
Hardware Support for Quality of Service in

an RDMA Engine

Bartzis Sokratis

Thesis submitted in partial fulfillment of the requirements for the

Masters’ of Science degree in Computer Science and Engineering

University of Crete
School of Sciences and Engineering
Computer Science Department

Voutes University Campus, 700 13 Heraklion, Crete, Greece

Thesis Advisor: Prof. Manolis G.H. Katevenis

Thesis Co-Advisor: Dr. Nikos Chrysos

This work has been performed at and supported by the Computer Architecture and VLSI
Systems (CARV) Laboratory, Institute of Computer Science (ICS), Foundation for Research and
Technology - Hellas (FORTH).

University of Crete
Computer Science Department

Hardware Support for Quality of Service in an RDMA Engine

Thesis submitted by
Bartzis Sokratis

in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science

THESIS APPROVAL

Author:
Bartzis Sokratis

Committee approvals:
Prof. Manolis G.H. Katevenis
Professor, Thesis Supervisor

Prof. Polyvios Pratikakis
Associate Professor, Committee Member

Prof. Vassilis Papaefstathiou
Assistant Professor, Committee Member

Departmental approval:
Prof. Polyvios Pratikakis
Associate Professor, Director of Graduate Studies

Heraklion, June 2022

Hardware Support for Quality of Service in an RDMA
Engine

Abstract

In recent decades, both research and industry have turned to High Performance
Computing (HPC) for their ever-increasing computational needs. In an attempt
to provide a high-performance communication framework for European supercom-
puters, under the EU-funded ExaNeSt and RED-SEA projects, we design a novel
Remote Direct Memory Access (RDMA) engine, capable of low latency (less than
0.5µs) and high throughput communication (100 Gb/s).

In this thesis, we design the Quality of Service (QoS) hardware of our RDMA
engine. Transfers are segmented into blocks, so as to enable selective re-transmissi-
ons, multi-path routing and to avoid per packet acknowledgment overheads. Small-
sized transfers can bypass the RDMA-DRAM path, to further minimize latency.
We schedule transfers at block level, based on a user-defined priority, we sup-
port end-to-end flow control, and we enable network multi-pathing and congestion
management options. We also implement a completion notification engine in hard-
ware. We expose 2048 virtual channels to users supporting multiple outstanding
data transfer requests. Finally, we introduce a novel way of collectively polling the
status of multiple channels.

Our register-transfer-level (RTL) hardware implementation is pipelined in or-
der to achieve higher clock and message rates (1 operation/clock cycle, or 150
MOP/s in our FPGA implementation), while maintaining a low latency of 4 clock
cycles for single block transfers. To further reduce latency, we implement multiple
(32) scheduling queues in shared space, that support one (1) enqueue and one (1)
dequeue operation per clock cycle, as well as back-to-back dequeue operations.

We synthesized our design for the Zynq Ultrascale+ MPSoC. The RDMA’s
QoS part leverages 13.3K Look-Up Tables (LUTs), 5.1K register and 23 BRAM
blocks (848 kbits). The maximum frequency achieved in this FPGA was 150 MHz,
but this can be further improved, especially in a VLSI implementation.

Extensive functional verification tests were performed using the Vivado Design
Suite. The QoS engine developed in this thesis completed in simulation 100K
outstanding transfers of varying size, up to 1 MB. Additionally, we integrated
our QoS implementation with the RDMA send unit in another simulated test-
bench, issuing 5K transfers of maximum 256 KB (256 packets), which the design
also completed successfully. In these tests, we examined every possible transfer
type, including congestion managed and fast-path flows, as well as completion
notifications.

The design was implemented on the Zynq’s FPGA and performance measure-
ments were taken from user-level programs on the Zynq’s A53 ARM core. Comple-
tion time for small transfers of up to 512 Bytes was measured at 360 ns, when trans-
ferring intra-node, BRAM to BRAM (excluding network and DRAM latencies),

ten times lower than the latency of the ExaNeSt RDMA, a previous implementa-
tion on the same MPSoC, using the ARM Cortex-R5 co-processor for QoS support.
Moreover, we significantly improved the transfer rate that can be achieved, reach-
ing the theoretical maximum (line) throughput as early as with 16KB transfers,
whereas using the previous implementation the corresponding transfer size was
4MB. Finally, although the RDMA engine is optimized for and tested using AXI
processor interconnects, it can also be connected to PCI or CHI host-processor
interconnects.

Υποστήριξη μέσω Υλικού της Ποιότητας

Υπηρεσίας μιας Μηχανής για Απομακρυσμένες

΄Αμεσες Προσπελάσεις Μνήμης

Περίληψη

Τις τελευταίες δεκαετίες, τόσο ο κλάδος της έρευνας, όσο και αυτός της βιομηχα-

νίας έχουν στραφεί προς την Υπολογιστική Υψηλών Αποδόσεων για να καλύψουν τις

αυξανόμενες ανάγκες τους για υπολογιστική ισχύ. Σε μία προσπάθεια να υλοποιήσου-

με ένα πλαίσιο επικοινωνίας υψηλής απόδοσης για ευρωπαϊκούς υπερυπολογιστές, στα

πλαίσια των ευρωπαϊκών προγραμμάτων ExaNeSt και RED-SEA, σχεδιάζουμε μια νέα
διεπαφή δικτύου χαμηλής καθυστέρησης (λιγότερο από 0,5 μs) και υψηλής παροχής
(100 Gb/s), ικανή για απομακρυσμένες άμεσες προσπελάσεις μνήμης.

Σε αυτήν την εργασία σχεδιάζουμε μια μηχανή υλικού για την βελτίωση της πα-

ροχής υπηρεσιών (Quality of Service, QoS) μιας μηχανής Απομακρυσμένων ΄Αμεσων
Προσπελάσεων Μνήμης (Remote Direct Memory Access, RDMA). Οι μεγάλες με-
ταφορές δεδομένων χωρίζονται σε μικρότερα τμήματα, έτσι ώστε να επιτραπεί η επι-

λεκτική αναμετάδοση δεδομένων, η χρήση πολλαπλών διαδρομών μέσα στο δίκτυο,

καθώς και να αποφευχθεί ο επιπλέον φόρτος που προκύπτει από επιβεβαιώσεις λήψε-

ων σε επίπεδο πακέτων. Οι μεταφορές μικρού μεγέθους μπορούν να παρακάμψουν

την διαδρομή RDMA-DRAM, ελαχιστοποιώντας περαιτέρω τον χρόνο ολοκλήρωσής
τους. Προγραμματίζουμε τις μεταφορές σε επίπεδο τμημάτων, βασιζόμενοι σε σειρά

προτεραιότητας που καθορίζεται από τον χρήστη, και υποστηρίζουμε διαχείριση συμ-

φόρησης του δικτύου. Επιπροσθέτως, παρέχουμε 2048 εικονικά κανάλια στον χρήστη

για την έκδοση πολλαπλών εκκρεμών αιτημάτων μεταφοράς δεδομένων, υλοποιούμε

μια μηχανή ειδοποίησης ολοκλήρωσης σε υλικό και εισάγουμε έναν νέο τρόπο μαζικής,

διαδοχικής διερεύνησης της κατάστασης πολλαπλών καναλιών.

Η υλοποίησή μας σε επίπεδο μεταφοράς καταχωρητών χρησιμοποιεί ομοχειρία για

να επιτύχει υψηλή συχνότητα ρολογιού και υψηλό ρυθμό αποστολής μηνυμάτων (1

πράξη/κύκλο ρολογιού ή 150 MOP/s για υλοποίηση στην συστοιχία επιτόπια προ-
γραμματιζόμενων πυλών (Field Programmable Gate Array, FPGA) που χρησιμο-
ποιήσαμε, ενώ παράλληλα διατηρεί χαμηλούς χρόνους καθυστέρησης, 4 κύκλους ρο-

λογιού για μεταφορές του ενός (1) τμήματος. Για να μειώσουμε περαιτέρω τον χρόνο

καθυστέρησης, υλοποιήσαμε πολλαπλές ουρές (32) προγραμματισμού μεταφορών, σε

κοινόχρηστο χώρο, οι οποίες υποστηρίζουν μια (1) πράξη εξαγωγής και μία (1) εισα-

γωγής κόμβου από/στις ουρές ανά κύκλο ρολογιού, καθώς και πράξεις εξαγωγής σε

διαδοχικούς κύκλους ρολογιού.

Υλοποιήσαμε την εργασία στην FPGA του Zynq Ultrascale+ MPSoC της Xilinx.
Για την μηχανή βελτίωσης Ποιότητας Υπηρεσίας χρησιμοποιήθηκαν 13,3K Προγραμ-
ματιζόμενες Πύλες (LUTs), 5,1K καταχωρητές και 23 μνήμες τυχαίας προσπέλασης
(848 kbits). Η μέγιστη συχνότητα που επετεύχθη ήταν 150MHz, μπορεί, ωστόσο, να
βελτιωθεί περαιτέρω, ιδιαίτερα σε μία υλοποίηση πολύ μεγάλης κλίμακας ολοκλήρωσης

(Very Large Scale Integration, VLSI).

Εκτενείς δοκιμές για την επαλήθευση της λειτουργικότητας της μηχανής πραγ-

ματοποιήθηκαν χρησιμοποιώντας το Vivado Design Suite. Η μηχανή QoS που ανα-
πτύχθηκε σε αυτή την διατριβή ολοκλήρωσε σε προσομοίωση 100K μεταφορές δεδο-
μένων, μεταβλητού μεγέθους, έως 1 ΜΒ. Επιπρόσθετα, ενσωματώσαμε την μηχανή

QoS με την μονάδα αποστολής σε έναν προσομοιωμένο πάγκο δοκιμών, εκδίδοντας
5K εκκρεμείς μεταφορές, μεγίστου μεγέθους 256 ΚΒ (256 πακέτων), οι οποίες ο-
λοκληρώθηκαν και αυτές με επιτυχία. Σε αυτές τις δοκιμές εξετάσαμε κάθε είδους

μεταφορά, συμπεριλαμβανομένων των ροών υπό διαχείριση συμφορήσεως και των ροών

γρήγορης διαδρομής, και επαληθεύσαμε τον μηχανισμό ειδοποίησης ολοκλήρωσης.

Η μηχανή RDMA υλοποιήθηκε στην FPGA του Zynq και ελήφθησαν μετρήσεις
απόδοσης από προγράμματα σε επίπεδο χρήστη, εκτελεσμένα στον επεξεργαστή ARM
A53 του Zynq. Ο χρόνος ολοκλήρωσης για μικρές μεταφορές έως 512 Byte ανέρχεται
στα 360 ns, κατά τη μεταφορά εντός κόμβου, από BRAM σε BRAM (εξαιρουμένων
των καθυστερήσεων δικτύου και DRAM), δέκα φορές χαμηλότερο από τον αντίστοιχο
χρόνο της μηχανής ExaNeSt RDMA, μιας προηγούμενης υλοποίησης λογισμικού-
υλισμικού στο ίδιο MPSoC, χρησιμοποιώντας τον συνεπεξεργαστής ARM Cortex-
R5 για να υποστηρίξει QoS. Επιπλέον, βελτιώσαμε δραματικά τον ρυθμό μεταφοράς
δεδομένων, επιτυγχάνοντας την μέγιστη θεωρητική παροχή με μεταφορές των 16 KB,
ενώ στην προηγούμενη υλοποίηση απαιτούνταν μεταφορές των 4 MB. Τέλος, παρ΄ότι
η μηχανή RDMA έχει δοκιμαστεί και βελτιστοποιηθεί για διασυνδέσεις κεντρικού
επεξεργαστή τύπου AXI, μπορεί επίσης να συνδεθεί και με διασυνδέσεις τύπου PCI
και CHI.

Acknowledgments

I would like to express my deepest gratitude towards my advisor, Dr. Nikolaos
Chrysos, for his guidance throughout my research and studies. This work would
have never been realized without his support. I would also like to extend my
appreciation to my supervisor, Professor Manolis G.H. Katevenis, for introducing
me to the wonders of Computer Science and to the hardware design fundamentals,
and for the interesting discussions that I had the chance to be a part of during my
studies. I express my sincere thanks to Professor Vassilis Papaefstathiou for feeding
my passion for Computer Architecture and for taking part in the examination
committee of my thesis evaluation. Finally, I would like to thank Professor Polyvios
Pratikakis for also being a part of the examination committee.

Last but far from least, I would like to express my deepest gratitude to Pantelis
Xirouchakis for aiding me achieve my goal of becoming a computer scientist, from
showing me the basics of FPGA design and discussing this thesis’ design obstacles,
to the moral support he provided throughout my research years. I would also like
to thank all the members of the CARV Laboratory team for their collaboration and
all my fellow students and friends that made the tough times bearable. Finally, I
would like to thank my family from the bottom of my heart for believing in me
and supporting me in every aspect of my life.

