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Abstract

During the last years we witnessed an increasing interest in pervasive computing
systems and applications. Ubiquitous computing environments provide multitudes
of technologies seamlessly augmented with physical systems to aid users in everyday
tasks. Accurate location awareness is of paramount importance in most pervasive
applications. Numerous techniques for indoor localization based on IEEE 802.11,
bluetooth, ultrasonic and vision technologies have been proposed. This thesis presents
two di�erent approaches for positioning. In the �rst the IEEE 802.11 infrastructure
is used and in the second computer vision is employed as the sensing modality.

We propose a localization technique based on the generation of statistical �n-
gerprints from signal strength measurements, that are collected from several access
points (APs). A discretized grid-like form of the environment is considered and a
signature at each cell of the grid is computed. At run time the system compares the
signature at the unknown position with the signature of each cell of the grid. The ex-
perimental evaluation of the proposed positioning system has been conducted on the
premises of FORTH and the Cretaquarium under di�erent, real-life conditions. Our
results indicate that the user's position can be detected with a few meters accuracy,
depending on the environment, the conditions in it, and the �ngerprinting-technique
used. The impact of each one of these parameters has been studied.

The pervasive nature of mobile phones makes them an ideal platform for location-
aware applications. In this context, we have used the built-in cameras of mobile
phones and computer vision techniques for localization. We have developed an appli-
cation for the Android platform, that is able to identify the position of a user relative
to a QR code (two dimensional barcode) with cm accuracy. The user scans the QR
code with the camera of the mobile device and the captured image is analyzed, in
order to detect the camera's position. The QR codes are attached to physical objects
in order to retrieve object-related information and functionality. In this way, the user
can get location-based information or trigger actions (e.g. printing of a document)
by decoding a QR code.



PerÐlhyh

Ta teleutaÐa qrìnia parathr svame èna auxanìmeno endiafèron gia ta svusvt mata
kai efarmogèc pantaqoÔ parìntoc upologisvt . Ta pantaqoÔ parìnta upologisvtik� pe-
rib�llonta parèqoun pl jh teqnologi¸n apìluta svunufasvmènec me fusvik� svusvt mata
gia th bo jeia twn qrhsvt¸n svtic kajhmerinèc touc ergasvÐec. O akrib c entopisvmìc
jèsvhc eÐnai uyÐsvthc svhmasvÐac svtic perisvsvìterec pantaqoÔ paroÔsvec upologisvtikèc e-
farmogèc. Polu�rijmec teqnikèc èqoun protajeÐ gia thn eÔresvh jèsvhc sve esvwterikoÔc
q¸rouc, oi opoÐec basvÐzontai sve teqnologÐec ìpwc to IEEE 802.11, bluetooth, upe-
rhqhtikèc kai upologisvtik  ìrasvh. H paroÔsva metaptuqiak  ergasvÐa parousvi�zei dÔo
diaforetikèc prosveggÐsveic gia ton entopisvmì jèsvhc. Sthn pr¸th qrhsvimopoieÐtai h
IEEE 802.11 upodom  kai svthn deÔterh qrhsvimopoieÐtai h upologisvtik  ìrasvh svan ai-
svjht ria mèjodoc.

ProteÐnoume mia teqnik  entopisvmoÔ jèsvhc, basvisvmènh svthn dhmiourgÐa svtatisvtik¸n
�apotupwm�twn� apì tic metr sveic èntasvhc sv matoc, oi opoÐec svullègontai apì di�fora
svhmeÐa prìsvbasvhc (APs). O fusvikìc q¸roc qwrÐzetai mèsvw enìc plègmatoc sve isvome-
gèjh keli� kai upologÐzetai èna �apotÔpwma� èntasvhc sv matoc sve k�je kelÐ. Kat� thn
ektèlesvh tou, to svÔsvthma svugkrÐnei sve pragmatikì qrìno to apotÔpwma svthn �gnwsvth
jèsvh me to apotÔpwma k�je kelioÔ svton q¸ro. H peiramatik  axiolìghsvh tou proteinì-
menou svusvt matoc eÔresvhc jèsvhc èqei pragmatopoihjeÐ svtic egkatasvt�sveic tou ITE kai
svto enudreÐo Kr thc k�tw apì realisvtikèc svunj kec. Ta apotelèsvmat� mac deÐqnoun
ìti h jèsvh tou qr svth mporeÐ na aniqneujeÐ me akrÐbeia lÐgwn mètrwn, an�loga me to
q¸ro, tic svunj kec pou epikratoÔn sve autì, kai th mèjodo pou qrhsvimopoieÐtai gia th
dhmiourgÐa twn �apotupwm�twn�. H epÐdrasvh twn paramètrwn aut¸n svthn akrÐbeia tou
svusv matoc èqei epÐsvhc melethjeÐ.

H diadedomènh qr svh kinht¸n thlef¸nwn svthn kajhmerin  mac zw , ta metatrèpei sve
mia idanik  platfìrma gia th dhmiourgÐa efarmog¸n pou pou prosvfèroun plhroforÐa
svto qr svth me b�svh th jèsvh tou. Se autì to plaÐsvio, qrhsvimopoioÔme tic ensvwma-
twmènec fwtografikèc k�merec twn kinht¸n thlef¸nwn kai teqnikèc upologisvtik c
ìrasvhc gia ton entopisvmì jèsvhc. Dhmiourg svame mia efarmog  gia thn platfìrma An-
droid, h opoÐa mporeÐ na prosvdiorÐsvei th jèsvh enìc qr svth sve svqèsvh me èna QR code
(disvdi�svtato barcode) me akrÐbeia ekatosvt¸n. O qr svthc aniqneÔei to QR code me thn
k�mera tou kinhtoÔ kai h fwtografÐa pou trab�ei analÔetai, prokeimènou na entopisvteÐ
h jèsvh thc k�merac. Ta QR codes mporoÔn na topojethjoÔn sve antikeÐmena ètsvi ¸svte
na eÐnai dunat  h an�kthsvh plhrofori¸n kai leitourgi¸n, svqetikèc me to antikeÐmeno.
Me autìn ton trìpo, o qr svthc mporeÐ na p�rei plhroforÐec svqetikèc me th jèsvh tou
svto q¸ro   na prokalèsvei di�forec enèrgeiec (p.q. ektÔpwsvh enìc eggr�fou) me thn
apokwdikopoÐhsvh enìc QR code.
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Chapter 1

Introduction

Pervasive computing relies on the convergence of wireless technologies, advanced elec-
tronics and Internet. Ubiquitous availability of wireless networks combined with pow-
erful mobile devices (e.g. mobile phones, smart phones and PDA's) has the potential
to lead to a huge set of new services and applications. Emerging ubiquitous comput-
ing applications have a great need for location awareness. Location-based services can
be bene�cial in many aspects of our everyday life, such as transportation, entertain-
ment, emergency situations for disaster relief, and assistive technology in the medical
community. Smart-environments, that can unobtrusively communicate with the user
and provide context-aware information can also bene�t from the knowledge of phys-
ical location. The determination of the physical location is known as localization or
location sensing.

Several research [44, 8, 35, 33, 2] and commercial [3, 1] location systems have
been built, which vary signi�cantly in their capabilities and requirements. These
systems can be classi�ed according to their dependency on and use of specialized
infrastructure and hardware, signal modalities, training, methodology and/or use of
models for estimating distances, orientation and position, coordination system used,
scale, cost, localized or remote computation, accuracy and precision requirements.
The distance can be estimated using time of arrival (e.g. GPS[1], PinPoint[35]) or
signal-strength measurements [8, 20, 34], if the velocity of the signal and a signal
attenuation model for the given environment, respectively, are known.

The de facto standard for outdoor location sensing is GPS [1]. However, GPS
does not work everywhere. In particular, the technology typically breaks down near
obstacles, such as trees and buildings, and in indoor environments. In addition, its
resolution of a few meters is not adequate for many applications and the specialized
components needed for GPS impose cost, and energy consumption requirements that

1



2 CHAPTER 1. INTRODUCTION

are problematic for mobile platforms. In order to alleviate the dependency on GPS,
di�erent sensing technologies have been used, including IEEE 802.11 (Radar [8, 23],
Ekahau [3], Ariadne [18], Horus [34], [19, 20, 37, 38]), Ultra Wide Band (Ubisence [5]),
infrared (Active Badge [33, 32], ParcTab [40, 41]), ultrasound (Active Bat [2], Cricket
[25, 26]), Bluetooth [6, 9, 13, 27, 15], 4G [28], RFIDs (Landmarc [43], SpotOn [44],
[30]), and physical contact with pressure (Smart�oor [4]), touch sensors or capacitive
detectors. Computer Vision has also been used for location-sensing. Vision-Based
systems (CyberCode [47], TRIP [48], [46, 55]) employ cameras, bar codes, QR codes
and �ducial markers in order to locate or navigate the user. Some systems may also
combine multiple modalities (vision, sound etc.) in order to improve localization
accuracy (SourroundSense [7], PlaceLab [45]).

IEEE 802.11 infrastructures have been deployed widely in universities, hospitals,
airports and other public areas. Their popularity, combined with their low deployment
cost, and the advantages of using them for both communication and positioning, make
them an attractive choice for use in location sensing. Approaches using IEEE 802.11
exploit the radio frequency (RF) beacons emitted from APs to track a mobile user.
Signal-strength values gathered from di�erent APs are used either for the creation
of a signature/map of the physical space [8, 20, 34] or are combined with radio-
propagation models to predict the distance of a wireless client from an AP (or any
landmark) or even between two wireless clients (peers) with estimated position (e.g.
CLS [31]). Signal-strength maps can be formed with data from di�erent sources in
order to improve location-sensing [15, 25]. In some situations the deployment of a
wireless infrastructure may not be feasible. In such cases positioning mechanisms
may exploit cooperation by enabling devices to share positioning estimates [10, 11,
12, 14, 21, 29, 31, 35].

1.1 Motivation

Our main goal is to design a location-sensing system for mobile computing applica-
tions, that will take advantage of existing IEEE 802.11 infrastructure and hardware
to provide position estimates, within a few meters accuracy. The implemented algo-
rithms should be able to achieve high accuracy regardless of the the environment's
physiology and be able to overcome the problems that the IEEE 802.11 technology
poses.

We will also employ the IEEE 802.11 infrasrtucture and mobile phones for posi-
tioning. We will consider a location-aware application that is able to use only the
integrated camera of mobile phones and printed QR codes in order to estimate the
user's position, using computer vision as the sensing modality. Moreover, it can be
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used as a standalone positioning application, or as a support application for the IEEE
802.11-based location sensing system, in order to enhance its accuracy. In order to
avoid the problem of portability among platforms, we will target an increasing in
popularity platform, Google's Android.

1.2 Challenges

Hightower and Borriello stated that �No single location sensing technology is likely to
become dominant. There are simple too many dimensions along which location sens-
ing mechanisms can vary.� [60]. This indicates that the choice of the location sensing
technology is going to depend on the usage context. In many situations, due to en-
vironmental constrains, cost, maintenance, and regulatory barriers, the deployment
of a specialized infrastructure for location sensing is not feasible. The deployment
and maintenance cost of a positioning system, may make its usage in everyday life
impossible. On the other hand, a system that exploits existing infrastructure in an
indoor environment, like IEEE 802.11, can be easily deployable, scalable, cost e�ec-
tive and computationally inexpensive. Our main goal is to design a location-sensing
system, that does not depend on a specialized hardware. However, this imposes a
great challenge due to the interference in RF signals and the dynamic characteristics
of the radio propagation in various environments. The dynamic characteristics of the
wireless channel may have a negative impact on a location-sensing system's accuracy.
Thus, a positioning system should be able to handle the problems that arise with
di�erent environmental conditions.

The pervasive nature of mobile devices such as mobile phones and smart-phones
has also been exploited in order to develop a location-aware application. The resource
constraints of mobile devices, namely energy, communication bandwidth and storage
always impose great challenges. Portability among mobile platforms is also something
that mobile application developers should take into account. Computer Vision, that
has been employed in order to recognize the QR codes, is a very challenging area.
Problems that need to be overcome, are the dependence of the code's successful
recognition and the camera's pose correct estimation on lighting conditions, image
resolution and quality, and the correct tuning of the parameters used in the image
analysis procedure.
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1.3 Thesis Statement

This thesis is based on an existing location sensing system, named Cooperative Loca-
tion Sensing (CLS) [31, 14]. The existing IEEE 802.11 infrastructure in the premises
of FORTH (Foundation for Research and Technology - Hellas) and in Cretaquarium
in Heraklion has been used for location-sensing. The proposed algorithms generate
statistical-based �ngerprints using the received signal-strength (RSSI) measurements
from the IEEE 802.11 infrastructure. The user's position can be detected with ac-
curacy within a few meters, depending on the environment, its conditions, and the
�ngerprinting-technique used. The impact of each one of these parameters has been
evaluated, using the collected RSSI measurements, under di�erent environmental con-
ditions, from the two testbeds mentioned. Moreover, the impact of the Access Points
(APs) on the system's accuracy has been examined, using a popular data analysis
method named Principal Component Analysis.

Also, we have employed computer vision techniques in order to determine the
user's position. The user's location, with respect to certain landmarks, can be de-
termined with accuracy in the order of cm. For the deployment of the system only
printed QR codes are needed, which can be scanned with camera enabled mobile
phones. Location-based information can be provided to the user, by encoding data at
several QR codes which are placed at strategic locations in the premises of FORTH
(e.g. next to or under a point of interest). In this way, someone could for example
get guidance when entering a building, get information about points of interest or
perform actions automatically (e.g. printing), by scanning a QR code.

To summarize, the main contributions of this thesis are the following:

� The implementation of a positioning system using statistical-based �ngerprints
generated from existing IEEE 802.11 infrastructure.

� A comparative performance analysis of various signal-strength �ngerprinting
methods in the premises of a research laboratory and an aquarium under dif-
ferent conditions.

� The development and evaluation of a computer vision-based positioning system
for the Android platform.

1.4 Publications

Part of this thesis (chapters 3,4) has been published in the 13th ACM International
Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems
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[61], where it has ranked among the top three papers. Part of the present thesis has
also been submited to the Special Issue of Ad Hoc Networks (Elsevier) Journal [62].

1.5 Thesis Outline

The present thesis is organized as follows: Chapter 2 presents existing location sensing
systems and recent work in pervasive computing, regarding the use of mobile phones
in context and location aware applications. Chapter 3 presents the proposed �nger-
printing techniques, the approaches used to enhance the system's accuracy, and the
mathematical background of Principal Component Analysis, that has been used in
the context of this work. Chapter 4 presents a comparative performance evaluation of
the �ngerprinting techniques in the premises of the Telecommunications and Networks
Lab (TNL) at FORTH, as well as in Cretaquarium. Chapter 5 presents the imple-
mentation and evaluation of the vision-based positioning system, along with some
background regarding the estimation of the camera's position with computer vision
techniques. Finally, chapter 6 summarizes our main results and provides directions
for future work.



Chapter 2

Related Work

In this chapter, we present an overview of research in localization and pervasive
computing systems. We subdivide the presentation of the related work into four
areas: 1. localization using the IEEE 802.11 infrastructure, 2. alternative localization
approaches, including positioning techniques for ad-hoc networks and location sensing
with other modalities than IEEE 802.11 or combination of di�erent modalities, 3.
localization with computer vision, and 4. pervasive computing systems, where systems
that use mobile devices for the discovery of digital services in the environment and/or
the interaction with real world objects are presented.

