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Abstract

This work is devoted to the study of holography as a tool to understand strongly

correlated systems in condensed matter systems. After a review of the general idea

of the AdS/CFT correspondence we proceed to topics that are relevant to condensed

matter systems as the AdS/CFT at finite temperature and finite density. Finally, we are

introducing the concept of Effective Holographic Theories for condensed matter systems

and study the zero temperature infrared behaviour of an Einstein Maxwell Dilaton

System with a Liouville potential.
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1 Introduction

One approach for tackling physical problems is to identify a small parameter in the prob-

lem and first treat this parameter as zero - simplifying the problem and perhaps making

it tractable. For example, one might take a weakly interacting system and model it as a

solvable non-interacting system, then treat the interaction as a small perturbation. While

this approach is one of the most frequently used tools of a physicist’s toolbox, it is only re-

liable for systems sufficiently ”near” to the non-interacting, or solvable, situation. Systems

where the interaction is strong are often resistant to this method of attack, and indeed such

nonperturbative problems are often found in nature.

Despite the difficulty of this problem, remarkable progress has been made in understand-

ing strongly interacting quantum systems. A powerful technique to study strongly coupled

system, that we will consider in this paper is Holography.

Motivated from calculations in string theory involving the dynamics of D-branes, Malda-

cena [1] in 1997 introduced the AdS/CFT correspondence. The correspondence states that

certain non-Abelian gauge theories can be described in a wholly different way, as theories of

quantum gravity living in a higher-dimensional spacetime, in particular a spacetime with the

asymptotic behaviour of anti-de Sitter space (AdS). But it is not only the different dynamics

of those two systems and the different number of dimensions they live in that make them look

different. According to the correspondence, when the gauge theory is strongly coupled the

gravity theory is weakly coupled and vice versa. The AdS/CFT correspondence is a one to

one correspondence between a strongly coupled system and a weakly coupled system. There-

fore, one ultimately could ask questions about the strongly coupled system, that could not

be answered before, but now they could be answered in the language of perturbation theory.

Moreover, the AdS/CFT correspondence could be used to describe the thermodynamic

properties of the gauge theory if the theory is defined at finite temperature[2]. This could be

achieved if we consider black hole solutions for the dual gravitational theory, since black holes

have an associate temperature and an entropy that is proportional to the one fourth of the

area of the horizon. Hence, by exploring the thermodynamic properties of the gravitational

system we could describe the phase structure of the dual gauge theory. It is found that the

dual description of N = 4 Super Yang Mills gauge theory at finite temperature indicates

correctly the confined-deconfined phase transition.
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In addition, the AdS/CFT correspondence can incorporate the case where there is a global

conserved U(1) current in the gauge theory by including a U(1) gauge field in the dynamics

of the dual gravitational system [3]. The gravitational solution to the system under consider-

ation is charged black holes in Einstein Maxwell anti de Sitter space. The phase structure of

the charged black hole systems reveal a rich phase structure with analogues to classic thermo-

dynamic systems, which displays classic critical phenomena. Specifically, the structures are

isomorphic to the Van der Waals-Maxwell liquid-gas system.

Even though the AdS/CFT was initially used as a tool to tackle high energy physics

problems, lately [4] has been applied to understand the low-temperature dynamics of strongly-

correlated electron systems with intention to develop a quantitative description of universality

classes at low temperature. The gravitational laboratories this time are the Einstein-Maxwell-

Dilaton systems with a scalar potential. The near-extremal (zero temperature) solutions of

those systems provide IR quantum critical geometries [5] that seems to agree with the study

of the dual condensed matter systems.

In this work, after a quick review of large N gauge theories that will indicate a geometrical

description for gauge theories [6], we will try to introduce the concept of the AdS/CFT [7],[8].

In chapter 3 we will explore the decoupling principle and the near horizon limit of D3 branes

where we will first state the correspondence. Then, we will try to make a precise statement

for the correspondence by stating how to map operators in the gauge theory to fields in the

gravitational theory. In the sequence, we will describe the finite temperature regime and study

the Hawking Page transition. Next, we will incorporate with additional degrees of freedom

in the gravitational theory by including a vector field in the dynamics. Finally, we will study

the Einstein-Maxwell-Dillaton system that is suitable for Effective Holographic Theories for

Condensed matter systems and we will show that there is a quantum critical behaviour for

those systems.
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2 1
N

In this section we briefly review the 1
N

expansion, in the limit where the number of colors N

goes to infinity, for a four dimensional SU(N) gauge theory coupled to fermions. This will be

instructive for us because on the one hand this is the appropriate limit, where the low energy

effective string description of the theory is weakly coupled and on the other hand, because it

turns out that in this limit there is a topological description of the gauge theory.

The degrees of freedom are the gauge fields transforming in the adjoint

Aa
µb = Ab†

µa, Aa
µa = 0 (2.1)

and the matter fields transforming in the fundamental

ψa. (2.2)

The field strength tensor is

F a
µνb = ∂µA

a
νb + Aa

µcA
c
νb − (µ↔ ν). (2.3)

And the Lagrangian is written as

L =
N

q2YM

(

−1

4
F a
µνbF

µνb
a + ψ̄a(i∂µ + Aa

µb)γ
µψb −mψ̄aψ

a

)

(2.4)

In order to have a good perturbation expansion we should keep something constant and what

we are keeping constant is the ’t Hooft coupling constant λ = g2YMN . We notice here that

there are two indices for the gauge field, one transforming in the fundamental, and the other

in the anti-fundamental. This trick, first established by ’t Hooft, enables us to adopt a double

line notation for the Feynmann diagrams, which is useful for a geometrical interpretation of

the diagrams. In this notation the propagators are written in the form

< Aa
µb(x)A

c
νd(y) > = (δadδ

c
b −

1

N
δab δ

c
d)Dµν(x− y)

< ψa(x)ψ̄b(y) > = δabS(x− y). (2.5)

In the limit where N → ∞ the 1
N

in the gauge field propagator is suppressed. It is now

easy to read from the Lagrangian which are the multiplication constants that appear in the

Feynmann diagrams. Each vertex V gives a factor N , every internal propagator E carries a

factor of 1
N

and every closed loop counts a number of N (because we are summing over the

colors).
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Figure 1: A planar diagram

For the sake of simplicity let us consider

only vacuum to vacuum graphs. Due to the

absence of external lines every index should

close to a loop. Let us interpret each loop

with a perimeter of a polygon. Furthermore,

let us glue one edge of one polygon with one

edge of another if they both lie on the same

double line and give an orientation to each

polygon by the right hand rule. In this man-

ner we have constructed a two dimensional

oriented surface which is topologically equiv-

alent with a sphere with some number of

holes cut out of it and some numbers of han-

dles stuck on it. We now can see what are the leading diagrams. First notice that each graph

is proportional to

NF−E+V = Nχ, (2.6)

where F is the number of faces (closed loops), E are the number of edges (internal propagators),

and V are the number of vertices and χ is the Euler characteristic which is equal to two minus

twice the number of holes H minus the number of handles (boundaries) B

χ = 2− 2H − B. (2.7)

Thus the leading connected vacuum to vacuum graphs are of order N2. They are planar

graphs consisted of gluons. The next order diagrams, vacuum graphs with quark loops, are

of order N . Hence, we have shown that there is a geometrical interpretation for the Feynman

diagrams of large N gauge theory that indicates a geometrical description. If we consider

the parameter N of the colour gauge group SU(N) as a free parameter, then an expansion of

the amplitudes at N → ∞ arranges the Feynman diagrams into sets which have exactly the

topology of the quantized dual string with quarks at its ends. What we will do in the rest of

the text is to geometrically describe large N gauge theories.
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3 AdS Space

The aim of this section is to review the geometrical structure of the Anti De Sitter space and

to array the basic formulae such as the field equations in AdS space that will be useful in the

sequence.