I thank the Foundation for Research and Technology - Hellas (FORTH), In-
stitute of Computer Science (ICS), for funding this work. This work has been
partially funded by the RED-SEA project, which has received funding under grant
agreement No 955776 from the European High-Performance Computing Joint Un-
dertaking (JU) and from France, Greece, Germany, Spain, Italy, and Switzerland.
The JU receives support from the European Union’s Horizon 2020 research and
innovation program.

στους γονείς μου

Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Contributions . 4

1.3 Thesis Outline . 6

2 Design Overview 7

3 Hardware Implementation 13

3.1 Transfer Table . 13

3.2 Transfer Metadata Table . 13

3.3 Transaction Table . 15

3.4 Status registers . 16

3.5 Pending Transactions Table . 17

3.6 AXI Slave . 18

3.6.1 AXI Writes . 19

3.6.2 AXI Reads . 22

3.7 Scheduling FIFO Queues . 23

3.8 Transaction ID and Flow ID FIFO queues 27

3.9 Transfer Segmenter . 28

3.9.1 Pipeline Stage 1 . 28

3.9.2 Pipeline Stage 2 . 33

3.9.3 Pipeline Stage 3 . 34

3.9.4 Stalls . 35

3.10 Packet Creator FSM . 36

3.11 Message Handler . 37

3.12 Transfer Metadata Table Arbiter 39

3.13 Sequence Number Generator . 39

3.14 Transaction-Flow ID FIFO queue initializer 40

4 Evaluation and Results 41

4.1 Resource Utilization and Timing 41

4.2 Functional Verification . 42

4.2.1 Rate Results . 45

i

4.3 Experimental Results . 47

5 Conclusions and Future Work 51

Terminology 53

Bibliography 55

ii

List of Tables

4.1 Resource utilization of the QoS part of the RDMA 42

iii

iv

List of Figures

1.1 Zero-copy user-level initiated RDMA transfer. 2

2.1 RDMA transfer abstraction layers 7
2.2 Representation of the RED-SEA RDMA’s QoS engine. 9
2.3 Transfer descriptor formats. 10
2.4 Transfer priority hierarchy . 11

3.1 Transfer descriptors stored in the Transfer Table 14
3.2 Transfer Status state diagram . 17
3.3 AXI Write Address breakdown . 19
3.4 Individual transfer descriptor word ordering 21
3.5 AXI Write Channels . 22
3.6 AXI Read Address breakdown . 23
3.7 Scheduling FIFO queues in a dynamic shared space. 24
3.8 High level representation of a scheduling FIFO queue 25
3.9 Transfer Segmenter’s three-stage pipeline. 29
3.10 Transfer segmentation and block size calculations. 30
3.11 Transfer’s total blocks calculation logical circuit. 34
3.12 Segmenter’s Packet Creator FSM state diagram. 36
3.13 Finite State Machine of the Message Handler 37
3.14 Transfer Metadata table Arbiter FSM 39

4.1 Functional verification of the QoS engine 43
4.2 Integration of the RDMA send unit and QoS part test-bench. . . . 44
4.3 Message Rate of the QoS engine 46
4.4 Average transfer completion time for varying transfer sizes 47
4.5 Throughput measurements for varying transfer sizes 49
4.6 Throughput measurement for RDMA transfers of up to 512 MB . 50

v

vi

Chapter 1

Introduction

In the era of large dataset analysis, the need for parallel processing is ever more
present. Modern applications like quantum physics simulations and medical his-
tory analysis require a large amount of computational power that powerful personal
computers cannot provide. High-Performance Computing (HPC) deals with ex-
actly this problem. It offers parallelization that is only limited by the number of
resources available in the system. This is achieved by connecting thousands of
cores into clusters and assigning parts of an application’s computation to each of
these cores.

Most applications are not completely parallelizable, hence the speedup they can
achieve is dictated by Amdahl’s law. But even for well parallelizable applications, a
significant portion of the execution time is spent in inter-processor communication,
since the different parts of the applications do not run in a shared address space,
but instead communicate using message passing. As the number of cores increases,
so does the number of messages being exchanged between cores. Thus, an efficient
means of communication must be established. [5][1].

An inefficient approach would be to use store commands to write the data
to the network interface and load commands to acquire the arrived data at the
receiving end. While this may be efficient for small sized messages, larger messages
would take up valuable computational time.

A low CPU overhead approach is using a Direct Memory Access (DMA) engine
to handle the exchange of data. A DMA module is assigned the role of copying
the data to and from the network interface buffers, while the processor contin-
ues its computation. To further minimize the communication latency, the data
are transferred directly from the sender’s memory to the receiving node’s mem-
ory, bypassing any intermediate buffers (zero-copy Remote Direct Memory Access,
RDMA) [4]. The zero-copy RDMA initiation is depicted in Figure 1.1. Finally,
in RDMA, the user specifies the source and destination memory locations using
virtual addresses, which must be translated to physical by the network interface
[7][8].

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Zero-copy user-level initiated RDMA transfer.

In this thesis, we design and implement in hardware a fast and lean RDMA
engine. The design consists of two parts: an existing, hardware implementation of a
send unit and a receiver unit, developed by Pantelis Xirouchakis [10] and Michalis
Gianioudis under the EU-funded ExaNeSt project [6], as well as the Quality of
Service (QoS) engine of the RDMA, which is developed under the EU-funded
RED-SEA project and is the contribution of this thesis. All parts are designed in
hardware and are implemented and tested in the Programmable Logic (PL) of the
Xilinx Zynq Ultrascale+ MPSoC.

In the QoS engine implementation described in this thesis, a user may issue
an RDMA transfer by writing a 32 or 64 Byte descriptor to one of the QoS en-
gine’s 2048 virtual channels. In order to enable selective re-transmissions and
multi-pathing, as well as to avoid per packet acknowledgment overheads, the QoS
engine segments transfers into 64 KB blocks and issues block descriptors to the
RDMA send unit. Acknowledgments are created on a per block basis. Moreover,
the QoS engine further divides a transfer into flows (i.e. groups of 4 blocks in
this thesis), so as to enable congestion management [3] and multi-pathing in the
network. Blocks of the same flow follow the same path in the network and are
subject to the same rate limiting. Both the block and the flow sizes are completely
parameterized. Finally, to completely bypass the memory at the source node for
small-sized transfers, the descriptor may include the actual data to be transferred
in the transfer descriptor (inline payload).

Our register-transfer-level (RTL) hardware implementation is pipelined in or-
der to achieve higher clock and message rates (1 operation/clock cycle, or 150
MOP/s in our FPGA implementation), while maintaining a low latency of 4 clock
cycles for single block transfers. To further reduce latency, we implement multiple
(32) scheduling queues in shared space, that support one (1) enqueue and one (1)
dequeue operation per clock cycle, as well as back-to-back dequeue operations.

We synthesized our design for the Zynq Ultrascale+ MPSoC. The RDMA’s

1.1. MOTIVATION 3

QoS part leverages 13.3K Look-Up Tables (LUTs), 5.1K register and 23 BRAM
blocks (848 kbits). The maximum frequency achieved in this FPGA was 150 MHz,
but this can be further improved, especially in a VLSI implementation.

The design was implemented on the Zynq’s FPGA and performance measure-
ments were taken from user-level programs on the Zynq’s A53 ARM core. Comple-
tion time for small transfers of up to 512 Bytes was measured at 360 ns, when trans-
ferring intra-node, BRAM to BRAM (excluding network and DRAM latencies),
ten times lower than the latency of the ExaNeSt RDMA, a previous implementa-
tion on the same MPSoC, using the ARM Cortex-R5 co-processor for QoS support.
Moreover, we significantly improved the transfer rate that can be achieved, reach-
ing the theoretical maximum (line) throughput as early as with 16KB transfers,
whereas using the previous implementation the corresponding transfer size was
4MB. Finally, although the RDMA engine is optimized for and tested using AXI
processor interconnects, it can also be connected to PCI or CHI host-processor
interconnects.

The developed design was tested both in simulation, using Xilinx’s Vivado De-
sign Suite, and in hardware using the MPSoC mentioned before. As a standalone
design, the QoS engine passed a simulation test of 100.000 randomly generated
transfers, with maximum size of 1 MB, in which the block descriptor fields were
compared to expected fields, calculated in simulation. The validity of inline pay-
load transfers’ data as well as the support for congestion management (i.e. flow
mechanism) were also verified in these tests. A second major testing, including the
RDMA send/receiver units, was also deployed, issuing 5.000 randomly generated
transfers, maximum size of 256 KB, which also completed successfully. Finally,
several real applications testing the new RDMA features ran on the ARM A53
core of the Xilinx Zynq Ultrascale+ MPSoC, with the RDMA design implemented
in the PL. Data verification was also a part of this final, successful test.

1.1 Motivation

In an attempt to shift towards less power-hungry systems while also sustaining the
performance gains of adding more resources, the HPC world now relies on coupling
low-power processors with tailor-made accelerators. In this path, the RED-SEA
EU-funded project aims to create a low-power system consisting of ARM or RISC-
V based processors, tightly coupled with lean network interfaces implemented in
FPGAs. However, in the scale of millions of processing cores, the inter-processor
communication overhead becomes a bottleneck for exascale performance. More-
over, the reduced frequency of low-power cores makes computational clock cycles
even more precious. The solution to low latency and high throughput communica-
tion with minimal CPU overhead comes in the form of tailor-made RDMA engines
that offer ultra low-latency and high message rates.

A software/hardware hybrid RDMA implementation had already been devel-
oped under the ExaNeSt project. The QoS part of the RDMA ran on the Xilinx

4 CHAPTER 1. INTRODUCTION

Zynq Ultrascale+ MPSoC’s real time ARMv7 Cortex-R5 co-processor [9][6], while
the RDMA send unit was implemented in hardware in the PL. Despite supporting
both the aforementioned transfer segmentation and resiliency features, like selec-
tive re-transmissions, the RDMA suffered from increased latency and low through-
put on small and medium sized transfers, mainly due to 1) the software running
in the R5 co-processor being serial, 2) the co-processor’s caches being small and
3) the high PS-PL round trip latency (approximately 150ns) that was paid when
issuing a block to the RDMA send unit, or when an acknowledgement arrived
from the network. In this thesis, we attempt to lower this latency and increase the
throughput of the RDMA even further, implementing the QoS part in hardware.
Our final design implemented for the Zynq MPSoC’s FPGA runs at the targeted
frequency of 150 MHz.

1.2 Contributions

The author of this thesis has contributed to the creation of a new Remote Direct
Memory Access (RDMA) engine, implemented completely in hardware, increasing
the RDMA’s throughput and reducing the individual transfer latency, compared
to a previous hybrid (software/hardware) implementation. After studying the
software implemented Quality of Service (QoS) part of the ExaNeSt RDMA, the
author implemented the corresponding functions in hardware. In particular, the
author made the following contributions:

• I have implemented a hardware module that receives RDMA transfer de-
scriptors issued by local processors, using the AXI protocol for the processor-
RDMA communication. Compared to issuing RDMA transfers to the R5 pro-
cessor, issuing the RDMA transfer descriptor directly to the Programmable
Logic (PL) completely eliminates any polling overheads (no unnecessary PS-
PL round-trips) and makes accesses to the transfer descriptors faster, since
they are stored in BRAM instead of the co-processor’s memory. This was
one of the determinant factors of reducing the latency of small and medium
sized transfers.

• I have implemented RDMA transfer scheduling in hardware for outstanding
RDMA operations. For this purpose, I have designed multiple FIFO queues,
implemented in a dynamically shared space, that support 2 operations per
clock cycle, 1 enqueue and 1 dequeue. In addition, I have implemented a
transfer handler that segments transfers into 64KB blocks, and issues them,
subject to end-to-end flow control, to the RDMA send unit. Transfers up to
32 Bytes can bypass the source node’s memory. The shared space ensures no
under-utilization of the scheduling queues, while the 2 operations per clock
cycle guarantees that the segmenter is not halted when a new transfer is
introduced into the system; finally, supporting back-to-back dequeues enables
pipelining the segmenter. The transfer segmenter is configured to serve small

1.2. CONTRIBUTIONS 5

sized transfers first, in order to achieve low latency, and is implemented as a
3-stage pipeline in order to sustain high throughput even with small/medium
transfers.

• I have implemented a Network Message Handler, i.e. a module that receives
acknowledgments from the network and, in the future, will handle the re-
mote read requests. The acknowledgments mechanism may restart the block
issuing process (i.e. a transfer may have up to a fixed number of outstanding
blocks) or signals the completion of a transfer. The hardware version of this
handler re-schedules a transfer back to its scheduling queue or updates the
transfer’s status from ONGOING to DONE within 2-3 clock cycles of receiv-
ing an acknowledgment. Being able to both receive acknowledgments and
issue new blocks to the RDMA, also contributes towards lowering a transfer’s
latency and increasing the RDMA’s throughput.

