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Data-driven symbolic representations for high-level
time series analysis

Abstract

The systematic collection of data has become an intrinsic process of all aspects
in modern life. From industrial to healthcare machines and wearable sensors, an
unprecedented amount of data is becoming available for mining and information
retrieval. The ever-increasing volume and complexity of time series data necessitate
efficient dimensionality reduction for facilitating data mining tasks. Symbolic rep-
resentations, especially the family of symbolic aggregate approximations (SAX),
have proven very effective in compacting the information content of time series
while exploiting the wealth of search algorithms used in bioinformatics and text
mining communities. However, typical SAX-based techniques rely on a Gaussian
assumption for the underlying data statistics, which often deteriorates their perfor-
mance in practical scenarios. To overcome this limitation, this thesis introduces a
method that negates any assumption on the probability distribution of time series,
by means of kernel density estimation (KDE) and Lloyd-Max quantization. Ex-
perimental evaluation on real-world datasets demonstrates the superiority of the
proposed method, when compared against the conventional SAX and an alterna-
tive data-adaptive SAX-based method. Finally, in the present thesis, the proposed
dimensionality reduction method is utilized to provide compact representations of
time series for the purposes of anomaly detection. To this end, a computationally
efficient, yet highly accurate, framework for anomaly detection of streaming data
in lower-dimensional spaces is developed, whereas alternative quantization schemes
are explored and utilized for more accurate statistical inference.





Συμβολικές αναπαραστάσεις βάσει δεδομένων για

ανάλυση χρονοσειρών σε υψηλό επίπεδο

Περίληψη

Η συστηματική συλλογή δεδομένων είναι πλέον μια εγγενής διαδικασία όλων των

πτυχών της σύγχρονης ζωής. Από βιομηχανικά μηχανήματα έως μηχανήματα υγειο-

νομικής περίθαλψης και φορητούς αισθητήρες, μια άνευ προηγουμένου ποσότητα δε-

δομένων διατίθεται για εξόρυξη και ανάκτηση πληροφοριών. Ο συνεχώς αυξανόμενος

όγκος και η πολυπλοκότητα των δεδομένων χρονοσειρών απαιτούν αποτελεσματική

μείωση των διαστάσεων των δεδομένων για τη διευκόλυνση των εργασιών εξόρυξης

δεδομένων. Οι συμβολικές αναπαραστάσεις, ειδικότερα η οικογένεια των συμβολι-

κών συναθροιστικών προσεγγίσεων (SAX), έχουν αποδειχθεί πολύ αποτελεσματικές
για τη συμπίεση της πληροφορίας που περιέχεται στις χρονοσειρές, ενώ εκμεταλλεύο-

νται τον πλούτο των αλγορίθμων αναζήτησης που χρησιμοποιούνται στις κοινότητες

της βιοπληροφορικής και της εξόρυξης κειμένου. Ωστόσο, οι τυπικές τεχνικές που

βασίζονται στην SAX υποθέτουν ότι τα υποκείμενα στατιστικά χαρακτηριστικά των
δεδομένων είναι Γκαουσιανά, με αποτέλεσμα συχνά να επιδεινώνεται η απόδοσή τους

σε πρακτικές εφαρμογές. Για να ξεπεραστεί αυτός ο περιορισμός, η διατριβή αυτή

παρουσιάζει μια μέθοδο που αναιρεί οποιαδήποτε υπόθεση σχετικά με την κατανομή

πιθανότητας των χρονοσειρών, μέσω εκτίμησης πυκνότητας με πυρήνα (KDE) και
Lloyd-Max κβάντισης. Η πειραματική αξιολόγηση σε πραγματικά δεδομένα καταδει-
κνύει την ανωτερότητα της προτεινόμενης μεθόδου, σε σύγκριση με τη συμβατική

SAX και μια εναλλακτική μέθοδο βασιζόμενη στη SAX, που λειτουργεί με απευθείας
προσαρμογή στα δεδομένα. Τέλος, στην παρούσα διατριβή, η προτεινόμενη μέθοδος

μείωσης διαστάσεων αξιοποιείται για να παρέχει συμπαγείς αναπαραστάσεις χρονο-

σειρών με στόχο την ανίχνευση ανωμαλιών. Για το σκοπό αυτό, αναπτύσσεται ένα

υπολογιστικά αποτελεσματικό, αλλά πολύ ακριβές, πλαίσιο για ανίχνευση ανωμαλι-

ών σε ροές δεδομένων σε χώρους λιγότερων διαστάσεων, ενώ εναλλακτικά σχήματα

κβαντισμού διερευνώνται και χρησιμοποιούνται για πιο ακριβή άντληση στατιστικών

συμπερασμάτων.
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Chapter 1

Introduction

1.1 Time series representations for data mining

Representing and interpreting complex time-varying phenomena is a challenging
task in several application domains. Such issues become even more demanding in
view of the large volumes of time series data, emerging thanks to the advances
of computing technologies. From industrial to healthcare machines and wearable
sensors, an unprecedented amount of data is becoming available. Such examples,
which are characterized by their temporal nature, belong to the class of time series
data.

Formally, a time series is a collection of observations made chronologically.
Adjacent points of time series data are typically highly correlated and hence many
conventional statistical methods which traditionally dependent on the assumption
that data samples are independent and identically distributed, are inapplicable.

Efficiently mining this data deluge necessitates the extraction of descriptive
motifs in appropriate lower-dimensional spaces, which provide a meaningful, yet
compact, representation of the original inherent information to be further employed
for executing high-level tasks, such as event detection and classification.

One of the strongest benefits that data mining methods can gain from repre-
sentation methods is dimensionality reduction. Here, dimensionality refers to the
cardinality of the representation space of a data object, i.e. the number of values
that describe the object. Indeed, current data objects contain large amount of
information, either due to their time resolution (e.g. sequences from rapidly sam-
pled data sources), or due to the multi-dimensionality of the data source itself (e.g.
standard electrocardiographs collect 12 concurrent values per sample).

Moreover, the definition of appropriate similarity measure between time series

1



2 CHAPTER 1. INTRODUCTION

based on their representation is necessary for time series mining tasks. More pre-
cisely, the transformation of data objects to a lower-dimensional subspace should
be, ideally, distance-preserving. This property would allow data mining tasks to
perform equally well on the lower-dimensional space as in the high-dimensional.
However, except when all data objects are equal when projected to some dimen-
sion, this is impossible. Due to this limitation, similarity measures defined on
lower-dimensional subspaces can only approximately preserve distances. The de-
gree of this approximation is the central property of similarity measures.

A milestone for the definition and utilization of such measures has been the
GEneric Multimedia INdexIng (GEMINI) framework, introduced in [11]. This
framework dictates a condition for defining similarity measures that are appropriate
for similarity searching in databases. According to GEMINI, the similarity measure
in the lower-dimensional space must lower-bound the objects’ distance in the high-
dimensional space. When this property is satisfied, it is proved that approximate
queries (i.e. queries that return all objects with up to a maximum raw distance
from the query object), in the lower-dimensional space, return no false dismissals.
In advance, the tighter this bound is, the less false alarms are returned. Notice
that the standard distance measure in the raw space is the Euclidean distance, i.e.
the L2 norm.

1.1.1 Numerical representations

The simplest form of dimensionality reduction is sub-sampling. Unfortunately, this
method distorts the shape of the signal, without keeping any information for the
lost samples. An improvement over simple sub-sampling is achieved by averaging
the segments in-between the sampling time steps. The averaged segments preserve
more accurately the signal’s shape and are used to represent the time series. This
method, introduced in [46], is encountered either as Segmented Means or Piecewise
Aggregate Approximation (PAA) in the literature. PAA, in accordance with the
GEMINI framework, lower bounds the distance in higher-dimensional spaces for all
Lp norm distances. APCA [15] is an extented version of PAA, where the segment
size is not constant but adapts to the signal temporal variation. The Clipped
representation, a single-bit representation, is proposed in [36], in which each sample
is represented by a bit depending on whether it is higher or lower than the mean
value of the series. A distance measure that lower bounds the Euclidean distance
is defined, as well.

The aforementioned methods either merge or reduce the time series samples in a
piecewise manner. A different approach is to keep only the points that are the most
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important for the shape of the series. The identification of these points is not a
given. Perteptually Important Points (PIP) [5], a bottom-up method, suggests that
the important points is those that maximize the absolute difference of the adjacent
values. Using this methodology, only the local minima and maxima are considered
as potential important points. PIP is mostly used in financial data, where indeed
the temporal variation is the most informative characteristic. A related method is
the Landmark model [34]. In this model, all points where the n-th order derivative
is 0 are considered important points. This includes all local minima and maxima,
where the first order derivative is 0. The decision about which derivative orders n
to use is based on the nature of the data and the tradeoff between representation
accuracy and dimensionality reduction.

1.1.2 Symbolic representations

Another class of representations is the symbolic representations, which transform
the time series into a compact sequence of symbols. Among them, the symbolic
aggregate approximation (SAX) [19, 20] has been one of the most commonly used
time series representations. In particular, SAX first computes the PAA represen-
tation of the time series. Then, assuming that the time series follows the standard
Gaussian distribution, the segmented means are quantized by mapping them to
equiprobable intervals, where each interval is represented by a unique symbol. The
final output is a sequence of symbols. In addition, a lower-bounding distance mea-
sure is defined, which is shown to bound the Euclidean distance tighter than most
of the best performing dimensionality reduction methods.

Two other symbolic representations are the Piecewise Vector Quantized Ap-
proximation (PVQA) [27] and its multi-resolution extension Multiresolution Vec-
tor Quantized (MVQ) [28] approximation. These methods, instead of computing
the mean values of the segments and then quantizing, they directly quantize the
segments with the LGB vector quantization algorithm. Then, the time series is
represented by the histogram (probability distribution) of the vector-codewords
in the series. However, the histogram-based distance metric they utilize does not
lower-bound some distance measure in the raw space.

1.1.3 Representations based on basis decomposition

All of the above methods represent the time series with yet another time series of
reduced dimensionality. That is, the representation itself is a sequence of objects
in chronological order. A completely different approach is to decompose the time
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Figure 1.1: Common time series representations. Reprinted from Eamonn Keogh’s
tutorial “Machine Learning in Time Series Databases”, AAAI 2011, retrieved from
https://www.cs.ucr.edu/~eamonn. Reprinted with permission.

series over a basis. Essentially, the time series is decomposed into a set of coef-
ficients, which reproduce the time series when used as coefficients for the linear
combination of the basis vectors. These coefficients are used to represent the time
series, whereas dimensionality reduction is imposed by nullifying the smallest of
them.

Commonly used bases are those of the Discrete Fourier Transform (DFT) and
the Discrete Wavelet Transform (DWT) [16], while more complex decompositions
such as Singular Value Decomposition (SVD) [16] and Principal Component Anal-
ysis (PCA) [45] have been used but suffer highly from computational and memory
complexity. When the chosen basis is orthogonal (which holds for the Fourier and
most of the Wavelets bases), due to Parseval’s theorem, the L2 norm in the basis
domain lower-bounds the L2 norm in the time domain. SVD and PCA have the
lower-bounding property as well.

1.2 Anomaly detection

Anomaly detection refers to the problem of finding abnormal patterns in data. The
characteristics of normal behaviour can be either inferred by other data which are
known to be normal, or deduced by the common behaviour of the the available
data. Other names for anomaly are outlier, surprise, novelty and contaminant,
where each of these names is used more often than the others in specific application
domains.
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Due to its prominent role in monitoring and predicting critical processes and
phenomena, anomaly detection is performed in a plethora of distinct application
scenarios employing both non-streaming and streaming data, such as network intru-
sion detection, fraud detection, detection of data abnormalities or instrumentation
errors in the medical domain, novelty detection in textual data [4].

The fundamental problem of anomaly detection is defining the characteristics
of the normal behaviour and where exactly are the boundaries between normal
and abnormal. Many setbacks render this problem remarkably hard. For example,
knowing all the normal cases is rarely possible. In advance, the boundary between
normal and anomalous behaviour is often not precise and small fluctuations can
either be random or indicate anomalous activity. Last but not least, anomalies must
be characterized with respect to their neighbourhood in the data domain (temporal,
spatial or other dimensions) they come up in. For example, in time series data,
anomalies are subject to the specific time period they come up. Obviously, what
is normal for every single point in the data domain cannot be specified precisely.

Anomaly detection methods, in accordance to machine learning algorithms in
general, can be categorized as supervised, semi-supervised, or unsupervised. Su-
pervised methods learn to detect anomalies based on a collection of data with exact
knowledge of normal and anomalous instances. Semi-supervised learning is based
on a collection of data with only normal instances. In unsupervised learning, there
is no previous knowledge of what normal or anomalous data instances are. These
methods assume that normal instances are far more frequent than anomalies in
the data and thus can learn the characteristics of normal instances by the general
behaviour of the data.