2.1 Localization using the IEEE 802.11 infrastruc-

ture

Over the last few years, signi�cant research has been done in the area of location-
sensing using RF signals. Radar [8] employs signal-strength maps that integrate
signal-strength measurements acquired during the training phase from APs at di�er-
ent positions with the physical coordinates of each position. Each measured signal-
strength vector is compared against the reference map and the coordinates of the
best match will be reported as the estimated position. The median resolution of the
RADAR system is in the range of 2 to 3 meters, about the size of a typical o�ce
room. Bahl et al. [23] extended Radar to provide continuous user tracking and to
incorporate the dynamic changes of signal-strength nature, such as aliasing and mul-
tipath. This extended version of Radar resulted in a mean location error of 2.37 m
The Horus WLAN system [34] substantially improved the positioning accuracy, as
compared to Radar, by employing an autoregressive model that captures the auto-

6
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correlation in signal strength measurements of the same AP at a particular location.
In Horus, radio map locations are grouped according to APs covering them, and for
each location a histogram of signal strengths is constructed during the o�ine phase.
Horus can achieve an accuracy of 1.4 meters for 90% of the time, while its median
error is less than half meter. Ladd et al. [20] proposed another location-sensing
system for localizing nodes, tracking and determining orientation inside a building
from measured RF signal strength. In its �rst step, a host computes the conditional
probability of its location for a number of di�erent locations by employing a proba-
bilistic model, based on the received signal-strength measurements from 9 APs. In its
second step, the system exploits the limited maximum speed of mobile users in order
to re�ne the results and reject positions with an unreasonable change in the position
of the mobile host. This system can predict host's location within 1.5 m with 83%
accuracy, which is an improvement compared to the Radar system. Ariadne [18] is
another novel and automated location determination method, that uses a two dimen-
sional construction �oor plan and only a single actual signal strength measurement. It
generates an estimated signal strength map, using a radio propagation model. Given
the signal measurements for a mobile, a proposed clustering algorithm searches the
signal-strength map to determine the current location of the mobile device.

In [37] a localization technique based on bayesian inference and 802.11 WLAN is
presented. In this system the user is located in region granularity (whole o�ce, part
of a hallway etc). The impact of the number of base stations and of the training
set size have been explored. Experiments indicate that the Gaussian distribution
�tting method, that has been used, can determine the correct cell in over 90% of
the trials, by using only 17 out of a total of 33 APs. Moreover, authors indicate
that a 60-second training set, containing around 37 scans is adequate for correct
localization in most of their building. Finally, by performing a calibration for time
varying phenomena (e.g. attenuation due to people in the building) and di�erent
hardware (di�erent chipsets in network cards), the authors managed to achieve 88%
correct location estimation, with 90% of the estimates within 3 m. Kung et al. [19]
propose a method for evaluating the impact of the IEEE 802.11 APs on positioning
in order to strengthen the role/contribution of a �good� AP while �de-emphasizing�
the role of the �bad� APs. The �goodness� of an AP indicates the capability of
that AP to estimate accurately its distance from the others. In [24, 36] the authors
propose �ngerprints, based on attributes that characterize the e�ects of multipath
(e.g., channel response), in order to detect changes of the positions of wireless hosts.
Yu-Chung-Cheng et al. [38] have evaluated the feasibility of building a wide-area
802.11Wi-Fi-based positioning system. By using existing hardware and infrastructure
and with relatively low calibration overhead, they can estimate a user's position with
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a median positioning error of 13�40 meters. More speci�cally, in dense urban areas
positioning accuracy is between 13�20 meters. The impact of limited calibration
on the accuracy of the positioning algorithms is also studied, which is an important
tradeo� while deploying such a wide-area location system. One interesting observation
is that in areas with dense Wi-Fi coverage, the speci�c algorithm used for positioning
is not as important as other factors including composition of the neighborhood, age
and density of training data sets, and noise in them, while in sparser neighborhoods,
sophisticated algorithms that can model the environment more richly have better
performance.

2.2 Alternative localization approaches

In situations where a deployment of a wireless infrastructure may not be feasible,
positioning mechanisms may exploit cooperation by enabling devices to share po-
sitioning estimates. Niculescu and Nath [21] introduced an algorithm in the �eld
of location-sensing that works on simple geometric principles of Euclidean geometry
concerning triangles and quadrilaterals. The information of the landmark locations
is slowly propagated towards the nodes that are further away, while at the same time
closer nodes enrich this information by determining their own location. Bulusu et
al. [39] present a connectivity-metric method for localization in outdoor environ-
ments, that makes use of the radio-frequency (RF) communications capabilities of
the devices. Nodes infer proximity to a subset of �xed reference nodes, which have
overlapping coverage and periodically transmit beacons, and localize them to the cen-
troid of their approximate reference points. The connectivity metrics are estimated
according to the percentage of received beacons. Another location-sensing system in
ad-hoc networks [10] performs positioning without the use of landmarks or GPS and
presents the tradeo�s among internal parameters of the system. Saverese et al. [29]
proposed a distributed algorithm that determines the position of nodes in an ad hoc
network in two phases, namely the `startup' and `re�nement' phase. The `startup'
phase is only responsible for giving nodes rough estimates of their positions in order
to generate a �rst approximation of the topology of the network. The `re�nement'
phase is an iterative process, during which each host broadcasts its position estimate,
receives the positions and the corresponding range estimates from its neighbors, and
computes a least square triangulation solution to determine its new position. The
authors report that their algorithm is able to achieve position errors of less that 33%
of the radio range, with 5% range error, 5% anchor nodes and an average connectiv-
ity of 7. PinPoint [35], presented by Youssef et al., is a distributed algorithm that
enables a set of n nodes to determine the RF propagation delays between every pair
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of nodes, from which the inter-node distances and hence the spatial topology can
be determined. PinPoint's accuracy is roughly 1 to 3 meters. In [12] the authors
proved that e�cient location discovery can be achieved in sensor networks without
using beacons. The basic observations in order to achieve this were that �rstly, it
is quite common that sensors are deployed in groups and secondly, the coordinates
of the deployment points are usually known a priori. Using this knowledge, the lo-
cation discovery problem could be modeled as a statistical estimation problem and
nodes were able to discover their location by observing group memberships of their
neighbors.

The AT&T Cambridge Laboratory's Active Badge location system [33, 32] and
the more recent Active Bat system [2] are two of the �rst systems in the �eld. Both
systems require specialized hardware in order to determine a device's location. Active
Badge uses di�use infrared technology and requires each person to wear a small
infrared badge that emits a globally unique identi�er every ten seconds or on demand.
A central server collects this data from �xed infrared sensors around the building,
aggregates it and provides an application programming interface for using the data.
The system su�ers in the case of �uorescent lighting and direct sunlight, because
of the spurious infrared emissions these light sources generate. Active Bat uses an
ultrasound time-of-�ight technique to provide accurate physical positioning. Users
and objects have to carry Active Bat tags, emitting an ultrasonic pulse to a grid of
ceiling-mounted receivers and a simultaneous �reset� signal over a radio link. Each
ceiling sensor measures the time interval from reset to ultrasonic pulse arrival and
computes its distance from the Bat. Active Bat applies statistical pruning to eliminate
erroneous sensor measurements caused by a sensor hearing a re�ected pulse instead
of one that traveled along the direct path from the Bat to the sensor. A relatively
dense deployment of ultrasound sensors in the ceiling can provide accuracy within
9 cm of the true position for 95% of the measurements. The ParcTab [40] is a
Personal Digital Assistant (PDA) that uses an infrared-based cellular network for
communication. The infrared transmissions from ParcTabs can be used to determine
their locations in the same way as Active Badges are located. Schilit et al. [41] further
developed the use of ParcTab and its positioning capability to investigate context-
aware computing applications. The Cricket Location Support System [25, 26] also
uses ultrasound emitters and embeds low-cost RF receivers in the object being located.
Cricket uses additional radio frequency signals to synchronize time measurements and
to distinguish ultrasound signals that are a result of multi-path e�ects. The mobile
object performs triangulation computations relative to the beacons. Cricket trades
accuracy for simpler hardware and infrastructure. It does not require a grid of ceiling
sensors with �xed locations as the Active Bat system does, but returns an estimation
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of the user's position with a possible error of a four foot by four foot region, while
the Active Bat has an accuracy of nine centimeters. Both of these systems provide
excellent localization primitives by employing specialized hardware.

A di�erent approach, SmartFloor [4], employs a pressure sensor grid installed in
all �oors to determine presence information. It can accurately determine positions
in a building without requiring from users to wear tags or carry devices. However,
it is not able to speci�cally identify individuals. Niculescu and Nath extended the
APS system [22] by incorporating specialized hardware to their algorithm, in order
to estimate the angle between two hosts in an ad hoc network. They used antenna
arrays or ultrasound receivers in order to implement this idea. In [42] the authors
present an indoor positioning architecture, using 802.11 and Angle of Arrival, that
requires only the placement of special VOR base stations, instead of a signal strength
map. These spacial APs used, have a rotating directional antenna, enabling them
to provide angle of arrival (AOA) and range measurements. A 2.1m median error,
which is reported by the authors' system, is comparable to the original RADAR, but
is achieved without requiring a map of the signal strength of the area.

Positioning using RFID technology is another way to locate users. Tesoriero et
al. [30] propose a passive RFID-based indoor location system that is able to accu-
rately locate autonomous entities, such as robots and people, within a physical-space.
Landmarc [43] is an RFID based positioning scheme that uses reference tags at �xed
locations, organized in a grid array. In Landmarc the proper placement of readers is
essential, in order for sub-regions to be formed where each sub-region can be uniquely
identi�ed by the subset of readers that cover it. In this way, an RFID tag can be
associated with a known subregion, based on the subset of readers that can detect
it. In the Spot-On system [44], special tags use radio signal attenuation to estimate
distance between tags. The aim is to localize wireless devices relative to one another,
rather than to �xed base stations, allowing for ad-hoc localization. The authors ex-
ploit the density of tags and correlation of multiple measurements to improve both
accuracy and precision. SpotOn's accuracy depends on the cluster size.

Many systems employ di�erent modalities in order to achieve a higher accuracy. In
Place Lab positioning system [45], laptops, PDAs and cell phones can estimate their
position by listening for the cell IDs of �xed radio beacons, such as 802.11 APs, GSM
cell phone towers, and �xed Bluetooth devices that already exist in the environment,
and referencing the beacons' positions in a cached database. Experimental results in-
dicate that 802.11 and GSM beacons are su�ciently pervasive in the greater Seattle
area to achieve 20-30 meter median accuracy with nearly 100% coverage. The main
goals of this work where two: a) to maximize coverage as measured by the percent
of time a location �x is available in people's daily lives and b) to o�er a low barrier
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to entry for users and application developers thanks to the use of commodity hard-
ware, privacy awareness, and straightforward interfaces. UbiSense [5] can provide an
accuracy of 15 cm using a network of ultra wide band (UWB) sensors installed and
connected into a building existing network. The UWB sensors use Ethernet for timing
and synchronization. They are able to detect and react to the position of RF-tags
based on time di�erence of arrival and angle of arrival. SurroundSense [7] is a mo-
bile phone based system that explores logical localization via ambient �ngerprinting.
Fingerprints are generated using sound, cameras, accelerometers and Wi-Fi. Authors
compare SurroundSense's performance, when using all these di�erent technologies,
with its performance, when using only Wi-Fi. An average accuracy of 87% and 70%,
respectively, are reported.

2.3 Localization with computer vision

Many groups have experimented with the use of computer vision technology for im-
plementing a tracking system. In order to achieve that cameras, mobile phones with
integrated cameras, QR codes, bar codes and �ducial markers have been employed.
Easy Living [46] uses motion tracking cameras to determine the distance of an ob-
ject in a home environment. However, tracking works well with up to three people
in the room, depending on how they behave. CyberCode [47] is a visual tagging
system based on a 2D barcode technology. CyberCode tags can be recognized by
cameras found in most mobile devices, and it can also be used to determine the 3D
position of the tagged object as well as its ID number. One interesting application
of Cybercode is its usage in an indoor navigation system, where cybercodes can be
printed in labels in order to identify items of a museum. By scanning the codes,
the visitor can retrieve id numbers and get guidance information. CyberCode can
also be combined with other sensing technologies, such as a gyro sensor. In the pro-
posed navigation system, once the global location and orientation information are
retrieved from the recognized ID, the user can freely look around the environment
by moving the device. Even when CyberCode tag is out of sight of the camera, the
system continues to track the relative motion of the device by using the gyro sen-
sor, and displays proper navigation information. In [48] the authors present TRIP, a
low-cost and easily deployable vision-based sensor technology, that uses o�-the-shelf
hardware (low-cost CCD cameras and PCs) and printable 2-D circular markers for
entity identi�cation and location. Evaluation results indicate that when the target
image (TRIPtag) occupies an area of at least 35*35 pixels, the recognition is success-
ful on a 98% of the cases. This means that targets spotted in a frame of 640*480
pixel resolution are identi�ed as long as they are within 3 meters distance. In [55]
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the authors propose applications such as item selection and related on-line content
retrieval, interaction with large scale displays, and document printing by using bar
codes and camera phones. The proposed system induces a code coordinate system
and is able to visually detect phone movements and to estimate the distance of the
camera to the code.

2.4 Pervasive computing systems

Mobile devices, such as mobile phones and PDAs, have been widely used in the area
of pervasive computing, where they are treated as people-centric sensors capable of
aggregating participatory as well as sensory inputs from local surroundings. Recently,
several mobile computing systems aim to provide location and context aware services
to users. The CoolTown project [50] of the HP labs is a location-aware but ubiquitous
system that supports nomadic users. The authors explore opportunities provided by
the convergence of Web technology, wireless networks, and portable client devices
to support �web presence� for people, places and things. The web technology is
used in order to provide more e�ective means for ad hoc access to services, based
on techniques of embedding and recovering URLs on objects and in places, and to
provide location-awareness by o�ering location-dependent information resources to
users. In order to demonstrate their idea, the authors equipped the HP labs with
beacons (e.g. infrared transceivers) and tags and created 3 demo applications, the
Cooltown museum, the Cooltown bookstore, and the Colltown conference room. The
Cooltown project has as a result the creation of a virtual bridge between physical
entities (including users) and electronic services. A similar e�ort is presented in [51],
where the Physical Browsing concept using an RFID-reader is realized. With the
reader attached to the mobile phone, digital services embedded in the environment
can be invoked. The AURA project [52] by Smith et al. is a system that links
online content to physical objects. It is implemented with commercially available
pocket computers, using integrated bar code scanners, wireless networks, and web
services. In [54] barcode stickers attached to physical objects, acting as bookmarks
to the worldwide web are proposed. In [49], the notion of contextual QR Codes that
merge a public QR Code and private information, in order to provide data related to
a particular context, is presented. The private part can be one or more information
among the subsequent: user's pro�le, current task, device used, location, time and
environment of the interaction.

Interaction with real-world objects is also available, using mobile phones. In [53]
the authors propose the idea of user interaction through a mobile device with services
that are represented by a poster. Connection of the mobile device with the poster is
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enabled through one of the following ways: camera, Near Field Networks like WLAN
and blueetooth, user input (user enters a code), usage of localization functionalities
of mobile networks like GPRS or UMTS, where only a speci�c set of services can be
provided to the user, or RFID. A similar e�ort is presented in [56]. The idea described
by the authors is to use the built-in cameras of consumer mobile phones as sensors
for 2-dimensional visual codes in order to retrieve object-related information and
functionality. The recognition algorithm used, simultaneously detects multiple codes,
determines the orientation of the codes, and computes the coordinates of the target
aimed at in the coordinate system induced by the code. The approach presented
in [57] is also similar: a visual code system that provides a number of orientation
parameters, such as target pointing, rotation, tilting, distance, and relative movement
is employed. A set of fundamental physical gestures, that form a basic vocabulary for
describing interaction, is de�ned and richer interaction sequences can be constructed
by combining these few fundamental interaction primitives.