• I have implemented a mechanism allowing the local processors to poll the
status of multiple RDMA transfers with a single load operation. A transfer
status table is implemented in PL, that holds the status of every transfer
issued by the local processors (write channels only) and a processor’s read on
this table has the added option of reading the status of 32 ongoing transfers
at once. This can be applied to broadcast operations by issuing multiple
outstanding transfers and then collectively polling their status, increasing
the RDMA’s throughput for small sized transfers. User-level programs run
on the Zynq’s ARM A53 processor showed that issuing outstanding transfers
and collectively polling their status can achieve rates of more than 20 Gbps,
for 128-Bytes transfers.

The author of this thesis has also contributed to the verification of the QoS
design and its integration with the RDMA send unit. A layered verification ap-
proach was followed: each module was initially tested individually in simulation
using the Xilinx’s Vivado Design Suite. In the case of the scheduling FIFO queues,
this module proved to be a challenge as it produced numerous logical loops during
its design and was ultimately further tested alongside a software implementation
of a multi-priority FIFO queue, as well as another hardware implementation of
multiple instances of single FIFO queues. When the individual modules reached
their expected functionality, they were integrated together (only the QoS engine
of the RDMA) and further tested in simulation.

In the final step of the simulation process, I created a simulated CPU that
issued either hand-crafted or randomly generated transfer descriptors, written in
System Verilog, and was used to test the QoS engine alongside the RDMA send
unit. This simulated CPU proved extremely valuable as, when the verification
moved to the actual hardware, the different test cases could be replicated in sim-
ulation, speeding up the debugging process. Finally, the author aided in writing
the user library that makes use of the new RDMA features, mainly by providing

6 CHAPTER 1. INTRODUCTION

information about the new transfer descriptors format and the ways the software
can poll the transfer’s status.

As a final note, the target frequency of 150 MHz was ultimately achieved for the
QoS engine of the RDMA. Towards the end of this work’s timeline, the RDMA send
unit evolved, and is now running at 200 MHz in order to achieve 100Gb/s (with
a 512-bit datapath). This motivated the author to further attempt to increase
the frequency of the QoS engine. The author pinpointed the critical path of the
design using the Vivado tools and tried to implement a different ”transfer’s total
blocks” calculation, which made up half of the paths latency. Although the new
calculation lowered the number of logic levels in the path, the overall path latency
increased due to higher gate/cable fan-out. The calculation can be divided in
different pipeline stages but that requires careful planning since it will induce
major design changes in the Transfer Segmenter’s pipeline and is left for future
work.

1.3 Thesis Outline

The remainder of this thesis is structured as follows:

• Chapter 2 - shows the abstraction layers of an RDMA transfer, lists the
QoS engine features and presents the overall functionality of the QoS engine
and its interaction with the Send Unit.

• Chapter 3 - provides a description of each individual hardware block of the
QoS engine along with the information stored in the engine’s tables.

• Chapter 4 - presents the performance evaluation results, the FPGA re-
source utilization and the functional verification strategy.

• Chapter 5 - concludes this thesis and provides future work suggestions.

Chapter 2

Design Overview

Figure 2.1: RDMA transfer abstraction layers

The engine described in this work provides the following functions to improve the
Quality of Service of the new RDMA design:

• Transfer segmentation: The QoS engine segments transfers into blocks
of 64 KB and issues block descriptors to the RDMA send unit. This offers the
ability to re-transmit data selectively and to avoid acknowledgment creation
per packet received, which would decrease the throughput of the RDMA.

• Flow scheduling: In order to provide low latency data transmissions and
to avoid Head of Line (HoL) blocking by elephant flows [11], transfers are
scheduled at block level, giving highest priority to smaller transfer sizes or
to user-defined high-priority transfers.

7

8 CHAPTER 2. DESIGN OVERVIEW

• Reliability: Successful data transmission and fault tolerance must be en-
sured inside the system, thus a QoS engine should support re-transmissions
for timed-out blocks (packet loss in the network) and for negative acknowl-
edgments. In this thesis, we have implemented the basic mechanisms and
data structures needed in order to support selective retransmissions upon
time-out or negative acknowledgement in the future.

• Completion notification: The QoS engine creates a control packet that,
along with the arrival of the final block of data, signals the receiver to create
a completion notification.

The functionalities provided by the Quality of Service engine are summarized
in Figure 2.1. The RDMA engine supports 16 different protection domains, or
pages, with 128 channels per page. The pages can be allocated to one or more
processes that issue RDMA requests using the available channels. Out of a total
of 128 virtual channels channels per protection domain (or page), 64 channels are
reserved for RDMA write requests and 64 channels for read requests. Each of these
channels hosts a single transfer with a maximum size of 4 GB. RDMA transfers
are further divided into blocks of 64 KB, which in turn are composed of 64 packets
of 1 KB payload each. Finally, blocks can follow different paths inside the network
(multi-pathing) and rate limiting is applied to multi-block flows (following the
same path), so as to apply congestion management.

The complete design of the RDMA’s QoS engine, and its interface with the
send unit, are depicted in Figure 2.2. A local processor may issue a transfer to
the RDMA by writing a 256-bit (32 Bytes) or 512-bit (64 Bytes) descriptor to
one of the write channels of the Transfer Table. This descriptor is written to
the table using the AXI protocol and contains information about the source and
destination addresses of the data to be sent, as well as the size and priority of
the transfer. However, other protocols can be used to implement the processor-
RDMA communication. The QoS engine writes segment/block descriptors to the
Transaction Table. The send unit is responsible to further segment the block into
network packets to issue memory read requests to read their payload from memory
and to forward network packets to the network [10].

The different descriptor formats are shown in Figure 2.3. The size of the
descriptor depends on the type of transfer that is being issued. We support two
types of transfers: inline payload and regular memory transfers. If the overall
transfer size is less than or equal to 32 Bytes, the actual payload of the transfer can
fit into its descriptor. Such transfers are described by a 256-bit or 512-bit Payload
Descriptor, descriptor size depending on the payload size. Larger transfers, of size
greater than 32 Bytes, are issued using the top descriptor format in Figure 2.3

Based on its user-defined priority, the transfer is then enqueued to a scheduling
queue along with all the ongoing transfers. Inline payload transfers are consid-
ered latency sensitive and are thus automatically scheduled in the highest prior-
ity queue. Regular memory transfers are scheduled in different queues based on

9

F
ig
u
re

2.
2:

R
ep

re
se
n
ta
ti
on

of
th
e
R
E
D
-S
E
A

R
D
M
A
’s

Q
oS

en
gi
n
e.

10 CHAPTER 2. DESIGN OVERVIEW

Figure 2.3: Transfer descriptor formats. Descriptor size for inline payload transfers
is determined by the size of the payload.

their size in combination with their eligibility for multipathing in the network.
We assume that larger transfers are more likely to use the multipathing feature,
thus those transfers are scheduled in the low priority queue. The medium priority
queue is reserved for transfers with size greater than an inline payload transfer and
smaller than the low priority ones. Finally, we support a maximum of 16 user-
defined intra-priorities for the medium and low priority queues. To summarize,
the transfer priority hierarchy is shown in Figure 2.4

When a transfer is dequeued from a scheduling queue, its descriptor is read from
the Transfer Table by the Transfer Segmenter 2.2, along with some meta informa-
tion about the transfer, located in the Transfer Metadata Table. A transaction ID
is assigned to the dequeued transfer from the Transaction ID FIFO queue. If the
transfer contains the payload in the descriptor, the Transfer Segmenter creates an
ExaJet packet of this transfer and enqueues it to the Packet queue. The RDMA

11

Figure 2.4: Transfer priority hierarchy

scheduler extracts the packet from this FIFO queue and sends it through the net-
work. On the other hand, if the transfer is a regular memory type, the Transfer
Segmenter issues 64KB block descriptors to the RDMA via the Transaction Table.
A single block is issued to the RDMA before the transfer is re-enqueued back to
the scheduling FIFO queues (on conditions). In order to keep track of how many
blocks have been issued from each transfer, a Transfer Metadata entry is read
and updated on each block issuing. This entry also contains information about
the total ACKs received per transfer, which is used in completion notification cre-
ation by the Transfer Segmenter. Finally, on payload transfer/block issuing to the
RDMA, an entry to the Pending Transactions Table is also created, containing
resiliency fields (e.g. issue time of a block, used in timeouts) and fields used by
the acknowledgments mechanism (e.g. sequence number, transfer ID) that can be
used to later retransmit the block upon time-out or negative acknowledgement as
further discussed below.

When an acknowledgment is received for a transfer’s block, or for a payload
transfer, the Message Handler 2.2 compares the arrived ACK’ed block’s sequence
number with the one stored in the corresponding Pending Transactions Table entry,
and, either re-enqueues the transfer to its scheduling queue, or marks the transfer
as DONE in the Status Registers. Furthermore, if N-1 ACKs have arrived in total,
where N is the total number of blocks, and the last block of the transfer has been
issued by the Transfer Segmenter, the Message Handler enqueues the transfer to
a specific scheduling queue, reserved for completion notifications (control queue).
The Transfer Segmenter is responsible for creating control packets, that form a
completion notification, and storing them in a Packet queue that the RDMA send
unit accesses. On the other hand, if no ACK is received within a certain timeframe,

12 CHAPTER 2. DESIGN OVERVIEW

the Timeout FSM is responsible for issuing a request to the RDMA for block re-
transmission. When implemented, this FSM will check the issue time of each
entry of the Pending Transactions table sequentially (1024 entries, 5µs with a
200 MHz clock) and if a certain period has passed (20µs) without receiving an
acknowledgment, this module will send a re-transmission request to the RDMA
send unit.

Chapter 3

Hardware Implementation

In this chapter, we present the information that the QoS engine needs to store for
an RDMA operation and for transactions, we describe the individual blocks that
compose the engine, the interactions between them and, finally, demonstrate their
overall integration.

3.1 Transfer Table

The Transfer Table stores all transfer descriptors that are issued by the local
processors and the remote read requests. It is a dual port memory with a height
of 2048 lines and a width of 256 bits (total of 512 Kbits). Port 0 is reserved for
descriptor writes from local and remote CPUs and Port 1 is reserved for descriptor
reads by the Transfer Segmenter. The table is divided into 16 pages, each consisting
of 128 total channels, 64 write channels and 64 read channels. A transfer described
by a long descriptor (512-bits) occupies 2 channels (since it takes 2 transfer table
lines), whereas a short inline payload transfer (8 Bytes) occupies only 1 channel.
Figure 3.1 shows how the different types of transfer descriptors, as well as their
the individual words, are stored in the table.

3.2 Transfer Metadata Table

The Transfer Metadata Table is an extension of the Transfer table that stores
information about the issued number of blocks per transfer, the number of ac-
knowledgments that have arrived as well as completion notification information.
It has a size of 2048 x 75-bits, total 153.600 bits, and its entries contain the fol-
lowing fields:

• Flow ID (9-bits): used in congestion management and multipathing.

• Tid Bitmap (16-bits): used in assigning the next transaction ID of a conges-
tion managed flow.

13

14 CHAPTER 3. HARDWARE IMPLEMENTATION

Figure 3.1: A depiction of how the individual descriptor fields are stored in the
Transfer Table

• Next TID (4-bits): used in assigning the next transaction ID of a congestion
managed flow.

• isInSchedulingFIFO (1-bit): used in rescheduling a transfer on ACK. The
Transfer segmenter may reschedule a transfer back to its queue in order to
issue a second, outstanding block. If the acknowledgment arrives while the
transfer is already in the queue due to the outstanding mechanism, the Mes-
sage Handler should not re-enqueue the transfer to its queue (each transfer
is allowed to appear only once in the scheduling queues).

• block number (18-bits): indicates how many blocks of a particular transfer
have been sent.

• outstanding blocks left (4-bits): indicates how many blocks can be issued to
the RDMA without having received acknowledgments for the previous blocks
(this mechanism exists in order to mask the round-trip latency of sending a
block to a remote node and receiving its acknowledgment).

• last block issued (1-bit) used in determining the condition on which the
Transfer Segmenter creates a control packet (completion notification)

3.3. TRANSACTION TABLE 15

• last block ACK’ed (1-bit) same as above.

• last transaction ID (10-bits): used in Control packet header (completion
notifications)

• last sequence number (12-bits): used in Control packet header

The total number of ACKs is not explicitly stored as transfer metadata, but it
is calculated as:

TotalACKs = (Block Number)− (Number of Outstanding Blocks Left)

Finally, this table is implemented using a dual-port memory and it is accessed by
the Transfer Segmenter and the Message Handler for reading and writing, thus,
port arbitration is required.