We will begin our discussion by giving the definition of the AdS space. The AdS space

is a maximally symmetric Lorentzian manifold with constant negative scalar curvature and

it is a vacuum solution of Einstein’s field equation with a negative cosmological constant Λ.

Specifically, AdSp+2 of dimension p + 2 may be embedded in a p + 3 dimensional flat space

associated with a metric

ds2 = −dX2
0 − dX2

p+2 +

p+1
∑

i=1

dX2
i , (3.1)

satisfying the constraint

X2
0 +X2

p+2 −
p+1
∑

i=1

X2
i = L2. (3.2)

L is refereed in the literature as the AdS scale. We can parametrized this constraint by using

the Poincaré coordinates

X0 =
u

2

(

1 +
1

u2
(L2 + ~x2 − t2)

)

, Xi =
Lxi

u

Xp+1
u

2

(

1− 1

u2
(L2 − ~x2 + t2)

)

, Xp+2 =
Lt

u
. (3.3)

Then we obtain the what so called Poincaré metric

ds2 =
L2

u2

(

du2 − dt2 + d~x2
)

(3.4)

It will be useful to compute the field equation for a massive scalar field minimally coupled to

gravity in AdS. The field equation is then

(�−m2)Φ = 0. (3.5)

Using the Poincaré coordinates this is written as

u2

L2

(

∂2u −
p

u
∂u − ∂2t + ∂∂

)

Φ = m2Φ (3.6)

If we do a Fourier transform

Φ(u; x) =

∫

dp+1q

(2π)p+1
Φ(u; q)eiqx (3.7)
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the field equation is written in the form

(

∂2u −
p

u
∂u − q2 − m2L2

u2

)

Φ(u; q) = 0 (3.8)

In the limit where q = 0 the solution scale as

Φ± ∼ u∆±, ∆± =
p + 1

2
± 1

2

√

(p+ 1)2 + 4m2L2 (3.9)

and the general solution it is given in terms of Bessel function

Φ(u; q) ∼ u
p+1

2 Zν(
√

q2u). (3.10)

It will be convenient for the sequence to define the bulk to boundary propagator satisfying

the Laplace equation,
(

�−m2
)

K∆(u; x; x
′) = 0, (3.11)

and the boundary condition

K(u; x; x′)|u=0 = δp+1(x− x′). (3.12)

So that the solution for the field Φ can be written as

Φ(u, x) =

∫

d4x′K(u; x; x′)Φ0(x
′) (3.13)

One solution for the propagator is

K∆(u; x; x
′) =

Γ[∆]

π
p+1

2 Γ[∆− p+1
1
]

u∆

(u2 + |x− x′|2)∆
, (3.14)

where

∆(∆− p− 1) = m2L2. (3.15)
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4 AdS/CFT Correspondence

The AdS/CFT correspondence is a conjecture that relates conformal field theories living in

p + 1 dimensions and relativistic gravitational theories living in AdSp+2. In the following

section we will try to make the correspondence clear.

4.1 The decoupling principle and the near horizon limit

Consider N parallel coincident D3-branes living in the ten dimensional spacetime. In this

background the theory contains two types of excitations, closed strings and open strings,

corresponding to the excitations of the ten dimensional bulk space and the excitations of the

D-branes respectively. If we are interested in the energy regime bellow the string scale Ms

then the action of the theory is

S = Sbulk + Sbranes + Sinteractions. (4.1)

The first term is referring in the Type-II supergravity which could be described at low energy

by the classical gravity. If we expand the bulk action around the free point with gµν =

ηµν + khµν , then

Sbulk ∼
1

2k2

∫

d10
√−gR + ... ∼

∫

d10x(∂h)2 +O(k). (4.2)

The low energy description of the open degrees of freedom Sbranes are described by N = 4,

U(N) super Yang-Mills theory. Furthermore, the interaction terms turns out to be propor-

tional to k. A useful way to take the low energy limit of the theory is to keep the energy

fixed but to take the characteristic scale of the theory ls to be zero and to keep any other

dimensionless parameters (N, gs) finite. In this limit k ∼ gsl
4
s → 0 and the theory decou-

ples to Yang-Mills gauge theory and to low dimensional supergravity. This is known as the

decoupling limit.

Another point of view of the same system is to consider D3-Branes as gravitational sources.

The background field generated by the N D3 branes is

ds2 = −H− 1
2 (r)(−dt2 + d~xd~x) +H

1
2 (r)(dr2 + r2dΩ2

5) (4.3)

where

H = 1 +
L4

r4
, L4 = 4πgsl

4
sN. (4.4)
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As we could see the tt component is r dependent and therefore the energy measured in a

distance r, Er would be due to the redshift

E∞ = H− 1
4Er (4.5)

where E∞ is the energy measured at infinity. Therefore, an observer at infinity sees two types

of excitations that are decoupled at low energy. The first type is massless large wavelength

excitations that propagate in the bulk where the space is essentially flat. The second type is

any type of low energy (redshifted) excitations near r = 0 with geometry,

ds2 =
L2

r2
dr2 +

r2

L2

(

−dt2 + d~xd~x
)

+ L2dΩ2
5

=
L2

u2

(

du2 − dt2 + d~xd~x
)

+ L2dΩ2
5. (4.6)

Here the space is AdS5×S5. We conclude that in both description that were discussed above

we end up with a theory that consist of two non interacting parts. One of the two parts

was free ten dimensional supergravity. Hence, we believe that the remaining parts are the

same and that leads to the conjecture that N = 4 U(N) SYM are the same with ten

dimensional SUGRA that lives on AdS5 × S5 known as the AdS/CFT correspondence.

We must make some remarks that will help us to understand the correspondence. First,

in order to take the low energy limit ls → 0 in the near horizon limit r → 0 we must keep

the energy measured at infinity E∞ ∼ (Erls)
r
l2s
fixed since this is the energy measured in field

theory. Furthermore, it is found that both the bosonic and fermionic symmetries are the same

in those two theories.

Another remark is that when the gauge theory is defined over R× S3 there is a discrete

spectrum and a gap and the appropriate coordinates are the global coordinates. On the other

hand, when the theory is defined on R
1,3 the spectrum is continuous without a gap and the

appropriate coordinates are the Poincare coordinates.

