n the number of vertices and

m the number of edges of one unfolding. Based on this, the cost to calculateSi is c22(n + m) (c2

DFS pairs of source-destination vertices, each DFS considers verticesand edges of two consequent

unfoldings,thus2(n+m)). Respectively, the cost ofRi is c(n+m) (c DFS pairs, for each DFS vertices

and edges of one unfolding). Moreover,Si · S requiresc3 operations, the maximization(Ri · S)⊕R

40CHAPTER 4. ANALYSIS, CLARIFICATIONS AND IMPROVEMENTS ON THE TSE ALGORITHM

S = S0

R = R0

for i = 1 to ǫ∗ − 1 do

R = Ri · S ⊕R

S = Si · S

end for

requires2c operations andRi · S requiresc2 operations. The collective cost is

ǫ∗2c2(n + m) + ǫ∗c(n + m) + (ǫ∗ − 1)c3 + (ǫ∗ − 1)c2 + 2(ǫ∗ − 1)c (4.15)

Another way of constructing matricesS andR is by exploiting the observation that the multipli-

cation of two function matricesFX→Y × FY →Z results in the the function matrixFX→Z for X, Y ,

Z cutsets of consequent unfoldings. For example,S = Sǫ∗Sǫ∗−1...S0 can be constructed as a single

matrix performing DFS to find all the paths for the source-destination pairs ofvertices of cutsetsXǫ∗

to X0, avoiding the additional matrix multiplications. This requires(ǫ∗ + 1)c2(n + m) operations

(c2 DFS pairs of source-destination vertices, each DFS considers verticesand edges ofǫ∗ + 1 conse-

quent unfoldings).R can be constructed by evaluating each element and performing the maximization

R = ⊕{RiSi−1Si−2...S0|0 ≤ i < ǫ∗} using again DFS between pairs of cutsetsXi to X0, where

0 ≤ i < ǫ∗. In this way, the construction ofR requires(1 + . . . + ǫ∗)c(n + m) + ǫ∗c operations (ǫ∗

elements of maximization, each elementi . . . c DFS pairs of source-destitution, where0 ≤ i < ǫ∗).

The collective cost is

(ǫ∗ + 1)c2(n + m) + (1 + . . . + ǫ∗)c(n + m) + ǫ∗c (4.16)

The problem scales with sizesn, m andc. It is clear now how the choice of cutset determines

the complexity of the algorithm. The size of cutset is always smaller than total number of nodes plus

edges of the graph,i.e. c < n + m. So, the complexity of both approaches is ofO(n + m). However,

for great numbers ofǫ∗ the second approach is a constant number of operations better.

Overall Complexity

The overall complexity can be derived by looking at the pseudocode ofTSE. Considering a Process

GraphG and the size of vertex set as|V | = n and edge set as|E| = m. The extraction of cycles on

line1 is performed by DFS on the Process Graph. This processing is performed inO(n+m) time. The

second step of evaluating the maximum ratio cycles requires timeO(L), whereL is the total number

of cycles in graphG. It holds thatL < n. The computation ofǫ∗ requires the construction of graph

4.8. TSE ANALYSIS VS. WORST-CASE ANALYSIS 41

G∗, as defined previously. Consideringn∗ andm∗ the size of vertex and edge set ofG∗, respectively,

the construction ofG∗ is performed inO(n∗ + m∗) and the actual computation ofǫ∗ in O(n∗ + m∗),

as it requires a DFS application onG∗. The unfolding and the processing of the unfolding in lines

5 and6 requireO(n + m) time each. The unfoldings that will be applied arek∗ + ǫ∗ + β. The the

complexity of the computation so far isO((k∗ + ǫ∗ + β)(n + m)).

With a high probability the algorithm will terminate in line9, so with high probability further

computation won’t be required. If the execution continues the size of cutset is the determining factor

for the complexity. LetC be the size of the cutset. The creation of the cutset is performed inO(C)

time. Matrix T is Cx1 array and is constructed in timeO(C). Accordingly, matricesR andS are

CxC arrays and are constructed in timeO(C2)(n + m). The reason for this, is that DFS is applied

to find all paths from vertices of one cutset to another. The closure ofS is evaluated inO(C3) time.

The matrix multiplications on line16 are performed inO(C3) time. The last computation requires

constant time. SinceC < (n + m), the final complexity of TSE algorithm isO(C2)(n + m).

4.7.3 Minimun Analysis

For the implementation of minimum analysis the same structures and methods as for the maximum

analysis are used with the appropriate changes to fit the change of meaningfrom maximum to mini-

mum timing separation. The minimum analysis was implemented in both versions of the TSE tool.

4.7.4 Floating Point Arithmetic

The implemented tool for the TSE was expanded to accommodate floating point arithmetic,. The

presented theory coveres integer values, however, in practice the time values of real; circuits are hardly

ever integers. So all of the involved fields in the implementation were changed from INTEGER type

to DOUBLE type. This change required, a careful change due to the wide use of∞ in theory,

especially in the conditional control, where comparisons to the∞ were used, and in operations with

∞. The representation of the∞ also changed fromMAXINT to FLT MAX .

4.8 TSE Analysis vs. worst-case analysis

Special notice should be taken in the difference of meaning of TSE analysiscompared to worst-case

analysis that is the standard timing analysis process. The difference is shown through an example of

both analysis on the graph of Figure 3.1.

If worst-case analysis is followed, each event occurrence is assigned the latest possible time value.

So, for every edge the higher delay D is chosen. A portion of the unfolded graph of the example graph

of Figure 3.1 is shown in Figure 4.10, with a worst-case timing assignment for the event occurrences.

