
Design and Implementation of a Write-based
version of Exanet MPI

Michail Nikoloudakis

Thesis submitted in partial fulfillment of the requirements for the

Masters’ of Science degree in Computer Science and Engineering

University of Crete

School of Sciences and Engineering

Computer Science Department

Voutes University Campus, 700 13 Heraklion, Crete, Greece

Thesis Advisor: Associate Prof. Polyvios Pratikakis

This work has been performed at the University of Crete, School of Sciences and Engineering,
Computer Science Department.

The work has been supported by the Foundation for Research and Technology - Hellas
(FORTH), Institute of Computer Science (ICS).

Design and Implementation of a Write-based version
of Exanet MPI

Abstract

MPI is one of the leading communication protocols used in HPC (High Per-
formance Computing) suites today due to its portability and scalability. Many
HPC applications make use of MPI in order to enable communication between
di�erent processes. In the scope of the ExaNeST project, an HPC prototype was
deployed in the CARV Laboratory of FORTH consisting of 512 ARMv8 cores cou-
pled with FPGA logic. This prototype makes use of special network primitives
designed to allow the low latency transmission of control messages as well as the
e⇥cient transfer of large data through the Exanet network. In order to exploit the
aforementioned capabilities of the prototype, a highly optimized MPI implemen-
tation (Exanet MPI) was developed in the scope of the same project prior to our
work. This implementation makes use of the prototype’s communication primi-
tives and manages to outperform the well known MPI implementation, MPICH
(TCP/IP) by achieving up to 30x lower latency. Exanet MPI supports both an
eager and a long communication protocol used for short and large MPI transfers
respectively. The long protocol depends on emulated DMA reads and supports ex-
clusively sender initiation. Sender initiation is defined as the ability of the sender
of an MPI message to initiate the communication with the receiver by issuing an
appropriate control message. Despite its simplicity, sender initiation does not let
us exploit scenarios in which the receiver posts its request earlier than the sender.
In addition, the use of emulated reads requires the receiver to notify the sender
about the end of a DMA transfer through the use of an Ack control message which
incurs extra latency. In this thesis, we design and implement from scratch a write-
based version of the Exanet MPI that supports both sender and receiver initiation.
With the use of DMA writes, we render the sender able to determine the end of
a DMA transfer by itself without the need of acknowledgment from the receiver.
Additionally, we take advantage of cases where a receive request gets posted earlier
than a matching send request by letting the receiver initiate communication by
asynchronously transferring its DMA related information to the sender. Conse-
quently, a sender that posts its send request after the receiver, can immediately
transfer data without the need of further synchronization with the receiver. How-
ever, simply adding receiver initiation support to the long protocol also infers some
complications including (but not limited to) the significant increase of the eager
protocol’s latency. We propose our method for successfully facing the complica-
tions that arise from the support of receiver initiation and we also further optimize
the long protocol by eliminating the need of some control messages. In order to
break down the performance gain caused by our optimizations we develop in total
4 variants of the write based Exanet MPI. In each variant, we provide implemen-
tations for most point-to-point, collective as well as communicator manipulating
functions. We describe the use cases of each developed variant and evaluate them

against the already optimized read based original version of Exanet MPI on the
HPC prototype. We o�er insight into the ways our control path optimizations im-
prove performance and the factors that let our implementation show more benefit.
For the evaluation we use both microbenchmarks and real scientific applications.
We show that our implementation can outperform the read based protocol by up
to 50% in communication latency while also reduce the total execution time of spe-
cific applications by up to 10% (depending on the percentage of communication
time they contain).

���������	
�� ������� ���	 �
���	 �� Exanet MPI ���������	 �� �������

��������

⇥ � MPI ���	
 ��	 	� �	 ����	��	 ��������	 ��
��
����	� ��� ����
����
����	
 ��
�

��	������ HPC (⇤ ⇤)�����
���� ����� 	������ �����	 ��� ��� ���������� �	
 ���

 . � ��
�	���
������ ��� ����� HPC ��	������ M������ ����� ��� PI �
	 �	 �	�	������� ��
��� ���

 .⌅ ��
��
����	 ���	�� �
�����
��� �
���	�
�� �	 ��	��
	 ��� ����� ExaNeST, ��	 ��� HPC ��������

 	�	�������� ��� ���	����
� CARV ⇧.⇥.⌃ 512 ��� 	����������� 	� �����
�� ARMv8 �������

 �����	������� �� ���
�� FPGA. ⇥ � �������� 	�� ����
 ����� �
�
��� ������� ��
��
����	�

 ����
	������ �	 ��
������� �� �
����� ��������� �������
���� �� ���� �
��� �	���������

(latency) �	��� �	
 ��� 	�����
�� ���	���� ������� ��������� ���� ��� �
����� Exanet.

� , ����
����� �	 	�
���
����� �
 ���	�	���������
�	������ ��� ���������� 	�	�������� �
	

 ����� ����
�����
����� MPI ��������� (Exanet MPI) , ��	 ��	��
	 ��� ��
�� ����� ��
� 	� ��� 	���

 . ⌥ ��� �����
�� �	� ��������� 	��� ����
 ����� ��� ������� ��
��
����	� ��� HPC ���������� �	

 �	�	�����
 �	 ��
����
 �	������ 	����� 	� ��� ������ MPI ��������� MPICH ��
���������	�

 30����
 �	
 x �
������ �	��������� �
������ ��������� (latency). ⇥ � Exanet MPI �������� �
 ��	

eager �	
 ��	 long .��������� ��
��
����	� �
	 �
���� �	
 ������� ���	����� ��������� 	������
�	

⇥� ��������� long �	�� ��	
 �� �������
����	 DMA reads (read based) �	
 �������� �
 �������� ���

 . ⌥ “ ” ��
��
����	� 	�����
��
�� 	� ��� 	�������	 �������� 	� ��� 	�������	 ��� ��	
 �� �

�	����	 ��� 	�������	 ��� MPI �����	��� �	 ���
����
 ��� ��
��
����	 �� ��� �	�	�����

 . � , ��������	� �� �	������� �����	 �������
���� 	�� ��� 	�����	 ��� � �������� 	�����
��
�� 	�

 ��� 	�������	 ��� �	� ��
�����
 �	 �����	��������� ���
�����
� ��� � �	�	������ �	�	����� ���

 . ⌃ , 	����� ��� �������	 	� ��� 	�������	 �
������	 � ����� �������
������ DMA reads 	�	
���

 	� ��� �	�	����� �	 ���������
 ��� 	�������	 ����
�� �� �� ����� �
	� DMA ���	����� ����

��� Ack ,�����	��� �������
���� ���
 ��� ��
����
 ��
����� �	��������� (latency).

⌅ , � 	��� ��� ���	��	 ����
� ���� �	
 �����
���� �� 	���� �
	 ������ ��� Exanet MPI �	�
����� ��

 (����	�� write-based) � ����	 �������� �
 �������� ��
������	� 	� ��� 	�������	 	��� �	
 	� ���

. � �	�	����� � �� ����� DMA writes, �	�
������ ��� 	�������	
�	� �	 	��
������ �� ����� �
	�

DMA . ⌃ ,���	����� ����� �	 ���
� ��	
 ��
���	���� 	� ��� �	�	����� �
������	

 �����	�����	��� ���
�����
� ��� � 	����� �	�	�	��� �	�	������	
 �������	 	� ��� 	�����

 	�������� ��
�������	� ���� �	�	����� �	 ���	����
 	�������	 ���� 	�������	 ��� �
�

 ����������� ��� ���
� ���	
 �
	 �
	 DMA ���	����. ⌅ , ������ � 	�������	� ��� �	 �	�	������

 , ��� 	����� 	�������� ���� ��� �	�	����� ������ �	 ���	����
 ����	 �	 �������	 ��� ����� �	

 . � ’ , ������
 	����� �
	 ���	
���� �������
�� �� ��� �	�	����� 	� �	 	��� � 	��� �������� ���

 ���	����	� ��������� 	� ��� �	�	����� ��� long ��������� ��
����
 ����
�� ��
������

 ������
�	��	������� �	
 ��� ������� 	������ ��� �	���������� ��� eager . ���������� ����������

 �
��� �	� ������� �
	 ��� ��
���� 	��
�����
�� ��� ��
������ ��� ���������� 	� ��� �������
��

��������� 	� ��� �	�	����� �	��� ������ ����
�����
���� ���	
���� �� long ���������

 . � ��������������	� ��� 	����� ������ ����
�� ��������� �������
���� ����
����� �	 	�	�������

 , �� ����� 	������ ��� ����
�����
����� �	� 	�	��������� �����
�� ������
� �	�	�	��� ���

Exanet MPI . ⌅ ,�	�
������ �� ����	�� � ���� �	�	��	�� �	������� �����
���
� �
	 �
� ���
�������

 �� ��� point-to-point, collective, �	
 communicator manipulating . � ���	������� ��
�������� �
�

 ���
�����
� ������ ��� ���� �	�	��	��� �	
 	�
�������� �
� �	�	��	������ ���������� �	� ��	��

 , , ��� 	��
��� ��� ����
�����
������ read based ������� ��� Exanet MPI ��� HPC .��������

⌃ ��	������� ����� ������ �� ���� ������� �
 ����
�����
���
� �	� ��� �������
 �������
����

����
����� ��� 	����� �	��� �	
 ����� �	�������� ��� ��
������� ���� ��������� �	� �	 �����

. ���
������ �����
	 ��� 	�
������ ����
����
���� ��� microbenchmarks �� �	
 ��	��	�
���

. ⌦��
������
��� ��	������ �������� �
 � ��������� �	� ������ �	 ��������
 �� 	����� �� read

based 50% (��������� ����������	� ��� �	
 �
������ �	��������� latency) ��� ������ �	 ��
���

 10%.�� �����
� ���� ��������� ��
������ ��	������ ��� �	
 �	�� (�����	 �� �� ������

)����� ��
��
����	� ��� ���
�����

Acknowledgments

First of all, I am grateful to my supervisor Polyvios Pratikakis as well as to my advisor Manolis

Ploumidis for their constant support and guidance throughout this thesis. I would also like to thank

Associate Professor Konstantinos Magoutis and Assistant Professor Vassilis Papaefstathiou for agreeing to

be members of my thesis’ examination committee.

Special thanks to the CARV Laboratory members Pantelis Xirouchakis, Fabien Chaix, Marios

Asiminakis and Astrinos Damianakis for their useful tips regarding the HPC Prototype, its hardware

blocks’ userspace API and benchmark applications used in the evaluation chapter of this thesis.

Last but not least, I would like to thank my family for their mental support and help which made the

process of completing my studies a lot easier. L.K.!

����� ����	�
��

Table of Contents

Contents
Table of Contents...i
List of Tables..ii
List of Figures...iii
1 Introduction.. 1
2 Background... 3
 2.1 MPI .. 3

2.2 Packetizers and Mailboxes ..4
 2.3 RDMA Engine .. 5
 2.4 User Level Communication Libraries ..5
 2.5 The HPC Prototype ..6
 2.6 Read Based Exanet MPI Implementation ...7
3 Design and Implementation of the Write-based Exanet MPI Protocol.............. 10
 3.1 Designing a preliminary sender and receiver initiated write based protocol10
 3.1.1 Designing a preliminary sender and receiver initiated write based long protocol...10
 3.1.2: Designing a preliminary sender and receiver initiated write based eager protocol.15
 3.2 Basic description of the preliminary write-based MPI protocol’s implementation18
 3.2.1 Initiation of the MPI library..18
 3.2.2 Structure of Request Object in our Implementation ...19

3.2.3 General Control logic of Basic Point-to-Point primitives in the �rst version of the
Write-based Exanet MPI ……………………………………………………………………………………….20
 3.2.4 General Control logic of the Progress Engine ...23
 3.2.5 Implementation of Synchronization and Locking Mechanisms24
 3.2.6 Data Structures Design ...26
 3.3 Designing an improved sender and receiver initiated write based long protocol:
Elimination of the Env Control message ..26
 3.4 Basic description of the second write-based MPI variant’s implementation33
 3.4.1 Structure of Request Object ...34
 3.4.2 General Control logic of Basic Point-to-Point primitives in the second version of
the Writebased Exanet MPI ...34
 3.4.3 General Control logic of the Progress Engine Thread in the second version of the
Write-based Exanet MPI .. 34
 3.5 Designing an improved sender and receiver initiated eager based protocol: Elimination
of the Ack control message and receiver initiation in eager communication35
 3.6 Basic description of the third write-based MPI variant’s implementation44
 3.6.1 Structure of Request Object ...44
 3.6.2 General Control logic of Basic Point-to-Point primitives in the third version of the
Write-based Exanet MPI ..44

 3.6.3 General Control logic of the Progress Engine Thread in the third version of the
Write-based Exanet MPI .. 45
 3.7 Changing type of MPI_Request. ..45

3.8 Handling Communicator manipulation ...46
 3.9 Memory Allocation Optimizations ..48
 3.10 Supported MPI Send modes ..48
 3.11 Support for Persistent Point-to-Point MPI Requests ...48
 3.12 Support for Probing Primitives ...48
 3.13 Support for Collective Primitives ...50
 3.13 Support for Collective Primitives ..50
 3.14 Support for an Optimistic version of the write based variant.52
4 Evaluation.. 54
5 Related Work.. 81
6 Conclusions and Future Work...83

List of Tables

Table 3.1: Comparison of bandwidth with original modi�ed MPI_Request46

List of Figures

Figure 2.1: HPC prototype's Example topology..6
Figure 2.2 Long Protocol of the Read Based Exanet MPI..8
Figure 2.3 Eager protocol of the Read Based Exanet MPI..9
Figure 3.1: Sender initiated communication in the write based Exanet MPI.........................12
Figure 3.2: Receiver initiated communication in the write based Exanet MPI......................12
Figure 3.3: MPI_ANY_SOURCE receiver initiation suspension...13
Figure 3.4: MPI_ANY_SOURCE receiver initiation suspension, non blocking receives.......14
Figure 3.5 Concurrent Receiver and Sender initiation...15
Figure 3.6 Problematic scenario in the write based MPI’s eager protocol.............................16
Figure 3.7: Eager protocol, Matching Eager Send and Receive requests posted concurrently 16
Figure 3.8 Eager Protocol, Eager receive request posted before matching eager send request
.. 17
Figure 3.9: Eager Protocol, Eager send posted before matching receive request....................17
Figure 3.10: Eager protocol: Non blocking send and MPI_Wait...23
Figure 3.11: Comparison of POSIX Semaphore and busy waiting latency.............................25
Figure 3.12: Comparison of di<erent locking mechanisms’ latency..25
Figure 3.13: Receiver initiation with omitted Env control messsage......................................28
Figure 3.14: Sender initiation with omitted Env control message..28
Figure 3.15: Problematic scenario of concurrent sender and receiver initiation with omitted
Env control message.. 29
Figure 3.16: Sender initiation with omitted Env control message, correct execution.............31
Figure 3.17: Receiver initiation with omitted Env control message, correct execution...........31
Figure 3.18: Concurrent sender and receiver initiation with omitted Env control message,
correct execution... 32
Figure 3.19: Problematic scenario with two sending threads and omitted Env control message
.. 32
Figure 3.20: Non blocking sends with omitted Env control message......................................33
Figure 3.21: Comparing read based and write based MPI in eager communication latency. .36
Figure 3.22: Eager protocol: Piggybacked counter in RTR optimization, match of long receive
with eager send.. 37
Figure 3.23: Eager protocol: Piggybacked counter in RTR optimization, CTS message clears
pending eager sends... 38
Figure 3.24: Eager protocol: Piggybacked RTR issued before any matching eager send
request is posted. Use of crafted requests..39
Figure 3.25: Comparison of the initial write based MPI eager protocol with the optimized
eager protocol in terms of latency...40
Figure 3.26: Piggybacked ticket_ID in RTR optimization, long receive matching long send.41
Figure 3.27: Piggybacked Ticket ID optimization, eager receive matching eager send...........41
Figure 3.28: Posted Send request clears useless received requests (RTRs).............................43

Figure 3.29: Comparison of the original eager protocol of the write based MPI with the two
di<erent optimizations...43
Figure 3.30: Original MPI_Request type in mpi.h..46
Figure 3.31: ModiBed MPI_Request type in mpi.h...46
Figure 3.32: Added function to support communicator ID exporting....................................48
Figure 4.1 OSU Latency: Comparison of all Exanet MPI variants, Eager Messages.............57
Figure 4.2 OSU Latency: Comparison of all Exanet MPI variants, Short Messages.............57
Figure 4.3 OSU Latency: Comparison of all Exanet MPI variants, Medium Messages.........57
Figure 4.4 OSU Latency: Comparison of all Exanet MPI variants, Large Messages.............58
Figure 4.5: OSU Latency: Comparison of small messages' latency between 2 QFDBs in a 3
hops distance... 58
Figure 4.6: OSU Latency: Comparison of big messages' latency between 2 QFDBs in a 3
hops distance... 59
Figure 4.7: OSU Latency: Comparison of small messages' latency between 2 QFDBs in a 5
hops distance... 59
Figure 4.8: OSU Latency: Comparison of big messages' latency between 2 QFDBs in a 5
hops distance... 59
Figure 4.9: Comparison of all Exanet MPI variants’ bandwidth, small messages..................60
Figure 4.10: Comparison of all Exanet MPI variants’ bandwidth, big messages....................60
Figure 4.11: Comparison of Read and Write Based MPI in fast receives, intra QFDB..........61
Figure 4.12: Comparison of Read and Write Based MPI in fast receives, 3 hops distance61
Figure 4.13: Comparison of Read and Write Based MPI in fast receives, 5 hops distance62
Figure 4.14: OSU_Broadcast latency comparison, small messages with 16 ranks..................63
Figure 4.15: OSU_Broadcast latency comparison, medium messages with 16 ranks63
Figure 4.16: OSU_Broadcast latency comparison, small messages with 16 ranks inshuDed
hostBe ... 64
Figure 4.17: OSU_Broadcast latency comparison, big messages with 16 ranks64
Figure 4.18: OSU_Broadcast latency comparison, small messages with 64 ranks64
Figure 4.19: OSU_Broadcast latency comparison, medium messages with 64 ranks64
Figure 4.20: OSU_Broadcast latency comparison, big messages with 64 ranks64
Figure 4.21: OSU_Broadcast latency comparison , small messages, 128 ranks64
Figure 4.22: OSU_Broadcast latency comparison, small messages with 128 ranks65
Figure 4.23: OSU_Broadcast latency comparison, big messages with 128 ranks65
Figure 4.25: OSU Reduce: latency comparison, medium messages with 16 ranks66
Figure 4.26: OSU Reduce: latency comparison, big messages with 16 ranks66
Figure 4.27: OSU Reduce: latency comparison, small messages with 64 ranks66
Figure 4.28: OSU Reduce: latency comparison, medium messages with 64 ranks67
Figure 4.29: OSU Reduce: latency comparison, big messages with 64 ranks..........................67
Figure 4.30: OSU Reduce: latency comparison, small messages with 128 ranks67
Figure 4.31: OSU Reduce: latency comparison, medium messages with 128 ranks67
Figure 4.32: OSU Reduce: latency comparison, big messages with 128 ranks........................67
Figure 4.33: OSU Reduce: latency comparison, small messages with 128 ranks in a shuDed
hostBle .. 68

Figure 4.34: OSU Barrier: latency comparison ...68
Figure 4.35: OSU_Scatter latency comparison, small messages with 16 ranks69
Figure 4.36: OSU_Scatter latency comparison, medium messages with 16 ranks69
Figure 4.37: OSU_Scatter latency comparison, medium messages with 16 ranks69
Figure 4.38: OSU_Scatter latency comparison, small messages with 64 ranks69
Figure 4.39: OSU_Scatter latency comparison, medium messages with 64 ranks ……………….. 70
Figure 4.40: OSU_Scatter latency comparison, big messages with 64 ranks70
Figure 4.41: OSU_Scatter latency comparison, small messaes with 128 ranks70
Figure 4.42: OSU_Scatter latency comparison, medium messages with 128 ranks 70
Figure 4.43: OSU_Scatter latency comparison, big messages with 128 ranks 70
Figure 4.44: OSU_Allreduce latency comparison, small messages with 16 ranks71
Figure 4.45: OSU_Allreduce latency comparison, medium messages with 16 ranks 71
Figure 4.46: OSU_Allreduce latency comparison, big messages with 16 ranks71
Figure 4.47: OSU_Allreduce latency comparison, small messages with 64 ranks 71
Figure 4.48: OSU_Allreduce latency comparison, medium messages with 64 ranks 72
Figure 4.49: OSU_Allreduce latency comparison, big messages with 64 ranks 72
Figure 4.50: OSU_Allreduce latency comparison, small messages with 128 ranks 72
Figure 4.51: OSU_Allreduce latency comparison, medium messages with 128 ranks 72
Figure 4.52: OSU_Allreduce latency comparison, big messages with 128 ranks 72
Figure 4.53: Total duration comparison, LU NAS Benchmark ..74
Figure 4.54: Communication time comparison, LU NAS Benchmark 74
Figure 4.55: Mops/s comparison, LU NAS Benchmark..74
Figure 4.56: Total duration comparison, MG NAS Benchmark ...75
Figure 4.57: Communication time comparison, MG NAS Benchmark 75
Figure 4.58: Mop/s comparison, MG NAS Benchmark ...75
Figure 4.59: Total duration comparison, IS NAS Benchmark ..76
Figure 4.60: Communication time comparison, IS NAS Benchmark 76
Figure 4.61: Total duration comparison, NAS SP Benchmark ...77
Figure 4.62: Communication time comparison, NAS SP Benchmark77
Figure 4.63: GFLOP/s comparison, HPCG Benchmark ...78
Figure 4.64: Halo Exchange average latency comparison, HPCG Benchmark78
Figure 4.65: All Reduce average latency comparison, HPCH Benchmark 78
Figure 4.66: Comparison of MPI Graph send bandwidth..79
Figure 4.67: Comparison of MPI Graph receive bandwidth ..79
Figure 4.69: LAMMPS eam Problem,Throughput Evaluation ..80
Figure 4.70: Figure 4.70: LAAMPS Chute Problem, Throuhput Evaluation.........................80

Chapter 1

Introduction
High Performance Computing (HPC) is the practice of using parallel processing units in order to achieve

much higher performance and perform complex calculations. Through years of technological advancement, the
computation power required for HPC applications has started moving towards exascale. This fact constitutes a
motive towards a general reconsideration of the modern HPC suites’ design in order to keep their cost viable.
To this end, a new HPC prototype has been deployed in the CARV Laboratory of FORTH, which makes use of
novel, low cost communication primitives developed in the scope of the ExaNeST project. The proposed
architecture used in that prototype o�ers near optimal message latency with minimum kernel involvement
while at the same time keeping the cost low. The new communication primitives make use of an accelerated a

custom packet-based hierarchical interconnect network called Exanet, developed in the scope of the same
project. In order to enable support for the majority of HPC applications, an MPI runtime has also been
deployed called Exanet MPI [16]. MPI is currently the dominant communication protocol used in HPC due to
its portability, scalability and high performance. The MPI standard provides de⇥nitions of a wide range of
primitive functions which focus mainly on message handling and are extremely useful for the development of
parallel applications while it also determines how the features of the interface must behave in any di�erent
implementation. More speci⇥cally, MPI library consists of functions related to point point communication
(between two processes) as well as functions related to collective communication regarding groups of processes.
MPI implementations typically use two di�erent protocols for transferring messages depending on their size.
For small messages an eager protocol is used in which the sender sends the entire message to the receiver,
where the receiver provides su⇤cient bu�ering space for the incoming messages. On the other hand, for large
messages that cannot ⇥t in a control message, a rendezvous long protocol is used in which the sender and the
receiver negotiate before the data transfer takes place. The data transfer of a long rendezvous protocol usually
happens through a Remote Direct Memory Access (RDMA) engine. A rendezvous long protocol can be sender
initiated, receiver initiated or hybrid. Sender initiation means that the sending process is responsible for
initiating the synchronization process with the receive before the DMA transfer takes place. Respectively,
receiver initiation gives the capability of initiating the communication to the receiving process.

Exanet MPI supports both an eager and a long protocol. Exanet MPI’s long protocol uses exclusively sender
initiation and relies on emulated DMA reads. Speci⇥cally, a sending process initiates the communication by
advertising the address of the send bu�er to the receiving process. Subsequently, the receiver transfers the
contents of the send bu�er to its receive bu�er by initiating a DMA write from the sender’s side with the use of
control messages. At the end of the emulated read, it noti⇥es the sender about the end of the transfer with an
acknowledgment control message. Exanet MPI manages to outperform MPICH by achieving up to 96% lower
latency and thus o�ers HPC applications a high performing communication interface in the aforementioned
HPC prototype. However, sender initiation, despite being the dominant form of communication initiation used
in the long protocol of most implementations, also has some drawbacks. First, in cases where a receiving
process posts a receive request before the posting of matching send request by the sender, the protocol does not
let the receiver initiate the communication. In that way, the intermediate time between the receive’s and the
send’s posting is not exploited. Secondly, relying on emulated reads requires the receiver to notify the sender
about the end of DMA transfers which incurs extra latency. Consequently, it was a topic of our research
whether the already optimized Exanet MPI can be urther improve.