3.3 Transaction Table

The Transaction Table is used for issuing transfer block descriptors to the RDMA.
Its size is 1024 x 256-bits = 256 Kbits, it is implemented as a dual-port memory
(BRAM) and it contains the following fields:

• source address (64-bits): starting address from which the RDMA fetches the
data to be sent. It is calculated for every block by the Transfer Segmenter

• destination address (64-bits): also calculated for every block by the Transfer
Segmenter

• protection domain ID (16-bits)

• sequence number (14-bits)

• bytes sent (16-bits)

• congestion managed (1-bit): Set to 1 if transfer type = 1xFID/4xFID (see
section 3.8)

• initialized (1-bit): The QoS engine should always set this to zero when issuing
a block.

• not used 0 (9-bit)

• done (1-bit): The QoS engine should always set this to zero when issuing a
block.

• notification enable (1-bit): The QoS engine sets this field only for the last
block of a transfer with completion notifications

16 CHAPTER 3. HARDWARE IMPLEMENTATION

• chained (1-bit): set to 1 for all blocks of a congestion managed flow, except
from its first block

• block size (16-bit): the total number of bytes of the current block

• not used 1 (12-bits)

• has next (1-bit): set to 1 for all blocks of a congestion managed flow, except
from its last block

• not used 2 (11-bits)

• not used 3 (20-bits)

The Transfer Segmenter (section 3.9) writes to this table via a valid/ready
handshake. The valid signal is raised from either the second or the third pipeline
stage and is kept high until the Transaction Table raises the ready signal. While
the valid signal is high and the ready signal is low, the segmenter’s pipeline is
stalled.

3.4 Status registers

The status registers hold the status of every write channel. A local CPU’s status
read request returns the status of multiple write channels in a given page. It is
implemented using a 3072-bit register (1024 write channels x 3 status bits per
channel, one-hot encoding). To avoid multiple load operation on this table for
reading the status of transfers belonging to the same page, a single processor load
operation may return the status of half the write channels (32) in a protection
domain (32 channels x 2-bits status, after conversion from one-hot to binary = 64
bits = max processor load operation). Thus, reading the status of all channels in a
protection domain would require 2 processor load operations. The ability to read
multiple statuses with a single read enables the processor to issue multiple out-
standing RDMA transfers (for example a broadcast operation) and monitor them
in an efficient way, which ultimately leads to increasing the RDMA’s throughput
for small and medium transfer sizes. Finally, the state diagram of a transfer’s
status can be found in Figure 3.2. This diagram suggest that when the QoS en-
gine receives a negative acknowledgment, it sets the state to ERROR, which will
change when functionality for block re-transmissions is added.

The status table could have also been implemented as a dual-port memory of
1024 x 3 bits = 3072 bits instead of registers, but that would mean losing the
ability to read multiple statuses with a single read operation. A total of 3 modules
access the status table:

3.5. PENDING TRANSACTIONS TABLE 17

Figure 3.2: Transfer Status state diagram

• AXI reads: Processor load operations

– Clock cycle 0: Read status of write channels

– Clock cycle 1: Update status to IDLE if transfer has finished

• AXI writes: Issuing of a new transfer descriptor

– Clock cycle 0: Read status of write channels

– Clock cycle 1: Update channel status from IDLE to BUSY on transfer
enqueue to the scheduling FIFOs.

• Message Handler: Receiving ACK/NACK

– Clock cycle 0: Read status of write channels

– Clock cycle 1: Update channel status from BUSY to DONE/ERROR

Updates to the status of a channel would require a read on the table’s line
and a write to the same line, updating a single channel, in the following clock
cycle. Those updates are frequent for small sized transfers and, consequently,
could become a threat of potential deadlocks due to arbitration. Thus, the register
approach was chosen.

3.5 Pending Transactions Table

The Pending transactions table is an extension of the Transaction Table and con-
tains information used by the acknowledgments and the re-transmissions mecha-
nisms (the latter is not yet implemented). An entry to this table is created when
a transfer block is issued to the RDMA, or when an inline payload transfer is
enqueued to the Packet queue, and it is invalidated upon receiving the block’s

18 CHAPTER 3. HARDWARE IMPLEMENTATION

acknowledgment. It has a size of 1024 x 144-bits = 147 kbits and its fields are as
follows:

• valid (1-bit): Set to zero on valid ACK receipt.

• issue time (32-bits): to be used in re-transmissions

• sequence number (12-bits): if this value does not match with the sequence
number on the ACK’s header, the ACK is dropped

• transfer ID (11-bits): used in rescheduling the transfer to the scheduling
FIFOs on ACK and is used as an index to the Metadata table (Message
Handler increments total ACKs).

• transfer priority (4-bits): same as above

• QoS (22-bits)

• total blocks (18-bits): This field requires information located in the transfer
descriptor for its calculation, so, in order to avoid introducing a forth access
to the Transfer Table, the Transfer Segmenter calculates and stores this field.

• last (1-bit): Used in control packet creation

• has notification (1-bit) Used in control packet creation

• reserved (19-bits)

This table is implemented as a dual port memory and is accessed by the Trans-
fer Segmenter for writing, by the Message Handler for reading and writing (when
receiving acknowledgments) and by the Timeout FSM for reading and writing.
Arbitration to this memory’s ports will be required when the Timeout FSM is
implemented.

3.6 AXI Slave

The AXI Slave is used for receiving transfer descriptors written by local processors,
storing those descriptors to the Transfer Table, enqueuing newly arrived transfers
to the scheduling queues and, finally, for reading the status of issued transfers. It
is composed of 5 channels, 3 of which are used for AXI write operations (write
address, write data and write response channels) and 2 channels (read address,
read data channels) for AXI reads.

3.6. AXI SLAVE 19

Figure 3.3: AXI Write Address breakdown

3.6.1 AXI Writes

The AXI write channels are used for receiving transfer descriptors issued by a
set number of cores. Currently, we support 16 different protection domains and,
subsequently, 16 different cores can issue transfers to the RDMA. We also support
both 64-bit and 128-bit AXI writes on a 128-bit AXI write datapath, which is less
than the Transfer Table line size (256-bits). For this reason, a set of accumulating
registers is needed in order to perform a transfer descriptor write to the Transfer
Table. The total size of those registers should be equal to the Transfer Table line
size, 256-bit at the moment, since conflicts may arise when writing to the Transfer
Table (e.g. a Remote Read Request from the network is also trying to write to the
transfer table) or when enqueuing a transfer to the scheduling FIFO queues (e.g.
when an ACK arrives and the Response Handler then tries to enqueue an ongoing
transfer back to the scheduling FIFOs). Those scenarios are perceived as stalls in
the descriptor writing process, thus the entirety of the Transfer Table line should
be able to fit in those registers. Moreover, due to potential interleaving of incoming
descriptor writes from different protection domains, a single set of accumulating
register does not suffice. The number of register sets should be equal to the number
of different protection domains, although, even with this configuration, interleaving
might still arise due to context switching between threads (of the same protection
domain). That being said, we do not implement multiple sets of accumulators,
all testing has been performed using a single set and when interleaving arises, the
interrupting descriptor write receives a negative acknowledgment (AXI BRESP =
ERROR).

i. AXI write address channel

A 32-bit address bus is used to index the channel that the new transfer is
going to be written to. A breakdown of this address can be seen in Figure
3.3. Due to the interconnect that precedes the AXI Slave, it is possible for

20 CHAPTER 3. HARDWARE IMPLEMENTATION

the address of an AXI write to arrive before the write data. To combat this,
we use a FIFO queue that enqueues AXI write addresses on write address
channel handshake. This queue can hold up to 8 outstanding addresses.
Since the write data are supposed to arrive in the order of the preceding
addresses, the address of the arrived data will always be the head of the FIFO
queue. In terms of latency, this FIFO queue induces a one-cycle startup cost,
meaning that 100 back-to-back AXI write transactions would need 101 clock
cycles to complete.

ii. AXI write data channel

The current datapath is 128-bit wide and, as mentioned above, both 64-bit
and 128-bit write transactions are supported. Each individual 64-bit or 128-
bit word is stored in a register and upon the arrival of the final descriptor
word, the descriptor line is written to the transfer table. A transfer is con-
sidered ready to be enqueued to the scheduling FIFO only when the last
descriptor line has been successfully written to the Transfer Table. For long
descriptors, both inline payload and regular memory descriptors 2.3, 2 table
lines need to be written. Thus, the enqueue to the scheduling FIFOs happens
on the second descriptor line write. Due to interleaving of different descrip-
tor writes from different protection domains, there is no way to distinguish
when the 2nd line of a descriptor arrives, other than placing a bit in both
descriptor lines that suggests that the current line is the last one or not (see
Figure 3.1, enq to sched FIFO field).

It is worth noting that the individual words in a descriptor line are allowed
to arrive out of order, but the second descriptor line, if any, should never
arrive before the first. This is a temporary solution to solving interleaving in
transfer descriptor writes and will not be needed when multiple accumulating
register sets are implemented. To clarify, suppose a long inline payload
descriptor that is composed of eight (8) 64-bit words, word0, word1, ... ,
word7, and suppose that the descriptor is written by the CPU using 64-bit
stores. Since this descriptor occupies 2 transfer table lines, the first line (256-
bits) contains word0 to word3 and the second line contains word4 to word7.
In Figure 3.4, three different orders of those individual words arriving are
shown.

Second and third scenarios of Figure 3.4 are considered illegal because the
2nd descriptor line write to the transfer table also triggers the enqueuing of
the transfer to the scheduling FIFOs, essentially saying that the transfer is
alive before its descriptor is written in its entirety.

iii. AXI write response channel

In order to complete an AXI transaction, the slave must send a completion
response to the master. The AXI Slave replies with ERROR to an AXI
transaction on bad transaction signals (e.g. 3 LS bits of the write address

3.6. AXI SLAVE 21

Figure 3.4: Transfer descriptor 64-bit words arriving at the AXI Slave in different
orders. The individual words are allowed to arrive out of order only inside their
Transfer Table line.

22 CHAPTER 3. HARDWARE IMPLEMENTATION

Figure 3.5: AXI Write Channels

are not zero, not using the data bus strobes correctly etc), or, as mentioned
before, if an ongoing descriptor write is interrupted by another one, origi-
nating from a different protection domain. The latter will be resolved with
the addition of multiple accumulating registers.

Since the request of the AXI Slave to the preceding interconnect (to send
a response to the master) may not be granted in the same clock cycle as
its issuing, the responses are also placed in a FIFO queue and are dequeued
on response channel-interconnect handshake. This queue can hold up to 8
outstanding responses and does not induce any stalling to the descriptor
writing process.

A simplified view of the AXI Slave’s functionality can be found in Figure 3.5.

3.6.2 AXI Reads

The AXI read channels are used for reading the status of ongoing transfers. A
local CPU may request to read the status of a transfer that it has issued, meaning
that only the status of the write channels are saved.

3.7. SCHEDULING FIFO QUEUES 23

Figure 3.6: AXI Read address. The ”mode” bit indicates reading a single channel’s
status and updating its state from DONE/ERROR to IDLE on read, or reading
32 channels statuses and updating every channel found on those states.

i. AXI read address channel

The read address format can be found in Figure 3.6. Two extra bits are
needed, one to indicate that the mapped peripheral is in fact the status
table and another one to indicate the mode of the read request. Two modes
are currently supported, one that returns the status of a single channel and
resets its status if it is found to be in DONE/ERROR state, and a second
that reads the status of 32 channels and resets every channel found in these
states. The second reading mode finds application in broadcast operations:
issue up to 64 outstanding transfers (broadcast to 64 nodes) and then poll
the status of every transfer using a multi-channel read. This, however should
go hand in hand with specialized software in order to handle the updates to
every DONE/ERROR channel on a single read.

ii. AXI read data channel

Through the AXI read data channel, a local CPU can read the status of 32
(out of the total 64) write channels in a protection domain on a datapath of
128 bits.

3.7 Scheduling FIFO Queues

A Scheduling FIFO queue entry holds a pointer to an ongoing transfer, the address
of the first line of a transfers descriptor in the Transfer table. The need for multiple
scheduling FIFO queues stems from the fact that there are multiple user-defined
transfer priorities [2]. A total of 2048 queue entries are needed since the total
number of active transfers, including both write and read channels, is 2048 and

24 CHAPTER 3. HARDWARE IMPLEMENTATION

Figure 3.7: Scheduling FIFO queues implemented in a dynamic shared space. Each
queue is represented by a set of Head-Tail registers and an Empty-bit register.

every transfer is allowed to appear only once in the queues. In order to avoid
under-utilization, we implement these FIFO queues in a dynamic shared space, as
shown in Figure 3.7.

Each FIFO queue is represented by a set of 3 registers: empty, head pointer, tail
pointer. The nodes of a queue are connected to their successor via a next pointer.
The next pointers are stored in a dual port memory 2048 x 11 bits, total 22.528
bits. The high level concept of the queue is presented in Figure 3.8. Unlike the
queue in Figure 3.8, we don’t need a separate memory for the data, since the data
are considered to be the next pointer itself, the transfer table index. The enqueue
and dequeue operations are described in Algorithm algorithm 1 and algorithm 2
respectively.