Moreover, we must match the three dimensionfull scales in string theory, the string length

ls, the AdS radius L and the ten dimensional Newton’s constant GN with the gauge theory

dimensionless coupling constants via

L4

l4s
= 4πgsN = g2YMN = λ, 16π

GN

l8s
= (2π)7g2s = 25π5 λ

2

N2
. (4.7)

With this matching we infer an important remark. The Newton’s constant is invert propor-

tional to the square of the number of colors, G ∼ 1
N2 . That means that quantum effects in
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string theory are suppressed when N >> 1. Furthermore, higher stringy corrections are also

small if the curvature of the background is much smaller that the string scale, L >> ls. In

other worlds, in the regime of strong ’t Hooft coupling λ in the limit of large N , the string the-

ory is described well by the two derivative action of the classical IIB SUGRA on AdS5 × S5.

But, large N gauge theory is weakly coupled in perturbation theory when λ << 1. Thus,

the strongly coupled behaviour of the gauge theory, which is very difficult to be handled, is

described by the weakly coupled string theory and vice versa.

Finally, we should mention that the correspondence could be generalized and valid for

a CFT living in d dimensions with a dual bulk theory defined over AdSd+1 × K where K

is a compact manifold. Moreover, it could be extended to non conformal field theories in d

dimensions, but the price would be that the bulk theory will not have the conformal Killing

symmetry any more.

4.2 Fields and operators

Consider the natural objects living in a CFT4 which are local operators O(x) to be added in

the Lagrangian by the term
∫

d4xΦ0(x)O(x) (4.8)

This external source Φ0 could be seen as the boundary value of a field propagating in AdS,

at the boundary u = 0.

Φ(u; x)|u=0 = u4−∆Φ0(x) (4.9)

A quantitative form of the AdS/CFT correspondence is

< e
∫
d4xΦ0(x)O(x) >CFT= Zstring[Φ(x; u)|u=0 = u4−∆Φ0(x)]. (4.10)

We need to define what we have written above. First, Zstring is the generational functional of

the on shell string amplitudes in AdS5 × S5 restricted to specific boundary condition for the

bulk field. On the left hand side of the above equation the < ... > is the expectation value

for the gauge theory computed off-shell and Φ0 is the associate source for the local operator

O(x). At large N and λ the string theory could be approximated by supergravity and we can

write

log(
∑

eISUGRA(Φ0)) = −Wgauge, (4.11)
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where Wgauge is the generating functional for connected correlation functions and the sum is

taken over semi classical extrema with the same asymptotics. In the case of AdS5 there is

only one extrema but in general there are more.

We should mention that there are UV divergences in the field theory side that correspond

to IR (in the boundary) divergences in the string theory. In order to handle this divergences

in the gravity side we impose the boundary conditions in a small distance ǫ from the boundary

and then renormilize the action by subtracting the terms that diverge as ǫ goes to zero. Let

us see how this works for the two point function for a massive scalar field.

The renormalized Euclidean action after the compactification of S5 is

S =
1

2

∫

dud4x
√
g
(

(∂Φ)2 +m2Φ2
)

=− 1

2

∫

d4x
√
gguuΦ(u; x)∂uΦ(u; x)|u=0

=− 1

2

∫

d4x1d
4x2Φ0(x1)Φ0(x2)

∫

d4x
K(u; x1; x)∂uK(u; x2, x)

u3
|u=0. (4.12)

Where we have used the bulk to boundary propagator (3.11). Expanding the propagator

around u = 0 we find that
∫

d4x
K(u; x; x1)∂uK(u; x; x2)

u3
=

∫

d4x

(

u4−∆+δ4(x− x1) + u∆+
c−1
3

|x−x1|2∆+

)(

(4−∆+)u
3−∆+δ4(x− x2) + ∆u∆+−1 c−1

3

|x−x2|2∆+

)

u3

(4.13)

where c3 = π2 Γ[∆+−2]
Γ[∆+]

and 4−∆+ = ∆−. Therefore

∫

d4x
K(u; x; x1)∂uK(u; x; x2)

u3
= ∆−u

2∆−−4δ4(x1 − x2) +
4

c3

1

|x1 − x2|2∆+

+
∆+

c3
u2∆+−4

∫

d4x
1

|x− x1|2∆+|x− x2|2∆+
(4.14)

The first term of the RHS is diverging. In order to take a finite action we must add a counter

term that will cancel the divergence. Therefore, we will introduce a cut off distance at u2 = ǫ

add the counter-term

Scounter = −∆−
2
ǫ∆−−2

∫

d4xΦ2
0(x) (4.15)
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and finaly take the limit of ǫ→ 0. Then the renormalized euclidean on shell action is written

after a trivial rescaling of the field as

Son−shell
ren = −1

2

∫

d4x1d
4x2

Φ0(x1)Φ0(x2)

|x1 − x2|2∆+
(4.16)

Therefore, in the CFT side for an operator with scaling dimension ∆ = ∆+ the two point

function will be according with the correspondence

< O(x2)O(x2) >=
1

|x1 − x2|2∆
. (4.17)

4.3 AdS/CFT at finite temperature

In this section we will study the AdS/CFT in the regime where the field theory is defined

at finite temperature. That will break the conformal symmetry, but the breaking is soft,

i.e it happens at low energy and therefore we can still consider an AdS boundary. In other

words, we can choose a metric space that in some limit reduces to the AdS space. Moreover

the SUSY is broken and thus we are going through more realistic models as QCD at finite

temperature. As we have argued before the correspondence may hold in that situation too.

However, we will have to pay a price and the price is to replace the AdS background with

something else.

The natural background to choose in the gravity theory is a black hole. In this background

we can define thermodynamic quantities like the entropy, known as the Bekenstein-Hawking

entropy or its conjugate variable, the temperature, known as the Hawking temperature. More-

over, for every other global conserved charge there is an associate thermodynamic potential.

It is found the the BH entropy S is proportional to the one fourth of the area of the horizon

of the black hole A

S[M ] ≡ A

4G
, (4.18)

where M is the mass of the black hole. Furthermore, the Hawking temperature T is defined

as the surface gravity κ divided by 2π

T =
κ

2π
. (4.19)

The temperature and the mass are related by the condition

T ≡ ∂M

∂S
|Q (4.20)
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where Q represents any other conserved charge. We can find the temperature in a general

black hole background if we use the notion of the Euclidean compact time τ with a period

β = 1
T

ds2 = f(r)dτ 2 +
dr2

f(r)
+ r2dΩ2

3 (4.21)

If we make a circle of around the outer horizon rH and identify the time as the angle of this

rotation then we can find the associate temperature

β =
4π

f ′(rH)
. (4.22)

On the field theory side we are considering an Euclidean finite temperature gauge theory

that lives on S1×S3 with associate radius β and R. Conformal invariance at zero temperature

indicates to define the dimensionless temperature z as the ratio of the two radius

z =
R

β
. (4.23)

This theory may have a phase transition at a finite value of z. It is known that at finite volume

there are no discontinuities at the partition function and therefore no phase transition occur.

On the other hand if we take the limit of infinite volume R → ∞, we automatically take the

large temperature limit by the definition of z and therefore no phase transition can occur at

this limit. Fortunately, we are working in the large N regime where new phase transitions

can occur at finite volume. Specifically, there are two phases in the theory. The deconfined

phase that corresponds to large value of z above a critical value z⋆ and the confined phase

that is found for temperature below this critical value. The criterion to distinguish a confined

from a deconfined phase is the dependence of the free energy F on N. If the free energy is of

order N2 then the phase is deconfined and if the free energy is of order one then the phase is

confined.