Chapter 3

Positioning with IEEE802.11

The �ngerprinting technique is a well studied location sensing method which is based
on the fact that received signals at di�erent locations possess di�erent electromag-
netic characteristics. One of the major advantages of this technique is that it can
exploit already existing radio infrastructures, like IEEE802.11 or GSM, so it is easily
deployable and does not depend on specialized hardware.

3.1 Generation of statistical-based �ngerprints

A wireless device, that is located at a speci�c position, scans all the available channels
and receives beacons from the APs that are in range. It measures and records the
RSSI value from each beacon. The recorded RSSI values are used for the construction
of a statistical �ngerprint that describes this speci�c position. The physical space is
represented as a grid of cells with �xed size and well-known coordinates. Location
�ngerprinting is composed of two phases: o�ine or training phase and online or run-
time phase. During the training phase the wireless device collects RSSI measurements
at prede�ned cells of the grid (training measurements). A statistical-based signature
(training signature) is constructed for each one of these cells (training cells). Dur-
ing the runtime phase, the mobile client also acquires RSSI measurements from APs
(runtime measurements) and constructs a runtime signature on-the-�y, by applying
the same statistical method. The runtime signature is then compared with all the
training signatures. The cell with a training signature that has the smallest distance
in signal space from the runtime signature is reported as the estimated position.

The statistical-based �ngerprint of a cell can be generated using various methods
such as percentiles, con�dence intervals or mahalanobis distance. A vector contain-
ing the appropriate statistical information, according to the method that is used,

14
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describes each training cell. Each entry of the vector corresponds to one AP. For
example < i, , j, ss1T , ss

2
T , ..., ss

k
T > represents the training �ngerprint of the cell with

coordinates i,j and sskT constitutes the statistical information used for the k-th AP.
In the runtime phase a similar vector is created by the RSSI measurements collected
at the mobile client's position: < ss1R, ss

2
R, ..., ss

k
R > represents the runtime signa-

ture, where sskR is the runtime statistical information used for the kth AP. The next
paragraphs present the various methods for generating statistical-based signatures.

3.1.1 Con�dence Interval

A con�dence interval is an interval in which a measurement or trial falls corresponding
to a given probability. The probability or con�dence level that is most commonly
used is 95%. An interval calculated with 95% con�dence level indicates the range in
which 95% of the measurements belong. Let us denote with T−

i (c) and R−
i the lower

bounds of the training and runtime con�dence intervals, respectively and with T+
i (c)

and R+
i the upper bounds. Then:

� [T−
i (c), T+

i (c)] indicates the con�dence interval for AP i at cell c during the
training phase.

� [R−
i , R

+
i ] indicates the con�dence interval for AP i at the unknown position

during the runtime phase.

The signature of a cell is a vector of con�dence intervals, each corresponding to an
AP. Each con�dence interval is generated using the RSSI values of the beacons re-
ceived from the corresponding AP. The training signature of cell c is < [T−

1 (c), T+
1 (c)],

[T−
2 (c), T+

2 (c)],...,[T−
N (c), T+

N (c)] >, where N is the total number of APs. The runtime
signature at the unknown position is < [R−

1 , R
+
1 ], [R−

2 , R
+
2 ], ..., [R−

N , R
+
N ] >, where N

indicates again the number of APs.

After the generation of the �ngerprints, the voting process follows, where the run-
time �ngerprint is compared with the training �ngerprint of each cell. An AP (e.g.,
i) participates in this technique by assigning a vote (weight) for a cell (e.g., c) that de-
pends on the percentage of overlapping of its training con�dence interval

[
T−
i (c), T+

i (c)
]

with the runtime con�dence interval
[
R−

i , R
+
i

]
. By adding the votes of all the APs, the

con�dence-interval based approach computes a weight w(c) for cell c that indicates
its likelihood to be the unknown position. More precisely, the vote that is assigned
to cell c by the i-th AP is estimated as follows:
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

T+
i (c)−R−

i

R+
i − T−

i (c)
if T−

i (c) < R−
i < T+

i (c) < R+
i

R+
i − T−

i (c)

T+
i (c)−R−

i

if R−
i < T−

i (c) < R+
i < T+

i (c)

1 if R−
i ≤ T−

i (c) < T+
i (c) ≤ R+

i ,

or T−
i (c) ≤ R−

i < R+
i ≤ T+

i (c)

0 if R−
i < R+

i ≤ T−
i (c) < T+

i (c),

or T−
i (c) < T+

i (c) ≤ R−
i < R+

i

(3.1)

At the start of the voting process each cell has a zero weight. In case of partial
degree of overlapping of the two con�dence intervals (runtime and training), w(c) is
increased by the ratio of this degree of overlapping. In case that the training con�-
dence interval is included in the runtime con�dence interval or the runtime con�dence
interval is included in the training con�dence interval, w(c) is increased by 1. Finally,
in case of no degree of overlapping, no vote is added to cell c. After the completion of
this process, the cell with the maximum weight is reported as the estimated position.

In a di�erent approach, the cells are sorted in an descending order with respect to
their weights. The weights of the top-k cells are normalized, so that they sum up to 1
and a weighted average of the top-k cells in the list is reported as the �nal location of
the user. This is a k-nearest neighbors approach and will be referred as k-nn weighted
average.

The main drawback of the weight as de�ned in (3.1) is its sensitivity to the relative
position of the con�dence intervals' endpoints, and even a small displacement of an
endpoint may a�ect signi�cantly the value of the weight. Also there are cases where
the rule in (3.1) may result in equal weights between the unknown runtime cell c∗

and two completely distinct training cells t1, t2. In the following, a typical example is
presented for each case. For convenience, consider the simpli�ed scenario of a single
AP and the signatures of one runtime and two training cells, c∗ 7→ [R−(c∗), R+(c∗)],
t1 7→ [T−(t1), T

+(t1)], t2 7→ [T−(t2), T
+(t2)].

� Example 1: the endpoints of the con�dence intervals of the cells c∗ and t1
satisfy the following relations:
case A: T−(t1) < R−(c∗) < R+(c∗) < T+(t1)
case B: T−(t1) < R−(c∗) < T+(t1) < R+(c∗)
with R−(c∗) = T+(t1)− ε, R+(c∗) = T+(t1) + ε
that is, the two cases di�er by a small displacement of the runtime con�dence
interval by ε. Although the two cases are not that di�erent with respect to the
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RSSI measurements, in case A the weight is equal to 1, while in case B the
weight is equal to

T+(t1)−R−(c∗)

R+(c∗)− T−(t1)
=
T+(t1)− T+(t1) + ε

T+(t1) + ε− T−(t1)
=

ε

T+(t1)− T−(t1) + ε
.

Clearly, when ε → 0 the weight in case B is equal to 0. That is, even if the
unknown runtime cell c∗ coincides with the training t1, a small variation of the
RSSI measurements may a�ect signi�cantly the corresponding weight.

� Example 2: the endpoints of the con�dence intervals of the cells c∗, t1 and t2
are related as follows,
T−(t1) < R−(c∗) < T+(t1) < R+(c∗) , R−(c∗) < T−(t2) < R+(c∗) < T+(t2)
with
|T−(t1)−R−(c∗)| = |R−(c∗)− T−(t2)|
|R−(c∗)− T+(t1)| = |T−(t2)−R+(c∗)|
|T+(t1)−R+(c∗)| = |R+(t2)− T+(c∗)|
By substituting in (3.1) the corresponding weights, that is, the values of the
�rst two ratios are equal, and thus the con�dence interval method would assign
the same weight to both training cells, being unable to distinguish between t1
and t2.

3.1.2 Percentiles

This approach is similar to the con�dence-interval one. However, instead of using
con�dence intervals for constructing the �ngerprints, percentiles are employed. A
set of percentiles can capture more detailed information about the signal strength
distribution than con�dence intervals, and thus, result to more accurate �ngerprints.
The weight of a cell c, w(c), is computed as follows:

w(c) =
N∑
i=1

√√√√ p∑
j=1

(Ri
j − T i

j (c))
2 (3.2)

where N is the number of APs, p the number of percentiles, Ri
j the j-th percentile

of runtime measurements from the i-th AP and T i
j (c) the j-th percentile using the

training measurements from the i-th AP at the cell c. The number of percentiles used
per AP is 10 (p=10). The percentiles used are 10%,20%...100%. The cell with the
minimum weight is reported as the estimated position. In the k-nn weighted average
approach the cells are sorted in an ascending order with respect to their votes and
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are weighted according to them, so a weighted average of the top-k cells in the list is
reported as the �nal location of the user.

3.1.3 Mahalanobis Distance

Mahalanobis or quadratic distance measures the separation of two groups of objects.
It can be used to classify a test point as belonging to one of N classes, by estimating the
covariance matrix of each class and classifying the test point as belonging to that class
for which the Mahalanobis distance is minimal. This �ngerprinting method takes into
account the interdependencies among the RSSI measurements in a cell from various
APs, by using the covariance as metric. These interdependencies provide information
about the topology of the environment.

The Mahalanobis distance between two groups of variables G1 = {x1, x2, . . . , xn}
and G2 = {y1, y2, . . . , yn} with mean vectors x̄ and ȳ is de�ned as:

d(G1, G2) =
√

(x̄− ȳ)TS−1(x̄− ȳ)

where T denotes matrix transpose and S−1 represents the inverse of the common
covariance matrix of G1 and G2.

The common covariance matrix S is estimated from samples of sizes n1 and n2

from G1 and G2, yielding sample covariance matrices S1 and S2, respectively. Then
S is computed as a weighted average of S1 and S2, using the pooled estimate:

S =
(n1 − 1)S1 + (n2 − 1)S2

n

where n = n1 + n2 − 2.
The training signature of cell c is { ~µT (c), ST (c)} , where ~µT (c) = [µ1, µ2, . . . , µN ]

is a vector containing the mean values of RSSI training measurements per AP. More
precisely, µi represents the mean RSSI value of the i-th AP, while N is the total number
of APs. ST (c) is the covariance matrix of cell c, where Si,j

T (c) captures the covariance
between the i-th an the j-th AP. Similarly, at the runtime phase the signature at
the unknown position is indicated as { ~µR, SR}, where ~µR is the vector containing the
mean RSSI runtime values per AP and SR is the covariance matrix. If we denote
as Sc,u the common covariance matrix between training cell c and the runtime cell
(unknown position) u, then mahalanobis distance between cells c an u takes the form:

dc,u =
√

( ~µT (c)− ~µR)TS−1
c,u( ~µT (c)− ~µR) (3.3)
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The weight of a cell c is the estimated mahalanobis distance from the unknown
position. The cell with the minimum weight is reported as the estimated position.
If the k-nn weighted average approach is used, a weighted average of the top-k cells
having the lowest weights is reported as the �nal location of the user.

3.2 Selection of the appropriate cell

3.2.1 Flat approach

In the �at approach the weights of the training cells are estimated with one of the
methods described in section 3.1. A cell from the entire grid is reported as the
user's position. The selected cell corresponds to the cell with the minimum weight
for percentiles and mahalanobis distance methods or maximum weight for con�dence
intervals. In the case of the k-nn weighted average approach, a weighted average of the
top-k cells having the lowest (percentiles, mahalanobis distance) / highest (con�dence
intervals) weights is reported as the �nal location of the user.

3.2.2 Iterative multilayered approach

In this approach the physical space is divided into overlapping regions of equal size.
The algorithm estimates the region at which the user is located in its �rst phase and
in its second phase reports a cell from within the selected region as the user's location,
by employing the underlying �ngerprinting method. The sum of the votes from cells
that belong to each di�erent region, are taken into account in order to select the
correct region. So, when the mahalanobis distance metric or percentiles are used, the
region with the smallest sum of votes is selected, while for con�dence intervals the
region with the largest sum of votes is selected. Hence, if for example the percentiles
�ngerprinting technique is used, in each iteration of the multilayered algorithm the
region r* closest to the unknown position is given by:

r∗ = arg min
m=1,...,G

Cm∑
k=1

N∑
i=1

√√√√ p∑
j=1

(Ri
j − T i

j,k)2

where G is the number of overlapping regions, Cm is the number of cells included in
the m-th region and T i

j,k is the j-th training percentile of the i-th AP from the k-th
cell within the region.

In each iteration of the algorithm the selected region is divided in two sub-regions
(G=2) and the multilayered algorithm is applied on them. More precisely, the algo-
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rithm is �rstly initialized with the whole testbed as input region and then proceeds
iteratively along one dimension (x axis) of the grid representing the physical space.
The selected region is given as input in the algorithm, which now proceeds iteratively
along the second dimension (y axis) of the grid representing physical space. The
degree of overlapping N de�nes the number of common rows or columns of cells that
the two neighboring sub-regions have: when the algorithm is applied on the x axis
of the grid, the two neighboring regions have N common columns, while when it is
applied on the y axis of the grid, they have N common rows. The iteration of the
algorithm stops, when a region can not be further divided into sub-regions which have
N common rows or columns of cells.

The regions are overlapping with each other in order to minimize the probability
of selecting a wrong sub-region (not including the actual position of the user) when
the user is located near the boundaries of the neighboring regions. The degree of
overlapping is an important parameter of the multilayered algorithm: we expect that
the higher the number of overlapping rows/columns is, the lower the probability of
selecting a region that doesn't include the actual position of the user is. However,
when a large number of common rows/columns between two neighboring regions is
required, the algorithm results in a larger region as compared to the region selected
when the degree of overlapping N is small. The underlying �ngerprinting technique
has a higher probability of failing to select the correct cell (actual position of the
user) when the number of training cells included in the estimated region is large.
Obviously there is a trade-o� between the probability of selecting the correct region
and probability of selecting the correct cell from within the region. We experiment
with di�erent degrees of overlapping in order to examine this trade-o�.

3.3 Principal Component Analysis

Principal component analysis (PCA) is a dimensionality reduction procedure. It is
useful when we have obtained data on a number of variables and we believe that there
is some redundancy in those variables. Especially when the variables are measuring
the same construct, as in our case, there is a probability that some of the variables
are highly correlated with one another. Dimensionality reduction is achieved by
transforming to a new set of variables, the principal components (PCs), which are
uncorrelated, and which are ordered so that the �rst few retain most of the variation
present in all of the original variables. Then a subset of the original variables can
be extracted, by taking into account only the variables that are related to the �rst
few PCs. Our goal is to reduce the computational complexity of the positioning
algorithms by identifying the most discriminative APs and omitting redundant ones.
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3.3.1 Mathematical De�nition of PCA

PCA is mathematically de�ned as an orthogonal linear transformation that trans-
forms the data to a new coordinate system such that the greatest variance by any
projection of the data comes to lie on the �rst coordinate (�rst PC), the second
greatest variance on the second coordinate, and so on. In other words, the goal of
principal component analysis is to identify the most meaningful basis to re-express a
data set. The hope is that this new basis will �lter out the noise and reveal hidden
structure.

