
SPIMBench: A Scalable, Schema-Aware

Instance Matching Benchmark for the Semantic

Publishing Domain

Tzanina Saveta

Thesis submitted in partial ful�llment of the requirements for the

Masters' of Science degree in Computer Science

University of Crete
School of Sciences and Engineering
Computer Science Department

Voutes Campus, Heraklion, GR-70013, Greece

Thesis Advisor: Prof. Dimitris Plexousakis

University of Crete
Computer Science Department

SPIMBench: A Scalable, Schema-Aware Instance Matching Benchmark
for the Semantic Publishing Domain

Thesis submitted by
Tzanina Saveta

in partial ful�llment of the requirements for the
Masters' of Science degree in Computer Science

THESIS APPROVAL

Author:
Tzanina Saveta

Committee approvals:
Dimitris Plexousakis
Professor, Thesis Supervisor

Yannis Tzitzikas
Assistant Professor, Committee Member

Irini Fundulaki
Principal Researcher, Committee Member

Departmental approval:
Antonis A. Argyros
Professor, Director of Graduate Studies

Heraklion, October 2014

Abstract

Instance matching systems and methods need to be tested using well de�ned

and widely accepted benchmarks to determine the weak and strong points thereof

and also to motivate the development of more complete systems. A benchmark

should test the overall quality of the instance matching system in terms of measures

such as precision, recall, and F-measure as well as the ability to handle large and

diverse datasets.

A number of benchmarks have already been proposed to test the performance

of instance matching techniques mostly for XML and relational data but, more

recently, also for RDF, the type of data prevalent in the Web of Data. Instance

Matching benchmarks for RDF data are the �rst to consider the problem of instance

matching when a real world object is represented in di�erent ways that do not all

conform to the same RDFS or OWL schema. Meaning that in addition to lexical

di�erences among entities representing the same object, these benchmarks consider

structural di�erences such as property splitting or aggregation. However, to the

best of our knowledge, none of the proposed benchmarks to date considers the more

complex logical constructs that can be expressed in terms of rich OWL constructs.

The logical transformations proposed by existing benchmarks all remain at the

level of simple RDFS constraints.

In this thesis we propose the Semantic Publishing Instance Matching Bench-

mark, in short, SPIMBench inspired from the Semantic Publishing domain. SPIM-

Bench is based on the BBC (http://www.bbc.com/) ontologies that represent infor-

mation about creative works (called journalistic assets) created by the publisher's

editorial team. SPIMBench proposes and implements i) a scalable data generator,

ii) a set of transformations on source data to obtain the target data that include,

in addition to the standard value and structural transformations, logical ones that

go beyond the standard RDFS constructs and include expressive OWL constructs,

namely instance (in)equality, equivalence of classes and properties, property con-

straints and complex class de�nitions, a iii) weighted gold standard that can be used

for debugging instance matching systems and �nally, iv) a set of metrics used to

assess the performance of an instance matching system.

http://www.bbc.com/

Περίληψη

Τα τελευταία χρόνια, η αύξηση των διαθέσιμων Συνδεδεμένων Δεδομένων (Linked

Data) στον Παγκόσμιο ιστό έχει αποτελέσει τον θεμέλιο λίθο στην ανάπτυξη Συ-

στημάτων Αντιστοίχισης Στιγμιοτύπων (Instance Matching Systems). ΄Οπως για

τα συστήματα Βάσεων Δεδομένων, έτσι και εδώ, Πλαίσια Αξιολόγησης Συστημάτων

Αντιστοίχισης Στιγμιοτύπων (Instance Matching Benchmarks) έχουν αναπτυχθεί για

τον έλεγχο απόδοσης των προαναφερθέντων συστημάτων με βασικό σκοπό τον προσ-

διορισμό των μειονεκτημάτων τους για την περαιτέρω βελτίωση των λειτουργιών τους.

΄Ενα πλαίσιο αξιολόγησης συστημάτων ταυτοποίησης στιγμιοτύπων θα πρέπει να

ελέγχει τη συνολική ποιότητα του συστήματος αντιστοίχισης στιγμιοτύπων με μετρικές

όπως η ακρίβεια (precision), η ανάκληση (recall), και το F-measure καθώς και την

ικανότητα να χειρίζεται σύνολα δεδομένων μεγάλου όγκου.

Πλαίσια αξιολόγησης έχουν ήδη προταθεί για τον έλεγχο της απόδοσης συστη-

μάτων αντιστοίχισης στιγμιοτύπων για δεδομένα XML και δεδομένα σχεσιακών βάσε-

ων και πρόσφατα για τα δεδομένα RDF τα οποία έχουν αρχίσει να επικρατούν στον

Παγκόσμιο Ιστό. Τα συστήματα αξιολόγησης που λαμβάνουν υπ΄ όψιν δεδομένα εκ-

φρασμένα σε RDF είναι τα πρώτα τα οποία εξέτασαν το πρόβλημα της αντιστοίχισης

στιγμιοτύπων όταν ένα αντικείμενο του πραγματικού κόσμου έχει διαφορετικές περι-

γραφές που χρησιμοποιούν τα ίδια ή διαφορετικά RDFS (ή τα εκφραστικότερα OWL)

σχήματα.

Αυτό σημαίνει πως εκτός από τις λεξικολογικές διαφορές μεταξύ των στιγμιοτύπων

που περιγράφουν την ίδια οντότητα του πραγματικού κόσμου, τα πλαίσια αξιολόγησης

λαμβάνουν υπ΄ όψιν διαφορές σε επίπεδο σχήματος όπως τη διάσπαση ή τη συνάθροι-

ση μίας ιδιότητας ενός στιγμιότυπου. Ωστόσο, σύμφωνα με τη βιβλιογραφία, κανένα

από τα προτεινόμενα πλαίσια αξιολόγησης μέχρι σήμερα δεν λαμβάνει υπ΄ όψιν τις πιο

πολύπλοκες δομές σε επίπεδο σχήματος τα οποία μπορούν να εκφραστούν, χρησιμο-

ποιώντας τα πλούσια δομικά στοιχεία της γλώσσας του Σημασιολογικού Ιστού OWL.

Οι μετασχηματισμοί που έχουν προταθεί παραμένουν όλοι στο επίπεδο των απλών

δομών όπως εκείνες περιγράφονται στην γλώσσα RDFS .

Στην παρούσα εργασία προτείνουμε το Semantic Publishing Instance Matching

Benchmark , εν συντομία SPIMBench , ένα πλαίσιο αξιολόγησης εμπνευσμένο από το

Semantic Publishing Benchmark SPB. Το SPIMBench , όπως το SPB , είναι βα-

σισμένο στις οντολογίες όπως έχουν δοθεί από το BBC (http://www.bbc.com/)

οι οποίες χρησιμοποιήθηκαν απο τον συγκεκριμένο δημοσιογραφικό οργανισμό για

την δημοσίευση Σημασιολογικά Εμπλουτισμένων Δεδομένων. Στο SPIMBench προ-

τείνουμε και υλοποιούμε μία α) επεκτάσιμη γεννήτρια δεδομένων, β) ένα σύνολο με-

τασχηματισμών πού αποτελούνται από τους καθιερωμένους λεξικολογικούς, δομικούς

και μετασχηματισμούς σε επίπεδο λογικού σχήματος. Οι τελευταίοι μετασχηματισμοί

υπερβαίνουν τα καθιερωμένα δομικά στοιχεία και περιλαμβάνουν εκφραστικά δομικά

στοιχεία όπως ισότητα/ανισότητα στιγμιοτύπων, ισοδυναμία των κλάσεων και των ι-

διοτήτων σε επίπεδο σχήματος, περιορισμό ιδιοτήτων, περίπλοκους ορισμούς κλάσεων,

και τέλος γ) έναν σταθμισμένο χρυσό κανόνα ο οποίος μπορεί να χρησιμοποιηθεί για

τον εντοπισμό σφαλμάτων στα συστήματα αντιστοίχισης στιγμιοτύπων.

http://www.bbc.com/

Acknowledgements

I wouldn't have made it this far without the help and support of the kind people

around me, to only some of whom it is possible to give particular mention here.

Above all, I would like to thank my parents Agim Saveta and So�a Saveta for

their personal support and great patience at all times. My sister Viola Saveta who

is there for me at any time, as always, for which my mere expression of thanks

likewise does not su�ce.

This thesis would not have been possible without the help, support and pa-

tience of my supervisors, Professor of the Computer Science Department Dimitris

Plexousakis and Principal Researcher of the Institute of Computer Science Irini

Fundulaki. They have been invaluable on both an academic and a personal level,

for which I am extremely grateful.

I would also like to thank Professor Melanie Herschel from IPVS - University

of Stuttgart, moreover, Researcher Giorgos Flouris and Evangelia Daskalaki from

Institute of Computer Science (ICS) - FORTH whose their guidance helped me

in all the time of research of this thesis. Special thanks are given to Axel-Cyrille

Ngonga Ngomo from the University of Leipzig for the collaboration we had, his

advices and the unsurpassed knowledge of Semantic Web and Machine Learning.

I particularly want to thank all my friends whose their care helped me overcome

setbacks and stay focused on my study. I greatly value their friendship and I deeply

appreciate their belief in me.

Next I would like to thank the Institute of Computer Science (ICS), Foundation

of Research and Technology Hellas (Forth) and more speci�cally the members of

the Information Systems laboratory (ISL) for the support, the goodwill to help and

the great time we had during my graduate studies.

Finally, I appreciate the �nancial support from FP7 European Project LDBC

(Linked Data Benchmark Council) that funded parts of the research discussed in

this thesis.

Contents

List of Figures iii

List of Tables v

1 Introduction 1

2 Related Work 5

2.1 Benchmarks . 7

2.1.1 Ontology Alignment Evaluation Initiative(OAEI) 7

2.1.2 ONTOlogy Matching Benchmark With Many Instances (ON-
TOBI) . 10

2.1.3 STBenchmark . 11

2.1.4 Discussion on Instance Matching Benchmarks 12

2.2 Benchmark generators . 14

3 Preliminaries 17

4 SPIMBench: Semantic Publishing Instance Matching Benchmark 25

4.1 SPIMBench Schema . 25

4.2 Metrics . 32

4.3 Transformations . 33

4.3.1 Lexical/Value Transformations 34

4.3.2 Structural transformations 35

4.3.3 Logical Transformations . 35

4.3.4 Simple and Complex Transformations 44

4.4 Data Generator . 44

4.5 Gold Standard . 48

Computing the weights . 49

4.6 Evaluation . 53

4.6.1 Implementation . 53

4.6.2 Scalability . 55

4.6.3 Weight Distribution . 60

4.6.4 Performance of instance matching systems 62

i

5 Conclusions 65

Bibliography 67

ii

List of Figures

2.1 Modi�cations for Instance Matching 6

4.1 BBC Creative Works Ontology . 26
4.2 Example: Creative Work Instance 28
4.3 Example: SPIMBench FOAF, Travel and DBpedia rdfs:subClassOf,

owl:equivalentClass, owl:disjointWith, owl:intersectionOf,
owl:unionOf Schema triples (a) . 29

4.4 Example: SPIMBench FOAF, Travel and DBpedia rdfs:subProper-

tyOf, owl:equivalentProperty, owl:FunctionalProperty, owl:-
inverseOf and owl:AllDisjointProperties Schema triples (b) . 30

4.5 Gold Standard Ontology . 49
4.6 Example: Gold Standard Instance 49
4.7 RESCAL factorization model . 50
4.8 SPIMBenchModel . 54
4.9 Scalability results for the SPIMBench Data Generator 57
4.10 Simple and Complex Transformations 58
4.11 Scalability results for the SPIMBench Data Generator for di�erent

sizes of datasets . 60
4.12 Average weights for di�erent test cases 60
4.13 Weight distribution for di�erent test cases 61
4.14 LogMap . 62
4.15 Recall, precision, and f-measure for test cases on 10K dataset . . . 63
4.16 Recall, precision, and f-measure for test cases on 25K dataset . . . 63
4.17 Recall, precision, and f-measure for test cases on 50K dataset . . . 63

iii

iv

List of Tables

2.1 Links from the NYTimes dataset to FreeBase, DBpedia and GeoNames 10
2.2 Simple and Complex Modi�cations in ONTOBI 11
2.3 Comparison of Instance Matching Benchmarks: "+", fully satis�ed,