Let us now pause for the moment our discussion about the phase transition and investi-

gate the thermodynamic relations in the near horizon limit of black D3 branes. This is the

gravitational background dual to the thermal N = 4 SYM on S1 ×R. This theory is defined

in infinite volume and we will see that is in the deconfined phase. The associate metric is

ds2 =
−f(r)dt2 + d~xd~x

√

H(r)
+
√

H(r)

(

dr2

f(r)
+ r2dΩ2

5

)

, (4.24)
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where

H(r) = 1 +
L̃4

r4
, f(r) = 1− r40

r4
(4.25)

and we have put a tilde over L in order to distinguish it from the AdS scale. From this

expression it is easy to read the temperature

TH =

(

f(r)√
H(r)

)′
|r=r0

4π
=

r0

π

√

r40 + L̃4

(4.26)

and the entropy is computed if we take into account that G10 = 23π6l8sg
2
s and that the area

of the black hole is

A =

∫ √
hd3xdΩ5 =

√

H(r0)r
5
0V3π

3 (4.27)

where h represents the determinant of the induced metric and V3 the volume of the three

dimensional space. The entropy then is

S =
v3r

3
0

√

r40 + L̃4

25π3g2s l
8
s

(4.28)

Other thermodynamic quantities like the ADM mass M or the number of branes N are com-

puted to be

M =
V3[5r

4
0 + 4L̃4]

27π4g2s l
8
s

, N =
L̃2

√

r40 + L̃4

4πgsl2s
(4.29)

In the near horizon limit r << L̃ and if we want to stay outside the horizon we must conclude

that r0 << L̃ and therefore TH ls << 1. The AdS Scale is defined as L4 = l4sλ = 4πgsl
4
sN and

in the near horizon limit take the form

L4 = L̃4

(

(
r0

L̃
)4 + 1

)
1
4

(4.30)

and if we expand the temperature in powers of r0
L̃
we obtain that r40 = L̃8(πTH)

4 and therefore

L̃4 = L4(1− L4

2
(πTH)

4) (4.31)

If we change the coordinate by setting

r =
L2

u
(4.32)
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then we will take the near horizon metric

ds2 =
L2

u2

(

f̃(u)dτ 2 + d~xd~x+
du2

f̃(u)
+ L2dΩ2

5

)

(4.33)

where

f̃(u) = 1− (πTH)
4u4. (4.34)

In this limit the mass and the entropy can be written in the form

M = V3T3N +
3

8
π2V3N

2T 4 = NT3V3 +
3

4
EYM (4.35)

and the entropy as

S =
1

2
π2N2V3T

3 =
3

4
SYM (4.36)

As we have argued the energy scales as N2 and therefore the theory is in the deconfined

phase. The above exercise could be seen as an illustration of the fact that there is no phase

transition at infinite volume.

We would now proceed with the exploration of phase transition in the context of the

AdS/CFT by the investigation of a model at finite volume. What is important to be under-

stood is that when we want to study a QFT living on a manifold M4 its string dual involves

a higher dimensional manifold X whose boundary is M4. The precise correspondence is

ZFT (M4) = ZSTRING(X) ≃ e−I(X), (4.37)

where I(X) is the SUGRA action. However, there may be more than one competing manifolds

Xi whose boundaries are M4 then the correspondence is generalized in the form

ZFT (M4) =
∑

i

e−I(Xi). (4.38)

Suppose now that the SUGRA action scales as I(Xi) = NaF (Xi) then in the large N limit

there is a manifold X⋆ for which F (X⋆) is the least and therefore

lim
N→∞

− logZFT (M4)

Na
= F (X⋆) (4.39)

However, there might be more cases in which two different manifolds can have the same energy

F (Xi) = F (Xj). At that point the field theory free energy is expected to have a singularity

that indicates a first order phase transition.
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4.4 The Hawking Page transition

In this section we will study the Hawking Page transition which is the dual bulk description

of the phase transition that occur at the thermal N = 4 SYM. The low energy description of

the Type II B SUGRA is given by the Einstein Hilbert action with a negative cosmological

constant and the time to be compactified in a S1.

I = − 1

16π

∫

M
d5x

√
g[R +

12

L2
]− 1

8πG5

∫

∂M
d4x

√
hK, (4.40)

where h is the determinant of the induced metric at the boundary and K is the trace of the

second fundamental form Kµν where

Kµν =
1

2
LnPµν =

1

2
nρg

ρσ∂σg
µν . (4.41)

where n is a unit vector normal to the surface, Ln is the Lie derivative and Pµν is the projection

operator. The second term is called the Gibbons Hawking York term that is needed when the

underlying manifold has a boundary.

As we have argued before, in order to reveal the thermodynamic relations of the dual field

theory we must compute the former action on shell. The associate Einstein field equations

are

Rµν −
1

2
gµνR =

6

L2
gµν , (4.42)

hence R = − 20
L2 and the on-shell action is simplified to

Ion−shell =
1

2πG5L2

∫

M
d5x

√
g − 1

8πG5

∫

∂M
d4x

√
hK. (4.43)

Let us now discuss what are the solutions of the Einstein field equations. One solution that

is spherically symmetric is the so called AdS black hole with the associate metric

ds2 = (1 +
r2

L2
− wM

r2
)dt2 + (1 +

r2

L2
− wM

r2
)−1dr2 + r2dΩ2

3, (4.44)

where w = 16G5

3π2 , M is the ADM mass and t is the compact time with radius β. There are two

distinguished manifolds here. The first manifold is that in which M 6= 0 and we will call it

the manifold X . The black hole radius is the greatest root of the 00 component of the metric

1+
r2

L2
− wM

r2
= 0,
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r2+
L2

= −1

2
+

1

2

√

1 +
4wM

L2
(4.45)

and the period of the time it is found by requiring that there is no conical singularity

β =
4π

d

dr
((1 + r2

L2 − wM
r2

)|r=r+

=
2πL2r+

2r2+ + L2
. (4.46)

The boundary of manifold X ∂X has a S1 × S3 topology at infinity since

ds2 ∼ r2

L2
dt2 + r2dΩ2

3, (4.47)

where the radius of S1 is β∞ = r
L
β and the radius of S3 is R∞ = r. Therefore, the dimen-

sionless temperature at the boundary is

z =
R∞
β∞

=
L

β
=

2r+ + L2

2πLr+
(4.48)

which could be identified with the temperature of the field theory. We should make two

comments here. First, β as a function of r+ has a maximum corresponding to the value

r+ = L√
2
and therefore the dimensionless temperature has a minimum for this manifold. In

other words this manifold exists only when

z ≥
√
2

π
. (4.49)

Moreover, for every value of β there are two values for r+

r+ =
πL2

2β
[1±

√

1− 2β2

π2L2
]. (4.50)

We will call the black holes of the minus brunch, small black holes and the black holes of

the plus branch large black holes. It is found that only the large black holes have a positive

specific heat and thus are thermodynamically stable.