The number of different enqueue requests that can be issued to the scheduling
FIFOs in a single clock cycle amount to 4:

i. AXI Slave enqueues newly arrived transfer’s address

ii. Message Handler receives a remote read request and enqueues its address.

iii. Transfer Segmenter issues a transfer’s block and re-schedules the transfer
back to its queue (outstanding blocks mechanism)

3.7. SCHEDULING FIFO QUEUES 25

Figure 3.8: High level representation of a scheduling FIFO queue

Algorithm 1 Enqueue operation to a FIFO queue of a given priority in a multi-
priority queue in dynamic shared space implementation

1: procedure enqueue(data = x, priority = k)
2: if queue[k] = empty then
3: head[k] = x
4: tail[k] = x
5: else
6: nextPointer[tail[k]] = x
7: tail[k] = x

Algorithm 2 Dequeue operation from a FIFO queue of a given priority in a
multi-priority queue in dynamic shared space implementation

1: procedure dequeue(priority = k)
2: prevHead = head[k]
3: if head[k] = tail[k] then
4: empty[k] = true
5: else
6: head[k] = nextPointer[head[k]]

return prevHead

26 CHAPTER 3. HARDWARE IMPLEMENTATION

iv. Message Handler receives an ACK and reschedules the transfer if the ACK’ed
block was not transfer’s last.

Therefore, a total of 4 requests (3 enqueues and 1 dequeue) can potentially be
issued to the scheduling FIFO queues in a single clock cycle. Looking at the pseudo-
code in Algorithms algorithm 1 and algorithm 2, we deduce that the number of
requests that can be served by the scheduling queues is determined by the number
of ports of the next pointer memory: both the enqueue and the dequeue operations
update a next pointer (except for enqueue on empty and dequeue on last item).
For simplicity, we dedicate a nextPtr memory port for enqueues and the other one
for dequeues. Being dual port, the memory allows only 1 enqueue and 1 dequeue
to take place in the same clock cycle. Thus, a priority needs to be assigned to
the different enqueue operations. We consider the following hierarchy, highest to
lowest priority:

i. Message Handler (ACK enqueues)

ii. Transfer Segmenter

iii. AXI Slave

iv. Message Handler (Remote Read Request)

Highest priority is given to the acknowledgments mechanism, since it’s the only
mechanism that frees up resources (returns transaction IDs to their queues so as to
re-enable the block/inline payload transfer issuing process). Next in the hierarchy
we consider the Transfer Segmenter since delays in this module affect the latency of
small transfers. Given that inline payload transfers are composed of a single block
by definition, no enqueue requests to the scheduling queues are produced for such
transfers. This, along with the fact that only 2 outstanding blocks are issued from
a given transfer, allows the AXI Slave’s (next in the hierarchy) enqueue requests
to be granted with minimal delays. Although, the AXI Slave essentially serves
the processor descriptor writes and, thus, should not be delayed, we consider that
an infrequent, worst case scenario of a 2-clock-cycle delay is acceptable. Finally,
since the remote read requests arrive from the network, we consider the latency to
this enqueue requests to be negligible compared to the travel time of the request
inside the network. That being said, delaying a remote read request’s enqueue
also induces a potential delay on arriving acknowledgements, since both of these
events are handled by the same module, the Message Handler.

Finally, an enqueue operation takes one clock cycle to complete: updating
the tail pointer (register) and the next pointer (in BRAM) can be performed in
the same clock cycle. On the other hand, a dequeue operation needs 2 clock
cycles to complete: read queue head’s next pointer from memory (1st cc) and
then update the head register with the value read from memory (2nd cc). Due
to dequeue requests, potentially, arriving back to back (explained in the Transfer
Segmenter section), a forward signal is needed when dequeuing from the same

3.8. TRANSACTION ID AND FLOW ID FIFO QUEUES 27

queue in succession. Instead of returning the head value as dequeue data, the value
read from the next pointer memory is returned during forwarding (see Figure 3.7,
signal fwd control).

3.8 Transaction ID and Flow ID FIFO queues

As mention before, a transfer is segmented into 64KB blocks and a descriptor of
each block is written to the Transaction Table to be read by the RDMA Scheduler.
Each issued block is assigned a transaction ID, corresponding to an address to
the Transaction Table (see Figure 2.2). This assignment of IDs differs between
congestion managed and non-congestion managed transfers.

Distributing transaction IDs for non-congestion managed transfers is straight
forward: all available IDs are stored in a FIFO queue (TID FIFO, Figure 2.2), the
Transfer Segmenter dequeues a transaction ID on block issuing of a non-congestion
managed transfer or an inline payload transfer and the IDs are returned to this
TID FIFO queue by the Message Handler on ACK arrival. The total number of
these independent transaction IDs is set to half the size of the Transaction Table,
1024/2 = 512 IDs. In total, this FIFO queue has a size of 512 x 10 = 5.120 bits.

On the other hand, the transaction IDs assigned to congestion managed flows
are dependent on the Flow ID of the transfer. Congestion managed transfers are
divided into flows. A flow is defined as an entity bigger than a block of 64KB (a
transaction) and smaller than the transfer itself. In this implementation, a flow
is set to 4 blocks (parameterized). Blocks of the same flow (same FID) follow the
same path inside the network, thus, in order to support multipathing, transfers are
assigned more than one FIDs. A congestion managed, unipath, transfer is assigned
a single FID, at first block issuing, whereas a multipath one is assigned four (4)
FIDs at first block issuing. This/These FID(s) will not be returned to its/their FID
FIFO queue until the transfer is complete. The TIDs inside a flow are statically
allocated, meaning that if the transfer is assigned FID 128, the available TIDs that
its blocks will be issued with will be TID 512, TID 513, TID 514, TID 515 and in
this order, circling back to the first TID if the total blocks of this transfer exceed
the number of blocks in a flow. The range of TIDs in an FID is defined as:

TID ϵ [FID ≪ 2, (FID ≪ 2) + 3],

where:

FID ϵ [128, 252],

A total of 512/4 = 128 FIDs are available (half the Transaction Table size over
the number of blocks in a flow), 64 of which are reserved for unipath transfers and
64 for the multipath ones. The FIDs of unipath transfers are stored in a different
FID FIFO queue (1xFID FIFO queue) than those of the multipath ones (4xFID
FIFO). The 1xFID FIFO has a size of 64 x 8 = 512 bits, whereas the 4xFID FIFO
has a size of 16 x 8 = 128 bits.

28 CHAPTER 3. HARDWARE IMPLEMENTATION

While the transaction IDs of a unipath, congestion managed transfer should
appear in a sequential order, the TIDs of a multipath flow appear in a frog-leap
manner between flow IDs. For example, suppose a congestion managed transfer
that uses the multipath feature and has a size of 16 blocks. If the transfer is
assigned FID 192, it is automatically assigned FIDs 193, 194 and 195 as well
(without the need of more than 1 dequeue on the 4xFID FIFO). The individual
blocks of this transfer will be issued using the following TIDs:

• Block 0 : TID = 192≪2 + 0 ⇒ TID: 768

• Block 1 : TID = 193≪2 + 0 ⇒ TID: 772

• Block 2 : TID = 194≪2 + 0 ⇒ TID: 776

• Block 3 : TID = 195≪2 + 0 ⇒ TID: 780

• Block 4 : TID = 192≪2 + 1 ⇒ TID: 769

• Block 5 : TID = 193≪2 + 1 ⇒ TID: 773
...

• Block 15: TID = 195≪2 + 3 ⇒ TID: 783

This way, we force a different flow ID between consecutive blocks, which are guar-
anteed to follow a different path in the network.

3.9 Transfer Segmenter

The Transfer Segmenter is a module responsible for:

• Creating ExaJet packets from inline payload transfers

• Dividing larger transfer into 64KB blocks (transactions) and issuing trans-
action descriptors to the RDMA.

• Creating control packets to signal the creation of a completion notification.

• Schedule transfers at block level

It is implemented as a three-stage pipeline. In Figure 3.10, transfer segmentation
into blocks is shown, as well as the calculation of the individual block sizes.

3.9.1 Pipeline Stage 1

The first pipeline stage is dedicated to transfer scheduling at block level. The
Transfer Segmenter checks if any of the Scheduling FIFO queues are non-empty,
meaning that a transfer is eligible for block issuing. Which scheduling FIFO queue
the Segmenter dequeues from is determined by the priority of the transfer and the

3.9. TRANSFER SEGMENTER 29

F
ig
u
re

3
.9
:
T
ra
n
sf
er

S
eg
m
en
te
r’
s
th
re
e-
st
ag

e
p
ip
el
in
e.

In
th
e
fi
rs
t
st
ag

e,
it

is
d
ec
id
ed

w
h
ic
h
sc
h
ed

u
li
n
g
q
u
eu

e
to

se
rv
e
a

tr
an

sf
er

fr
o
m
.
S
ec
on

d
st
ag

e
is

d
ed

ic
a
te
d
to

re
-e
n
q
u
eu

in
g
a
tr
an

sf
er

b
ac
k
to

it
s
sc
h
ed

u
li
n
g
q
u
eu

e
an

d
u
p
d
at
in
g
th
e
M
et
a
d
a
ta

ta
b
le

en
tr
y
(t
h
e
S
eg
m
en
te
r
a
ls
o
en

q
u
eu

es
in
li
n
e
p
ay
lo
ad

tr
an

sf
er
s’

p
ac
ke
ts

to
th
e
P
ac
ke
t
Q
u
eu

e,
n
ot

sh
ow

n
in

th
e
fi
g
u
re
).

T
h
ir
d
st
ag

e
is

d
ed

ic
at
ed

to
a
b
lo
ck
’s

so
u
rc
e
an

d
d
es
ti
n
at
io
n
ad

d
re
ss

ca
lc
u
la
ti
on

s
an

d
w
ri
ti
n
g
a
tr
a
n
sa
ct
io
n
d
es
cr
ip
to
r
to

th
e

se
n
d
u
n
it
.
B
y
p
as
s
of

th
e
th
ir
d
st
ag

e
is

al
so

av
ai
la
b
le

w
h
en

is
su
in
g
th
e
fi
rs
t
b
lo
ck

of
a
tr
a
n
sf
er
.

30 CHAPTER 3. HARDWARE IMPLEMENTATION

Figure 3.10: Transfer segmentation and block size calculations. BLOCKSIZE is a
constant set to 64KB.

3.9. TRANSFER SEGMENTER 31

availability of transaction IDs (TIDs) and Flow IDs (FIDs). Thus, if a transaction
ID is available, the transfer is dequeued from its FIFO queue and the address
read from the queue is passed to the Transfer Table in order to read the trans-
fer’s descriptor, which will be available in the next clock cycle since this table is
implemented in BRAM.

The total number of scheduling FIFO queues is determined by the formula :

Total queue count = 2 + (4× intra priority count)

where intra priority count is the number of different priorities of multipath and
unipath types of transfers (see Figure 2.4). The functionality of each of these
queues is listed bellow.

• Small transfers scheduling FIFO queue - TID only FIFO (1 queue):

This queue is reserved for inline payload transfers and non-congestion man-
aged transfers (transfers that are not assigned a flow ID).

• Congestion managed transfers, no multipathing, scheduling FIFO queues
- 1 x FID FIFO (2 x intra priority queues):

These queues are reserved for transfers of medium size that are assigned a
single flow ID (single-path in the network). The queues are further divided
into 2 categories: transfers that have already been assigned an FID and
transfers with no FID assigned. This distinction is made to resolve Head
of Line (HoL) blocking issues in the scheduling FIFO queues. Suppose the
following example, in which the congestion managed, unipath, scheduling
queues are not divided into the categories mentioned before, meaning that a
single queue exists for both the transfers that already have an FID assigned
and the ones that haven’t. A transfer at index 2 of the Transfer Table is
at the head of the queue and it hasn’t been assigned an FID yet. Next in
the queue resides a transfer at index 0 that has been assigned an FID. Now,
suppose that the FID FIFO is empty, meaning that all flow IDs are being
used by other transfers. Since the transfer at the head of this queue needs an
FID in order to start issuing blocks, two options are available: either stall all
transfers in this queue and wait until an FID becomes available when another
congestion managed transfer finishes, or dequeue the transfer at the head of
the queue and enqueue it at the back of the queue, hoping that the next
transfer(s) will not be needing an FID, wasting clock cycles in the process.
To avoid both of these scenarios, separating the queues into the proposed
categories is essential.

• Congestion managed transfers, multipathing, scheduling FIFO queues
- 4 x FID FIFO (2 x intra priority queues):

These queues are reserved for transfers of large size that are assigned four
(4) flow IDs (multi-path in the network). Although, the FIDs of this type of

32 CHAPTER 3. HARDWARE IMPLEMENTATION

transfers are located in a different FID FIFO than the ones used for single-
path transfers, the same problems arise if the queues are not divided into
have-FIDs and not-have-FIDs categories.