In this thesis, we designed and implemented from a scratch a write-based version of Exanet MPI. This new
MPI implementation relies exclusively on DMA write operations and supports both sender and receiver
initiation. With the use of DMA writes, we render the sender able to determine the end of a DMA transfer by
itself without the need of an acknowledgment control message from the receiver. Speci⇥cally, the receiver

1

is able to initiate communication by asynchronously transferring its DMA related information to the sender.
As a consequence, a sender that posts its send request after the receiver can immediately perform a DMA
write without the need of further synchronization with the receiver. Our implementation combines the bene⇥ts
of both types of initiations of the long protocol while supporting an eager protocol as well. Through
implementing four variants of the write-based implementation we managed to ⇥nd out and face the
complexities the coexistence of receiver and sender initiations infers and even outperform the already existing
version of the Exanet MPI. In addition, we broke down the performance gain of our implementation by
comparing all four variants with each other, each one of them contributing di�erent optimizations. Our MPI
implementation relies on reimplementing most of the point-to-point, collective and communicator manipulation
MPI routines and delegating them through the Exanet network by making use of network primitives of the
HPC prototype for inter-process communication. Initially, we created an MPI variant that combines sender and
receiver initiation in the long protocol but also contains some overheads that arise from the coexistence of the
two initiation methods. Secondly, we further optimized the long protocol of receiver initiation by eliminating
the need of one control message and, in a third axis, we came up with a method of eliminating the overhead
receiver initiations infers to the eager protocol. Lastly, we implemented an optimistic (speculative) variant of
our implementation that makes some assumptions that may partly violate the MPI standard but can be used
to improve performance with some applications. Our evaluation showed that our implementation can compete
and outperform the read-based version of the Exanet MPI in both the long and eager protocol. Overall, we
make the following contributions:

• We design a write-based protocol that utilizes the network primitives of the new HPC prototypes while
supporting

• We detect and face all the complexities that arise by supporting both sender and receiver initiation

• We manage to optimize the control path of the long protocol in both sender and receiver initiation
scenarios. Speci⇥cally, with our optimizations, the long protocol requires one less message in
comparison to the read-based version’s control path. In scenarios where a receive request gets posted
⇥rst, our implementation uses 2 less synchronization messages compared to the read-based variant.

• We propose an optimistic variant that can suggest new changes to the MPI standard

• We underline the impact of the topology of MPI processes and how it can a�ect performance.

• We attempt to ⇥nd a sweet spot for the cost and bene⇥t each of our optimization provides and suggest
the most suitable variant for di�erent scenarios.

The rest of this thesis is organized as follows. We ⇥rst give the necessary background information on MPI, the
HPC prototype, the network primitives it uses and the Read-based MPI implementation. In Chapter 3 we
provide a detailed analysis of our implementation as well as our thinking process towards aeach one of the
variants implemented. Chapter 4 contains our thorough evaluation’s methodology and results while in Chapter
5 we present related work from the academic literature. Finally, in Chapter 6, we sum up our conclusions and
discuss future work.

2

Chapter 2

Background
2.1 MPI
As mentioned in the introduction, our work includes the reimplementation of several MPI routines. MPI is a
speci⇥cation for message passing libraries designed to function on parallel computer architectures and it is
maintained by the MPI Forum[19]. Its purpose is to constitute a standard for writing message passing
programs while o�ering portability, e⇤ciency and ⌅exibility. Originally, MPI was designed for distributed
memory architecture but through years of development and technological advancement. MPI supports both
distributed and shared memory as well as hybrid architectures. Up to this day, MPI has managed to replace all
previous libraries regarding message passing and is considered a standard supported on virtually all HPC
platforms. There are many di�erent implementations [20, 21] of the MPI Standard which have emerged through
the years by di�erent vendors. However, due to the standard’s portability, source code that uses MPI can be
used with di�erent MPI implementations with little or no modi⇥cation at all. The MPI standard undergoes
constant changes and improvements and, up to the time of writing, its latest version is MPI-3 which consists of
more than 430 routines. MPI’s communication routines can be split into two major categories: Point-to-point
and Collective routines. Point-to-Point routines are functions that regard communication between two
processes while collective routines include all the process of a communicator in the data exchange. A
communicator can be de⇥ned as a subgroup of processes. Each MPI process of a communicator is assigned an
MPI Rank, an integer that uniquely identi⇥es it in that communicator. At the beginning of execution, a
default communicator gets created, called MPI_COMM_WORLD, which includes all the running MPI
processes. A brief look on some examples of point-to-point and collective functions can be helpful for
understanding their implementation described in the rest of this thesis.
The most commonly used point-to-point functions are MPI_Send and MPI_Recv [22] which have the
respective signatures:

int MPI_Send(const void *buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm)

int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source, int tag, MPI_Comm comm,

MPI_Status *status)

Both functions accept as arguments a pointer to a send/receive bu�er, the datatype of the transferred elements
(eg., MPI_INT, MPI_CHAR etc), the number of elements to be transferred (count), the MPI rank of the
source or destination process, a communication tag and the respective communicator the transfer regards.
These two function are both blocking functions which means that they will block until the user is able to use
the bu�ers without worrying whether the communication has ended. However, MPI also o�ers non blocking
functions like MPI_Isend and MPI_Irecv which return immediately and the user has to use other
complementary functions like MPI_Wait in order to determine whether they can reuse their bu�ers.

While reimplementing communication routines, one must take into account that the guarantees of the MPI
standard must not cease to apply. For instance, it is guaranteed by the MPI Standard that a send function will
always match with a receive of the destination rank of the same communicator, which denotes the sending
process’ rank as source and uses the same communication tag. Thus, the source/destination ranks, the
communication tag and the communicator are the matching attributes of point-to-point functions. It is

3

also guaranteed that all messages of a speci⇥c rank, tag and communicator combination are going to get
received by the receiver in the exact same order they were sent. Thus, the FIFO property is preserved in point-
to-point communications. It is worth noting that receive functions do not need to denote the exact size of the
data they want to receive but rather the maximum size they can receive. As a result, it is correct for a receive
request to get matched by a send request of equal or smaller size. Receive requests can use wildcards like
MPI_ANY_SOURCE and MPI_ANY_TAG in order to designate all other ranks and tags,
respectively, as matching attributes. As one can observe, the MPI_Recv function has one more argument of
type MPI_Status. MPI_Status is an internal data structure whose contents may vary among di�erent MPI
implementations. This object consists of at least three integers which represent a)the source rank, b)the
communication tag and c) the actual size of the transfer. During a communication, these integers take the
appropriate values in order to enable the user to ⇥nd out the aforementioned information after the
communication ends.

An example of a collective MPI function is MPI_Broadcast, which broadcasts a message sent by a root process
to the rest of the processes of the communicator. All the processes must call the function with the exact same
arguments (except for the bu�er address) for the communication to be executed correctly.

int MPI_Bcast(void *buffer, int count, MPI_Datatype datatype, int root,

 MPI_Comm comm)

Other MPI collective functions include MPI_Reduce, MPI_Scatter, MPI_Gather [22]etc. each providing
functionality in accordance to the user’s need.
Any MPI program should invoke MPI_Init or MPI_Init_thread before calling any other MPI routine.
MPI also supports multi-threaded applications and di�erent threading modes. A multi threaded MPI program
may request one of the following thread support levels:

� MPI_THREAD_SINGLE Only one thread will execute.
� MPI_THREAD_FUNNELED The process may be multi-threaded, but only the main thread will
make MPI calls
� MPI_THREAD_SERIALIZED The process may be multi-threaded, and multiple threads may
make MPI calls, but only one at a time: MPI calls are not made concurrently from two distinct threads
� MPI_THREAD_MULTIPLE Multiple threads may call MPI at the same time, with no
restrictions.

Some thread support levels infer some changes in the development of our implementation, which we also
discuss in the next chapters.

2.2 Packetizers and Mailboxes
As it will get more clear in the rest of the thesis, in order to achieve the correct matching between MPI
requests, an MPI implementation should utilize a mechanism for the delivery of intermediate control messages
required for the processes’ synchronization. In order to achieve the delivery of such messages, our prototype
uses special hardware blocks called Virtualized Packetizers and Virtualized Mailboxes. In this section, a very
brief description of these blocks is provided.

Packetizers and Mailboxes have been designed for latency-critical operations and support the sending and
receiving of messages respectively. More speci⇥cally, the prototype makes use of an environment in which all
memory locations belong to a Global Virtual Address Space and can be addressed by network packets. A
network packet is created by a Virtualized Packetizer and should denote a virtual address as its destination as

4

well as specify a protection ID (PDID). The protection ID is process group-speci⇥c and is used by the
hardware to safely check the initiator’s access rights on particular locations of the virtual address space.
Additionally, a network packet must contain a node ID ,which constitutes the physical location of the node in
which the packet’s destination virtual address is contained. The virtualized packetizer o�ers a limited number
of virtual interfaces (pages) that can be allocated to di�erent threads and processes. In order to make use of
that hardware block, a process may acquire a virtual interface of a packetizer from a kernel driver. The driver
writes into a special hardware register the PDID of the requesting process and returns a virtual address which
is mapped to the physical address of the packetizer page. Subsequently, that process is able to use the
packetizer to target any location of the virtual address space or a virtual mailbox. At the time of writing, a
packetizer can transmit messages of up to 64 bytes.

A virtualized mailbox is a hardware block responsible for receiving messages sent from a packetizer.
Processes can again acquire mailboxes from a kernel driver which associates each virtual mailbox interface with
the PDID of the corresponding process group. When a packetizer sends a message to a virtualized mailbox, the
receiving hardware checks the packet’s PDID and tries to match it against that of the virtual mailbox. A user
can poll for new arrivals in their mailboxes by reading from a virtual address that has been memory-mapped to
the physical address of their virtualized mailbox. It’s worth noting that the described network primitives
guarantee the FIFO delivery of control messages. This means that all messages sent from a process A will get
received by a process B in the same order they were sent. This fact plays a crucial role in preserving MPI’s
FIFO property described in section 2.1

2.3 RDMA Engine
While packetizers and mailboxes are su⇤cient for the transmission and receiving of short and low latency
control messages, for large data transfers the prototype utilizes a simple virtualized RDMA engine, with
coordinated units running at the sending and receiving endpoints. The RDMA engine provides an e�ective
multi-path transport based completely on hardware allowing to bypass the kernel stack on I/O operations. An
RDMA operation transfers a message between two locations of the aforementioned Virtual Address Space: the
source, which in our prototype is always local to the sending point’s engine that will realize the transfer, and
the destination, which is local to the receiving point’s engine. In order to signify the end of the transfer to the
receiving point, the DMA engine delivers an additional noti⇥cation message to an arbitrary virtual address
local to the receiver, called noti�cation address in the rest of the thesis. By polling on the noti⇥cation data
(i.e., the contents of the noti⇥cation address), a receiving process is able to determine the end of an incoming
transfer. The RDMA engine is used in this work for the transfer of large MPI messages it o�ers high
throughput and requires no copies at all. For converting local bu�er addresses to virtual Exanet addresses
within the Global Virtual Address Space, special routines are provided that make use of a DMA o�set, di�erent
for each node. More information about the DMA related routines is available in the next section.

2.4 User Level Communication Libraries

For the utilization of the hardware blocks described in 2.2 and 2.3, a user-space API that allows user-level
access to them has been deployed. As a result, this communication library is widely used in this work. By
making use of that API, a process is able to attach a virtual interface of the mailbox and packetizer that reside
on the local compute node as well as acquire all the relevant information regarding the Ids and DMA o�sets of
the node. More precisely, the MBOX_ATTACH() and dma_alloc_chan();`routines are used in order to
attach a mailbox/packetizer interface and allocate a DMA protection domain respectively. Both functions
return handles which can be used by the user in order to initiate DMA transfers and poll for new messages in
the mailbox. Additionally, functions like get_exanet_o⇥set(dma_channel),
MBOX_GET_PROTECTION_ID() and getBoardID() return the aforementioned node speci⇥c DMA
o�sets and IDs. Each node should be aware of this information regarding any other node it wishes to transfer
data to. When a process has obtained the Protection ID and node ID of another node, it can derive the remote
node’s Mailbox Address and, subsequently, use the packetizer to send messages to its Mailbox by calling

5

_MBOX_ENQUEUE_64B(address, message) function of the User Level API. Respectively, a process is
able to read its mailbox for incoming messages using dequeuing functions like
_MBOX_TRY_DEQUEUE_64B and providing the mailbox handle returned from MBOX_ATTACH.
It’s worth mentioning that attaching functions like MBOX_ATTACH and dma_alloc_chan are the only
functions of the API that involve the kernel. As far as the RDMA engine is concerned, a user can initiate DMA
transfers without requiring kernel intervention by using dma_init_write(dma_handle_t *handle, void
*src, void *dst, long size, void *notif_addr, uint64_t *notif_data) and passing to it as arguments
the DMA handle returned by dma_alloc_chan() as well as the source and destination bu�ers, the size of
transfer in bytes, the noti⇥cation address of the receiver and the noti⇥cation data to be written to the remote
noti⇥cation address. It should be noted that the destination bu�er address and noti⇥cation address should be
valid Exanet addresses returned from the function dma_get_exanet_addr(void *addr, void
*o⇥set);`which transforms a local address (addr) to an Exanet address using the receiving node’s DMA o�set.
The process that initiates the DMA transfer, can determine its completion state by calling
dma_test_transfer(dma_transfer_t *transfer);`and passing to it, as argument, the handle returned by
dma_init_write. The receiver can also determine the end of the transfer by polling the contents of the
noti⇥cation address.

2.5 The HPC Prototype

In the scope of the ExaNeST project, a new HPC cluster has been deployed in the CARV Laboratoty of
FORTH [23], which utilizes the network primitives described in the previous sections and gets used for the
testing and evaluation of our implementation in this thesis. At the time of writing, the prototype consists of 8
mezzanines, each one of them carrying 4 Qaud FPGA Daughter Boards (QFDBs) for a total of 128 FPGAs.e
FPGAs are Xilinx Zynq Ultrascale+ devices (ZCU9EG), featuring four (4) ARM-A53 [31], 16-GByte DDR4
each. As a result, our prototype contains in total 512 ARM v8 processors. The platform supports two di�erent
networks. The ⇥rst one being a custom packet-based hierarchical interconnect realized over high speed serial
links, developed by FORTH and INFN [24] called Exanet, which is used by the primitives described in Sections
2.2. and 2.3. The second network our prototype supports is a common 10G Ethernet interface. Within a
QFDB, there is an all-to-all connectivity among all four of its FPGAs (called F1, F2, F3 and F4) through the
Exanet interconnect o�ering a link capacity of 16 GB/s. In addition, all QFDBs are connected with each other
in a 3D Torus topology using 10 GB/s serial links. Depending on the position of two FPGAs in the 3D Torus, a
di�erent number of network hops may exist between them. The number of hops between two FPGAs can play
a crucial role in latency as it is shown in the next chapters. Figure 2.1 depicts an example of the prototype’s 3D
Torus topology. QFDBs are illustrated as green boxes which contain 4 FPGAs interconnected through 16 GB/s
links while the links connecting di�erent QFDBs of the same mezzanine as well as di�erent mezzanines are
depicted as white and black arrows respectively. Both types of inter QFDB links have a capacity of 10 GB/s as
stated.

6

Figure 2.1: HPC prototype's Example topology

2.6 Read-based Exanet MPI Implementation
In order to exploit the described architecture and network primitives for the execution of HPC applications,

an MPI implementation, prior to our work, was deployed. That MPI implementation is based on emulated
DMA reads in order to transfer large messages while it uses the packetizer to transfer messages of size of less
than 40 bytes between two MPI processes. This implies that the implementation supports two di�erent kinds of
MPI Communication protocols; The long rendezvous protocol and the eager protocol. The former
protocol is used for the transfer of large messages and the eager protocol is restricted to small messages that
can “⇥t” inside a packetizer message.

The long rendezvous protocol relies exclusively on sender initiation. More precisely, a sending MPI process is
able to initiate the communication by transmitting an RTS (Request to Send) control message to the receiving
process, notifying it about the posting of a send MPI primitive (eg. MPI_Send) on its side. The RTS control
message should contain the address of the send bu�er, the size of transfer as well as the matching attributes of
the send request (tag, MPI_Rank of the sender) and the ID of the communicator). At this point, it should be
mentioned that each MPI process preserves internal data structures that are used to store Posted and Received
MPI requests. The Posted MPI Requests data structure regards communications posted by the process itself
(by MPI_Send) while the Received MPI Requests data structure regards incoming control messages
emerged from communications posted by other processes. For instance, a sending process should insert a new
object on its Posted MPI Requests structure as soon as it calls MPI_Send. The receiving process that receives
the RTS control message from the sender should search its Posted MPI Requests data structure for an already
posted matching receive request. If no matching receive request exists yet, the receiving process stores the RTS
message in the Received MPI Requests for future matching. In either case, when a receive requests gets
matched by a matching RTS, it transmits a CTS (Clear to Receive) control message targeting an R5 AMR
microprocessor [32] in the sender’s side and instructing it to perform a DMA write using the send bu�er
contained in the RTS message as source bu�er and designating the receiver’s receive bu�er as destination.
Through the CTS control message, the noti⇥cation address of the receiver is also conveyed. As soon as the R5
microprocessor receives a CTS message it initiates a DMA write and informs the receiver about its completion
by writing into its noti⇥cation address. Since the DMA write is actually initiated by the receiver, we call that
operation an emulated read operation since actual DMA reads are not supported by our RDMA engine. In
addition, since the sender process did not initiate the write itself, it cannot determine whether it is completed
without receiving an acknowledgment control message from the receiver. As a consequence, the receiving
process transmits an Ack control message informing the sender about the end of the emulated read.
In Figure 2.2, a scenario where the long rendezvous protocol is used is illustrated. We assume that the left
vertical line depicts the execution of an MPI process with rank S while the right line depicts the execution of
the process with rank R. At timestamp t1, the sending process invokes a blocking sending primitive (e.g.,
MPI_Send) denoting rank R as destination rank, T1 as the communication tag and bs as the send bu�er. As
a result, it inserts a new request into the Posted MPI Requests data structure, issues an RTS control message
that contains the matching attributes of the request and the address of the send bu�er and block its progress
waiting for an Ack message. At t2, the receiving process receives the RTS message and due to the fact that
there is no receive request posted to match it yet, it stores it into the Received MPI Requests data structure
(entry = {S, T1}). At t3, the receiver calls a receive MPI primitive (e.g., MPI_Recv) denoting rank S as source
rank, T1 as communication tag and br as receive bu�er (for simplicity, communicator ID is omitted. The
process searches its Received MPI Requests and it manages to perform a match with the RTS stored at t2.
Consequently, the receiving process transmits a CTS control message to the sender’s R5 microprocessor
instructing it to perform a DMA write using bs as source and br as destination bu�er. Afterwards, it blocks
waiting for a change in the contents of the noti⇥cation address that will indicate the completion of the transfer.
At t4, the microprocessor initiates the transfer and at t5, the noti⇥cation arrives. This fact makes the receiver
unblock its progress and transmit an Ack message to the receiver notifying about the end of the emulated read.
The Ack message also contains the request’s matching attributes in order to successfully match the send
request at the sender’s side. At t6, the sender receives and matches the Ack message to the send request and

7

unblocks its progress. Ultimately, both processes clear the respective requests and the send and receive MPI
primitives return.

The eager protocol also relies on sender initiation and it is much simpler as it does not involve DMA
transfers at all. A sending process that performs a send of size less than 40 bytes can immediately transmit the
message to the receiver without requiring any rendezvous or synchronization beforehand. Instead, it piggybacks
the data to get transferred in a packetizer message which also includes the request’s matching attributes in
order to get successfully matched with a receive request of a receiver. This new control message is called
Env+D (Envelope and Data, where Envelope is another name used in scienti⇥c literature for the matching
attributes of a message) Additionally, the sending process doesn’t need to insert any request to the Posted MPI
Requests since eager sends do not need to get matched by Ack messages.
Figure 2.3 illustrates an example of eager communication in the read-based protocol. The receiving process
posts a blocking receive request at t1 and denotes S as the source rank and T1 as the communication tag. After
inserting the request into the Posted MPI Requests data structure, the process blocks its progress waiting for
an RTS or Env+D control message. At t2, the sender posts an eager send and immediately transmits the
Env+D message that includes as payload the contents of its send bu�er and returns without inserting any
object in the Posted MPI requests. At t4, the receiving process receives the Env+D and matches it against the
receive posted at t1. Subsequently, it unblocks its progress, copies the payload of the Env+D message to its
receive bu�er, it clears its state and returns.

8

Figure 2.2 Long Protocol of the Read Based Exanet MPI

As one can notice, the eager protocol o�ers optimal performance since it constitutes the simplest form of
communication possible between two MPI processes. Moreover, since it regards messages of small size (less than
the size of a packetizer message, which is 64 bytes), the memory copy (from the Env+D message’s payload to
the source bu�er of the receiver) it requires has not noticeable latency.
 However, the long rendezvous protocol has some serious disadvantages. First of all, because of the fact that it
is based on an emulated read, the receiver must inform the sender about the end of the transfer by issuing a
control message (i.e., Ack) back to the sender. In addition, the inability of the receiver to initiate MPI
communication itself does not let us exploit cases where the receive request gets posted earlier than a matching
send. Instead, the receiving process has to wait for the sender to initiate the communication with the use of an
RTS control message, thus not taking advantage of the intermediate waiting time. In the next chapter, we
present our attempt to develop a write-based version of the Exanet MPI, addressing the drawbacks of the read-
based variant.

9

Figure 2.3 Eager protocol of the Read Based Exanet MPI

Chapter 3

Design and Implementation of the Write-based
Exanet MPI Protocol
Designing and implementing the write-based variant of Exanet MPI was a highly experimental process which
resulted to the development of di�erent variants of the write-based protocol itself. In this chapter, the basic
variants of the protocol that emerged from this work are getting described and partly evaluated in an attempt
to underline our thinking process towards the ⇥nal version of the write-based protocol. Additionally, several
details regarding the implementation of certain aspects of the protocol, common to all of the variants are
getting presented.

3.1 Designing a preliminary sender and receiver initiated write-based protocol

3.1.1 Designing a preliminary sender and receiver initiated write-based long
protocol

As already mentioned in the previous chapters, an important weakness of the read-based variant of Exanet
MPI is the inability of a sending process to become aware of the end of a DMA write since the write gets
initiated from the receiver’s side in an attempt to emulate a DMA read operation. Thus, an acknowledgment
(ACK) control message sent from the receiver is the sole way of the sender determining the end of the DMA
transfer which is expected to cause measurable overhead. For that reason, one of our initial goals was to
eliminate the need of that control message by rendering the sending process the initiator of the DMA write. In
addition, we aimed to exploit the new DMA feature of delivering the end of a transfer to an arbitrary remote
address of the receiving process’ address space. More speci⇥cally, as described in Section 2.2, he DMA engine
of the developing HPC prototype, supports notifying the receiver that a DMA transfer is over by performing an
additional write to a remote address, called noti�cation address. Subsequently, the receiving process can
determine the end of the DMA data transfer by polling on the noti⇥cation address and waiting for a change in
its contents. Another one of our main motives for working towards a write-based protocol of the Exanet MPI is
the fact that the preexisting read-based protocol relies exclusively on sender-initiated communication. This
renders the read-based protocol unable to take advantage of scenarios in which the receiving process posts a
receive request (e.g., MPI_Recv) before a matching send request (e.g., MPI_Send) gets posted by a sending
process. This kind of early receive posting will be denoted in the rest of this thesis as fast receive. In such a
case, in the read-based protocol, the receiving process cannot initiate the communication by advertising its
receive bu�er and local noti⇥cation addresses to the sender but instead it has to wait for an RTS control
message from the sending process. As a consequence, the matching happens only in the receiving process’ side.
In order to address that drawback of the read-based protocol and allow the initiation of the communication
from the receiving process’s side, a new type of control message was introduced called Request-to-Receive
(RTR). With the use of an RTR control message the receiver is able to advertise its receive bu�er and local
noti⇥cation address to the sending process (just like with a CTS message) as soon as it posts its receive
request., asynchronously, without waiting for the posting of a matching send as it happens in the read-based
implementation. In addition to the DMA related information, an RTR control message also contains all the
necessary matching attributes thus enabling the request matching to take place on the senders’ side as well.
After receiving an RTR message, a sender is aware of all the necessary information required to perform a DMA
write operation without the need for further synchronization. In such a case, however, due to the absence of the
RTS conrol message in the communication, the receiving process may be unable to ⇥ll its MPI_Status struct

10

because it misses essential information like the tag of communication (in case MPI_ANY_TAG was used) or
the size of the transfer. Additionally, without a control message from the sender, the receiver is not able to
mark its receive request as matched before the communication ends which poses the risk of it becoming
mistakenly matched by a future RTS message regarding another receive request with the same matching
attributes. The aforementioned reasons render the use of another control message, called Envelope (Env),
necessary. This type of message contains the information required to ⇥ll the receiver’s MPI_Status struct and
gets transmitted from the sender before the DMA transfer takes place. The use of an Envelope control message
may seem to infer the same cost as the sender initiated scenario but in reality, fast receives still outperform the
sender initiation used in the read-based protocol since they allow asynchronously transferring the matching
iand DMA related information to the sender before it posts its send request. As a result, a typical long write-
based protocol should contain the following control messages:

• RTS (Request to Send): The RTS control message constitutes the message containing all the attributes
used to match the send request with a matching receive request at the side of the receiver as well as the
envelope information needed in order to ⇥ll the MPI_Status struct of the matched receive (ie. Rank of the
sender, communication tag, size of transfer). It gets transmitted from the sending process to the receiver
and it is used to initiate the communication between them.

• CTS (Clear to Send): The CTS control message conveys, besides the necessary matching information, the
address of the receive bu�er which will be the destination of the sender’s DMA write as well as the local
noti⇥cation address for that speci⇥c write . This message always gets transmitted in response to an
already received RTS message and it indicates that receiver is ready to receive DMA data.

• RTR (Request to Send): The RTR control message contains the same DMA information as the CTS
message. Unlike CTS, a receiving process issues an RTR message when no matching RTS has arrived at the
time the receive request gets posted. It is, thus, a message used to initiate communication from the
receiver’s side.

• Env (Envelope): The Env control message contains the essential envelope information required for the
completion of the MPI_Status struct. It gets issued by the sender just before the DMA transfer unless a
RTS control message has already been issued for the same receive request before.