Change of basis

Let X be the original data set, where each column is a single sample of the data
set. X is an m Ö n matrix where m is the number of variables and n is the number
of samples per variable. Let Y be another m Ö n matrix related to X by a linear
transformation P. X is the original recorded data set and Y is a new representation
of that data set. So, we look for a transformation matrix P so that:

Y = PX (3.4)

We are going to produce m new variables from the m original variables such that:

y1 = p1x1 + p1x2 + . . .+ p1xm
y2 = p2x1 + p2x2 + . . .+ p2xm
...

ym = pmx1 + pmx2 + . . .+ pmxm

where ym's are uncorrelated (orthogonal), y1 explains as much as possible of orig-
inal variance in data set, y2 explains as much as possible of remaining variance etc.
Geometrically P can be de�ned as a rotation and stretch which transforms X into
Y. The rows of P, {p1, p2, . . . pm}, are a set of new basis vectors for expressing the
columns of X. The row vectors {y1, y2, . . . ym} will become the principal components
of X. The next question to be answered is what is a good choice of the basis P. This
depends on what features we would like Y to exhibit. The next section will present
the assumptions behind PCA, which will lead to a reasonable result regarding the
selection of basis P.
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Figure 3.1: Plot of measurements from two random variables x,y. The signal and noise
variances σ2

signal and σ2
noise are graphically represented by the two lines subtending

the cloud of data.

3.3.2 Assumptions behind PCA

One of the desired features of Y is having a lower measurement noise, compared to
the original dataset. There exists no absolute scale for noise but rather all noise is
quanti�ed relative to the signal strength. A common measure is the signal-to-noise
ratio (SNR), or a ratio of variances σ2:

SNR =
σ2
signal

σ2
noise

A high SNR (�1) indicates a high precision measurement, while a low SNR indicates
very noisy data. In �gure 3.1 measurements of two random variables, x and y, are
plotted. The variance due to the signal and noise are indicated by each line in the
diagram. We assume that directions with largest variances in our measurement space
contain the dynamics of interest. This assumption suggests that the basis we are
searching is not the basis corresponding to the original variables x,y. Maximizing
the variance (and by assumption the SNR) corresponds to �nding the appropriate
rotation of the original basis. This intuition corresponds to �nding the direction
indicated by the line σ2

signal in �gure 3.1. In the 2-dimensional case of �gure 3.1 the
direction of largest variance corresponds to the best-�t line for the data cloud.

As it has been already mentioned, PCA can also help in identifying redundant
variables. In case that two highly correlated variables exist in our data set, we could
omit either one of them with little loss of information. Figure 3.2 might re�ect a range
of possible plots between two variables r1 and r2. The best-�t line r2 = kr1 is indicated
by the dashed line. Figure 3.2(a) depicts two variables with no apparent relationship.
In other words, r1 is entirely uncorrelated with r2. On the other extreme, �gure 3.2(c)
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Figure 3.2: A spectrum of possible redundancies in data from two variables r1 and r2.
From left to right: (a) no correlation, (b) medium correlation, (c) high correlation.

depicts two highly correlated variables. There is a redundancy here, because one can
calculate r1 from r2 (or vice versa) using the best-�t line.

In a 2 variable case it is simple to identify redundant cases by �nding the slope
of the best-�t line and judging the quality of the �t. We need a way quantify and
generalize these assumptions, namely variance maximization and identi�cation of
redundant variables, to arbitrarily higher dimensions. Let us can de�ne an m Ö n
matrix X:

X =


x1
x2
...
xm


where m is the number of variables and n is the number of measurements per vari-
able. This means that each row of X corresponds to all measurements of a particular
variable xi. Without loss of generality, let us also assume that each variable xi has
zero mean. This means that the mean value, x̄i, has been substracted from every
variable in the original dataset. We need to measure the degree of linear relationship
between any set of variables, so we will use the covariance matrix of X, de�ned as:

CX =
1

n
XXT

where the ijthelement of CX is the dot product between the vector of the ith variable
with the vector of the jth variable. CX is a square symmetric m Ö m matrix, the
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diagonal terms of which are the variance of particular variables and the o�-diagonal
terms are the covariance between variables. It has been already mentioned that
one of the goals of PCA is to minimize redundancy, measured by the magnitude
of the covariance. We are not interested whether two variables are positively or
negatively correlated, but instead we take into account the absolute magnitude of the
covariance. As a result, large magnitudes in the o�-diagonal elements of a covariance
matrix correspond to high redundancy. The other goal of PCA, is to maximize the
signal (or equivalently minimize the noise in measurements), which is measured by
the variance. So, in the diagonal terms of a covariance matrix, by assumption, large
values correspond to interesting structure. As a result, if we transform the original
dataset X with a transformation matrix P, so that Y=PX, we want the covariance
matrix of Y, CY , to ful�ll the goals of PCA. More precisely, we want CY to have the
following properties:

� All o�-diagonal terms in CY should be zero. Thus, CY must be a diagonal
matrix. Or, said another way, Y is decorrelated.

� Each successive dimension in Y should be rank-ordered according to variance.

One last assumption made in PCA, is that the basis vector{p1, . . . , pm} is orthonor-
mal, which means that P is an orthonormal matrix.

3.3.3 Solving PCA using eigenvector decomposition

To summarize from the previous section, we are looking for an orthonormal matrix
P in Y = PX such that CY = 1

n
Y Y T is a diagonal matrix. By rewriting CY in terms

of the unknown variable, we have:

CY =
1

n
Y Y T

=
1

n
PX(PX)T

= P
1

n
XXTP T

CY = PCXP
T (3.5)

We know from linear algebra that every symmetric matrix A can be diagonalized.
More precisely, the eigendecomposition of A takes the form:

A = EDET (3.6)
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where E is an orthogonal matrix, the columns of which are eigenvectors of A and D
is real and diagonal, having the eigenvalues of A on the diagonal. CX is a symmetric
matrix, so it holds that CX = EDET . We can also select matrix P to be a matrix
where each row pi is an eigenvector of CX . By this selection P = ET . Moreover, it
is known that the inverse of an orthogonal matrix is its transpose, so P−1 = P T . By
substitution in equation 3.5 we have:

CY = PCXP
T

= P (EDET )P T

= P (P TDP )P T

= (PP T )D(PP T )

= (PP−1)D(PP−1)

CY = D

It is evident that the choice of P diagonalizes CY . We could summarize by saying
that:

� The new basis is formed by the eigenvectors of CX = 1
n
XXT or the rows of P.

� CY contains the eigenvalues of CX in its diagonal, with the ith diagonal value
indicating the variance of X along pi.

� By projecting the initial variables, {x1, x2, . . . xm}, on the new basis we get the
principal components {y1, y2, . . . ym}



Chapter 4

Performance Evaluation

In this chapter we present an extensive evaluation of the positioning algorithms pre-
sented in chapter 3. The positioning system is evaluated in two di�erent environments:
TNL-FORTH and Creteaquarium. Moreover, it has been tested under di�erent sce-
narios (busy and quiet) in order to evaluate the impact of human presence on RF
signals.

Data collection

In order to generate the training signatures, signal-strength values at various prede-
�ned cells of the grid were collected. The runtime measurements were collected at 35
random cells, scattered in the grid. The trainer remained still for approximately 60s
and 30s to collect beacons at each position during training and runtime, respectively.
During this time enough RSSI values were collected, in order to generate the appro-
priate statistical �ngerprints (more than 100 and 200 RSSI values per AP at each
cell for runtime and training, respectively). To capture signal strength values, iwlist,
which polls each channel and acquires the MAC address and RSSI measurements
from each AP (in dBm), and tcpdump, a passive scanner relying on libpcap, for the
retrieval of each packet were used. A Sony Vaio and a Toshiba laptop with the same
wireless adapter (ipw2200) were used for the collection of both training and run-time
signal-strength values.

4.1 Evaluation at FORTH

The evaluation at FORTH took place in the Telecommunication and Networks Lab
(TNL), an area of 7m×12m, which was discretized in a grid structure with cells of

26
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Figure 4.1: Grid-based representation of TNL testbed.

55cm×55cm. Figure 4.1 depicts the �oor plan of TNL. During the runtime phase, we
collected two data sets: one during a relatively busy period and another one during a
quiet period. The busy period dataset was collected on a typical weekday at around
5 am, during which there were from 10 to 15 people in the laboratory, and several
others walking in the hallways outside. The quiet period dataset was collected on
Sunday, at around 2 am, and there was only one person in the laboratory, except the
one collecting the measurements. The training set was common for both busy and
quiet scenarios, and was collected on the same day as the quiet runtime dataset. The
training dataset included measurements from 84 di�erent cells. The total number of
APs covering the area was 10 while on average 5.4 APs were detected at a given cell.
The total human e�ort to collect the training and runtime datasets is estimated at 4
hours.

4.1.1 Comparison of �ngerprinting methods

In order to evaluate the performance of the various �ngerprinting methods, the lo-
calization error has been computed, measured as the Euclidean distance between the
centers of the reported cell and the cell at which the mobile user was actually located
at run time.

Figures 4.2(a) and 4.2(b) illustrate the localization error of the di�erent signature-
based approaches during quiet and busy periods, respectively. The percentiles outper-
form the con�dence intervals and the mahalanobis in both periods. More speci�cally,
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Figure 4.2: The location error in TNL during quiet (a) and busy (b) scenarios, re-
spectively.

for the quiet period dataset, the median for the percentiles is 1.1, while the median
for the mahalanobis and the con�dence intervals (95%) is 2 and 2.1, respectively. For
the busy period dataset, the median for the percentiles is 2.2, while the mahalanobis
and the con�dence intervals report a median of 2.3 and 2.5, respectively. The per-
centiles capture more detailed information about the signal strength distribution, so
a smaller location error as compared to the con�dence intervals has been expected.
The mahalanobis distance depends on the sample mean and covariance of the input
data. The covariance takes into account the interdependencies among the RSSI mea-
surements at a certain position from the various AP, so this method also captures
more detailed information about the signal-strength in comparison to the con�dence
intervals method. However, in the case of a noisy dataset of RSSI measurements from
various APs, a metric based on the sample mean can be misleading. As a result, the
mahalanobis distance method slightly outperforms the con�dence intervals method
but is not as e�ective as the percentiles method.

It has been expected that an increased number of people present in the laboratory,
when the RSSI measurements were collected, would have a negative impact on the
localization accuracy. Human bodies can absorb part of the signal-strength, so under
the presence of several people, there will be �uctuations in the received signal strength
from the same AP at a speci�c position. Figure 4.2 validates this hypothesis. The



4.1. EVALUATION AT FORTH 29

impact from the presence of people is more prominent for the percentiles, that achieve
the highest accuracy in the quiet scenario. The median location error reported by
the percentiles for the quiet period is 1.1, while the median error for the busy period
is 2.2. This method can accurately detect the user within 1.1 meters (or two cells
apart) for 50% of the trials in the quiet scenario, but the presence of people makes it
impossible to locate 50% of the runtime cells with such an accuracy. The impact from
the presence of people is also evident for the mahalanobis distance method and the
con�dence intervals. When the mahalanobis is used, 40% of the runtime cells can be
detected within 1.1 meters in the quiet scenario, while the same percentage of cells can
be located within 2.2 meters in the busy scenario. In the con�dence intervals 40% of
the runtime cells can be located within 1.6 meters in the quiet scenario compared to an
accuracy within 2.5 meters in the busy scenario. As regards the con�dence intervals,
it is noteworthy that the performance of the method in the region 70%-90% is better
in the busy scenario than the corresponding performance in the quiet scenario. This
means that there is a small number of cells, the position of which can be estimated
with better accuracy in the busy scenario, despite the presense of people. This can be
merely explained due to the problematic weight estimation in the con�dence intervals
method for some cells, as explained in section 3.1.1. A small change in one or more
of the runtime con�dence intervals at a cell due to interference in the busy scenario,
will result in large change in the cell's weight, making it distinguishable from another
neighboring cell, that has similar runtime con�dence intervals with it at the quiet
scenario.

A �rst observation, based on these preliminary results, is that the algorithms that
have been used do not always estimate correctly the cell. Indoor RF propagation
is strongly a�ected by obstacles (walls, human bodies), so it is not uncommon to
have a cell which is located far away from the unknown position with a training
�ngerprint very close to the runtime �ngerprint. Another common scenario is the
following: the cells that have accumulated the highest (con�dence intervals)/lowest
(mahalanobis, percentiles) votes are all concentrated in an area, but the one selected
is not the correct one. Instead, the cell with the 2nd or 3rd highest/lowest vote
may be the correct one. It is obvious that it may be e�cient to take into account
more than one cells with training �ngerprint close to the runtime �ngerprint. A k-
nn approach has been used, where the cells are sorted and weighted according to
their votes, so that a weighted average of the top-k cells in the list can be reported
as the �nal location of the user. The best choice of k depends upon the data and
it is believed that the optimal k for most datasets is 10 or more. In our dataset
k=5 is the more e�cient. Figure 4.3 indicates the location error for percentiles and
con�dence intervals, when a weighted average of the top-�ve nearest neighbors in
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Figure 4.3: The location error in TNL during the quiet period for the 5-NN weighted
average approach in the percentiles (a) and the con�dence intervals (b), respectively.

signal space is used for the quiet dataset. The application of the 5-NN weighted
average approach to the percentiles algorithm for the quiet period dataset, is only
able to improve the 90th percentile and the maximum location error. There are cases
where the exact position of the mobile user could be estimated (zero location error),
when the 1-NN percentiles algorithm is used. However, the same position can not
be accurately detected when the 5-NN weighted average approach is used, due to
the fact that more than one cells are taken into account. In cases where the user's
position is estimated with some error, the 5-NN approach may help in the reduction
of that error. Hence, the 5-NN approach is expected to help more in the improvement
of the accuracy of the con�dence intervals algorithm, that is a less accurate method
compared to the percentiles. As 4.3(b) demonstrates, the 5-NN weighted average
method outperforms the original 1-NN approach for location errors larger than 2
meters. Figure 4.4 indicates the location error for the percentiles and the con�dence
intervals, when a weighted average of the top-�ve nearest neighbors in signal space is
used for the busy dataset. The median for the percentiles, when the weighted 5-NN
approach is used is 1.8, while the original algorithm, where 1-NN approach is used,
has a median of 2.2. In the con�dence intervals, the median when the weighted 5-NN
approach is used is 2.1 while the median when 1-NN approach is used is 2.5. It is also
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Figure 4.4: The location error in TNL during the busy period for the 5-NN weighted
average approach in the percentiles (a) and the con�dence intervals (b), respectively.

noteworthy that for the con�dence intervals the maximum location error is 5.2 when
the weighted 5-NN approach is used, while, when 1-NN approach is used, it is 7.8.

4.1.2 Iterative Multilayered Approach

It has been already mentioned that due to the radio propagation characteristics in the
physical space, a�ected by transient phenomena, the various �ngerprinting algorithms
can not always estimate the correct cell. More speci�cally, there may exist a cell with
training �ngerprint very close to the runtime �ngerprint, that belongs to a totally
di�erent region than the unknown position (e.g. the one is located in a hallway and
the other in an o�ce far away from it). The 5-NN weighted average approach tries
to mitigate the impact of this phenomenon, by taking into account more than one
cells in order to estimate the �nal position. However, a cell that is located far away
from the unknown position, may still be taken into account with this approach. In
order to avoid that, the proposed multilayered algorithm divides the physical-space
iteratively into overlapping subregions. In its �rst phase tries to select the correct
subregion, which is a small region that includes the unknown position, and in its
second phase tries to estimate the correct position, which corresponds to a cell from
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Figure 4.5: Percentage of correct subregion estimation (a) versus number of cells in
selected region (b) as a function of degree of overlapping during the quiet period in
the TNL testbed.

within the subregion. This spatial aggregation is expected to reduce the likelihood
of selecting a false region/cell (a region/cell that does not include/correspond to the
actual position) over the correct one. This is due to the enhancement of the �weight�
of a correct region in each iteration, by considering the signatures of the neighboring
to the actual position cells, and the iterative elimination of incorrect regions.