• Control packet scheduling FIFO queue (1 queue):

When the (N-1)th ACK arrives at the sender, the Message Handler enqueues
the ACK’ed block’s transfer to this queue in order for the Transfer Seg-
menter to create the control packet that forms the completion notification.
This queue has the highest priority between all scheduling FIFO queues, the
reason being that sending the control packet frees up resources both at the
sender and the receiver side.

Thus, in the first pipeline stage, the Transfer Segmenter decides which schedul-
ing FIFO queue to dequeue from, based on a priority assigned to these queues.
The queue hierarchy, from highest to lowest priority, is described below.

i. Control Packet FIFO queue (1 queue)

ii. TID only FIFO queue (1 queue)

iii. 1 x FID FIFO queues, have FID (2 x intra priority queues)

iv. 1 x FID FIFO queues, not have FID (2 x intra priority queues)

v. 4 x FID FIFO queues, have FID (2 x intra priority queues)

vi. 4 x FID FIFO queues, not have FID (2 x intra priority queues)

The reason for giving higher priority to the transfers that already have an FID
is that those transfers have begun issuing blocks to the RDMA (an FID is assigned
at first block issuing) and are possibly closer to completion.

Apart from the index to the Transfer Table, the scheduling FIFO queue head
contains an extra bit that indicates whether the first block of the transfer has
been issued. In general, this information can be found in the Transfer Metadata
Table (see section 3.2), but in order for this information to be correct, the current
block number needs to be set to zero by the AXI Slave when receiving a new
transfer descriptor. However, this initialization introduces a third access (write)
to the Transfer Metadata table (the other two being the Transfer Segmenter and
the Message Handler for reading and writing in the next clock cycle), which means
either arbitration to the tables ports or an implementation as a triple port memory.
Instead, reading an extra bit from the head register of the scheduling FIFO queues
gets rid of this initialization of the Transfer Metadata Table. However, a read
request is issued to the transfer metadata arbiter nonetheless, in order to update
in the next clock cycle the outstanding blocks counter, the last TID/sequence
number values (if issuing the last block) as well as the isInSchedFIFO bit.

3.9. TRANSFER SEGMENTER 33

3.9.2 Pipeline Stage 2

In the second pipeline stage, an entry to the Pending Transactions Table is created
for the block/inline payload transfer that the Segmenter is about to issue and
depending on the type of transfer that was dequeued, the number of blocks that
have been issued, as well as the usage of the third pipeline stage, transfers are
served in the following ways:

• The Transfer Segmenter issues a request to the Packet Creator FSM in order
to create an ExaJet packet from a inline payload transfer or create a control
packet to signal the completion notification formation. The control packet
creation request is issued either because the Transfer Segmenter dequeued a
transfer from the control packet scheduling queue, or because the Transfer
Segmenter is about to issue a transfer’s last block and N-1 acknowledgments
have already arrived for this transfer. The second scenario requires the cal-
culation of the total blocks of the transfer, to compare this value with the
current block counter (if those values match, the last block is being issued),
and the calculation of the total ACKs of this transfer. The latter is straight-
forward:

total ACKs = transf metadata.curr block num

− transf metadata.outstanding num counter

The current block number is incremented on block issuing and the outstand-
ing counter is incremented on block issuing and decremented on ACK receipt.
The calculation of the total blocks of a transfer is more complicated and ends
up being in the critical path of the design:

total blocks = (transf descr.dst addr + transf size)/BLOCKSIZE

− (transf descr.dst addr)/BLOCKSIZE

Furthermore, if the value (transf descr.dst addr + transf size)%BLOCKSIZE
is non-zero, we need to add one more block to the above calculation. This
produces the circuit shown in Figure 3.11.

• the first block of a transfer is issued to the RDMA from the second pipeline
stage, on condition that no block is issued from the third stage (stage 3 by-
pass). This type of forwarding is possible since, being the first block, the
source and destination addresses of the block are identical to the transfer’s
corresponding fields (located in the transfer descriptor), and the only trans-
action table field that is calculated is the first block size (the first block’s
destination address is possibly not aligned to the 64KB block boundaries,
see Figure 3.10), as shown in the following formula:

first block size = BLOCKSIZE − (dst addr%BLOCKSIZE)

34 CHAPTER 3. HARDWARE IMPLEMENTATION

Figure 3.11: Transfer’s total blocks calculation logical circuit.

where BLOCKSIZE is a constant set to 64 KB and dst addr is located in
the transfer descriptor. descriptor field

Finally, the transfer’s metadata are updated in the second pipeline stage:

i. increment the current block counter

ii. increment the outstanding counter

iii. increment the next tid counter (+1 for single path transfers, +4/+5 for
multipath, not used in TID only transfers)

iv. update isInSchedFIFO bit to 1 if the transfer is about to be rescheduled to
its scheduling queue (outstanding block).

v. update the last TID/sequence number fields with the values used if the last
block of a transfer is issued (needed for control packet creation).

If the outstanding counter hasn’t reached a maximum threshold (currently set to
2 outstanding blocks), the transfer is rescheduled back its scheduling queue. This
enqueue is performed with a valid/ready handshake, thus the pipeline may be
stalled if the ready signal is not asserted (see section 3.7 for priority assignment
to the scheduling queues accessing modules).

3.9.3 Pipeline Stage 3

In the third pipeline stage, the Transfer Segmenter calculates the source, desti-
nation address offset (same offset for both source and destination) of the block
being issued, as well as the last block size, and writes a transaction descriptor to

3.9. TRANSFER SEGMENTER 35

the Transaction Table (section 3.3). Writing to this table is also performed with
a valid/ready handshake. Due to timing issues, the Rate Limiter on the packet
scheduling mechanism uses a slower clock than the RDMA’s clock. The slower
clock is derived from the RDMA clock, but still a handshaking mechanism needs
to exists in order to transmit signals from slow to fast and vice versa. For this
reason, when the valid signals are asserted, the ready signal from the rate limiter
can either be asserted in the same clock cycle or some clock cycles later, depending
on the relative values and phases of the clocks.

last block size = (transf size− first block size)%BLOCKSIZE

address offset = first block size+ (curr block num− 1)×BLOCKSIZE

The original assumption was that the source and destination address calcu-
lation would be in the critical path of this design, since it requires 3 consecutive
adders and some multiplexers, hence the need to split the calculation to stage 2 and
stage 3 of the pipeline. However, the total blocks calculations proved more com-
plicated and in the current Segmenter’s design could not be split into 2 different
stages without making major architectural changes. A different way of calculating
the total blocks, with the use of less adders, was also tested, but due to higher fan-
out in the implemented design, the critical path (total blocks calculation included)
became even slower.

3.9.4 Stalls

In this section the events that induce a stall to the Transfer segmenter’s pipeline
are listed.

i. Transaction table write handshake failure.

Failing to write a transaction descriptor, either from stage 2 (forward) or
from stage 3, to the Transaction Table stalls the pipeline until the ready
signal is asserted.

ii. Packet FIFO queue full.

A chronic congestion in the network’s output buffers would not allow the
RDMA to send any packets and, subsequently, the packets that the Transfer
Segmenter enqueues to the Packet FIFO will accumulate until the queue is
full. Thus, issuing new transactions is halted.

iii. Transfer Metadata table arbiter handshake failure.

The Message Handler tries to access the Transfer Metadata table at the same
time as the Transfer Segmenter and the arbiter temporarily gives priority to
the handler. If the Transfer Segmenter cannot read from the Metadata table,
no transfer is dequeued from Stage 1 of the pipeline.

36 CHAPTER 3. HARDWARE IMPLEMENTATION

Figure 3.12: Segmenter’s Packet Creator FSM state diagram.

iv. Scheduling FIFO enqueue handshake failure.

The Transfer Segmenter tries to enqueue a transfer back to its scheduling
queue (outstanding block mechanism), but a higher priority enqueue (see
section 3.7) happens in the same clock cycle. The pipeline is stalled until the
ready signal is asserted by the scheduling queue’s control logic (next clock
cycle in the current implementation).

3.10 Packet Creator FSM

The Packet Creator FSM is a module that enqueues network packets to the packet
FIFO queue and sends control signals to the Transfer Segmenter in order to stall
the transfer issuing process when the 2nd descriptor line is needed to extract the
rest of a transfer’s payload or the control packet information. As Figure 3.12
suggests, enqueuing a transfer’s packet with payload of size less than or equal
to 8 Bytes can be performed in a single clock cycle and does not induce any
stalls to the Transfer Segmenter’s pipeline. Inline payload transfers of size greater
than 8 Bytes and control packets have extra information located in the second
descriptor line (see Figure 2.3), thus a second read on the Transfer Table is needed
to get this information. The first pipeline stage is stalled, since the Transfer
Table is implemented as a dualport table and one of its ports is dedicated to the
new descriptor writes from the AXI Slave and the remote read requests from the
network. A possible improvement to this packet creation process would be to allow
the Transfer Segmenter to read both lines of the transfer descriptor in the same
clock cycle, when no new descriptors are being written to the table via Port 0.
This would allow inline payload transfers of any size to be served in a single clock

3.11. MESSAGE HANDLER 37

Figure 3.13: Finite State Machine (FSM) of the Message Handler. Functionality
for handling remote read requests is not included in this transition diagram.

cycle. Another improvement would be to enqueue control packets in a single clock
cycle when the transfer was dequeued from the control packet FIFO queue. In
this scenario, the first descriptor line is only needed to extract the destination’s
coordinates (MS bits of the transfer’s destination address), whereas all the control
packet fields are located in the second one and the only extra information is located
in the Transfer Metadata table. If the destination coordinate of the RDMA transfer
was the same as the control packet’s coordinate, the first read operation on the
transfer table could be skipped altogether.

3.11 Message Handler

The Message Handler is a 3-state Finite State Machine (FSM) that is responsible
for receiving acknowledgements from the network. Its functionality is also to be
expanded to handling the remote read requests.

When in the first state, the header valid/ready handshake takes place, signaling
the arrival of a packet from the network, in this case a response. The header ready
signal is always raised in this state. The TID of the ACK’ed block is extracted
from the response header and it’s used as index to the Pending Transactions table.
The sequence number is also stored in a register to be compared with the sequence

38 CHAPTER 3. HARDWARE IMPLEMENTATION

number of the table’s entry. The response (ACK/NACK) is also extracted from
the header and stored in a register.

In the second state, the Pending Transactions table entry is available. If the
response was a NACK, the transfer ID is extracted from the table’s entry (it isn’t
included in the response header, thus we need to read the table to get it) and the
Message Handler updates the status register of the current NACK’ed transfer to
ERROR, using the transfer ID as index to the status registers. On the other hand,
if the response was an ACK and the table’s entry is valid, the sequence number
of the ACK’ed block is compared to the stored value in the table. If the sequence
numbers do not much, the ACK is dropped, the transfer’s status is updated to
ERROR in the status registers and the handler’s state returns to ready state.
The channel’s update to ERROR state is a temporary solution to not supporting
re-transmissions and will become unnecessary when those resiliency features are
added to the RDMA. Finally, if the sequence numbers do match, the Message
Handler sends a request to read the transfer’s metadata in the corresponding table.
As mentioned before, this table is accessed by the Transfer Segmenter as well,
which issues both read and write requests in the same clock cycle (being a pipeline).
Thus, this read request is handled by the Transfer’s Metadata Table arbiter, which
grants read requests to the Transfer Segmenter and the Message Handler in a ”last
served” manner.

In the third state, the transfer’s metadata are available and the Message Han-
dler checks if all blocks of the transfer have been issued. If the current block
number is not equal to the total number of the transfer’s blocks, the handler
checks the isInSchedFIFO field and decides whether to enqueue the transfer back
to its scheduling FIFO queue. When the ACK’ed block was issued, the Transfer
Segmenter might have re-enqueued the transfer back to its queue because of the
outstanding blocks mechanism and since only a single instance of every transfer is
allowed in the scheduling FIFO queues, the Message Handler must not re-enqueue
the transfer a second time. On the other hand, if all blocks of the transfer have
been issued, the total ACKs received are counted in order to mark the trans-
fer as done (total ACKs == total blocks) or to enqueue the transfer the control
packet scheduling FIFO queue (total ACKs == total blocks - 1 AND transfer has
completion notifications).

Furthermore, the Message Handler updates the transfer’s metadata, decre-
menting the outstanding blocks counter and setting the isInSchedFIFO bit to 1.
It also invalidates the Pending Transaction’s table entry and returns the TID/FID
used by the block/transfer on the following conditions: the TID of a non-congestion
managed flow is always returned to the TID FIFO queue on block ACK, whereas
the FID of a congestion managed flow is only returned to its FID FIFO queue on
transfer completion. However, the transaction IDs of congestion managed flows are
given in an incremental fashion, thus the Message Handler updates the tid bitmap
field in the transfer’s metadata table.