It is clear that, for eventa, after a number of occurrences, the time value ofai is always defined as

42CHAPTER 4. ANALYSIS, CLARIFICATIONS AND IMPROVEMENTS ON THE TSE ALGORITHM

t(ai) = t(ai−1) + 20 and is always determined by the edgeb→ a and the upper bound of delayD.

12282 102

88 10868

62

48

42

28

222

0

root

10

a0 a1 a2 a3 a4 a5 a6

b6b5b4b2 b3b1b0

Figure 4.10: Unfolded process graph with worst-case timing analysis annotation

However, if maximum timing separation between events is evaluated, a different timing assign-

ment policy must be followed. For example, if timing separation between eventsa5 anda6 is to be

estimated, for the event occurrences fromroot until a5 minimum delay assignment is followed (for

each edge the minimum delay is chosen), while froma5 to a6 maximum delay assignment is followed.

This assignment is shown in Figure 4.11. This results in a timing separation of25, while worst-case

analysis results in a separation of20. This is because worst-case analysis assumes maximum delay

for the preceding event occurences, while this isn’t the case in maximum time separation analysis.

a(0)

b(0)

a(1)

b(1)

a(2)

b(2)

a(3)

b(3)

a(4)

b(4)

a(5)

b(5)

a(6)

b(6)

a(7)

b(7)
16 1

4 08

11

12

16

17

21

22

26

27

Figure 4.11: Unfolded process graph with maximum timing separation analysis between eventsa5

anda6

One more thing to be noticed is that the maximum ratio cycle in this graph isb → b, and it is

the edgebi → bi+1 that determines the delay in both analyses. This indicates that by optimizing the

elements that affect these edges will improve the overall timing of the circuit.

In this chapter were presented all the theoretical aspects of the previouswork that were examined

in this thesis, in order to form a complete picture of the TSE algorithm. Moreover, implementation

issues were examined as well as the estimated complexity of the algorithm. The implementation of

TSE accomplished during this work was described, as a ATA tool for asynchronous circuits. In the

following chapter application of this ATA tool is examined, within well-defined EDA flows, for the

optimization and RTC validation.

5
Application of TSE tool

As mentioned in Chapter 2 TSE analysis can be useful for optimization of asynchronous circuits

or for the validation of some imposed RTCs. In this Chapter the use of the TSE analysis will be

presented within a flow for optimization, compared and contrasted with the corresponding flow in the

synchronous design process. The implemented ATA tool was used for theoptimization of real designs

through the presented flow.

5.1 Optimization

The optimization flow that is followed in synchronous design appears in Figure 5.1. The designer

provides a description of the circuit in HDL. The circuit is synthesized into aspecific technology

using a library of gates. STA is performed on the mapped netlist. STA provides information on

the timing of the circuit and on critical paths, which are used for optimizations. The optimizations

are changes on the netlist, depending on the information of STA and the technology library that is

being used. The optimized netlist is again analyzed to evaluate the new implementation and verify

the effectiveness of the applied optimizations. Optimizations are applied in a closed-loop of timing

analysis and changing the implemented netlist, until a satisfactory implementation is reached.

An analogous procedure is followed in the flow presented in this work as it appears in Figure 5.2.

43

44 CHAPTER 5. APPLICATION OF TSE TOOL

Mapping

HDL specification

gate netlist

optimized netlistOptimization

Technology
Library

critical paths

gate netlist

STA

Figure 5.1: Optimization flow using ATA.

Initially, an asynchronous specification is provided and it is mapped in the desired technology library.

The mapped netlist is analyzed using ATA. Based on this analysis the circuit isoptimized and analyzed

again until it reaches an accepted timing performance or cannot be further optimized. The flow is

the same with synchronous design, changing the particular steps of the flowwith appropriate for

asynchronous design techniques. For example, STA is replaced with ATA. The specification, also,

requires the STG of the design. Moreover, the concept of critical pathsis replaced with critical cycles

as a target for optimizations. The steps of the flow are described in more detail in the next sections

along with application on real designs.

5.1. OPTIMIZATION 45

Mapping

circuit specification

gate netlist

optimized netlist

Timing

Analysis

critical cycles

gate netlist

Optimization

Technology
Library

Figure 5.2: Optimization flow using ATA.

5.1.1 Circuit Specification

As examined in Chapter 4, the required specification model for ATA is the process graph. Models

specifying the behavior of circuits were also presented in Chapter 2. Thespecification used throughout

this work for the modeling of asynchronous circuit behavior is the STG model, with a delay range

labelling on the edges. However, the most direct description of a circuit is ina HDL netlist form. The

STG model, describes the behavior of the circuit as well as the behavior ofthe environment and the

interface protocol. An STG can be derived from a circuit, having an HDLdescription, the interface

protocol, and an indication or specification of the behavior of the environment. The conversion from

a netlist to STG is presented through an example.

Figure 5.3 shows a netlist of an Relative-Timed Burst Mode (RTBM) controller [10]. This con-

troller implements a handshake protocol on the right and a handshake on theleft side. The circuit

implements the following boolean equations.