In Figure 3.1 the case where the sender arrives ⇥rst at a matching send-receiver pair is presented. At t1, the
sender posts a send request designating bs as a source bu�er and denoting R as the destination rank. The
corresponding communication tag is denoted as T1. Since no matching receive request exists in its Received
MPI Requests, the sender posts a new request object in the Posted MPI requests and issues a request-to-send
(RTS) message to the receiver specifying the communicator, tag and desired size of the transfer. It is assumed
that the send request emerged from a blocking MPI primitive like MPI_Send. For that reason, the sending
process blocks its execution waiting for either a matching CTS or RTR message. After receiving the RTS
message, the receiver temporarily stores that received send request to an internal data structure used to store
incoming requests at t2 (entry = {S, T1}). At t3>t1, the receiver posts a matching receive request and after
matching it against the formerly received send request, it sends back a clear-to-send (CTS) message specifying
the destination bu�er (br) where it wishes to receive the data along with the virtual address where it will
expect a noti⇥cation of the DMA write’s completion. We assume that the receive request emerged from a
blocking MPI primitive like MPI_Recv, thus the receiving process blocks its execution while waiting for the
DMA noti⇥cation. Upon receiving the CTS control message, the sender uses the information that message
contains in order to match it with the send it posted at t1. When the CTS message gets successfully matched,
the sending process writes the data to br along the corresponding noti⇥cation to the noti⇥cation address. Note
that since the DMA is initiated from the sender’s side, the sender knows when the transfer is complete and
does not require an acknowledgment back from the receiver, unlike the read-based protocol. At the end
completion of the communication, both processes clear the send and receive requests from their respective data
structures. More information regarding the mechanisms used in order to receive control messages as well as the

11

data structures necessary for storing MPI communication requests are available in the next chapters.
In the scenario illustrated in Figure 3.2 the receiver posts its receive request at t1 before the sending process

posts its send request. Consequently, the receiving process, having received no matching RTS yet, initiates the
communication by transmitting an RTR control message to the sender advertising the destination bu�er (br)
and the noti⇥cation address, specifying the communicator, the communication tag and inserting a new receive
request in its Posted MPI Requests denoting S as the source rank. After the issuing of RTR, the receiver blocks
its progress waiting for either a matching Env or RTS message and subsequently for a change in the contents
of the noti⇥cation address. The sending process, after receiving the RTR message at t2, stores a speci⇥c receive
request in its internal data structure regarding incoming requests since there is no posted send to match it yet.
At t3, a matching send gets posted by the sender. By matching its send request with the previously received
RTR successfully, the sender is aware of the destination bu�er and noti⇥cation address of the receiver and
performs the DMA write operation after issuing the necessary Env message. As a result, the receiving process
unblocks its progress after successfully receiving the Env message and observing the write the sender performed
on the noti⇥cation address’ data. Both processes, ultimately, clear their respective requests.

12

Figure 3.1: Sender initiated communication in the write-based Exanet MPI

Figure 3.2: Receiver initiated communication in the write-based Exanet MPI

As it becomes apparent, the presented write-based long protocol o�ers more ⌅exibility and timing exploitation
capabilities since it allows the initiation of the communication from both the sender’s and receiver’s side. This
fact renders the case where a receive request gets posted ⇥rst nearly optimal, since the synchronization needed
since the posting of a matching send request gets minimized. However, the possibility of both sender and
receiver initiation for the same transfer can give rise to some complications which we examine in the next
paragraphs.

At this point, we should remind that the MPI standard allows the use of a wildcard called
MPI_ANY_SOURCE at the place of the source rank of a receive request, designating any rank of the denoted
communicator as a possible sender of the expected message. This fact obliges to take into account several
scenarios both in the design as well as the implementation of the write-based protocol. As it is easily
conceivable, in the case where an MPI receive request gets posted earlier than the matching send request, it is
not feasible to issue RTR messages towards all the other ranks of the communicator. Even in small
communicators, sending the same RTR control message to all other ranks will most likely lead to an erroneous
result since more than one sending rank may attempt to perform the DMA transfer to the same bu�er. In
addition, there is no way for each of the receivers of that RTR message to know which of them has received it
⇥rst. As a consequence, the receiver initiation gets unavoidably suspended while receive requests that use
MPI_ANY_SOURCE remain active in an MPI program.

In Figure 3.3 the case of a receiver posting its receive request designating MPI_ANY_SOURCE as source is
depicted. Despite the fact that the receiver posted its receive request before the posting of the matching send
request by the sender, it cannot initiate the communication with the issuing of an RTR control message due to
the aforementioned complications. Instead, it inserts the receive request in its internal data structure regarding
posted requests and waits for a matching RTS. On the sender’s side, the progress is identical to the one
depicted in Figure 3.1 where the sending process, being unaware of any matching posted receive request,

13

Figure 3.3: MPI_ANY_SOURCE receiver initiation suspension

attempts to initiate the communication by transmitting an RTS control message to the receiver. It is worth
noting that the RTS control message also conveys the MPI Rank of the process initiating the communication,
thus rendering the receiver able to log that information in the MPI_Status struct that regards the speci⇥c
receive request. After successfully matching the received RTS message, the receiver issues a response CTS
message thus advertising the necessary DMA information to the sender which in turn performs the DMA write.
The communication ends in the exact same way it was illustrated in Figure 3.2 with both processes unblocking
and clearing their state. At this point, it must also get clari⇥ed that the receiver initiation suspension does not
regard only the receive request that uses MPI_ANY_SOURCE but rather all receives that get issued while
MPI_ANY_SOURCE is still in use.

Figure 3.4 presents an example of a receiving process posting two non blocking receive requests at t1 and t2
respectively. The ⇥rst receive request makes use of MPI_ANY_SOURCE while the second denotes rank S as
the source rank. As we observe, both requests do not issue RTR messages, thus, RTR suspension is not limited
to only the ⇥rst request. If the second receive request did issue an RTR message, there would be the risk of the
sender matching that RTR upon posting and perform the DMA write to the bu�er of the second receive
request and in that way violating the FIFO guarantee of the MPI Standard.

Another complication that may arise in a both receiver and sender initiated write-based protocol is the possible
concurrent posting of both the send and the receive requests by the respective processes. In such a scenario,
both of the processes issue their initiatory control messages (i.e., RTS, RTR). However, both type of messages
get treated like an Env and CTS message respectively. More precisely, a receiver which has already sent an
RTR message and receives a matching RTS will ⇥rst check whether that RTS matches an already posted
receive request before treating it as an attempt to initiate a new communication. If there is already a matching
receive posted, then the receiver uses the information included in the RTS message in order to ⇥ll the
MPI_Status struct and discards that RTS. Similarly, a sender which has already initiated the communication

14

Figure 3.4: MPI_ANY_SOURCE receiver initiation suspension, non blocking receives

will treat an RTR control message, which matches that request, as a CTS message and will not store a new
receive request in its internal data structure. The described case is illustrated in Figure 3.5. This scenario is
pretty similar to the receiver initiated communication depicted in Figure 3.2 with the di�erence that the RTS
message substitutes the Envelope message.

3.1.2 Designing a preliminary sender and receiver initiated write-based eager
protocol

As mentioned in 2.5, the read-based protocol uses an eager protocol in order to transfer messages of up to
40 bytes (a packetizer message has a maximum size of 64 bytes out of which, 24 bytes constitute the messages
Envelope). The write-based and the read-based protocol coincide in this regard. For such small messages we
choose to exploit the low latency mechanisms of the mailbox and packetizer hardware blocks described in 2.2
and, as a consequence, avoid the startup latency of the DMA engine. For that reason, an eager message gets
packed as payload together with envelope data into a new control message call Envelope and Data (Env+D).
This message gets issued by the sending process and has the receiving process as destination. Respectively, a
receiving process that expects to receive a message smaller than 40 bytes should have no need to issue an RTR
message since it useless for it to advertise DMA speci⇥c information as the eager communication takes place
exclusively through the use of control messages. However, in the write-based eager protocol another
complication arises from the fact that receiver initiation is also supported. As it is already mentioned in this
chapter, the MPI standard allows the matching of receive and send requests of di�erent sizes. More speci⇥cally,
a receive request that regards a speci⇥c size may correctly match with a send request that regards equal or
smaller size in bytes which means that a long receive (i.e., a receive request that expects a transfer of size
bigger than 40 bytes) can match with an eager send. This fact renders the sending process issuing an eager send
unable to know whether an incoming matching RTR message matches that eager send request or should match
a future send request. Such a scenario is depicted in Figure 3.6 where the sender performs an eager sendat t1
while the receiver posting an eager receive at t2 doesn’t issue a control message. This implication made us to
initially allow eager receives to also issue RTR messages, even if they don’t need to advertise DMA
information, in order to prevent mismatches.

Consequently, unlike the read-based protocol, the described version of the write-based protocol should not
clear eager send requests before they get matched by a control message from the receiver while at the same

15

Figure 3.5 Concurrent Receiver and Sender initiation

time eager receives should send RTR messages if they get posted earlier than the matching send. In addition,
eager receives should send acknowledgment (Ack) messages when they get posted after the eager message of
the sender has already been received. This is essential in order to ensure a match on the sender’s side and avoid
future mismatches with other RTR messages. Figures 3.7, 3.8, 3.9 show some simple cases of eager
communication.

16

Figure 3.7: Eager protocol, Matching Eager Send and Receive requests posted concurrently

Figure 3.6 Problematic scenario in the write-based MPI’s eager protocol

Consequently, the eager protocol of the ⇥rst version of the write-based MPI variant of the Exanet MPI
contains the following new control messages:

• Env+D (Envelope and Data): The Env+D control message constitutes the message containing all the
attributes used to match the send request, packed together with the data an eager send transfers (<40
bytes). In addition, it also contains the size of the data being transferred in bytes which is necessary
information for the receiving process. It is used to initiate the communication between the sender and the
receiver in case of an eager send.

• Ack (acknowledgment) The Ack control message is issued by the receiver of an eager send in the case the
respective receive gets posted after the Env+D messaged is already received or the receiver initiation is
suspended due to the existence of MPI_ANY_SOURCE. It contains the envelope information necessary
in order to get matched with the correct eager send request on the sender’s side. It gets issued only if a
RTR message regarding the same receive request is not already issued.

17

Figure 3.9: Eager Protocol, Eager send posted before matching receive
request

Figure 3.8 Eager Protocol, Eager receive request posted before matching eager send request

As it is evident, the aforementioned facts render this version of the write-based eager protocol sub-optimal and
under-performing in comparison to the read-based eager protocol. This is not only due to the transmission of
extra control messages (i.e., RTR and Ack) but also due to the actions the sending and receiving of those
messages infers inside the implementation of the protocol (e.g., locking, searching etc). More information
regarding that aspect is available in the next chapters.

3.2 Basic description of the preliminary write-based MPI protocol’s
implementation
In this chapter, we will delve into some basic details regarding the implementation of the ⇥rst variant of the
write-based protocol. Basic components like the organization of the implementation in 2 threads and their
interaction, the use of the mailbox ,packetizer and DMA API inside the MPI primitives will get covered. More
technical information regarding implementation of the protocol is provided in next chapters.
Our MPI Library implements most of the point-to-point and collective MPI primitives in C language while
primitives which regard one-sided and MPI-IO communications are delegated to a slightly modi⇥ed MPICH
library (going over the Ethernet network). Thus, the Exanet-MPI is a partial MPI implementation on top of
MPICH.
It’s worth noting that some of the implementation details mentioned in this chapter is identical to the other
write-based variants presented in the next chapters.

3.2.1 Initiation of the MPI library
The MPI Standard requires any application that may make use of MPI to call one of the MPI_Init() and
MPI_Init_thread() routines in advance. This is essential in order to allow the respective MPI implementation
to initiate its internal state. Similarly, in our implementation certain actions must take place and speci⇥c
information must be obtained with he use of one of those calls before the rest of the implemented MPI
primitives can function. More precisely, due to the fact that all the control messages used in the MPI processes’
synchronization get issued through the packetizer and are getting received using virtual mailboxes as described
in 2.2 while long transfers utilize the RDMA engine, Exanet MPI makes use of the user level communication
API of those hardware blocks. This renders the initialization of each hardware block necessary which in turn
requires the invocation of the functions described in sections 2.4. Speci⇥cally, dma_alloc_chan() should get
invoked in order to allocate an RDMA channel for the MPI process which permit data transfers to virtual
addresses without involving the kernel. It is reminded that this function returns a DMA handle which is
required in all other routines of the DMA routines. Subsequently, the MPI process obtains the value of its
DMA o�set by calling dma_get_exanet_o�set(dma_channel) and stores that information. Moreover, with
calls to the routines MBOX_ATTACH(), MBOX_GET_PROTECTION_ID() and getBoardID(), the process
attaches a virtual interface of mailbox and packetizer as well as extracts protection and node IDs respectively
as described in 2.4. Obtaining the information mentioned is crucial in order to render all the processes
participating in the run able to reach each other. Since the necessary IDs of each process is initially unknown to
the rest of them, the only way to advertise them is through the Ethernet network. Thus, MPICH is used and
more precisely, the primitive PMPI_Allgather in order to achieve communication at this stage. After the
following three calls, the MPI process possesses all the necessary IDs and DMA o�sets needed to communicate
with all other ranks of the MPI_COMM_WORLD communicator.

PMPI_Allgather(&my_node_id, 1, MPI_UINT64_T, node_ids, 1, MPI_UINT64_T, MPI_COMM_WORLD);

PMPI_Allgather(& protection_id, 1, MPI_UINT64_T, prot_ids, 1, MPI_UINT64_T, MPI_COMM_WORLD);

PMPI_Allgather(& offset, 1, MPI_UINT64_T, offsets, 1, MPI_UINT64_T, MPI_COMM_WORLD);

18

During the initialization of the MPI Library, the internal data structures needed are initialized. These data
structures regard the following objects:

Posted MPI Requests: Objects that regard transfers emerging from the primitives the process has posted.
For instance, in the case of an MPI_Send() that is getting posted before a matching RTR has yet arrived, the
implementation will create a new object which will represent that send request and insert it into the data
structure regarding its posted requests. In that structure, the send request will get matched by an incoming
RTR or CTS message from a matching receiver.

Received MPI Requests: Objects that regard transfers emerging from the primitive of another process.
These objects get created when a control message arrives from another process and regards a matching request
our process hasn’t already posted. For example, when a process receives an RTR and a matching send request
cannot get found in its Posted MPI Requests, a new object gets created with the RTR’s envelope and DMA
information which will later should get matched by a future posted send.

Communicators Registry: A data structure that logs information regarding all created communicators
besides MPI_COMM_WORLD. Each stored communicator is characterized by its Communicator ID, a 16bit
value generated by MPICH. In that registry, information is gathered regarding the protection ID, board ID,
mailbox addresses and DMA o�sets for each rank of each communicator. We remind that this information is
essential to enable packetizer-mailbox communication as well as DMA transfers between MPI processes as
described in Chapter 2.

Finally, the initialization of our MPI implementation ends with the creation of the Progress Engine Thread
which is necessary for the polling of the process’ virtual mailbox and receiving control messages from other
processes. More information regarding the utilities of the Progress engine is provided in the chapters.

3.2.2 Structure of Request Object in our Implementation
In order to represent an MPI transfer our implementation makes use of an object named Request which
contains all the necessary information regarding that request. A Request object is the type of data stored in the
Posted MPI Requests and Received MPI Requests data structures. In general, the most important ⇥elds of a
request object contain (but are not limited to) the following:

• int local_notif_address[4] This arrays’ position in memory is the address where the DMA engine
writes the noti⇥cation when the DMA transfer regarding that request object is complete. Noti⇥cation
data have a size of 16 bytes which is the reason their address’ type is an array of four 32bit integers.
Apparently this ⇥eld is necessary in receive requests. The initial value of each integer is -1.

• int type Indicates the kind of request (eg. send, isend, recv etc.)
• void * bu⇥er stores the bu�er of the request. Useful for both send and receive requests when the

progress engine needs to access the bu�er either as source bu�er for performing DMA writes or for
copying eager messages’ data to it.

• int matched Indicates the matching state of a request. In general, the value of 0 means that the
request and currently unmatched by a control message and is available for matching. Any other value
indicates that the request is already matched.

• int tag The communication tag of the request. Used for matching. It can take any positive value and
MPI_ANY_TAG in receive requests.

• inttarget_rank The rank of the process our request has as target (either source for receive requests,
or destination for send requests). Used for matching. It can take any positive value or
MPI_ANY_SOURCE in receive requests.

• uint16_t comm_id 16bit unsigned integer representing the unique ID of a communicator. Used for

19

matching.
• MPI_Datatype datatype The datatype of the transfer
• int size The size of the transfer regarding the request in bytes. Useful when the progress engine thread

performs DMA write (e.g., in MPI_Isend) or when a receiving process copies data of an eager message
to its bu�er or completes its MPI_Status structure.

• char eager_data[40] The data contained in the payload of a received eager message. When a
receiving process receives an eager message before a matching receive is already posted, the Progress
Engine stores a request object in the Received MPI Requests data structure and copies the eager data
to that ⇥eld. Later, when a matching receive gets posted, it will copy that data to its receive bu�er.

• int safe_to_get_cleared; Special ⌅ag indicating whether a posted non blocking eager send request
can get cleared or not. In the ⇥rst variant of the write-based protocol, a non blocking eager send gets
completed immediately without waiting for a matching receive to get posted. However, we must wait
for either a matching RTR or Ack message to match it before the progress engine clears it. In addition,
MPI_Wait (or similar primitive) will try to clear it too but it shouldn’t do it before it has been
matched by a control message. Similarly, the progress engine should not clear the request before the
user has called MPI_Wait on it. This ⌅ag helps the progress engine and the MPI_Wait determine
whether both of the conditions have been met for the request to get cleared (i.e., match with RTR or
Ack and MPI_Wait call on it). Its initial value is 0 and each time one of the two necessary clearing
conditions get met its value increments. When its value is 1, then either an MPI_Wait or the progress
engine thread can clear it depending on which was the last which encountered the request.

• MPI_Req * req_address This ⇥eld is used in non blocking requests and stores the address of the
MPI_Request the user passed as argument when the non blocking function that created the request
(e.g., MPI_Isend) got invoked. It is necessary for functions like MPI_Wait in order to match a
provided MPI_Request * argument to an actual request in the Posted Request data structure.

3.2.3 General Control logic of Basic Point-to-Point primitives
As it is stated, our implementation requires the existence of at least two threads even for the execution of
single threaded applications: The progress engine and the MPI User thread, which is actually the thread of the
running application which calls our MPI primitives. Since both the progress engine and the user thread access
the same data structures and the user thread needs to get noti⇥ed on occasion about changes the progress
engine makes, some synchronization mechanisms should be utilized. Additionally, in several cases the user
thread needs to get noti⇥ed about DMA writes another process performs which is achieved with the help of the
noti⇥cation address as already mentioned. In this chapter, we describe the control logic of the basic send and
receive primitives in order to underline the presence of synchronization points inside our implementation.

Send Requests: As soon as the user posts a sending request (e.g., MPI_Send, MPI_Isend etc) the process
should acquire a lock protecting both the posted requests and received requests data structure. This is
compulsory in order to probe the received requests data structure for any matching requests emerged from
incoming RTR messages. The mutual locking of both data structures is required in order to ensure the non
existence of deadlocks since the progress engine also checks the same structures after receiving a control
message from a receiving process and a race windows is possible when both the progress engine and user thread
check the Posted MPI Requests and Received MPI Requests at the same time.
a)If no matching receive request exists, the process creates a new request object and inserts it in the Posted
MPI Requests data structure. After the insertion of the new request in to the Posted MPI Requests, the
process may release the control logic lock and subsequently issue an RTR or Env+D message to the transfer’s
destination rank according to the size of the message. It is worth noting that this applies to single threaded
MPI applications or multi-threaded application which request the MPI_THREAD_FUNNELED or
MPI_THREAD_SERIALIZED thread modes. If MPI_THREAD_MULTIPLE is selected instead,
the release of the lock should happen only after the RTR or Env+D is issued. If the message was an eager one

20

then the send function returns (except for the case of MPI_Ssend) without cleaning the request since it still
must get matched later by an Ack or RTR. In the case of a long message, whether the function returns or not
depends on the kind of the MPI primitive. Speci⇥cally, if the send function is non blocking (eg. MPI_Isend),
the process returns immediately. Otherwise, the process blocks waiting for either a matching CTS or RTR
control message. Those messages do not get received by the function of the user thread itself but by the
progress engine thread which subsequently noti⇥es the blocking function. After the receiving of the expected
control messages, the blocking send function unblocks its progress and performs the DMA write. Afterwards,
the function clears the request object and returns. In the case of non blocking communication and speci⇥cally
the MPI_Isend function, the DMA write gets performed by the progress engine thread.
b)If a matching receive request is found, the sending process releases the lock, issues the Env message to the
receiver and performs the DMA transfer. Note that if the thread modei is MPI _THREAD_MULTIPLE,
the lock should not be released before the transmission of the envelope message. Finally, the function clears the
request object matched and returns.

It is worth noting that the sender may write any value other than -1 to the content’s of the DMA noti⇥cation’s
remote address in order to inform the receiving process that the transfer is completed.

Receive requests: When a receive request gets posted, the process acquires the control logic lock in order to
check whether a matching send requests exists inside the Received Requests data structure.
a) If a matching send request doesn’t exist then the user thread checks if the rank denoted as source of the
receive equals MPI_ANY_SOURCE or if any active request that uses MPI_ANY_SOURCE in the speci⇥c
communicator is currently active. If none of the above applies, it inserts a new request object in the Posted
Request data structure and initiates the communication by issuing an RTR control message. Regarding the
release of the control logic lock, the process unlocks immediately after inserting the new request object unless
the thread mode is set to MPI_THREAD_MULTIPLE in which case the unlock happens after the RTR
gets issued in order to ensure the preservation of the MPI Standard’s guarantee that requests should match in
the same order they are posted. After initiating the communication, if the receive function is blocking, the
process blocks until the receiving of the Env or Env+D message and afterwards blocks for a change in the
contents of the DMA noti⇥cation address. It’s worth mentioning that Env are Env+D messages are again
received by the progress engine threads and not the user thread itself. In the case of an eager message (i.e.. the
receiving of an Env+D control message) where the DMA is not involved, the progress engine threads copies the
payload included in the control message to the receive request’s receive bu�er and also makes a minimal change
to the local noti⇥cation address of the receive request in order to simulate a DMA write and make it stop
waiting for an actual DMA write to that address. In the case of the existence of MPI_ANY_SOURCE in the
communicator the request regards, the process inserts a new request object in the data structure but does not
initiate the communication using an RTR message. Instead it blocks for an incoming RTS/Env+D control
message (if it is a blocking request) or returns (if it is a non blocking request). The rest of the process after
receiving the expected control message from the sender is the same as if a received request already existed
(described in the next bullet point). However, it should be noted that in the case of non blocking requests all
the next steps are performed by the progress engine and not by the user thread.
b) If a matching send requests does exist, if that request is an eager send, then the user thread copies the
payload of the Env+D message to the request’s receive bu�er and returns after clearing the matched request
object. In the case of a long matching send request, the user thread issues a CTS message to the sender
advertising its DMA information. Once again, the same assumption applies regarding the thread mode. The
receiving function may only unlock after sending the CTS message regardless of threading mode. This applies
due to the fact that the progress engine thread may send CTS messages in special occasions described in 3.2.4
and we need to be sure that the FIFO order is kept in all messages (i.e., a request that gets posted or gets
matched ⇥rst, issues a control message before a request that got posted or matched second).
It should get mentioned that a blocking receive function always ⇥lls its MPI_Status object (provided

21

MPI_STATUS_IGNORE is not used) and clears its state before returning. For non blocking receiving
functions, the ⇥lling of the MPI_Status structure and the removal of the request from the data structure at the
end of the communication are tasks of MPI_Wait and similar primitives.

Wait and Test Point-to-Point primitives: Primitives like MPI_Wait, MPI_Test,
MPI_Request_get_status and all the relative functions (e.g., MPI_Waitany, MPI_Testsome etc) have similar
behavior. All of these functions take as argument a pointer to an MPI_Request object and a pointer to an
MPI_Status object. It should be mentioned that the MPI Standard’s type MPI_Request should not be
confused with the request structure of our implementation stated earlier. MPI_Request is de⇥ned as a 32bit
integer in the MPICH implementation. It is reminded that all non blocking functions require the caller to
provide a valid pointer to an MPI_Request object as argument. For instance, the non blocking receive
function’s signature is the following:

int MPI_Irecv(void *buf, int count, MPI_Datatype datatype, int source,

 int tag, MPI_Comm comm, MPI_Request * request)

Each time a process calls a non blocking send or receive primitive, the new request that gets added to the
Posted MPI Requests data structure contains a ⇥eld of type MPI_Request * called req_address which stores
the address of the MPI_Request the user passed as argument to the non blocking call as described in 3.2.2.
When a process invokes a wait or test primitive, our implementation uses the position in memory of the
MPI_Request given as argument and searches the Posted MPI Request data structure in order to ⇥nd an
object whose req_address ⇥eld has the same address as the provided MPI_Request. In that way, we manage
to match the MPI_Request * argument of MPI_Wait to an actual request object in our data structures. It
should be noted that this process requires locking and unlocking of the control logic lock which can be the
cause of overhead. In General, send requests are considered completed if the value of the MPI_Request
related to them is equal to 1 and uncompleted otherwise. Receive requests are considered partially completed
when the value of its MPI_Request is 1 (which is set by the progress Engine when a control message like
RTS, Env or Env+D matches the request) and fully completed when the ⇥rst integer of its local noti⇥cation
data is other than -1 (as described in 3.2.2). MPI_Wait blocks the progress until the request is fully completed
and clears it afterwards. A case of high interest is that of a non blocking eager send. Eager sends are completed
immediately after sending the Env+D control message without requiring the existence of a posted matching
receive request on the receiver’s side. This means that an MPI_Wait call shouldn’t ever block on a non
blocking eager send and instead return immediately. However, since in this version of the write-based variant
eager sends need to get matched by an RTR or Ack messages for correctness reasons, it renders the MPI_Wait
unable to clear the request in some occasions. As described in 3.2.2 the safe_to_get_cleared integer ⇥eld
indicates whether an RTR or Ack has matched the request. If the request is not matched at the time of
MPI_Wait then the MPI_Wait function increments the integer and returns without clearing. Otherwise,
MPI_Wait clears the request. An example of a non blocking eager send is illustrated in Figure 3.10.