3.12. TRANSFER METADATA TABLE ARBITER 39

Figure 3.14: Transfer Metadata table Arbiter FSM. This arbiter gives priority to
either the Transfer Segmenter’s or the Message Handler’s reads using adaptive
control.

3.12 Transfer Metadata Table Arbiter

In section 3.9 and section 3.11 it is mentioned that the Transfer Metadata table
(which contains information about the total blocks issued, total ACKs received
and so on) is accessed by both the Transfer Segmenter and the Message Handler.
The Transfer Segmenter issues a read to this table from its first pipeline stage and
a write from its second pipeline stage, both during the same clock cycle, whereas
the Message Handler issues a read and, in the following clock cycle, a write request.
If we assign each port of the metadata table to either the reads or the writes, only
the read requests require arbitration. The table’s arbiter is implemented as an
adaptive control FSM and its state diagram can be found in Figure 3.14.

3.13 Sequence Number Generator

A sequence number is assigned to each issued block and packets belonging to that
block are sent using the same sequence number. When all packets of a block arrive
at the receiver, an acknowledgment is created and sent to the block’s sender. If a
packet is lost during its transport in the network, the receiver will not send this

40 CHAPTER 3. HARDWARE IMPLEMENTATION

ACK and the transaction will be timed-out, resulting in the re-transmission of
the whole block. Traditionally, the block’s sequence number is incremented and
the block is re-transmitted using the incremented number and the same TID as
before. Packets arriving at the receiver with a lower sequence number than the one
in the receiver’s context are ignored. In other words, the sequence number was tied
to a transaction ID (TID), each block that was assigned a TID incremented the
TID’s sequence number on block issuing or on block’s re-transmission. To avoid the
complexity of having the sequence number tied to a TID, a global sequence number
counter is used. This counter is incremented each time a block is issued or re-
transmitted. This guarantees that re-transmitted blocks will always have a higher
sequence number than what they were previously assigned, but the overflowing of
this counter on a to-be re-transmitted block should be taken into consideration.

3.14 Transaction-Flow ID FIFO queue initializer

On system reset, all TID and FID FIFO queues are inevitably emptied. However,
the expected functionality is that these queues are full after reset, every ID is
available because there are no transfers alive. This initializer starts sequentially
enqueuing the available IDs to their corresponding queues on reset. This initial-
ization procedure takes an amount of clock cycles equal to the total entries of the
FIFO queues, which, according to section 3.8, is 512+64+16 = 588 clock cycles.
During this period, it is advised that no transfers are issued to the RDMA, not
only due to the fact that the FID FIFOs might be empty, but also because the ID
queues do not support 2 enqueues per clock cycle. An acknowledgment arriving
in the 512 clock cycle time-frame would produce an enqueue to the TID FIFO,
which would collide with the initialization enqueue.

Chapter 4

Evaluation and Results

In this chapter we present the functional verification strategy, the performance
evaluation of the design, as well as the resource utilization of the synthesized
design. The tools used for both verifying the functionality of the QoS engine of
the RDMA and synthesizing the design were Xilinx’s Vivado Design Suite. All the
test-bench simulations were created and run using this suite and another simulation
of a particular module was performed using the C programming language. Apart
from the simulations, the design was also evaluated in real hardware. Specifically,
the whole RDMA design, including both the QoS part and the send unit, was
implemented in the FPGA of Xilinx’s Zynq Ultrascale+ MPSoC and was evaluated
using various user-level programs, ran on the ARM A53 core of the chip.

4.1 Resource Utilization and Timing

In this section, the resource utilization of the synthesized design is reported, along
with the achieved frequency. Using Vivado 2017.2, the RDMA hardware design
was synthesized with Xilinx Zynq UltraScale+ MPSoC (xczu9eg-ffvc900-2-e) as a
target FPGA. The synthesized design of the QoS part of the RDMA is comprised
of a total of 13.313 LUTs, 5.113 CLB registers and it uses 22 RAMB36E2 and 2
RAMB18E2 primitives (total of 23 BRAM Tiles of 36kbit each). Detailed resource
utilization of the individual modules can be found in table 4.1. Finally, a target
frequency of 150 MHz was achieved and optimizations were deployed to further
increase it. Despite reducing the levels of logic in the critical path, no improve-
ments were realized in terms of frequency, due to higher cable fan-out in the new
critical path.

As table 4.1 suggests, around 55% of the total Look-Up Tables (LUTs) and
60% of the total registers are used by the status registers. In general, the CLB
Register primitives inside FPGAs are coupled with LUTs, in a single package, and
one cannot use registers without leveraging the LUTs that come with it. This,
along with the added complexity of updating each of the 1024 individual channels,
explains the spike in LUT usage. The number of LUTs used would drastically drop

41

42 CHAPTER 4. EVALUATION AND RESULTS

Module
Utilization

CLB LUTs CLB Registers Block RAM Tiles

AXI Slave 473 352 0
Transfer Segmenter 1600 383 0

Message Handler 616 26 0
Scheduling FIFOs 1953 403 1
Status Registers 7349 3072 0
Transfer Table 3 0 14.5

Metadata Table 94 152 4.5
Pending Transactions Table 0 0 4

Packet Creator 339 194 0
Metadata Table Arbiter 59 2 0

Sequence number generator 13 12 0
ID FIFO Initializer 26 12 0

TID FIFO 342 29 0
1x FID FIFO 35 16 0
4x FID FIFO 23 12 0

Statistics Registers 200 448 0

Total 13313 5113 23

Table 4.1: Resource utilization of the QoS part of the RDMA

if the status of the transfers was kept in BRAM instead. However, as mentioned
in section 3.4, this would mean that every update to a transfer’s status would
require a read on this memory and a write operation in the following clock cycle,
becoming a potential point of contention for 3 modules, 2 of which serve the
processor’s writes and reads to the RDMA. This contention would arise especially
for small size transfers, but this is only true provided that the feature of reading
multiple statuses with a single processor read is still supported. Dropping this
feature completely avoids the read operation, but also undermines the potential
performance of the RDMA (see section 4.3).

All in all, even with the spike of LUT usage of the status registers explained
above, the QoS design remains lean in terms of resource utilization. Most block
RAM tiles are leveraged by the Transfer Table, which is expected since this table
supports 16 pages of 128 channels and each channel must contain a 256-bit de-
scriptor. Every table is implemented as a dual-port memory, thus no extra block
RAM tiles are wasted in triple-port alternatives.

4.2 Functional Verification

The functionality of the design was tested in simulation using Vivado 2020.1 in a
layered approach:

4.2. FUNCTIONAL VERIFICATION 43

Figure 4.1: Functional verification of the QoS engine of the RDMA, high level
depiction of the deployed test-bench.

i. Individual module test-benches

The first tests included test-benches written in System Verilog, created specif-
ically for each of the modules under verification. In the case of the Schedul-
ing FIFO queues, which required extra effort to support the 2 operations per
clock cycle, as well as the back to back dequeue functionality, this module
produced various logical loops during designing and thus additional testing
was deployed. A simulated multi-priority FIFO queue written in C was cre-
ated for this purpose. The two implementations were fed the same input
operations, either a single enqueue, a single dequeue or both enqueue and
dequeue operations in a clock cycle, and the outputs of both FIFO queues
during dequeue operations were compared. The outputs were identical for
the entirety of this test. Finally, the multi-priority scheduling FIFO queues
in shared space implementation was further verified using traditional FIFO
queues written in Verilog, with which the outputs were also in agreement
during dequeue operations.

44 CHAPTER 4. EVALUATION AND RESULTS

Figure 4.2: Integration of the RDMA send unit and QoS part test-bench.

ii. RDMA QoS design test-bench, send unit not included.

The second major functional verification test involved integrating the indi-
vidual modules of the QoS engine and monitoring the outputs of the design.
A high level depiction of this test-bench can be found in Figure 4.1. A simu-
lated CPU issues randomized transfer descriptors to the Design Under Test
(DUT), in this case the QoS, and at the same time, based on the newly
created transfer descriptor, a monitoring module creates several entries of
expected blocks along with their expected transaction descriptor fields (or
in the case of inline payload transfers or control packets, the corresponding
expected header/footer/payload fields of the created packet). When a block
is issued or a packet is created by the DUT (remember that packets of pay-
load transfers or control packets are created by the QoS part and enqueued
to a Packet FIFO queue, from which the send unit dequeues them and sends
them through the network), the Monitor compares the arrived fields with the
expected ones. For every issued block, the Responser created an acknowl-
edgment so as to further verify that the block issuing process does in fact
proceed as expected and that transfers complete successfully. Support for
acknowledgments arriving out of order was not verified in this test. Finally,
a stalling unit was used to replicate the scenario of the output buffers being
congested and, consequently the Packet FIFO queue being full, as well as
potential stalls produced by the Transaction Table not being ready to accept
a transaction descriptor write by the Segmenter.

iii. RDMA send unit and QoS integration test.

The final test involved integrating the existing RDMA send unit with the cre-
ated QoS part and verifying the RDMA functionality, monitoring the output
packets. The test-bench outlines can be seen in Figure 4.2. The simulated
CPU’s functionality was expanded to not only write transfer descriptors to

4.2. FUNCTIONAL VERIFICATION 45

the RDMA, but to also issue read requests for transfer status polling. Ac-
knowledgments were created by an actual receiver module instance and the
scenario of out of order ACK arrival was ultimately verified in this test. This
simulation proved to be extremely valuable since it offers the opportunity to
accurately recreate most scenarios seen in hardware, giving the designer the
ability to monitor every internal signal of the RDMA, an ability that a chip-
scope would struggle to offer.

4.2.1 Rate Results

To measure the message rate of the QoS engine, we examined the rate with which
back-to-back, 8-Byte, inline payload transfers can be enqueued to the Packet FIFO
queue, in simulation, using Vivado 2017.2. As Figure 4.3 suggests, the achieved
rate is 1 transfer per 2 clock cycles. The Transfer Segmenter is able to serve both
inline payload transfer and regular memory transfers with a rate of 1 transfer per
clock cycle, but is ultimately limited by the 128-bit datapath of the AXI Slave (256-
bit descriptors arrive in two 128-bit writes). However, support for Remote Read
requests can increase the message rate to the Segmenter’s capacity (1 transfer/clock
cycle), since these requests can be served during the Segmenter’s idle cycles. A
more comprehensive breakdown of the test depicted in Figure 4.3 is the following:

• CC (0): AXI Slave write address channel handshake. The transfer descrip-
tor’s first 128-bit word address arrives, channel 0.

• CC (1): AXI Slave write data channel handshake. First 128-bit word of
channel 0 arrives.

• CC (2): Second 128-bit word of channel 0 arrival. The transfer descriptor is
written to the Transfer Table and the transfer is enqueued to its scheduling
queue.

• CC (3): The Transfer Segmenter dequeues the transfer from the scheduling
queue and indexes the transfer table with the address read from the head of
the scheduling queue.

• CC (4): The transfer descriptor in channel 0 is now available to the Transfer
Segmenter, which in turn creates an ExaJet RDMA packet and enqueues it
to the Packet FIFO queue.

• CC (6-8): The RDMA send unit dequeued the packet from the queue and
sends the packet’s header, payload and footer in 3 consecutive clock cycles.

46 CHAPTER 4. EVALUATION AND RESULTS

Figure 4.3: Simulation waveform of the RDMA engine in Vivado 2017.2. This
test examines issuing back-to-back, 8-Byte, inline payload transfers in different
write channels, in order to calculate the message rate. The QoS engine is able
to enqueue the created packets with a rate of 1 packet per 2 clock cycles, limited
by the 128-bit processor-RDMA datapath (256-bit descriptors). Serving Remote
Read requests (when implemented) during the Segmenter’s idle cycles will increase
the message rate to 1 transfer/clock cycle. The RDMA’s send unit needs 3 clock
cycles to send the packet (header-payload-footer), but the total size of the packet
is 256-bits header/footer + 64 bits payload = 320 bits, and the network datapath
is 512 bits wide. It is therefore worth examining the possibility of it being sent in
a single clock cycle.

4.3. EXPERIMENTAL RESULTS 47

Figure 4.4: Average transfer latency for varying transfer sizes. Both axes are in
logarithmic scale. The comparison is drawn between the existing hybrid RDMA,
software implemented QoS that ran on the MPSoC’s Cortex-R5 co-processor, and
the new hardware implemented RDMA. Latency measurements on the hardware
RDMA were taken using both modes of operation, by issuing a new transfer only
when the predecessor is completed (blue curve), and by issuing multiple outstand-
ing transfers and collectively polling their status (cyan curve).

4.3 Experimental Results

In this section, we present the average completion time of transfers, as well as
the measured throughput of our RDMA implementation, both for various transfer
sizes. All measurements were taken from user-level applications that ran on the
ARM A53 core of the Zynq UltraScale+ MPSoC. The applications examined two
possible modes of operation, one where all transfers are issued after the completion
of their predecessor and one where transfers are issued in every available write
channel of a particular page, and their status is collectively polled until every
transfer is perceived as completed by the sender processor. Finally, a comparison
is drawn between the new RDMA, both modes of operation, and the ExaNeSt
RDMA on the same MPSoC, which used the co-processor R5 for QoS support.