"o" partially satis�ed and "-" not satis�ed. 13

3.1 Semantics of Class Axioms . 19
3.2 Semantics of Axioms about Properties 20
3.3 Semantics of Classes . 21
3.4 Semantics of Schema Vocabulary 22
3.5 Semantics of Equality . 22

4.1 SPIMBench Schema . 31
4.2 SPIMBench DBpedia Instances . 32
4.3 SPIMBench Travel Instances . 32
4.4 SPIMBench Lexical/Value Transformations 35
4.5 Tests for rdfs:subClassOf, owl:equivalentClass 37
4.6 Tests for rdfs:subPropertyOf, owl:equivalentProperty 37
4.7 Tests for owl:sameAs, owl:differentFrom 38
4.8 Tests for owl:disjointWith, owl:propertyDisjointWith 39
4.9 Tests for owl:FunctionalProperty, owl:InverseFunctionalPro-

perty . 39
4.10 Tests for owl:unionOf, owl:intersectionOf 40
4.11 Examples for rdfs:subClassOf, owl:equivalentClass 40
4.12 Examples for rdfs:subPropertyOf, owl:equivalentProperty . . 41
4.13 Examples for owl:sameAs, owl:differentFrom 42
4.14 Examples for owl:disjointWith, owl:propertyDisjointWith . . 42
4.15 Examples for owl:FunctionalProperty, owl:InverseFunctional-

Property . 43
4.16 Tests for owl:unionOf, owl:intersectionOf 43
4.17 Example for rdfs:subClassOf, and property aggregation 44
4.18 Data sets and the instances involved in transformations 55
4.19 Success Probabilities . 56

v

vi

Chapter 1

Introduction

Instance matching, also known under the names of entity resolution [1], duplicate

detection [2], record linkage [3], object identi�cation in the context of databases [4]

and many others in the literature, refers to the problem of identifying instances

that describe the same real world object. The problem has been studied for many

decades in the relational data setting [2]. With the increasing adoption of Seman-

tic Web Technologies and the publication of large interrelated RDF datasets and

ontologies that form the Linked Data Cloud1, data integration problems such as

entity resolution become more crucial than in the relational data setting; in this

new open environment, there is a high degree of heterogeneity both at the schema

and instance level in addition to the rich semantics that accompany the former

expressed in terms of expressive languages such as OWL [5] and RDFS [6]. In this

context where scale, and heterogeneity are crucial parameters of the problem, new

instance matching techniques have been proposed [7, 8].

Instance matching systems and methods need to be tested using well de�ned and

widely accepted benchmarks to determine the weak and strong points of a method

or system and also to motivate the development of more complete systems. An

instance matching benchmark comprises:

• benchmark dataset(s) associated with a domain of interest so as to have mean-

ingful and interpretable results.

1http://linkeddata.org/

1

http://linkeddata.org/

2 CHAPTER 1. INTRODUCTION

• a gold standard used to judge the completeness and soundness of the instance

matching approach.

• a set of test cases, each addressing a di�erent kind of requirements such

as lexical (or value), structural, and logical modi�cations that an instance

matching system should support.

• a set of metrics to assess the overall performance of the instance matching

system.

A benchmark should test the overall quality of the instance matching system

in terms of precision, recall, and F-measure as well as the ability to handle large

and diverse datasets (e�ciency, scalability and diversity dimensions). A number

of benchmarks have already been proposed to test the performance of instance

matching techniques mostly for XML and relational data [9] but, more recently,

also for RDF data, the type of data prevalent in the Web of Data [10, 11, 12, 13,

14, 15, 16, 17].

The benchmarks considering data expressed in terms of RDF are the �rst to

consider the problem of instance matching when a real world object is represented

in di�erent ways that do not all conform to the same RDFS or OWL schema.

Meaning that in addition to lexical di�erences among entities representing the same

object, these benchmarks consider structural di�erences such as property splitting

or aggregation. However, to the best of our knowledge, none of the proposed

benchmarks to date considers the more complex logical constraints that can be

expressed, in terms of rich OWL constructs. The logical transformations proposed

by existing benchmarks all remain at the level of simple RDFS constraints such

as subclass-of or the OWL same-as constraint. Such constraints, when present,

can be used by instance matching techniques to potentially obtain better results,

however, none of the state of the art benchmarks employ those.

In this thesis we propose the Semantic Publishing Instance Matching Bench-

mark, in short, SPIMBench, a benchmark inspired from the Semantic Publishing

Benchmark SPB. SPIMBench, like SPB, is based on the BBC (http://www.bbc.

com/) ontologies, which lie in the Semantic Publishing domain.

SPIMBench proposes and implements

http://www.bbc.com/)
http://www.bbc.com/)

3

• a scalable data generator that produces synthetic source and target data con-

sistent with the extended SPIMBench schema to be used for testing the per-

formance of instance matching systems.

• a set of transformations on source data to obtain the target data. The set of

transformations supported by SPIMBench includes value and structural ones

as those have been proposed in a large number of representative instance

matching benchmarks; and �nally the logical ones that go beyond the stan-

dard RDFS constructs and include expressive OWL constructs, namely in-

stance (in)equality, equivalence of classes and properties, property constraints

and complex class de�nitions.

• a detailed weighted gold standard that records for each pair of (source, target)

instances an entry that stores (a) the type of transformation applied, (b) the

property on which it is applied and (c) the weight for the individual trans-

formation. The detailed gold standard can be used for debugging instance

matching systems since we explicitly store the transformations applied to a

source to obtain a target instance as well as their degree of similarity.

• a weighted gold standard that records for each pair of (source, target) instances

the weight of the distance between them.

Structure. In Chapter 2, we discuss related work, and in Chapter 3 we cover basic

concepts and de�nitions that we use throughout this thesis. Chapter 4 discusses the

SPIMBench schema (Section 4.1), the employed benchmark metrics (Section 4.2),

transformations (Section 4.3), the data generator (Section 4.4) and �nally the gold

standard (Section 4.5). Last, in Section 4.6 we provide scalability experiments

that show that the SPIMBench transformations do not introduce any additional

overhead. Conclusions are provided in Chapter 5.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Related Work

A number of benchmarks have been developed to test the performance of instance

matching systems mostly for XML and relational data [9, 18, 19]. These bench-

marks do not take into account the features inherent in the, rich in semantics,

ontologies of the Linked Data Cloud expressed in the Ontology Web Language

(OWL) [5] and the less expressive RDF Schema Vocabulary(RDFS) [20].

An instance matching benchmark comprises of benchmark dataset(s) associated

with a domain of interest in order to be able to have meaningful interpretable

results. Benchmarks are distinguished to real or synthetic: the former consider

existing datasets, whereas the latter produce datasets that are mostly used for

stressing the capability of the systems to discover interesting matches. In the case

of real benchmarks, this can be achieved by selecting the appropriate datasets, a

di�cult task. Hence, a lot of benchmarks include data from di�erent domains,

thereby producing datasets that are not intuitive. Benchmarks come usually with

a ground truth or gold standard used to judge the completeness and soundness of

the instance matching approach; gold standards are provided either in the form of

pairs of matched instances or matching links that identify similar instances (i.e.,

instances that refer to the same real world entity). Furthermore, benchmarks also

come with the standard metrics of precision, recall and f-measure. A benchmark

comes also with a a set of test cases, each addressing a di�erent kind of data

heterogeneities that instance matching algorithms should test. Usually, synthetic

5

6 CHAPTER 2. RELATED WORK

benchmarks propose test cases in order to provide a more systematic way for testing

the matching systems' performance. These are built on transformations such as

value, structural and logical modi�cations or combinations thereof. Depending on

the complexity of the modi�cations, these can be simple or complex ones, the latter

mostly referring to structural and logical heterogeneities [21].

In particular, [21] considered the following types of variations:

• value di�erences: these include misspellings of the names at both the schema

and instance level (e.g., typographical errors), as well as the use of di�erent

formats to represent the same kind of information.

• structural heterogeneities: these consider changes mostly at the schema level,

such as di�erent nesting levels for properties, class and property hierarchies,

the use of di�erent aggregation criteria for the representation of properties

etc.

• logical heterogeneities: these support instantiation of instances to classes that

belong to the same or di�erent explicitly or implicitly de�ned hierarchies.

Requirements

Data value differences

- Typographical errors
- Use of different standard
 formats

- Use of different levels of
 depth for properties
 representation
- Use of different standard
 formats aggregation criteria
 for properties
- Missing values specification

Structural Heterogeneity Logical Heterogeneity

- Instantiation on different
 sub-classes of the same
 super-class
- Instantiation on disjoint classes
- Instantiation on different classes
 of a class hierarchy implicitly
 declared
- Implicit values specification

Figure 2.1: Modi�cations for Instance Matching

2.1. BENCHMARKS 7

2.1 Benchmarks

2.1.1 Ontology Alignment Evaluation Initiative(OAEI)

The most popular framework for testing ontology matching systems is the one pub-

lished by the Ontology Alignment Evaluation Initiative (OAEI) [22]. Since 2005,

OAEI organizes an annual campaign aiming at evaluating ontology matching solu-

tions and technologies using a �xed set of benchmarks. In 2009, OAEI introduced

the Instance Matching (IM) Track, which focuses on the evaluation of di�erent in-

stance matching techniques and tools for RDF data. The track proposed two di�er-

ent benchmarks to this end: ARS and IIMB benchmarks [10] (the TSD benchmark

was also proposed in 2009 in the instance matching track, but was canceled). The

metrics used to measure the e�ectiveness of the instance matching tools for each of

the benchmarks were the standard metrics of precision, recall and f-measure. The

ARS benchmark considers real datasets with a relatively small number of instances

(in the order of thousands), obtained from three di�erent sources from the domain

of scienti�c publications. The instance matching systems tested discover matches

between the instances of the aforementioned datasets.

In addition to these real datasets, the OAEI 2009 IM track proposed the syn-

thetic ISLab Instance Matching Benchmark [11] (IIMB). The benchmark considers

a single source dataset from the OKKAM project1, along with an OWL reference

ontology, to which a set of transformations are applied in order to obtain a tar-

get dataset. These transformations are organized in 37 di�erent test scenarios,

each of which is comprised of the reference ontology (schema and instances), the

modi�ed ontology that is obtained by applying a set of simple and complex value,

structural and simple logical modi�cations mostly for class hierarchies, as well as

combinations of the above. As in the case of ARS, the dataset contains a very

small number of instances (around 2000), and hence cannot be used to test the

ability of the instance matching systems to scale.

The OAEI 2010 Instance Matching track [12] included two new classes of tests,

namely the Data Interlinking (DI), and the OWL Data test; the �rst was devel-

1OKKAM Project: http://www.okkam.org/

http://www.okkam.org/

8 CHAPTER 2. RELATED WORK

oped to test the ability of the systems to interlink resources in the Linked Data

Cloud. Following the paradigm of ARS, the former uses real datasets expressed in

RDF that contain information on drugs and their adverse e�ects, diseases, chem-

informatics; it also considers LinkedMDB2 dataset that contains movie informa-

tion. The purpose of this benchmark was to test the ability of the systems to �nd

matches between instances originating from di�erent domains, with no a priori

knowledge of the application domain, the datasets or the respective schemas. The

DI benchmark was designed to test whether the instance matching systems scale

for large datasets, since the proposed datasets were as large as DBpedia (contain-

ing hundreds of thousands of instances). For each pair of tests, a gold standard

was provided to test the e�ectiveness of the employed instance matching tool and

technique. The gold standard was provided in the form of a reference alignment

dataset (i.e., a set of links between the reference and the target ontologies) where

links are manually created.