The �rst question to be answered is what the proper degree of overlapping is.
The degree of overlapping corresponds to the number of common rows and columns
between the subregions and determines not only the probability for the selection of
the correct subregion, but also the number of cells included in the selected region.
More speci�cally, when the degree of overlapping is large, (e.g. 9 or 11 common
rows/columns for the TNL testbed), the algorithm terminates after a few iterations
because the selected region can not be further divided into smaller subregions that
also have the same degree of overlapping. This means that the probability of selecting
a wrong subregion (region that does not include the unknown position) at an iteration
of the algorithm is smaller, as compared to a small degree of overlapping (e.g. 1 or
3), where the algorithms needs more iterations in order to select a subregion. On the
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Figure 4.6: Median and 90th percentile of the location error in the TNL testbed
during the quiet period as a function of degree of overlapping for the percentiles.

other hand, when large degree of overlapping is employed, the �ngerprinting algorithm
is applied to an area that includes more cells as compared to the region selected when
a small degree of overlapping is used. The results illustrated in �gure 4.5 show this
tradeo� for the quiet and busy scenarios, when the percentiles �ngerprinting method
is used. The number of cells in the selected region (�gure 4.5(b) ) is the same for
both scenarios. Figure 4.5(a) shows that the percentage for the selection of the correct
subregion in the quiet scenario increases almost linearly up to degree of overlapping 7
(91%) and thereafter there is only a small increase for degree of overlapping 9 (94%)
and no increase for degree of overlapping 11. On the other hand, the number of cells
in the selected area (�gure 4.5(b) ) is 16 for degree of overlapping 7 and increases
to 25 and 36 for degrees of overlapping 9 and 11, respectively. Figure 4.5 depicts
a similar trend for the busy period: the percentage for the selection of the correct
subregion in the busy scenario increases quickly up to degree of overlapping 7 (79%)
and there is only a small increase to 84% for degree of overlapping 9 and to 92%
for degree of overlapping 11 while the number of cells within the region continues
to increase after degree of overlapping 7, by 9 cells in degree of overlapping 9 and
11 more cells in degree of overlapping 11.Degree of overlapping 7 achieves a high
accuracy in the �rst step of the multilayered algorithm, namely the selection of the
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Figure 4.7: The location error in the TNL testbed, when the multilayered approach
is used during the quiet period for the percentiles (a) and the con�dence intervals
(b), respectively.

correct subregion, and in the second step the underlying �ngerprinting algorithm tries
to estimate the correct position of the user, by selecting among 16 cells. So degree of
overlapping 7 is expected to have better performance in comparison to other degrees of
overlapping. Another noteworthy point, is that degrees of overlapping 1 and 3 result
in very small regions, containing 1 and 4 cells, respectively, so although the accuracy
in the selection of the correct subregion is very low, the estimated position may still be
only few cells far away from the unknown, given that a wrong subregion has not been
selected in the early iterations of the algorithm. When a wrong subregion is selected
in an early iteration, the error propagates at each iteration, so especially for small
degrees of overlapping where more iterations are needed for the algorithm to �nish,
the performance of the multilayered algorithm may be poor. Figure 4.6 validates
the previous hypothesis. In this �gure the median and 90th percentile of the location
error as a function of the degree of overlapping, for the percentiles in the quiet period,
is plotted. Degree of overlapping 0 corresponds to the original implementation of the
percentiles algorithm, where the �ngerprinting method is applied to the entire area of
the TNL. We refer to this approach as �at. The increase in the location error for both
the median and the 90th percentile for degrees of overlapping 1 and 3 indicates that it
is common for the multilayered algorithm, when small degree of overlapping are used,
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Figure 4.8: CDF of the location in the TNL testbed, when the multilayered approach
is used during the busy period for percentiles (a) and con�dence intervals (b), respec-
tively.

to select a wrong subregion in the early iterations. Degree of overlapping 7 achieves
a 2.3 m 90th percentile of location error, as compared to 3.2 when the multilayered
algorithm is not used. From now on degree of overlapping 7 will be used.

Figures 4.7 and 4.8 show the performance of the multilayered algorithm in com-
parison to the �at implementation of the algorithm for the percentiles and the con-
�dence intervals algorithms, in the quiet and busy scenarios, respectively. For the
quiet period dataset, the multilayered algorithm is slightly better than the �at algo-
rithm, when the percentiles �ngerprinting technique is used. More precisely, although
the two algorithms have the same median location error, the multilayered algorithm
achieves a 90th percentile of 2.3 meters location error, while the �at algorithm has a
90th percentile of 3.2 meters (4.7(a)). The multilayered algorithm has been expected
to improve accuracy for large location errors (when the estimated cell belongs in a
di�erent region than the unknown position). However, the percentiles algorithm has a
very good performance especially for the quiet period: a median of 1.1 means that the
estimated cell is located two cells away from the unknown position. As a result, we
expect a more prominent improvement for the con�dence intervals algorithm, that has
a poor performance in comparison tothe percentiles, and for the busy period dataset,
that contains a lot of noisy measurements due to the presence of people. Figures
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4.7(b) and 4.8 validate this hypothesis. The improvement in the median location er-
ror for the con�dence intervals method, when the miltilayered algorithm in the quiet
period dataset is used, is 0.4 m, while for the 90th percentile of the location error the
improvement is about 1.8 m. In �gure 4.8 we also notice that the multilayered algo-
rithm outperforms the �at implementation of the percentiles method, having a 90th
percentile of 2.9 m, while the �at algorithm has a 90th percentile of 3.3 m. Finally,
�gure 4.8 demonstrates an improvement of 0.3 m in the median location error, when
the multilayered algorithm for the con�dence intervals in the busy period is used,
whereas the same improvement for the 90th percentile of the location error is about
1.5 m.

4.2 Evaluation at Cretaquarium

Cretaquarium is the largest and most popular aquarium in Greece, covering an area
of 1760 m2. It consists of more than 40 tanks. Figure 4.9 depicts the �oorplan of
Creteaquarium. The physical space was represented as a grid with cells of 1mx1m.
7 IEEE802.11 APs were covering the whole testbed, out of which 3.4 on average can
be detected at a given cell. Training and runtime signal-strength measurements were
collected in December, January and February of 2011 for the entire testbed during
two di�erent periods, quiet and busy. During the quiet period there were only two
people (the ones collecting the signal-strength measurements) most of the time in the
aquarium. This is due to the lack of visitors in winter, especially in weekdays, except
from scheduled school visits. During the busy period there was a scheduled visit of a
class of students, so there were about 25 people near the trainers the whole time. The
training set was common for both scenarios and was collected during di�erent days
of December and January 2011. We collected training signal-strength measurements
at 215 di�erent cells. There were required several visits to the aquarium in order to
collect all the datasets and the human e�ort is estimated at about 17 hours.

Creteaquarium is a very complex environment, composed of many obstacles that
contain large amounts of water. The attenuation of RF signals as they pass through
water is very high. More precisely, as an RF signal enters a conductive medium,
such as salt water, its intensity decreases logarithmically. This is known as the skin
e�ect penetration depth, which is de�ned as the distance to which a radio wave can
penetrate into a conductive medium (metal, salt water, ionosphere, etc.) leaving only
1/e (37%) of its initial intensity. As a result we expect a lower localization accuracy
in this testbed in comparison to the TNL testbed, not only due to its larger size
but also because of the larger attenuation in the received signal strength from the
di�erent APs in this environment.
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Figure 4.9: Creteaquarium testbed.

Once again, we computed the localization error in order to evaluate the perfor-
mance of the di�erent �ngerprinting methods. Figure 4.10 illustrates the performance
of the percentiles, the con�dence intervals (95%) and the mahalanobis for the quiet
period. The percentiles outperform the mahalanobis and the con�dence intervals.
More speci�cally, the percentiles have a median location error of 1.5 m, while the
mahalanobis and the con�dence intervals have a median location error of 2.1 m and
3 m respectively. It is noteworthy that the performance of the mahalanobis distance
metric in this testbed is comparable to the performance of the percentiles, in com-
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Figure 4.10: Location error in Creteaquarium for the quiet period.

parison to the quiet scenario for the TNL testbed, where the performance of the
mahalanobis method was very close to the performance of con�dence intervals. We
can conclude from this that a �ngerprinting method like the mahalanobis, that uses
the covariance as a metric and takes into account the interdependencies among the
RSSI measurements at a certain position from the various APs, is more e�cient in
a complex environment with many obstacles (tanks) that result in strong re�ection
an absorption of the RF signals. The reason is that methods that can model the
environment more richly (percentiles, mahalanobis) have better performance in com-
plex environments, where the noise in measurements is the result of many factors, as
compared to less sophisticated methods. In �gure 4.11 we can see the performance
of the algorithms for the busy period dataset. The percentiles and the mahalanobis
achieve the same median location error of 2.5 m, while the con�dence intervals have
a median of 3.2 m. As expected, the presence of people resulted in an increase in the
median location and in an increase in large errors: for the con�dence intervals, that
is the less robust �ngerprinting method out of the 3, the 90% of the location errors is
less than 10 m in the busy period, while in the quiet period the 90% of the location
errors is less than 6.5 m.
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Figure 4.11: Location error in Creteaquarium during the busy period

4.3 Impact of number of APs

In general, it is expected that as the number of APs that participate in the signature
generation increases, it will become easier to distinguish the correct cell from other
further-away cells, which may have similar training �ngerprint with the runtime one
due to transient phenomena or radio propagation characteristics in the given environ-
ment. In order to validate this idea we tested again the performance of the percentiles
algorithm in TNL for the quiet period dataset, by gradually removing APs from the
original set of APs.

4.3.1 Removing APs according to their coverage

Each AP is associated with a coverage index that indicates the percentage of cells,
out of the total number of training cells, at which there were measurements from
that AP at the training phase. In Figure 4.12 the APs are sorted in ascending order
according to their coverage index. Figure 4.13 illustrates the impact of the number of
APs in the location error for the percentiles algorithm in the quiet period, when one
AP at a time is eliminated from the original set of APs, starting from the less popular,
until only 3 APs participate in the voting process. An important notice is that there
is no remarkable degradation in the performance of the percentiles algorithm when
only 9 and 8 APs participate in the voting process. This is due to the small coverage
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Figure 4.12: TNL APs sorted according to their coverage.

in TNL testbed that the �rst and second excluded APs had (1% and 10% of the
training cells respectively). This means that only a few, if any, runtime cells had
measurements from the speci�c APs, but the elimination of these two APs had little
impact on them. The exclusion of the third, fourth and �fth less popular APs, that
cover from 32% to 71% of the training cells, has only a small negative impact in the
median location error and a more remarkable negative impact in the 90th percentile
of the location error. To be more speci�c, the impact in the performance of the
percentiles algorithm, when only 5 APs participate in the voting process, is less than
0.5 m in the median location error. On the other hand, the exclusion of the sixth and
seventh APs, that cover the 81% and 88% of the training cells, respectively, imposes
a 2 m increase in the median location error in comparison to the performance of the
algorithm when the entire set of APs is used. As a conclusion, the more cells an AP
is covering, the more it helps in the distinction of some cells from others, that may
be covered by a di�erent subset of APs. However, when the only APs participating
in the voting process cover the entire region or almost all of it (last three and four
APs) the performance of the location sensing algorithm is poor, so we can conclude
that the coverage of di�erent regions of the testbed from di�erent sets of APs is more
essential than a full coverage of the testbed from all APs.
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Figure 4.13: Impact of number of APs for percentiles in the TNL testbed under the
quiet scenario, when one AP at a time is removed, starting from the one with the
smallest coverage.

4.3.2 Removing APs according to variance of RSSI measure-

ments

Variance in signal strength measurements received from an AP is expected to help
in the generation of more distinctive �ngerprints, as compared to APs the RSSI of
which is similar for neighboring cells. In order to estimate the RSSI variance of
each AP, we collected 50 RSSI values per AP for each cell in the training dataset.
In �gure 4.14 the variance of each AP is plotted. We expect that there will be a
remarkable degradation in the performance of the percentiles algorithm if we start
excluding APs from the voting process, starting from the one with the maximum
variance. Figure 4.15 depicts the performance of percentiles algorithm for the quiet
period, when one AP at a time is removed from the original set of APs in the order
mentioned. The median location error is increased by 0.5 m when only nine and eight
APs from the original set participate in the voting process. There is an additional
increase of about 0.7 m when seven, six and �ve APs are used in the generation of
the �ngerprints. Finally the median location error triples when four APs are used
and reaches almost 4 m when only three APs are used. The original hypothesis,
that fewer APs result in a degradation in accuracy, is validated. Our set of APs
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Figure 4.14: TNL APs sorted according to variance.
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Figure 4.15: Impact of the number of APs for the percentiles in the in TNL testbed
during the quiet period, when one AP at a time is removed, starting from the one
with the maximum variance.
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Figure 4.16: Impact of the number of APs for the percentiles algorithm in the in TNL
testbed during the quiet period, when one AP at a time is removed starting from the
one with the minimum variance.

contains four APs with extremely low variance (<3.5). Especially two of them, that
cover 88% and 90% of the training cells, have less than 0.5 variance. This means
that the training �ngerprints created from measurements by these two APs will be
very similar for all the training cells, which we expect to have a negative impact in
the accuracy of the underlying positioning algorithm. The low variance of the other
two APs, out of the four with less than 3.5 variance, is merely explained due to the
low coverage that they have. We need to reexamine performance of our system with
fewer APs, by �rstly excluding the APs with lower variance than others. Figure 4.16
illustrates the impact of the number of APs on the location error, when one AP at a
time is removed from the original set of APs, starting with the one with the lowest
variance. In Figure 4.17 only the median and the 90th percentile of the location
error, as illustrated in �gure 4.16, are plotted for better visual representation of the
results. The �rst observation is that the performance of the percentiles algorithm is
slightly better when the 1st and 2nd AP with the lowest variance have been removed.
Although the median location error remains the same when only nine and eight APs
are used, there is a decrease at the 90th percentile of the location error of about 50cm
when nine and eight APs are used and no impact in the accuracy when seven APs are
used. So, the removal of the two APs mentioned before, with very high coverage and
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Figure 4.17: Impact of the number of APs for the percentiles in the in TNL testbed
during the quiet scenario, when one AP at a time is removed starting from the one
with the minimum variance.

extremely low variance, was e�cient for the location sensing system, leading to the
conclusion that the �ngerprints generated from their RSSI are not very helpful in the
distinction between di�erent cells. Another noteworthy point is that the accuracy of
the algorithm, when only the 3 APs having the maximum variance are used is much
better in comparison to its accuracy when the 3 APs with the lowest variance are
used. More speci�cally, although we have excluded 7 APs, the impact on the median
location error is only 0.2 m and on the 90th percentile of the error the impact is about
1.5 m. Only few cells are a�ected due to the lack of APs, so there is a large increase
only in the 90th percentile of the error and not in the median error, when 3 APs
are used. Consequently, APs with high variance in their signal strength values are
more useful for the positioning algorithm in order to discriminate between di�erent
cells. This conclusion holds for the quiet period, where the variance is due to the
radio propagation characteristics in the speci�c environment and is not a�ected by
transient phenomena like human mobility.
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4.4 Principal Component Analysis

As it is indicated in section 4.3.2, there are APs with extremely low variance in their
signal strength values. This means that the received signal strength may be identical
for many neighboring cells. These APs can't provide much help in the distinction
between neighboring cells so they may be redundant. Moreover, if there are APs
which are highly correlated, we could probably use only one of them. Principal
Component Analysis has been used in order to reduce the initial set of APs, by
identifying the existence of redundant APs and taking into account only the APs
that account for most of the observed variance in the initial set of APs. XLSTAT,
a plugin for excel, has been used for the analysis. In order to create the dataset we
collected signal strength values from the APs at each training cell of the testbed.
For APs that covered only few cells of the testbed we used the whole set of collected
values at these cells, while for others with higher coverage we used only a subset of
the collected values at each cell (e.g. the �rst 50 signal strength values).