The second solution of the Einstein field equations is the thermal AdS manifold X ′ corre-

sponding to the metric (4.44) when M = 0.

ds2 = (1 +
r2

L2
− wM

r2
)dt2 + (1 +

r2

L2
− wM

r2
)−1dr2 + r2dΩ2

3 (4.51)

The boundary of X ′ is again in r = ∞ and has a topology S1 × S3. Now we could see

that both X and X ′ asymptotes correctly to S1 × S3 and can give a bulk dual description
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of the thermal Yang Mills. The identification of the temperature of the field theory with the

dimensionless temperature z will fix the black hole radius r+ and consequently M for X while

it will fix the S1 radius for X ′. In order to compute the partition function of the field theory

we must compute the on-shell gravitational action. The good news are that the two manifolds

have the same boundary and the same Gibbons Hawking term that we can omit, since we are

interested in the difference of the Euclidean actions. Therefore, the difference is proportional

to the difference of the volumes,

∆I = I(X)− I(X ′) =
1

16πG5L2
[V (X)− V (X ′)] (4.52)

In order to regulate the volumes and take the difference we will use a spatial cut-off close to

the boundary r ≤ 1
ǫ
and finally take the limit ǫ→ 0 as usual. Then the volume of X is

Vǫ[X ] =

∫ β

0

dt

∫ 1
ǫ

r=r+

r3dr

∫

dω3 = β(
1

ǫ4
− r4+)

π3

4
(4.53)

and for X ′

Vǫ[X
′] =

∫ β

0

dt

∫ 1
ǫ

r=0

r3dr

∫

dω3 =
π3

4

β ′

ǫ4
(4.54)

We must insure that the two geometries are the same in the regulated boundary by relate β

and β ′. In other words

β ′
√

1 +
1

ǫ2L2
= β

√

1 +
1

ǫ2L2
− wMǫ2, (4.55)

or

β ′ = β(1− 1

2
wML2ǫ4) +O(ǫ6). (4.56)

Finally, the difference of the volume is written as

Vǫ[X ]− Vǫ[X
′] =

π3

4
β[

1

ǫ4
− r4+ − 1

ǫ4
+

1

2
wML2] +O(ǫ2)

=
π3

4
β[
wML2

2
− r4+] +O(ǫ2)

=
π3

4
β[L2 r+

2
+
r+

2
] +O(ǫ2). (4.57)

If we substitute β we find for the difference of the actions after taking the limit of ǫ→ 0 that

∆I =
π3

8G5

r3+(L
2 − r2+)

2r+ + L2
. (4.58)
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The energy is
∂∆I

∂β
(4.59)

and the entropy is computed to be

S = βE −∆I =
A

4G5

(4.60)

that scales correctly as S ∼ β−3.

4.5 Charged Black Holes in AdS Space

In this section we will explore the thermal properties of Einstein-Maxwell AdS charged black

holes in 4+1 dimensions. As we have mentioned earlier, this theory is dual to SU(N), N = 4

Yang Mills theory coupled to a U(1) current that lining in four dimensions. We will show

that in the fixed charged ensemble the non zero charged density will modify the phase struc-

ture in comparison with the uncharged AdS black hole background that we studied earlier.

Specifically, it turns out that there is a non-zero entropy at zero temperature. Furthermore,

there is a similarity between the phase diagram of the system under consideration and phase

diagram of the liquid-gas system.

The action for the model is the Einstein Hilbert action with a negative cosmological

constant and a field strength tensor for the gauge field.

I = − 1

16πG5

∫

M
d5x

√
g[R− F 2 +

12

L2
]− 1

8πG5

∫

∂M
d4x

√
hK. (4.61)

The static and spherical solution of the equation of motion of this action is given by the metric

ds2 = V (r)dt2 +
dr2

V (r)
+ r2dΩ2

3, (4.62)

where

V (r) = 1− m

r2
+
q2

r4
+
r2

L2
(4.63)

where m = wM and w is what we have defined in (4.44), q = 3
√
3wQ where Q is charge of

the black hole. The horizon of the black hole r+ is given by the root of V (r)

r4 −mr2 + q2 +
r6

L2
= 0 (4.64)

For the gauge field we find

A = (−
√
3q

2

1

r2
+ Φ)dt (4.65)

20



If we assume that the gauge field vanishes at the horizon, then the electrostatic potential

difference between the horizon and the infinity is

Φ =

√
3

2

q

r2+
. (4.66)

The prescription to describe the phase structure of the dual field theory is to find the on-

shell gravitational action, as we have done in the previous section, but now we will use the

extremal black hole solution that corresponds to zero temperature as a background. If we fix

the potential but not the charge then we must include a boundary term to the off shell action

I − 1

4πG5

∫

∂M
d4x

√
hF µνnµAν (4.67)

where nµ = (0, 1√
grr
, 0, 0, 0) is a unit vector normal to the boundary. Then the on-shell action

then is

I =
1

16πG5

∫

M
d5
√
g[
2F 2

3
+

8

L2
]− 1

4πG5

∫

∂M
d4x

√
hF µνnµAν −

1

8πG5

∫

∂M
d4x

√
hK. (4.68)

As earlier we must correctly match the asymptotic geometries for the extremal and the non

extremal background by using a spacial cut-off r ≤ 1
ǫ
and matching the radii of S1 via

β ′
√

1−meǫ2 +
1

ǫ2L2
+ q2ǫ4 = β

√

1−mǫ2 +
1

ǫ2L2
+ q2ǫ4 (4.69)

or
β ′

β
= 1 +

1

2
(me −m)L2ǫ4 +O(ǫ6) (4.70)

where

β =
4π

V ′(r+)
=

4πL2r5+
4r6+ + 2L2r4+ − 2q2L2

(4.71)

is the radius of S1 of the non extremal background and β ′ is the radius of S1 of the extremal

background. The extremal radius is given by the relation

4r6e + 2L2r4e = 2q2L2 (4.72)

Let us split the action into four parts

I = I1 + I2 + Ib + IGHY (4.73)
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where

I1 = − 1

16πG5

∫

M
d5x

√
g
2

3
F 2, (4.74)

I2 =
1

2πG5L2

∫

M
d5x

√
g (4.75)

Ib = − 1

4πG5

∫

∂M
d4x

√
hF µνnµAν (4.76)

and

IGHY = − 1

8πG5

∫

∂M
d4x

√
hK (4.77)

First we must first compute F 2 that is

F 2 = gµρgνσFµνFρσ = 2g00g11(F10)
2 =

6q2

r6
(4.78)

Then I1 is written in the form

I1 =
1

16πG5L2
βω3

∫ r= 1
ǫ

r=r+

4q2L2dr

r3

= − 1

16πG5L2
βω32q

2L2(
1

r2+
+O(ǫ2)). (4.79)

The second part of the action I2 is

I2 =
1

8πG5L2
βω3(

1

ǫ4
− r4+). (4.80)

Ib is found to be

Ib = − 1

4πG5

∫

∂M
d4x

√
hF µνnµAν

=
1

4πG5
βω3r

3

√
3q

r3
[−

√
3q

2r2
+

√
3q

2r2+
])|r= 1

ǫ

=
1

16πG5L2
βω3

6q2L2

r2+
+O(ǫ2) (4.81)

For the Gibbons Hawking York term we must first compute the extrinsic curvature which

is given gy (4.41) and is computed to be

K =
rV ′(r) + 6V (r)