The OAEI 2010 OWL Data Benchmark, considered the dataset from the IIMB

benchmark (discussed above), as well as a small dataset that contains data for

persons and restaurants; the latter was considered in order to increase the diversity

of the benchmark data. Considering that part of the data were synthetic, this

benchmark sets the basis for evaluating the ability of the instance matching systems

to detect di�erent kinds of transformations. The task focused on two main goals,

namely to provide an evaluation dataset for various kinds of transformations, and

to cover a wide spectrum of possible techniques and tools. The di�erence between

this benchmark and the aforementioned ones is that the tested instance matching

system should consider a certain form of (simple) reasoning in order to link the

resources.

The OAEI 2011 Instance Matching Track [13], a follow-up of OAEI 2010 IM

Track, proposed two benchmarks: the �rst was based on the IIMB benchmark

mentioned earlier, and the latter on a set of real datasets from the New York

Times (NYT), DBpedia, FreeBase and GeoNames provided along with a number of

OWL owl:sameAs links. The datasets for the �rst benchmark were produced using

2LinkedMDB: http://datahub.io/dataset/linkedmdb

http://datahub.io/dataset/linkedmdb

2.1. BENCHMARKS 9

the SWING [23] data generator applied on the FreeBase dataset; the latter was

developed to test the interlinking of the instances in the aforementioned datasets.

The purpose of the second task was to re-build the links within the NYT dataset

as well as to discover additional links to the ones that were already provided along

with the datasets.The gold standard (expressed in terms of links between resources)

was extracted from the links provided along with the NYTimes dataset and curated

by NY Times journalists and curators.

Following the OAEI 2011 IM, the OAEI 2012 IM Track included benchmarks

proposed by OAEI 2011 Track, along with the Sandbox dataset that was added to

provide examples of some speci�c matching problems like name spelling and other

controlled variations for strings. The reason for adding this new dataset was to test

the instance matching tools that are in an initial phase of their development process

(providing a kind of a micro-benchmark). In 2013, OAEI proposed RDFT [14], an

automatically generated RDF benchmark that includes controlled distortions into

the source RDF data. Those transformations are value, structural and translations

for a certain type of data (comments and labels). The relatively small source

dataset (in the order of few hundreds of triples) is a subset of DBpedia about

computer scientists. The alignments were provided for the training dataset but

not for the whole evaluation set, hence the evaluation is blind. In the latest OAEI

2014 Track 3 two benchmarks were proposed: one for identity recognition and one

for similarity recognition. The datasets for the Identity Recognition sub-task have

been produced by automatically modifying a set of original data (expressed as

OWL ABOXes) in order to obtain di�erent versions of the same description where

di�erent languages and representation formats are employed. The datasets for the

similarity recognition tasks were obtained through a crowdsourcing process.

OAEI IM bencnhmarks have been extensively used to test the performance of

instance matching systems for a number of diverse domains using both real and

synthetic datasets in order to test all speci�c aspects of instance matching for

Linked Data. Nevertheless, not all proposed benchmarks tackle important aspects

of the instance matching problem. More speci�cally, the majority of the bench-

3OAEI 2014 IM Track: http://islab.di.unimi.it/im_oaei_2014/index.html

http://islab.di.unimi.it/im_oaei_2014/index.html

10 CHAPTER 2. RELATED WORK

Classes

Statistics Person Organization Locations

Total #sameAs links 14884 8003 8786

Links to Freebase 4979 3044 1920

Links to DBpedia 4977 1949 1920

Links to NYTimes 4979 3044 1920

Links to GeoNames 0 0 1789

Table 2.1: Links from the NYTimes dataset to FreeBase, DBpedia and GeoNames

marks introduced in 2009 and 2010 consider only a small number of triples, except

the Data Interlinking benchmark where the very large number of instances leads to

an error-prone gold standard since it is more or less impossible to construct man-

ually a correct alignment. OAEI 2011, 2012 benchmarks consider larger datasets

and o�er a precise and error prone gold standard. In addition, the transformations

considered in the synthetic benchmarks do not consider a combinations of simple

modi�cations or even modi�cations that take into consideration schema informa-

tion. Finally, the OAEI benchmarks employ the standard metrics of precision and

recall to measure the performance and quality of the instance matching techniques

against a prede�ned reference alignment (the gold standard).

2.1.2 ONTOlogy Matching BenchmarkWith Many Instances (ON-

TOBI)

ONTOlogy Matching Benchmark With Many Instances (ONTOBI) [15, 16] is

an instance matching benchmark that uses the DBpedia ontology (version 3.4).

The benchmark proposes 16 di�erent test cases that take into account simple and

complex transformations that are applied on the reference ontology; simple modi�-

cations are actually value transformations that include misspellings, insertion/dele-

tion of comments attached to classes, the use of di�erent data formats for both data

and schema, the removal of data types in class attributes whereas complex modi�-

cations refer to structural ones (e.g., schema expansion, use of di�erent languages,

random names, synonyms). Changes of class comments is an important change

2.1. BENCHMARKS 11

Simple Modi�cations Complex Modi�cations

Misspellings Expanded/�attened Schema

Insertion/Deletion of Comments Use of Di�erent Language

Di�erent Data formats Use of Random names

No use of data types Use of Synonyms

Overlapping Datasets Disjoint Data Sets

Table 2.2: Simple and Complex Modi�cations in ONTOBI

since they describe the semantics of the class, so this information can be used to

detect homonyms or synonyms and consequently help in the process of schema and

instance matching. Another simple modi�cation at the schema level is the removal

of information related to data types; such information provides additional hints on

the semantics of the instance values. In addition ONTOBI uses either overlapping

datasets, in that case the task is simple in the sense that an instance matching sys-

tem should �nd at least the instances that are common in both datasets or disjoint

datasets in which case, the instance matcher should use intelligent techniques to

discover the possible matches. Target datasets used in those test cases are created

by applying the aforementioned modi�cations on a small set of DBpedia instances.

Each of the test cases is also accompanied by a reference alignment.

2.1.3 STBenchmark

STBenchmark [17] is a benchmark that takes as input one reference ontology,

and applies several transformations in order to get a modi�ed reference ontology.

STBenchmark supports a basic set of scenarios that represent the minimum set of

transformations which should be supported by any matching system for both data

and schema. In addition, it contains a generator for instances and matching scenar-

ios that can be used to produce more complex ones namely instance copying with

the same or randomly generated identi�ers, constant value generation, assignment

of instances of a class to di�erent classes (one of the logical transformations that

SPIMBench supports), structural transformations such as unnesting (�attening) or

nesting of schema properties. STBenchmark has a matching scenario generator

SGen that takes as input parameters related to the characteristics of the refer-

12 CHAPTER 2. RELATED WORK

ence ontology (schema level only), and produces a matching scenario. Given that

transformations are also applicable to schema, SGen can be used as the target

schema generator; STBenchmark employs the instance generator IGen that uses

the template-based XML data generator ToxGene [24]. The latter takes as input a

schema and a set of con�guration parameters and returns the set of instances that

conform to the input schema. These instances are then used as input SGen along

with a matching scenario to produce the target instances.

STBenchmark shows an interesting systematic way of creating di�erent kinds of

testbeds for instance matching. STBenchmark employs arti�cial, randomly created

instances with meaningless content, rather than real-world data, which are not that

useful for testing all aspects of matching systems, because arti�cial data follow a

more or less strict pattern and make it di�cult to completely simulate the data

obtained through manual curation. Another disadvantage of the STBenchmark is

that no reference alignment is generated, as with ONTOBI and OAEI benchmarks,

so it cannot be disseminated easily and used by many instance matching systems.

2.1.4 Discussion on Instance Matching Benchmarks

The benchmarks presented above are constructed to test matching systems, espe-

cially with respect to instance-based matchers. We reviewed them and pointed

out their strengths and weaknesses. We summarize here the characteristics of the

benchmarks following the aspects introduced in [25]. These are:

• systematic procedure according to which the matching tasks are reproducible

and the execution has to be comparable

• continuity, related to the continuous improvement of the matching tasks im-

proved

• quality and equity. The �rst requires that the evaluation rules are exact and

the quality of the ontologies is high. The second ensures that no system

should be privileged during the evaluation process.

• disseminationmeaning that the benchmark and the results should be publicly

available and other systems have reported them in their evaluations.

2.1. BENCHMARKS 13

OAEI
ARS/ OAEI
TDS/ OAEI OAEI NYT/
VLCR/ IIMB DI STBenchmark ONTOBI FreeBase

systematic procedure + + + + + +

continuity + + + n/a n/a +

quality + + + n/a + +

equity o o + n/a + o

large ontologies - o + n/a + +

schema modi�cations - - + o + +
instance modi�cations + + + o + +

dissemination + + + - o +

intelligibility + + + - o +

Table 2.3: Comparison of Instance Matching Benchmarks: "+", fully satis�ed, "o"
partially satis�ed and "-" not satis�ed.

• intelligibility ensures that the reference alignments and the alignments pro-

duced by the systems should be available.

Zaiss et. al. [16] adds four more aspects to the previously mentioned ones to

evaluate instance matching systems. The majority of these aspects refer to the

types of modi�cations applied to produce the target ontology from the reference

ontology. Namely, these are schema and instance modi�cations. Table 2.3 summa-

rizes the comparison of the discussed benchmarks according to the aforementioned

dimensions.

From Table 2.3 we can see that the OAEI benchmarks satisfy the systematic

procedure, continuity, quality, dissemination and intelligibility requirements. Hence

these benchmarks can be eventually adopted as a standard for testing instance

matching tools and techniques. STBenchmark and ONTOBI do not satisfy the

"continuity" requirement which is ensured only when the benchmarks are used

by a number of instance matching systems over the years. ONTOBI is publicly

available and consequently partially satis�es the dissemination and intelligibility

requirements.

The benchmarks that use DBpedia ontologies (OAEI and ONTOBI) are in gen-

eral of good quality: Wikipedia data is reliable since the instances are assigned to

correct concepts and for matching purposes it does not matter if the information

is always up-to-date. On the other hand, the STBenchmark is mostly an ontology

modi�er and consequently it cannot be judged for its quality. Equity is ensured

14 CHAPTER 2. RELATED WORK

only by using di�erent modi�cations and combinations of the reference ontology

to produce the target data such that no type of matching system is favored or dis-

advantaged. OAEI benchmarks partially satisfy this requirement: instance-based

methods are disadvantaged due to the lack of a reasonable amount of instances.

Furthermore, the ontologies are quite small and there are no modi�cations executed

at the instance level (except in the case of the IIMB Benchmark).

2.2 Benchmark generators

Semantic Web INstance Generation (SWING) [23] is a benchmark data generator.

More speci�cally, SWING provides a general framework for creating benchmarks

to be used by instance matching tools; SWING supports a number of transfor-

mations on values such as (blank character addition and deletion), changing the

dates and number formats, abbreviations, addition of random characters, use of

synonyms, shu�ing, addition and deletion of tokens; transformations on structure

are also supported, those being changes in property depth, deletions and additions

of properties as well as splitting of property values. Finally, SWING also provides

schema transformations that include the deletion of class, inversion of properties,

changes in the property hierarchy and �nally use of disjoint classes. The SWING

benchmarking framework supports a superset of the transformations supported by

the aforementioned benchmarks but only includes a few semantic variations namely

the ones along the class and property hierarchy. It also produces along with the

transformed dataset, a gold standard that records the matched instances and is

used by the matching tools to measure their performance.

Entity Matching Benchmark (EMBench) [26] is a benchmark generator for re-

lational data designed on the same principles as SWING. EMBench considers only

value and structural transformations and similar to SWING is built on the creation

of matching scenarios, but on contrary to it, it does not produce a gold standard.