The Pearson correlation coe�cient

The correlation matrix is the �rst statistic provided by xlstat and is able to reveal
the underlying relationship between the APs. The correlation has been computed
using the Pearson Product Moment function. The Pearson's correlation between two
variables is obtained by dividing the covariance of the two variables by the product of
their standard deviations. So, the population correlation coe�cient ρX,Y between two
random variables X and Y with expected values µX and µY and standard deviations
σX and σY is de�ned as:

ρX,Y = corr (X, Y ) =
cov (X, Y )

σX , σY
=

E[(X − µX) (Y − µY )]

σX,, σY
,

where E is the expected value operator, cov means covariance, and, corr is a
widely used alternative notation for the Pearson's correlation. The Pearson correla-
tion is +1 in the case of a perfect positive linear relationship (correlation), =1 in the
case of a perfect negative linear relationship, 0 in case of no relationship and some
value between =1 and 1 in all other cases, indicating the degree of linear dependence
between the variables. The covariance matrix for the 10 APs of our dataset is pre-
sented in table 4.1. A two tailed test at the level of signi�cance alpha= 0.05 has
been performed in order to determine the probability that the observed correlation
did not occurre by chance. With alpha=0.05 the odds are less than 5 out of 100
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AP1 AP2 AP3 AP4 AP5 AP6 AP7 AP8 AP9 AP10

AP1 1 -0.464 0.280 -0.132 0.291 0.053 0.352 0.288 -0.258 -0.150

AP2 -0.464 1 -0.332 0.441 -0.019 -0.018 -0.222 -0.090 0.281 0.101

AP3 0.280 -0.332 1 -0.176 0.056 0.064 0.556 0.099 -0.192 -0.108

AP4 -0.132 0.441 -0.176 1 0.157 -0.017 0.100 0.242 0.463 0.539

AP5 0.291 -0.019 0.056 0.157 1 -0.039 0.037 0.098 0.092 0.082

AP6 0.053 -0.018 0.064 -0.017 -0.039 1 0.091 0.021 -0.055 0.019

AP7 0.352 -0.222 0.556 0.100 0.037 0.091 1 0.271 -0.103 0.125

AP8 0.288 -0.090 0.099 0.242 0.098 0.021 0.271 1 -0.003 0.030

AP9 -0.258 0.281 -0.192 0.463 0.092 -0.055 -0.103 -0.003 1 0.595

AP10 -0.150 0.101 -0.108 0.539 0.082 0.019 0.125 0.030 0.595 1

Table 4.1: The Pearson's correlation coe�cient matrix for the set of APs in the TNL
testbed.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

Eigenvalue 2.641 1.978 1.133 0.983 0.939 0.810 0.520 0.412 0.333 0.251

% variance 26.414 19.776 11.328 9.827 9.394 8.103 5.204 4.118 3.328 2.507

Cumulative % 26.414 46.190 57.518 67.345 76.739 84.843 90.047 94.165 97.493 100.000

Table 4.2: Table of eigenvalues (row 1), percentage of variance (row 2) and cummu-
lative variance (row 3) per principal component.

that the calculated correlation is a chance occurrence. In bold signi�cant values (ex-
cept diagonal) at the level of signi�cance alpha=0.05 are presented. We can observe
that APs 1 and 3 have a statistically signi�cant correlation with all the other APs.
We are more interested in strong correlations, than statistically signi�cant correla-
tions, which according to J. Cohen (1988) are correlations with absolute value larger
than 0.5. In table 4.1 the strong correlations are indicated with italic. APs 3,4 and
10 are strongly correlated with APs 7, 10 and 9, respectively, and vice versa. The
corresponding correlation coe�cients are 0.556, 0.539 and 0.595, respectively.

Determining the number of factors to retain

Table 4.2 and the plot in �gure 4.18 are related to the eigenvalues, which re�ect the
quality of the projection from the N-dimensional initial table (N=10 in our case) to
a lower number of dimensions. Each eigenvalue corresponds to a factor or principal
component, and each principal component to a one dimension. The eigenvalues and
the corresponding factors are sorted by descending order of how much of the initial
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variance they represent, converted to % (row 2). The third row contains the cumula-
tive variance extracted up to this component. As table 4.2 shows, the �rst eigenvalue
equals to 2.641 and represents 26.414 of the total variance. The second factor rep-
resents 19.776 of the total variance and by taking F2 into account along with F1 we
are able to represent 46.190% of the initial variance of the data.

The number of principal components to retain is an arbitrary decision by its
nature. However, there are some guidelines that are commonly used, and that, in
practice, seem to yield the best results.

1. The Kaiser criterion: According to Kaiser (1960), we can retain only factors
with eigenvalues greater than 1. In essence this is like saying that, unless a
factor extracts at least as much as the equivalent of one original variable, we
drop it.

2. The scree plot: This is a graphical method proposed by Cattell (1966). We
can plot the eigenvalues in a simple line plot and look for an �elbow� in the
line. This �elbow� separates components with relatively large eigenvalues from
those with small eigenvalues. The components that appear before the �elbow�
are assumed to be meaningful and are retained. Sometimes a scree plot will
display several �elbows�. When this is the case, we can look for the last �elbow�
before the eigenvalues begin to level o�.

3. Minimum Cumulative Proportion of Variance: An alternative criterion
is to retain enough components so that the cumulative percent of variance ac-
counted for is equal to some minimal value. Usually retaining components that
account for as much as 70% or 80% of the initial variance is a good choice.

The above criteria have their weaknesses. Speci�cally, in some cases in the the scree
test criterion it is di�cult to determine exactly where the �elbow� exists or if it exists
at all. For our dataset, the �elbow� appears in component 3 (�gure 4.18), so accord-
ing to the scree-test criterion we would retain factors F1-F3. The 3rd criterion is
very subjective, as we have to decide which is the minimum acceptable proportion
of variance for our data. With the Kaiser criterion we can omit meaningful factors,
especially when the di�erence between the eigenvalues is very small. For example,
this criterion would lead us to omit factor 4, that has eigenvalue 0.983, although it
accounted for almost the same amount of variance as the 3rd factor. Moreover, as
Cattell suggested, the Kaiser's criterion tends to extract a conservative number of
factors if the number of variables is fewer than 20. Jolli�e [58] proposed a modi�ca-
tion to the Kaiser's criterion. More speci�cally, he suggested using a cuto� on the
eigenvalues of 0.7, in order to incorporate the e�ect of sample variance. We decided
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Figure 4.18: Graphical representation of eigenvalues.

that Jollife's criterion with a cuto� of 0.7 on the eigenvalues is the optimum criterion
in our case. This is due to the fact that we are interested in extracting a subset
of the original set of APs, after extracting the principal components. The selection
of this subset of APs can be done, as it is explained in the following subsection, by
associating each AP with each one of the principal components and identifying the
APs that belong to the retained components. So the fewer the retained components,
the fewer the selected APs. As a result, when a limited number of APs (e.g. 3 or
4) is used for positioning the accuracy is low, as it is indicated in section 4.3. So we
reject Kaiser's criterion with cuto� 1 and the scree test, that would retain only the
�rst three factors, and we select factors F1-F6 according to Jollife's criterion.

Selecting a subset of the initial variables

When p is the number of variables observed, it is often the case that a subset of m
variables, with m�p, contains virtually all the information available in all p variables.
Although the extraction of a subset of variables may be more appropriate when the
initial set of variables is large, we will try to apply Jollife's principles in our dataset.
The number of selected variables, m , is related to the number of components that
have been retained. So, we will try to extract a subset of 6 variables. Jolli�e has
presented multiple methods for the selection of a good subset of variables [58]. His
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F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

AP1 -0.635 0.411 0.350 0.082 0.138 -0.159 -0.312 0.365 -0.103 0.115

AP2 0.690 -0.104 -0.032 0.312 -0.229 0.507 -0.067 0.203 0.074 0.233

AP3 -0.592 0.368 -0.354 -0.270 -0.044 0.368 0.302 0.052 -0.277 0.090

AP4 0.630 0.577 0.024 0.172 -0.159 0.108 -0.221 -0.074 -0.306 -0.235

AP5 -0.030 0.395 0.677 -0.003 0.408 0.395 0.144 -0.175 0.101 -0.018

AP6 -0.100 0.085 -0.463 0.645 0.590 -0.024 0.061 0.002 -0.005 -0.022

AP7 -0.425 0.648 -0.372 -0.089 -0.175 0.206 -0.215 -0.021 0.349 -0.111

AP8 -0.156 0.548 0.187 0.459 -0.467 -0.305 0.323 -0.074 0.051 0.079

AP9 0.696 0.366 -0.044 -0.254 0.173 -0.158 0.296 0.381 0.109 -0.125

AP10 0.561 0.560 -0.188 -0.278 0.218 -0.253 -0.125 -0.217 -0.008 0.291

Table 4.3: Loadings of variables in each Principal Component.

methods select a subset of variables based on the retained principal components.
McCabe (1984) presented methods for the selection of a subset of variables, based on
the optimization of certain criteria. A comparison of these methods, performed by
Jolli�e using simulated data, indicated that none of the variable selection methods
was uniformly best but two of his methods, criteria B2 and B4, retained the best
subsets more often than the other methods. Hence, we will use Jolli�e's criteria B2
and B4 in order to extract a subset of APs. The methods that will be employed are
the following:

� B2: Associate one variable with each of the last m* (= p = m) PCs and delete
those m* variables. A fairly obvious choice for deletion is the variable with the
highest coe�cient in absolute value in the relevant PC. The reasoning behind
this method is that small eigenvalues correspond to near-constant relationships
among a subset of variables. If one of the variables involved in such a relation-
ship is deleted little information is lost.

� B4: Associate one variable with each of the �rst m PCs, namely the variable not
already chosen with the highest coe�cient in absolute value in each successive
PC. These m variables are retained, and the remaining m* = p = m are deleted.
This is not only a complementary approach to B2, but also, in cases where there
are groups of highly correlated variables, it is designed to select just one variable
from each group. A single variable from each group is expected to preserve most
of the information given by that group.

Table 4.3 presents the factor loadings, which indicate the correlation of each initial
variable with each component. In bold are noted the coe�cients with the highest
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absolute value per principal component. We have retained 6 principal components,
so according to criterion B2 we have to associate one AP with each one of the 4
last components. APs 8,9,7 and 10 have the highest loadings in factors 7,8,9 and
10, respectively, so we could eliminate these APs from the original set of APs. So,
according to B2, APs 1-6 are selected. According to criterion B4, we have to associate
one AP with each one of the �rst 6 principal components. APs 9,7,5 and 6 have the
highest loading in absolute value for factors F1-F4. AP 6 has has the highest loading
in F5 too, but we have already associated it with F4, so we have to select the AP
with 2nd highest coe�cient, namely AP 8. Finally AP 2 has the highest coe�cient in
component 6. So according to B4, APs 2,5,6,7,8,9 are selected. We will denote as S1
and S2 the subsets of APs selected according to B2 and B4 respectively. An important
notice is that strongly correlated APs, as they have been previously identi�ed with
the help of the correlation matrix, are not included in any of the two subsets of APs.
More speci�cally, APs 3 and 4 are included in S1, while 7 and 10, that are highly
correlated with APs 3 and 4 respectively, are excluded from the subset. In S2, APs
7 and 9 are included, while APs 3 and 10 that are highly correlated with APs 7 and
9, respectively, are excluded from the subset of APs.

Applying the PCA on location sensing

We tested again the performance of the percentiles and the con�dence intervals algo-
rithms under quiet and busy scenarios, considering the signal strength values collected
only from APs belonging to S1 and S2. The performance of the �ngerprinting meth-
ods with the APs belonging in S2 was slightly better in some cases than the one with
the APs included in S1, so results regarding APs included in S2 will be presented.

Figures 4.19 and 4.20 illustrate the performance of the percentiles and the con�-
dence intervals algorithms for the quiet and busy scenarios, respectively, using only
the APs of S2. The �rst notice is that there is no performance gain for the percentiles
when only the APs of S2 are used. We have already been skeptical, whether the accu-
racy of our �ngerprinting methods could be better with fewer APs, even if the subset
of APs has been extracted according to a method such as the principal component
analysis. However, it is noteworthy that the performance of the percentiles for the
quiet period with the set S2 of APs is almost identical to the performance of the
algorithm with the whole set of APs, with exception two outliers with location error
6.2 and 10 m. The impact in the median and the 90th percentile of the location error
for the percentiles in the quiet period, when only the APs in S2 are used, is only 0.1
m and 0.3 m respectively. As regards the percentiles algorithm in the busy period,
the performance is identical for up to 60% of the runtime cells, no matter whether
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Figure 4.19: The location error in TNL for percentiles (a) and con�dence intervals
(b) under the quiet period using the subset S2 of APs.
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Figure 4.20: The location error in TNL for percentiles (a) and con�dence intervals
(b) under the busy period using the subset S2 of APs.
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the whole set of APs or the subset S2 is used. The negative impact in the perfor-
mance of the percentiles, when a reduced number of APs is used, is more prominent
for the busy scenario, resulting in an increase of 1.2 m in the 90th percentile of the
location error. This can be explained due to the noise contained in measurements
from the busy period, because of the presence of people, which results in the gener-
ation of less robust �ngerprints than the ones of the quiet scenario. It is natural for
robust �ngerprints to be a�ected less from the use of a reduced number of APs than
�ngerprints generated from noisy measurements. As regards the performance of the
con�dence intervals when set S2 is used, it is slightly better for the busy period than
the performance of the algorithm using the whole set of APs, with the exception of
an outlier resulting in 11 m location error. In the quiet period, we can observe that
the con�dence intervals algorithm with the reduced number of APs, outperforms the
con�dence intervals algorithm with the whole set of APs for location errors larger
than 3 m. The application of PCA in our system has as a result the decrease of the
position estimation complexity, by using a reduced set of APs, with no or very small
decrease in accuracy.



Chapter 5

QRDC: A location aware mobile

application

In this chapter we present the QR code Distance Client (QRDC), a mobile application
which is able to estimate the user's position with respect to a QR code and his/her
distance from it, by employing computer vision techniques. A QR code is a two-
dimensional barcode, which has encoded in it a URL, text, or other data. By decoding
the QR codes, that are placed in strategic locations, the application provides location-
based information to the user. More precisely, the QR codes are placed near entrances
at FORTH, below posters, next to professors' o�ces or next to printers. By scanning
the QR code with his mobile phone, the user can get guidance regarding the building
or laboratory he/she is entering, be informed about upcoming conferences and events,
get contact information about a speci�c professor or perform an action like printing
a document of interest. This application is the result of a joint work undertaken
by four members of the TNL laboratory and has been evaluated at the premises of
FORTH. This application could also be used at a museum or at Creteaquarium, where
each point-of-interest (exhibit, tank) is equipped with a QR code and the visitors get
relevant information by scanning the QR codes with their mobile phones or PDAs.
The application can also be used to support the existing positioning system (chapter
3): The location sensing system could be applied at a small region of the testbed,
de�ned by the QR code's position and the user's distance from it. The positioning
accuracy is expected to improve in this way. Moreover, the user will be able to
know his/her location in the physical space (in the grid reference system) instead of
his/her location/distance with respect to the QR code. In the following sections a
brief description of the QR code technology and a detailed description of the pinhole
camera model, which is used to estimate the camera's position and orientation, will

53
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(a) (b) (c)

Figure 5.1: (a) Example of QR Code symbol (b) Structure of QR Code symbol (c)
Black and white ratio inside �nder pattern.

be presented. Next the system implementation and its evaluation will be presented.