2r
√

V (r)
, (4.82)
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then the Gibbons Hawking York term is

IGHY = − 1

8πG5

∫

∂M
d4x

√
hK

= − 1

8πG5

βω3[
r2

2
(rV ′(r) + 6V (r)]|r= 1

ǫ

= − 1

16πG5L2
βω3[

8

ǫ4
+ 6

L2

ǫ2
− 4mL2] (4.83)

Putting (4.79),(4.80),(4.81) and (4.83) together we obtain

ION−SHELL =
1

16πG5L2
βω3[−

6

ǫ4
− 6L2

ǫ2
− 2r4+

4q2L2

r2+
+ 4mL2] (4.84)

Now what is left is to subtract the on-shell action for the extremal black hole and use

(4.64),(4.72) and match the geometry at the boundary for the two actions via (4.70). Af-

ter some algebra the difference of the on shell actions is then

∆I =
βω3

16πG5L2
[−2r4+ +

4q2L2

r2+
+mL2 + 2r4e −

4q2L2

r2e
−meL

2]

=
βω3

16πG5L2
[L2r2+ − r4+ +

5q2L2

r2+
− 3

2
L2r2e −

9

2

q2L2

r2e
]. (4.85)

By keeping the charged fix we are working in the canonical ensemble and the difference of the

actions represents the free energy multiplied by β

∆I = βF. (4.86)

The energy measured above the ground state can be computed as

E =M −Me =

(

∂∆I

∂β

)

Q

(4.87)

The thermodynamic potential as

Φ =
1

β

(

∂∆I

∂Q

)

β

=

√
3

2

(

q

r2+
− q

r2e

)

, (4.88)

and the entropy

S = β

(

∂∆I

∂β

)

Q

−∆I =
A

4G
. (4.89)
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The difference between that model and that of Hawking and Page is that there is a non zero

extremal horizon re that corresponds to zero temperature and therefore there is a non zero

entropy at zero temperature.

It is useful to examine the inverse temperature β as a function of r+. The turning points

of β determined by the condition

(

∂β

∂r+

)

r+=rt

=

(

∂2β

∂r2+

)

r+=rt

= 0, (4.90)

It turns out that there are two turning points that they are different below a critical value for

the charge, the same for that critical value and they disappear if the charge is greater than

the critical value. The associate critical values are

r2crit =
L2

3
, q2crit =

L2

3
√
15
. (4.91)

1/Tc

branch 2 branch 3

branch 1

9

10

11

12

1/T

0 2 4 6 8
r+

Figure 2: The β(r+) -r+ plot

Therefore, for q < qcrit there are three branches of

solutions (different horizons) for a given tempera-

ture. Let us call the branch of solution with small

radius branch 1 and the branch with big radius

branch 3 while the middle branch with branch

2. The middle branch 2 has a negative specific

heat since ∂βS ∼ r2∂βr+ and therefore is unsta-

ble. For low temperatures the non extremal black

hole with the smallest radius r
(2)
+ dominates the

thermodynamic ensemble. There is a critical tem-

perature Tc where the free energy of branch 3 is

more negative and therefore branch 3 dominates

the ensemble. Since the entropy is proportional

to r
(3)
+ there is a jump and therefore a release of

latent heat. At high temperature the branches 1

and 2 disappear and there is a single branch. The

situation is similar for large charge. The phase

structure of that system is isomorphic to the clas-

sic liquid-gas system of Van der Waals if we map
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β to the pressure, r+ to the volume and the charge to the temperature. There is one order

parameter for the phase transitions that occurs at the critical point qcrit. This is the difference

of the two radii ρ+ = r
(3)
+ − r

(1)
+ , as it is zero above qcrit and non zero below. In the regime

where q ≥ qcrit,(ρ+ = 0), there is no phase transition by increasing the temperature.

5 Effective Holographic Theories for CondensedMatter

Systems

We have seen in this text that a string theory can be approximated by a Supergravity action

if the strings can be approximated as point-like objects. We can think about integrating-out

massive string modes, in order to obtain an effective description of a small number of low

energy modes. The key idea of Effective Holographic Theories is to select a set of operators in

the strongly coupled field theory that are expected to dominate the dynamics and parametrize

the dual field two derivative gravitational action.

In this section we will attempt to describe the strongly coupled low temperature dynamics

for condensed matter systems via holography. In condensed matter systems an important

ingredient is the presence of the source which is described in the dual gravitational theory

by a vector field Aµ in addition to the metric gµν that controls the energy. However, we

have seen in the previous section that if we include only the vector field in the dynamics we

end up with a non zero entropy at zero temperature, but this would violate the third law

of thermodynamics. A next step in modelling the dynamics of strongly coupled systems at

finite density is to include the leading relevant operator, which is a scalar field φ controlling

the coupling constant and its running in the IR. Moreover, for a condensed matter system

the scalar filed would represent the strong interactions of the ion lattice, or the effect of spins

on the charge carriers. The associate gravitational system is the Einstein-Maxwell-Dillaton

system with a scalar potential.

S =Mp−1

∫

dp−1x
√−g

(

R− 1

2
(∂Φ)2 + V (Φ)− Z(Φ)

4
FµνF

µν

)

, (5.1)

where p is the number of spatial dimensions and is left arbitrary here.

We have seen so far that there is one special dimension in the context of the AdS/CFT,

the radial coordinate. In the gravity side it is a coordinate that tells us how far are we from

the boundary while form the field theory side it could be seen as an energy scale that tells
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us how far are we from the UV theory. In an EHT we want to determine the low energy

correlation functions by knowing the boundary conditions at the AdS boundary of the field

equations, analogously with an Effective Field Theory in which we want to derive the low

energy Lagrangian. In this section are mostly interested in infrared dynamics and we will

parametrize the potential V (Φ) and Z(Φ) accordingly. In the absence of IR fixed point one

parametrization for the scalar potential is

V (Φ) = 2Λe−δΦ (5.2)

where −δΦ → ∞. Furthermore, gauge supergravity actions stemming from string theory

indicate that we should take the coupling constant Z(Φ) to be also exponential

Z(Φ) = eγΦ. (5.3)

It turns out that there is a criterion for this parametrization of the potential to be quite

general. Indeed sub-leading changes in the potential do not change the qualitative IR physics

if Cp 6= 0 where

Cp(γ, δ) ≡ 2(p− 1) + γ2 + 2(p− 2)γδ − (2p− 3)δ2. (5.4)

On the other hand if Cp = 0 then sub-leading changes in the potential are expected to change

the IR behaviour. In the case of zero density the phenomenon occurs at δ = δc =
√

2
p−1

and

leads to non conformal IR dynamics and in the following section we will try to show how this

happens.