46 CHAPTER 5. APPLICATION OF TSE TOOL

a

b

p a

b

p

ra_

ra_
rr

ra_

y_

lr

rr

ra

la

d0 d1

n0

i0

Figure 5.3: controller netlist

la = rst′ + (lr · ra · y) + (lr · la · ra ′) + (lr · la · y ′) (5.1)

rr = rst′ + (ra · lr · y) + (ra · rr · lr′) + (ra · rr · y ′) (5.2)

ra = ra′ (5.3)

y = (la + rr)′ (5.4)

Based on the netlist (boolean equations) and the interface protocol, the state graph of Figure 5.4

can be constructed. The protocol followed isreq+ → ack+ → req− → ack−. The red arcs on

Figure 5.4 represent a race condition present on the circuit. Onlr+, la+ andrr+ will occur. However,

if la+ occurs beforerr+, a race will take place betweeny − andrr+. If y − occurs beforerr+, rr+

will not occur. With appropriate gate delays the race is avoided.

lr

la

rr

ra = 0 ra = 1

000

111

010

100

110

101001

011

RESET

Figure 5.4: State Graph Analysis of the controller

The corresponding STG of Figure 5.5 can be derived from the previous state graph. The main idea

is that each transition towards one direction on the state graph corresponds to a signal transition on

5.1. OPTIMIZATION 47

the STG. Examining the state space, we can observe that each transition towards the same direction,

i.e. one transition on the STG, is able to occur only if specific conditions hold. Forexample, forla+

to occur,lr must be risen andra must be fallen. This means that there are two edges on the STG that

lead tola+, lr+ → la+ andra− → la+. Similarly, forrr− to occur,ra must be risen, leading to one

edge on the STG,ra+ → rr−.

Moreover, tokens are required to model the correct behavior of the controller. They must be placed

on appropriate edges,i.e. where they are required to initiate the handshakes after reset. Some rules

must be followed, such as, each cycle on the STG must contain a token and no redundant tokens must

be placed on the STG.

rr+

ra+la+

la−

rr−lr−

lr+

ra−

Figure 5.5: Signal Transition Graph of RTBM controller

The delays on the edges are derived from the gate delays of the path thatis followed on the circuit,

for this signal transition to occur. For example, the edgelr+ → la+ indicates a rising transition of

signallr which will lead to a rising transition of signalla, through the gated0 of the circuit. Thus,

the delays of this edge will be the delays of gated0. Accordingly, the edgera− → la+ refer to the

pathi0− d0, so the delays will be the delays of gatesi0 andd0.

Some edges refer to the behavior of the environment such asla+ → lr− or rr+ → ra+. These

edges will be assigned delays depending on model to be simulated. If the behaviour of the controller

irrelevant of its environment is wanted, then zero delays will be assigned.If fast or slow environment

handshaking is required then appropriate delays will be assigned. If thecontroller is connected with

some other logic then the delays will depend on this logic.

48 CHAPTER 5. APPLICATION OF TSE TOOL

5.1.2 ATA and Optimization

Since the design specification is available, ATA can be applied. The separation of different events can

be analyzed. What is useful is the cycle period of the circuit that is the time between a successive

rising or falling transition of a signal. In the specific case of an asynchronous controller a useful event

separation is between consequent rising and falling transition of the request signal.

Whatever the event separation is evaluated, the repetition parameters as well as the critical cy-

cles of the analyzed circuit are the same. Moreover, the critical cycles ofthe STG are those that

mainly determine the timing of the circuit. Thus, critical cycles indicate a target foroptimizations, in

correspondence to a critical path in synchronous design.

Let’s assume the controller of Figure 5.3 with zero delay environment and withgatesi0, n0 of

1-unit delay while gatesd0, d1 of 2-units delay. Running the ATA tool on any event separation will

provide the critical cycles of the circuit. In the specific example evaluating theevent separationlr+ →

lr+ yields a maximum timing separation of6 units, while the event separationlr+ → la+ yields4

units maximum separation. The critical cycle appears to bera− → rr+ → ra+ → rr− → ra−. This

indicates that optimizations must target this specific cycle of the STG,i.e. the gatesi0 andd1. By

changing gated1 from 2-units to 1-unit delay gate and evaluating the same event separation will result

in reduced delays. The evaluation oflr+ → lr+ gives5 units of maximum timing separation, while

lr+ → la+ gives3 units maximum separation. Not only the transitions that are directly dependenton

the optimized gate (lr+ → lr+) are effected but others as well (lr+ → la+). This is expected since

as explained previously the critical cycles are the ones determining the universal timing of the design.

The critical cycle is the same after the optimizations but it could as well have changed in a different

example or for different timing specifications. Optimizations based on critical cycles could be further

applied if allowed by the technology used.

Now, let’s assume2-unit delay gated1, while changing gated0 to1-unit delay gate. By performing

ATA, the event separationlr+ → lr+ is still estimated as6 time units and the event separation

lr+ → la+ is still estimated as4 units maximum separation. This indicates that by changing a gate

outside the critical cycle doesn’t lead to optimizing the overall timing of the circuit.

The flow described provides a well-defined optimization procedure that can be followed for the

optimization of asynchronous circuits. Provides ways to optimize only critical for the timing parts of

the circuit, while keeping the other as they are. So, by initially implementing the design for minimum

area and then optimizing it for time on the critical parts, the resulting implementation willbe an

intermediate trade-off,i.e. a point on the Pareto curve.

5.2. Relative Timing Constraints (RTC) VALIDATION 49

5.2 Relative Timing Constraints (RTC) Validation

Another application of ATA would be for the validation of RTCs. RTC are assumptions made for the

timing behavior of a circuit. The assumption that a signal will arrive before another or a specific unit

is faster than another may be convenient for the synthesis of the circuit. A relative timing assumption

may lead to various simplifications on the specification of the circuit resulting in anoptimized imple-

mentation [4]. However, a timing assumption that is incorporated in the implementation, must hold

for the circuit to operate properly,i.e. constitutes an operational constraint.

Currently, there is no specified way of knowing whether an implementation with RTC will respect

this constraint in all cases. The behavior of the implemented system can be examined through simula-

tions. Simulations, though consider single values of timing on event occurrences and cannot simulate

a system with variable delays. ATA can be applied in this area too. Since ATA evaluates bounds on

the timing separation of events, is a way of identifying whether an event appears before another. The

exact bounds provide a way to validate a relative timing assumption between twoevents or signals,

through the flow of Figure 5.6.