22

3.2.4 General Control logic of the Progress Engine
The main objective of the Progress Engine thread is the constant polling of the process’ virtualized mailbox and
the appropriate handling of each received control message. The progress engine thread is responsible for
matching incoming control message from other processes with requests that exist in Posted MPI Requests of
the process. More precisely, the progress engine executes an in⇥nite while loop invoking
_MBOX_TRY_DEQUEUE_64B atomic primitive in each iteration. Each message sent through the packetizer
uses 4 of its 64 bytes to denote its type (e.g., RTS, RTR, Env etc). The progress engine, after dequeuing a
message to a speci⇥c bu�er, determines its type and proceeds to the necessary action depending on it.
More speci⇥cally:

In case of an RTR message: The progress engine locks the control logic lock and searches through the
appropriate Posted MPI Request data structure for a matching send request. The tag, rank and communicator
id attached in the message determine whether the message matches with an unmatched request or not.
If such send request exists, the progress engine unlocks the control logic lock sets its matched ⌅ag to 1 in order
to prevent it getting matched by future messages. If the send request was a blocking eager one , the progress
engine just clears it since eager sends complete immediately. If the request regards a blocking long send, then it
updates the request object with information that regard the remote bu�er and the remote noti⇥cation address
included in the RTR message, disconnects the request object from the Posted Requests data structure and
noti⇥es the user thread blocking for a CTS or RTR that such a message has arrived. Consequently, the user
thread is ready to perform the DMA transfer. The reason the progress engine disconnects the request from the
data structure is because such an action lets the user thread clear the request (i.e., free()) without having to
acquire the control lock since the request getting cleared does not belong to any data structure any more. On
the other hand, if the request is a non blocking eager send, the progress engine checks the value of the
safe_to_get_cleared ⌅ag to determine whether to clear the request or let MPI_Wait (or similar primitive)
handle the clearing. If the request is a non blocking long send, the progress engine performs the DMA transfer
since the function from which the request emerged (e.g., MPI_Isend) has already returned. After the DMA
transfer, the progress engine marks the request as completed but no. It is worth noting that if the destination
and the source of the transfer is the same process, a memcpy is preferred over a DMA transfer. Ather the
memcpy operation the progress engine writes to the address of the DMA noti⇥cation as the DMA engine would

23

Figure 3.10: Eager protocol: Non blocking send and MPI_Wait

do to singal the receiver that the transfer is over. If no matching request exists then the progress engine inserts
a new request to the appropriate Received MPI Requests data structure. The request carries the same
matching attributes (tag, rank, comm_id) included in the RTR message as well as the DMA related
information. Subsequently, the progress engine thread releases the control logic lock.
In case of a CTS message the exact same logic applies with the following exception. It is guaranteed that a
CTS message will always match a long send request in the Posted MPI Requests. Anything else would be
erroneous since the CTS control message is always a response to an RTS message there will always exist
matching long send request in the Posted MPI Request.

Respectively, an Ack message will always match an eager send request and the progress engine will perform
the same actions it would perform in the case of an RTR message.
In case of an RTS message: After locking the control logic lock, the progress engine searches the Posted
Requests MPI data structure for a matching receive request.
a)If such a request exists, the request is marked as matched so that it cannot get matched by other messages
and gets updated with information necessary for the completion of the MPI_Status object. If the request has
emerged form a blocking receive, the user thread gets noti⇥ed that the expected RTS arrived. In case of a non
blocking receive request, the MPI_Request object related to the request is set to 1 to signify partial
completion. An exceptional case is that of a non blocking receive request when MPI_ANY_SOURCE is active
in at least one other request of the communicator (not necessarily the one matched). In such a scenario, it
should be reminded that issuing of RTR is suspended for all receive requests of the process regarding that
communicator. As a result, an MPI_Irecv would have returned without issuing any RTR messages. This fact
renders the progress engine thread responsible for issuing a CTS message for that receive request after
matching the RTS message against it. It should be noted that in that speci⇥c case, the control logic lock gets
released only after the sending of the CTS message even in single threaded applications as mentioned in
subsection 3.2.3.
b)If no matching requests gets found, the progress engine threads posts a new send request to the Received
MPI Requests data structure and unlocks the control logic lock
In case of an Env message: The progress engine will always match an Env control message to a long receive
request after acquiring the control logic lock. After the match, the lock is released and ilf the request is
blocking, it noti⇥es the user thread waiting for it about its arrival. In the case of a non blocking request, it sets
the MPI_Request object related to that request to 1, indicating partial completion. In both cases, the request
learns all the information required for the completion of its MPI_Status.
Similarly, an Env+d message will cause the progress engine to lock the control logic lock and search for a
matching receiving request in the Posted MPI Requests data structure.

• In case such a request is found, the control logic lock gets released, and the payload data of the
Env+D message gets copied to the matched request’s receive bu�er. In addition, the request gets
updated with the necessary information in order to get rendered able to complete its MPI_Status
object.

• If no such request exists, a new send request gets inserted into the Received MPI Requests data
structure to be later matched by a future receive primitive of the user thread. This new request
consists of all the matching attributes contained in the Env+D message as well as the payload data
stored in the eager_data ⇥eld of the request.

3.2.5 Implementation of Synchronization and Locking Mechanisms
In the previous paragraphs it became evident that our implementation is highly dependent on locking

mechanisms as well as mechanisms allowing the progress engine thread notify the user thread for certain
changes that take place. During our research we came across various ways of achieving synchronization each
one of which resulted to signi⇥cant performance changes. Speci⇥cally, our ⇥rst attempt to achieve
synchronization between the progress engine thread and the user thread(s) included the use of the broadly used

24

POSIX library and more precisely, the pthread_mutex and semaphore objects. The control logic lock was
initially implemented as a pthread_mutex while each time a user thread blocked its progress waiting for a
speci⇥c change, it was using sem_wait() function on a binary semaphore which constituted a ⇥eld of our
request structure. For instance, when a MPI_Send() primitive needed to wait for a CTS message to match
the send request it posted, it would call sem_wait(&new_request⇤ received_CTS); where
new_request is the request inserted into the Posted MPI Requests and received_CTS is the name of the
binary semaphore included in the request structure. Similarly, the progress engine would increment that
semaphore after matching a CTS message against that speci⇥c request in order to notify the user thread to
unblock its progress. We preferred the use of binary semaphores over that of another mutex due to certain
limitations of the pthread_mutex’s API like the fact that only the thread that locked a mutex may also unlock
it. In contrast, semaphores can get incremented by any thread regardless of which thread created them. While
the use of the POSIX library for that reason proved reliable in terms of correctness and functionality, in our
eyes it seemed essential to further experiment with more ways of synchronizing since both mutexes and
semaphores frequently enter kernel mode which could prove very costing in terms of performance. Speci⇥cally,
pthread_mutexes of POSIX are implemented based on the Futex POSIX library which makes extensive use of
system calls and requires the intervention of the kernel which can put threads to sleep or wake them. Using a
similar method, semaphores also involve the kernel space in their attempt to suspend a thread’s execution.
Our ⇥rst attempt to minimize the expensive thread suspensions was to replace all POSIX semaphores with
simple integers. The blocking user thread would busy wait on a volatile integer’s value until the progress engine
changes its value. By trying this alternative, there was a signi⇥cant improvement on our implementation’s
latency as seen Figure 3.11. In eager sizes (0-40 bytes) we observe a 300% performance gain while in bigger
sizes there is 100% improvement.

25

Figure 3.12: Comparison of di�erent locking mechanisms’ latency

Figure 3.11: Comparison of POSIX Semaphore and busy waiting
latency

Our next step was the further reduction of our implementation’s latency by trying di�erent mechanisms for
locking. In order to avoid the sleeping of the user thread as much as possible we tried using successive calls to
pthread_mutex_trylock instead of pthread_mutex_lock in order to acquire the control logic lock. In
both cases, releasing the lock was achieved using pthread_mutex_unlock. Even this change o�ered an
observable performance gain. However, our experimenting continued with the benchmarking of our
implementation using our own TTAS spinlock that depends on GNU Compilers Collection (GCC) builtin
Atomic functions like __sync_lock_test_and_set and __sync_fetch_and_sub. The TTAS lock
proved to be the most e⇤cient mechanism as seen in Figure 3.12.

The results depicted in the Figures regard OSU Latency Microbenchmarks run in one QFDB with the 2
processes residing on F1 and F2 FPGAs. Message sizes from 0 to 512 bytes are included in the results since in
bigger sizes the di�erence emerging from changes in synchronization and locking gradually becomes less
apparent as the message size grows.

3.2.6 Data Structures Design
We use in total 4 data structures for storing MPI requests:

• Posted MPI send requests
• Posted MPI receive requests
• Received MPI send requests
• Received MPI receive requests

However, for reasons of simplicity, in this thesis we usually mention two more generic data structures; the
Posted MPI Requests and Received MPI requests.
Since the MPI Standard guarantees the FIFO property described in Section 2.1, one sees that the best choice
for the implementation of a data structure that regards MPI requests is a FIFO queue. Initially, we used four
FIFO queues implemented as doubly linked list (for supporting disconnecting elements inside them when they
get matched) for representing Posted MPI send Requests, Posted MPI receive requests, Received MPI send
Requests and Received MPI receive requests. However, this choice o�ers poor performance since it can lead to
congestion of the data structure when many concurrent requests exist. As a consequence, we switched to using
a hashtable of FIFO queues for each one of our data structures. Each hashtable entry uses as hash the
combination of the rank, tag and communicator its requests regard. Unfortunately, due to the existence of
MPI_ANY_SOURCE and MPI_ANY_TAG we cannot use a hashtable for Posted MPI receive requests and
Received MPI send requests since these data structures get accessed by MPI_Recv/MPI_Irecv primitives,
which must be able to ⇥nd all requests in a FIFO order. This renders the use of a hashtable impossible for
these structures since receive primitives wouldn’t be able which bucket of the hashtable when
MPI_ANY_SOURCE/MPI_ANY_TAG gets used. As a result for these two data structures we use a simple
FIFO queue.

3.3 Designing an improved sender and receiver initiated write-based long
protocol: Elimination of the Env Control message
As observed in the previous chapters, the frequent locking and the constant need of synchronization between
the user thread and the progress engine can constitute one of the biggest causes of overhead in our
implementation. Consequently, eliminating some control messages was one of our main goals as far as
optimization of the write-based long protocol was concerned. In order to achieve this, we investigated whether
any of the control messages that are not existent in the read-based prototype can also be absent in the write-
based prototype after improving or exploiting already existing components of the protocol. In the scope of this
work, we investigated whether the Env Control message can be omitted. As described previously, the objective

26

of the Envelope message is to convey information required to complete the MPI_Status structure of a receiver
in case of a fast receive where an RTS control message does not get issued. Speci⇥cally, in any MPI
implementation the MPI_Status structure of a receive request should contain:

• The size of the completed transfer in bytes

• The communication tag

• The source rank that performed the transfer

When a fast receive takes place (and thus an Env message is needed) only the ⇥rst two of the aforementioned
elements can be unknown to the receiver. This applies due to the fact that when a request using
MPI_ANY_SOURCE is active, no receive request can initiate the communication. This implies that all receive
requests that designate MPI_ANY_SOURCE as the transfer’s source will always be initiated by the sender
and,thus, will learn the sender’s rank from the received RTS message. Consequently, a mean of transferring
only two integers (size of transfer and communication tag) from the sender is needed.

The DMA noti⇥cation used to notify the receiver of the completion of a DMA write, as described in 2.3, has
a size of 16 bytes which is more than enough to hold that information. Thus, in the second variant of write-
based MPI, there is no need for an Env message during a fast receive since all the information such a message
would carry is instead conveyed by the sender through the DMA noti⇥cation of the RDMA engine. It should
get mentioned that every new receive request that gets created, has the ⇥rst integer of its noti⇥cation data
(⇥rst 4 bytes) which represent the size of the transfer set to -1. As a result, a receiving process waiting for a
DMA noti⇥cation, polls the ⇥rst integer of the noti⇥cation until its value changes and learns the information an
Envelope message would carry by reading its noti⇥cation data and the transmission of such a control message
by the sender is omitted. However, such a reformation of the write-based protocol also infers some consequences
that is explained in the next paragraphs.

In Figure 3.13 a scenario of a fast receive is illustrated. The receiving process arrives ⇥rst to a matching
send-receive pair at t1 and, since there is no MPI_ANY_SOURCE request active, initiates the communication
by issuing an RTR control message after inserting the receive request into the appropriate Posted Request data
structure. Afterwards, it blocks waiting for the DMA noti⇥cation since the Env control message has been
omitted. The RTR control message arrives at the sending process at t2 and gets dequeued by the sender’s
progress engine thread. Since no matching send request exists in the Posted Request of the sender, a new
request object gets created and added into the Received Request data structure containing the matching
attributes and DMA information included in the RTR message. At t3, the sending process invokes a sending
primitive and searches its Received Request for a matching received receive request. A match is successful with
the request received at t2 so the sender performs the DMA write and instead of writing arbitrary data to the
remote noti⇥cation data address, it instead writes the size of the transfer and the communication tag.
Subsequently, it returns cleaning its state. The receiving process unblocks after receiving the DMA noti⇥cation
and has therefore access to all information conveyed through it in order to correctly ⇥ll the MPI_Status
structure. Finally, it also returns cleaning its state.

Regarding the case of a sender-initiated communication, the second version of the write-based variant is not
di�erentiated from the ⇥rst version in any aspect. As shown in Figure 3.14, the sender initiates the
communication since the send request posted earlier than the receive request at t1. While the sender is blocking
its progress waiting for a CTS or RTR control message, the receiver receives the RTS message at t2 and stores
the respective request in its Received Requests FIFO queue. At t3, the receiving process posts its receive
request which matched with the previously received RTS. After, writing the appropriate in the MPI_Status
object, it issues a CTS message advertising its receive bu�er and DMA noti⇥cation address. The sender
normally executes the DMA transfer after receiving the matching CTS message.

27

The realization of a common fast receive as well as a common sender initiated communication in the second
variant of the write-based protocol is simple and reliable as described in the previous paragraphs.
Unfortunately, in more complex cases, there are some issues to be resolved. An example of high interest is the
case of simultaneous sender and receiver initiations from both the sender and receiver processes. In the previous
example of Figure 3.13 where the communication is initiated by the receiver, we observe that the receiving
process never blocks expecting an Envelope or RTS message. However, there is a serious possibility that the
sending process has also issued an RTS control message which should match with the correct receive request,
avoiding mismatches. One could argue that blocking progress waiting only for the DMA noti⇥cation is su⇤cient
for the receiver since an RTS control message always gets issued before the DMA transfer takes place which
ensures that when a DMA transfer is completed, the RTS control message would have already matched the
receive request. While that argument sounds valid, it is not safe to ignore waiting for an RTS message due to
the fact that the receiver process uses one thread for polling its mailbox (i.e., Progress Engine Thread) and a
di�erent thread for polling the DMA noti⇥cation address (i.e., the main User Thread). This can lead to

28

Figure 3.13: Receiver initiation with omitted Env control messsage

Figure 3.14: Sender initiation with omitted Env control message

unpredictable outcomes regarding the order in which the process determines the arrival time of each of the two
synchronization elements. An explanatory example is illustrated in Figure 3.15.

In Figure 3.15 the receiver progress gets split visually to two threads in order to render each thread’s
actions more apparent. Both the sender and the receiver process arrive concurrently at t1 and attempt to
initiate the communication by issuing their respective initiatory control messages (i.e, RTS and RTR).
Afterwards, the sender blocks waiting either for a CTS or an RTR message while the receiver blocks waiting for
the DMA noti⇥cation, omitting the waiting for an RTS or Env message. The polling of the mailbox takes place
always in the Progress Engine thread of every process while the user thread waits for a change in the
noti⇥cation address’ contents made by the DMA engine. At t2, the sending process matches the RTR message,
unblocks the user thread’s progress and performs the DMA transfer. At the receiving process’ side, due to the
CPU the progress engine runs on being slow or just because of a context switch, the user thread gets aware of
the DMA noti⇥cation before the progress engine dequeues and matches the RTS message. As a consequence,
the user thread clears the request at t5 assuming that any RTS that may have got issued has already matched
it. At t7, the progress engine tries to match the dequeued RTS control message but due to the receive request
being already cleared, it will either treat the RTS as unmatched (and insert a send request into the Received
Requests data structure) or match it against a wrong matching receive request. In both cases the execution of
the program becomes erroneous. On the other hand, making the user thread always wait for a control message
from the sender before it waits for the DMA noti⇥cation is also wrong since there is no guarantee that the
sender will issue an initiatory message for that speci⇥c request.

In order to resolve the issue outlined in the previous paragraph, we adopted an elegant solution which
makes use of some of the rest of the bytes in the DMA noti⇥cation data. Speci⇥cally, we organize the 16 byte
space of the noti⇥cation data as an array of four 32bit integers. As already mentioned, the ⇥rst two integers
take the values of the size of the data transfer and the communication tag respectively. We use the third

29

Figure 3.15: Problematic scenario of concurrent sender and receiver initiation with omitted Env control
message

integer in order to inform the receiving process which expects a DMA noti⇥cation whether it should also expect
an RTS message or not. More precisely, the value of 1 in that integer denotes that an RTS has also been issued
for the receive request and it should wait for it if not already received. Otherwise, the value of the integer is 0.
It’s worth noting that the problematic scenario depicted in Figure 3.15 happens extremely rarely. Most of the
times, the progress engine dequeues and matches the RTS message before the user thread gets the DMA
noti⇥cation and clears the request. This implies that the RTS will most likely be already matched when the
user thread reads the noti⇥cation data and there will be no observable performance loss attributed to waiting
for an RTS. The fourth integer inside noti⇥cation data still remains unused at this point. Figures 3.16, 3.17,
3.18 illustrate the correct versions of sender and receiver initiated communications in the second variant of our
implementation respectively. It should be observed that when the sending issues an RTS for the communication
it also sets the third integer of the noti⇥cation data (rts_sent in the ⇥gures) to 1.
Another complication that arises in the second variant of the write-based protocol is the fact that since a fast
receive request can complete without receiving a single control message from the sender, it is technically viewed
as unmatched. Consequently, a future matching RTS normally directed to another receive request may
accidentally match it. In order to address such a case, we make all the new created receive requests have the
third integer of their noti⇥cation data array set initially to -1. This value represents that no sender has
performed any DMA write for that receive request. Additionally, the matching function called in order to
match an RTS message has the following change. It no longer considers a request that only has its matched

⇥eld set to 0 as unmatched but also checks for the third integer of the request’s noti⇥cation data. That
integer’s value must either be -1 or 1 for the request to be considered available for matching. Recall that the
value of 1 in the third integer of noti⇥cation data means that the DMA transfer has been completed but the
user thread should also wait for an RTS message issued by the sender while 0 conveys the meaning that no
RTS is headed for that speci⇥c receive request. In order for this technique to be functional it should be
guaranteed that no issuing of RTS message can take place simultaneously with a DMA transfer. In our
implementation this assumption holds true for all Threading Modes except for MPI_THREAD_MULTIPLE.
For that threading mode, we don’t use the second variant of the write-based long protocol.

The problem that is caused by the existence of multiple threads that can call MPI functions concurrently is
described more thoroughly in Figure 3.19. The receiving process issues an RTR message at t1 and blocks its
progress waiting for the DMA noti⇥cation. At t2, a send function is getting called on the sender’s side thread 1
which matches with the receive request received, thus, the DMA transfer takes place. After the successful
match, the thread releases the control logic lock which lets a second sending thread initiate another send
request issuing an RTS message. That RTS message happens to also match the receive request posted at t1.

The ⇥rst sending user thread has not yet completed its DMA transfer which implies that the third integer of
the noti⇥cation data of the receive request is still set to -1. Consequently, the RTS message of the second send
request mistakenly matches the receive request. One could argue that this error would not occur should the
⇥rst thread did not release the control logic lock before ⇥nishing the DMA transfer. However, this would in⌅ict
extra overhead since neither any other user thread nor the progress engine thread can access the internal data
structures while the lock is acquired which would render the performance poorer especially in big DMA
transfers.

30

31

Figure 3.17: Receiver initiation with omitted Env control message, correct execution

Figure 3.16: Sender initiation with omitted Env control message, correct execution

One may argue that the problem illustrated in Figure 3.19 can also be present in scenarios where non blocking
sends are used in single threaded applications. However, this is not true since non blocking send primitives of
our implementation issue an RTS message before returning if no matching receive request already exists in the
Received MPI Requests. This ensures that a matching receive request in the receiving will get matched by the

32

Figure 3.19: Problematic scenario with two sending threads and omitted Env control message

Figure 3.18: Concurrent sender and receiver initiation with omitted Env control message, correct execution

correct send request. When there is already a matching receive request in the Received MPI Requests data
structure at the time our non blocking send primitive gets posted then no RTS message gets issued bu the the
 function does not return until the DMA transfer is over. When the DMA transfer completes, the third integer
of the request’s noti⇥cation data in the receiver’s side has the value 0 which renders it unmatchable by RTS
messages. Since the non blocking function will return only after completing the transfer, it is guaranteed that
no future send request can issue a matching RTS message that will accidentally match the receive request on
the receiver’s side. An example is depicted in Figure 3.20. The MPI standard demands that a non blocking sen
request like MPI_Isend must not block until a matching receive gets posted but if such a receive already exists,
an implementation is allowed to complete the data transfer before returning. In addition, some bugs in the
current version of the DMA API, make it safer to wait a transfer to complete before returning.

3.4 Basic description of the second write-based MPI variant’s implementation

In General the implementation details of all variants of the write-based MPI are the same with those
described in 3.2. Only substantial di�erences will get presented in this section.

3.4.1 Structure of Request Object
The same details stated in 3.2.2 also apply. An important di�erence is that any new request object created has
speci⇥c initial values in the array which symbolizes the contents of its local noti⇥cation address (int
local_notif_address[4]). In speci⇥c, the ⇥rst and the third integer, which now represent the size of transfer
and the ⌅ag indicating whether an RTS has been issued for that transfer respectively, should be always initially
set to -1. A negative initial value in the size of transfer is necessary since a change in that values is what
noti⇥es the user thread that the DMA transfer has been completed. Should we chose 0 or any positive value, it
would pose the risk of it coincidentally matching the size of transfer which implies that the sender would write
the exact same initial value to it after the transfer completed. This would render the user thread polling on the
value of that integer unable to determine the end of communication. Regarding the third integer, as it was

33

Figure 3.20: Non blocking sends with omitted Env control message

explained in the previous chapters, its initial value to -1 plays a crucial role in avoiding mismatches with RTS
messages headed for other receive requests in cases where the correctly matched send request does not issue an
RTS message.

3.4.2 General Control logic of Basic Point-to-Point primitives
Similarly, the same basic control logic of point-to-point primitives described in 3.2.3 apply in this variant.
However, certain details regarding some changes emerged from the elimination of the Env message need to get
highlighted.

Send Requests: As it is apparent, in this variant send requests no longer issue Env messages in a receiver
initiated communication except for the case of the thread mode MPI_THREAD_MULTIPLE where this
change does not apply as already explained (Figure 3.19). In addition, each process should write the correct
value to the third integer of the receiver’s noti⇥cation data. Speci⇥cally, when a long send request gets posted
before a matching receive exists in the Received MPI Requests it issues an RTS message and, consequently, has
to write 1 to the third integer of the noti⇥cation data ,which indicates whether an RTS has been issued or not,
when the DMA transfer takes place. In other cases when no RTS message (and no Env) is needed, that value
gets set to 0.

Receive Requests: A receive request should not be required to get matched by a sender’s control message
when the communication is receiver-initiated. The process reads the third integer (rts_sent) of the noti⇥cation
data in order to determine whether it should block for an RTS or not. If the integer’s value is 0, the receive
function must disconnect the request from the Posted MPI Requests before cleaning as since no control
message will ever match it and the progress engine won’t have a chance to disconnect it. Again, the thread
mode MPI_THREAD_MULTIPLE poses an exception to what was described above since Env messages
are not omitted.

Wait and Test Point-to-Point primitives: In the second variant of Exanet MPI, the MPI_Wait and
relative functions have an additional task to perform in a certain occasion. In a fast receive (receiver initiated
communication), if the sending process does not issue an RTS message, the receiver’s progress engine does not
match any control message with that speci⇥c receive request and thus has no chance to disconnect it from the
Posted MPI Requests data structure. In addition, since the function from which the request emerged was non
blocking (MPI_Irecv) it has already returned. As a consequence, the only function which can remove the
complete receive request from the data structure is the MPI_Wait() or a relative function. This renders
necessary for the Wait, Test etc functions to also check the third integer of the noti⇥cation data (written by
the DMA engine) when they handle a completed receive request. Should that integer be 0 (ie. no RTS sent in
that communication), the Wait, Test function must remove it from the respective data structure before
cleaning it.

3.4.3 General Control logic of the Progress Engine Thread
The same logic described in 3.2.4 also applies in this variant. However, unless the thread mode
MPI_THREAD_MULTIPLE is used, the progress engine no longer needs to handle the receiving of Env
Control messages as they are actually replaced by noti⇥cation data. In addition, when an Env+D eager
message is received, if it matches an eager receive request already posted, the progress engine manually changes
the third integer of its noti⇥cation Data to 1 since no DMA transfer takes place in eager communication. The
value of 1 normally conveys the meaning that an RTS has been sent but in this case it regards the Env+D
message and not an RTS. By reading the value of 1, the receiving user thread knows that it has no need to
disconnect the request from any structure since it is done by the progress thread engine after the match of a
control message against it.