To sum up, there is no single benchmark that tackles both the scalability and

the data diversity (mainly the logical transformations) aspects su�ciently. SPIM-

2.2. BENCHMARK GENERATORS 15

Bench is a synthetic benchmark for the semantic publishing domain. As discussed

in Section 1, it is based on an real ontology provided by BBC and applies the value

and structural transformations proposed by SWING. In addition to those trans-

formations, SPIMBench also supports logical transformations that refer to schema

constructs; those kinds of transformations are not considered by the aforemen-

tioned benchmarks (real or synthetic ones). In addition, SPIMBench generator can

produce large datasets (up to billions of triples) thereby addressing the scalability

aspects of instance matching systems. In addition, the SPIMBench generator ex-

tends the SPB generator that produces datasets using distributions that mimic real

world data. Hence, SPIMBench advances the state of the art regarding instance

matching benchmarks. Last but not least, SPIMBench produces a weighted gold

standard that can be used to test the performance of the systems regarding their

ability to discover the matches, where weights represent the similarity distance be-

tween the instances in the source and target datasets. A detailed presentation and

comparison of the benchmarks is given in [27].

16 CHAPTER 2. RELATED WORK

Chapter 3

Preliminaries

The objective of the Semantic Web is to build an infrastructure of machine-readable

semantics for data on the Web. The Resource Description Framework (RDF) [6]

enables the encoding, exchange, and reuse of structured data, while providing the

means for publishing both human-readable and machine-processable vocabularies.

The popularity of the RDF data model [6] and RDF Schema language (RDFS) [20]

is due to the �exible and extensible representation of information, independently

of the existence or absence of a schema, under the form of triples. A triple is of the

form (subject, predicate, object) where the predicate (also called property) denotes

the relationship between subject and object. An RDF triple, (s,p,o), asserts the fact

that subject is associated with object through property. An RDF graph is a set of

triples and can be viewed as a node and edge labeled directed graph with subjects

and objects of triples being the nodes of the graph and predicates the edges.

RDF Schema (RDFS) language [20] provides a built-in vocabulary for asserting

user-de�ned schemas in the RDF data model and is designed to introduce useful

semantics to RDF triples. RDFS names such as rdf:Resource, rdfs:Class and

rdf:Property could be used as objects of triples describing class and property types.

RDFS also provides some useful relationships (properties) between resources, like

subsumption or instantiation.

The OWL Web Ontology Language [5] is designed for use by applications that

need to process the content of information instead of just presenting information

17

18 CHAPTER 3. PRELIMINARIES

to humans, and is used to (a) create an ontology, (b) state facts about a domain

and (c) reason about ontologies to determine consequences of what was named and

stated. OWL provides a much richer set of constructs and semantics than RDFS

that allows more complicated reasoning. It has three increasingly-expressive sub-

languages, namely OWL-Lite, OWL-DL, and OWL-Full. OWL incorporates the

RDFS semantics and in addition to those, OWL distinguishes between object and

data type properties, supports the de�nition of class descriptions and axioms; in

addition, it de�nes property schema constructs, properties that de�ne relations to

others, supports global cardinality restrictions on properties and the speci�cation

of logical characteristics for properties. OWL2 [28], a sucessor of OWL is a pow-

erful language of high complexity that has led to new opportunities in reasoning.

OWL2 provides �ve di�erent sublanguages Full, DL, RL, EL and QL that trade

o� expressivity for tractability and speed of reasoning.

Complex class descriptions are speci�ed using (a) enumeration, (b) property

restriction through value and cardinality constraints and (c) sets operations on

classes, namely intersection, union and complementation. Class axioms refer to

the speci�cation of subsumption, equivalence and disjointness of classes. OWL

(through RDFS) provides support for subsumption, and the de�nition of domain

and range of properties. Similar to classes, OWL allows the speci�cation of relations

to other properties such as equivalent and inverse; global cardinality restrictions

are speci�ed by de�ning functional and inverse functional properties; properties

can be de�ned to be transitive and/or symmetric.

Last, OWL allows the speci�cation of axioms for individuals or instances, such

as class membership, property values as well as facts about the instance identity.

More speci�cally, OWL allows one to specify that two instances refer to the same

or to a di�erent real world individual.

The OWL constructs along with a partial axiomatization in the form of �rst

order implications that we use in this work are shown in Table 3.1 that describes

the semantics of Class Axioms, Table 3.3 that gives the semantics of Classes; the

semantics of schema vocabulary are shown in Table 3.4 and �nally the semantics of

property axioms and equality are given in Tables 3.2 and 3.5 and respectively. The

19

semantics are given as quanti�ed �rst-order implications over a ternary predicate

T that represents an RDF triple; hence, T (s, p, o) represents a triple with subject

s, predicate p and object o. If the If part of the rule is empty, then it means that

the statement is always true, and if the conclusion of the rule is false then there is

a contradiction.

If Then

cax-sco
(?c1, rdfs:subClassOf, ?c2) (?x, rdf:type, ?c2)

(?x, rdf:type, ?c1)

cax-eqc1
(?c1, owl:equivalentClass, ?c2) (?x, rdf:type, ?c2)(?x, rdf:type, ?c1)

cax-eqc2
(?c1, owl:equivalentClass, ?c2) (?x, rdf:type, ?c1)

(?x, rdf:type, ?c2)

cax-dw
(?c1, owl:disjointWith, ?c2)

false(?x, rdf:type, ?c1)
(?x, rdf:type, ?c2)

cax-adc

(?x, rdf:type, owl:AllDisjointClasses)

false
(?x, owl:members, ?y)
LIST[?y, ?c1, . . ., ?cn]

(?z, rdf:type, ?ci)
(?z, rdf:type, ?cj)

Table 3.1: Semantics of Class Axioms

According to [20, 29] if a class c1 is a subclass of c2 (triple (c1, rdfs:subClassOf, c2)),

then the instances of the former (x, rdf:type, c1) are also instances of the latter

(x, rdf:type, c2). The same holds for subsumption between properties. Rules cax-

sco in Table 3.1 and prp-spo1 in Table 3.2 describe these semantics.

Just like individuals, equivalent classes and properties appear in the Web of

Data, so OWL2 provides the constructs owl:equivalentClass and owl:equiva-

lentProperty respectively, to denote classes (or properties) that denote the same

real-world concept (or property). The rules for equivalence are shown in Tables 3.1

and 3.2. Being equivalent, classes share the same instances (rules cax-eqc1, cax-

eqc2), subclasses, superclasses, properties; the same holds for equivalent properties

as well (rules prp-eqp1, prp-eqp2).

De�ning two classes c1, c2 as disjoint implies that they cannot share common

instances. Disjointness is denoted using the owl:disjointWith construct. Dis-

20 CHAPTER 3. PRELIMINARIES

If Then

prp-fp
(?p, rdf:type, owl:FunctionalProperty)

(?y1, owl:sameAs, ?y2)(?x, ?p, ?y1)
(?x, ?p, ?y2)

prp-ifp
(?p, rdf:type, owl:InverseFunctionalProperty)

(?x1, owl:sameAs, ?x2), (?x1, ?p, ?y)
(?x2, ?p, ?y)

prp-eqp1
(?p1, owl:equivalentProperty, ?p2) (?x, p2, ?y)(?x, ?p1, ?y)

prp-eqp2
(?p1, owl:equivalentProperty, ?p2) (?x, p1, ?y)(?x, ?p2, ?y)

prp-pdw
(?P1, owl:propertyDisjointWith, ?P2)

false(?x, ?P1, ?y)
(?x, ?P2, ?y)

prp-adp

(?x, rdf:type, owl:AllDisjointProperties)

false
(?x, owl:members, ?y)

LIST[?y, ?P1, ?P2, . . . ?Pn]
(?u, ?P1, ?z)
(?u, ?P2, ?z)

prp-spo1
(?p1, rdfs:subPropertyOf, ?p2) (?x, ?p2, y)

(?x, ?p1, ?y)

Table 3.2: Semantics of Axioms about Properties

jointness between classes is generalized to multiple ones using the owl:AllDis-

jointClasses construct. The semantics of said constructs implemented by rules

cax-dw, cax-adc are shown in Table 3.1. Similar constructs owl:propertyDis-

jointWith, owl:AllDisjointProperties exist for specifying disjoint properties,

i.e., properties that cannot share common instances. Rules prp-adp, prp-pdw of

Table 3.2 show some consequences of the semantics of the above constructs.

Inverse functional and functional properties are useful to denote values that

uniquely identify an entity. Note that, due to the fact that the semantics of OWL2

do not include the Unique Name Assumption (UNA), functional and inverse func-

tional properties should not be viewed as integrity constraints, because they cannot

directly (by themselves) lead to contradictions. Instead, they force us to assume

(infer) that certain individuals are the same, as indicated by rules prp-fp and

prp-ifp in Table 3.2.

21

If Then

cls-int1

(?c, owl:intersectionOf, ?x)

(?y, rdf:type, ?c)
LIST[?x, ?c1, . . ., cn]

(?y, rdf:type, ?c1)
. . .

(?y, rdf:type, ?cn)

cls-int2

(?y, rdf:type, ?c1)
(?c, owl:intersectionOf, ?x) (?y, rdf:type, ?c2)

LIST[?x, ?c1, . . ., cn] (?y, rdf:type, ?c3)
(?y, rdf:type, ?c) . . .

(?y, rdf:type, ?cn)

Table 3.3: Semantics of Classes

The owl:unionOf construct is used to construct a new class, that is the union

of two (or more) other classes. Dually, the owl:intersectionOf construct is used

to construct a new class that is the intersection of two (or more) other classes. As

with all OWL constructs, the semantics of owl:unionOf are intentional, i.e., all

instances that are known to be instances of either of c1, c2 will be also instances

of their union, and vice-versa, i.e., known instances of the union will be instances

of either c1 or c2 (or both). According to rules scm-uni and scm-int shown in

Table 4.10, a class c de�ned as union (respectively intersection) of a set of existing

classes c1, c2 . . . cn, then c is inferred as their superclass (respectively subclass).

According to the Semantics of Schema Vocabulary [30], class and property sub-

sumption are transitive (see Rules scm-sco, scm-spo respectively in Table 3.4).

More speci�cally, the existence of (c1, rdfs:subClassOf, c2) and (c2,rdfs:sub-

ClassOf, c3) in a dataset should cause the inference of (c1, rdfs:subClassOf, c3).

Obviously, a pair of individuals cannot be the same and di�erent at the same

time, thus the rule eq-diff1. By its de�nition, owl:sameAs has the properties

of equivalence relations, i.e., it is re�exive, symmetric and transitive. Re�exivity

implies that (x, owl:sameAs, x) for all resources x (rule eq-ref). The relation being

symmetricmeans that (x, owl:sameAs, y) implies (y, owl:sameAs, x) (rule eq-sym).

Finally, transitivity implies that from (x, owl:sameAs, y) and (y, owl:sameAs, z) we

should infer (x, owl:sameAs, z) (rule eq-trans).

22 CHAPTER 3. PRELIMINARIES

If Then

scm-int

(?c, rdfs:subClassOf, ?c1)
(?c, owl:intersectionOf, ?x) (?c, rdfs:subClassOf, ?c2)

LIST[?x, ?c1, . . ., cn] . . .
(?c, rdfs:subClassOf, ?cn)

scm-uni

(?c1, rdfs:subClassOf, ?c)
(?c, owl:unionOf, ?x) (?c2, rdfs:subClassOf, ?c)
LIST[?x, ?c1, . . ., cn] . . .

(?cn, rdfs:subClassOf, ?c)

scm-spo
(?p1, rdfs:subPropertyOf, ?p2) (?p1, rdfs:subPropertyOf, ?p3)(?p2, rdfs:subPropertyOf, ?p3)

scm-sco
(?c1, rdfs:subClassOf, ?c2) (?c1, rdfs:subClassOf, ?c3)(?c2, rdfs:subClassOf, ?c3)

Table 3.4: Semantics of Schema Vocabulary

eq-trans
(?x, owl:sameAs, ?y)

(?x, owl:sameAs, ?z)
(?y, owl:sameAs, ?z)

eq-diff1 (?x, owl:sameAs, ?y) false
(?x, owl:differentFrom, ?y)

Table 3.5: Semantics of Equality

Chapter 4

SPIMBench: Semantic

Publishing Instance Matching

Benchmark

In this Chapter we discuss the Semantic Publishing Instance Matching Bench-

mark. More speci�cally, we give in Section 4.1 a description of the employed

schemas. Section 4.2 discusses the proposed metrics and the transformations sup-

ported by SPIMBench are presented in Section 4.3. The data generator is discussed

in Section 4.4 and the gold standard in Section 4.5. Finally, Section 4.6 discusses

scalability experiments for SPIMBench.