5.3 An automated tool for optimization

ATA, so far, appears as a useful tool in many directions. But to evaluatethe practical effectiveness of

its application, a simple optimization tool was implemented in this work. It realizes the optimization

flow described in previous section in an automated procedure. It supports mapping functionality from

a netlist description to a specified technology library, timing analysis using the implemented ATA tool

and optimization functionality through gate resizing.

The optimization tool enumerates about 2500 lines of C code, as well as various scripts for the

manipulation of the technology libraries. It consists of a netlist parser, stg file parser, mapper and

optimizer. It requires the description of the circuit in basic functional units,i.e. AND, OR, INV and

the specification of the behavior of the circuit in STG format. Additionally, it requires a mapping

of STG edges to functional units. This is necessary for directing optimizations of STG cycles to

optimization of gates in the circuit.

5.3.1 Technology Library

The implemented optimizing tool supports a subset of theUMC13 130nm library. It was acquired

through various scripts processingUMC13 library in order to extract the required information and

integrate the specification of all three analysis corners (best, typical, worst) of the particular subset.

This subset includes gates that implement all the basic functionality and is able toimplement any logic

50 CHAPTER 5. APPLICATION OF TSE TOOL

Synthesis

circuit specification

gate netlist

Timing

Analysis

Relative Timing

Contstraints

valid

validated netlist

yes

no

Figure 5.6: Validation flow using ATA.

function. It doesn’t include sequential elements, multiplexers, adders and some complex gates. The

available attributes for every cell of the library is the area it covers, the capacitance of each input pin,

and an array of gate-delays indexed by the drive capacitance of the gate. The delay array supports all

three corners of analysis (i.e. worst, typical, best-case). Rise and fall times are not considered in the

analysis.

A parser of the library was implemented that constructs a directory of the library cells, that pro-

vides easy search functionality indexed by the logic function of the cell.

5.3.2 Input Netlist

A parser for the input netlist was a part of the tool. The parsed netlist canbe an already mapped in

the same library netlist or in an HDL form. That is the description of the netlist asa graph of gates.

Specifically, the netlist graph is described using a function library, whereeach function unit represents

a gate. The parser also supports some syntax checking functionality. Thenetlist is constructed as a

graph of nodes, that is later processed for mapping.

5.3. AN AUTOMATED TOOL FOR OPTIMIZATION 51

5.3.3 Input STG

The STG specification of the circuit is also required for the ATA. If the circuit netlist is available the

circuit specification in stg format is derived manually following the process explained in Chapter 5.

If the stg specification is available, an implementation of the circuit can be produced. Moreover, an

association of stg edges with is netlist gates required. This is a way to relate time ranges of stg edges

to gate delays. In other words, to define which part of the implementation determine which part of the

behavior of the circuit. This is also constructed manually, by examining the behavior of the netlist in

each signal transition.

5.3.4 Optimization Process

Having all the above information the optimization process can be applied. The implemented opti-

mization tool can apply mapping functionality aiming at specific directions. It canprovide a mapping

of the circuit in a technology library targeting at minimizing area, minimizing timing or exploring

intermediate solutions. The applied mapping doesn’t perform restructuringof the netlist, but rather

resizing of gates. The aim of the specific optimization tool was not a good mapping functionality, but

the ability to explore good trade-offs that lie on the Pareto curve, providinga target direction and the

means that lead to this direction.

ATA was used in this direction. As explained before, critical cycles are theones that determine the

timing in asynchronous circuits. As shown through examples, a change in thedelays of critical cycles

will affect the overall timing. Moreover, the timing separation between consequent occurrences of

an event (cycle period) can be a performance evaluation metric. These characteristics of ATA were

exploited within this optimization tool. The estimated critical cycles constitutes the target of timing

optimizations and the TSE between events is the means to decide whether a better performance is

achieved.

The optimization process follows the flow of Figure 5.7. Initially, the circuit with itsspecification

is read and an initial mapping is produced if necessary. The delays of the gates are assigned to the STG

specification according to the specific mapping, as a pre-step of ATA, which is then performed using

the ATA tool. This analysis will provide a performance evaluation of the circuit along with its critical

cycles. The netlist can be optimized based on those critical cycles, which means that only the parts

of the netlist that affect the critical cycles will be optimized. The delays of thenew mapping are set

and ATA is again performed. The performance evaluation gives a qualitative and quantitative metric

on the optimizations performed and the current critical cycles give a new direction for optimizations.

The closed loop of optimization and analysis will repeat until a the netlist cannot be further optimized

52 CHAPTER 5. APPLICATION OF TSE TOOL

STG netlist
circuit

Optimization
Tool

Optimization

netlist
optimized

performance
evaluation

critical
cycles

further
optimizenew delays

assign

TSE

Analysis

Library
Technology

edges−delays

relation

yes

no

Figure 5.7: Optimization tool process

on the changes result in a worst-implementation. Changes on how the terminatingdecision is taken

may lead to different ways of exploring the space of implementations.

On performing an optimization on a critical cycle of the STG, requires extracting the paths or trees

of the netlist that are associated with this cycle. When they are acquired, resizing is performed in each

path starting from the endpoint towards the starting points. During this process drive capacity of each

gate is considered and their delays are set accordingly. If the implementationof a gate changes, the

gates driving the changed one are additionally optimized in order to drive thenew capacitance.

The delays that are set after an optimization is performed are the delays of the gates, as they are

defined in the library, respecting the capacitance that needs to be drivenin the particular mapping.

Moreover, the optimization tool can be configured to consider worst-, best-, typical-case corners or a

range considering all possible cases.

5.3. AN AUTOMATED TOOL FOR OPTIMIZATION 53

In this Chapter some applications of the ATA on the asynchronous hardware design were pre-

sented. As shown, an ATA tool can form the basic building block in variousprocesses that will fa-

cilitate asynchronous design. It can form the base functionality for optimization and RTC validation.