Several approaches have been adopted in developing anomaly detection meth-
ods. Classification-based techniques learn a strict boundary between normal and
anomalous data in some feature space and classify accordingly. Nearest-neighbour
techniques assume that anomalous data instances occur far from their neighbouring
data, or in other words, their neighbourhood is sparse. Statistical methods model
the data generator process as a stochastic process. With this approach, anomalies
are instances of data with low probability to occur.

Statistical methods can be either parametric or non-parametric. Parametric
methods presuppose a statistical model and learn the parameters from the data.
On the other hand, non-parametric methods make no assumptions regarding the
statistical structure of the data and attempt to determine the statistical character-
istics in whole from the data itself.
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1.3 Problem statement and Contribution

Focusing on the case of streaming data arriving in nearly real-time, necessitates
the design of fast data mining algorithms, whereas edge processing applications
impose additional computational constraints due to the limited power and memory
resources available on-board small sensing devices. As a use-case example, anomaly
detection plays a key role in a wide range of applications, and has been studied
extensively. However, many anomaly detection methods are unsuitable in practical
scenarios, due to the high data rate and limited devices resources.

The family of symbolic aggregate approximation (SAX) methods [19] has a
prominent role among the several existing motif discovery techniques. Due to its
conceptual simplicity and computational tractability, SAX has been widely used
in monitoring, processing and mining data of numerous sources, including physio-
logical data [32], smart grids [43], building systems [30], and stock market [1].

However, SAX and its variants [38, 23, 40, 21] rely on a Gaussian assump-
tion for the underlying data statistics, which often deteriorates their performance
in practical scenarios. Indeed, although typical SAX-based techniques can lead
to high-precision results in the case of data characterized by Gaussian statistics,
however, their performance may degrade dramatically in more general cases. In
practical scenarios, where the underlying probability distribution of a time series
deviates significantly from a Gaussian, or when the distribution changes across
time, then, the previous SAX-based techniques are not capable of adapting to
the time-evolving statistics. As a result, their low-dimensional representation and
motif interpretation power diminishes.

This thesis considers the problem of developing a time series representation
which is highly efficient, highly adaptive and being easily adopted by existing data
mining applications. To this end, a novel symbolic representation is developed,
built upon the framework of SAX. The novel method, contrary to conventional
SAX methods, is non-parametric, and is shown to exhibit comparatively supe-
rior performance. In advance, the representation method preserves the statistical
characteristics of the raw data and hence it is compatible with existing statistical
anomaly detection (and other data mining) methods. In order to demonstrate its
performance, an unsupervised anomaly detection method, with focus on streaming
data, is incorporated. Due to the reduced dimensionality of the symbolic represen-
tation, power and memory requirements are decreased, whilst the increased accu-
racy of the representation retains the detector’s precision in the lower-dimensional
space.



Chapter 2

Background

Fundamentally, a time series is a sequence of randomly generated values. As such,
time series analysis is conceptually analysis of stochastic processes, as will be dis-
cussed here. The first section of this chapter provides the necessary definitions
and methods that are used throughout the text. The second section covers the
symbolic aggregate approximation of a time series in details, which will be used
later to transform a continuous time series into a discrete one.

2.1 Preliminaries

In the context of experiments, a random variable is a real-valued function of the
experimental outcome. The set of all possible outcomes is called the sample space
of the random variable. A random variable is called discrete if its sample space
is finite or countably infinite, whereas it is called continuous if it is uncountably
infinite [3, Sec. 2].

A discrete random variableX has an associated probability mass function (pmf)
PX(x), which gives the probability of each value x that X can take. A continuous
random variable Y has an associated probability density function (pdf) fY (y), of
which the integral within a specific interval of y values gives the probability that
Y will take a value inside this interval. For every (discrete or continuous) random
variable X, a cumulative distribution function (cdf) FX(x) can be defined, which
gives the probability that X will take a value lower than or equal to x.

A stochastic process is a mathematical model of a probabilistic experiment that
evolves in time and generates a sequence of numerical values. Each numerical value
in the sequence is modeled by a random variable, so a stochastic process is simply
a (finite or infinite) sequence of random variables [3, Sec. 6].

It is easy to see the relation between stochastic processes and time series. A
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8 CHAPTER 2. BACKGROUND

stochastic process is a sequence of random variables and a time series is a sequence
of randomly generated values. That is, a time series is an implementation of a
stochastic process, or, a snapshot of an ongoing stochastic process.

This is the reason that tools and definitions from stochastic processes (e.g.
stationarity, ergodicity, certain models such as Markov chains) are widely used and
have proven particularly useful in time series analysis. An in-depth review of this
concept is out of the scope of this work. At this point however, it suffices to infer
that analysis and processing of time series with tools and methods from probability
theory is, mathematically, a valid approach. Now let us consider some concepts
from the field of information theory.

2.1.1 Elements of Information theory

The majority of the content in this subsection is taken from [7], in which the proofs
of the following lemmas and theorems can be found.

Let X be a discrete random variable with probability mass function PX(x),

x ∈ X , where X is the sample space, i.e. the set of all possible outcomes, of the
random variable X. The sample space is also named the alphabet of the random
variable and its cardinality |X | is the alphabet size.

Definition. The entropy H(X) of a discrete random variable is defined by

H(X) = −
∑
x∈X

PX(x) logPX(x) , (2.1)

with the convention that 0 log 0 = 0.

When the base of log is 2, entropy is expressed in bits, when the base is e,
entropy is expressed in nats, and when the base is 10, entropy is expressed in bans.

Entropy is a measure of uncertainty. It is a measure of the amount of informa-
tion (e.g. bits, when log is to the base of 2) required on average to describe the
random variable. It is easy to prove the range and the distribution that maximizes
entropy:

Lemma 2.1.1.
0 ≤ H(X) ≤ log |X | (2.2)

Lemma 2.1.2. The entropy H(X) is equal to log |X | if and only if X has a uniform
distribution.

Statistical properties, such as the probability distribution, are useful for com-
paring two time series. The fundamental notion is that when the time series are
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similar in the probability domain, then the time series should be similar in the time
domain, too. Quantifying the similarity of distributions, however, is not straight-
forward. For this purpose, the f -divergences are used.

Definition. Let PX and PQ be two discrete probability distributions, defined on
the same sample space X . Additionally, let f be a convex function with f(1) = 0.
Then, the discrete f -divergence of PX and PQ is defined as

Df (X ‖ Q) =
∑
x∈X

PQ(x)f

(
PX(x)

PQ(x)

)
. (2.3)

Notice that an f -divergence is not necessarily symmetric, that is, the relation
Df (P ‖ Q) = Df (Q ‖ P ) does not always hold, nor does the triangular inequality.
This means that f -divergences are not proper distances and should be carefully
handled accordingly.

Particular functions f are used for different applications, taking advantage on
their unique properties. The most common f -divergence, which originates from
the field of telecommunications but is widely used in machine learning as well, is
the Kullback-Leibler (KL) divergence, also known as the relative entropy.

Definition. Let PX and PQ be two discrete probability distributions, defined on
the same sample space X . The Kullback-Leibler (KL) divergence is defined as

DKL(X ‖ Q) =
∑
x∈X

PX(x) log
PX(x)

PQ(x)
, (2.4)

with the conventions that 0 log 0
0 = 0, 0 log 0

q = 0 and p log p
0 =∞.

It is easy to notice that the KL divergence equals the expected value of log PX(x)
PQ(x)

in terms of PX(x):

DKL(X ‖ Q) = Ex∼X
[
PX(x)

PQ(x)

]
(2.5)

A symmetric version of KL divergence is Jeffrey’s divergence.

Definition. Let PX and PQ be two discrete probability distributions, defined on
the same sample space X . Jeffrey’s divergence is defined as

DJ(X ‖ Q) = DKL(X ‖ Q) +DKL(Q ‖ X)

=
∑
x∈X

(PX(x)− PQ(x)) log
PX(x)

PQ(x)
.

(2.6)

The following properties hold for the above f -divergences.
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Lemma 2.1.3.
DKL(X ‖ Q) ≥ 0 (2.7)

DJ(X ‖ Q) ≥ 0 (2.8)

with equalities in (2.7) and (2.8) if and only if PX(x) = PQ(x) ∀ x ∈ X .

In information theory, the application of the law of large numbers results to the
asymptotic equipartition property (AEP).

Theorem 2.1.1 (AEP). If X1, . . . , Xn are i.i.d. ∼ PX(x), then

− 1

n
log p(X1, X2, . . . , Xn)→ H(X) , (2.9)

where the arrow denotes convergence in probability.

The equation (2.9) can be re-written as:

p(X1, X2, . . . , Xn)→ 2−nH(X) , (2.10)

having assumed that entropy is computed with base-2 logarithms.
AEP leads us to the definition of the typical set, which contains the sequences

with sample entropy close to the true entropy. Then, the sequences in the typical
set are most likely to appear by sampling a random variable.

Definition. The typical set A(n)
ε with respect to PX(x) is the set of sequences

(X1, X2, . . . , Xn) ∈ X n with the property

2−n(H(X)+ε) ≤ p(X1, X2, . . . , Xn) ≤ 2−n(H(X)−ε) . (2.11)

The following properties of the typical set hold due to AEP:

Theorem 2.1.2. For any given ε > 0, there exists a sufficient large n such that,

• If (X1, X2, . . . , Xn) ∈ A
(n)
ε , then H(X) − ε ≤ − 1

n log p(X1, X2, . . . , Xn) ≤
H(X) + ε.

• Pr
{
A

(n)
ε

}
> 1− ε.

• |A(n)
ε | ≤ 2n(H(X)+ε).

• |A(n)
ε | ≥ (1− ε)2n(H(X)−ε).

Theorem 2.1.2 implies that, for sufficiently large number of samples, all ele-
ments in the typical set are nearly equiprobable (property 1), the typical set has
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probability close to 1 (property 2), and the cardinality of the typical set is nearly
2nH(X) (properties 3-4).

One significant consequence of AEP is related with data compression. Data
compression can be achieved by assigning short descriptions to the most frequent
outcomes of the data source, and necessarily longer descriptions to the less frequent
outcomes [7].

Definition. A source code C for a random variable X is a mapping from its sample
space X to D∗, the set of finite-length strings of symbols from a D-ary alphabet.
Let C(x) denote the codeword corresponding to x and let l(x) denote the length
of C(x).

The relation between the distribution PX(x) and the expected length L(C) of
a source code C of X is given by

L(C) = Ex∼X l(x) =
∑
x∈X

PX(x)l(x) . (2.12)

A source code is optimal if its expected length is the minimum possible for the
random variable.

Since there are ≤ 2n(H(X)+ε) sequences in the typical set, they can be indexed
using no more than dn(H(X) + ε)e ≤ n(H(X) + ε) + 1 bits. Similarly, the other
sequences can be indexed using no more than n log |X | + 1 bits which is longer
than the index of the typical set because H(X) ≤ log |X |. Since the fraction of the
sequences that are not in the typical set diminishes as n grows large, the following
theorem can be proved:

Theorem 2.1.3. Let Xn be i.i.d. ∼ PX(x). Let ε > 0. Then there exists a code
that maps the sequences Xn into binary strings such as the mapping is invertible
and

E [l(Xn)] ≤ nH(X) + ε (2.13)

for n sufficiently large.

Theorem 2.1.3 implies that the sequences Xn can be coded using nH(X) bits
on average and is the principal theoretical result for data compression.

The next theorem relates the KL divergence with the information loss that is
induced when assuming an approximate distribution PX̂(x) instead of PX(x) when
source coding a random variable.

Theorem 2.1.4. The expected description length of the random variable X by a D-
ary alphabet, assuming optimal coding under the probability mass function PX̂(x),
satisfies
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H(X) +DKL(X ‖ X̂) ≤ L(C) < H(X) +DKL(X ‖ X̂) + 1 , (2.14)

where the logarithm bases are D.

Theorem 2.1.4 states that the lack of knowledge of the true pmf of a random
variable costs additional storage space for the description of its samples which
is quantified by the KL divergence. It is a loss of information that needs to be
recovered with additional symbols. By combining Lemma 2.1.3 and Theorem 2.1.4,
the inequalities change as follows when using the true pmf.

Theorem 2.1.5. The expected description length of the random variable X by a D-
ary alphabet, assuming optimal coding under the probability mass function PX(x),
satisfies

H(X) ≤ L(C) < H(X) + 1 , (2.15)

where the logarithm bases are D.

2.1.2 Kernel density estimation

Several data processing techniques incorporate the probability distribution of the
data source. However, the distribution is rarely known. Rather, only a set of
samples is given à priori (in other words, a training set), or the collection of data
to be processed itself. In this situation, the distribution must be estimated.

This work considers real-valued continuous time series, with samples either from
the set of real numbers or from a specific interval of it. Hence, the distribution of
the data is given by a probability density function (pdf). The problem we address
here, i.e. the estimation of a pdf, is called density estimation. The simplest method
of density estimation is the histogram, which is described next.