All performance tests were conducted with the RDMA transferring data intra-
node, and the data being written and read to and from BRAM. This allows us to
observe the latency of the RDMA design itself, and not the added latency that
characterizes the network and DRAM-RDMA path. The first test involved an
ARM A53 core issuing a single transfer at write channel 0 of the Transfer Table

48 CHAPTER 4. EVALUATION AND RESULTS

located in the PL of the Zynq MPSoC, the sender processor polling the transfer’s
status until the transfer is complete and then issuing the second transfer at write
channel 1. A total of 64 transfers were issued in this manner, equal to the number
of write channels in a Transfer Table page. This process was repeated for thousands
of transfers to obtain an average completion time. The issued transfers did not
include a completion notification, meaning that we measured the latency from the
time of issuing the transfer until the point when all data have been transfered,
the tranfer’s status updated and read by the sender. This test produced the blue
curves of Figures 4.4, 4.5 and 4.6.

The second test involved the same intra-node, BRAM to BRAM configuration
but all 64 transfers were issued outstanding, without the predecessor transfer’s
completion blocking the issuing of a new one. This test produced the cyan curves
of Figures 4.4, 4.5 and 4.6 and was mainly performed in order to demonstrate the
the RDMA’s throughput does benefit from issuing outstanding transfers, especially
in the case of small and medium transfer sizes.

As Figure 4.4 suggests, the average latency for small size transfer in the new
RDMA implementation (blue curve) is 10 times lower than the ExaNeSt RDMA
implementation, at 360 ns. Considering that the PS-PL round trip time is mea-
sured at 120-150 ns, it is logical for a transfer’s completion time to be 2-3 RTTs.
The processor writes two 128-bit descriptor words to the PL and follows up with
a status read operation on the target channel, immediately after the write oper-
ations. The first read will almost certainly return IDLE (or BUSY) status, as
it arrives shortly after the descriptor writes and the transfer’s block hasn’t been
issued yet. A second read operation is issued, since the returned status was not
DONE (or ERROR), which will complete in another RTT. In the meantime, if an
ACK has been received, the second read operation will return DONE status and
the total completion time will be measured at 2 RTTs, else a third read will be
issued.

The latency of small, outstanding transfers (cyan curve) appears to be lower
than the actual PS-PL time distance, since we calculated it as the time for all
64 transfers to complete, over the total number of transfers issued. It should
be taken as a demonstration of the average latency experienced by outstanding
transfers. The actual latency of a transfer in our RDMA design is more accurately
represented by the blue curve of Figure 4.4.

As for the throughput measurements, the RED-SEA RDMA is designed to
operate on 200 MHz on the Zynq’s FPGA, with a network datapath set to 512-
bit, in order to achieve 100 Gbps throughput. However, the frequency of the
RDMA design was set to 150 MHz (the QoS engine’s maximum achieved) for this
tests, which lowers the theoretical maximum to 76,8 Gbps. Furthermore, network
packets are composed of 1 header, 1 footer and up to sixteen (16) 512-bit words
of payload, meaning that out of the total 18 clock cycles the send unit needs to
send the entirety of a packet, 2 clock cycles are header/footer overhead, which do
not contribute to the overall throughput measurement. This further reduces the

4.3. EXPERIMENTAL RESULTS 49

Figure 4.5: RDMA throughput vs transfer size. The x axis is in logarithmic scale.
The maximum throughput that can be achieved is around 68 Gbps and both
RDMA implementations eventually reach it. Issuing outstanding RDMA trans-
fers greatly increases the throughput for small size transfers, thus the maximum
throughput is reached way sooner for the cyan curve.

50 CHAPTER 4. EVALUATION AND RESULTS

Figure 4.6: RDMA throughput comparison for small size transfers. The x axis is
in logarithmic scale.

theoretical maximum throughput to 68,3 Gbps.

Max throughput =
16

18
× 76, 8 = 68, 3 Gbps

In Figure 4.5 we can see that both RDMA implementations eventually achieve
the theoretical maximum throughput. The RED-SEA RDMA achieves it with
transfers of 16 KB, when the CPU issues outstanding RDMA operations. At
smaller transfer sizes (Figure 4.6), the new RDMA sustains high throughput, 21,6
Gbps for outstanding transfers of 128 Bytes and, even on the single issue mode, it
achieves at least 10 times higher throughput than the ExaNeSt RDMA. Finally, we
cannot reach maximum throughput with small sized transfers, since the payload
size is comparable with header/footer size and because each transfer descriptor
bears an overhead for its creation by the ARM A53 core.

Chapter 5

Conclusions and Future Work

The ever expanding number of computing units inside modern supercomputer
clusters demands a solution to the corresponding increased communication over-
head between their nodes, in order to achieve high performance. In this path,
we presented a low-latency, high-throughput, hardware implementation of a new
RDMA engine, developed under the EU-funded RED-SEA project. The work fo-
cused on providing an efficient Quality of Service hardware platform to the existing
RDMA send unit, on which transfers are segmented into blocks, to enable selec-
tive re-transmission and multi-pathing, and small size transfers are prioritized to
minimize latency, achieving a latency of 4 cycles for single block transfers, and a
throughput of 150 MOP/s. We exposed to the user multiple channels that can host
transfers of various types, including ones that completely avoid the RDMA-DRAM
path.

Our evaluation demonstrated substantial improvement in terms of throughput
and latency, the latter being 10 times lower than a previous hybrid RDMA im-
plementation for small size transfers. In the functional verification process, we
introduced a new framework, in which the designer/maintainer of the RDMA en-
gine may replicate scenarios that arise in hardware and are hard to debug using
conventional chip-scopes.

In order to obtain a scalable and resilient RDMA engine, the following func-
tionalities must be implemented in future work:

• The addition of multiple sets of registers that accumulate transfer descrip-
tors before they are written to the Transfer Table. A transfer descriptor
is composed of multiple words that a processor cannot write with a single
write operation. A single set of accumulating registers bears the drawback
that interleaved descriptor writes to the RDMA, originating from different
threads, cannot be supported, the interrupting descriptor write needs to be
dropped. Adding a set per protection domain will solve this issue, however
the case of interleaving in the same protection domain (context switch) must
also be taken into consideration.

51

52 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

• Expanding the functionality of the Message Handler. In the current imple-
mentation, this module receives responses from the network, but has no way
of handling negative acknowledgments. A re-transmission mechanism must
be established. Furthermore, apart from responses, remote read requests
also arrive from the network that this module should handle as well. A read
channel allocator (priority enforcer) is also needed to facilitate these remote
requests.

• Adding a time-out mechanism. A module that scans the Pending Transac-
tions Table for timed-out transfers, issuing re-transmission requests to the
RDMA send unit, is another essential expansion of the design.

• Dividing the critical path into more pipeline stage to achieve 200 MHz clock
frequency. Although not essential for throughput (as the determinant factor
for this metric is the send unit), reaching higher clock frequency in the QoS
design would mean even lower latency. However, the number of clock cycles
needed by the Segmenter to issue an inline payload transfer to the send
unit is already 2 to 3, depending on payload size, which might change after
improvements.

• Allowing the Transfer Segmenter to read from both ports of the transfer table
when possible. This would allow for inline payload transfer of size between
8 and 32 Bytes (or 16 to 32 after transfer descriptor improvements) to be
issued in a single clock cycle, by reading both descriptor lines in 1 clock cycle.

Terminology

control packet A network packet that the sender creates and sends to the re-
cipient of the RDMA transfer. Along with the arrival of the last block of a
transfer, this packets signals the receiver to create a completion notification.

ExaJet RDMA The new RDMA developed in the RED-SEA project, including
the QoS engine designed in this thesis. This RDMA sends ExaJet network
packets.

flow An entity larger than a transaction and smaller than or equal to an RDMA
transfer. The current flow size is set to 4 blocks. A flow is subject to
congestion management and packets of the same flow follow the same path
inside the network.

packet A network packet, consisting of a header (128-bits), a footer (128-bits)
and up to 1024 Bytes of payload. A transaction consists of up to 64 packets.
In our current network, packets are not interleaved.

transaction A segment of an RDMA transfer, a block of 64 KB. The words block
and transaction are used interchangeably in this thesis.

transfer The total amount of Bytes to be transferred from a sender node to a
receiver node in an RDMA operation.

53

54 Terminology

Bibliography

[1] Daniele De Sensi, Salvatore Di Girolamo, Kim H. McMahon, Duncan Roweth,
and Torsten Hoefler. An In-Depth Analysis of the Slingshot Interconnect. In
SC20: International Conference for High Performance Computing, Network-
ing, Storage and Analysis, pages 1–14, 2020.

[2] P. Vatsolaki M. Katevenis G. Kornaros, C. Kozyrakis. Pipelined Multi-Queue
Management in a VLSI ATM Switch Chip with Credit-Based Flow Control.
IEEE Computer Soc. Press, ISBN(0-8186-7913-1):127–144, 1997.

[3] Dimitris Giannopoulos, Nikos Chrysos, Evangelos Mageiropoulos, Giannis
Vardas, Leandros Tzanakis, and Manolis Katevenis. Accurate Congestion
Control for RDMA Transfers. In 2018 Twelfth IEEE/ACM International
Symposium on Networks-on-Chip (NOCS), pages 1–8, 2018.

[4] Dan Gibson, Hema Hariharan, Eric Lance, Moray McLaren, Behnam Montaz-
eri, Arjun Singh, StephenWang, Hassan M. G. Wassel, ZhehuaWu, Sunghwan
Yoo, Raghuraman Balasubramanian, Prashant Chandra, Michael Cutforth,
Peter Cuy, David Decotigny, Rakesh Gautam, Alex Iriza, Milo M. K. Mar-
tin, Rick Roy, Zuowei Shen, Ming Tan, Ye Tang, Monica Wong-Chan, Joe
Zbiciak, and Amin Vahdat. Aquila: A unified, low-latency fabric for data-
center networks. In 19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22), pages 1249–1266, Renton, WA, April 2022.
USENIX Association.

[5] Ping-Jing Lu, Ming-Che Lai, and Jun-Sheng Chang. A Survey of High-
Performance Interconnection Networks in High-Performance Computer Sys-
tems. Electronics, 11(9), 2022.

[6] Manolis Ploumidis, Nikolaos D. Kallimanis, Marios Asiminakis, Nikos
Chrysos, Pantelis Xirouchakis, Michalis Gianoudis, Leandros Tzanakis, Niko-
laos Dimou, Antonis Psistakis, Panagiotis Peristerakis, Giorgos Kalokairinos,
Vassilis Papaefstathiou, and Manolis Katevenis. Software and Hardware Co-
design for Low-Power HPC Platforms. In the 5th International Workshop on
Communication Architectures for HPC, Big Data, Deep Learning and Clouds
at Extreme Scale (ExaComm’19) - in conjunction with the International Su-
percomputing Conference (ISC), 2019.

55

56 BIBLIOGRAPHY

[7] A. Psistakis. Handling of Memory Page Faults during Virtual-Address
RDMA. 2019.

[8] Antonis Psistakis, Nikos Chrysos, Fabien Chaix, Marios Asiminakis, Michalis
Gianioudis, Pantelis Xirouchakis, Vassilis Papaefstathiou, and Manolis Kat-
evenis. Optimized Page Fault Handling during RDMA. IEEE Transactions
on Parallel and Distributed Systems, pages 1–1, 2022.

[9] L. Tzanakis. Quality of Service Framework for Low Power RDMA Operations
over Cortex R5 Real Time Microcontroller. March 2019.

[10] P. Xirouchakis. Design and Implementation of the Send Part of an Advanced
RDMA Engine. March 2019.

[11] Yiwen Zhang, Yue Tan, Brent Stephens, and Mosharaf Chowdhury. RDMA
Performance Isolation With Justitia. 2019.

	Introduction
	Motivation
	Contributions
	Thesis Outline

	Design Overview
	Hardware Implementation
	Transfer Table
	Transfer Metadata Table
	Transaction Table
	Status registers
	Pending Transactions Table
	AXI Slave
	AXI Writes
	AXI Reads

	Scheduling FIFO Queues
	Transaction ID and Flow ID FIFO queues
	Transfer Segmenter
	Pipeline Stage 1
	Pipeline Stage 2
	Pipeline Stage 3
	Stalls

	Packet Creator FSM
	Message Handler
	Transfer Metadata Table Arbiter
	Sequence Number Generator
	Transaction-Flow ID FIFO queue initializer

	Evaluation and Results
	Resource Utilization and Timing
	Functional Verification
	Rate Results

	Experimental Results

	Conclusions and Future Work
	Terminology
	Bibliography