Let us now write the equation of motion for the Einstein Maxwell Dilaton model. By

varying the action (5.1) with respect to Aµ and gµν we find

∂µ
(√−gZF µν

)

=0, (5.5)

Rµν −
1

2
gµνR =Tµν , (5.6)

Tµν =
1

2
∂µΦ∂νΦ− 1

4
gµν(∂Φ)

2 +
1

8
gµνZF

2 − 1

2
F ρ
µFρν +

1

2
V gµν (5.7)

We will define the general coordinates as ,

ds2 = −D(r)dt2 +B(r)dr2 + C(r)dxidx
i, (5.8)

Then the vector field is written as

A′
t =

q
√
DB

ZC
p−1

2

. (5.9)

and the associate Einstein equations are written in the form
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Φ′2 + (p− 1)
C ′′

C
− p− 1

2

(

D′

D
+
B′

B
+
C ′

C

)

C ′

C
= 0 (5.10)

D′′

D
− C ′′

C
+

1

2

(

C ′

C
− D′

D

)(

B′

B
+
D′

D
+ (3− p)

C ′

C

)

− q2B

ZCp−1
= 0 (5.11)

−1

2
Φ′2 − BV +

p− 1

2

C ′

C

(

p− 2

2

C ′

C
+
D′

D

)

+
q2B

2ZCp−1
= 0. (5.12)

5.1 Zero density and zero temperature

In this section we will solve the Einstein equation (5.10), (5.11) and (5.12) in the neutral

case, i.e. when the global charge is zero. Furthermore, we will investigate the case where the

temperature is zero. For convenience we will work in the conformally flat coordinate system,

where D(r) = B(r) = C(r) = eA(r) and the metric is in the form

ds2 = eA(r)
(

−dt2 + dr2 + dxidxi
)

. (5.13)

In that coordinate system you can identify the r coordinate with the energy scale via

logE ↔ 2A(r) (5.14)

As we will see below the scale factor is monotonically decreasing from the UV to the IR and

the space time is either conformal with an AdS scale smaller than the UV scale (the gauge

theory flows to an IR conformal fixed point) or the scale factor vanishes at finite or infinite r

which indicates a curvature singularity.

What we will show below is that there is a solution of the Einstein equations-when the

parameter δ is not taking the critical value δ2c = 2
p−1

-where the scale factor has a power law

behaviour and the scalar field has a logarithmic behaviour. Furthermore, sub-leading changes

in the potential do not change this behaviour and result to sub-leading corrections for the

scale factor and the scalar field. On the other hand when the parameter δ is taking the critical

value then the scale factor goes to zero exponentially.

The equations (5.10), (5.11) and (5.12) when the metric is in the conformal frame (5.13)

are written in the form

(Φ′(r))2 + (p− 1)A′′(r)− p− 1

2
(A′(r))2 = 0

p− 1

2
A′′(r) +

(p− 1)2

4
(A′(r))2 = eA(r)V (Φ(r)). (5.15)
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First, we will examine the case where V (Φ) = 2Λe−δΦ. We impose that the asymptotic

behaviour for the scale factor is of the form

eA0(r) = rk, kǫ(−∞,−2). (5.16)

Then the first equation is written in the form

Φ′
0 =

√

p− 1

2
(k2 + 2k)

1

r
, (5.17)

or

Φ0 = a log(r) + c, a =

√

p− 1

2
(k2 + 2k) (5.18)

By substitute the above solution to the second equation of (5.15) we take that

(

p− 1

2
k(k − 1) +

(p− 2)(p− 1)

4
k2
)

r−2 = 2Λrk−δae−δc (5.19)

and the constant c is found to be

c = −1

δ
log((

p− 1

2
k)(

p− 1

2
k − 1)) (5.20)

By equalizing the exponents we find that

k − δa = −2 (5.21)

and by substitution of a from (5.18) we take

k + 2

k
= δ2

p− 1

2
. (5.22)

The exponent k and the multiplication constant are written in the form

k =
−2

1− δ2 p−1
2

(5.23)

a =
δ2

(

p−1
2

)

δ
(

1− δ2 p−1
2

) (5.24)

Therefore, in the limit case where δ → δc we take k → −∞ and thus we must exclude this case.

We now want to solve the case in which we are taking into account sub-leading corrections

for the scalar potential, i.e. V (Φ) = 2Λe−δΦΦm. An approach would be to decompose the

28



dilaton and the scale factor in two pieces. The first will satisfy the Einstein equations when

m = 0 and the second will be small compared to the first, in the limit of large r.

Φ(r) = Φ0(r) + ∆Φ(r), A(r) = A0 +∆A(r). (5.25)

Then the E.E. (5.10), (5.11) and (5.12) will be after using the equation (5.18)

2Φ′
0∆Φ′ + (p− 1)∆A′′ − (p− 1)A′

0∆A
′ = 0,

p− 1

2
∆A′′ − (p− 1)2

2
A′

0∆A
′ = 2ΛeA0−δΦ0Φm

0 , (5.26)

After some algebra we obtain

2
a

r
∆Φ′ + (p− 1)∆A′′ − (p− 1)

k

r
∆A′ = 0,

p− 1

2
∆A′′ − (p− 1)2

2

k

r
∆A′ = 2Λe−δcrk−aδam logm r, (5.27)

Since we are looking for the IR behaviour we are taking the limit of large r and the solution

for ∆Φ and ∆A is

∆A =
ζ

m+ 1
logm+1 r, ∆Φ =

β

m+ 1
logm+1 r (5.28)

where the constants β and ζ are given by the relations

β =
2Λe−δc

a
, ζ =

4Λe−δc

(1− p)(k + 1)
, m < 0 (5.29)

Therefore the fields now are written as

Φ = (log r)(a+
β

m+ 1
logm r) (5.30)

A = (log r)(k +
ζ

m+ 1
logm r). (5.31)

We could see now that this solution stands for m < 0. Another possible solution would be to

decompose the fields as follow

Φ = a log r + β̃ log log r (5.32)

A = k log r + ζ̃ log log r (5.33)

Where again k, a are given from the m = 0 case as expected. Using the same logic as before

we find the new perturbations ∆Φ = β̃ log log r and ∆A = ζ̃ log log r by substituting this
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ansatz in the equations of motion and keep in mind that we will keep the ∆A and ∆Φ terms

in the exponent factor.

2Φ′
0∆Φ′ + (p− 1)∆A′′ − (p− 1)A′

0∆A
′ = 0,

p− 1

2
∆A′′ − (p− 1)2

2
A′

0∆A
′ = 2ΛeA0+∆A−δ(Φ0+∆Φ)Φm

0 , (5.34)

which are written in the form

(

2aβ̃ − (p− 1)(k + 1)ζ̃
) 1

r2 log r
= 0, (5.35)

−p− 1

2
ζ̃ (1 + (p− 1)k)

1

r2 log r
= 2Λamrk−δa(log r)ζ̃−δβ̃+m. (5.36)

After some algebra we are evaluate the coefficients ζ̃ and β̃,

ζ̃ = m− 1− δ
(m− 1)(p− 1)(1 + k)

2a + δ(p− 1)(1 + k)
, (5.37)

β̃ =
(m− 1)(p− 1)(1 + k)

2a+ δ(p− 1)(1 + k)
(5.38)

We notice here that logm+1 r

log log r
→ 0 for m ≤ −1. Therefore the log log r subleading terms are

dominant for m ≤ −1 and the logm+1 r terms are dominant for m > −1. Summarizing, we

have found that when δ 6= δc then if we change slightly the scalar potential that will yield

to subleading corrections for the scale factor and the scalar field. Specifically, if V (Φ) =