34

3.5 Designing an improved sender and receiver initiated eager based protocol:
Elimination of the Ack control message and receiver initiation in eager
communication
In the previous chapters, we presented a new write-based protocol that lacks the main drawbacks of the
preexisting read-based protocol. ⇧ore precisely:

1. We allow receiver initiation in scenarios where a receiving process posts its request earlier than the
sender (fast receive). As a consequence, receives do not need to wait for an RTS message to initiate the
communication. Instead they can advertise their DMA related information asynchronously by issuing
RTR messages.

2. The new protocol is write-based which renders the sending process able to determine the end of a DMA
transfer without the need for an Acknowledge message.

3. We exploit the DMA noti⇥cation component which helps the receiver determine the end of a DMA
transfer.

However, we see that the enabling of receiver initiation also constitutes the source of new weaknesses in the
protocol. Speci⇥cally:

1. The use of an extra Env message was initially required when sender initiation did not take place

2. Eager receives (i.e., receives that regard transfers of sizes of up to 40 bytes) still need to transmit RTR
messages while they have no reason to advertise DMA information.

3. Eager sends need to create requests that must get matched either by RTR or Ack messages in order to
preserve the integrity of the protocol and not cause mismatches while in the read-based protocol they
do not need to insert any new requests into any data structure.

Recall that the reasons behind this design are thoroughly described in subsection 3.1.2.
The second write-based variant has managed to eliminate the need of an Env message, however, the drawbacks
regarding eager communication make the up-to-now proposed write-based protocol worse in performance in
comparison to the read-based one regarding messages of up to 40 bytes. The performance di�erence is
illustrated in Figure 3.21. As one can observe in the ⇥gure, the latency of the write-based protocol,measured
using the OSU Latency Microbenchmark, is signi⇥cantly higher than the respective latency of the read-based
protocol since all 7 eager message sizes take about 1,8 microseconds while the read-based protocol achieves a
latency of about 1,3 microseconds. As stated, the cause of that di�erence is the fact that in the write-based
protocol, eager receives issue RTR messages when posted earlier than the respective send functions. At the
same time, eager receives that are posted after an eager message has already received, have to issue Ack control
messages back to the sender. Besides the transmission of the extra messages themselves, the locking and data
structure searching their receiving infers is also a considerable source of latency. Note that Figure 3.21
illustrates the latency of both implementations in a single QFDB (in the FPGAs F1 and F2). In scenarios
where the two processes reside in di�erent QFDBs or di�erent Mezzanines, the latency of a control message’s
transmission is worse. This results to an even bigger di�erence between the two protocols (in favor of the read-
based one) depending on the distance of the two nodes in the network. In addition, it is worth noting that the
write-based eager protocol’s overhead is partially attributed to the fact that eager sends insert new request
objects into the Posted MPI Request structure in order for them to later get matched by the aforementioned
control messages.

35

Due to those reasons, our main objective was improving the eager write-based protocol in order to eliminate the
overhead of the RTR and Ack messages. Note that the reasons eager receives issue RTR messages in our
protocol is a) because a long receive may match with an eager send as it is allowed by the MPI Standard and
b) in order to avoid a mismatch between a long receive’s RTR and an eager send that normally should match
with an eager receive as described in 3.1.2. Considering the aforementioned fact, one understands that if the
RTR messages of eager receives are removed from the protocol then the RTR messages of long receives should
carry extra information which will prevent them from getting mismatched with eager sends they are not headed
for, on the side of the sending process. In the process of determining this kind of information, we initially made
the following changes in the protocol:

• Each receiving process preserves communicator, rank and tag speci⇥c counters indicating the number
of eager receives the process has issued denoting the speci⇥c rank of that communicator as source using
that speci⇥c communication tag.

• Each time an eager receive gets posted with those matching attributes, no RTR message gets
transmitted (since there is no need to advertise DMA related information in eager communication) but
the respective counter gets incremented. Ack messages are also not issued for eager receives that get
posted after the eager message has arrived.

• The sending process inserts new send request objects into Posted MPI Requests data structure for
eager sends as in the previous variants of the protocol.

• When a receiving process issues a long receive before a matching send has arrived, it initiates the
communication issuing an RTR message (in cases where MPI_ANY_SOURCE is not in use) but
inside the RTR message, it attaches the value of the aforementioned counter piggybacked. Since the
counter is also tag speci⇥c, in this new variant of the protocol RTR suspension happens also when
MPI_ANY_TAG is in use (as with MPI_ANY_SOURCE).

• When a receiving process issues a long receive after a matching send is already received:
� If the send was a long one, the receiver issues a CTS message.
� If the send was an eager one, the receiver just copies its payload data to its receive bu�er and

increments the corresponding counter. Generally, that counters indicates the number of all (long
and eager) receives that didn’t issue control messages.

• Each time a receiver piggybacks a counter to an RTR or a CTS message for this communicator, rank,
tag triple, the counter’s value is reset to zero.

• A sending process that receives a piggybacked RTR or CTS, it extracts the number of the piggybacked
counter and clears that number of send requests the message can match with, before actually

36

Figure 3.21: Comparing read-based and write-based MPI in eager communication latency

performing a match. It is certain that all cleared messages will be unmatched eager sends pending to
get cleared.

Using this technique, we manage to prevent RTRs of long messages from matching the wrong eager sends. This
eliminates the need of issuing RTR and Ack messages for eager receives.

The process we described becomes more clear in the scenario illustrated in Figure 3.22. Initially, the
receiving process posts a non blocking receive request at t1. As observed, the process omits transmitting an
RTR message for the eager receives of t1 and t4 and instead increments the counter regarding Rank S and
tag T1. The counter’s value is now set to 1. It is worth reminding that the counter is also communicator
speci⇥c but the communicator is omitted in the Figures for simplicity. At t2, the sending process (with rank S)
issues an eager send with tag T1 and transmits the Env+D message to the receiver with rank R. The Env+D
message matches the receive request posted at t1 and its payload data get copied to the receive bu�er used in
the former receive request. At t3, the sender posts another eager send and transmits the respective Env+D
message to the receiver. The receiver receives the Env+D and stores a send request representing it, into its
Received MPI Requests data structure. At t4, the receiving process posts an eager receive request which
matches the received send request. The eager send’s payload data get copied to the new receive request’s
receive bu�er. Instead of sending an Ack control message back to the sender, the receiving process
increments the counter regarding rank S and tag T1. The counter’s value is now 2 while the eager sends of t2
and t3 remain unmatched by control messages up to this point. At t5, the receiver posts a long receive (i.e., an
irecv that can receive data bigger than 40 bytes) that needs to advertise its DMA related information to the
sender through an RTR control message. Since that long receive also regards rank S and tag T1, it piggybacks
the value of the respective counter in the RTR. At the same time, the sender posts another eager send which
happens to match with the last long receive. After it sends the Env+D message, the sending process receives
the RTR message from the receiver. The sends of t2 and t3, are still not marked as matched at the sender’s
side. t2 send could match with the newly received RTR message since it has the same matching attributes and
lies ⇥rst in the FIFO queue of Posted MPI Requests of the receiver. However, the progress engine reads the

37

Figure 3.22: Eager protocol: Piggybacked counter in RTR optimization, match of long
receive with eager send

value of 2 piggybacked in the RTR message and clears the ⇥rst two matching send requests found before
performing the match. Consequently, the RTR message clears the two ⇥rst eager sends and achieves a match
with the third one. In this way, a mismatch between t2 or t3 eager sends and the RTR headed for the send
posted at t5 gets prevented.

In Figure 3.23 a similar scenario gets illustrated. The sole di�erence being that at t5 the send posted is not
eager but long. Subsequently, it issues an RTS message to the receiver. At t6, the receiving process posts a long
non blocking request which matches with the send posted at t5, thus a CTS message is issued. The CTS
message does not contain any counter piggybacked. However, its issuing also resets the respective counter.
When the sender receives the CTS message, since in a correct implementation no CTS can match eager sends,
it cleans all intermediate matching eager sends it encounters during the matching process. Ultimately, the
DMA transfer gets performed.

A case of high interest is presented in Figure 3.24 where the receiving process posts two non blocking eager
receive requests followed by a long receive request while the sender has not posted any requests yet. In this
occasion, the RTR control message, issued by the long receive, conveys the value of 2 of the counter that
regards rank S and tag T1 piggybacked, indicating that 2 eager sends should get cleared on the sender’s side
before a match can happen. However, since the sender has not posted any matching eager send yet, the
progress engine will insert two “crafted” receive requests (functioning as placeholders) in the Received MPI
Requests FIFO queue before it stores the actual receive request derived from the RTR control message. These
two “crafted” requests are are added in order to cause an immediate match (and clearing) when the sender
posts the two eager sends the value of the counter piggybacked in the RTR was referring to. As seen, in the
⇥gure, the sends posted at t4 and t5 can get cleared right after they are posted since a match happened at the
time of their issuing. Finally, the send posted at t6 correctly matches the receive request containing the RTR
message’s DMA information and performs the DMA transfer.

38

Figure 3.23: Eager protocol: Piggybacked counter in RTR optimization, CTS message clears pending eager
sends

As it is evident, this solution lets us fully omit the Ack and RTR messages an eager receive should issue.
This fact render the latency of the eager communication of the write-based protocol signi⇥cantly improved as
seen in Figure 3.25 where we can observe a 20% improvement in latency which is attributed to the elimination
of both the transmission of the omitted messages and the synchronization actions their receiving inferred (e.g.,
locking of the control logic lock by the progress engine thread). The ⇥gure shows the results of the OSU
Latency microbenchmark for eager sizes. In addition, in scenarios when many eager receives precede a long one,
the RTR message emerging from it will cause signi⇥cant overhead at the sender’s side due to the big amount of
either the eager sends that will get cleared or the number of crafted receive requests that will be inserted.
Although the idea of preserving a counter for each communicator, rank and tag a program uses indeed re, there
was still room for improvement since eager sends still need to acquire the control logic lock, search the
Received MPI Requests structure upon creation for matching RTR messages and also insert new send requests
into the Posted MPI Requests data structure representing the transfer, actions which notably increase the
latency of an eager send.

39

Figure 3.24: Eager protocol: Piggybacked RTR issued before any matching eager send
request is posted. Use of crafted requests

To solve this, we came up with a di�erent and more elegant solution. In this new solution, we enrich the idea
of communicator, rank and tag speci⇥c counters. More precisely, for each combination of communicator, rank
and tag we maintain two counters. They serve the purpose of counting the number of posted receive and send
requests with these matching attributes respectively. Each time a new send or receive MPI primitive gets
called, the respective counter increments and a ticket ID equal to the current value of the counter gets assigned
to the request the primitive regards. Each send and receive request gets assigned a ticket ID indicating its order
among requests of the same type and same matching attributes (e.g., the 5th send of a process with tag 1 and
destination 3 will get assigned the value 5, the 3rd send of a process with tag 0 and destination 1 will get
assigned the value 3 etc). In a correct MPI program, it is guaranteed that a send request, assigned a speci⇥c
ticket id, is going to match with a receive request that bears the same ticket id. Due to that fact:

• An RTR control message no longer piggybacks the number of receives that haven’t issued a control
message. Instead it carries the ticket ID of the request it regards.

• When an RTR is getting matched, the sending process no longer uses the counter value in order to
clean pending eager send requests or create crafted receive requests. Instead it determines whether to
perform a match or not with the ⇥rst matching send request encountered, based on the equality of
their ticket IDs

• If no matching send is found for an RTR message, the sending process compares the ticket ID in the
RTR message with the value of the respective send counter the process maintains locally. If the ticket
ID is bigger than the counter’s value then a new receive Request gets inserted into the Received MPI
Requests data structure. Otherwise, the RTR gets discarded since it is implied that it was headed for
an eager send.

• Eager send requests no longer need to insert request objects into the Posted MPI Requests data
structure
in most sending modes (e.g., Send, Isend etc. While Ssend may be an exception for reasons explained in
Section 3.11)

40

Figure 3.25: Comparison of the initial write-based MPI eager protocol with the
optimized eager protocol in terms of latency

0 1 2 4 8 16 32

0

0,5

1

1,5

2

Latency of Eager Communication

Intra QFDB F1-F2

write based (old)

write based (no ack/
RTR in eager mode-old)

Message Size (Bytes)

L
a
te

n
c
y

(u
s
)

• Eager sends also avoid acquiring the control logic lock and searching the Received MPI Requests
structure since they do not need to match any RTR message as they dot make use of the DMA.

41

Figure 3.27: Piggybacked Ticket ID optimization, eager receive matching eager send

Figure 3.26: Piggybacked ticket_ID in RTR optimization, long receive matching long send

In Figure 3.26 at t1 the receiving process issues a non blocking eager receive request denoting S as source
rank and T1 as communication tag. That receive requests increments the respective receive counter of the
receiving process and gets assigned a ticketID with value 1 and does not transmit an RTR message. At the
sender’s side, at t2 and t3, the sending process posts 2 eager send requests. None of those sends insert any
object in the Posted MPI Requests but instead increment the respective send counter. As a result, the send
counter regarding rank R and tag T1 has the value of 2. The Env+D messages issued get matched on the
receiver’s side with the receive requests posted at t1 and t4. At t5, the sender posts a long send request,
inserting a new request object in the Posted MPI Requests data structure that gets ticket ID equal to 3 while
at the same time the receiver also issues a long receive request with ticket ID also equaling 3. Since the send
request and the RTR message both have the same ticket ID and matching attributes, a match takes place and
the sender performs the DMA transfer.

In Figure 3.27 a similar scenario is depicted. In contrast to the previous scenario, the send posted at t5 is
also -an eager one. As a consequence it doesn’t cause any insertion of any request object into any Posted MPI
Requests FIFO queue. The RTR message emerging from the receive request posted at t5, ⇥nds no matching
send request so its Ticket ID gets compared with respective send counter’s value and since they are equal the
RTR message gets discarded since it was headed for an eager send.
If the ticket ID of the RTR message was larger than the value of the respective counter in a di�erent scenario,
a new receive request would have been inserted into the Received MPI Requests structure of the sender. That
RTR should get matched by a future send.

It’s worth noting that in order to render eager sends as fast as possible, an eager send (except for
MPI_Ssend) issues an Env+D message and returns immediately without acquiring any lock and searching the
Received MPI Requests since it does not need to learn any DMA related information. This strategy can lead to
some received RTRs of fast long receives that match with eager sends being left marked as unmatched. For this
reason, long sends also clear received receive requests that have a smaller ticketID than the ticketID they got
assigned. This normally does not cause any considerable overhead since eager sends matching long receives
without intermediate matches between long sends and long receives are especially rare in existing applications.
An example is illustrated in Figure 3.28

42

This protocol design improves upon the ⇥rst two variants regarding eager communication of the write-based
protocol. As we can see in Figure 3.29, in comparison to the ⇥rst write-based variant (write-based (old) in
the ⇥gure) our solution o�ers up to 33% performance gain as far as latency is concerned. In addition, the ⇥nal
version has also another 14% lower latency than the ⇥rst eager optimization presented in this chapter (write-
based (no Ack/RTR in eager mode-old) in the ⇥gure). This performance gain is attributed to the
elimination of locking, searching Received MPI Requests and inserting new request objects to the Posted MPI
Requests during an eager send emerged from functions like MPI_Send. We see that with our solution, the
write-based eager communication latency became almost even with the read-based protocol’s latency.

43

Figure 3.28 Posted Send request clears useless received requests (RTRs)

Figure 3.29: Comparison of the original eager protocol of the write-based MPI with the two
di�erent optimizations

0 1 2 4 8 16 32

0

0,5

1

1,5

2

Latency of Eager Communication

Intra QFDB F1-F2

write based (old)

write based (no ack/
RTR in eager mode-
old)

write based (no ack/
RTR in eager mode-
last)

Message Size (Bytes)

L
a
te

n
c
y
 (

u
s
)

3.6 Basic description of the third write-based MPI variant’s implementation
In General the implementation details of all variants of the write-based MPI are the same with those described
in 3.2. Only substantial di�erences will get presented in this section.

3.6.1 Structure of Request Object

The same details stated in 3.2.2 also apply. The main change in this variant is the existence of the ticketID in
all request objects that regards point-to-point communications. As explained in the previous chapter, requests
use this value in order to determine whether they should match with a received RTR message or not.

3.6.2 General Control logic of Basic Point-to-Point primitives

Send Requests: Generally, all send requests increment the respective send counter that regards their
destination rank, tag and communicator and get assigned a ticketID equal to its value. In long send requests,
the increment of the counter and the assignment of a ticketID takes place after the acquiring of the control
logic lock. Hence, no additional synchronization is required to protect the counters. Long sends also check the
ticketID of a received RTR before they perform a successful match. This value must be equal to the send
request’s ticketID else no match takes place. Should a long send request encounter matching received receive
requests with ticketID lower than their own, they clear these requests, since they were headed for past eager
sends. In the case of eager sends, no lock gets acquired except for the case of the thread mode
MPI_THREAD_MULTIPLE or the primitive MPI_Ssend/MPI_Issend. The reasoning behind this
decision is the following: Since eager sends emerged from most MPI send primitives (besides Ssend) do not
require to get aware of any information contained in an RTR control message, they do not check the Received
MPI Requests structure. Also, they do not insert any request object in the Posted MPI Requests structure to
get matched by incoming RTR messages. These facts render the acquiring of control logic lock useless and thus
we let those eager sends increment their respective counter without locking which is safe in single threaded
applications or with applications using any thread mode other than MPI_THREAD_MULTIPLE. One
argument against that decision may be the existence of the progress engine thread, besides the user thread,
which also reads the value of the counters. However, in the next chapter ,regarding the control logic of the
progress engine, we show that this design choice remains safe assuming no out-of-thin-air produced during
races. In case the MPI_THREAD_MULTIPLE is used, acquiring of control logic lock is necessary even for
eager sends in order to avoid race conditions when two simultaneous eager sends may try to increment the
same counter.

Receive Requests: The control logic of receive requests is similar to that of the second variant. The only
addition is that each receive request increments the respective receive counter associated with its source rank,
tag and communicator, gets assigned a ticketID and attaches its ticket ID to the RTR message, if it issues one.
CTS messages do not need to carry a ticketID since it is guaranteed that no CTS may ever match with an
eager send. Additionally, receives with maximum receive size less than 40 bytes do not issue RTR messages
since they do not need to advertise DMA related info. Instead, they immediately block for an incoming Env+D
if not already received (if they are blocking). It is also worth reminding that, as with MPI_ANY_SOURCE,
receiver imitation suspension also applies when MPI_ANY_TAG is in use in this variant. In that case, the
receive requests that use MPI_ANY_SOURCE/MPI_ANY_TAG cannot determine which counter to
increment. Additionally, the rest of the requests cannot increment their respective counter either because they
may violate the FIFO order the MPI Standard guarantees. In such scenarios ,receive requests increment their
counters only upon the matching with an RTS or Env+D message when they learn the source rank and tag.
When all requests that used MPI_ANY_TAG/MPI_ANY_SOURCE get cleared, RTR suspension is lifted.

Wait and Test Point-to-Point primitives: Wait, Test and Relative functions return immediately on eager
send requests since they no longer insert any object to any data structure. Regarding all other kinds of

44

requests, these primitives maintain the functionality described in the previous variant.

3.6.3 General Control logic of the Progress Engine Thread
The more signi⇥cant change regarding the progress engine in this variant is the handling of incoming RTR
control messages. When an RTR message arrives, the progress engine locks the control logic lock as before and
tries to match it with a send request in the Posted MPI Request structure. However, instead of relying solely
on the matching attributes and the matched ⌅ag of the requests, the progress engine also checks for their
ticket ID. Only if the ticket ID of the RTR message is equal to the ticketID of a matching send request, a
match takes place.

• If no matching request is found, the progress engine compares the RTR’s ticketID with the value of the
respective send counter of the MPI process. If the ticketID of the RTR is less than or equal to the
value of the counter, then this RTR is an obsolete message which regards an eager send that did not
insert any object into the Posted MPI Requests structure and gets discarded. If the ticketID of the
RTR is larger than the value of the respective send counter, then this RTR was headed for a future
send request not posted yet and a new receive request object gets inserted into the Received MPI
Requests. This new object contains the matching attributes and ticketID conveyed by the RTR
message. Since eager sends increment the send counter without locking (in applications with no use of
MPI_TRHEAD_MULTIPLE), there is a chance of a counter getting incremented after the progress
engine reads its value. Even if something like that happens, the worst outcome possible is that the
progress engine will insert a useless receive request into the Received MPI Requests structure. That
redundant request will not cause any mismatches (due to its ticketID value) and will most likely get
cleared by a future long send.

• If a matching request is found, the progress engine makes the same steps described in previous
variants.

One other interesting case is when MPI_ANY_SOURCE/MPI_ANY_TAG is in use and receiver initiation is
suspended. In that case, posted receive requests cannot increment their respective receive counters and get
assigned ticketIDs. Due to this fact, the progress engine increments the respective receive counter and assigns
ticket IDs to receive requests when they get matched by RTS or Env+D control messages. It is worth noting
that receiver initiation suspension applies only for communicators that have requests with
MPI_ANY_SOURCE active while requests regarding other communicators can still use receiver initiation.
Similarly, MPI_ANY_TAG suspends receiver initiation only for receive requests that denote source ranks also
denoted by other requests that use MPI_ANY_TAG. For instance, if no MPI_ANY_SOURCE is used and a
process posts the following request:

MPI_Irecv(buf, 1000 , MPI_INT, 5, MPI_ANY_TAG, MPI_COMM_WORLD, &request)

allowing any tag to match it from rank 5, all other requests that denote source ranks other than 5 can still
utilize receiver initiation. The suspension applies only for requests that denote rank 5 as source rank.
This last variant of the write-based MPI is the ⇥nal design of our implementation and will be used in
experiments described in the Evaluation Chapter unless otherwise stated.

3.7 Changing type of MPI_Request
As already stated, the MPI_Request type used in MPI is actually a 32bit integer in MPICH. This is clearly
de⇥ned in the mpi.h header ⇥le which exists in all MPI Implementations.

45

Figure 3.30: Original MPI_Request type in
mpi.h

Pointers to MPI_Request objects are passed as arguments to non blocking send and receive primitives as wells
as non blocking collectives. Additionally, wait and test functions use such arguments in order to wait for or test
the completion of a request respectively. Since these primitives may also complete the MPI_Status object of a
non blocking receive request as well as read its noti⇥cation data in order to determine completion, one can
easily understand that an implementation needs to somehow map the MPI_Request to a request object stored
in one of the implementation’s data structure. As explained in previous chapters, in our implementation each
request object contains a MPI_Request * ⇥eld which stores the location in memory of the MPI_Request used
in the non blocking primitive which created it. In that way, by searching our Posted MPI Requests data
structure for the request object that has an MPI_Request * that shows to the address of the MPI_Request the
user supplied as argument we map MPI_Requests to request objects successfully. However, this method
requires acquiring the control logic lock and searching our respective data structure. In order to avoid this
process, we decided to edit the mpi.h header ⇥le of MPICH and change the type of MPI_Request to
uintptr_t, an unsigned integer of size equal to the size of a pointer. As a result, we can set the value of a
MPI_Request object to the location in memory the correct request object resides in our implementation. For
instance, a non blocking receive will insert a receive request into the Posted MPI Requests data structure and
subsequently set the value of MPI_Request to the location of the request it just inserted. When MPI_Wait
takes a pointer to that MPI_Request as argument, it can, just by dereferencing it, learn the location of the
receive request object without acquiring any locks and searching any data structure.

This change renders the implementation of wait and test primitives more trivial and also o�ers a very slight
improvement in performance. The osu_bw microbenchmark of OSU Microbecnhmarks contains exclusively non
blocking send and receive MPI calls. Sizes from 64 to 256 bytes are presented in Table 3.1 since in these sizes
the performance di�erence is more apparent.
This optimization is used in both the second and third variant of the write-based implementation. (described in
Sections 3.3 and 3.6 respectively)

Table 3.1: Comparison of bandwidth with original and modi⇥ed MPI_Request
osu_bw, OSU MicroBenchmarks Vanilla MPICH MPI_Request Modified MPICH MPI_Request

64 bytes 15,61 MB/s 15,71 MB/s

128 bytes 26,83 MB/s 26,92 MB/s

256 bytes 52,65 MB/s 52,73 MB/s

3.8 Handling Communicator manipulation
MPI o�ers users the ability to distribute processes into subgroups called Communicators. A communicator can
be described as a world of MPI Processes that can communicate with each other. Collective functions always
include all processes of a communicator. The default communicator which exists at the start of an MPI
program and includes all the running MPI processes is called MPI_COMM_WORLD. During the execution of
the program, a user can create more communicator consisting of some of the processes of
MPI_COMM_WORLD using communicator manipulation primitives like: MPI_Comm_split,
MPI_Comm_dup, MPI_Comm_create etc.

46

Figure 3.31: Modi⇥ed MPI_Request type in
mpi.h

Our implementation maintains a data structure called Communicators Registry as mentioned in Section
3.2.1. This data structure is actually a hashtable of 1000 buckets. Each bucket contains a list of objects each
one of them describing a communicator. Each communicator object carries as a key the communicator’s ID and
it’s put into the appropriate bucket in accordance to that key. The information contained in a communicator
object residing in the Communicator’s Registry is the following:

• uint16_t comm_id The communicator’s 16bit ID

• uint64_t * node_ids Array of size equal to the size of the communicator. Contains the node ID of

each process participating in the communicator in the respective cell of the array. ie. The node ID of

rank i is the i
th
element of the array.

• uint64_t * protection_ids Array of size equal to the size of the communicator. Contains the

protection ID of each process participating in the communicator in the respective cell of the array.