4.1 SPIMBench Schema

SPIMBench uses seven core and three domain RDF ontologies provided by BBC.

The former de�ne the main entities and their properties, required to describe essen-

tial concepts of the benchmark namely, creative works, persons, documents, BBC

products (news, music, sport, education, blogs), annotations (tags), provenance of

resources and content management system information. The latter are used to ex-

press concepts from a domain of interest such as football, politics, entertainment

among others. The employed ontologies have 74 classes, 88 and 28 data and object

23

24 CHAPTER 4. SPIMBENCH

type properties respectively. They contain 60 rdfs:subClassOf, 17 rdfs:sub-

PropertyOf, 105 rdfs:domain and 115 rdfs:range RDFS [20] properties. On the

other hand the ontologies contain a limited number of OWL [31] constructs: they

contain 8 owl:oneOf class axioms that allow one to de�ne a class by enumera-

tion of its instances and one owl:TransitiveProperty property. Although the

ontologies consider a non negligible number of classes and properties, class and

property hierarchies are very shallow. More speci�cally, the class hierarchy has a

maximum depth of 3 whereas the property hierarchy has a depth of 1 . A detailed

presentation of the ontologies employed by SPIMBench can be found in [32].

In this section we discuss brie�y a fragment of the Creative Works core ontology

shown in Figure 4.1. Ontologies are represented as node and edge labeled directed

graphs where classes and their instances are depicted by an oval, and properties as

edges between nodes, where the name of the property is the label of the edge.

core:Thing cwork:CreativeWork

String

cwork:title
owl:Thing

core:Theme core:Organisation

core:Event core:Placecore:Person cwork:Programme

cwork:NewsItemcwork:BlogPost

cwork:tag

cwork:shortTitle

String

cwork:category
xsd:Any

cwork:description

String

cwork:Audience

cwork:
International Audience

cwork:
National Audience

cwork:audience

cwork:Format

Textual
Format

cwork:
Video Format

cwork:Interactive Format

Image Format
cwork:

Audio Format

cwork:
PictureGallery Format

cwork:primaryFormat

xsd:dateTime

xsd:dateTime

cwork:dateModified
cwork:dateCreated

cwork:Thumbnail

cwork:thumbnail
p

rdfs:subClassOf
 rdfs:subPropertyOf

rdf:type

cwork:tag

cwork:about cwork:mentions

Figure 4.1: BBC Creative Works Ontology

The main class is cwork:CreativeWork (shown in Figure 4.1) that collects all

RDF descriptions of creative works (also called journalistic assets) created by

the publisher's editorial team. This class is de�ned as a subclass of core:Thing

(subclass of owl:Thing), allowing in this way the creation of complex informa-

tion graphs. A creative work has a number of properties such as cwork:title,

cwork:shortTitle, cwork:description, cwork:dateModified, cwork:dateCreated,

4.1. SPIMBENCH SCHEMA 25

cwork:audience, cwork:format among others; it has a category (property cwork:

category) and can be tagged (property cwork:tag) with anything (i.e. instances of

class owl:Thing). The latter property is further specialized (through the rdfs:sub-

PropertyOf relation) to properties cwork:about and cwork:mentions that are heav-

ily used during the creation of creative works and subsequently in SPIMBench trans-

formation processes. Creative works can be instances of classes cwork:NewsItem,

cwork:Programme and cwork:BlogPost, all de�ned as subclasses of class cwork:

CreativeWork.

The BBC ontologies also use classes such as core:Place, core:Event, core: Or-

ganisation, core:Person, and core:Theme, all de�ned as subclasses of class core:Thing.

Figure 4.2 provides an example of a creative work in RDF turtle format. GeoN-

ames1 reference dataset has been included for further enriching the annotations

with geo-locations data to enable the formulation of geo-spatial queries.

SPIMBench also uses reference datasets that are employed by the data generator

to produce the data of interest. These datasets are snapshots of the real datasets

provided by BBC.

In order to incorporate more OWL constructs, we extended the BBC ontologies

with concepts from DBpedia2 and FOAF3 ontologies. More speci�cally, we used the

FOAF class foaf:Person, and the DBpedia classes dbpedia:Place, dbpedia:Event,

dbpedia:Organisation, dbpedia:Sport all de�ned as equivalent to the classes with

the same name in the BBC ontologies using the owl:equivalentClass property;

all classes were de�ned as subclasses of core:Thing. We do not include all their

properties as those are de�ned in the ontologies, but focus only on the ones that

are useful in the context of SPIMBench.

Moreover, we used a set of properties from those classes and declared them as

equivalent to properties with the same label de�ned in their equivalent DBpedia

and FOAF classes; equivalence was de�ned through the owl:equivalentProper-

ty property. We have also included classes from the Travel Ontology that de�nes

1GeoNames: http://www.geonames.org/
2DBpedia: dbpedia.org
3The Friend of a Friend (FOAF) project: http://www.foaf-project.org/

http://www.geonames.org/
dbpedia.org
http://www.foaf-project.org/

26 CHAPTER 4. SPIMBENCH

travel-related entities4, all de�ned as subclasses of BBC class core:Thing.

<http://www.bbc.co.uk/things/1#id> a cwork:NewsItem ;

cwork:title "Grant Shapps cup can territorial practiced partisan countries attract

ambition where wrestling." ;

cwork:shortTitle "adoption does secular personal competition court cup." ;

cwork:category <http://www.bbc.co.uk/category/PoliticsPersonsReference> ;

cwork:description "their commerce countries decided amassed one method

merely hard participants combined so administer private enactments." ;

cwork:about dbpedia:Llangyfelach , dbpedia:Emily_Thornberry ,dbpedia:Northern_Fury_FC ,

dbpedia:Lisa_Howard_(reporter) , dbpedia:Alun_Cairns ;

cwork:mentions geonames:2657358 ;

cwork:audience cwork:NationalAudience ;

cwork:liveCoverage "false"^^<http://www.w3.org/2001/XMLSchema#boolean> ;

cwork:primaryFormat cwork:TextualFormat , cwork:InteractiveFormat ;

cwork:dateCreated "2011-02-21T01:17:16.916+02:00"

^^<http://www.w3.org/2001/XMLSchema#dateTime>;

cwork:dateModified "2011-06-26T18:26:45.900+03:00"

^^<http://www.w3.org/2001/XMLSchema#dateTime>;

cwork:thumbnail <http://www.bbc.co.uk/thumbnail/1907108784> ;

cwork:altText "thumbnail atlText for CW http://www.bbc.co.uk/context/1#id" ;

bbc:primaryContentOf <http://www.bbc.co.uk/things/154167351#id> .

<http://www.bbc.co.uk/things/154167351#id>

bbc:webDocumentType bbc:Mobile ;

bbc:productType bbc:Education ;

core:primaryTopic dbpedia:Les_Fradkin .

<http://dbpedia.org/resource/Les_Fradkin> a foaf:Person ;

foaf:name "Les Fradkin" ;

foaf:surname "Fradkin" ;

foaf:givenName "Les" ;

dc:description "guitarist" .

Figure 4.2: Example: Creative Work Instance

4Travel Ontology:http://swatproject.org/travelOntology.asp

http://swatproject.org/travelOntology.asp

4.1. SPIMBENCH SCHEMA 27

@prefix dbpedia-owl: <http://dbpedia.org/ontology/> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix core: <http://www.bbc.co.uk/ontologies/coreconcepts/> .

@prefix travel: <http://www.co-ode.org/roberts/> .

@prefix owl: <http://www.w3.org/2002/07/owl> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema> .

dbpedia-owl:Organisation rdfs:subClassOf core:Thing .

dbpedia-owl:Place rdfs:subClassOf core:Thing .

dbpedia-owl:Theme rdfs:subClassOf core:Thing .

dbpedia-owl:Event rdfs:subClassOf core:Thing .

foaf:Person rdfs:subClassOf core:Thing .

travel:AdministrativeDivision rdfs:subClassOf core:Thing .

travel:TierOneAdministrativeDivision rdfs:subClassOf travel:AdministrativeDivision .

travel:GeographicalFeature rdfs:subClassOf core:Thing .

travel:bodyOfLand rdfs:subClassOf travel:GeographicalFeature .

travel:Continent rdfs:subClassOf travel:bodyOfLand .

travel:Island rdfs:subClassOf core:Thing .

travel:City rdfs:subClassOf core:Thing .

travel:Coastline rdfs:subClassOf core:Thing .

travel:Country rdfs:subClassOf core:Thing .

travel:EuropeanIsland rdfs:subClassOf core:Thing .

travel:City rdfs:subClassOf core:Thing .

travel:River rdfs:subClassOf core:Thing .

travel:Recognised rdfs:subClassOf core:Thing .

travel:River rdfs:subClassOf core:Thing .

dbpedia-owl:Organisation owl:equivalentClass core:Organisation .

foaf:Person rdfs:subClassOf core:Person .

dbpedia-owl:Place rdfs:subClassOf core:Place .

dbpedia-owl:Theme rdfs:subClassOf core:Theme .

dbpedia-owl:Event rdfs:subClassOf core:Event .

cwork:NewsItem owl:disjointWith cwork:Programme .

cwork:NewsItem owl:disjointWith cwork:BlogPost .

ldbc:Thing owl:unionOf

(foaf:Person dbpedia-owl:Event

dbpedia-owl:Organisation dbpedia-owl:Place core:Theme) .

ldbc:Person_Organisation owl:intersectionOf

(foaf:Person dbpedia-owl:Organisation) .

ldbc:Individual_Corporation owl:intersectionOf

(foaf:Person dbpedia-owl:Organisation) .

ldbc:Event_Place_Theme owl:intersectionOf

(dbpedia-owl:Event dbpedia-owl:Place core:Theme) .

ldbc:Happening_Spot owl:intersectionOf

(dbpedia-owl:Event dbpedia-owl:Place) .

Figure 4.3: Example: SPIMBench FOAF, Travel and DBpedia rdfs:subClassOf,
owl:equivalentClass, owl:disjointWith, owl:intersectionOf, owl:unionOf

Schema triples (a)

28 CHAPTER 4. SPIMBENCH

@prefix dbpedia-owl: <http://dbpedia.org/ontology/> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix core: <http://www.bbc.co.uk/ontologies/coreconcepts/> .

@prefix travel: <http://www.co-ode.org/roberts/> .

@prefix owl: <http://www.w3.org/2002/07/owl> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema> .

@prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos> .

travel:hasArea rdfs:subPropertyOf travel:hasPhysicalProperty .

travel:hasPopulation rdfs:subPropertyOf travel:hasStatistic .

foaf:name owl:equivalentProperty core:name .

foaf:surname owl:equivalentProperty core:surname .

foaf:givenName owl:equivalentProperty core:givenName .

dbpedia-owl:country owl:equivalentProperty core:country .

dbpprop:country owl:equivalentProperty core:country .

dbpprop:population owl:equivalentProperty core:population .

dbpprop:manager owl:equivalentProperty core:manager .

dbpprop:name owl:equivalentProperty core:name .

dbpprop:nickname owl:equivalentProperty core:nickname .

dbpprop:website owl:equivalentProperty core:website .

dbpprop:caption owl:equivalentProperty core:caption .

dbpprop:equipment owl:equivalentProperty core:equipment .

dbpprop:olympic owl:equivalentProperty core:olympic .

dbpprop:team owl:equivalentProperty core:team .

dcterms:subject owl:equivalentProperty core:subject .

geo:geometry owl:equivalentProperty core:geometry .

dc:description owl:equivalentProperty core:description .

dbpedia-owl:birthPlace owl:equivalentProperty core:birthPlace .

dbpedia-owl:birthDate owl:equivalentProperty core:birthDate .

dbpedia-owl:deathPlace owl:equivalentProperty core:deathPlace .

dbpedia-owl:deathDate owl:equivalentProperty core:deathDate .

core:primaryTopic rdf:type owl:ObjectProperty, owl:FunctionalProperty .

bbc:primaryContentOf rdf:type owl:ObjectProperty , owl:InverseFunctionalProperty .