5.1 QR Code Technology

A Quick Response Code (QR code) is a two-dimensional barcode, readable by dedi-
cated QR barcode readers and camera phones. Figure5.1(a) illustrates an example of
a QR code. The information encoded can be text, URL or other data. A QR Code
has many advanced features:

� High capacity encoding of data. Its maximum symbol (highest version) can
encode 7089 numeric data or 4296 alphanumeric data.

� High-speed reading.

� Chinese encoding capability.

� Readable from any direction from 360 degree.

� Error correction: a QR code can restore up to 30% of available codewords (8
bits/codeword) even if the symbol is damaged.

A QR code is comprised of the following: �nder patterns, timing pattern, align-
ment pattern, and data cell. Figure 5.1(b) shows the structure of the QR code. QR
code's distinctive feature is its position detection patterns, named �nder patterns.
When a reader scans a symbol, it �rst detects these patterns. The ratio of the black
and white on a line that passes through the center of the pattern (that is, B: W: B:
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W: B) is 1:1:3:1:1 from any angle (�gure 5.1(c)). This lets the reader quickly �nd the
detection patterns, which in turn promotes ultra-high speed barcode reading.

5.2 The Pinhole Camera Model

Figure 5.2: The pinhole camera model.

The pinhole camera model is the most common camera model. Figure 5.2 is used
to describe the relationship between the coordinates of a 3D point and its projection
onto the image plane. As illustrated in �gure , the real image plane lies behind the
pinhole, at distance -f, where f is the focal length. The image in real image plane
is inverted. It is more convenient to consider a virtual image plane in front of the
pinhole at distance f, which is equivalent to real image and is not inverted. The
geometry of the pinhole camera model is illustrated in �gure 5.3

At �gure 5.3(a) we can observe the following basic objects:

� A 3D orthogonal coordinate system with origin O and axes X, Y, Z which will
be referred as the world coordinate frame. The origin of the world coordinate
frame coincides with point C, which is the camera center or center of projection.
Axis Z is pointing in the viewing direction of the camera and is referred to as the
optical axis or principal axis. The 3D plane which intersects with axes X and
Y is the front side of the camera and is referred as camera frame or principal
plane. In this simpli�ed example the principal plane coincides with the world
coordinate frame.

� An image plane where the 3D world is projected through the aperture of the
camera. The (virtual) image plane is located at distance f (focal length of the
camera) from the camera center C. The image plane has its own 2D coordinate
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(a) (b)

Figure 5.3: The geometry of the pinhole camera.

system, with axes x and y which are parallel to X and Y, respectively. Point c
is located at the intersection of the optical axis and the image plane. This point
is referred to as the principal point and is usually located at the image center.
Note that in this simpli�ed example, the image frame is parallel and aligned to
world coordinate frame.

� A point P somewhere in the world and the projection of this point onto the
image plane, denoted as p.

Next we want to understand how the 2D image coordinates (x, y) of point p depend
on the 3D real world coordinates (X, Y, Z) of point P. This can be done with the help
of �gure 5.3(b), which shows the same scene as �gure 5.3(a), taking into account only
axes Y and Z. We can see two similar triangles, both having parts of the projection
line as their hypotenuses. Since the two triangles are similar it follows that:

Y

Z
=
y

f
or y = f

Y

Z

From a similar investigation, taking into account only axes X and Z we have:

X

Z
=
x

f
or x = f

X

Z

If we rewrite the above relations in homogeneous coordinates we have:
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 x
y
1

 =

 f 0 0 0
0 f 0 0
0 0 1 0



X
Y
Z
1

 (5.1)

This is the simplest perspective projection, where x,y are in terms of camera's reference
frame. The pinhole camera model just derived assumes that the image coordinates
are Euclidean coordinates, having equal scales in both axial directions. However,
physical camera lenses give distorted image projections, which means that the pixels
may be non-square. This means that we have to introduce unequal scale factors in
each direction. We need to express x and y in pixel units, so we have to take into
account the camera's intrinsic parameters. Let k and l be the scales along x and y
axes, respectively. So, we have that:

x = kf
X

Z
and y = lf

Y

Z
,

where focal length f is a distance, expressed in meters. Scale parameters k and l are
expressed in pixel/meter. We can set fx = kf and fy = lf , which are expressed in
pixel units. As a result:

x = fx
X

Z
, y = fy

Y

Z
, (5.2)

where x and y are now expressed in pixel units. Optical axis intersects image frame
at principal point c. In general, the origin of the image frame is not located at c. Let
as use cx and cy to denote the coordinates of the principal point c in pixels. It follows
that:

x = fx
X

Z
+ cx, y = fy

Y

Z
+ cy (5.3)

Combing these parameters, equation 5.1 is extended as:

 x
y
1

 =

 fx 0 cx 0
0 fy cy 0
0 0 1 0



X
Y
Z
1

 = A


X
Y
Z
1

 (5.4)

where A is the matrix of intrinsic parameters. The matrix of intrinsic parameters
does not depend on the scene viewed and, once estimated, can be re-used, as long as
the focal length is �xed (in case of zoom lens).
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The equations we have derived so far are valid only under the assumption that the
camera frame is aligned with the world coordinate frame. However, in general, camera
frame is not aligned with world coordinate frame. We need to �nd the translation
vector that maps the camera's origin to the world's origin and the rotation matrix
that aligns the camera's axes with the world's axes. There is a rigid transformation
between the two frames:

XC = RXW + T (5.5)

where:

� XC are the 3D coordinates of scene point P measured in camera frame.

� XW are the 3D coordinates of scene point P measured in world frame.

� R is the rotation matrix describing the rotation of the camera frame with respect
to the world frame.

� T describes the position of the origin of camera frame with respect to world
frame.

The rotation matrix R and the translation vector T are the extrinsic parameters of
the perspective transformation. They are used to describe the camera motion around
a static scene, or vice versa, rigid motion of an object in front of still camera. From
a di�erent perspective, suppose that the position of the camera's center in world
coordinates is a 3D point CW . If we wish to transform any other point XW into the
camera's coordinate system, we �rst subtract o� CW and then we perform a rotation:

XC = R(XW − CW )

Combining intrinsic and extrinsic parameters yield the general perspective projection
model of a 3D point P to a 2D image point p:

sp = MP (5.6)

= A[R|T ]P (5.7)

or
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s

 x
y
1

 =

 fx 0 cx
0 fy cy
0 0 1

 r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3



X
Y
Z
1

 (5.8)

M is a 3x4 matrix, called projective matrix or the complete camera calibration matrix
and contains both the intrinsic and the extrinsic parameters. M can be analyzed into
A, which is the intrinsic parameters matrix and [R|T ], which is the joint rotation
and translation matrix (extrinsic parameters). s is a scale factor by which all of
the intrinsic parameters should be scaled if the image is scaled (in case that zoom is
used). t1, t2, t3 describe the translation with respect to x, y and z axes of the camera's
frame, respectively. The rotation matrix R results from successive Euler rotations of
the camera frame around its X axis by ω, its Y axis by φ, and its Z axis by κ:

R(ω, φ, κ) = RX(ω)RY (φ)RZ(κ)

where:

RX(ω) =

 1 0 0
0 cosω sinω
0 −sinω cosω

, RY (φ) =

 cosφ 0 −sinφ
0 1 0

sinφ 0 cosφ

,
RZ(κ) =

 cosκ sinκ 0
−sinκ cosκ 0

0 0 1

 ω, φ, κ are often referred as to as pan, tilt, and

swing angles, respectively. By combining the 3 rotations we get the rotation matrix
in equation 5.8, where:

r11 = cosφcosκ, r12 = sinωsinφcosκ− cosωsinκ, r13 = cosωsinφcosκ+ sinωsinκ
r21 = cosφsinκ, r22 = sinωsinφsinκ+ cosωcosκ, r23 = cosωsinφsinκ− sinωcosκ
r31 = −sinφ, r32 = sinωcosφ, r33 = cosωcosφ

5.3 System Implementation

5.3.1 System Architecture

The system consists of a client, running on Android Nexus One smartphone, a Linux
server and printed QR codes. In each QR code a unique ID is encoded. The QR
codes are fundamental components of the system, as both the information retrieval
and the distance estimation is based on them. The client connects to the server
using the IEEE 802.11 infrastructure. The decoding of the QR code is performed at
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the client. The client sends the decoded ID, the captured QR code image and the
rotation angle of the QR code to the server. The server is connected to a MySQL
database, from which the information related to the decoded ID is retrieved. The
distance of the user from QR code is estimated at the server using image analysis.
The openCV framework has been used for the image analysis. During this procedure,
a set of steps is performed, namely contour detection, candidate selection, corner
detection, correspondences extraction, extrinsic camera parameters estimation and
�nally distance calculation, which will be analyzed in the following sections. Finally,
the server sends the information regarding the decoded ID and the estimated distance
to the client.

5.3.2 Camera Calibration

In general, for the calibration of the camera the entries of the calibration matrix M
(equation 5.6) have to be de�ned. Then matrix M can be decomposed in order to
�nd the intrinsic and the extrinsic parameters. Although M has 12 entries, the entry
in the 3rd row and 4th column is 1 (multiplication of 3rd row of A with 4th column
of [R|T]), hence we have 11 unknown parameters in M. In order to solve for these
unknowns we have to create correspondences between 3D world points and 2D image
points. If we denote as mij the parameter of matrix M located in the ithrow and
jthcolumn, we have from equation 5.6:

 sx
sy
s

 =

 m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34



X
Y
Z
1


=

 m11X+ m12Y+ m13Z+ m14

m21X+ m22Y+ m23Z+ m24

m31X+ m32Y+ m33Z+ m34


Taking ratios to eliminate the unknown scale factor s we have:

x =
m11X+ m12Y+ m13Z+ m14

m31X+ m32Y+ m33Z+ m34

and y =
m21X+ m22Y+ m23Z+ m24

m31X+ m32Y+ m33Z+ m34

We have a system of 2 equations, with 11 unknowns (m34 = 1), which can be solved
with 6 2D-3D correspondences. In practice, more points are used along with a least
squares optimization that minimizes the e�ects of measurement noise.
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In a �rst approach, we tried to calibrate the camera using the QR code as a cali-
bration pattern and the calibration functions provided by openCV. Correspondences
were created using the corners of the three squares in each �nder pattern. In total
36 correspondences were created (3 �nder patterns x 3 squares x 4 corners). The
calibration was executed at every QR code scan and both intrinsic and extrinsic pa-
rameters were estimated. The calibration using the QR code as a pattern was very
poor, indicated by the great variance in the estimated values of the intrinsic param-
eters between successive calibrations. So, we decided to estimate only the extrinsic
parameters at each QR code scan and estimate the intrinsic parameters once, using
a traditional calibration pattern.

In the second approach, we used the camera calibration toolbox for MATLAB to
estimate the intrinsic parameters. We captured 20 pictures of a checkerboard pattern.
For each image the pixel coordinates of the checkerboard's corners were extracted and
correspondences with the respective world coordinates of the checkerboard's corners
were created. The calibration step provided the intrinsic camera parameters (focal
length, principal point) and the distortion coe�cients.

5.3.3 Client-side Operations

For the QR code decoding we used Google's ZXing ("zebra crossing"), which is an
open-source, multi-format 1D/2D barcode image processing library implemented in
Java. A modi�ed version of the ZXing Android client was installed in two Nexus One
mobile phones running Android 2.2. The decoding of the QR code is performed at
the client. In each QR code a unique ID is encoded. Our client is connected wirelessly
to a server, were the decoded ID, the captured QR code image and the rotation angle
of the QR code are sent.

The rotation angle corresponds to the rotation of the QR code in the captured
image, when the QR code is scanned with rotated camera about the Z axis of the
camera (e.g. the user holds accidentally the camera upside down). In order to estimate
the rotation, we use the pixel coordinates of the centers of the three �nder patterns,
which are estimated by ZXing during the decoding. Let us denote as A,B,C the
centers of the �nder patterns, with A being the center of the bottom �nder pattern
(if the image was unrotated) and C being the center of the upper right �nder pattern
(again in an unrotated image). In the rotated image, ZXing is able to rearrange the
estimated centers of the �nder patterns and return them in the expected order: A,
B, C. This ordering is performed under the constraint that AB < AC and BC < AC
and the angle between BC and BA is less than 180 degrees. If the cross product
BCxBA has a positive z-component the order is correct, else A and C are �ipped and
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should be swapped. Firstly we inspect the position of the centers relative to each
other, in order to decide if the QR code is rotated in the image less than 90 degrees,
90− 180 degrees, 180− 270 degrees or 270− 360 degrees. Let us denote as {xA, yA},
{xB, yB} and {xC , yC} the coordinates of the centers A,B and C, respectively. If
we also denote as r the minimum estimated rotation of the QR code, meaning that
r={0, 90, 180, 270}, then the rotation angle is then estimated in the following way for
each case: 

arctan (| yC − yB
xC − xB

|) + r if r = 0

arctan (| yB − yA
xB − xA

|) + r if r = 90

arctan (| yC − yB
xC − xB

|) + r if r = 180

arctan (| yB − yA
xB − xA

|) + r if r = 270

The distance estimation is performed at the server. The information related to the
decoded ID is retrieved from a MySQL database at the server, and is returned to the
client along with the estimated distance. Finally an activity is triggered at the client
through an Intent in order to display the received information at the user.

5.3.4 Server-side Operations

Our server was running under Linux (Ubuntu 10.10) on a Sony Vaio laptop with an
Intel Core 2 Duo processor at 1.66GHz and 1024MB RAM, connected to FORTH's
network via Ethernet. After receiving an image, an ID and a rotation angle from the
client, the server performs the following actions:

� Contour detection

� Candidate selection

� Corner detection

� Correspondence extraction

� Extrinsic camera parameters estimation

� Distance calculation
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Contour detection

Initially, the image is rotated counterclockwise according to the degrees of the re-
ceived angle, so that the relative position of the �nder patterns in the image matches
the relative position of the �nder patterns in the actual QR code (lines passing from
the centers of the �nder patterns form a �Γ� shape.). This is convenient in order
to approximate the interesting contours, namely the �nder patters, with a bounding
rectangle (a rectangular region whose sides are parallel to the coordinate axes). Con-
tours are sequences of points de�ning a line/curve in an image. Contour detection is
based on luminance changes which occur on object boundaries and on textures of the
image. The contours are extracted by applying the �ndContours function of openCV
on the binarized version of the image. A binary image is an image built up by only
two colors. In this case black and white. There are no problems to understand that
once you have a perfect binary image of the QR code there is no problem neither to
�nd it nor to decode it. The easiest approach for the creation of the binary image is
to use the a global threshold value for all pixels, often the mean graylevel value, and
set pixel intensity below the threshold to zero and pixels above it to one.

Candidate selection

Numerous contours are extracted, including contours of objects near the QR code
and contours in the encoded data region of the QR code. We are interested only in
the contours of the Finder Patterns and more precisely in the contour of the outer
black square in each �nder pattern. The identi�ed contours are stored in a tree,
representing the full hierarchy of nested contours. The �nder pattern consists of
three nested squares, which means that three contours at successive hierarchy levels
are identi�ed for each �nder pattern. So, the candidates from the tree structure are
only the contours which have exactly one child, that has exactly one child. Multiple
contours are eliminated in this way. If the candidates are less than three, meaning that
all the �nder patterns couldn't be detected, the process is terminated. The reason
is that, in this case, a reduced set of correspondences will be extracted, leading to
an inaccurate estimation of the extrinsic parameters. However, it is possible that
contours belonging to random objects near the QR code in the image also comply to
the two-level nested contour constraint. The list of candidate contours is reexamined
by comparing the contour shapes with each other. An openCV function that compares
the image moments (certain function of pixel intensities) of the image parts induced
in the contours, is employed. The three contours that match with each other the
most are selected.