During this work, the effectiveness of ATA was studied through the implementation of an automated

optimization tool. Several asynchronous circuits were analyzed and optimized using the implemented

tools and the flows described. The results are presented in the following chapter.

54 CHAPTER 5. APPLICATION OF TSE TOOL

6
Results

This chapter demonstrates the application of the implemented tools and flow for theoptimization of

real, asynchronous circuits. The conventional ”point-to-point” STA optimization flow was used as a

point of reference. The results were compared and contrasted in order to evaluate the effectiveness of

ATA optimization flow on asynchronous designs, compared to STA.

6.1 Experimental Procedure

The circuits used to generate comparative results were real asynchronous control circuits used in

practical designs. The circuit benchmarks include various types of latchcontrollers, based on asyn-

chronous handshakes, circuits useful for desynchronization of synchronous systems and a VME bus

control circuit.

The experimental procedure followed is shown in the flow diagram of Figure 6.1. Two separate

flows were used. The conventional optimization flow, which is based on widely used conventional

EDA tools and the novel proposed flow, which is based on ATA and the optimization tool developed

in this work.

The circuit’s description was provided in HDL. Its STG specification was derived manually, as

described in Chapter 5. A relation between STG edges and netlist’s gates was also derived manually.

55

56 CHAPTER 6. RESULTS

Synopsys
Design
Compiler

timing
information

timing
information compare

ATA
optimization

minimum
area

critical cycles
optimization

for time
optimized

netlist
specification

Simulation

minimum
area

path
optimization

Figure 6.1: Experimental Procedure Flow.

These were provided as inputs to the flow.

Using the implemented optimization tool the netlist was initially resized for minimum area. When

resizing for area, smallest library elements were used, taking no consideration to timing constraints.

Then, the optimization loop was applied on the minimum area netlist, focusing on critical cycles. Sev-

eral iterations of the loop produced several implementations depending on the critical cycles of the

current implementation. The terminating condition is that no further optimization could be performed

on the critical cycle delays. Area constraints weren’t considered through this optimization. However,

6.2. TWO-PHASE OVERLAPPING DESYNCHRONIZATION CONTROLLER 57

optimizing only the critical parts of the netlist leaves the remaining parts already optimized for min-

imum area. Another netlist was produced resized for minimum delay, examiningeach component of

the netlist. Area constraints were not considered in this implementation.

All the implemented netlists were simulated, in order to measure the actual performance of each

design. For the simulations the toolsCadence VerilogXL-Simvision were used. One point

of inaccuracy not in favor of this flow is that rising and falling transition times are not accounted

for. The implemented tool doesn’t take into account transition times, as the aim was not an efficient

mapping tool but the evaluation of ATA analysis for optimization.

Alternative optimization was performed based on the conventional flow. Theconventional flow

usingSynopsys Design Compiler performs ”point-to-point” STA breaking the cycles in the

netlist, disabling cyclic dependencies. Timing optimizations must, thus, be applied only to paths

that aren’t disabled. Thus, the path optimizations that were considered, concerned critical paths, as

identified bySynopsys Design Compiler, typically all paths from inputs to outputs or specific

internal netlist paths, depending on the design. This flow required manualexploration for the paths to

be optimized, which were determined manually, by selecting end-points.

A further difference between the two flows is thatSynopsys Design Compiler performs

technology mapping on circuits, not gate resizing. In order to fairly compare the two flows, the option

that forcesSynopsys Design Compiler to apply resizing only was used.

Finally, all of these implementations were simulated and the results were compared.

In the following sections, timing and area measurement results for each implemented design are

presented, as obtained from simulations, ATA and theSynopsys Design Compiler Timing

Engine.

6.2 Two-phase Overlapping Desynchronization Controller

The desynchronization controller is a circuit which controls data flow in a desynchronized design,

implementing left and right handshakes and latch control signals, according to the STG specification

shown in Figure 6.2. The transitions which appear in blue, are input signalsprovided by the environ-

ment. Thus, such signals and edges leading to them, also in blue, representthe environment’s behavior

and their actual delays are dictated by the environment. The controller’s implementation is shown in

Figure 6.2.

The STG along with the circuit’s netlist and a mapping of edges to gates are provided as input

to the optimization tool. ATA based optimization was performed for the two-phase controller in a

number of configurations,i.e. 1-scale and3-scale ring and a fork-join pipeline.

58 CHAPTER 6. RESULTS

Ai+ Ro−

Ao−

Ai−

Ri+

Ri−

Ro+

Ao+

Figure 6.2: Desynchronization controller STG

Ri

Ai

reset

Ao

Ro

Figure 6.3: Desynchronization controller netlist

6.2.1 Scale of 1 ring controller

1-scale ring is shown in Figure 6.4 and abides with the behavior specified by the resultant STG shown

at the same figure. The results of the measurements are shown in Table 6.1.

6.2. TWO-PHASE OVERLAPPING DESYNCHRONIZATION CONTROLLER 59

Ai−

Ai+

Ri−

Ri+

Ai

Ri

Figure 6.4: Two-phase desynchronization controller netlist in 1-scale ring

6.2.2 Scale of 3 ring controllers

The desynchronization controller was, also, examined in a3-scale ring pipeline. The block digram

of the topology and the resultant STG for this configuration are shown in Figure 6.5, while results

obtained by measurements are shown in Table 6.1.

A0−

A0+

R0−

R0+

A1−

A1+

R1−

R1+

A1 A2

R0

A0

R1 R2

A2−

A2+

R2−

R2+

Figure 6.5: Two-phase desynchronization controller netlist in 3-scale ring

60 CHAPTER 6. RESULTS

6.2.3 Scale of 3 ring controllers including wire delays

In order to model the delay spent on a long wire, a load was assigned to wires of a connection. On

the design of the desynchronization controller connected in a 3-ring pipeline, a load was assigned to

wires connecting the last and the first controller, modelling a long connectionafter place and routing.