[rdf:type owl:AllDisjointProperties ;

owl:members (core:facebook core:officialHomepage core:twitter)

] .

Figure 4.4: Example: SPIMBench FOAF, Travel and DBpedia rdfs:subProper-

tyOf, owl:equivalentProperty, owl:FunctionalProperty, owl:inverseOf and
owl:AllDisjointProperties Schema triples (b)

As mentioned above, we did not include all classes of the aforementioned on-

tologies but a subset thereof; in addition, we included only a subset of their prop-

erties. More speci�cally, for dbpedia:Event, we focused on properties rdfs:label,

4.1. SPIMBENCH SCHEMA 29

rdfs:comment, dbpedia−owl:country and dcterms:subject; for class dbpedia:

Organisation we included data properties rdfs:label and rdfs:comment as well

as the object properties dbpprop:manager, dbpprop:name, dbpprop:nickname and

dbpprop:website. For class dbpedia:Sport we keep data properties rdfs:comment

and dbpprop:caption, and object properties dbpprop:olympic, dbpprop:team and

dbpprop:equipment. Last in the case of class dbpedia:Place we used data prop-

erties foaf:name, rdfs:comment and object properties dbpedia−owl:country and

geo:geometry.

Regarding the FOAF ontology we focused our attention on the foaf:Person

class; we considered its data type properties foaf:name,foaf:surname, foaf: given-

Name, dc:description, dbpedia−owl:birthDate,dbpedia−owl:deathDate and ob-

ject properties dbpedia−owl:birthPlace and dbpedia−owl:deathPlace.

From the Travel ontology we included classes travel:AdministrativeDivision,

travel:bodyOfLand, travel:City, travel:TierOneAdministrativeDivision,

travel:Coastline, travel:Continent, travel:Country, travel:Island, travel:

EuropeanIsland, travel:River to create a class hierarchy of length 3 with its root

being class owl:Thing. Finally, we also considered classes travel:Recognised de-

�ned as a subclass of owl:Thing.

The enhanced SPIMBench schema contains :

rdfs:Class 31 owl:equivalentProperty 18

owl:equivalentClass 8 owl:disjointWith 8

owl:DatatypeProperty 38 owl:ObjectProperty 98

owl:FunctionalProperty 3 owl:InverseFunctionalProperty 1

rdfs:subClassOf 83 rdfs:subPropertyOf 19

rdfs:range 145 rdfs:domain 134

owl:unionOf 1 owl:intersectionOf 4

owl:oneOf 12

Table 4.1: SPIMBench Schema

We have also incorporated reference datasets from the DBpedia, FOAF and

Travel ontologies.

30 CHAPTER 4. SPIMBENCH

From DBpedia we obtained:

dbpedia:Event 2416

dbpedia:Organisation 2368

dbpedia:Place 2345

dbpedia:Sport 139

foaf:Person 1276

Table 4.2: SPIMBench DBpedia Instances

From Travel we obtained:

travel:AdministrativeDivision 372 travel:City 57

travel:Coastline 23 travel:Continent 6

travel:Country 55 travel:GeographicalFeature 905

travel:Island 591 travel:Ocean 5

travel:River 49 travel:bodyOfLand 598

travel:Person_agent 4 travel:TierOneAdministrativeDivision 21

Table 4.3: SPIMBench Travel Instances

Figures 4.3 and 4.4 show a part of the triples considered from the DBpedia,

FOAF and Travel ontologies and their relationship with the core BBC ontologies.

4.2 Metrics

The metrics that SPIMBench supports to test how systems perform are the follow-

ing:

• Precision/ Recall / F-measure: these metrics are used to determine the

e�ectiveness of the instance matching systems. We use the standard de�nition

of precision, recall and f-measure: precision is the fraction of the intersection

of the relevant and retrieved instances over the retrieved instances, whereas

recall is the fraction of the intersection of relevant and retrieved instances

over the relevant instances. In the case of instance matching, retrieved in-

stances are the instances matched by the instance matching systems, and the

relevant instances are the matched instances that are also reported in the

provided gold standard. Precision can be seen as a measure of exactness or

4.3. TRANSFORMATIONS 31

quality, whereas recall is a measure of completeness. F-measure is a metric

that combines precision and recall. It is calculated as their harmonic mean.

When comparing the results of the instance matching process with the gold

standard, one can calculate the true positive (tp) (correct), the false positive

(fp) (unexpected) and the false negative (fn) (missing) results. Precision,

recall and f-measure can then be computed as follows:

precision =
tp

tp+ fp

recall =
tp

tp+ fn

fmeasure = 2× precision× recall
precision+ recall

• Run Times The matched systems should also record the time needed to

discover the matches when comparing the source and target datasets. The

running times should be reported in seconds. The time that it takes for an

instance matching system to compute the matches is an important criteria,

but not as important as precision, recall and F-measure since such systems

are judged primarily on the basis on their results: systems with higher quality

results are more preferable than ones with lower quality, even if the latter

compute matches faster.

4.3 Transformations

As mentioned above, SPIMBench supports all kinds of transformations, namely

lexical, structural and logical [21] as well as simple and complex ones. Transforma-

tions are applied on source instances to obtain a set of target instances; this pair of

instances are then used as input by an instance matching system (along with the

gold standard) to test their performance.

32 CHAPTER 4. SPIMBENCH

4.3.1 Lexical/Value Transformations

Lexical or Value transformations refer to mainly typographical errors and the use

of di�erent data formats. In SPIMBench we use the transformations shown in Ta-

ble 4.4 that have been proposed and implemented in SWING [23] and in OAEI [22].

Each transformation takes as input a data type property as speci�ed in the

benchmark's schema, and a severity that determines the importance of the modi-

�cation.

• Value transformations vt1 and vt2 refer to the addition/deletion of blank

or random character in a string whereas vt2 also refers to the modi�cation

of a random character).

• vt3 refers to the deletion,addition and shu�ing of a token (i.e., sequence of

characters) in a string. Transformations

vt1 - vt3 are di�erent cases of mispellings, a category of transformations that is

rather common in practice especially in the case in which data has been created

by humans which is exactly the case with the semantic publishing scenario.

• vt4 concerns the use of di�erent standards employed for representing values,

especially in the case of dates. We consider four types of date transformations,

namely short, medium, long and full. For example, date �1990-10-17�, will be

transformed to �10/17/90� for short, �Oct 17, 1990� for medium, �October 17,

1990� for long and �Wednesday, October 17, 1990� for a full transformation.

• vt5 refers to the change of a number to another that we generate randomly.

• vt6 refers to possible abbreviations that can be found in texts such as �United

States of America� vs �USA�; to support this last transformation we used a

list of publicly available country names and their abbreviations.

• vt7 refers to transformations related to the use of synonyms and antonyms

that have been taken from Wordnet5; for instance, �poor� and its synonym

�inadequate�.

• In a real world scenario such as the one that we are discussing in this paper,

authors employ di�erent words to convey one meaning and in general the use

of synonyms is present in any text. Stemming is applied using transformation

5http://wordnet.princeton.edu/

4.3. TRANSFORMATIONS 33

vt8.

• SPIMBench also supports multilinguality (transformation vt9) from English

to 65 languages6.

The last two transformations are characterized as semantic variations [26].

vt1 Blank Character Addition/Deletion

vt2 Random Character Addition/Deletion/Modi�cation

vt3 Token Addition/Deletion/Shu�e

vt4 Date Format

vt5 Change Number

vt6 Abbreviation

vt7 Synonym/Antonym

vt8 Stem of a Word

vt9 Multilinguality

Table 4.4: SPIMBench Lexical/Value Transformations

4.3.2 Structural transformations

This type of transformations refers to the changes that occur to the properties of

instances such as splitting, aggregation, deletion and addition. Splitting refers to

expanding properties (e.g., property address could be split to street and number)

whereas aggregation refers to merging a number of properties to a single one, such

as �rstName and lastName to fullName. In SPIMBench we support all the structural

transformations that are proposed and implemented in SWING (the latter does not

support aggregation of properties). These transformations are a superset of those

considered in the majority of the benchmarks discussed in Chapter 2.

4.3.3 Logical Transformations

Logical modi�cations are primarily used to test if the matching systems take into

consideration RDFS and OWL constructs to discover matches between instances

that can be found only when considering schema information; these modi�cations

6The language to which the English texts are translated is a parameter de�ned in a con�gu-
ration �le.

34 CHAPTER 4. SPIMBENCH

go beyond those discussed above. To the best of our knowledge, SPIMBench is the

�rst instance matching benchmark that considers schema constructs when produc-

ing the target from source instances. The RDFS/OWL constructs that we consider

in SPIMBench are:

• instance (in)equality constructs owl:sameAs, owl:differentFrom

• equivalence schema constructs owl:equivalentProperty, owl:equivalent-

Class

• disjointness schema constructs owl:disjointWith, owl:propertyDisjoint-

With

• RDFS schema constructs namely rdfs:subClassOf, rdfs:subPropertyOf

• property constraints namely owl:FunctionalProperty and owl:Inverse-

FunctionalProperty and �nally

• constructs supporting complex class de�nitions using the owl:intersection-

Of and owl:unionOf features.

Tables 4.5 - 4.10 present the set of tests based on the logical transformations

that we consider in SPIMBench. Columns sd and td refer to the source and

target data respectively i.e., the latter are the instances we obtain by applying

transformations to the former ones. Column schema triples refers to schema

triples that the instance matcher under test should take into consideration when

performing the matching tasks. Finally, column gs stores the entries of the gold

standard. In all the tables we write u to refer interchangeably to an RDF instance

and its URI. We write u ∼ u′ to state that u and u′ are matched instances.

Tests ltSubC, ltEqC shown in Table 4.5 consider the rdfs:subClassOf

and owl:equivalentClass constructs resp.; Tests ltEqP, ltSubP (given in Ta-

ble 4.6 resp.) take into account the rdfs:subPropertyOf and owl:equivalent-

Property constructs respectively.

We will discuss �rst the case of classes. Given an instance ui of class C in

sd, we create an instance u′i in td, instance of class C ′ by copying the properties

of ui (except rdf:type triples). In ltSubC, C is a subclass of C ′ (schema triple

(C, rdfs:subClassOf, C ′)) and in ltEqC C and C ′ are equivalent classes - schema

triple (C, owl:equivalentClass, C ′).

4.3. TRANSFORMATIONS 35

sd td schema triples gs
ltSubC (u1, rdf:type, C) (u′1, rdf:type, C

′) (C, rdfs:subClassOf, C ′) u1 ∼ u′1

ltEqC (u1, rdf:type, C) (u′1, rdf:type, C
′) (C, owl:equivalentClass, C ′) u1 ∼ u′1

Table 4.5: Tests for rdfs:subClassOf, owl:equivalentClass

sd td schema triples gs
ltEqP (u1, p1, o1) (u′1, p2, o1) (p1, owl:equivalentProperty, p2) u1 ∼ u′1

ltSubP (u1, p1, o1) (u′1, p2, o1) (p1, rdfs:subPropertyOf, p2) u1 ∼ u′1

Table 4.6: Tests for rdfs:subPropertyOf, owl:equivalentProperty

The rationale for stating in both cases that the two instances are matches is

straightforward: in the �rst case we assume that the instances are of similar type

due to the rdfs:subClassOf semantics (rule cax-sco, Table 3.1 and rule scm-sco,

Table 3.4); in the second, they are of exactly the same type due to the semantics

of class equivalence (rules cax-eqc1, cax-eqc2, Table 3.1). The rationale for

properties is exactly the same: for ltSubP (rdfs:subPropertyOf construct) the

two instances are considered as matches when rules prp-spo1 in Table 3.2 and scm-

spo in Table 3.4 are taken into account for rdfs:subPropertyOf; for ltEqP, we

consider the semantics of owl:equivalentProperty as speci�ed in prp-eqp1 and

prp-eqp2 rules (Table 3.2).