Let a random variable X with pdf fX(x), x ∈ X , where X is the sample space
of X. Without loss of generality, let X be the interval [a, b), a, b ∈ R. Now, let
x1, . . . , xn be n observations of X.

The first step to compute the histogram is to partition the sample space into
the equi-length bins [a, a+h), [a+h, a+ 2h), . . . , [b−h, b) of length h. Hence, any
point in the sample space belongs to one bin in the partitioned space. Then, the
histogram is an estimation f̂H(x) derived from the observations x1, . . . , xn, defined
as
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Definition.
f̂H(x0) =

1

nh

∑
i

1xi ∈ bin of x0 . (2.16)

In the general case where the sample space is not bounded, as we assumed
above, the bounds are set empirically in order to properly define the bins.

The histogram is easy and fast to compute and is extremely useful for the
presentation of data. However, it has two main drawbacks. Firstly, the choice of
the empirical bounds of the sample space might severely alter the final estimation.
Secondly, when the estimated distribution is needed by other processing methods,
the discontinuity of the histogram causes difficulties.

For the reasons mentioned above, an improved density estimation technique is
widely used, known as kernel density estimation (KDE) [33]. The histogram counts
the neighbours of each sample in the same bin. This means that all neighbours
inside the bin are given the same weight, and any other sample is disregarded. In
the case of KDE, all samples affect the estimated distribution for any point in the
sample space, according to their relative position.

Essentially, the estimated distribution f̂KDE is the summation of a kernel func-
tion centered at each observed sample, as defined below.

Definition.
f̂KDE(x0) =

1

nh

∑
i

K

(
xi − x0

h

)
, (2.17)

where h is the smoothness parameter, which controls the width of the kernel around
x0 and K is the kernel function, which controls the weight given to the points in
the neighbourhood of x0.

A visual comparison of the two density estimation methods is available in
Fig. 2.1.

The KDE method requires the assignment of a kernel function K and a value
for the smoothness parameter h. From these two parameters, it has been observed
that the choice of the smoothness parameter has a bigger impact on the final result.
The choice of kernel function is significant when the number of available samples
is small, but as it get bigger, most kernels perform similarly.

In the domain of estimation theory, two particular metrics evaluate the perfor-
mance of an estimator, such as KDE, for a specific target parameter. The first is
the bias B(θ̂), which is the difference of the estimator’s expected estimation θ̂ and
the true parameter θ being estimated. The second metric is the variance Var(θ̂) of
the estimation.
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Figure 2.1: Estimation of a mixture of two Gaussian distributions from 1000 ob-
served samples. The blue line is the target pdf, the orange bars are the histogram
and the yellow line is the KDE estimated distribution using Gaussian kernels. The
kernels are shown in red above the observed values (here only 10 of them are de-
picted). The histogram is not continuous and overfits to the observed samples. On
the other hand, KDE is continuous and approximates better the target pdf.

Definition. The bias and the variance of an estimator for the target parameter θ
are defined as follows.

B(θ̂) = E[θ̂|θ]− θ (2.18)

Var(θ̂) = E[(θ̂ − θ)2|θ] (2.19)

The estimator’s mean square error (MSE) of the parameter θ can be expressed
in terms of its bias and variance as:

MSE(θ̂) = (B(θ̂))2 + Var(θ̂) . (2.20)

For the case of KDE, under some assumptions which are true for the majority
of kernel functions, the asymptotic MSE (AMSE), namely the MSE as the number
of available samples n grows large, is approximated as [33]:

AMSE(f̂KDE(x)) =
1

nh
f(x)

∫ +∞

−∞
K2(y)dy + h4k

2
2

4
(f
′′
(x))2 + o(h4) + o(

1

nh
) ,

(2.21)
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where f is the target pdf and k2 is a constant that depends on the kernel function
K.

Integrating the AMSE over the sample space yields the asymptotic mean inte-
grated squared error (AMISE):

AMISE(f̂KDE) =
1

nh

∫ +∞

−∞
K2(y)dy + h4k

2
2

4

∫ +∞

−∞
(f
′′
(x))2dx . (2.22)

The optimal kernel function, in terms of AMISE, is proved to be the Epanech-
nikov kernel [10] (Fig. 2.2a). Another frequently used kernel is the Gaussian ker-
nel (Fig. 2.2b), which is not optimal in the general case, but performs better when
the underlying distribution is close to a mixture of Gaussians.

Definition.

Epanechnikov kernel: K(x) =

 3
4
√

5
(1− x2

5 ) , for |x| ≤
√

5

0 , for |x| >
√

5
(2.23)

Gaussian kernel: K(x) =
1√
2π
e−

1
2
x2 (2.24)

A key difference between those two kernels is that the Epanechnikov kernel has
a finite support, from −

√
5 to +

√
5, whereas the Gaussian has an infinite support.

As already mentioned, the smoothness parameter h has a greater impact on the
estimator’s performance. A very low smoothness parameter results to a distribution
with narrow spikes above the observed samples, in other words it overfits to the
observed samples. A very high smoothness parameter results to an over-smoothed
distribution that does not represent accurately the observed samples, nor the target
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pdf. The optimal smoothness parameter hopt, in terms of minimum AMISE, can
be easily derived from (2.22):

hopt =

[ ∫ +∞
−∞ K2(y)dy

nk2
2

∫ +∞
−∞ (f ′′(x))2dx

]1/5

(2.25)

The equation in (2.25) would provide the optimal smoothness parameter easily,
but unfortunately it depends on the target pdf itself. Because in actual implemen-
tations of an estimator, the knowledge of the target pdf is not possible, in [39] it
is suggested that a known family of distributions can be used to assign a value
for the term f

′′
(x). The most frequent candidate for distribution assignment is

the Gaussian. If the underlying process indicates that its distribution is similar to
some other known distribution, then it will give better results if it is used instead.
In the case of the Gaussian assumption, the following approximation is derived:

hNopt = σ̂ ·

[
8π1/2

∫ +∞
−∞ K2(y)dy

3nk2
2

]1/5

, (2.26)

where σ̂ is an approximation of the standard deviation and can be computed as the
standard deviation of the given samples, or with some other more robust method.

For the two kernels introduced previously, the following calculations can be
used in the nominator of (2.26).

Gaussian kernel:
∫ +∞

−∞
K2(y)dy =

1

2
√
π

, k2 = 1 (2.27)

Epanechnikov kernel:
∫ +∞

−∞
K2(y)dy =

3

5
, k2 =

1

5
(2.28)

Plugging the values from (2.27)-(2.28) in (2.26) provides the following values for
optimal smoothness parameters:

Gaussian kernel: hNopt = 1.0592 · σ̂n−1/5 (2.29)

Epanechnikov kernel: hNopt = 2.3449 · σ̂n−1/5 (2.30)

It is important to note that the above values should be handled only as a good
starting point for further adjustment, because every data source differs.

Apart from the accuracy of the estimation, KDE’s performance is high in terms
of convergence speed, too, given that the target distribution is smooth [37]. This
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is important when the computational resources are low or when the number of
available samples is not large.

2.1.3 Lloyd-Max quantization

Quantization refers to a mapping from a set with many, possibly infinite, elements
to another set with fewer elements. This process is essential for many applications
that involve computing systems, due to their digital nature. Typical examples
are analog-to-digital converters, communication systems and lossy data compres-
sion. Quantization methods must specify both the mapping and the values of the
elements in the smaller set, which are used to represent the values of the input set.

The expected distance between the input and output values is the distortion.
Sufficient criteria for a quantizer to have minimum distortion were derived inde-
pendently in [25] and [22] by Max and Lloyd, respectively. Because the criteria
have no analytical solutions, they are generally solved through minimization algo-
rithms. The simplest algorithm, derived by the authors of [25] and [22], is called
the Lloyd-Max quantizer, which is basically an alternating minimization algorithm.
Below, the basic principles of Lloyd-Max quantization are explained.

Let a partition {X1, . . . , Xk} of the input class X , where Xi’s are disjoint
subsets with arbitrary number of input elements from X . Let a set of codewords
(called codebook or alphabet) {c1, . . . , ck}. Exactly one codeword is assigned to all
elements of exactly one subset of the input partition with the quantization mapping
Q(·),

Q(xj) = ci , ∀ xj ∈ Xi . (2.31)

The number k of quantization intervals is a pre-defined parameter of the quantiza-
tion process.

Define a distance measure d(x−Q(x)) between an input element and the code-
word assigned to it. Denote as f(x) the underlying probability density function
of the input class X and denote as bi and bi+1 the bounds of the subset Xi. The
distortion D is defined as the expected value of d:

D = Ef [d(x−Q(x))] =

k∑
i=1

∫ bi+1

bi

d(x− ci)f(x)dx (2.32)

The necessary criteria for minimizing the distortion function D are derived by
calculating the partial derivatives with respect to bi’s and ci’s and setting them
to zero. With simple calculus, the necessary criteria are given by the following
equations:
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Algorithm 1 Lloyd-Max Quantizer
1: Initialize all codewords ci, i = 1, . . . , k
2: Initialize sample space: b1 ← −∞, bk+1 ← +∞
3: while stopping criteria are not met do
4: bi ← (ci + ci−1)/2 , for i = 2, . . . , k

5: ci ←
∫ bi+1
bi

xf(x)dx∫ bi+1
bi

f(x)dx
, for i = 1, . . . , k

d(bi − ci−1) = d(bi − ci) , i = 2, . . . , k (2.33)∫ bi+1

bi

d′(x− ci)f(x)dx = 0 , i = 1, . . . , k (2.34)

The criteria in (2.33) and (2.34) are necessary but not sufficient. In order to be
sufficient, the Hessian matrix of the distortion function must be positive definite.

For the special case where the distance measure is the Euclidean distance,
d(x− ci) = (x− ci)2, the equations (2.33) and (2.34) become

bi = (ci + ci−1)/2 , i = 2, . . . , k (2.35)

ci =

∫ bi+1

bi
xf(x)dx∫ bi+1

bi
f(x)dx

, i = 1, . . . , n (2.36)

That is, the bounds must be exactly in the middle between two adjacent code-
words and the codewords must be the centroids of the intervals between two adja-
cent bounds.

Due to the mutual relationship of the equations in (2.35)-(2.36), their solution
is not easy. For this reason, the critical points are iteratively approximated by
alternating between the necessary criteria. The process is summarized in Alg. 1.

The Lloyd-Max quantizer is closely related with the k-means algorithm1, which
is a standard method for clustering. In particular, k-means is the equivalent of
Lloyd-Max for the scenarios where, instead of the probability density function, a
set of observed samples is given à priori. In analogy to Lloyd-Max, the necessary
optimality criteria and the overall k-means algorithm can be seen in Alg.2, where
the observed samples are denoted as sj , j = 1, . . . ,m. It is easy to see that k-means
is asymptotically equal to Lloyd-Max, as the number of observed samples increases.

Because the approximated critical point is not always the global minimum
1In the machine learning community, the names k-means and Lloyd-Max (or more often,

Lloyd’s) algorithm are used interchangeably. We emphasize that both Lloyd and Max published
their method in the form that is presented here.
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Algorithm 2 k-means
1: Initialize all codewords ci, i = 1, . . . , k
2: Initialize sample range: b1 ← s1, bk+1 ← sm
3: while stopping criteria are not met do
4: bi ← (ci + ci−1)/2 , for i = 2, . . . , k
5: ci ← 1

|Qi|
∑

bi≤sj≤bi+1
sj , for i = 1, . . . , k

Algorithm 3 k-means++

1: Choose c1 uniformly at random in [s1, sm].
2: for i = 2, . . . , k do
3: For each sample sj , compute dj , the distance to the closest centroid of those

already chosen.
4: Choose ci at random over the set of samples, with probability for each sample

sj equal to
(dj)

2∑m
l=1(dl)2

.
5: Proceed to the standard k-means algorithm.

point, the initialization affects the attained distortion. In fact, the final distortion
is generally very sensitive with the starting centroids. The initialization also greatly
affects the convergence rate. The simplest initialization technique is choosing the
starting codewords completely at random, but has no guarantees for the results.
A better technique is the k-means++ [2] (ref. Alg. 3), which has the advantage of
provably bounding in the mean value the optimal distortion Dopt. More precisely,
the following result, proved in [2], holds for the final distortion D++ when using
the k-means++ initialization method:

Theorem 2.1.6. For any set of data samples, E[D++] ≤ 8(ln k + 2)Dopt.

In fact, this bound holds even without proceeding to the standard k-means
after initialization.

2.1.4 Statistical hypothesis testing

A statistical hypothesis test is a method of statistical inference. A hypothesis is a
certain statement regarding the statistical characteristics of a family of events. An
event is defined as a collection of data samples, including time series (sub)sequences.
An event under investigation is tested whether it confirms or rejects a pre-defined
hypothesis by using an appropriate metric. In particular, for statistical inference,
two hypotheses must be defined:

Definition. The null hypothesis H0 is the statement that is assumed to hold true
for the questioned event. The alternative hypothesis H1 is the complementary
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hypothesis of H0. That is, H1 is confirmed when H0 is rejected and vice versa.