• uint64_t * mailbox_addresses Array of size equal to the size of the communicator. Contains the

mailbox address of each process participating in the communicator in the respective cell of the array.

• uint64_t * o⇥sets Array of size equal to the size of the communicator. Contains the DMA o�set of

each process participating in the communicator in the respective cell of the array.

• int my_rank The MPI rank of the process in that Communicator (An MPI process doesn’t

necessarily have the same MPI rank in all communicators it is a member of)

• struct counter_queue * mysend_counts Array of size equal to the size of the communicator.

Each element of the array represents a destination rank and contains a queue of counters. The size of

the queue in a speci⇥c point in time is equal to the number of di�erent tags that have been used with

this destination rank up to that time and each counter represents the number of sends the process has

posted in that communicator with the respective destination rank and communication tag. This

structure is necessary for the implementation of the third variant of the write-based MPI described in

section 3.6.

• struct counter_queue * myrecv_counts Array of size equal to the size of the communicator.

Each element of the array represents a source rank and contains a queue of counters. The size of the

queue is equal to the number of di�erent tags that have been used with this source rank and each

counter represents the number of receives the process has posted in that communicator with the

respective source rank and communication tag. This structure is necessary for the implementation of

the third variant of the write-based MPI described in the 3.6 chapter of this thesis.

In our implementation, MPI_Comm_split, MPI_Comm_dup, MPI_Comm_create,
MPI_Comm_create_group and MPI_Cart_Create are supported for creating new communicators. Each
function, after the creation of the new communicator, makes use of the PMPI_Allgather primitive in order
to update the newly created communicator object that gets inserted into the Communicator’s Registry with
information regarding DMA o�sets, node and protection IDs etc. as done in MPI_Init(). (Described in Section
3.2.1)
It’s worth mentioning that in MPICH, the 16 bit communicator ID of a communicator is not normally
accessible to users and remains a hidden component of the internal MPICH implementation. As a result, we

47

had to edit the source code of MPICH in order to get able to access it. More precisely, MPICH contains an
internal C structure called MPID_Comm which represents a communicator. This C structure contains a
⇥eld call context_id which is the 16bit ID of the communicator and is not available to users. MPICH also
includes a function, that maps a MPI_Comm object (i.e., the usual datatype used for communicators and
accessible to users) to the respective hidden MPID_Comm object by assigning a pointer to the MPID_Comm
object’s localtion. The signature of the function is the following

MPID_Comm_get_ptr(MPI_Comm comm, MPID_Comm * comm_ptr);

By creating a new function that takes an MPI_Comm as argument, calls the MPID_Comm_get_ptr and
returns the context_id ⇥eld of the MPID_Comm object we manage to render the ID of a communicator
accessible in our implementation.

We include this function in the comm folder of the MPICH’s source code folder and also include its signature
in the mpi.h header ⇥le. It is reminded that the communicator’s ID is also used in matching between control
messages and requests as it is a basic matching attribute.
Our implementation does not support intercommunicator communication.

3.9 Memory Allocation Optimizations
Each time a send or receive request gets posted in our implementation, there is a high chance that it will need
to insert a new request object in a Posted MPI Request queue. In addition, when the progress engine threads
dequeues control messages from the mailbox that do not match any posted request, it must allocate and insert
new request objects into one of the Received MPI Request queues. These facts make our implementation in
constant need of memory allocation for objects of known size (i.e., the size of a request object). In order to
improve the performance of our implementation, we decided to make use of a memory pool which gets
initialized during the MPI initialization. Precisely, we allocate a big memory block in the heap memory equal to
200.000 request objects (can be con⇥gured) at the program’s startup and each time a new request object is
needed we use fragments of that space instead of calling memory allocation functions like malloc again and
again since they can involve the kernel in occasion and worsen performance signi⇥cantly. When a request object
that was allocated from the memory pool gets cleared, its memory location gets added to a list of pointers for
future reuse. In addition, we use stack allocation (instead of heap) for posted request objects emerging from
blocking primitives like MPI_Send or MPI_Recv since their lifetime is equal to the lifetime of the respective
function’s stack (i.e., blocking primitives clear their request objects before returning).

3.10 Supported MPI Send modes
MPI supports many di�erent send modes each one suited for speci⇥c user purposes. Our Implementation
supports the following MPI send primitives:

� MPI_Send/MPI_Isend The normal sending mode most commonly used. It utilizes the eager

48

Figure 3.32: Added function to support communicator ID exporting

protocol for messages smaller than 40 bytes and the long protocol for larger messages as described in
the previous sections.

� MPI_Rsend/MPI_Irsend (Ready Send). This primitive requires the user’s knowledge that a
matching receive is already posted. It is the user’s responsibility to ensure this condition before using
the primitive. It is implied that this send mode always uses eager mode in some implementations
regardless of the message’s size. However, in our implementation its behavior is identical to that of
MPI_Send/MPI_Isend since the prototype’s packetizer cannot be utilized for messages larger than 40
bytes.

� MPI_Bsend (Bu�ered Send). This primitive returns immediately and the user can use their send
bu�er after the return. However, the message may not yet be delivered. This is achieved with the use
of a preallocated bu�er to which the contents of the send bu�er get copied before the primitive returns.
The user must preallocate such a bu�er with the use of MPI_Bu⇥er_attach. In our
implementation, this primitive is identical to MPI_Send for eager messages or for long messages that
get posted when a matching RTR is already received. However, when a matching RTR does not exist
in the Received MPI Requests data structure, this primitive issues an RTS message to the destination
rank, copies the contents of the send bu�er to the preallocated bu�er and returns so the user is free to
use their send bu�er again immediately. The DMA transfer takes place by the progress engine thread
as soon as a matching RTR or CTS control message gets received.

� MPI_Ssend/MPI_Issend (Synchronous send). This type of send primitives may not return unless
a matching receive has been posted by the receiver. In our implementation, the behavior of
MPI_Ssend is identical to that of MPI_Send for long messages since the receiving of a matching RTR
or CTS control is a su⇤cient indication that a matching receive is indeed posted by the destination
rank. For eager messages, this primitive will acquire the control logic lock and search the Received
MPI Requests for a matching RTR considering the fact that an eager send is allowed to match a long
receive. If a matching RTR exists, the eager message is sent and the function returns immediately. In
case no matching RTR exists, the primitive cannot return immediately after the delivery of the eager
message since there is no way to know whether a matching receive is posted. In such a case, the Ssend
function inserts a new send request into the Posted MPI Requests and issues a slightly di�erent control
message called Env+D_S. This message contains the same information an Env+D message contains
(Envelope with the payload data concatenated) but its type informs the receiver that this message
emerged from a synchronous MPI primitive (i.e., MPI_Ssend/MPI_Issend). Consequently, the receiver
should issue an Ack control message back to the sender in order to render them aware that a matching
receive is posted. This applies only to eager receives or long receives which have not issued RTR
messages yet (e.g., because of MPI_ANY_SOURCE/MPI_ANY_TAG or because they got posted
after the send). Should a receive request has already issued an RTR message for that communication,
no Ack is needed. When the Ack message gets received by the sender and the progress engine thread
matches it against the correct send request, the send primitive returns. As one can see, this type of
send primitive makes it compulsory for eager sends to also acquire the control logic lock, search the
Received MPI Requests and even insert a new object in the Posted MPI Requests even in single
threaded applications in contrast to MPI_Send as pointed out in 3.6 and 3.7.2

3.11 Support for Persistent Point-to-Point MPI Requests
The MPI Standard o�ers support for persistent MPI_Request objects. These persistent requests are extremely
useful in situations where a user may need to call multiple send or receive functions using always the same
arguments (i.e., bu�er. Destination rank, count, datatype etc). In such cases, MPI gives the user the
opportunity to create a persistent MPI_Request that will survive when the communication it represents is over

49

and can thus be reused as it is.
For example, supposing a user needs to call the same MPI_Send function with the exact same arguments
multiple times within a loop as seen in the following example:

int i=0;
while(i++<100){

MPI_Send(buf, count, datatype, dest, tag, comm);

}

With the use of a persistent MPI_Request, the user can activate the same request repeatedly without
innvoking MPI_Isend each time. In the following example the use of persistent request is demonstrated in a
scenario identical as the one of the previous example

MPI_Request request;
MPI_Send_init(buf, count, datatype, dest, tag, comm,, &request);

while(i++<100){
MPI_Start(&request);
MPI_Wait(&request, MPI_STATUS_IGNORE);

}

In the example above, a persistent MPI Request is created with a call to MPI_Send_Init and gets bound
with the arguments the user supplies to the function. Later, the user can initiate the exact same request with
MPI_Start without having to call MPI_Isend and supplying the same arguments again and again. This
capability of persistent requests exists in MPI standard in order to let implementators o�er better performance
when the same arguments are being used. In our implementation we support MPI_Send_Init and
MPI_Recv_Init primitives while persistent requests for the rest of send modes is trivial to implement in the
future. The main performance gain of using persistent requests in our implementation is the fact that a
request object gets allocated only once with MPI_Send_init/MPI_Recv_init and initially is not put in
any data structure. MPI_Start inserts the allocated request object into the Posted MPI Requests queue while
MPI_Wait disconnects it from it. Subsequently, the user can repeat the same transfer with the same
arguments without causing our implementation to allocate a new request object for each new iteration. In
contrast, should the user used multiple calls to MPI_Send, a new request object would get allocated internally
in each loop iteration.

3.12 Support for Probing Primitives
Another feature the MPI library provides to its users is the ability to probe for incoming messages without
posting receive requests. Speci⇥cally, one can use the functions MPI_Probe or MPI_Iprobe in order to
check whether a send, with the matching attributes denoted in the arguments of those functions, has been
posted before actually receiving it. The di�erence between the two probing functions is that the former blocks
until such a send request gets posted while the other returns immediately. The signature of MPI_Probe is

int MPI_Probe(int source, int tag, MPI_Comm comm, MPI_Status *status)

MPI_Iprobe’s signature is almost identical with the only di�erence being that it also requires one more
argument, a pointer to a ⌅ag integer the value of which will indicate whether a posted send was found. As one
notices, the ⇥rst three arguments are the preferred matching attributes of the send request and the last
argument is a pointer to an MPI_Status object. This object is used in order to enable the user ⇥nd out the size

50

of the probed send as well as the source rank and tag in case MPI_ANY_SOURCE/MPI_ANY_TAG were
used as matching attributes.
In our implementation, MPI_Iprobe simply locks the control logic lock and searches the Received MPI
Requests for a matching send request. If a matching request is found, it does not get marked as matched since
that would prevent a future receive from matching it. The value of the ⌅ag integer is set to 1 and the
MPI_Status object gets updated accordingly. In case no matching send received request exists, the ⌅ag’s value
is set to 0. In both cases the function unlocks returns immediately.
MPI_Probe also searches the Received MPI Request once, and if a matching send request exists, it also returns
immediately. On the other hand, if no matching request exists, the function avoids constantly locking,
searching and unlocking. Instead, it inserts a pseudo-receive request in the Posted MPI Requests and waits
until it gets “matched” by an RTS or Env+D control message. Notice that if the progress engine thread ⇥nds a
matching pseudo-receive request while trying to match an RTS or Env+D message, it doesn’t consider it as a
real match. When this happens, the blocking probing function returns having completed the MPI_Status
object correctly.

3.13 Support for Collective Primitives

Besides point-to-point functions, MPI also o�ers communication functions that involve all the MPI processes in
a communicator. These functions are called collective function and they are usually implemented on top of
point-to-point primitives. Some of the common collectives are MPI_Bcast, MPI_Reduce and MPI_Barrier[22].
In Exanet MPI, most blocking collective functions had been implemented (on top of simple point-to-point
functions) before the beginning of this work and have been compiled as a shared library. As a result, one can
support collective functions in our MPI implementation by making use of that shared library in combination
with the library of the write-based MPI. This process, which is described in the Evaluation chapter, causes each
blocking MPI collective encountered in a program to get delegated into our collectives library and subsequently
into the point-to-point primitives of our implementation.

MPI also supports non blocking versions of collective functions like MPI_Ibcast. These functions return
immediately and one can wait for their completion using a wait or test primitive like MPI_Wait. Their
implementation is not trivial since it would require either the use of more simple algorithms than the ones used
in the blocking versions (which would destructive for performance) or either the implementation of part of their
logic into the progress engine. Instead, we chose to implement non blocking collectives as follows; We make use
of an extra thread called a worker thread which contains a list with tasks. When a non blocking collective
function is called by the user thread a new task is getting added into that list and the function returns. The
worker thread dequeues a task and executes the blocking version of the collective the user has invoked. The
user thread returns immediately so the process is transparent to the user who can then wait for completion
using MPI_Wait. When the blocking version of the collective is over, the worker masks the MPI_Request it
regards as completed. In order to avoid the control messages of the worker thread to get mixed with those of
the user threads, the non blocking collective gets executed in a duplicate of the denoted communicator (created
by Mpi_Comm_dup) and not the same communicator provided by the user. Non blocking collectives are not
implemented in the read-based variant.

3.14 Support for an Optimistic version of the write-based variant

 During our research and while experimenting with the di�erent variants of our implementation, we thought

51

of some speculative scenarios that may not fully comply with the MPI Standard but could improve
performance and e⇤ciency. For instance, as we have already noted, the existence of MPI_ANY_SOURCE and
MPI_ANY_TAG seriously limits our ability to use optimized data structures like hashtables for preserving the
Received Send requests. This happens because we should keep all Received send requests in the same queue in
order to guarantee the MPI’s FIFO property for a posted receive that will denote MPI_ANY_SOURCE or
MPI_ANY_TAG as source rank or communication tag respectively. Thus, we see that if these wildcards are
not supported by an implementation, one could hold the implementation’s state in more e⇤cient data
structures. In addition, one could argue that sender initiation is not needed when MPI_ANY_SOURCE or
MPI_ANY_TAG do not exist, since then all MPI communications (except for eager messages) would get
initiated by the receiver. The receiving process would always initiate communication with the use of RTR
messages (for long receives) and would not have to take into account the possibility of sender initiation. Sender
initiation would only have meaning if our DMA engine did support actual (and not emulated) DMA reads. In
that case, the receiver would use the RTS message in order to learn the address of the send bu�er and directly
read from it. Since this is not possible, RTS messages constitute unnecessary overhead in an implementation
that does not support wildcards and MPI_Probe primitives and does not suspend receiver initiation.
Additionally, we speculated that the implementation of a receiver initiated protocol would indeed be easier if
the MPI Standard did not let eager sends match long receives. In such a scenario, no counters and ticket IDs
would be required. As a consequence, MPI_ANY_TAG would not suspend receiver initiation.

Considering the speculations mentioned, we developed an optimistic variant of the writed based Exanet
MPI which has the following attributes:

1. It does not support MPI_ANY_SOURCE

2. It assumes that eager send always match with eager receives only

3. It does not support MPI_Probe, MPI_Iprobe

4. It does not use sender initiation for long sends

5. It does not use counters and ticket IDs since there is no risk of eager sends matching long receives

6. Long receives do not insert anything into the Posted MPI Requests since no RTS get issued to match
them and they also cannot get matched by Env+D messages *because of point 2). They only need to
allocate a noti⇥cation address in order to determine DMA write completion. Thus, they never acquire
the control logic lock.

We evaluate this variant in the Evaluation section with applications that respect the aforementioned
attributes.

52

53

Chapter 4

Evaluation
The evaluation of our implementation took place on the custom prototype described in Section 2.5. In order to
evaluate the write-based implementation of the Exanet MPI, both micro benchmarks and benchmark
applications were used. For each experiment, we implemented our own pro⇥ler in order to obtain the following
information for each problem:

• The percentage of fast receives emerging in an average run of the microbenchmark/application (since
our implementation is expected to present most of its bene⇥t in cases when a receive gets posted before
the matching send)

• The ratio of computation and communication in the execution time of an application
• The MPI primitives the application uses
• The average size of a message transferred during the execution of the application.

Our pro⇥ler’s source code is very similar to that of the third write-based variant described in Section 3.6
enchanted with the appropriate functions and variables used to measure time and keep statistics during each
MPI call. Speci⇥cally, MPI_Wtime() is mainly used in order to measure time spent in communication
routines while some internal counters keep the number of fast receives during an execution. A fast receive gets
counted on the sending side each time a sending primitive ⇥nds an already received matching RTR message in
its Received MPI Requests as soon as the send gets posted.
After pro⇥ling each application’s behavior, we proceeded to the actual evaluation of our implementation against
the read-based variant. In order to build our microbenchmarks and applications we used MPICH 3.2.1 modi⇥ed
in the way described in section 3.9 to allow the communicators’ ID extraction. Additionally, for the third
write-based variant, we performed the modi⇥cation described in section 3.8 regarding the type of
MPI_Request. For building MPICH, -O3 optimization was used in all cases. Our implemented variants are
built, using Ofast optimization, as shared libraries (.so ⇥les in Linux) available for dynamic linking. Regarding
the read-based implementation, we had an already built so ⇥le using the same optimization level. During the
execution of each experiment, we delegate all the point-to-point and supported collective functions into the
Exanet MPI implementation (either write or read-based) by making use of LD_PRELOAD which
dynamically links a provided library and intercepts the aforementioned functions. As a result, each time a
point-to-point or collective function gets encountered in a program, the Exanet MPI implementation of the
function gets executed instead of the vanilla-MPICH one. MPI functions that are not implemented in Exanet
MPI, are normally executed through MPICH.

In general our execution command looks like this:

LD_PRELOAD=/path/to/exanet_mpi.so:/path/to/collectives_wrapper.so mpirun -np <number of processes> -f
<host�le containing all available machiines (nodes)> ./executable

Unfortunately, certain restrictions and bugs in the DMA implementation and API not corrected until the time
of writing, prevented us of from taking advantage of all 512 cores of the prototype. Trying an intra-FPGA
DMA write (i.e., write between two processes both residing in the same FPGA) causes unde⇥ned behavior in
the write-based version so we had to limit our experiments’ execution to one MPI process per FPGA, thus
utilizing only 128 nodes. Each experiment was carried out at least 15 times. After discarding the worst and
best result, we compute the standard deviation present the average results.

54

For the remainder of this chapter and unless otherwise noted, the following holds:
• write_based 1.0 refers to the implementation of the ⇥rst write-based variant described in Section

3.1 without any memory optimizations and without the change of MPI_Request type described in
Section 3.8.

• write_based 2.0 regards the second write-based variant described in 3.3 with the MPI_Request
optimization.

• write_based 3.0 regards the third variant described in 3.6 which also makes use of the memory
optimizations and the change of MPI_Request. May be referred simply as write_based.

• write_based optimistic refers to the optimistic implementation described in 3.15 which assumes
that sends match only with receives that use the same protocol (i.e., eager or long) and that
MPI_ANY_SOURCE, MPI_ANY_TAG and MPI_Probe primitives are not used. Memory and
MPI_Request optimizations are included

Microbenchmarks

In order to compare the performance of the variants described in Sections 3.1, 3.3, 3.6, 3.13 and the
preexisting read-based variant in the point-to-point primitive level we used the OSU Microbenchmarks, version
5.6.2. More speci⇥cally, our experiments included the following microbenchmarks:

� osu_latency - Latency Test
This benchmark resembles a simple ping pong test. The sender rank sends a message to the
receiver rank and waits for a reply from the receiver. After receiving the initial message, the
receiver receives sends back a reply with the same size. Multiple iterations of this process take
place and average one-way latency numbers are obtained. Small message sizes perform 1000 timed
iterations while 100 iterations are performed for large sizes. MPI functions used: MPI_Send and
MPI_Recv

� osu_bw - Bandwidth Test
During bandwidth tests the sender sends out a ⇥xed number of messages to the receiving rank and

then waits for a reply from the receiver. The receiver sends the reply only after receiving all these
messages. This process is repeated for 1000 iterations for large messages and 100 iterations and the
bandwidth is calculated based on the elapsed time and the number of bytes sent by the sender. MPI
functions used: MPI_Isend, MPI_Irecv and MPI_Waitall

Next, in Figure 4.1 we show the results of OSU Latency for eager sizes carried out in two FPGAs of the same
QFDB. The x axis represents the message size evaluated by the microbenchmark while the y axis represents
the reported latency in microseconds. We can notice that in all sizes, write_based 1.0 and write_based 2.0 are
equal and have signi⇥cantly worse latency than the rest of the tested variants. This is attributed to the fact
that those two variants demand an RTR or Ack message issuing even for eager receives as well as the locking
of the control logic lock and data structure manipulation and search needed for eager sends as described in 3.1.
Due to the elimination of the aforementioned sources of latency in combination with memory optimization,
write_based 3.0 manages to slightly outperform even the read-based protocol which has the simplest design for
eager messages. Write_based optimistic has even lower latency since it omits all counter increments and
ticketID assignments for eager sends and receives. It’s worth noting that size 0 shows slightly decreased latency
since it avoids any copy of the send bu�er to the Env+D message in the side of the sender. The same applies
for the receiving process.
In Figures 4.2, 4.3 and 4.4 we see the same test for the rest of the OSU message sizes. In Figure 4.2, we can
notice that in most sizes, except for 128 and 256 bytes, write_based 3.0 and write_based_optimistic

55

outperform the rest of the variants. The read-based variant seems to achieve a slightly better (3%) latency
than write_based 3.0 with sizes of 128 and 256 bytes. This is most likely attributed to the fact that in the
read-based variant, send requests do not need to search Received MPI Requests upon getting posted since
receiver initiation is not possible. On the other hand, the write-based implementation requires sends to lock and
search the Received MPI Requests in order to check for received RTR messages before beginning the
synchronization with the receiver. At this point, we should note that according to our pro⇥ling, the percentage
of fast receives in the OSU Latency microbenchmark is extremely low (~0,1 %) in both ranks which critically
limits the potential bene⇥t of our implementation in this experiment. However, in most the sizes we can clearly
see that the write-based implementation still outperforms the read-based one. For instance, for sizes from 512
to 4096 bytes, the write-based 3.0 protocol has up to 8% improved latency in comparison to the read-based
protocol as well as the write-based 1.0 and write-based 2.0 protocol. The main reason for this di�erence in
performance is the deployment of memory optimizations described in section 3.10 which apply in write-based
3.0. We con⇥rmed this fact by trying disabling these optimizations. As a result, the latency of these variants
became almost even. In addition, even in the absence of fast receives, the read-based protocol uses one more
synchronization message (Ack) which is redundant in the write-based protocol. In intra-QFDB communication
(like the one depicted in the ⇥gures we are describing), the transmission overhead of that control message is not
very apparent. Note that in Figure 4.4, where the biggest sizes are depicted, the read-based implementation
shows a signi⇥cant decrease in performance. We suspect that this performance di�erence is attributed to the
internal mechanism used to detect the completion of a DMA transfer in the receiver’s side. Most likely, the
read-based implementation uses some sleep routine while waiting for long DMA transfers which renders the
receiving process slow in determining the transfer’s end and, subsequently, notifying the sender by issuing the
Ack control message. It’s also worth noting that write_based 2.0 is slightly better than write_based 1.0 in
some sizes (e.g., 512, 1024, 2048 bytes of Figure 4.2 etc) due to the fact the former doesn’t use Env messages in
fast receives. As the message size grows, the di�erence between write_based 1.0 and write_based 2.0 become
less apparent.
We also tried changing the distance of the 2 MPI processes that participate in the run of OSU Latency and
rearrange them in the prototype’s 3D Torus Topology.
 Figure 4.5 shows the latency of small messages as reported by OSU Latency when the two processes reside in
di�erent QFDBs between which there is a distance of three network hops. One can notice that the latency of
all message sizes is in⌅ated. However, the write-based implementation shows more bene⇥t than in the intra-
QFDB scenario. More precisely, in Figure 4.5 we can see that eager messages’ latency is almost doubled in
comparison to the latency of the intra-QFDB case. The write-based implementation has a slight advantage
o�ering less than 5% performance gain in the eager sizes, mainly due to the use of the memory pool. The next
sizes show a bigger interest since we can clearly see that the write-based implementation achieves around 11%
lower latency than the read-based implementation. We remind that in the intra-QFDB case there was hardly
any di�erence between the two implementations while the read-based appeared to perform better in 128 bytes.
In this case, though, the bigger distance between the two processes signi⇥es the value of omitting the Ack
control message of the receiver which we achieve in our implementation regarding non fast receives. Note that
in this inter QFDB experiment, the percentage of fast receives also remains below 0,5% yet we manage to see
considerable performance gain even without them. Figure 4.6 evaluates the larger messages where we see no
considerable di�erence between the intra-QFDB scenario regarding the performance gain of our
implementation. This is expected since, in this work we make optimizations regarding the control path and not
the data path that is the main source of latency in larger messages. We note that write_based 1.0, write_based
2.0 and write_based optimistic show the same increase in performance gain regarding small messages. Eager
messages in write_based 1.0 and write_based 2.0 are an exception because of the additional control messages
required in their eager protocol. As a result, their performance drops considerably in eager sizes. Figures 4.7
and 4.8 depict a scenario where the two processes lie on di�erent QFDBs in a distance of 5 hops. Here, the
results favor the write-based variant even more as in the range of 64-512 bytes it appears having up to 30%
lower latency. In the rest of the sizes, this performance gain gradually gets less observable and the di�erences

56

resemble those seen in the intra-QFDB case.