Tests ltSameAs1 and ltSameAs2 shown in Table 4.7 consider the owl-

:sameAs OWL construct. For ltSameAs2 and for an instance of choice ui, we

create, as we discussed, above instance u′i; We also produce an instance u′′i by

applying a large set of modi�cations on u′i. In the target dataset td, we introduce

triple (u′i, owl:sameAs, u
′′
i); this is necessary in order to challenge instance matching

tools regarding their ability to �nd matches using the owl:sameAs links and not

simply by matching the property values of instances. If the matcher under test

considers the owl:sameAs construct, it should produce in addition to the match

ui ∼ u′i, the match ui ∼ u′′i , something that would not be possible for a matcher

otherwise (rule eq-trans, Table 3.5).

36 CHAPTER 4. SPIMBENCH

sd td schema triples gs

ltSameAs1

(u1, rdf:type, C) (u′1, rdf:type, C) u1 ∼ u′1
(u2, rdf:type, C) (u′2, rdf:type, C) u1 ∼ u′2

(u′1, owl:sameAs, u
′
2) u2 ∼ u′2

u2 ∼ u′1

ltSameAs2

(u1, rdf:type, C) (u′1, rdf:type, C) u1 ∼ u′1
(u′′1, rdf:type, C) u1 ∼ u′′1

(u′1, owl:sameAs, u
′′
i)

ltDiff

(u1, rdf:type, C) (u′1, rdf:type, C) u1 ∼ u′1
(u′′1, rdf:type, C)

(u′1, owl:differentFrom, u
′′
1)

Table 4.7: Tests for owl:sameAs, owl:differentFrom

ltSameAs1 is a more complex test: consider two instances ui and uj in source

dataset sd. Those are transformed as discussed previously to u′i and u
′
j that are

inserted in the target dataset td along with triple (u′i, owl:sameAs, u
′
j). A matcher

that understands the semantics of owl:sameAs should report all possible matches

between instances ui, u
′
i, uj and u

′
j (in total four matches).

OWL Construct owl:differentFrom is used to explicitly state that two re-

sources refer to di�erent real world objects. Test ltDiff shown in Table 4.7

follows the same lines as the ones for owl:sameAs construct: for an instance ui in

source dataset sd, we create two instances u′i and u
′′
i by copying all the properties

of ui and we add triple (u′i, owl:differentFrom, u
′′
i). The creation of u′′i is done

with very few transformations. If the matcher does not consider the owl:diffe-

rentFrom construct it should produce a match between instances ui and u
′′
i , when

it should not since there is an explicit statement that these two instances refer to

a di�erent real world object (rule eq-diff1, Table 3.5).

Another kind of test we introduce refers to disjointness of classes and properties

(see Table 4.8). Take for instance ltDisjC where we produce target instance u′i

from source instance ui, instances of disjoint classes C ′ and C - schema triple

(C, owl:disjointWith, C ′) - respectively. In this case, the matcher should not

return any match (rule cax-dw, Table 3.1). Again, u′i can be obtained from ui by

copying the properties of the former.

4.3. TRANSFORMATIONS 37

sd td schema triples gs
ltDisjC (u1, rdf:type, C) (u′1, rdf:type, C

′) (C, owl:disjointWith, C ′)

ltDisjP
(u1, rdf:type, C) (u′1, rdf:type, C) (p1, owl:propertyDisjointWith, p2)

(u1, p1, o1) (u′1, p2, o1)

Table 4.8: Tests for owl:disjointWith, owl:propertyDisjointWith

Disjointness of properties follows the same rationale as disjointness of classes:

in test ltDisjP (Table 4.8) we produce an instance u′i from instance ui, the former

participating in triple (ui, p1, o1) and the latter in triple (u′i, p2, o1). The matcher

in this case should not return a match since the two instances cannot share disjoint

properties (rule prp-pdw, Table 3.2).

Other interesting modi�cations are the ones regarding the use of functional

(ltFuncP) and inverse functional (ltInvFuncP) properties (owl:Function-

alProperty and owl:InverseFunctionalProperty) shown in Table 4.9. In the

case of the former, for an instance ui in the source dataset sd, subject of triple

(ui, pi, oi) with pi being a functional property, we produce a triple (ui, pi, o
′
i) in td.

If the matcher takes into consideration the fact that pi is a functional property, then

it should produce a match between instances oi and o
′
i (rule prp-fp, Table 3.2).

sd td schema triples gs

ltFuncP

(u1, rdf:type, C) (u1, rdf:type, C) (p, rdf:type o1 ∼ o2
(u1, p, o1) (u1, p, o2) owl:FunctionalProperty)

ltInvFuncP

(u1, rdf:type, C) (u′1, rdf:type, C) (p, rdf:type, u1 ∼ u′1
(u1, p, o1) (o1, p, u

′
1) owl:InverseFunctionalProperty)

Table 4.9: Tests for owl:FunctionalProperty, owl:InverseFunctionalProperty

The test for inverse functional properties follows the same rationale (ltInvFuncP,

rule prp-ifp, Table 3.2). For an instance ui in the source dataset sd, subject of

triple (ui, pi, oi) with pi being an inverse functional property, we produce a triple

(oi, pi, u
′
i) in td. If the matcher takes into consideration the fact that pi is an

inverse functional property, then it should produce a match between instances ui

and u′i (rule prp-ifp, Table 3.2).

38 CHAPTER 4. SPIMBENCH

In addition to the above, we de�ned tests, shown in Table 4.10, for complex class

expressions using constructs owl:unionOf and owl:intersectionOf. Consider test

ltUnionOf: for a source object ui instance of class C, we create a target object

u′i, instance of class C
′. Suppose that C ′ is de�ned as a union of a set of classes

C,C1, . . . Ck. According to OWL semantics, owl:unionOf can be expressed in

terms of rdfs:subClassOf (rule scm-uni, Table 3.4), hence the problem can be

reduced to the case of rdfs:subClassOf. u′i is obtained from ui by copying the

modi�ed (or not) properties of the former. Therefore, ui and u′i have the same

properties.

sd td schema triples gs
ltUnionOf (u1, rdf:type, C) (u′1, rdf:type, C

′) (C ′, owl:unionOf, {C,C1, . . .) u1 ∼ u′1

ltIntersect1
(u1, rdf:type, C) (u′1, rdf:type, C

′) (C, owl:intersectionOf, S) u1 ∼ u′1
(C ′, owl:intersectionOf, S)

ltIntersect2
(u1, rdf:type, C) (u′1, rdf:type, C

′) (C, owl:intersectionOf, S) u1 ∼ u′1
(C ′, owl:intersectionOf, S′)

S′ ⊂ S

Table 4.10: Tests for owl:unionOf, owl:intersectionOf

The same principle holds for the owl:intersectionOf construct (tests ltIn-

tersect1, ltIntersect2); the rules considered for those transformations are

scm-int (Table 3.4) and cls-int1, cls-int2 (Table 3.3).

Examples of the modi�cations presented before are shown in Tables 4.11,4.12,

4.13, 4.14, 4.15 and 4.16.

modification ltSubC

sd cwork:id1 rdf:type cwork:NewsItem .

td cwork:id1234 rdf:type cwork:CreativeWork .

schema triples cwork:NewsItem rdfs:subClassOf cwork:CreativeWork .

gold standard cwork:id1 ∼ cwork:id1234

modification ltEqC

sd dbpedia:Harry_Foreman rdf:type foaf:Person .

td core:Harry_Foreman rdf:type core:Person .

schema triples foaf:Person owl:equivalentClass core:Person .

gold standard dbpedia:Harry_Foreman ∼core:Harry_Foreman

Table 4.11: Examples for rdfs:subClassOf, owl:equivalentClass

4.3. TRANSFORMATIONS 39

modification ltEqP

sd dbpedia:Harry_Foreman rdf:type foaf:Person .
dbpedia:Harry_Foreman foaf:name �Harry Foreman� .

td dbpedia:Harry_Foreman rdf:type foaf:Person .
dbpedia:Harry_Foreman core:name �Harry Foreman� .

schema triples foaf:name owl:equivalentProperty core:name .

gold standard dbpedia:Harry_Foreman (in sd) ∼ dbpedia:Harry_Foreman (in td)

modification ltSubP

sd cwork:id1 cwork:about dbpedia:Andrew_Tyrie .
td cwork:id231 cwork:tag dbpedia:Andrew_Tyrie .
schema triples cwork:about rdfs:subPropertyOf cwork:tag .

gold standard cwork:id1 (in sd) ∼ cwork:id231 (in td)

Table 4.12: Examples for rdfs:subPropertyOf, owl:equivalentProperty

40 CHAPTER 4. SPIMBENCH

modification ltSameAs1

sd cwork:id1 rdf:type cwork:BlogPost .
cwork:id2 rdf:type cwork:BlogPost .

td cwork:id128 rdf:type cwork:BlogPost .
cwork:id457 rdf:type cwork:BlogPost .
cwork:id128 owl:sameAs cwork:id457 .

schema triples none

gold standard cwork:id1 ∼ cwork:id128
cwork:id1 ∼ cwork:id457
cwork:id2 ∼ cwork:id457
cwork:id2 ∼ cwork:id128

modification ltSameAs2

sd cwork:id1 rdf:type cwork:Programme .

td cwork:id80 rdf:type cwork:Programme .
cwork:id537 rdf:type cwork:Programme .
cwork:id80 owl:sameAs cwork:id537 . (not necessary)

schema triples none

gold standard cwork:id1 ∼ cwork:id80
cwork:id1 ∼ cwork:id537

modification ltDiff

sd cwork:id1 rdf:type cwork:NewsItem .

td cwork:id50 rdf:type cwork:NewsItem .
cwork:id286 rdf:type cwork:NewsItem .
cwork:id50 owl:differentFrom cwork:id286 .

schema triples none

gold standard cwork:id1 ∼ cwork:id50

Table 4.13: Examples for owl:sameAs, owl:differentFrom

modification ltDisjC

sd cwork:id1 rdf:type cwork:NewsItem .

td cwork:id1493 rdf:type cwork:BlogPost .

schema triples cwork:NewsItem owl:disjointWith cwork:BlogPost .

gold standard

modification ltDisjP

sd cwork:id1 core:facebook �Desmond Swayne�

td cwork:id123 core:twitter�Desmond Swayne� .

schema triples core:facebook owl:propertyDisjointWith core:twitter .

gold standard

Table 4.14: Examples for owl:disjointWith, owl:propertyDisjointWith

4.3. TRANSFORMATIONS 41

modification ltFuncP

sd cwork:id1122 core:primaryTopic dbpedia:Andrew_Tyrie .

td cwork:id1122 core:primaryTopic ldbc:Andrew_Tyrie .

schema triples core:primaryTopic rdf:type owl:FunctionalProperty .

gold standard dbpedia:Andrew_Tyrie ∼ ldbc:Andrew_Tyrie .

modification ltInvFuncP

sd cwork:id1 bbc:primaryContentOf cwork:id100 .

td cwork:id100 bbc:primaryContentOf cwork:id1123 .

schema triples bbc:primaryContentOf rdf:type owl:InverseFunctionalProperty

gold standard cwork:id1 ∼ cwork:id123

Table 4.15: Examples for owl:FunctionalProperty, owl:InverseFunctional-

Property

modification ltUnionOf

sd foaf:Andrew_Tyrie rdf:type foaf:Person .

td ldbc:Andrew_Tyrie rdf:type ldbc:Thing .

schema triples ldbc:Thing owl:unionOf

(foaf:Person dbpedia:Event dbpedia:Organization
dbpedia:Place dbpedia:Theme)

gold standard foaf:Andrew_Tyrie ∼ ldbc:Andrew_Tyrie

modification ltIntersect1

sd dbpedia:William_McWilliams rdf:type ldbc:Person_Organisation .

td ldbc:William_McWilliams rdf:type ldbc:Individual_Corporation .

schema triples ldbc:Person_Organisation owl:intersectionOf

(foaf:Person dbpedia:Organisation) .
ldbc:Individual_Corporation owl:intersectionOf