The results appear in Table 6.1.

Table 6.1 shows three rows of implemented netlists for each configuration. The first row includes

the netlists which were mapped and optimized using the novel, proposed ATA based optimization

tool. The first netlist of each row was resized for minimum area without considering the timing of

the netlist. The second netlist was optimized focusing on critical cycles that were obtained using ATA

tool. The third netlist of the row was mapped focusing on minimum delay on each element of the

netlist individually.

The other two rows show results obtained using the conventional flow. Netlists of the second row

were obtained applying only resizing and the netlists of the third row not only through resizing but

also through resynthesizing.

The first column shows simulation measurements for the implementations between consequent

Ri+ occurrences. In the parentheses in the same column the same measurement isshown, as obtained

by the ATA tool. In the second column the corresponding area measurementsare shown. Finally, in

the third column the percentage improvement of ATA-based optimization to STA-based optimization

is shown. The comparison is between Critical Cycle Optimized netlist and the mosttiming efficient

Path Optimized netlist.

6.2.4 Fork-join Pipeline Structure

A more complicated structure is shown in Figure 6.6. Timing and area results of implementations,

obtained using the novel ATA and the conventional flow are shown in Table6.2.

Based on simulation results of Tables 6.1 and 6.2 several observations canbe made. ATA-based

optimization, based on critical cycles, is able to effectively optimize timing and in allcases produced

improved timing compared with conventional flow.

Gate delay optimization,i.e. optimization of every gate of the netlist, didn’t prove better than

critical cycle optimization in most cases. This is explained since the effort to optimize every element

of the implementation also optimized the non critical elements. This might have affected the drive

load capability of gates on the critical cycles leading to worse timing and greaterarea.

The difference of the ATA and the timing measured in simulations in the netlists produced through

ATA is an estimation error caused by rising and falling transition times. This is further supported by

6.3. RTBM CONTROLLER 61

Desynchronization
Simulation Area Improvement

Controller
(ns) (µm2) %

Ri+ → Ri+

1-scale ring

ATA

Minimum Area 3.269ns(2.046ns) 79.488µm2

Critical Cycle Optimization 1.425ns(1.174ns) 124.416µm2

Gate Delay Optimization 1.464ns(1.174ns) 129.6µm2

STA-resizing

Minimum Area 1.603ns 115.776µm2

Path OptimizationA 1.718ns 89.856µm2 11%

Path OptimizationB 1.627ns 91.584µm2

STA-resynthesis

Minimum Area 1.664ns 77.76µm2

Path OptimizationA 1.639ns 103.68µm2 5 %

Path OptimizationB 1.508ns 86.4µm2

3-scale ring

ATA

Minimum Area 2.789ns(2ns) 165.888µm2

Critical Cycle Optimization 1.377ns(1.204ns) 297.216µm2

Gate Delay Optimization 1.396ns(1.174ns) 300.672µm2

STA-resizing

Minimum Area 1.458ns 264.384µm2

Path OptimizationA 1.66ns 224.64µm2 17 %

Path OptimizationB 1.682ns 238.464µm2

STA-resynthesis

Minimum Area 1.694ns 120.960µm2

Path OptimizationA 1.329ns 193.536µm2 -3 %

Path OptimizationB − 139.968µm2

ATA

Minimum Area 2.735ns(2ns) 176.256µm2

Critical Cycle Optimization 1.372ns(1.429ns) 305.856µm2

3-scale ring Gate Delay Optimization 1.372ns(1.47ns) 362.880µm2

with wire delay
STA-resizing

Minimum Area 1.78ns 267.84µm2

Path Optimization 1.996ns 231.552µm2 31 %

STA-resynthesis
Minimum Area 1.853ns 177.984µm2

Path Optimization 1.912ns 196.992µm2 28 %

Table 6.1: Desynchronization controller in 1-scale, 3-scale ring and 3-scale ring including wire delays

results.

the fact that the difference is greater in the first netlist,i.e. optimized for minimum area, where smaller

gates can be more affected by transition times.

Through the ATA optimization process, several implementations of the same netlist were pro-

duced, between changes on gates. Simulations were also performed on these intermediate netlists and

the measurements appear on the graphs of Figures 6.7, 6.8, 6.9, 6.7.

6.3 RTBM Controller

RTBM controller is a Relative-Timed, Burst Mode latch controller. Its netlist and STG were shown

in Chapter 5 and are shown again in Figure 6.11 and Figure 6.12. In this section we consider its

implementation. As this circuit includes a timing assumption, it is possible for netlist optimization to

62 CHAPTER 6. RESULTS

Figure 6.6: A fork-join desynchronization controllers’ structure

Desynchronization
Simulation Area Improvement

Controller
(ns) (µm2) %

Ri+ → Ri+

fork-join pipeline

ATA

Minimum Area 2.875ns(2.217ns) 345.6µm2

Critical Cycle Optimization 1.631ns(1.427ns) 615.168µm2

Gate Delay Optimization 1.762ns(1.39ns) 615.168µm2

STA-resizing

Minimum Area 1.664ns 537.408µm2

Path OptimizationA 1.902ns 468.288µm2 3 %

Path OptimizationB 1.677ns 437.184µm2

STA-resynthesis

Minimum Area 1.953ns 388.8µm2

Path OptimizationA 1.914ns 499.392µm2 15 %

Path OptimizationB 2.137ns 343.872µm2

Table 6.2: Desynchronization controller in fork-join pipeline results.

violate it. This would result in incorrect realization. Two configurations were studied,i.e. 1-scale and

4-scale rings. The results are shown in Table 6.3.