57

Figure 4.1 OSU Latency: Comparison of all Exanet MPI variants, Eager
Messages

Figure 4.2 OSU Latency: Comparison of all Exanet MPI variants, Short
Messages

Figure 4.3 OSU Latency: Comparison of all Exanet MPI variants, Medium
Messages

58

Figure 4.5: OSU Latency: Comparison of small messages' latency between 2
QFDBs in a 3 hops distance

Figure 4.4 OSU Latency: Comparison of all Exanet MPI variants, Large
Messages

Figures 4.9 and 4.10 illustrate the performance of all the variants of Exanet MPI as reported by the OSU
Bandwidth Microbenchmark running in one QFDB. By default, the microbcnchmark uses a window size of 64
pipelined transfers. By observing Figure 4.9 we can see that in eager sizes (0-32 bytes) write_based 1.0 and
write_based 2.0 signi⇥cantly under-perform in comparison to the rest of the variants (up to 50% lower
bandwidth). This is expected taking into account the worse eager protocol write_based 1.0, write-based 2.0 use
(described in Section 3.1). It’s also notable that write_based 3.0 and write_based optimistic outperform the

59

Figure 4.6: OSU Latency: Comparison of big messages' latency between 2
QFDBs in a 3 hops distance

Figure 4.7: OSU Latency: Comparison of small messages' latency between 2
QFDBs in a 5 hops distance

Figure 4.8: OSU Latency: Comparison of big messages' latency between 2
QFDBs in a 5 hops distance

read-based protocol in eager messages even if the read-based has a simpler eager protocol. For example, in the
size of 32 bytes, the write_based 3.0 variant has 46% higher bandwidth than the read-based variant.
Write_based 3.0 may have an improved eager protocol competent with the read-based variant’s protocol but it
still needs to increment counters and assign ticketIDs which was expected to render it worse than the
read_based protocol in that regard. However, since write_based 3.0 makes use of memory optimizations
described in Section 3.10, it manages to avoid malloc() and free() invocations which is the reason for
outperforming the read-based variant in eager messages. Thus, we see that memory optimization plays a very
crucial role in the implementation’s bandwidth. The same applies for write_based optimistic(i.e., due to
memory optimizations, it manages to outperform the read-based protocol as well). One can notice a sudden
drop of bandwidth for all variants in the size of 64 bytes. This happens because the eager protocol cannot be
applied for messages bigger than 40 bytes so the implementations switch to the long rendezvous protocol which
utilizes the DMA engine. In general, for all subsequent sizes in Figures 4.9 and 4.10 we can observe that the
write_based 3.0 and write_based optimistic outperform the rest of the variants with the exception of 256 bytes
in which the read_based variant performs better. The same pattern has been noticed in the OSU latency
microbenchmark between 2 processes in the same QFDB. Write_based 1.0 and write_based 2.0 have slightly
worse performance than write_based 3.0 due to the lack of memory optimizations, since their long protocols are
almost identical the sole di�erence being that write-based 1.0’s includes the Env message. Like the OSU
Latency microbenchmark, in big sizes (524288-4194304 bytes) the read-based variant has the worst performance
between all variants. This intensi⇥es our assumption that the read-based implementation is problematic in
detecting the end of a big transfer by the receiver and notifying the sender. We also note that OSU Bandwidth
also has about the same percentage of fast receives as OSU Latency (~0,1%). Changing the distance of the two
MPI process in the prototype’s topology did not resulted to any signi⇥cant di�erence, unlike the OSU Latency
test. The bandwidth of all variants got worse but the performance di�erence between the variants remained in
the levels of the intra-QFDB scenario. This fact shows us that the distance between the nodes gives our
implementation only a latency advantage. That latency gets masked out in the presence of pipelined sends.

As we noticed in the 2 previous microbenchmarks, the occurrence of fast receives was extremely rare between 2
MPI processes exchanging messages. In order to be able to evaluate the optimizing potential of the fast receive
case in our implementation, we designed our own microbenchmark which forces a fast receive and subsequently
evaluates the latency of the MPI_Send primitive. Speci⇥cally, our microbenchmark requires two MPI processes,
a sender and a receiver. In each iteration, the receiver posts a non blocking receive (MPI_Irecv) and
immediately after, it invokes MPI_Barrier. The sender starts its execution by calling MPI_Barrier and

60

Figure 4.9: Comparison of all Exanet MPI variants’
bandwidth, small messages

Figure 4.10: Comparison of all Exanet MPI variants’
bandwidth, big messages

subsequently, it invokes an MPI_Send that matches the MPI_Irecv posted by the receiver. Calls to
MPI_Wtime are placed before and after the MPI_Send in order to measure its latency. Since the sender
waited on MPI_Barrier ⇥rst, it is guaranteed that the receiver has issued an RTR message which has been
received by the sender. This applies only in the write-based implementation since the read-based one does not
support receiver initiation. In this way, we force the occurrence of a fast receive. The described process gets
iterated 1000 times per run for any size. Figures 4.11, 4.12 and 4.13 present the results of the benchmark in
di�erent topologies. Write_based 3.0 and the Read-based variant are evaluated in message sizes in the range of
64-8192 bytes. Shorter messages utilize the eager protocol while longer messages show no signi⇥cant di�erence
in fast receives between the implementations due to the big cost of the DMA transfer which masks any
potential bene⇥t.
Figure 4.11 evaluates the write-based and read-based implementations in forced fast receive scenarios inside the
same QFDB. The x axis represents the Message Size while the y axis shows the latency of MPI_Send for the
respective message size. We see that the write-based variant outperforms the read-based variant by 25% in the
64-1024 bytes range. Gradually, the di�erence becomes smaller as the message size grows since the DMA write
cost also gets bigger. At 8192 bytes, the write-based implementation still outperforms the read-based one by
10% while in larger sizes there is no apparent di�erence between a fast and a non fast receive. As already
mentioned through this thesis, the read-based implementation cannot exploit scenarios where the receive gets
posted earlier since receiver initiation is not supported. A similar performance pattern appears in Figures 4.12
and 4.13 which regard inter QFDB communication with 3 and 5 intermediate hops respectively. In both ⇥gures,
read_based shows initially a 50% higher latency than write_based. This di�erence gets less observable faster
than in the previous ⇥gure since in inter QFDB cases the data path of the DMA also gets signi⇥cantly worse
for both implementations. We remind that in a fast receive, the write-based long protocol has 2 control
messages less than the read-based protocol. In the write-based variant, the sender immediately performs a
DMA write after receiving the RTR control message from the receiver. On the other hand, the read-based
implementation performs a full synchronization (issuing of RTS, CTS and ⇥nally Ack) even in the case of an
early posted receive. This experiment shows the potential of receiver initiation as well as the importance and
impact of the percentage of fast receives in a program’s performance.

61

Figure 4.11: Comparison of Read and Write Based MPI in fast
receives, intra QFDB

Figure 4.12: Comparison of Read and Write Based MPI in fast
receives, 3 hops distance

After comparing all developed write-based variants with the read-based MPI variant, we continue evaluating
only the write_based 3.0 and write_based optimistic against the read-based implementation. Our next
experiments include the following OSU Collective Benchmarks:

• osu_allreduce - MPI_Allreduce Latency Test
• osu_barrier - MPI_Barrier Latency Test
• osu_bcast - MPI_Bcast Latency Test
• osu_reduce - MPI_Reduce Latency Test
• osu_scatter - MPI_Scatter Latency Test

Each one of these benchmarks makes multiple iterations of the respective collective function for a speci⇥c
message size and reports the average latency for each size. For sizes up to 8192 bytes 1000 timed iterations are
performed while for bigger sizes the number of timed iterations is 100. Recall that all of the implemented
collective functions are ⇥nally delegated to point-to-point MPI calls. Thus, by evaluating the collective
functions, in reality we evaluate the same primitives evaluated in the previous experiments. However, di�erent
collective algorithms o�er di�erent combinations of message sizes as well as varying fast receives percentage
which can result to di�erent performance patterns. For this reason, we chose the aforementioned collective
functions as indicative among all collective functions that are available.
In Figures 4.14-4.23 the results of OSU_Broadcast are illustrated for a scale of 16, 64 and 128 ranks. For all
the message sizes we use the broadcast binomial tree algorithm, which has a complexity of O(log2N), where N is
the number of processes. As one can notice, in all of the 3 cluster con⇥gurations, the write-based
implementation has a signi⇥cant advantage over the read-based one especially in messages of small size (64-
4096 bytes). For instance, in Figure 4.14 the write-based implementation has a performance gain of 25-30% in
each size in the 64-1024 bytes size range. The same pattern can be noticed in Figures 4.18 and 4.21 for the
same sizes. This result is attributed to the relatively big percentage of fast receives that appear during the
execution which o�ers a serious bene⇥t for our implementation since the synchronization needed by MPI_Send
is minimal in that case. Speci⇥cally, for all 3 numbers of ranks (16, 64, 128) the percentage of fast receives was
about 40% while there were a few ranks that performed no fast receives at all. The performance gain due to
fast receives gets gradually less observable as the message size grows (Figures 4.15, 4.17, 4.19, 4.20, 4.22, 4.23).
Note that even eager messages have better latency in the write-based implementation due to the memory
optimizations applied in the write-based variants. In Figure 4.13 we can see an improvement of 10% in the
latency of eager sizes (0-32 bytes). We should also note the fact that the optimistic version of the write-based

62

Figure 4.13: Comparison of Read and Write Based MPI in fast
receives, 5 hops distance

implementation outperforms write-based 3.0 since it omits counter incrementing and ticket ID assignment. In
addition, it allows an optimization in its data structures since it does not havc to support
MPI_ANY_SOURCE. Moreover, since no sender initiation exists in the long protocol, the receiver doesn’t
need to insert long receive requests to the Posted MPI Requests which eliminates some overhead. These facts
render the optimistic variant of the write-based implementation about 5% more e⇤cient than the standard
write-based MPI in terms of latency. This di�erence can more easily be observed in the 64-512 bytes size range.
Figure 4.16 evaluates the small message sizes using a shu⌅ed host�le. Normally, our host⇥le includes all the
available nodes in an optimal order. For instance, the four ⇥rst nodes are the ⇥rst 4 FPGAs of the ⇥rst QFDB,
the next 4 nodes are the 4 FPGAs of the second QFDB in the 3D Torus and so on. MPI assigns MPI Ranks in
the order it reads the nodes in the host⇥le. This facts makes processes with neighboring MPI Ranks also be
neighbors in the topology of our prototype. However, when the host⇥le gets randomly shu⌃ed, such a
guarantee does not exist. We see that with a shu⌃ed host⇥le we trigger more inter QFDB transfers and thus
the write-based implementation outperforms the read-based variant by up to 50% in the 64-1024 bytes range.
The di�erence between the write and read-based implementation also appears in⌅ated up to the size of 8192
bytes. Note that the shu⌃ing of the host⇥le did not a�ect the percentage of fast receives at all in this
experiment. We observe the exact same pattern when we shu⌃e the host⇥le in runs that use 64 and 128 ranks
as well.

63

Figure 4.15: OSU_Broadcast latency comparison, medium messages with 16 ranks

Figure 4.14: OSU_Broadcast latency comparison, small messages with 16 ranks

64

Figure 4.21: OSU_Broadcast latency comparison , small
messages, 128 ranks

Figure 4.16: OSU_Broadcast latency comparison,
small messages with 16 ranks with shu⌃ed host⇥le

Figure 4.17: OSU_Broadcast latency comparison, big
messages with 16 ranks

Figure 4.18: OSU_Broadcast latency comparison,
small messages with 64 ranks

Figure 4.19: OSU_Broadcast latency comparison,
medium messages with 64 ranks

Figure 4.20: OSU_Broadcast latency comparison, big
messages with 64 ranks

 Figures 4.24, 4.25, 4.26 compare the performance of the write-based and read-based variants of Exanet MPI
using the OSU Reduce Microbenchmark with 16 processes. We notice that in eager sizes the write-based
implementations have a 10% improved latency compared to the read-based variant. We attribute this
performance gain to the memory optimizations described in Section 3.10 since the di�erence ceases to exist if
we do not make use of them. One can also observe that an improvement of 7-10% appears in medium sizes (64-
8192 bytes) mainly due to the presence of a considerable amount of fast receives which favors our
implementation. However, the latency reduction is less than that observed using the OSU Broadcast
microbenchmark. This happens because here the percentage of fast receives is lower (20-25% depending on the
algorithm used) but also due to the fact that MPI_Reduce functions also include the computation emerging
from the speci⇥ed reduce operation (MPI_SUM in the OSU microbenchmarks) as well as the allocation and
deallocation of temporary bu�ers inside the implementation of the primitive. For sizes less than 2048 bytes, a
classic binomial tree reduce algorithm is used while for larger sizes we deploy the Rabenseifner’s Reduce
algorithm also used in MPICH as it is optimal for large messages. Rabenseifner’s algorithm makes signi⇥cant
use of temporary bu�ers allocated and deallocated in each iteration as well as memory copies. Figures 4.25 and
4.26 evaluate the MPI implementations using larger messages and thus forcing the use of the Rabenseifner’s
algorithm. We see that the write-based implementation has a slight advantage o�ering around 6% less latency
in most sizes when Rabenseifner’s algorithm is used. The three last sizes depicted in Figure 4.26 show the read-

65

Figure 4.22: OSU_Broadcast latency comparison, small messages with
128 ranks

Figure 4.23: OSU_Broadcast latency comparison, big messages with 128
ranks

based implementation performing again signi⇥cantly worse in big sizes and having 10% more latency than the
write-based one. Note that the optimistic version of the write-based variant does not show considerable
improvement in comparison to the standard write-based version except for the medium message sizes (64-512
bytes). Similar performance patterns are preserved when we use 64 and 128 ranks for the same microbenchmark
as we see in Figures 4.27, 4.28, 4.29, 4.30, 4.31 and 4.32. However, we observed that the percentage of fast
receives gets reduced slightly with the increase of the number of ranks. Precisely, in the 64 and 128 ranks runs,
the percentage of fast receives usually drops to 19-20% of total receives. However, this does not infer noticeable
reduction in the di�erence between the implementations’ results. We can see in Figures 4.27 and 4.31 that the
write-based variant has again below 10% lower latency for sizes between 64 and 8192 bytes. This bene⇥t
gradually fades as the size grows. In Figures 4.29and 4.32, we see that at the last two large sizes a di�erence
reappears in favor of our implementation. As already mentioned, this di�erence is most likely attributed to
other implementation details in the read-based variant’s code since it cannot be explained with the
optimizations of the control path, which we contribute in this work.

Figure 4.33 shows the evaluation of the write and read-based implementations with OSU Reduce(128 nodes)
using a randomly shu⌃ed host⇥le for the message sizes of 64-8192 bytes. We see that the di�erence between the
variants’ latency gets in⌅ated reaching up to 20% (in the 512 bytes message size). We also report that the
shu⌃ing of the host⇥le slightly reduced further the percentage of fast receives but at the same time forced more
inter QFDB communications. Shu⌃ing the host⇥le for 16 and 64 ranks produces a very similar e�ect.

66

 Figure 4.24: OSU Reduce: latency comparison,
small messages with 16 ranks

Figure 4.26: OSU Reduce: latency comparison, big
messages with 16 ranks

Figure 4.25: OSU Reduce: latency comparison, medium
messages with 16 ranks

Figure 4.27: OSU Reduce: latency comparison, small
messages with 64 ranks

67

Figure 4.28: OSU Reduce: latency comparison,
medium messages with 64 ranks

Figure 4.31: OSU Reduce: latency comparison, medium
messages with 128 ranks

Figure 4.30: OSU Reduce: latency comparison, small
messages with 128 ranks

Figure 4.29: OSU Reduce: latency comparison, big
messages with 64 ranks

Figure 4.32: OSU Reduce: latency comparison, big messages with 128 ranks

Figure 4.34 shows the evaluation of the OSU_Barrier microbenchmark. For the implementation of
MPI_Barrier we use a simple dissemination algorithm which utilizes only eager messages. However, we can see
that a substantial di�erence exists between the write-based and read-based variants. This di�erence is
attributed to the memory optimizations described in Section 3.10. We avoid the use of malloc and free
functions for the allocation and deallocation of received send requests and we use stack allocation (instead of
heap) for posting receive requests into the Posted MPI Requests.

Figures 4.35-4.43 evaluate the Exanet MPI variants using the Osu_Scatter microbenchmark. MPI_Scatter [22]
is implemented using a binomial tree algorithm, similar to Broadcast but with the appropriate data reordering
the primitive requires. In Figure 4.35 we see that the read-based variant has a 20%-36% higher latency than
the write-based variants in sizes 64-1024 bytes. This fact can be explained by the percentage of fast receives the
microbenchmark achieves (~45% of total receives in some ranks). Eager messages present also a noticeable
improvement in the write-based version like in the rest of the microbenchmarks. In Figures 4.38 and 4.41 which
regard the same size range, we notice that the write-based variant still outperforms the read-based one but the
di�erence between them is smaller. In our pro⇥ling we ⇥gured that in the runs using 64 and 128 ranks, some of

68

Figure 4.33: OSU Reduce: latency comparison, small messages with 128
ranks in a shu⌃ed host⇥le

Figure 4.34: OSU Barrier: latency comparison

the ranks had no fast receives at all while the rest of them maintained a decent percentage. In Figures 4.35,
4.38, 4.41 we observe that the three variants have similar latencies with the di�erence of the write-based
variant from the read-based one never surpassing 7% in percentage. In Figures 4.36, 4.39, 4.42 we see that the
read-based implementation performs signi⇥cantly worse in big message sizes without that being explainable by
our optimizations. We should also notice that the optimistic variant of the write-based implementation o�ers a
slight improvement in the latency of MPI_Scatter hardly observable in the ⇥gures. At this point, we should
mention that shu⌃ing the host⇥le, sometimes caused some unde⇥ned behavior in both the read and write-based
implementation which resulted in the constant need for resetting the prototype nodes. An explanation for that
might be some undocumented hardware bug which does not allow DMA transfers between speci⇥c FPGAs that
happen to never occur without a sorted host⇥le. We are con⇥dent that it is not an issue related to our code
since it a�ects the read-based variant as well. This incident is not that frequent but it critically limits our
ability to perform the necessary number of tests to present a reliable result. Consequently, we avoid evaluating
with shu⌃ed host⇥les in the following experiments unless otherwise noted.

69

Figure 4.35: OSU_Scatter latency comparison, small
messages with 16 ranks

Figure 4.36: OSU_Scatter latency comparison,
medium messages with 16 ranks

Figure 4.37: OSU_Scatter latency comparison, medium
messages with 16 ranks

Figure 4.38: OSU_Scatter latency comparison, small
messages with 64 ranks

Figures 4.44-4.52 present the evaluation of the MPI_Allreduce primitive using the osu_allreduce

70

Figure 4.39: OSU_Scatter latency comparison, medium
messages with 64 ranks

Figure 4.40: OSU_Scatter latency comparison, big
messages with 64 ranks

Figure 4.43: OSU_Scatter latency comparison, big messages with
128 ranks

Figure 4.41: OSU_Scatter latency comparison, small
messaes with 128 ranks

Figure 4.42: OSU_Scatter latency comparison,
medium messages with 128 ranks

microbenchmark. Osu_Allreduce o�ers a fair percentage of fast receives (25-30% of total receives) in all 3
cluster con⇥gurations (16, 64, 128 ranks). As we can see in Figures 4.44, 4.47, 4.50, the read-based Exanet MPI
generally achieves an up to 20% higher latency than the write-based variant in small messages (64-8192 bytes)
in any cluster con⇥guration. It is worth noting that even medium message sizes (16384-65536 bytes) show a
signi⇥cant performance improvement in favor of the write-based implementation. This di�erence gets signi⇥ed
especially in the 64 and 128 ranks executions in spite of the fast receive percentage not varying among cluster
con⇥gurations. We explain this fact by noting that MPI_Allreduce forces the communication of any process
with most of others at some point in its execution which triggers inter QFDB and inter-mezzanine transfers
without shu⌃ing the host⇥le. In other words, MPI_Allreduce does not limit the processes to communicate only
with processes that carry nearby MPI_Ranks but also includes communication between distant nodes. This
type of communication bene⇥ts our implementation as shown in the previous paragraphs. For sizes up to 2048
bytes, we use a recursive doubling algorithm while for larger message sizes another version of the Rabenseifner’s
Algorithm is used. In Figures 4.46, 4.49, 4.52, we see that our implementation keeps outperforming the read-
based variant in big messages. We should also mention that the optimistic variant of the write-based MPI
keeps very slightly outperforming write_based 3.0 in most small messages.

71

Figure 4.44: OSU_Allreduce latency comparison, small
messages with 16 ranks

Figure 4.45: OSU_Allreduce latency comparison,
medium messages with 16 ranks

Figure 4.46: OSU_Allreduce latency comparison, big
messages with 16 ranks

Figure 4.47: OSU_Allreduce latency comparison,
small messages with 64 ranks

72

Figure 4.48: OSU_Allreduce latency comparison,
medium messages with 64 ranks

Figure 4.49: OSU_Allreduce latency comparison, big
messages with 64 ranks

Figure 4.52: OSU_Allreduce latency comparison, big messages
with 128 ranks

Figure 4.50: OSU_Allreduce latency comparison,
small messages with 128 ranks

Figure 4.51: OSU_Allreduce latency comparison,
medium messages with 128 ranks

NAS Parallel Benchmarks

For the evaluation of our implementation using real scienti⇥c applications we used, among other benchmarks,
some problems included in the NAS Parallel Benchmarks [26] (NPB) package. NAS Parallel Benchmarks are
benchmarks derived from computational ⌅uid dynamics (CFD) applications. They are developed by the NASA
Advanced Supercomputing Division and are widely used to evaluate the performance of parallel
supercomputers. NPB are not limited to MPI communication but they contain versions of the problems which
use other programming models like OpenMP, serial etc. Out of the MPI problems constituting the NPB-MPI
package, we chose the following benchmarks based on communication primitives used as well as their
computation and communication ratio:

LU (Lower-Upper Gauss-Seidel solver, implemented in Fortran)

MG (Multi-Grid on a sequence of meshes, long- and short-distance communication, memory intensive,
implemented in Fortran)

IS (Integer Sort, random memory access, implemented in C)

SP (Scalar Penta-diagonal solver implemented in Fortran)

Each of the aforementioned problems exists in di�erent sizes called classes. For a speci⇥c problem we choose a
certain class which o�ers the best communication and computation ratio without being too small in duration.
In general, increasing the size of a NAS benchmark makes it more computation intensive while communication
time percentage remains in the same levels among di�erent classes. The available classes for each benchmark
are S-Small, W- 90’s Workstation Size, A, B, C (medium sizes) and D, E, F (large sizes).

Figure 4.53 shows the performance of the LU problem, class A. LU solves a synthetic system of Nonlinear
partial di�erential equations using the mathematical algorithm of Gauss-Seidel and speci⇥cally the successive
over-relaxation (SSOR) variant. The benchmark organizes the processes in a pipeline manner. A processor
makes its computation and subsequently, forwards the result to the next process. The next process starts its
own computation after receiving the result. At the same time, the ⇥rst process has advanced to its second
computation. Such a process is followed by all the participating MPI processes, utilizing non blocking receives
(MPI_Irecv and MPI_Wait) and blocking sends (MPI_Send). Among the available classes we chose class A
since it has a fair percentage of communication time in comparison to the rest of the classes. Class A regards a
64 x 64 x 64 grid and performs 250 iterations. In the ⇥gure, we see the average executions of LU using the write
and read-based implementation with 16, 32, 64 and 128 ranks. The x axis show the total duration in
milliseconds while the y axis the number of ranks used in the respective run. Using 16 ranks, the write-based
variant outperforms the read-based variant by 1,5%. This di�erence may seem small but it regards the total
duration of the problem including both computation and communication. According to our pro⇥ling, the
communication time constitutes 15% of the total experiment’s duration with an average of 1500 bytes sent per
message when run with 16 nodes. Additionally, the percentage of fast receives is about 40% for the ⇥rst 3
numbers of ranks (16, 32, 64) and around 30% for 128 ranks. Using 32 ranks, we see a di�erence of 3,8% in
total duration with communication time constituting the 25% of the execution time. When the benchmark uses
64 or 128 MPI processes, the di�erence between the two variants comes close to 7% while the communication
time percentage becomes 30% and 33% respectively.
Figure 4.54 compares only the communication time of class A of LU between the two implementations. The x
axis shows the number of nodes (and MPI Ranks) while y axis shows the average communication time per rank
in seconds. We notice that the write-based variant has a 10% lower communication latency in the 16 node run
while it achieves about 20% lower latency in the 32 and 64 nodes runs. We attribute this fact to the fact the 16

73

node run is limited to one mezzanine. On the other hand, the next runs include inter mezzanine
communications which bene⇥t more from our implementation as shown in the Microbenchmark experiments. In
the 128 node run, the write-based variant having 15% less latency di�erence most likely due to the reduced
percentage of fast receives. Note that due to the nature of the benchmark, the average communication time per
rank gets reduced as the number of nodes increases over 16 nodes. By shu⌃ing the host⇥le, we managed to
slightly increase the communication di�erence between the variants by 15% in favor of the write-based
implementation. Figure 4.55 shows the average mathematical operations per second for each process. This
metric primarily depends on the node’s hardware’s computing capabilities but communication can also have a
small impact to it. We see that in the write-based variant, we achieve from 1% to 2.5% improvement compared
to the read-based variant.

Figure 4.56 shows the results of the MG Benchmark’s execution. MG uses the Multi-Grid method (V-Cycle)
to approximate a solution to a 3-dimensional cubic domain decomposed into a regular grid. This benchmark
requires point-to-point communication to update every processor’s boundary values for each dimension that is
distributed. As a result, the benchmark makes use of the primitives mpi_send, mpi_irecv while it also utilizes
communication between distant nodes. We chose to evaluate class B since smaller classes have extremely small
duration while bigger ones have worse communication to computation ratio. Class B regards a grid of size 256 x
256 x 256 and performs 20 iterations. In the ⇥gure, we see that the write_based implementation achieves a
lower duration by 1% (16 nodes run), 4% (32 nodes run) and 3% (64 nodes run). The run that uses 128 ranks
shows no di�erence between the two implementations, which indicates that the benchmark cannot be scaled
more communication-wise. Our pro⇥ling indicates that the communication time constitutes 5% of the total

74

Figure 4.53: Total duration comparison, LU NAS
Benchmark

Figure 4.54: Communication time comparison, LU
NAS Benchmark

Figure 4.55: Mops/s comparison, LU NAS Benchmark

execution time in the 16 nodes run while in 32, 64 and 128 nodes runs it equals 8%, 9% and 2% of execution
time respectively. We see that the small di�erences in the total execution time are not representative of the
performance di�erence between the MPI implementations since the di�erence of the two implementations in
communication time are signi⇥cant as seen in Figure 4.57. The write-based variant has 29%, 33% and 36%
lower communication duration than the read-based variant in runs with 16, 32 and 64 nodes respectively. This
fact can be explained by the average percentage of fast receives that is around 35%. In addition, the benchmark
performs many inter QFDB transfers. As a consequence, shu⌃ing the host⇥le infers no actual di�erence to
execution times of this benchmark with any number of MPI processes. As already seen, inter QFDB transfers
have better performance in the write-based implementation. Also, as the number of ranks increases, the average
message size that gets sent in the benchmark gets smaller, thus making our advantage in inter QFDB transfers
more apparent. In Figure 4.58 we see that the di�erence in Mops/s doesn’t exceed 2,3% (64 nodes run).