2Λe−δΦΦm with m < 0 then the solution is written for m < −1

Φ = (log r)(a+
β

m+ 1
logm r), (5.39)

A = (log r)(k +
ζ

m+ 1
logm r) (5.40)

and for mǫ(−1, 0)1 as

Φ = a log r + β̃ log log r, (5.41)

A = k log r + ζ̃ log log r. (5.42)

Now we will investigate the case when δ = δc. In that case we have found that the scale factor

does not admit power law solution. On the other hand, if we take the scale factor to be

eA = e−rl, (5.43)
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then the first equation of (5.15) will be

Φ′ =

√

p− 1

2
lrl−1, (5.44)

or

Φ =

√

p− 1

2
rl + c. (5.45)

Then if we take the scalar potential to be V (Φ) = 2Λe−δΦΦm then the second equation of

(5.15) will be

(p− 1)2

4
l2r2l−2 = 2Λ(

√

p− 1

2
rl)m (5.46)

with

l =
2

2−m
. (5.47)

Thus, when δ = δc the scale factor has an exponential behaviour and subleading corrections

to the potential do not yield to subleading changes for the scale factor and for the scalar field.

5.2 Finite density and zero temperature

In this section we will try to illustrate that the things are significantly more complicated when

we include a conserved global U(1) current in the theory. The problem is to solve the system

of the differential equations (5.10), (5.11), (5.12) when Cp in (5.4) is zero in the limit where

δΦ → ∞ and for the general class of potentials

V (Φ) =2Λe−δΦΦm,

Z(Φ) =eγΦΦn. (5.48)

We are looking for asymptotic solution of the form Φ ∼ Φ0r
k, D ∼ e−dra1 , B ∼ e−bra2 , C ∼

e−cra3 by using our experience for the zero density case. So the problem is to relate eight

asymptotic parameters Φ0, d, b, c, k, a1, a2, a3 and one integration parameter q with five La-

grangian parameters Λ, γ, δ,m, n.
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Then the Einstein equations take the form

cd

2
(1− p)a1a3r

−2+a1+a3 +
cb

2
(1− p)a2a3r

−2+a2+a3

−c
2

2
(1− p)a23r

−2+2a3

+
c

2
(1− p)(a3 − 1)a3r

−2+a3 + Φ2
0k

2r−2+2k = 0, (5.49)

d2a21
2
r−2+2a1 +

c2a23
2

(1− p)r−2+2a3

−bd
2
a1a2r

−2+a1+a2 +
cd

2
(p− 1)a1a3r

−2+a1+a3

+
bc

2
a2a3r

−2+a2+a3 − da1(a1 − 1)r−2+a1 + ca3(a3 − 1)r−2+a3

−q2Φ−n
0 r−nke−bra2−rkγΦ0−c(1−p)ra3 = 0, (5.50)

cd

2
(p− 1)a1a3r

−2+a1+a3 +
c2

4
(p− 2)(p− 1)a23r

−2+2a3 − k2Φ2

2
r−2+2k

−2ΛΦm
0 r

kme−bra2−δΦ0r
k

+
1

2
q2Φ−n

0 r−nke−bra2−rkγΦ0−c(1−p)ra3 = 0. (5.51)

One way to tackle this problem is to assume that some exponents in the former equations

are equal and then take those terms as the leading terms. By looking at equation (5.49) we

notice that there are

5
∑

k=2

5!

k!(5− k)!
= 26 differing ways of matching the exponents. However

it turns out that only eighteen matches give non trivial results. We tabulate them in Table I.

Table I
(i) a1 + a3 = a2 + a3 (x) a1 + a3 = a2 + a3 = 2a3
(ii) a1 + a3 = 2a3 (xi) a1 + a3 = a2 + a3 = a3
(iii) a1 + a3 = a3 (xii) a1 + a3 = a2 + a3 = 2k
(iv) a1 + a3 = 2k (xiii) a1 + a3 = 2a3 = 2k
(v) a2 + a3 = 2a3 (xiv) a1 + a3 = 2a3 = k

(vi) a2 + a3 = a3 (xv) a2 + a3 = 2a3 = 2k
(vii) a2 + a3 = 2k (xvi) a2 + a3 = a3 = 2k
(viii) 2a3 = 2k (xvii) a1 + a3 = a2 + a3 = 2a3 = 2k
(ix) a3 = 2k (xviii) a1 + a3 = a2 + a3 = a3 = 2k

Unfortunately, this approach is quite complicated since system of the algebraic equations

is non linear and admits a solution only for specific values of m and n. However, it is

possible that a better guess for the asymptotic ansantz could lead to a simpler system for the
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unknowns, something that we do not attempt in this project and we are postponing it for

further investigation in the future.
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6 Conclusions

In this paper we saw how holographic techniques could be applied to condensed matter sys-

tems.

In chapter 2 we indicated that there is a geometrical description of SU(N) gauge theories

when N → ∞ that was an appetizer for the string theory description of those gauge theories.

In chapter 3 we briefly reviewed some useful results from general relativity, like the geometrical

description of the AdS space and the field equation in that space, that where used in chapter

3.

In the sequence, we described the AdS/CFT correspondence and showed that this is a

correspondence between conformal gauge theories and gravitational theories when we augment

the space time dimensions by one and assume that the gauge theory lives on the boundary

of the bulk space which is the AdS space. That was done by taking the near horizon limit of

extremal N D3 branes. Specifically, we showed that the low energy description of this system

could be seen either as a gravity theory living on ten dimensional space time plus excitation

of the D3 branes, i.e. SU(N) gauge fields or as a gravity theory living on ten dimensional

space time with a geometry near the branes of AdS5 × S5. Even more, we found that when

one theory is weakly coupled the other is strongly coupled and that gave us the opportunity

to study strongly coupled field theories.

If we break the conformal symmetry softly and compactify the time direction then we

can describe gauge theories at finite temperature. The associate gravitational background for

the Yang Mills theory was black holes in AdS space. There we incorporated the situation

when two different backgrounds had the same boundary. It was shown that a first order

phase transition could occur at large N , known as the Hawking Page transition that is dual

to the confined deconfined phase transition of the gauge theory. In the next subsection, we

modelled the gravitational theory when there is U(1) conserved current in the gauge theory.

We computed the on shell action for the Einstein Maxwell charged black hole in the grand

canonical ensemble, when the potential at infinity was varied but the charge was kept fixed.

Finally, we concluded that the phase structure of that system is isomorphic to the classic

liquid-gas system of Van der Waals if we map β = 1
T
to the pressure, the horizon of the black

hole r+ to the volume and the charge to the temperature.

In chapter 5 we studied Effective Holographic Theories for Condensed Matter Systems.
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Specifically, we identified the relative degrees of freedom for those systems and wrote the dual

gravitational action. The model was the Einstein Maxwell Dilaton with a Liouvile potential.

Moreover, we sought the infrared behaviour of the system first for the neutral case and then

for the charged case. A set of parameters was used as an index of the infrared behaviour of

the system. When the parameters satisfied a specific constraint then the conformal symmetry

was broken in the infrared and the form of the fields was changed. When, the constrained

was not satisfied the system was scale invariant in the infrared and subleading changes of the

scalar potential led to subleading changes for the field.
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