The measurements indicated asFAILED on Table 6.3, on the simulation field, indicates that in

these cases the relative timing constraint was violated, and the design didn’toperate correctly.

Similar observations can be made, with respect to this design, as they were in the previous, based

on simulation results. The optimization performed based on critical cycles was comparable, but

slightly worse, in the1-scale ring and better in the4-scale ring. The timing performance reached

through critical cycles optimization was very close to overall gate delay optimization. The difference

between ATA and simulation measurements were apparent in this design, as well.

The negative percentages of the first configuration,i.e. 1-scale ring, and the small improvement

on the second configuration,i.e. 4-scale ring, compare with the STA-results, are due to the STG

6.3. RTBM CONTROLLER 63

Figure 6.7: Time/area results of desynchronization controller in1-scale ring.

Figure 6.8: Time/area results of desynchronization controller in3-scale ring.

formulation, and the edge to gate correspondence of the timing analysis. During the construction

64 CHAPTER 6. RESULTS

Figure 6.9: Time/area results of desynchronization controller in3-scale ring, with wire delay.

Figure 6.10: Time/area results of desynchronization controller in fork-joinpipeline.

6.3. RTBM CONTROLLER 65

a

b

p a

b

p

ra_

ra_
rr

ra_

y_

lr

rr

ra

la

d0 d1

n0

i0

Figure 6.11: RTBM controller netlist in1-scale ring topology

rr+

ra+la+

la−

rr−lr−

lr+

ra−

Figure 6.12: Signal Transition Graph of RTBM controller

of this STG, only the handshake signals were considered,i.e. lr, la, rr, ra. Thus, only timing

dependencies between the transitions of these signals are accounted forin the STG. Moreover, the

relation between STG edges and netlist gates is a defining factor for the optimization. If a netlist

gate, is not included in the STG edges,i.e. it does not produce an STG signal, and is not included

in the edge-gate relation, it is simply left out of the optimization process. In this specific example,

the design’s STG hides a timing assumption, at gaten0, as shown in Figure 6.11. Signaly is not

considered in STG formulation and gaten0 is, thus, not considered in the optimization. This might

hide a set of optimized implementations and must be further explored.

Time/area results for all the netlists produced appear in the graphs of Figure 6.13 and Figure 6.14.

66 CHAPTER 6. RESULTS

RTBM Simulation Area Improvement

Controller
(ns) (µm2) %

Ri+ → Ri+

1-scale ring

ATA

Minimum Area 2.427ns(1.577ns) 84.672µm2

Critical Cycle Optimization 1.246ns(0.8548ns) 120.96µm2

Gate Delay Optimization 1.265ns(0.85ns) 127.872µm2

STA-resizing

Minimum Area 1.294ns 91.584µm2

Path OptimizationA 1.242ns 96.768µm2 -0.3 %

Path OptimizationB 1.242ns 96.768µm2

STA-resynthesis

Minimum Area 1.368ns 88.128µm2

Path OptimizationA FAILED 55.296µm2 -27 %

Path OptimizationB 0.974ns 76.032µm2

4-scale ring

ATA

Minimum Area 4.155ns(2.049ns) 307.584µm2

Critical Cycle Optimization 1.265ns(1.251ns) 423.36µm2

Gate Delay Optimization 1.237ns(1.223ns) 454.464µm2

STA-resizing

Minimum Area 2.119ns 331.776µm2

Path OptimizationA 2ns 381.888µm2 3 %

Path OptimizationB 1.304ns 374.976µm2

STA-resynthesis

Minimum Area FAILED 283.392µm2

Path OptimizationA 1.758ns 395.712µm2 14 %

Path OptimizationB 1.514ns 485.568µm2

Table 6.3: RTBM controller in 1-scale and 4-scale ring results.

Figure 6.13: Time/area results of RTBM controller in1-scale ring.

6.4. C-MULLER PIPELINE 67

Figure 6.14: Time/area results of RTBM controller in4-scale ring.

6.4 C-Muller Pipeline

C-Muller Pipeline is a pipeline of controllers which synchronize stages of pipelined logic [11]. Each

controller is implemented as a C-Muller gate. A simple implementation of a C-Muller gate appears

in Figure 6.15. Each controller produces a request signal for the nextstage which is also an ac-

knowledgement signal for the previous stage. A pipeline of four controllers was studied which were

connected as shown in Figure 6.16. The results of the experimental procedure are shown in Table 6.4.

The results of this design follow the main points noticed on the previous designs. Graphs of

time/area measurements of all the netlists produced through optimizations appearin Figure 6.17.

6.5 VME Bus controller

Except from latch controllers, another control circuit was studied,i.e. a VME bus controller, which

controls read and write operations through a bus. The protocol followedcan be described with an

STG with choice. However, a read-write operation imply choice, which was not supported in this

work. Thus, only the read operation was examined here. The write operation can be analyzed by

using a separate STG. The block digram and the STG that describes the interface protocol for a read

68 CHAPTER 6. RESULTS

a

y

y =rst’ (ab + y(a+b))

b

rst

Figure 6.15: C-muller gate implementation

C C C C
R1 R2 R3R0

Figure 6.16: C-muller pipeline

C-Muller
Simulation Area Improvement

Pipeline
(ns) (µm2) %

Ri+ → Ri+

4-scale ring

ATA

Minimum Area 2.929ns(1.354ns) 134.784µm2

Critical Cycle Optimization 1.73ns(1.134ns) 186.624µm2

Gate Delay Optimization 1.641ns(1.131ns) 196.992µm2

STA-resizing

Minimum Area 1.714ns 141.696µm2

Path OptimizationA 2.068ns 176.256µm2 -1 %

Path OptimizationB 1.712ns 141.696µm2

STA-resynthesis

Minimum Area 2.765ns 139.968µm2

Path OptimizationA 2.194ns 138.688µm2 13 %

Path OptimizationB 1.985ns 139.968µm2

Table 6.4: C-Muller pipeline results

operation is shown in Figure 6.18. The results for this design are shown in Table 6.4.