The relevant statistical characteristics of the event are summarized with a test
statistic:

Definition. A test statistic T is a function of an event, defined in such a way as
to quantify the important statistical characteristics that would distinguish the null
from the alternative hypothesis.

Because the event is modeled as a random variable, the function T is a random
variable, too. That is, when sampling an event, the test statistic is sampled at the
same time.

The hypothesis test is performed by comparing the test statistic with a thresh-
old, called significance level.

Definition. The significance level, denoted by γ, is a boundary in the probability
density domain of the null hypothesis H0, which separates the normal and the
critical region. When the statistic lies in the normal region, then the null hypothesis
H0 is confirmed. Otherwise, H0 is rejected and the alternative hypothesis H1 is
confirmed.

In other words, the significance level is the density of the critical region. Ad-
ditionally, it is the probability of rejecting the null hypothesis while it is true, in
which case the decision is false and an error occurs.

Indeed, due to the random nature of the event being tested, the hypothesis
that is confirmed might be false. In hypothesis testing, two types of error are
distinguished, named Type I and Type II errors.

Definition. A Type I error occurs when the null hypothesis is true, but is re-
jected by the test. A Type II error occurs when the null hypothesis is false, but is
confirmed by the test.

Statistical hypothesis testing can be seen a form of binary classification. In
this context, rejecting the null hypothesis corresponds to a positive result, while
confirming the null hypothesis corresponds to a negative result. Thus, Type I
errors are equivalent to false positives, whereas Type II errors are equivalent to
false negatives.

The performance of a hypothesis test is evaluated in terms of Type I and
Type II error rates. Denote with P (θ̂1|H0) the probability of Type I errors and
with P (θ̂0|H1) the probability of Type II errors, where θ̂j denotes that the test
confirmed the Hj hypothesis. Then,
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False Positive / Type I Error rate : P (θ̂1|H0) = γ , (2.37)

False Negative / Type II Error rate : P (θ̂0|H1) = β , (2.38)

where γ is the significance level of the test and β is related to the power of a test,
which is defined as

True Positive / Power : P (θ̂1|H1) = 1− β . (2.39)

The formulation of a test is complicated due to the trade-off between Type I
and Type II errors. That is, while minimizing one type of error, the other tends
to increase and vice versa. In practice, a test statistic is designed by minimizing
one type of error with the constraint of fixing the other. In the specific case of
minimizing β, while fixing γ, the test is said to be powerful.

One particular kind of hypothesis tests is the goodness of fit. A goodness of fit
test assesses the likelihood that a statistical model (a pmf or a pdf) fits an event. In
this case, the null hypothesis is that the generator process of the event is described
from the defined probability density function.

There are three distinct classic methods for performing a goodness of fit test:
the likelihood ratio test, the Lagrange multiplier test and the Wald test. For the
scope of this work, we will cover the likelihood ratio test and note some results.

Definition. Let X be a random variable following a parametric statistical model
f . Denote with x an event which is a collection of samples from X. Let a subset
of f ’s parameters be denoted with the vector θ. Then,

L(θ|x) = f(x|θ) (2.40)

is the likelihood function of θ.

Suppose that θ is an unknown vector and θ0, θ1 be two candidates of θ. The
likelihood ratio test (LRT) assesses whether θ is more likely to equal θ0 than θ1.

Definition. Define the null hypothesis H0 : θ = θ0 and the alternative hypothesis
H1 : θ = θ1. The LRT statistic is defined as

Λ(x) =
L(θ0|x)

L(θ1|x)
. (2.41)

The null hypothesis is rejected when the following inequality is true:

Λ(x) ≤ η , (2.42)
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where η is chosen so that the significance level is

γ = P (Λ(x) ≤ η|H0) . (2.43)

LRT is a simple vs. simple test. That is, under both null and alternative
hypotheses, the unknown parameters are simple points and thus, together with
the known parameters, define completely the statistical model. The opposite of
a simple hypothesis is a composite hypothesis, under which a range of values is
considered for the unknown parameters. In the fundamental paper of Neyman and
Pearson [31], a Lemma is proved which states that the LRT is the most powerful
(i.e. with the highest power (2.39)) simple vs. simple test at a given significance
level γ, for any pair of (θ0,θ1).

The composite vs. composite version of LRT is the generalized likelihood ratio
test (GLRT). Simple vs. composite tests are also a subset of GLRT.

Definition. Denote with Θ the parametric space of the unknown parameters θ of
the statistical model f . Define the null hypothesis H0 : θ ∈ Θ0 and the alternative
hypothesis H1 : θ ∈ Θc

0 , where Θ0 ∈ Θ and Θc
0 = Θ \Θ0. The GLRT statistic is

defined as

Λ(x) = −2 ln
supθ∈Θ0

L(θ|x)

supθ∈Θc0
L(θ|x)

. (2.44)

The operator −2 ln(·) seems redundant, but facilitates the operations with the
logarithms. The null hypothesis is rejected when the following inequality is true:

Λ(x) ≥ η , (2.45)

where η is chosen so that the significance level is

γ = P (Λ(x) ≥ η|H0) . (2.46)

The Neyman-Pearson Lemma does not hold for GLRT. In fact, GLRT is not
the most powerful test in the general case.

A convenient result for GLRT is Wilks’ Theorem [44], which describes the
asymptotic distribution of the GLRT statistic (2.44). Basically, Wilks’ Theorem
categorizes the GLRT to the class of tests that are called chi-squared tests.

Theorem 2.1.7 (Wilks’ Theorem). Let X be a random variable following a statisti-
cal model f with parameters θ1, . . . , θh. Denote with x an event which is a collection
of N samples from X. Define the null hypothesis H0 : θm+1 = θ0(m+1), . . . , θh =

θ0(h). Then, under suitable restrictions on f , when H0 is true the distribution of
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Λ(x) approaches uniformly, as N →∞, the χ2 distribution with h−m degrees of
freedom.

In light of Wilks’ Theorem, the problem of parameter estimation from a suffi-
ciently large collection of samples can be performed as follows. Suppose that the
distribution function f depends on h parameters and we want to estimate m ≤ h of
them with means of GLRT. Define the desired significance level γ (usually between
0.01 and 0.05). Then, the threshold η is computed as

γ = P (Λ(x) ≥ η|H0)

Wilks’ Th.
=⇒ γ = Fχ2(η)

⇒ η = F−1
χ2 (γ) ,

(2.47)

where F−1
χ2 is the inverse cdf (sometimes called quantile function) of the χ2 distri-

bution with h−m degrees of freedom, which has no closed-form representation but
can be sufficiently approximated with various methods.

With (2.47), a rule for determining optimal values for the statistic threshold
η is derived. Following this procedure, optimal parameters of a statistical model
that best fit an event of N samples from the random variable X can be estimated.
It is very often the case that a continuous data source is discretized (quantized),
in order to provide a basis for efficient statistical inference. The statistical model
the describes a discrete random variable X is a mass function. As shown later
in Sec. 2.2.1, the number of parameters required to define a pmf, when no other
information is given, is equal to |X | − 1, where |X | is the cardinality of the sample
space of the discretized data source. That is, |X | equals the number of quantization
intervals.

In that case, what is the best number of quantization intervals? If we had
an infinite number of samples, then the largest this number, the better would be
the estimated model. For relatively few samples, however, a very large number of
quantization intervals would result to poor modeling, as the samples would not be
enough to estimate accurately so many parameters. On the other hand, a very
small number of quantization intervals would provide a good estimation of the
parameters but also an overly simple statistical model, that does not represent the
data source adequately.

A rule for deriving the number of quantization intervals for chi-squared tests,
in terms of guaranteeing that the power (2.39) of the test is always greater than
or equal to 1/2, has been derived by Mann and Wald in [24]. In their result, the
number of quantization intervals KN is given by the formula
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KN = 4 ·
[

2(N − 1)2

c2

]1/5

, (2.48)

where c is determined from the significance level γ so that

γ =
1√
2π

∫ ∞
c

e−x
2/2dx . (2.49)

The formula (2.48) is based on the assumptions that the sample size N is large
and the quantization intervals are equiprobable. In any case, it can be used as a
good starting point for further optimization.

2.2 Anomaly detection based on statistical hypothesis
testing

Due to the heterogeneity of different data sources and the broad range of cases
where anomaly detection applies, and also due to the divergent sources of possible
anomalous activity, it is impossible to implement an anomaly detection method
that works universally well. Indeed, a perfect universal anomaly detector would
work in a maximum likelihood estimation fashion, i.e. it would model exactly
all conditional probabilities of all temporal combinations of data points and would
flag anomalous events according to their probability of appearance. This is however
impossible in any realistic scenario. On the other hand, a more restrictive defini-
tion of what anomaly is, enables the implementation of feasible anomaly detection
algorithms that work adequately well.

One such approach is to compare the distribution of a block of adjacent data
points with the other blocks near the given block, or even everywhere in the data
samples. A very dissimilar distribution indicates abnormality in the block. We
denote this type of anomaly as anomaly in distribution. Here, adjacency can be
considered across any dimension of the data. For example, it may be time in time
series and/or space in graphs. This includes two wide classes of anomalies that
appear frequently. In advance, distribution similarity has been studied excessively
in many scientific domains (ref. f -divergences in Sec. 2.1.1 and likelihood ratio tests
in Sec. 2.1.4). The theoretical advancements in these domains can be incorporated
for the detection of anomalies in distribution.

The major downside of this approach is that the correlation between the data
points inside a block is disregarded. Illustratively, any permutation of a block has
exactly the same distribution.In fact, a stronger definition of anomaly would take
into account the conditional probabilities inside the separate blocks, which would
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in turn require a certain statistical model to be used. Approaches of this kind have
been studied recently [6, 47, 41], which are handled with the means of statistical
hypothesis testing.

In the present work, an anomaly detection method is developed, that is based
upon the method proposed in [42]. This method is essentially a method for de-
tecting anomalies in distribution and relies on the framework of likelihood ratio
tests and more specifically Wilks’ Theorem. The method is particularly attractive
because it assumes no specific model of the data, a property that renders it, with
minor modifications, a universal method for many application domains. Also, its
simplicity and computational efficiency is very important in scenarios with limited
resources. The following subsection presents the method in [42] and its theoretical
background.

2.2.1 Anomaly detection via goodness of fit

The method proposed in [42] performs a goodness of fit test which involves the
Kullback-Leibler divergence (2.4). Hereafter, we denote this method by “KL GoF”.
The method is based on the following corollary, whose proof is also provided below.

Corollary. Let X and X̂ be two discrete random variables defined on the same
sample space X , where the probability distribution of X̂ is the empirical distribu-
tion of X, estimated by drawing N samples from X. Then, the distribution of
(2N ·DKL(X̂ ‖ X)) approaches uniformly, as N → ∞, the χ2 distribution with
|X | − 1 degrees of freedom.

Proof. Consider the discrete random variables X and X̂, defined on the same
sample space X = (x1, . . . , xs), where s = |X |. The probability mass function of
X is given by

PX(xi) =



p1 , if i = 1

...

ps−1 , if i = s− 1

1−
s−1∑
j=1

pj , if i = s

(2.50)

Hence, PX can be expressed in terms of the parameter vector θ = (p1, p2, . . . , ps−1).
Similarly, the parameter vector of PX̂ , denoted by θ̂, is a vector of length s − 1.
Suppose that θ is a known fixed vector θ = θ0 and that θ̂ ∈ Θ is an unknown
vector that lies in the parametric space Θ.
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Next, let x = (x1, . . . , xN ) be a vector of N samples drawn from X̂. Define the
null hypothesis H0 : θ̂ = θ0 and the alternative hypothesis H1 : θ̂ 6= θ0. Then, the
GLRT statistic (2.44) is given by

Λ(x) = −2 ln
L(θ0|x)

supθ̂ 6=θ0
L(θ̂|x)

= −2 ln
L(θ0|x)

L(θ1|x)

= −2 ln

∏N
i=1 PX(xi)∏N
i=1 PX̂(xi)

= −2 ln
N∏
i=1

PX(xi)

PX̂(xi)

= −2

N∑
i=1

ln
PX(xi)

PX̂(xi)

= −2N
1

N

N∑
i=1

ln
PX(xi)

PX̂(xi)

a.s.−→
L.L.N.

− 2N · Ex∼X̂ ln
PX(x)

PX̂(x)

= 2N · Ex∼X̂ ln
PX̂(x)

PX(x)

= 2N ·DKL(X̂ ‖ X) ,

(2.51)

where θ1 denotes the empirical distribution of x, the Law of Large Numbers is
used in line 4 and (2.5) is used in the last line. Using Wilks’ Theorem in (2.51)
completes the proof.