64 CHAPTER 5. QRDC: A LOCATION AWARE MOBILE APPLICATION

Corner detection

The Harris corner detector is used for the extraction of the feature points in an
image. The feature or interesting points in our case are located at the corners of
the three nested squares in a �nder pattern. The bounding rectangles of the three
selected contours are estimated and the Harris corner detection algorithm is applied
three times, once for each rectangular part of the image. By de�ning the maximum
number of identi�ed corners as twelve, we expect Harris corner detector to �nd the
twelve corners that correspond to the three squares in a �nder pattern.

Correspondence extraction

The detected feature points are in a random order. We need to order them in the
same way that the points, corresponding to the corners of the real world object, are
ordered. By comparing the the pixel coordinates of the detected points with the pixel
coordinates of the center of the �nder pattern we can �nd the points' position with
respect to the center. The center of each �nder pattern corresponds to the the center
of the bounding rectangle of each one of the selected contours. Let us denote as cx, cy
the coordinates of the center and as px, py the coordinates of a detected feature point.
Note that the origin of an image is located in the upper-left corner. If px > cx then
the point is located right with respect to the center, else it is located left. If py > cy
then the point is located down with respect to the center, else it is located up. In
this way four groups of points are created: the �rst one contains the right upper
corners of the three nested squares, the second one contains the left upper corners
of the three nested squares, the third one contains the left bottom corners of the
three nested squares and the fourth contains the right bottom corners of the three
nested squares. In each group the points are sorted, so that the corner of the outer
black square appears �rst and the corner of the inner black square appears last. The
selected contours are also in a random order. As a �nal step, we have to order the
selected contours, so that the �rst one corresponds to the bottom �nder pattern in
the rotated image and the last one corresponds to the upper right �nder pattern in
the rotated image. We follow the same method that ZXing uses for the ordering of
the detected �nder patterns, described in section 5.3.3. Now that we have identi�ed
the order of the extracted image points we are able to create correspondences with
the respective points of the printed QR code. The coordinates of the corners in the
printed QR code are measured in mm. The origin of the world's coordinate system
is de�ned in the left upper corner of the outer black square of the left upper �nder
pattern.
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Extrinsic camera parameters estimation

The extrinsic parameters are estimated from the intrinsic parameters and the avail-
able correspondences between the image points and the object points. The estimated
rotation matrix and translation vector are such that the reprojection error is min-
imized, i.e. the sum of squared distances between the observed projections (image
points) and the projected object points.

Distance calculation

In section 5.2 we have de�ned the transformation between the camera frame and the
world frame as XC = RXW + T where XC and XW are the 3D coordinates of the
same point P measured in camera frame and world frame, respectively. We want to
�nd the camera center in the world coordinate system. The camera center or center
of projection C, is the origin of the camera frame. In others words XC = 0 at the
camera center C. By substitution in equation 5.5 we have:

XC = RXW + T

0 = RXW + T

−RXW = T

XW = −R−1T

where XW = (xcam, ycam, zcam) represents the camera center in the world's coordinate
system. The distance from the QR code, which is located at origin (0,0,0) of the the
worlds coordinate system, is de�ned as:

d =
√
x2cam + y2cam + z2cam

Finally, the information that should presented to the user after the QR code
decoding, is retrieved from a MySQL database. In each QR code a unique ID is
encoded, which is used as a key for the database lookup, where the corresponding
data (text) can be found. This information, along with the estimated distance, are
sent to the client.
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5.4 Performance evaluation

5.4.1 Testbed and measurements

The performance evaluation of the QRDC application took place at the Telecommu-
nications and Network Lab (TNL). The QR codes were placed at speci�c locations,
e.g. in the entrance of the lab, at the doors of the professors' o�ces, next to the
printer or below a poster. The goal was to test whether the application would report
the correct information, according to the QR code that would be scanned and the
actual distance of the user from the QR code.

The application was tested under 3 di�erent scenarios:

Scenario A: The user was in front of the QR code, holding the camera parallelly to
the surface that it was mounted.

Scenario B: The user was scanning the QR code from di�erent angles, so that the
camera's x axis formed an angle with the world's x axis.

Scenario C: The user was holding the camera with a rotation about the z axis of
the camera plane. As a result in the captured image, the QR code was rotated.
As regards the position of the user with respect to the QR code, this scenario is
a combination of scenarios A and B: The user was scanning the QR code either
by placing the camera parallely to the surface of the QR code, or from some
random angle.

The user was scanning the QR code every 10 cm, at distances between 40 cm and
2m. The size of the printed QR code is 11cm x 11cm. We wanted the QR code to be
readable not only for close distances (e.g. the user is located exactly in front of it),
but also for long distances at about 2 m, in case the user didn't have access to the
exact location of the QR code. According to a rule of thumb, the size of a QR code
should be half an inch bigger for every foot farther away you expect the user to be.
An absolute minimum size of 0.5 inches square for the QR code is needed, with no
maximum. According to this rule, a QR code with size 8 cm x 8 cm is decodable from
2m distance, which wasn't valid in our case. This is due to the fact that there are also
other factors in�uencing the readability of a QR code besides the distance. These
factors are the amount of data in the QR code, the lighting conditions, the quality of
the mobile phone camera and of the captured image, and the reader software used to
scan the QR code. So, we decided to increase the size at 11 cm x 11 cm in order to
compensate for these factors. At this QR code size, 40 cm was the minimum distance
that the whole QR code �tted in the mobile's screen and could be decoded. The
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maximum distance for which ZXing reader was able to identify and decode the QR
code was 2m. Each scenario was repeated 3 times, in order to have more than one
measurements per di�erent distance. In this way the impact of the actual distance of
the user on the estimation of his/her distance from the QR code could be evaluated.

5.4.2 Results

In all the trials the application successfully decoded the QR code and delivered the
correct information to the user or performed the target activity. The evaluation
results also indicate that the application can estimate the distance of the user at
94%, 84% and 87% of the QR code scans for scenarios A, B and C, respectively.
The distance can not be estimated when the contour matching algorithm does not
manage to identify all the �nder patterns of the QR code. The main reason for this
is blurriness in captured images, caused by accidental movement of the user or the
camera while taking the picture. A blurry image also makes the corner detection in
the following step very di�cult, if possible. In this case only a small subset of the
correspondences is available, resulting in an inaccurate estimation of the extrinsic
parameters and hence a completely wrong distance. Hence, we decided to consider
this case as a failure of the application to estimate the distance of the user.

As regards the accuracy in the estimation of the distance, it depends on the
accuracy in the approximation of the corners by the corner detector algorithm. The
corner detector algorithm is applied for each �nder pattern separately. Due to noise
and blur in the image, in rare cases, some of the corners are not recognized, while
others are detected at coordinates where another corner has already been detected or
there is no actual corner there. As a result, some of the correspondences with the real
world corners are incorrect. The reason is that it is di�cult to identify exactly which
ones are the undetected corners in the image. We are able to conclude from the pixel
coordinates of a detected corner whether it is located up or down and left or right
with regard to the center of the the �nder pattern. However, due to the fact that
we are unaware of how accurately the corner detector algorithm has approximated
the corners, we can not draw safe conclusions for which corner coordinates belong to
which image corners for corners that are very close to each other (e.g. the left upper
corners of the two outer squares of the �nder pattern).

Figure 5.4 illustrates examples of the success of feature and corner detection al-
gorithms. In 5.4(a) all the corners per �nder pattern have been quite accurately
detected. In 5.4(b) some of the corners in the bottom and in the top right �nder pat-
tern have not been detected. Moreover, note that corners numbered as 0 and 1 have
been detected very close to each other and probably the corner detector algorithm
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(a) (b) (c)

Figure 5.4: Examples of corner detection and feature detection performance: (a) very
accurate corner detection, (b) inaccurate corner detection in upper right and bottom
�nder patterns, (c) detection of only one �nder pattern.

found two matches for the same corner in the image. The same applies to the pairs of
corners (30,31) and (24,25). Finally, in �gure 5.4(c) only the top right �nder pattern
has been detected and also the performance of the corner detection algorithm in this
image is very poor.

In �gure 5.5 the application's accuracy in the distance estimation is illustrated.
The error is calculated as the di�erence between the actual distance of the user and
the reported distance. The median distance error for scenario A is 1.3 cm, while for
scenarios B and C is 2.6 cm. A �rst observation from �gure 5.5 is that even in the
rare cases that the corner detection algorithm's performance is poor and incorrect
correspondences are created, the error is no more than 4 cm, 8 cm and 7 cm for
scenarios A, B and C, respectively. The application's performance for scenario C is
slightly better than the performance for scenario B. In scenario C the aim was to test
the application when the QR code images were captured with rotation of the camera,
while in scenario B the aim was to test the application when the QR code images
were captured from an angle. As a result, in scenario B extreme angles have also been
used while in scenario C random angles have been tested, including almost 0o angle
with world's x axis, where the user was holding the camera parallelly to the surface
that the QR code was mounted. The evaluation results indicate that scanning the
QR codes from an angle has a negative impact on the distance estimation accuracy.
This negative impact has been expected if we consider the fact that the application
managed to estimate the distance for 84% of the trials, when the image was captured
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Figure 5.5: The distance error for each scenario.
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Figure 5.6: The mean reprojection error for each scenario.
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Figure 5.7: Mean distance error as a function of the user's distance.

from an angle, compared to 94% for scenario A. As regards the rotation of the camera,
it has no impact on the accuracy, as the captured image is always correctly rotated.
The worse performance of scenario C compared to the performance of scenario A is
due to the scanning from an angle.

In order to evaluate the accuracy in the estimation of the camera's extrinsic and
intrinsic parameters, we project the 3D points (corners) of the QR code in the image
and calculate the mean reprojection error. The reprojection error corresponds to the
image distance between a projected point and a measured one. The mean reprojection
error is estimated by dividing the total reprojection error per trial by the number
of correspondences. In �gure 5.6 the mean reprojection error is illustrated. It is
noteworthy that for 70% of the trials the mean reprojection error is up to 3 pixels
for all the di�erent scenarios. Moreover, the limited number of points with relatively
large mean reprojection error (>20 pixels) in each scenario, indicates that the extrinsic
parameters are estimated accurately for most of the trials.

Figure 5.7 depicts the mean distance error as a function of the actual distance of
the user. The mean error is estimated by taking into account all the trials from the
three scenarios for each di�erent distance of the user. The fact that there is no clear
trend indicates that the accuracy in the estimation of the distance doesn't depend
on the user's distance from the QR code. Instead, it depends on the quality of the
captured image. The mean distance error is slightly larger for very close distances
(40 cm, 50 cm) and for long distances (180-200 cm). The reason is that, for some of



5.4. PERFORMANCE EVALUATION 71

the trials, it was di�cult for ZXing to detect the QR code at these distances. The
user had to move slightly the camera before the QR code could be scanned, which
could result in a blurry image. The poor focus especially on close-up captures is a
known problem for mobile devices.



Chapter 6

Conclusions and Future Work

In this thesis we have experimented with two di�erent approaches for positioning.
In the �rst approach, statistical signal-strength �ngerprints are created using RSSI
measurements, that are collected from an existing IEEE 802.11 infrastructure. The
physical space is represented as a grid of cells and the user's position is estimated
by identifying the cell that has the training �ngerprint with the minimum distance
in signal space from the runtime �ngerprint. We performed an evaluation of various
�ngerprint methods in the premises of FORTH and an aquarium. Our results indicate
that the more detailed information about the signal-strength distribution a �ngerprint
captures, the higher the system's accuracy is. The user can be located with a median
accuracy of 1.1 meters, when the percentiles �ngerprinting method is used in the TNL
testbed under the quiet scenario. Furthermore, we have found that the presence of
people, has a prominent impact on the positioning accuracy. Moreover we have found
that APs with high variance in their RSSI values are essential for positioning, as they
help in the distinction of neighboring cells, and that the creation of clusters of APs
that cover di�erent regions of the testbed is more useful for the discrimination of
cells than a full coverage of the testbed by all the APs. Finally, by applying Principal
Component Analysis to our dataset, we managed to omit redundant APs and identify
a subset of APs that can be used in order to decrease the input dataset of the position
estimation algorithms, by inducing only a small increase in the location error.

We also experimented with a multilayered approach in which we applied the al-
gorithm iteratively on larger regions to select the correct one, and then within the
selected region to estimate the correct cell. Something similar was performed in the
the 5 nearest neighbors approach, where the top 5 candidate cells are taken into ac-
count for the estimation of the user's position. We showed that these two methods
improve the accuracy by eliminating the distant incorrect cells and taking also into
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consideration the e�ect of neighboring cells around the correct one. The improvement
was more prominent for the busy scenario, where the presence of people resulted in
a low accuracy and for the con�dence intervals, that result in less robust �ngerprints
compared to other methods (e.g. percentiles). Other related work has also shown
that the integration of user mobility models can further improve the accuracy. In
the context of the aquarium, in which mobility patterns do exist, the integration of
user mobility models could be helpful. A Markov model could be used to describe
the user's moving behavior by storing all the possible movement paths and related
mobility patterns that are derived from the long-term history of moving events of the
mobile user. In this way we could predict the user's future movement based on the
highest probability transition from the current location.

Recently, there is a growing interest in statistical methods that exploit various
spatio-temporal statistical properties of the received signal to form robust �ngerprints.
In general, a channel exhibits very transient phenomena and is highly time-varying.
At the same time, the collection of signal measurements is subject to inaccuracies
due to various issues, such as hardware miscon�gurations, limitations, time synchro-
nization, �ne-grained data sampling, incomplete information, and vendor-speci�c de-
pendencies (often not publicly available). In this context, the preprocessing of the
signal-strength values received per AP at a speci�c position in order to remove out-
liers, is expected to help in the generation of more robust �ngerprints.

In the second localization approach presented in this thesis, we have employed
computer vision techniques in order to determine the user's position. We implemented
an application for the Android platform, where the user's position is estimated with
cm accuracy with respect to a QR code, that is scanned with a camera enabled
mobile phone. Location-based information are also provided to the user, by encoding
data at several QR codes and placing them at strategic locations. We have found
that scanning the QR code from an angle has a negative impact on the application's
accuracy. On the other hand, the accuracy doesn't depend on the distance of the user
from the QR code. The accuracy in the estimation of the user's position depends on
the quality of the captured image. Accidental movement of the camera during the QR
code scan may even make the position estimation process impossible, due to blurriness
in the image. Standard noise �ltering techniques could be applied in the image in
order to remove noise, hence improving the position estimation accuracy. There
are also alternative ways to preprocess the image in order to improve the accuracy
in the feature points extraction; we could experiment with di�erent thresholding
methods (e.g. a local adaptive thresholding instead of global thresholding) for the
image binarization or apply the Canny edge detector and see how the application's
performance is a�ected. A method presented in [59], that rebuilds an image from a
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distorted one by using inverse perspective transformation, could also be applied.
The incorporation of the vision-based positioning technique in the RSSI-based

location sensing system, could improve the accuracy of the second. More precisely,
the �ngerprinting technique could be applied only in a small region, estimated with
respect to the distance of the user from the QR code. We have been also experimenting
with other modalities, such as infrared and RFIDs. In the case of infrared, a WII
bar has been used as the infrared light source. When an infrared enabled camera
captures the light from at least two infrared sources, it can estimate its distance from
a landmark by measuring the distance of the two infrared sources on the recorded
image. We plan to extend our RSSI-based localization system by incorporating these
multi-modalities measurements.
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