In this design the timing results of the critical cycles optimization were the same as theones

of gate delay optimization and they were slightly better than the ones produced by the conventional

6.5. VME BUS CONTROLLER 69

Figure 6.17: Time/area results of a4-scale c-Muller pipeline.

DTACK−

DSr+

LDS+

LDTACK+

DTACK+

DSR−

LDS−

LDTACK−
DSr

DTACK

LDS

LDTACK

D

Figure 6.18: STG of a read operation in a vme bus controller

optimization through resizing. The netlist of this circuit is small and each signalis determined by one

or two gates as it is indicated by the following equations:

LDS = D + CSC

DTACK = D

D = LDTACK · CSC

70 CHAPTER 6. RESULTS

VME
Simulation Area Improvement

Bus Controller
(ns) (µm2) %

Ri+ → Ri+

4-scale ring ATA Minimum Area 1.253ns(0.92ns) 31.104µm2

Critical Cycle Optimization 0.734ns(0.777ns) 43.2µm2

Gate Delay Optimization 0.734ns(0.777ns) 43.2µm2

STA-resizing

Minimum Area 0.806ns 31.104µm2

Path OptimizationA 0.745ns 39.744µm2 1 %

Path OptimizationB 0.745ns 39.744µm2

STA-resynthesis

Minimum Area 0.762ns 32.832µm2

Path OptimizationA 0.349ns 50.112µm2 -61 %

Path OptimizationB 0.454ns 48.384µm2

Table 6.5: VME Bus controller results

CSC = DSR · (CSC + LDTACK)

The specific design doesn’t contain many cycles dependencies, thus, STA optimization can be effec-

tive as well as ATA optimization. Figure 6.19 shows the timing/area results of all the netlists produced.

Figure 6.19: Time/area results of a VME Bus Controller.

7
Conclusions

This work has shown that Asynchronous Timing Analysis (ATA) and optimization through a complete

EDA flow for asynchronous circuits is feasible. Prior work on an algorithm, evaluating exact bounds

on the Timing Separation of Events has been clarified and completed. Theoretical issues have been

examined, as well as application and complexity issues. The gap between theory and implementation

was covered successfully, achieving the development of a complete EDA tool for the timing analy-

sis of asynchronous circuits. A well-defined flow for the application of theATA tool was proposed

for the optimization of asynchronous circuits and for validation of RTC. Theoptimization flow was

implemented within an EDA optimization tool, which was used for the optimization of several asyn-

chronous designs. The implemented and optimized through the ATA netlists werecompared with

implementations derived from contemporary flows of synchronous design. The results proved the

proposed flow viable for exploring various implementations.

Future work mainly consists of extentions on the ATA algorithm and improvementsfor the EDA

optimization flow. Additionally to delay ranges, probabilistic functions may be associated with delay

constraints. This would be a step towards incorporation of statistical information in the ATA tool,i.e.

for the development of a Statistical ATA engine, and with respect to the ATA algorithm internals, the

direction of Symbolic Timing Analysis may be persued. Additional work is required for the EDA flow

71

72 CHAPTER 7. CONCLUSIONS

to handle circuit netlists automatically.Further examination is needed in the field of STG functionality

and incorporation of choice in specification. The generation of Petri-Nets, which are now required to

include choice, as Free-Choice Petri-Nets, require further investigation. Moreover, the optimization

functionality can be further extended. Full technology-mapping functionality may be implemented, as

well as full HDL parsing and library coverage. Finally, more technology attributes, such as transition

times, can be included in the analysis to implement a more accurate EDA tool, able to better explore

the implementation space of asynchronous circuits.

Bibliography

[1] Joep Kessels, Torsten Kramer, Ad Peeters, and Volker Timm. DESCALE: a design experiment

for a smart card application consuming low energy. In Jens Sparsø and Steve Furber, editors,

Principles of Asynchronous Circuit Design: A Systems Perspective, chapter 13. Kluwer Aca-

demic Publishers, 2001.

[2] T. Murata. Petri Nets: Properties, analysis and applications.Proceedings of the IEEE, pages

541–580, April 1989.

[3] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev. Logic Synthesis of

Asynchronous Controllers and Interfaces. Springer-Verlag, 2002.

[4] Ken Stevens, Ran Ginosar, and Shai Rotem. Relative timing. InProc. International Symposium

on Advanced Research in Asynchronous Circuits and Systems, pages 208–218, April 1999.

[5] H. Hulgaard, S. M. Burns, T. Amon, and G. Borriello. An algorithm for exact bounds on the

time separation of events in concurrent systems.IEEE Transactions on Computers, 44(11):1306–

1317, November 1995.

[6] Henrik Hulgaard, Steven M. Burns, and Gaetano Borriello. Testing asynchronous circuits: A

survey.Integration, the VLSI journal, 19(3):111–131, November 1995.

[7] F. Commoner, A. W. Holt, S. Even, and A. Pnueli. Marked directed graphs.Journal of Computer

and System Sciences, 5:511–523, 1971.

[8] Steven M. Burns.Performance Analysis and Optimization of Asynchronous Circuits. PhD thesis,

California Institute of Technology, 1991.

[9] A. V. Aho, J. E. Hopcroft, and J. D. Ullman.The Design and Analysis of Computer Algorithms.

Addison-Wesley, 1974.

73

74 BIBLIOGRAPHY

[10] Ken Stevens. Personsal contact.

[11] Ivan E. Sutherland. Micropipelines.Communications of the ACM, 32(6):720–738, June 1989.