The KL GoF method exploits this corollary to test whether the most recent
block of N samples is distributed similarly with the past data. Specifically, the null
hypothesis is a composite hypothesis that consists of the union of the empirical dis-
tributions of the past N -length blocks. The null hypothesis is then partitioned into
multiple simple hypotheses which are tested separately by following the procedure
in (2.47). When the null hypothesis is rejected, the current block is flagged as
anomalous.

It should be noticed that the above corollary is proved for i.i.d. samples. Be-
cause this is not the case for time series, where the samples are highly correlated,
the result holds only approximately.

An important feature of the method is that the data needs to be discrete. This
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is the price of not having knowledge of the statistical model that underlies the
generator process. In the case the model was known, we would still be able to em-
ploy a GLRT for the classification of its temporal parameters. Conventionally, the
KL GoF method discretizes the time series data samples via uniform quantization,
where the quantization intervals are of equal size regardless of the density of the
samples inside each of them.

Following the discretization of the current sample, the empirical distribution of
the N most recent samples is estimated in a sliding window fashion. The empirical
distributions need to be saved, so they can be compared with future blocks. Because
only the past distributions are considered in the hypothesis test, the method is
causal and thus is appropriate for streaming data.

2.3 The symbolic aggregate approximation (SAX)

This section introduces the conventional SAX [19, 20] method. The core of a
SAX consists of a two-step transformation that reduces the dimensionality of the
data, coupled with the definition of an appropriate distance measure in the lower-
dimensional space, which lower bounds the Euclidean distance in the original space.

2.3.1 The SAX transformation

In the following, T N denotes the set of time series of length N , YM is the set of
real vectors of length M , and CMA the set of all vectors of M codewords belonging
to an alphabet A of size |A| = α. Let U = (u1, u2, . . . , uN ) ∈ T N be a discrete
time series of N samples, where ui is the ith sample. Without loss of generality, U
is first Z-normalized, as follows.

Û =
U − µ
σ

, (2.52)

where µ and σ are the mean and standard deviation of U . This ensures zero mean
and unit variance of the time series, regardless of the underlying distribution. For
ease of notation, hereafter U is assumed to be Z-normalized à priori.

The first step of SAX implements a piecewise aggregate approximation (PAA)
T N → YM , which transforms a given time series U ∈ T N into a vector Y =

(y1, . . . , yM ) ∈ YM , with M < N . For this, U is divided into M equal size
segments and the average value is calculated for each segment. The ratio M/N

determines the degree of dimensionality reduction.
In the second step, a discretization YM → CMA is applied to Y , which maps

the averages into a predefined set of symbols. More precisely, the Z-normalized
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time series is assumed to follow a standard Gaussian distribution. Under this
assumption, the M averages in Y are quantized within α equiprobable intervals
under the standard Gaussian pdf curve. Each quantization interval is bounded
by two cutlines and is assigned a codeword from the alphabet A. The two-step
transformation T N → YM → CMA produces the SAX representation of length M
from the alphabet A. Figure 2.3 provides a visualization of the two-step process.

2.3.2 Lower-bounding distance measure

Given two distinct time series U , S ∈ T N , their Euclidean distance is defined by

d(U, S) =

√√√√ N∑
i=1

(ui − si)2 , (2.53)

which is the L2 norm of their difference.
As discussed in Sec. 1.1, the GEMINI framework [11] states that in order to

guarantee the absence of false dismissals when performing high-level tasks, such as
similarity searching, it suffices to define a distance measure in the lower-dimensional
space CMA that lower bounds the Euclidean distance in the original space T N . Let
C, Q ∈ CMA be the symbolic representations of the time series U and S, respectively.
Then, a distance measure in the quantized space of alphabet symbols, which lower
bounds the Euclidean distance in the original time series space is defined as follows,

mindist(C,Q) =

√√√√N

M
·
M∑
i=1

(dist(ci, qi))
2 , (2.54)

where dist(ci, qi) is the absolute difference of the two closest cutlines that respec-
tively bound ci and qi (refer to bottom plot in Fig. 2.3 for an example). Further-
more, if Y ∈ YM is the PAA of U and Q ∈ CMA is the SAX representation of S, a
tighter lower bounding distance measure can be defined by

mindist_PAA(Y,Q) =

√√√√√√√N

M
·
M∑
i=1


(βLi − yi)2 if βLi > yi

(βUi − yi)2 if βUi < yi

0 otherwise

, (2.55)

where βLi and βUi are the lower and upper cutlines of codeword qi. By com-
bining (2.53) and (2.55), the tightness of lower bound (TLB) measure is defined
as
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(a) Piecewise aggregate approximation (PAA)
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Figure 2.3: SAX representation of a time series. A series of N = 120 samples is first
transformed into its PAA representation by segmenting and averaging the series
intoM = 12 pieces. Then, each segment is assigned a codeword (shown in red above
the segments), subject to which of the α = 8 equiprobable intervals of the standard
Gaussian pdf it falls in. Here, the codewords are the binary representations of
1, 2, . . . , 8 .
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TLB(U, S) =
mindist_PAA(Y,Q)

d(U, S)
. (2.56)

TLB ranges in [0, 1] and is the fraction of how close is mindist_PAA(Y,Q) to
the true Euclidean distance of the data. It is a metric which determines the rate
of false positives (2.37) (Type I errors) in similarity searching.



Chapter 3

Data-driven SAX-based
Representation of Time Series

3.1 Optimal quantization for SAX

As noted in Section 2.3.1, the piecewise aggregate approximation T N → YM of the
time series U ∈ T N is followed by the discretization YM → CMA , which quantizes
the PAA segments into α equiprobable intervals under the standard Gaussian pdf.
Assuming standard Gaussian distribution of YM , the output is a random sequence
that follows the uniform distribution in A. Furthermore, the Gaussian assumption
is adopted due to the widely accepted observation that time series from various
sources, very often, follow approximate Gaussian statistics.

Although not stated clearly in the introductory paper, the choice of employing
equiprobable intervals is usually based upon the observation that a sequence of
samples drawn from a uniform distribution maximizes the entropy of the output
sequences (Lemma 2.1.2). In turn, this leads to a larger typical set (Theorem 2.1.2)
and hence to a larger number of distinct symbolic representations after the transfor-
mation of a large number of time series. This implies an increased distinctability
of the time series in the lower-dimensional space. This is an application of the
Principle of Maximum Entropy [14].

In summary, the approach of discretization in SAX is based on the following
arguments: i) Z-normalized time series approximately follow the standard Gaussian
distribution, ii) statistical inference augments with entropy. In this section, we
controvert both of those arguments on the ground of time series representations.

31
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3.1.1 On the Gaussian assumption

Gaussian statistics might appear in a range of data sources, however they are very
often invalid. As such, a mismatch in the distribution yields an information loss
that is specified by the Kullback-Leibler divergence (Theorem 2.1.4 for discrete
values). When the underlying distribution of the data is not close to Gaussian, the
information loss can severely decrease the quality of SAX. In such cases, in order
to produce computationally tractable processing methods, it is necessary to fit the
data to specific models (e.g. [12, 9]).

In the following we quantify the information lost from a quantized data source,
induced by assuming standard Gaussian distribution, as SAX does, whilst the
true underlying distribution is given by another probability density function. In
order to achieve this, we first introduce the notion of differential entropy and the
Kullback-Leibler divergence of continuous random variables.

Definition. The differential entropy h(X) of a continuous random variable X with
pdf f(x) is defined as

h(X) = −
∫
f(x) log f(x)dx, (3.1)

where the integration is performed in the areas of the sample space where f(x) > 0.

Notice that the differential entropy (3.1) can be negative, which is counter-
intuitive. Translating and scaling a random variable affects the differential entropy
as follows:

Lemma 3.1.1.

h(X + c) = h(X) , (3.2)

h(aX) = h(X) + log |a| . (3.3)

Definition. The Kullback-Leibler divergence DKL(f ‖ g) of the densities f and g
is defined by

DKL(f ‖ g) =

∫
f(x) log

f(x)

g(x)
dx , (3.4)

with the convention that 0 log 0
0 = 0.

It turns that the Asymptotic Equipartition Property and the properties of the
continuous analog of the typical set hold similar to the discrete case [7, Sec. 8.2].
Also, the Kullback-Leibler divergence has the following properties.

Lemma 3.1.2.
DKL(f ‖ g) ≥ 0 (3.5)
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with equality iff f=g almost everywhere.

Lemma 3.1.3.
DKL(f ‖ g) = h(f, g)− h(f) , (3.6)

where h(f, g) =
∫
f(x) log g(x)dx is the continuous cross-entropy.

Now, let us consider a random variable X with density f(x). Suppose that the
sample space of X is divided into intervals of equal length ∆. Assuming that the
density is continuous within the bins, there exists a value xi within each bin such
that

f(xi)∆ =

∫ (i+1)∆

i∆
f(x)dx . (3.7)

Then, consider the quantized version of X, denoted with X∆ and defined by

X∆ = xi , if i∆ ≤ X < (i+ 1)∆ , (3.8)

which implies that the pmf of X∆ is

P (xi) = f(xi)∆ =

∫ (i+1)∆

i∆
f(x)dx . (3.9)

We assumed quantization intervals of equal length to simplify our computations.
However, because our result holds asymptotically, this assumption does not cancel
its validity. This is correct because, for any quantization scheme, as the number of
the quantization intervals approaches infinity, they become equally infinitesimal.

The next Theorem is the continuous analog of Theorem 2.1.4, which quantifies
the information loss of assuming a wrong pdf q(x) instead of f(x) when source
coding the quantized version X∆ of X.

Theorem 3.1.1. The expected description length L(C) of the random variable X∆

by a D-ary alphabet, assuming optimal coding under the probability density function
g(x), satisfies

h(f) +DKL(f ‖ g) + log
1

∆
≤ L(C) < h(f) +DKL(f ‖ g) + log

1

∆
+ 1 , (3.10)

where the logarithm bases are D.

Proof is written in the Appendix, A.1.
In accordance to the discrete case, combining Lemma 3.1.2 and Theorem 3.1.1,

we derive the following theorem.
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Theorem 3.1.2. The expected description length of the random variable X∆ by
a D-ary alphabet, assuming optimal coding under the probability density function
f(x), satisfies

h(f) + log
1

∆
≤ L(C) < h(f) + log

1

∆
+ 1 , (3.11)

where the logarithm bases are D.

Theorems 3.1.1 and 3.1.2 together imply that the information lost by assum-
ing a wrong pdf when source coding a quantized sampled random variable is the
Kullback-Leibler divergence of the correct and the wrong pdf. This is similar to
the result derived in the discrete case.

Next, consider the Gaussian random variable G ∼ N(µg, σ
2
g) and its density

g(x).

Proposition 3.1.1. Let X be an arbitrary continuous random variable with density
f(x), mean µx and variance σ2

x, and G ∼ N(µg, σ
2
g) with µx = µg, then

DKL(f ‖ g) = lnσg
√

2π +
1

2

σ2
x

σ2
g

− h(f) , (3.12)

measured in nats.

Proof is written in the Appendix, A.2.
Consider, for example, that f(x) follows a Laplace distribution L(µ, b), which

is defined by

Definition (Laplace density function).

f(x) =
1

2b
e
−
(
|x−µ|
b

)
, b > 0 (3.13)

The mean value and variance of the Laplace distribution are equal to µ and
2b2, respectively. After a Z-normalization, it holds that µ = 0, b = 1√

2
. Then,

DKL(f ‖ g) = lnσg
√

2π +
1

2

σ2
x

σ2
g

− h(f)

= lnσg
√

2π +
1

2

2b2

σ2
g

− ln 2be

= ln
√

2π +
1

2
− ln
√

2e

≈ 0.07 nats

≈ 0.1 bits ,

(3.14)
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which is a small penalty, due to the close relationship between the Laplace and
Gaussian distributions.

As a second example, consider a mixture of Gaussians. More precisely, assume
that f(x) is the density function of a mixture of two Gaussians with equal variance
σ2 and opposite mean values µ and −µ. The entropy of this distribution has
been approximated by the authors of [29]. Let us name this distribution as split-
Gaussian. The density function of this distribution is defined by

Definition (Split-Gaussian density function).

f(x) =
1√

2πσ2

[
e−

x−µ
2σ2 + e−

x+µ

2σ2

]
. (3.15)

The split-Gaussian distribution has zero mean and variance given by σ2
mg =

σ2 + µ2. Consider that µ = 2 and σ = 1, which results to a mixture of two
standard Gaussian distributions centered around −2 and +2, respectively, and an
ultimate variance of σ2

mg = 5. After Z-normalization, the relative entropy

DKL(f ‖ g) = lnσg
√

2π +
1

2

σ2
x

σ2
g

− h(f)

= ln
√

2π +
1

2
−
(

ln
√

2πe+ 0.633 + ln
1√
5

)
≈ 0.17 nats

≈ 0.25 bits ,

(3.16)

which means that when source coding a sequence of values drawn from f(x) as-
suming that it is a Gaussian distribution, for every 4 symbols, 1 bit is redundant.