75

Figure 4.58: Mop/s comparison, MG NAS Benchmark

Figure 4.56: Total duration comparison, MG NAS Benchmark

16

32

64

128

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5

MG

Class B

read_based

write_based

Total Duration (s)

N
u
m

b
e
r

o
f
n
o
d
e
s

Figure 4.57: Communication time comparison, MG NAS
Benchmark

Next, Figure 4.59 shows the evaluation of the two variant’s performance using the class C of IS Benchmark.
IS performs bucket sorts in many keys using random memory access. During its execution, it utilizes all to all
communication and MPI_Allreduce calls in order to get the bucket size totals to determine the redistribution
of the keys. Class C sorts 225 keys with a max value of 221 and performs 20 iterations. This benchmark has a
considerable amount of communication time. Speci⇥cally, in a run with 16 nodes the computation time
constitutes the 24% of total execution time while in the runs with 32 nodes the percentage increases to 41%. In
runs with 64 and 128 nodes the communication to computation ratio reaches 50%. However, the benchmark
uses very large messages (from 60.000 to 800.000 bytes on average depending on the number of ranks). The
percentage of fast receives does not surpass 25% in any of the runs. We see that when 16 ranks are used, the
write-based variant has a 5% better execution time than the read-based variant. In the rest of the experiments
the write-based implementation outperforms the read-based on by almost 10%. These results are expected by
taking into account the results of the OSU_Allreduce microbenchmark presented earlier since they indicate a
performance gain of about 20% for our implementation. Figure 4.60 shows the di�erence in communication
time. We see that the write-based variant has a 15-20% lower communication latency in all runs. We note that
we did not see signi⇥cant improvement in the Mops/s between the two variants in any run. In addition,
shu⌃ing the host⇥le did not infer any change in the di�erence between the two implementations since the
benchmark uses all to all communication forcing all the processes to communicate with each and every other
process at some point. This means that a process will communicate with all other ranks and not just the ones
with a nearby MPI_Rank.

Figure 4.61 depicts the evaluation of the SP Benchmark, class A. SP solves a synthetic system of non linear
partial di�erential equations, like LU. However, SP uses a scalar pentadiagonal solver instead of successive
over-relaxation (SSOR). The benchmark makes use of MPI_Send, MPI_Irecv and wait primitives in order to
inform neighbors about the results of their computations during the computation of the problem. During our
pro⇥ling we saw that in this benchmark has a high percentage of fast receives using 25 ranks. More precisely,
fast receives constitute about 75% of total receives when run with 25 ranks. That percentage touches 22% and
18% for the 64 and 121 ranks runs respectively. Note that the benchmark requires the number of ranks to be a
number with an integer square root. In the ⇥gure we see that the read-based variant achieves about 1,5% more
total execution time than the write-based variant in all runs. We should note that these results regard total
execution time and not communication time. SP is a computation intensive benchmark. Using 25 ranks, the
communication time is the 6% of the total execution time while this percentage rises to 10% when we use 64
and 121 ranks. Figure 4.62 shows the performance di�erence regarding only communication time. As we can
notice, the case with more fast receives o�ers more signi⇥cant performance di�erences. We should also note
that in the 25 ranks run, the average size of a sent message was about 7000 bytes. With smaller messages an
even better result could have been achieved.

76

Figure 4.59: Total duration comparison, IS NAS
Benchmark

Figure 4.60: Communication time comparison, IS NAS
Benchmark

HPCG

HPCG [27] (High Performance Conjugate Gradients) is another scienti⇥c application we used in order to
evaluate our implementation. This benchmark uses a preconditioned conjugate gradient (PCG) algorithm to
measure the performance of HPC platforms. Its implementation uses a regular 27-point stencil discretization in
3 dimensions of an elliptic partial di�erential equation (PDE) with zero Dirichlet boundary condition. The 3D
domain is mapped onto a 3D virtual grid of MPI processes. The main communication pattern of the benchmark
is the Halo Exchange that happens between the processes constituting the 3D grid. For that exchange, the
primitives MPI_Irecv, MPI_Send and MPI_Wait are used. In addition, the benchmark uses MPI_Allreduce in
order to obtain maximum global residuals, or the sums of the numbers of non zero values of each process
through the execution. The communication time percentage of the benchmark does not surpass 3% in sizes
bigger than proof of concept which results in a very little small between the two MPI implementations
regarding execution time. However, we measure speci⇥cally the average Halo Exchange time inside the
application. In addition, the benchmark reports the MPI_Allreduce latency in its output as well as GFLOP/s.

In Figure 4.63 we see the GFLOP/s results of the HPCG benchmark using a problem of medium size
64x64x64 running for approximately 200 seconds. In our pro⇥ling we see that with this problem size, the fast
receives make up over 65% of total receives for any cluster con⇥guration. As we can see in the ⇥gure, the
di�erence is existent but never over 3% of GFLOP/s in favor of our implementation. We remind that
GFLOP/s is a metric which primarily regards CPU capacity but can also up to some degree get a�ected by the
communication between the processes. In Figure 4.64 we can see the evaluation of the two MPI variants by
using the average latency of the Halo Exchange stage for each implementation. We see that the write-based
variant has a clear advantage in all runs outperforming the read-based one by up to 46% of the Halo exchange.
The combination of a high fast receive percentage in combination with the existence of inter QFDB transfers is
su⇤cient explanation for this result. Lastly, Figure 4.65 shows the comparison of average Allreduce latency
reported by the benchmark. We can see the write-based variant outperforms the read-based implementation by
12-20%, which is equal to the performance improvement the osu_allreduce microbenchmark. The same pattern
can be observed in di�erent problem sizes of HPCG with the main di�erence that the communication time
becomes an even smaller part of the execution time as the problem size increases.

77

Figure 4.62: Communication time comparison,
NAS SP Benchmark

Figure 4.61: Total duration comparison, NAS SP
Benchmark

MPI Graph

MPI Graph [29] is an MPI benchmark designed to measure message bandwidth and inspect the scalability of
HPC systems while exposing them to heavy load. The benchmark arranges all MPI processes in a logical ring
and performs as many steps as the number of processes minus one. In each step, each MPI process transfers
data to the process D units to the right and receives data from the process D units to the left. The value of D
starts at 1 and increments at each step. By the end of the process, each MPI process has communicated with
any other process except for itself. At the end of the run, the benchmark reports both the send and receive
average bandwidths. In each step, the application uses MPI_Isend and MPI_Irecv primitives for the transfer of
data while subsequently it waits for their completion using successive calls to 2 di�erent MPI_Testall
primitives, one for MPI_Irecv and another for MPI_Isend requests. The main peculiarity in MPI Graph’s code
is the fact that all of its MPI_Irecv calls make use of MPI_ANY_TAG. As mentioned in Section 3.6.
write_based 3.0 suspends receiver initiation in the presence of MPI_ANY_TAG besides
MPI_ANY_SOURCE. As a result, we choose to show the comparison of the read-based MPI with the
optimistic variant of the write-based MPI. The performance of write-based 3.0 is practically identical to that of
the write-based variant’s. Since the application does not use MPI_ANY_SOURCE and all the receive requests
have the exact same size with matching send requests, the use of write_based_optimistic is permitted.
Additionally, our pro⇥ling shows that MPI Graph has an unusually high percentage of fast receives (~99%).
In Figures 4.66, 4.67, we see the results of MPI Graph for the send bandwidth. We can see that while the
receive bandwidth is almost the same with both implementations, the send bandwidth shows an improvement

78

Figure 4.63: GFLOP/s comparison, HPCG Benchmark Figure 4.64: Halo Exchange average latency
comparison, HPCG Benchmark

Figure 4.65: All Reduce average latency comparison, HPCG
Benchmark

with the write-based MPI of the class of 10%. We attribute this di�erence to the fact that almost all the
receives of the application are fast receives which improves the performance of the matching send. We also note
that since MPI Graph does not use eager messages (with the default con⇥guration) one could also use the
second variant of Exanet MPI combined the memory optimization and achieve the same result as
write_based_optimistic.

LAMMPS

Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [28] is a molecular dynamics program
from Sandia National Laboratories, which makes use of MPI. Among the problems contained in the LAMMPS
suite, we evaluate our implementation using eam (metallic solid, Cu EAM potential with 4.95 Angstrom cuto�)
and Chute (granular chute ⌅ow, frictional history potential with 1.1 sigma cuto�). Both problems make use of
neighbor lists to keep track of nearby particles as well as spatial decomposition to partition the simulation
domain into small 3d sub-domains. As a consequence, they make use of both blocking and non-blocking point-
to-point primitives and MPI_Bcast and MPI_Allreduce collective functions. For both problems we used the
default input ⇥les provided which set the number of atoms to 32,000. LAMMPS report throughput in the form
of Timesteps/s at the end of the execution. In Figures 4.69 and 4.70 we see the runs of the two problems using
both implementations. The performance pattern of the two problems is almost identical. One can see that the
write-based implementation achieves a slightly better throughput in all cluster con⇥gurations. The di�erence
becomes more evident in the 128 nodes run in which the write-based implementation achieves 2-3% higher
throughput than the read-based variant. At this point we should mention that throughput measured by
LAMMPS is also highly dependent on hardware characteristics and not solely on MPI communication. Should
we be able to use all the cores available in the future, we may manage to produce di�erent executions that will
underline the advantage of our implementation more.

79

Figure 4.66: Comparison of MPI Graph send
bandwidth

Figure 4.67: Comparison of MPI Graph receive
bandwidth

In conclusion, we can safely argue that the write-based version of Exanet MPI o�ers signi⇥cant
improvement in comparison with the read-based variant in most cased. However, one must be able to
determine the best variant of the write-based implementation for each application. For this reason, a pro⇥ling
of the application’s source code is needed before the choice of the most suitable variant in order to achieve the
biggest possible bene⇥t. As we saw in this evaluation process, in general, write_based 3.0 is the most suitable
variant in cases where an application does not make extensive use of MPI_ANY_TAG or contains a very high
number of eager requests. On the other hand, when MPI_ANY_TAG is extensively used, one might prefer to
make use of write_based 2.0 (enchanted with the memory optimizations of Section 3.10) which does not
suspend receiver initiation in such cases. However, it should be taken into account that the existence of many
eager sends in an application may overwhelm the bene⇥t of avoiding the suspension of receiver initiation in the
presence of MPI_ANY_TAG. Ultimately, when an MPI program ensures that matches between eager sends
and long receives never happen as well as that no MPI_ANY_SOURCE is used then the
write_based_optimistic is the optimal choice for a user.

80

Figure 4.69: LAMMPS eam Problem,Throughput Evaluation

Figure 4.70: Figure 4.70: LAAMPS Chute Problem, Throuhput Evaluation

Chapter 5

Related Work
 Design of MPI communication protocols is a topic of research that dates back to the very early days of
Message Passing. In this chapter, we attempt to present an indicative list of related work which mainly regards,
but is not limited to, the support of receiver initiation in long rendezvous protocols in scienti⇥c literature. Since
sender initiation was used in the ⇥rst forms of long protocols and is generally present in any implementation,
we will try to focus on works that are not limited to it.

Works [1] and [2] constitute two of the earliest works introducing receiver initiated rendezvous protocols as
means of transferring data. The former was published in 1998 and had as its main goal to address the overhead
incurred by the use of sender initiated protocols. At the time of that paper’s writing, sender initiation was the
only form of long protocols deployed, In addition, sender’s control messages induced interrupts on the receiver’s
side which further worsened performance. The authors o�er a simple receiver initiated long protocol as a
solution, which lets the receiver notify the sender about its intention to receive a message while also allowing
the send-receive matching to take place at the sender’s side. It’s worth noting that they also underline the
inability of the receiver to initiate the communication in the case of MPI_ANY_SOURCE while they do not
examine the possible coexistence of an eager and long protocol. The latter work propose a new whole
communication architecture called FCI which also contains a subset of MPI routines in its API. The new
architecture suggested focuses on the use of specialized hardware and software primitives that o�er zero copy
transfers, user space communications as well as some native implementations of various MPI functions
(barriers, reduce, non blocking send/receive functions) integrated in FCI’s internals. An interesting part of the
work is their support for a communication protocol that does not allow unexpected send requests (ie. sends
posted before the matching receive) but require senders to write data immediately to the receiver’s memory
address space without previous synchronization. Receivers build tables of requests in a global address space
visible by the senders, which in turn use those tables to learn the destination memory address of a transfer.
 Authors in [30] introduces the combination of an eager and a long protocol. However, the long protocol,
unlike our implementation, supports only sender initiation in order to avoid the complication the receiver
initiation induces to an eager protocol. The long protocol also depends on a DMA write followed by a
noti⇥cation signaling the end of the transfer. [9], [11], [12] make an attempt to improve the latency of the
rendezvous protocol by using receiver initiation but they do not o�er any optimizations for short messages (eg.
an eager protocol). [11] comments on the thread safety of MPI routines as well as on ways to optimize the
progress engine thread by polling on di�erent locations concurrently. [6] additionally discusses the case of
concurrent issuing of RTS and RTR messages by the sender and the receiver respectively. In order to face that
case, the require the sending of Acknowledgment messages each time an RTR or RTS gets received by a
process. [7] is a very interesting work that proposes an eager protocol very similar to ours that can be combined
with a receiver initiated long protocol. They utilize counters in a similar way we do in our implementation but
still require eager sends to insert objects in the Posted Requests and queue and acquire locks in all cases, unlike
Exanet MPI. They also state some circumstances in which the FIN control message (equivalent of Env in our
work) may be omitted. However, they render such an elimination possible only in cases where the message’s
size is equal to the size denoted by the receiver while in our implementation the Env gets omitted in all single
threaded programs. Thread safety is not mentioned at all in that work.
 Works like [3] and [13] are some relatively recent attempts to increase the communication and computation
overlap when non blocking functions are used. They examine optimizations regarding the progress engine
thread as well as lock contention prevention. In addition, they propose methods to reduce the number of
context switches between threads. In our implementation, we did not focus as much in optimizing contention
between the main user thread and the progress engine as we were not allowed to run more than one MPI

81

process in one FPGA which means that there was no scenario in which the cores would be oversubscribed.
Additionally, none of the benchmarks we used uses multiple MPI threads. However, we took into account the
e�ect of multiple MPI threads in theory and redesigned our protocol as described in Chapter 3. [13] also
proposes some new communication protocols that derive from the combination of already existing protocols.
For instance, in some cases they suggest a sender initiated protocol in which the sender writes half of the data
while concurrently the receiver reads the other half, thus combining both read-based and write-based protocols.
 We should also mention [14] and [15] which do not contribute in the development of new protocols but they
o�er insight of other aspects of MPI development like the implementation of non blocking collective functions
and the optimization of internal data structures respectively. [14] suggests the method we also used to
implement non blocking versions of collective functions among others.
 These works do not constitute an exhaustive list of related work but are rather indicative and selected by us
as some of the most in⌅uential in their respective topics.

82

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this work we designed, implemented and further optimized a write-based version of the Exanet MPI.
Speci⇥cally, we initially studied the drawbacks and weaknesses of the read-based protocol used in the
preexisting Exanet MPI implementation and came up with a write-based protocol design which additionally
supports receiver initiation. In order to ⇥nd out if our protocol is competent with the read-based protocol, we
implemented from scratch a new Exanet MPI implementation and evaluated it using the already optimized
read-based implementation as a baseline implementation. Subsequently, we deployed improved versions of our
protocol, each one o�ering a di�erent optimization or countering complications raised from the support of
receiver initiation. We managed to develop in total 4 write-based Exanet MPI variants, break down the
performance gain achieved by each one of them and ⇥nally ⇥nd the sweet spot regarding the trade o� between
cost and bene⇥ts of each optimization. We proposed our methods for improving the fast path of a fast receive
and for making our eager protocol competent with the read-based protocol even when receiver initiation is
supported. Moreover, we showed that MPI_ANY_SOURCE and MPI_ANY_TAG have indeed a negative
impact on receiver initiated protocols. This fact gets signi⇥ed by the slightly improved performance the
optimistic variant of our implementation achieves. Our evaluation showed that in general, the write-based
implementation can achieve up to 50% latency improvement compared with the read-based variant of Exanet
MPI as well as take signi⇥cant advantage of the early receive case. In addition, a write-based implementation is
bene⇥ted from the long distance that can exist between nodes as it infers shorter control paths in all cases. As a
consequence, the total execution time of certain scienti⇥c applications using the write-based MPI can be
reduced by up to 10% of the duration achieved with the Read-based variant.

6.2 Future work

First and foremost, we plan to evaluate our implementation using all cores available to the HPC prototype
(described in Section 2.5). Currently, as already mentioned, intra-FPGA DMA writes are not supported using
the PL-DMA API. However, they are supported in the read-based implementation which makes use of the R5
microprocessor to perform the emulated reads. This signi⇥cantly weakens our capability to increase the
communication potential of applications by using more MPI processes per execution. Additionally, we intend to
further investigate the factors that cause the percentage of fast receives in an application to change and
manage to ⇥nd ways to in⌅ame that value when possible. Another important part of future work is the full
support for MPI derived datatypes in receiver initiation scenarios. We plan to render a sending process able of
allocating memory bu�ers remotely on the receiver’s side which will help in the allocation of temporary receive
bu�ers for the receiving of packed data when necessary. Moreover, we are also interested in developing our own
MPI primitive which will support DMA transfers without the need for a rendezvous protocol. This is possible
since in the third variant of our implementation each send and receive request gets assigned a ticket ID
(provided MPI_ANY_SOURCE and MPI_ANY_TAG are not used). This can make a send request able to
determine a pre-agreed receive bu�er and noti⇥cation address for a matching receive request without the need
of receiving RTR and CTS messages. The bu�ers’ address would emerge from the receive request’s ticket ID,
its MPI rank, communicator and tag combination. Lastly, the process of ⇥guring which variant of our
implementation is the most suitable choice for an application is quite manual. It would be helpful if there was
some automated way of picking the best variant without human intervention in the future.

83

.

84

Bibliography

[1] Osamu Tatebe , Yuetsu Kodama , Satoshi Sekiguchi , Yoshinori Yamaguchi. Highly e⇤cient
implementation of MPI point-to-point communication using remote memory operations. In Proceedings of the
1998 International Conference on Supercomputing (ICS98)

[2] Stephan Brauss, Martin Frey,Martin Heimlicher,Andreas Huber, Martin Lienhard, Patrick Müller, Martin
Näf,Josef Nemecek,Roland Paul,Anton Gunzinger. Highly e⇤cient implementation of MPI point-to-point
communication using remote memory operations. In SC '99: Proceedings of the 1999 ACM/IEEE conference on
Supercomputing

[3] Amit Ruhela Hari, Subramoni Sourav Chakraborty, Mohammadreza Bayatpour, Pouya Kousha ,
Dhabaleswar K. Panda. E⇤cient Asynchronous Communication Progress for MPI without Dedicated
Resources. In EuroMPI'18: Proceedings of the 25th European MPI Users' Group Meeting, Pages 1-11

[4] T. S. Woodall, R. L. Graham, R. H. Castain, D. J. Daniel, M. W. Sukalski, G. E. Fagg, E. Gabriel, G.
Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres, V. Sahay, P. Kambadur, B. Barrett & A. Lumsdaine .
TEG: A High-Performance, Scalable, Multi-network Point-to-Point Communications Methodology. In
EuroPVM/MPI 2004: Recent Advances in Parallel Virtual Machine and Message Passing Interface pp 303–310

[5] Anthony Danalis, Aaron Brown, Lori L. Pollock, Martin Swany, and John Cavazos. Gravel: A
communication library to fast path mpi. Pages 111–119, 09 2008.

[6] Mohammad J. Rashti; Ahmad Afsahi. Improving Communication Progress and Overlap in MPI Rendezvous
Protocol over RDMA-enabled Interconnects In 2008 22nd International Symposium on High Performance
Computing Systems and Application

[7] Matthew Small, Xin Yuan. Maximizing MPI point-to-point communication performance on RDMA-enabled
clusters with customized protocols. In ICS '09: Proceedings of the 23rd international conference on
SupercomputingJune 2009 Pages 306–315

[8] Jiuxing Liu, Jiesheng Wu, Sushmitha P. Kini, Pete Wycko�, Dhabaleswar K. Panda. High Performance
RDMA-Based MPI Implementation over In⇥niBand. In International Journal of Parallel ProgrammingVolume
32Issue 3June 2004 pp 167–198

[9] Scott Pakin, Receiver-initiated Message Passing over RDMA Networks In 2008 IEEE International
Symposium on Parallel and Distributed Processing

[10] Samuel K. Gutierrez, Nathan T. Hjelm; Manjunath Gorentla Venkata; Richard L. Graham, Performance
Evaluation of Open MPI on Cray XE/XK Systems. In 2012 IEEE 20th Annual Symposium on High-
Performance Interconnects

[11] Sayantan Sur, Hyun-Wook Jin, Lei Chai, Dhabaleswar K. Panda
.RDMA Read Based Rendezvous Protocol for MPI over In⇥niBand: Design Alternatives and Bene⇥ts. In
PPoPP '06: Proceedings of the eleventh ACM SIGPLAN symposium on Principles and practice of parallel
programmingMarch 2006 Pages 32–39

85

[12] Mohammad J. Rashti; Ahmad Afsahi. Assessing the Ability of Computation/Communication Overlap and
Communication Progress in Modern Interconnects. In 15th Annual IEEE Symposium on High-Performance
Interconnects (HOTI 2007)

[13] S. Chakraborty; M. Bayatpour; J. Hashmi; H. Subramoni; D. K. Panda. Cooperative Rendezvous Protocols
for Improved Performance and Overlap. In SC18: International Conference for High Performance Computing,
Networking, Storage and Analysis

[14] Torsten Hoe⌅er, Andrew Lumsdaine, Wolfgang Rehm. Implementation and performance analysis of non-
blocking collective operations for MPI. In Proceedings of the ACM/IEEE Conference on High Performance
Networking and Computing, SC 2007

[15] Judicael A. Zounmevo; Ahmad Afsahi An E⇤cient MPI Message Queue Mechanism for Large-scale Jobs.
In 2012 IEEE 18th International Conference on Parallel and Distributed Systems

[16] Manolis Ploumidis, Nikolaos D. Kallimanis, Marios Asiminakis, Nikos Chrysos,
Pantelis Xirouchakis, Michalis Gianoudis, Leandros Tzanakis, Nikolaos Dimou,
Antonis Psistakis, Panagiotis Peristerakis, Giorgos Kalokairinos, Vassilis
Papaefstathiou, and Manolis Katevenis. Software and Hardware Co-design for Low-Power HPC Platforms. In
5th International Workshop on Communication Architectures for HPC, Big Data, Deep Learning and Clouds
at Extreme Scale

[17] M. Katevenis, N. Chrysos, M. Marazakis, I. Mavroidis, F. Chaix, N. Kallimanis, J. Navaridas, J. Goodacre,
P. Vicini, A. Biagioni, P. S. Paolucci, A. Lonardo, E. Pastorelli, F. Lo Cicero, R. Ammendola, P. Hopton
,P. Coates, G. Ta�oni, S. Cozzini, M. Kersten, Y. Zhang, J. Sahuquillo, S. Lechago, C. Pinto, B. Lietzow, D.
Everett, G. Perna. The ExaNeSt Project: Interconnects, Storage, and Packaging for Exascale Systems. In 2016
Euromicro Conference on Digital System Design (DSD)

[18] ExaNeST https://exanest.eu/

[19] MPI Forum https://www.mpi-forum.org

[20] MPICH High-Performance Portable MPI https://www.mpich.org/

[21] Open MPI: Open Source High Performance Computing https://www.open-mpi.org/

[22] Web Pages for all MPI Routines https://www.mpich.org/static/docs/v3.2/www3/index.htm

[23] CARV Laboratory, FORTH https://www.ics.forth.gr/carv/

[24] INFN https://home.infn.it/en/

[25] OSU Microbenchmarks https://mvapich.cse.ohio-state.edu/benchmarks/

[26] NAS Parallel Benchmarks - NASA Advanced Supercomputing Division
https://www.nas.nasa.gov/software/npb.html

[27] HPCG https://www.hpcg-benchmark.org/

[28] LAMMPS https://www.lammps.org/\

86

[29] MPI Graph https://github.com/LLNL/mpiGraph

[30] Jiuxing Liu., Jiesheng Wu, Dhabaleswar K. Panda. High Performance RDMA-Based MPI Implementation
over In⇥niBand In ICS 2003

[31] ARM Cortex A53 https://developer.arm.com/Processors/Cortex-A53

[32] ARM Cortex R5 https://developer.arm.com/Processors/Cortex-R5

87

88

	ed1b99bd3504c0add4dcde0a18b846799bee866d52aa271b611110e934070aaf.pdf
	fd21564d57b554d1c6e32e9da450d5b4e38677c6cd48afafbd6d17305b526dd2.pdf
	ed1b99bd3504c0add4dcde0a18b846799bee866d52aa271b611110e934070aaf.pdf