3.1.2 On Z-Normalization in SAX

Z-normalization is performed in the input data of SAX in order to “standardize”
their underlying distribution, such that their mean value and variance are zero and
one, respectively. This helps in the discretization step, where the PAA segments
(segmented means) are quantized, to choose the Gaussian curve with the standard
parameters.

Nevertheless, even when the Gaussian assumption holds, Z-normalizing the
input data does not guarantee standard distribution in the PAA segments. To
verify, consider the case where the time series U ∈ T N is a sequence of correlated
and jointly Gaussian-distributed random variables. Without loss of generality,
consider the case where M = N/2, i.e. PAA takes pairs of adjacent samples and
computes their averages. Consider a specific pair of those samples (uj , uj+1) that
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Figure 3.1: SAX with equiprobable intervals quantization

are Z-normalized and thus are distributed uj ∼ N(0, 1), uj+1 ∼ N(0, 1). Denote
with ρ the correlation coefficient of the pair.

Then, it can be proved that Y = (uj + uj+1)/2 is distributed Y ∼ N(µY , σ
2
Y ),

where

µY = 0 ,

σ2
Y =

1 + ρ

2
.

(3.17)

That is, the PAA segment Y follows the standard Gaussian distribution only when
ρ = 1.

A simple, yet effective, fix to this behaviour is to apply Z-normalization on
the PAA segments, rather than the raw data samples. This guarantees standard
Gaussian distribution of the PAA segments.

3.1.3 On quantization with equiprobable intervals

As discussed in the introduction of this section, the choice of equiprobable quan-
tization intervals is attractive due to the increased distinctability it offers to the
quantized sequences by maximizing their entropy. When no other side information
is available, this approach is intuitively correct. However, there are applications
where this is not true.

Consider for example that an application benefits when assorting the range
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Figure 3.2: SAX with mode-bounding Lloyd-Max quantization
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Figure 3.3: SAX with conventional Lloyd-Max quantization
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of values into intervals that distinguishes adequately the extreme values from the
other. This is the case with most of anomaly detection scenarios. An illustrative
example is given in Figures 3.1 and 3.2, where equiprobable interval quantization is
compared with a non-equiprobable method (mode-bounding Lloyd-Max), described
in Sec. 4.1. As a second example, consider that the quantization method aims to
generate a sequence that is as close as possible to the original sequence. This
quantization method is the Lloyd-Max quantizer, described in Sec. 2.1.3, which
does not output equiprobable codewords (Fig. 3.3). For all of the examples given
in this subsection, the underlying distribution of the PAA segments is estimated
via KDE (ref. Sec. 2.1.2).

Notice that indeed, with equiprobable intervals, the symbolic representation has
maximum entropy (visually noticed by the highly fluctuating behaviour), whereas
the Lloyd-Max quantizer, which minimizes the MSE, does not produce equiprobable
intervals. On the other hand, the mode-bounding Lloyd-Max quantizer, represents
better the high-level behaviour of the time series.

3.2 Data-driven kernel-based probabilistic SAX

Following the remarks in the previous subsection, a SAX-based symbolic represen-
tation method is developed within this thesis, hereafter referred to as probabilistic
SAX (pSAX), which negates any assumptions regarding the probability distribu-
tion of a given time series. That is, the mapping between the time series space and
the space of symbols adapts directly to the data statistics.

To this end, the proposed method applies a kernel density estimator (KDE)
(Sec. 2.1.2) directly after the PAA to approximate accurately the underlying prob-
ability density function of the segmented means, without any prior probabilis-
tic assumption. To further enhance the generalization capability of the proposed
method, the KDE-based step is coupled with a Lloyd-Max quantizer (Sec. 2.1.3,
Alg. 1) to estimate the optimal quantization boundaries, which are further used
to define the map between the time series samples and the alphabet’s symbols.
Fig. 3.4 illustrates the overall pipeline of our method, whilst the bottom plot in
Fig. 3.5 visualizes the outcome of the proposed symbolic representation, as opposed
to the conventional SAX (top plot).
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Figure 3.4: Overview of pSAX pipeline. Notice that KDE and Lloyd-Max are active
only during training. After training, the boundaries are fixed and used unchanged
for future inputs.

3.2.1 Relation to prior work

The method presented here takes advantage of the model-free data-adaptive nature
of KDEs, along with the optimality (in the MSE sense) of Lloyd-Max quantiza-
tion, for the samples-to-symbols assignment. Previous works in time series repre-
sentations also perform data-driven discretization, by employing the k-means algo-
rithm [8, 26], self-organizing maps [17], or other clustering methods [13]. A modified
version of SAX (a.k.a. aSAX) [35] employs the k-means algorithm (Alg. 2) for the
discretization procedure. The experimental results exhibit a better generalization
capability of pSAX compared to aSAX, as shown in the Section 3.3.

While the present study is related to prior works in data-driven discretization,
our methodology capitalizes on the fact that Lloyd-Max quantization partitions the
data according to the underlying probability distribution estimated directly from
the data source. This was not considered in earlier studies, where the k-means and
the other clustering methods mentioned above partition the data according to the
observed samples.

3.2.2 Implementation details

In our pSAX method, the Lloyd-Max quantizer is chosen on the ground that it
will aid in the precision of generic data mining tasks. Other quantization schemes
might replace Lloyd-Max in specific tasks, as we demonstrate in Section 4.2 in the
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Figure 3.5: SAX representation of a time series with different quantization schemes.
Top plot: Equiprobable intervals under standard Gaussian distribution; Bottom
plot: Lloyd-Max quantization under KDE-estimated distribution.
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Method Time (ms)
α = 16 α = 32 α = 64 α = 128

pSAX 15.206 20.539 29.546 62.407

aSAX 2.859 4.644 6.402 9.587

Table 3.1: Training time of pSAX and aSAX on 10 sequences from the Koski ECG
dataset (M = 40, α ∈ {16, 32, 64, 128}, CPU: Intel i7-6700@3.8GHz).

case of anomaly detection.
In our implementation, we initialize the quantizer with the k-means++ algo-

rithm (Sec. 2.1.3, Alg. 3), which uses the raw PAA samples to quickly compute a
good starting point for the boundaries before optimizing upon the estimated den-
sity function. This yields an improved convergence to a local minimum, in terms
of MSE and convergence speed.

Regarding the KDE, we employ the Epanechnikov kernel (2.23). This choice
is motivated by (i) the asymptotic optimality (ref. Sec. 2.1.2) and (ii) the com-
pact support of this kernel, which yields an increased computational efficiency. In
advance, the smoothness parameter was chosen according to Silverman’s rule of
thumb (2.30). Although, after experimenting with the smoothness parameter, we
concluded that reducing Silverman’s approximation to its half resulted to better
results.

Notice that a training phase is required for our pSAX method. Specifically,
the KDE module for is trained first with a sufficient number of PAA segments.
Then, the Lloyd-Max quantization intervals are calculated based on the estimated
distribution. Nevertheless, this is done only once during initialization. As such,
the running time of the training phase does not contribute to the running time of
the subsequent dimensionality reduction process. Besides, our algorithm is trained
efficiently using a highly reduced set of training sequences (at the order of 10 in
this study). Table 3.1 shows the training times of pSAX and aSAX. As expected,
the training of pSAX takes longer than its aSAX counterpart, which is due to the
KDE step and the numerical integrations in the Lloyd-Max step.

3.2.3 A novel distance measure

The pSAX method uniquely defines a distance measure in the lower-dimensional
space. Let us first repeat the basic distance measures defined in Sec. 2.3.2 and
their properties. Let C, Q ∈ CMA be the symbolic representations of the time series
U and S, respectively. The mindist measure lower bounds the Euclidean distance
in the raw data space, a property that holds regardless of the chosen quantization
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intervals and hence does in pSAX, too.

mindist(C,Q) =

√√√√N

M
·
M∑
i=1

(dist(ci, qi))
2 , (3.18)

where dist(ci, qi) is the absolute difference of the two closest boundaries that re-
spectively bound ci and qi.

Let Y ∈ YM be the PAA of U and Q ∈ CMA the SAX representation of S. A
tighter than mindist lower bounding distance measure is

mindist_PAA(Y,Q) =

√√√√√√√N

M
·
M∑
i=1


(βLi − yi)2 if βLi > yi

(βUi − yi)2 if βUi < yi

0 otherwise

, (3.19)

where βLi and βUi are the lower and upper boundaries of codeword qi.
The tightness of lower bound (TLB) is defined as

TLB(U, S) =
mindist_PAA(Y,Q)

d(U, S)
, (3.20)

where d(U, S) is the Euclidean distance of U and S.
Up to this point, only lower-bounding distance measures have been defined.

Specifically, the distances in (3.18)-(3.19) employ the interval boundaries to lower-
bound the true Euclidean distance. Notably, the conventional SAX does not define
arithmetic values for the symbols in the lower-dimensional space.

On the other hand, the Lloyd-Max quantizer does provide arithmetic values for
the codewords, apart for the boundaries. As discussed in Sec. 2.1.3, these values
are the centroids of the bounded intervals. This feature can be further exploited
to define a new distance measure between two symbolic sequences Q, C ∈ CMA , as
follows,

ds(Q,C) =

√√√√N

M

M∑
i=1

(qi − ci)2 . (3.21)

Although this measure does not lower bound the Euclidean distance, however,
it is the closest to the true Euclidean distance in the MSE sense, up to a distortion
caused by the inefficiency of KDE to estimate exactly the true distribution and of
Lloyd-Max to minimize globally the MSE. Accordingly, a distance measure between
a time series and a symbolic sequence can be derived by utilizing the computed
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centroids. Specifically, given U ∈ T N and C ∈ CMA , their distance is defined by

de(U,C) =

√√√√√ 1

N

M∑
i=1

 (N/M)i∑
j=(N/M)(i−1)+1

(uj − ci)2

 . (3.22)

In the special case when C is the symbolic representation of U , then de is the
root mean squared error (RMSE) between U and its reconstruction from C.

3.3 Experimental evaluation

This section evaluates the performance of pSAX and compares against aSAX and
the conventional SAX, with respect to the achieved TLB (3.20) and RMSE (3.22)
values. The methods are compared for a varying symbolic sequence length M ∈
{32, 48, 64, 80} (the lower this number, the higher the dimensionality reduction),
alphabet size α ∈ {8, 16, 32, 64, 128} and time series subsequence length N ∈
{480, 1920} (short and long). Four distinct datasets are employed (Koski ECG,
Muscle Activation, Rittweger EOG, and Respiration)1, which are characterized by
both structured and complex behaviors. Figure 3.6 illustrates the datasets. For
each dataset, the results are averaged over 8000 Monte Carlo iterations, each one
corresponding to a randomly selected segment from the associated time series. The
length of the segments N and the parameters M and α are chosen in compliance
with the experimental sections in [19], [35]. In order to simulate streaming scenar-
ios, the training samples are taken from the beginning of each dataset. We note
that, although our method does not require a Z-normalization of the time series,
however, we also Z-normalize the given data for a fair comparison with the other
methods.

As a first experiment, we investigate the effect of the symbolic sequence length
M on the performance of our method. In particular, Fig. 3.7 shows the aver-
age TLB and RMSE values for the Respiration dataset (characterized by dense
spikes). As it can be seen, pSAX achieves a tighter lower bound, yielding a more
accurate lower-bounding distance (2.55) in the lower-dimensional space. Addition-
ally, pSAX achieves a more accurate reconstruction (lower RMSE) against both
SAX and aSAX. Furthermore, the superiority of pSAX is more prominent as M
increases. Table 3.2 shows the average TLB and RMSE values for two additional
datasets, namely, the Rittweger EOG (a waveform with varying frequency) and
Koski ECG (characterized by a repetitive pattern). As it can be seen, similar
results are obtained, demonstrating the superiority of our proposed method.

1Datasets available at www.cs.ucr.edu/~eamonn/iSAX/iSAX.html
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Figure 3.6: The datasets employed in the experimental evaluation of the proposed
pSAX method. Here, a segment of 2000 samples from each dataset is visualized.
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Next, we study the effect of the alphabet size α on the performance of pSAX.
To this end, Fig. 3.8 shows the average TLB and RMSE values for the Muscle
Activation dataset (a noisy periodic signal), as a function of α. The experiments
show that pSAX achieves a tighter lower bound, along with a better reconstruction
quality, when compared against SAX. The same holds against aSAX most of the
times, except for a few datasets, when the alphabet size is α ≤ 8. As expected, the
larger the alphabet size the more improved the performance of all the three methods
(i.e., higher TLB and lower RMSE). Similar results are shown in Table 3.3 for the
Respiration and Muscle Activation datasets, demonstrating the efficiency of pSAX
in adapting to distinct data generating processes. Note that, for the calculation of
RMSE (3.22), the pSAX codewords are computed using the Lloyd-Max algorithm,
whilst for aSAX and SAX they are computed using the k-means and the line 5 in
Algorithm 1, respectively.

Overall, we conclude that, under all the experimental parameters settings tested
herein, pSAX achieves a tighter lower bound (i.e., closer to 1) and a smaller RMSE
when compared with SAX. Moreover, in the vast majority of the settings, pSAX
also outperforms aSAX, except for a few cases when the alphabet size is very small.
Finally, note that, when SAX-based methods are used for data indexing purposes,
the achieved speedup is generally nonlinear with respect to TLB [38]. Thus, we
expect that our pSAX method will require a reduced number of disk accesses, when
compared against aSAX and SAX, due to its higher TLB. However, the design of
a pSAX-based indexing technique is left as a future thorough study.
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Figure 3.7: Tightness of lower bound (top) and reconstruction error (bottom) vs.
M for the Respiration dataset (α = 32). Left: N = 1920 – Right: N = 480

M = 32 M = 64 M = 80

Dataset Method TLB

Rittweger EOG
pSAX 0.8954 0.9481 0.9570
aSAX 0.8930 0.9416 0.9500
SAX 0.8936 0.9388 0.9463

Koski ECG
pSAX 0.8205 0.9200 0.9380
aSAX 0.8084 0.8984 0.9219
SAX 0.7719 0.8292 0.8406

Dataset Method RMSE

Rittweger EOG
pSAX 0.3614 0.1858 0.1606
aSAX 0.3638 0.1900 0.1663
SAX 0.3626 0.2010 0.1782

Koski ECG
pSAX 0.5025 0.2917 0.2535
aSAX 0.5037 0.2956 0.2574
SAX 0.5415 0.4443 0.4310

Table 3.2: Average TLB and RMSE vs. M , for the Rittweger EOG and Koski
ECG datasets (N = 480, α = 64).
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Figure 3.8: Tightness of lower bound (top) and reconstruction error (bottom) vs.
α for the Muscle Activation dataset (M = 80). Left: N = 1920 – Right: N = 480

α = 8 α = 32 α = 128

Dataset Method TLB

Respiration
pSAX 0.5006 0.5834 0.6042
aSAX 0.4954 0.5794 0.6032
SAX 0.4942 0.5664 0.5917

Muscle Activation
pSAX 0.8102 0.8968 0.9223
aSAX 0.8231 0.8920 0.9196
SAX 0.7911 0.8878 0.9194

Dataset Method RMSE

Respiration
pSAX 0.7894 0.7727 0.7740
aSAX 0.7910 0.7742 0.7741
SAX 0.8110 0.7952 0.7912

Muscle Activation
pSAX 0.3160 0.2941 0.2924
aSAX 0.3120 0.2949 0.2925
SAX 0.3341 0.2955 0.2925

Table 3.3: Average TLB and RMSE vs. α, for the Respiration and Muscle Activa-
tion datasets (N = 1920, M = 80).
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Chapter 4

Fast Anomaly Detection of Time
Series

In this section, an unsupervised, non-parametric method for anomaly detection
is developed, characterized by low power and memory demands. Due to these
properties, and because of the causal nature of the method, the detector is an
excellent candidate for processing streaming data. In particular, fast processing of
the received streaming data is enabled by first applying a dimensionality reduction
step. To this end, we rely on a variant of pSAX (Sec. 3.2), where the quantizer is a
modified version of Lloyd-Max. The choice of pSAX is further motivated by the fact
that symbolic representations can be coupled effectively with the KL GoF method
(Sec. 2.2.1) in order to evaluate the time-evolving distribution of the generated
symbols. The efficiency of the proposed method is evaluated by employing the
Numenta Anomaly Benchmark (NAB) [18], a highly comparative scoring system.
Below, the proposed online anomaly detection method, which we name “SAX-KL”,
is described in details.

4.1 Mode-bounding Lloyd-Max

As noted above, the proposed anomaly detector first performs dimensionality re-
duction on the streaming data via a variant of pSAX. The modification that dis-
tinguishes the present pSAX from the one that is described in Section 3.2 lies in
the quantization step. Particularly, it can be observed that Lloyd-Max is not suit-
able for clustering data into clusters that correspond to distinct states of the time
series, as would be desirable for the purposes of anomaly detection. Specifically,
as seen in Figure 4.1a, the calculated intervals often split the true clusters (i.e.,

49



50 CHAPTER 4. FAST ANOMALY DETECTION OF TIME SERIES

Algorithm 4 Mode-bounding Lloyd-Max
1: Inputs: α, k
2: Compute B = k · α quantization intervals with bounds M = [m1, . . . ,mB+1]

via Lloyd-Max.
3: while |M| > α do
4: remove mj∗ from M , with j∗ = arg minj(mj −mj−1)

the intervals around the modes) of the source’s pdf. This is undesirable, since, al-
though data falling in the same mode are assumed to be similar, however, splitting
a mode may yield a misinterpretation as of the data belonging to distinct subclus-
ters being significantly different. From a statistical viewpoint, this is a problem of
bounding the modes of a probability density function. To overcome this drawback,
a modification of the Lloyd-Max quantizer is proposed below.

The proposed quantization method is a simple modification of the conventional
Lloyd-Max quantizer, aiming at better detecting the modes rather than the quan-
tiles of a probability density function. Specifically, let α be a predefined number
of quantization intervals. The mode-bounding Lloyd-Max quantizer first estimates
a number of quantization intervals k · α, k ∈ N . Then, a merging of the smallest
intervals with their neighbours is carried out iteratively until the α largest intervals
are left. This process is summarized in Algorithm 4 and illustrated in Fig. 4.1b, in
contrast with the conventional Lloyd-Max quantizer in Fig. 4.1a.

The idea behind the proposed quantizer is that a finer quantization will fine-
slice the peaks of the modes in the pdf, as the density around the peaks is high.
Subsequently, merging the smallest intervals implicitly merges the intervals around
the peaks, leaving the boundaries of the modes intact. The effect is visualized in
Fig. 4.2.

4.2 SAX-KL

The proposed anomaly detection method is applied in a lower-dimensional space
by incorporating the pSAX variant described above, in conjunction with the KL
GoF test overviewed in Sec. 2.2.1.

In particular, working in a sliding window fashion, given the alphabet size α
and the dimensionality reduction ratio M/N , the current window of length Nw

is first transformed into a symbolic sequence S of length Mw = M
N · Nw. The

transformation is carried out by pSAX integrated with the mode-bounding Lloyd-
Max quantizer described in Sec. 4.1, while alternative quantization methods are
compared in the experimental section 4.3.2.
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(b) pSAX with Mode-bounding Lloyd-Max quantization

Figure 4.1: Output of pSAX employing two different quantization options. Note
that the dominant mode is splitted in two intervals by the conventional Lloyd-
Max quantizer, while a more accurate bounding is achieved by the mode-bounding
Lloyd-Max.
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(a) Mode-bounding Lloyd-Max before inter-
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(b) Mode-bounding Lloyd-Max after inter-
val merging

Figure 4.2: Illustration of the Mode-bounding effect. The output alphabet size is
α = 7, resulted after merging 4 · 7 = 28 initial intervals.

Having generated the symbolic sequence of length M for the current window,
the probability distribution of the α alphabet symbols is calculated for theM -sized
sequence. Then, the goodness-of-fit test described in Sec. 2.2.1 is applied to classify
the window as anomalous or not. Here, the cardinality of the sample space of the
symbols in S, which is required in Wilks’ Theorem (2.47) for the definition of the
chi-squared distribution, is equal to the alphabet size α.

Note that both α and M/N determine the degree of compressibility achieved
by the symbolic sequence, and hence the computational and memory savings of
the overall anomaly detection system. However, α and M/N affect the detector’s
efficiency in a different way. In the optimal case, the alphabet size should match
the number of “states” in the given time series. For instance, a binary source with
additive noise can be represented efficiently with a binary alphabet. Likewise, a
CPU activity log may be represented adequately with an alphabet size equal to
the expected number of activity states. On the other hand, the dimensionality
reduction ratio should preserve the raw data patterns.

We emphasize again that the proposed online anomaly detection method is
distribution-free, by not relying on any prior assumption on the underlying data
distribution. Furthermore, it does not require access to past data, but only to
the probability distributions of the past (symbolic) windows. Memory-wise, this
is more efficient, since a window of length Nw is represented by only α � Nw

numbers, i.e., the probability of appearance of each symbol.
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4.3 Results

4.3.1 Performance metrics

In this section, the anomaly detection accuracy of the proposed method is evalu-
ated. On the whole, the performance of anomaly detection methods is evaluated
in terms of the true positive (TP), true negative (TN), false positive (FP) and
false negative (FN) rates. Remember that, in the context of hypothesis testing,
a positive occurs when the null hypothesis is rejected, whereas a negative occurs
when the null hypothesis is confirmed. Also, FP’s and FN’s are equivalent to Type
I (2.37) and Type II (2.38) errors, respectively.

Standard performance metrics for anomaly detectors (classifiers in general) in-
clude the following information retrieval measures:

Precision =
TP

TP + FP
, (4.1)

Recall =
TP

TP + FN
, (4.2)

F-score = 2× Precision× Recall

Precision + Recall
. (4.3)

Precision measures the correctness of positives, whereas Recall measures the
success in detecting anomalies. F-score is the harmonic mean of Precision and
Recall, which provides an overall measurement of the performance.

The above metrics are suitable for anomaly detection over batches of data or
subsequences over a time window of predefined length (e.g. packets in commu-
nication networks, daily stock market prices, traffic in rush hours, etc.). On the
other hand, the accuracy of anomaly detection data which do not form predefined
batches, such as real-time streaming data, cannot be evaluated directly with the
above metrics. To alleviate this issue, the authors in [18] propose a benchmark
algorithm (NAB) to tackle these limitations. The outcome is a scoring system tai-
lored to streaming anomaly detectors, which contains a total of 58 synthetic and
real-world streaming datasets with labeled anomalies. Moreover, the algorithm
calculates three different scores by weighing Type I and Type II errors differently:
(i) favoring fewer Type I errors, (ii) favoring fewer Type II errors, and (iii) a “stan-
dardized” score, that balances both Type I and Type II errors. The scores range
between 0 and 100 (the higher the better).

A core concept of NAB is the definition of anomalous windows, i.e., windows
centered on anomaly points, with which a true positive is scored according to how
early or late within the window it is located (the earlier the better). Naturally,
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the points that are classified as anomalous within an anomalous window are jointly
accounted for as a single true positive. The length of the windows is set heuristically
and separately for each dataset.

The concept of anomalous windows in NAB lead us to the idea of splitting
the streaming data, following the same heuristics as NAB does, into equal-sized
windows, either anomalous or anomaly-free, into which the detected anomalies are
merged. Adopting this approach allows us to exploit the commonly used perfor-
mance metrics defined by (4.1)-(4.3) by merging the positives and negatives within
the imaginary windows.

In the following subsections, the performance of SAX-KL is evaluated for vary-
ing dimensionality reduction ratios. To this end, the NAB scores and the metrics
in (4.1)-(4.3) (which are calculated according to the methodology described above)
are used, as well as a collection of time series from pressure sensors in supply-
ing water pipes. Doing so, we provide a complete assessment of the detector’s
performance.

4.3.2 Experimental evaluation: NAB

In this subsection, the collection of datasets provided by NAB are employed to
evaluate the performance of the proposed method. The results are averaged over
100 Monte Carlo iterations, although the deviation across the iterations was not
significant. The NAB scores achieved by the proposed method are compared with
some of the currently best performing anomaly detection algorithms, whose scores
are obtained directly from the online repository1 maintained by the authors of [18].

Regarding KL GoF and SAX-KL, the following parameters setting is used for
all datasets: window length Nw = 48, alphabet size α = 7, and quantiles multiplier
for the mode-bounding Lloyd-Max (Alg. 4) k = 4. In order to set the significance
level γ, we experimented with (2.48) by fixing α = 7. In general, we ended up rising
the initial computations of significance levels, especially when the PAA length was
in the higher end. Note that the aforementioned online repository lists the values
of the KL GoF under the name “Relative Entropy”, and with scores significantly
lower than those reported herein. The reason is that the anomaly detector they
employed is executed for α = 5 and γ = 0.01, whereas we found out that our
setting achieves higher scores.

As it can be seen in Table 4.1, when no dimensionality reduction is applied,
the proposed method has improved performance compared to the conventional KL
GoF, whilst it clearly competes most of the currently best performing detectors.

1https://github.com/numenta/NAB/#scoreboard
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Detector Standard Low FP Low FN F-score
Numenta HTM 70.1 63.1 74.3 0.5908

CAD OSE 69.9 67.0 73.2 0.6970

SAX-KL (mode-bounding) 66.3 61.2 70.1 0.5542

KL GoF (uniform) 62.0 57.4 65.6 0.5574

SAX-KL (L-M) 60.4 51.4 65.9 0.3944

earthgecko Skyline 58.2 46.2 63.9 0.4153

KNN CAD 58.0 43.4 64.8 0.3758

SAX-KL (k-means) 57.2 47.9 62.8 0.3685

Random Cut Forest 51.7 38.4 59.7 0.4728

Twitter ADVec v1.0.0 47.1 33.6 53.5 0.4151

SAX-KL (Gaussian equipr.) 43.1 36.5 47.1 0.3150

Table 4.1: NAB scores. The proposed SAX-KL method has been set with M/N =
1.0 (i.e., no dimensionality reduction). The parameters of SAX-KL and KL GoF
are the same and optimized for NAB’s datasets: Nw = 48, α = 7, γ = 0.002. In
parentheses, the quantization scheme, where applied.

The scores also highlight the superiority of the mode-bounding variation of Lloyd-
Max (L-M) for the purpose of statistical inference against both the conventional L-
M and the k-means (used in aSAX), whereas the assumption of Gaussian statistics
(i.e. as in conventional SAX) reduces the efficacy of the detector tremendously.

More importantly, the proposed method uniquely enables anomaly detection in
a lower-dimensional space, due to pSAX. The second experiment investigates the
effect of the degree of dimensionality reduction on the performance of SAX-KL.
Table 4.2 presents the anomaly detection performance of SAX-KL by varying the
dimensionality reduction ratio M/N ∈ [1/48, 1/1] (from large to low dimension-
ality reduction), in terms of the NAB scores, as well as the Precision and Recall.
Furthermore, Fig. 4.3 shows the respective average F-score as a function of M/N .

Notably, according to the NAB scores in Table 4.2, the performance of the pro-
posed method in the lower-dimensional space is still as good as the best performing
detectors (Table 4.1), even for large dimensionality reduction. An interesting ob-
servation is that the performance of the detector does not decrease monotonically
with the dimensionality reduction. A more thorough study of the effect of the
dimensionality reduction ratio on the detector’s performance is left as a future
work.
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NAB Scores
M/N Nw γ α Stand. Low FP Low FN Precis. Recall
1/1 48 0.002 7 66.3 61.2 70.1 0.4280 0.7863

1/2 48 0.022 7 65.0 59.5 68.9 0.4023 0.7766

1/3 48 0.052 7 64.0 58.3 68.2 0.3933 0.7743

1/4 48 0.082 7 65.0 59.3 69.4 0.4029 0.7891

1/6 48 0.134 7 63.5 57.8 67.8 0.3666 0.7295

1/8 48 0.174 7 62.6 56.9 66.9 0.3875 0.7643

1/12 48 0.234 7 60.4 55.4 64.3 0.3865 0.7296

1/16 48 0.276 7 59.9 54.9 64.0 0.3723 0.7309

1/24 48 0.337 7 59.8 55.4 63.9 0.3835 0.7297

1/32 64 0.337 7 58.1 53.6 62.3 0.3644 0.7136

1/48 96 0.337 7 54.5 50.0 58.6 0.3235 0.6767

Table 4.2: Performance of the proposed SAX-KL method vs. dimensionality re-
duction ratio (M/N).

1/1 1/2 1/4 1/8 1/16 1/32

M / N

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

F
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Figure 4.3: Average F-score vs. dimensionality reduction ratio.
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Algorithm Part Space Complexity Time Complexity
quantization intervals O(α− 1)

PAA O(M logα) O(N)

distributions O(Mα) O(M)

KL divergence O(α) O(Mα)

Table 4.3: SAX-KL Complexity

Detector Running time (ms)
Numenta HTM 123.76

CAD OSE 24.48

SAX-KL (k = 4), M/N = 1/1 4.10

SAX-KL (k = 4), M/N = 1/2 1.95

SAX-KL (k = 4), M/N = 1/4 1.06

SAX-KL (k = 4), M/N = 1/8 0.68

KL GoF (uniform) 2.54

earthgecko Skyline 93.05

Table 4.4: Running time for the “machine_temperature_system_failure” dataset

4.3.3 Computational and space requirements

The running time of SAX-KL and KL GoF method is exactly the same when
M/N = 1.0, since the training phase of the KDE step is carried out only once
during initialization, and thus can be disregarded in the subsequent application of
the method on the streaming data. Practically, during the initial application of the
detector, a better approximation of the true distribution function can be computed
as samples come in and update the quantization intervals.

Overall, the method requires small memory and computationally benefits from
the dimensionality reduction. The space and time complexity of SAX-KL can be
seen in Table 4.3. Notice that the efficiency of SAX-KL increases as M decreases
and that when M = N , the efficiency of SAX-KL reduces to that of KL GoF.

As an example, we ran the top 5 detectors from Table 4.1 on the real-world
dataset “machine_temperature_system_failure” from NAB’s collection, which con-
tains 22695 samples, on an Intel i7-6700@3.8GHz. The results can be seen in
Table 4.4.
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Figure 4.4: Topology of the regions where the pressure of the water inside the input
and output pipelines is recorded. Picture provided by CONSTRAT Ltd.

4.3.4 Experimental evaluation: Water data

This subsection presents the results of SAX-KL on a collection of datasets of water
pressure time series collected from sensors inside supplying water pipes in Herak-
lion, Crete. The sensors are grouped into pairs, where each pair consists of an input
and an output pressure reading to, and from, a specific region. Also, some of the
sensors are located in different regions but are connected in series, thus reading cor-
related signals. As such, the datasets are good candidates for testing our method to
multi-dimensional data. To this end, we transformed each time series independently
via pSAX and then applied our anomaly detector on the multi-dimensional sym-
bolic sequence output. The symbols of the multi-dimensional sequence are formed
by the combination of the concurrent individual, uni-dimensional, codewords. The
topology of the sensors is depicted in Fig. 4.4, where the regions corresponding to
each pair of input and output sensors are marked.

Unfortunately, there is no ground truth available for anomaly events in our
data. Nevertheless, these can easily be observed by sudden upward or downward
spikes on the data. An upwards spike indicates that the water flow is obstructed
by some foreign material. On the other hand, a downward spike indicates a leak.
We emphasize that the proposed method is context-unaware and as such, only im-
plicitly can classify sudden spikes as anomalous. Our results show that it succeeds
to do so.
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As of the parameter setting, we kept the same settings as in the previous sub-
section, i.e. Nw = 48, α = 7, γ = 0.002. Here, the window length Nw = 48 is
equivalent to 12 hours. Moreover, the KDE was allowed to train on the first full
year of recorded data, simulating the scenario of training from historic data. Lastly,
the null hypothesis is defined to be the distributions of the windows of only the
past year from the current window. This has the following benefits: i) it prevents
the method from over-fitting to previous anomalies, ii) allows the method to adapt
faster to more recent data, iii) reduces the space requirements by deleting the old
distributions from the memory.

At first, pSAX is set with M/N = 1/1, i.e. with no dimensionality reduc-
tion. Because the sampling rate is low (1 sample per 15 minutes), it might not
be necessary to reduce the dimensionality whatsoever, but we provide results with
dimensionality reduction at the end of this subsection. Nevertheless, SAX-KL
benefits power- and memory-wise from the quantization step.

Figure 4.5 depicts the pressure and the SAX-KL results for the regions #5 and
#7, numbered as indicated in Fig. 4.4. It can be seen that most of the sudden spikes
we discussed are indeed flagged as anomalous events. In addition, processing jointly
the input and output data increases the accuracy of the detector in the general case
(fewer false positives, while the true positives are marginally increased).

One problem that arises in water monitoring is to infer whether anomalies
affect neighbouring regions, other than the one where the anomaly initiated. In
that case, the problem concerns one of the major pipelines and might affect other
places that are not being monitored. To answer this question, we experimented
with neighboring regions, in our example with the regions #1 and #5, of which
the pipelines are interconnected and thus, anomalies might be propagated. To
infer whether anomalies concur in both regions, we computed the element-wise
product of the pSAX-symbolic sequences of all four (two input and two output)
pressure time series from the regions and ran the SAX-KL on it. Here, in order
to allow the product calculation, the codewords for each of the symbolic sequences
are the integers 0, 1 . . . , α − 1. Anomalies on this product denote anomalies that
affect the whole neighbour of the two regions. Because it is natural to have delays
in the anomalies between the two regions, we allowed our pSAX to reduce the
dimensionality of the raw time series with dimensionality reduction ratio M/N =

1/4, thus merging 4 adjacent samples, which is one hour up to the current sample.
In addition, due to the fact that the task here is to find more coarse anomalies
in our data, we slightly reduced the alphabet size of pSAX (to 6 from 7), which
resulted to much fewer false positives. The results are shown in Fig. 4.6.

Lastly, we experimented with the dimensionality reduction ratio. The reference
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(a) Input of region #5

(b) Output of region #5

(c) Input and output of region #5
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(d) Input of region #7

(e) Output of region #7

(f) Input and output of region #7

Figure 4.5: SAX-KL results in uni- and two-dimensional water pressure data.
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(a) Input and output of region #1

(b) Input and output of region #5

(c) Input and output of regions #1 and #5

Figure 4.6: SAX-KL results for concurrent anomalies detection.
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dataset in this experiment is from the region #8. Figure 4.7 illustrates the results
for M/N ∈ {1/1, 1/2, 1/4} (from no to moderate dimensionality reduction). It can
be seen that most of the major changes in water pressure are captured from the
proposed SAX-KL method, regardless of the reduced dimensionality.
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(a) M/N = 1/1

(b) M/N = 1/2

(c) M/N = 1/4

Figure 4.7: SAX-KL results for region #8 for different settings of M/N .



Chapter 5

Conclusion and future work

This work proposes a new symbolic representation method, called pSAX, which
generalizes previous SAX-based techniques by adapting directly to the underlying
probability distribution of a given time series, without any prior model assump-
tion for the data generating process. To this end, the proposed pSAX method
exploits the power of KDEs for accurate density estimation by a restricted amount
of training samples, with the efficiency of Lloyd-Max quantization for optimizing
the intervals and associated codewords. Furthermore, two novel distance measure
in the lower-dimensional space of symbolic sequences are introduced, which can
be employed in data mining tasks. Our experiments revealed the superiority of
pSAX, compared to alternative SAX-based techniques, in terms of representation
accuracy. Notably, the proposed methodology can be coupled with other vari-
ants of SAX in a straightforward way, to improve their performance in the case of
non-Gaussian data.

Furthermore, the proposed dimensionality reduction method is employed to
speed-up a statistical anomaly detector. While reducing the dimensionality enabled
faster processing of the time series, the conventional Lloyd-Max quantizer was not
able to provide a good basis for statistical inference. To tackle this issue, an
alternative quantization scheme is proposed, based on a simple heuristic variation
of the Lloyd-Max, which clusters the data according to the modes of the density
function.

The proposed anomaly detector, named by SAX-KL, is evaluated by means of
the Numenta Anomaly Benchmark, an anomaly detection benchmark tailored to
streaming data. In addition, the proposed method is also tested on a collection of
water pipelines pressure time series. In the latter case, SAX-KL is also tested for
two-dimensional time series, while a method is shown to quickly find anomalies in
multiple correlated time series. Overall, the proposed anomaly detector achieves
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similar performance, or even it outperforms, the best performing methods available
for streaming data. Most importantly, this is also the case even for large dimen-
sionality reduction ratios (i.e., highly compressed data). It is also demonstrated to
handle efficiently multi-dimensional data and data from correlated sources.

Currently, time series and their statistics are considered in a static framework
by our methods. As a further generalization of pSAX, an online extension over
sliding windows is under investigation for real-time applications. To this end,
we are interested in tracking the evolution of data statistics across time, while
also applying a dynamic quantization scheme, under execution time constraints.
Finally, the efficacy of our proposed distance measure will also be evaluated in data
indexing scenarios, which is feasible due to the lower bounding property.



Appendix A

Proofs

A.1 Theorem 3.1.1

Proof. Denote with G(xi) the PMF of the quantized X under the wrong distribu-
tion g(x). Assuming optimal coding under G(xi), the expected code length is
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∑
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−→D(f ‖ g) + h(X) + log
1

∆
+ 1 , as ∆→ 0 ,

(A.1)
where, in the last line, Riemann integrability is assumed.
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Similarly,
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(A.2)

A.2 Proposition 3.1.1

Proof. From Lemma 3.1.3, we have that DKL(f ‖ g) = h(f, g)− h(f). Also,

h(f, g) =−
∫
f(x) log g(x)dx

=−
∫
f(x) log

1√
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(A.3)

Then, if µx = µg = µ,
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h(f, g) = log σg
√

2π +
1

2σ2
g

σ2
x

= log σg
√

2π +
1

2

σ2
x

σ2
g

,

(A.4)

where in the second term of the first line of (A.4), the definition of the variance is
used.
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