(foaf:Person dbpedia:Organisation) .

gold standard dbpedia:Williams_McWilliams ∼ ldbc:Williams_McWilliams

modification ltIntersect2

sd core:id1 rdf:type ldbc:Event_Place_Theme .

td ldbc:id1 rdf:type ldbc:Happening_Spot .

schema triples ldbc:Event_Place_Theme owl:intersectionOf

(dbpedia:Event dbpedia:Place dbpedia:Theme)
ldbc:Happening_Spot owl:intersectionOf

(dbpedia:Event dbpedia:Place) .

gold standard core:id1 ∼ ldbc:id1

Table 4.16: Tests for owl:unionOf, owl:intersectionOf

42 CHAPTER 4. SPIMBENCH

4.3.4 Simple and Complex Transformations

In SPIMBench we consider combinations of the aforementioned transformations,

that we call simple transformations to apply to di�erent triples pertaining to one

creative work. For instance, we can perform a value transformation on triple (s, p, o)

where p is a data type property and a structural transformation on (s, p′, o′) (triple

deletion). We also consider complex transformations that are combinations of the

aforementioned ones that are applied to a single triple. For instance, when logical

transformations are considered, then for a triple (s, p, o) we can produce a triple

(s′, p′, o′) where p is a subproperty of p′ and o′ is obtained by applying a lexical

transformation on o. We focus on complex transformations (for the same triple)

that combine lexical with logical or structural modi�cations as those were presented

above, but not combinations of structural with logical modi�cations. The reason

is that in schema of SPIMBench we do not have the meaningful properties for this

kind of transformations. Nevertheless, our general framework does not forbid one

to perform this kind of transformations.

ltSubC and property aggregation

sd dbpedia:Wendy_Crewson rdf:type foaf:Person .

dbpedia:Wendy_Crewson foaf:givenName Wendy .

dbpedia:Wendy_Crewson foaf:surname Crewson .

td core:Wendy_Crewson rdf:type core:Thing .

core:Wendy_Crewson core:fullName Wendy_Crewson .

schema triples foaf:Person rdfs:subClassOf core:Thing .

gold standard dbpedia:Wendy_Crewson ∼core:Wendy_Crewson

Table 4.17: Example for rdfs:subClassOf, and property aggregation

4.4 Data Generator

The generator of SPIMBench extends the one proposed by the Semantic Publishing

Benchmark SPB [32]. The SPB data generator produces RDF descriptions of cre-

ative works that are valid instances of the BBC ontologies presented in Section 4.1.

As discussed before, a creative work is described by a number of data value prop-

4.4. DATA GENERATOR 43

erties such as title, description, and object value properties such as primaryTopicOf

and primaryContent among others, that refer to other resources. Recall that cre-

ative works have also properties that link them to resources de�ned in reference

datasets: those are the about and mentions properties, and their values can be

person names, locations and events. In this way, a creative work is linked to one

or more resources. One of the purposes of the data generator is to produce large

synthetic (in the order of billions of triples) datasets in order to check the ability

of the engines to scale. The synthetic data generation is done in such a way that

guarantees that the distributions used, emulate the real datasets provided by BBC.

The SPB data generator [32] models three types of relations in the data:

• clustering of data The clustering e�ect is produced by generating creative

works about a single entity from reference datasets and for a �xed period

of time. More precisely, the number of creative works starts with a high

peak at the beginning of the chosen clustering period and follows a smooth

decay towards its end. The data generator produces sets of creative works of

di�erent sizes: by default �ve major and one hundred smaller sets of creative

works are produced for one year period.

• correlations of entities This correlation e�ect is produced by generating

creative works about two or three entities from the reference datasets in a �xed

period of time. Concretely, each of the entities is tagged by creative works

solely at the beginning and the end of the speci�ed correlation period whereas

in the middle of the period, both entities are used as tags for the same creative

work. As in the case of data clustering, the data generator models by default,

�fty correlations between entities for one year period.

• random tagging of entities Random data distributions are created with

a bias towards popular entities created when the tagging is performed (when

values are assigned to about and mentions creative work properties). This is

achieved by randomly selecting a 5% of all the resources from reference data

and mark them as popular when the remaining ones are marked as regular.

When creating creative works, 30% percent of them are tagged with randomly

selected popular resources and the remaining 70% are linked to the regular

44 CHAPTER 4. SPIMBENCH

ones. In addition to values for mentions and about properties, the values for

data and object properties are randomly generated. More speci�cally, data

value properties, such as creative work's title, and description are created

randomly from DBpedia text. Creative works properties related to their cre-

ation and modi�cation date are randomly created within a range of one year

speci�ed by a �xed seed year value. The classi�cation of a creative work

as a blog post, news item or programme follows user de�ned distributions.

The value of property audience depends on the type of creative work; the

same rationale is followed for properties primaryFormat whereas the value

for property thumbnail is a randomly generated URI (same for property pri-

maryContentOf).

The SPB data generator operates in a sequence of phases:

1. ontologies and reference datasets are loaded in an RDF repository

2. all instances of the domain ontologies that exist in the reference datasets are

retrieved by means of prede�ned SPARQL queries that will be used as values

for the about and mentions properties of creative works

3. from the previous set of instances, the popular and regular entities are selected

4. the generator produces the creative works according to the three principles

discussed previously

SPIMBench extends the data generation process of SPB as follows:

• during the creation of source instances, that is instances of creative works,

we produce a set of creative works, i.e., target instances by applying the

transformations discussed in Section 4.3.

• the (i) percentage of source instances (over the total number of produced

instances) to be transformed to obtain the target instances and (ii) the per-

centage of the di�erent kinds of transformations (value, structural, logical)

to be applied on the source instances are speci�ed by the user. A large per-

centage of instances to be transformed and a large percentage of the types of

transformations to be applied will produce a very diverse target dataset hence,

testing the ability of the matcher to work with highly heterogeneous datasets;

4.4. DATA GENERATOR 45

in addition, having user de�ned parameters allows one to produce datasets

that accommodate di�erent instance matching scenarios. For instance, one

could produce target datasets that use only value, lexical or logical transfor-

mations or a mix thereof; depending on the de�ned percentages one could

emphasize on a speci�c kind of transformations and downplay on others.

• the creative works to be transformed are chosen randomly making sure that

the percentage of instances to be transformed is respected.

• to determine the transformation to be applied on a source instance we are

using a random generator that will produce a random double value in the

range of [0; 1]. If we need to perform x%, y% and z% of value, structural

and logical transformations on the chosen instances respectively, then if the

random value obtained is between [0; 0.x] then a value transformation is ap-

plied; if the value is between [0.x; 0.x + 0.y] a structural one is performed.

Similarly for a logical one. java's random number generator guarantees an

even distribution of all generated values in that range. So there is no round

down or up for the produced values.

• the percentage of the kind of a speci�c transformation to be performed is

also user-speci�ed; recall that SPIMBench supports 8 di�erent types of value,

3 types of structural and 12 types of logical transformations. At the cur-

rent version of the SPIMBench data generator the properties of creative work

instances to which value and structural transformations are applied, are ex-

plicitly speci�ed in the generator. This is the case with the logical trans-

formations in order to make sure that those performed are meaningful: for

instance, to test disjointness of classes, the data generator will produce in-

stances of classes that are de�ned as disjoint. The same rationale for user-

speci�ed percentages for the number of instances to be transformed applies

for here.

• to accommodate logical transformations the SPIMBench data generator pro-

duces instances of the classes/properties for which we have speci�ed in the

extended SPIMBench schema the appropriate constraints (owl:unionOf,

owl:intersectionOf, owl:disjointWith, etc.). We have to mention here

46 CHAPTER 4. SPIMBENCH

that the modi�cations that we perform on instances we obtain from external

ontologies namely FOAF, DBpedia and Travel are not applied on existing prop-

erties and values thereof, but on properties that are introduced to support

the modi�cations (especially the logical ones) covered by SPIMBench.

• for each pair of (source, target) instances produced, one match triple and

one transformation triple per employed transformation (see Figure 4.6) that

records the transformation type, the property on which the transformation is

applied are added in the gold standard. Once the gold standard is produced,

we determine the weight for each pair of (source, target) instances as discussed

in Section 4.5.

4.5 Gold Standard

The gold standard that we propose in SPIMBench records for each pair of instances

u and u′ the set of transformations applied for obtaining the latter from the former.

Figure 4.5 shows the schema that we are using to represent the instances that we

consider as matches. For each pair of source instance u and its transformed target

instance u′, we keep an object, instance of class spimbench:Match, that stores the

instances (using properties spimbench:source and spimbench:target respectively)

and the transformation (property spimbench:transformation that takes its values

in class spimbench:Transformation) applied to transform the former to the latter;

we also store a weight that records the information loss obtained by a transforma-

tion applied on a source instance u to obtain the target instance u′.

spimbench:Transformation is a super-class of spimbench:ValueTransf,

spimbench:StructuralTransf and spimbench:LogicalTranf for the value/lexical,

structural and logical transformations supported in our framework. The speci�c

kinds of value vti, structural stj and logical ltk transformations are de�ned as

subclasses of their respective classes. In addition to the above information we also

store the schema property or predicate on which the speci�c transformation has

been applied using property spimbench:onProperty. The weight is recorded using

property spimbench:weight. To capture the fact that a transformation is a com-

plex or simple one, then it is instantiated in multiple transformation classes. This

4.5. GOLD STANDARD 47

detailed gold standard can be used by instance matching systems for debugging

purposes. An instance of the gold standard for a value transformation is shown in

Figure 4.6. In the future we will explore the possibility of representing the pro-

posed Gold Standard ontology in terms of the OAEI EDOAL ontology alignment

language7 and PROV-O8 provenance ontology.

p

rdfs:subClassOf
rdfs:subPropertyOf

rdf:type

spimbench:weight

spimbench:transformation
xsd:string

spimbench:Match owl:Thing

spimbench:source

spimbench:target

spimbench:Transformation

spimbench:LogicalTransfspimbench:StructuralTransfspimbench:ValueTransf

spimbench:VT1
spimbench:VT8

spimbench:ST1
...

spimbench:ST3 spimbench:LT1 spimbench:LT8

..... ...

spimbench:onProperty rfd:Property

Figure 4.5: Gold Standard Ontology

@prefix spimbench: <http://www.spimbench/trans/>

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

spimbench:match0 rdf:type spimbench:Match .

spimbench:match0 spimbench:source <http://www.bbc.co.uk/things/1#id> .

spimbench:match0 spimbench:target <http://www.bbc.co.uk/things/859547602#id> .

spimbench:match0 spimbench:transf spimbench:transf14 .

spimbench:transf14 rdf:type spimbench:VT1.

spimbench:transf14 spimbench:onProperty cwork:CW_id .

spimbench:transf14 spimbench:weight 0.86

Figure 4.6: Example: Gold Standard Instance

Computing the weights

We discuss in this section the two solutions we designed and implemented for com-

puting the weight w for a pair of source and target instances u and u′ respectively

of the gold standard. Let {sd1, sd2, . . ., sdn} be a partition of the source dataset

7http://alignapi.gforge.inria.fr/edoal.html
8http://www.w3.org/TR/prov-o/

http://alignapi.gforge.inria.fr/edoal.html
http://www.w3.org/TR/prov-o/

48 CHAPTER 4. SPIMBENCH

sd where each sdi, i = 1, . . . n contains the same number of triples. Let td be the

target dataset where for {td1, td2, . . ., tdn} each tdi is the target dataset for sdi.

Finally, let gs be the gold standard and gsi the part of the gold standard (i.e., sets

of triples that are valid instances of the schema presented in Figure 4.5 for the pair

(sdi, tdi), i = 1, . . . , n. For both solutions we use the RESCAL [33, 34] tool that

actually computes the information loss between two instances u and u′.

RESCAL is a tensor factorization for large-scale relational learning from Linked

Data, multi-relational data and large multigraphs. It o�ers state-of-the-art rela-

tional learning results combined with high scalability, such that it can be applied to

data consisting of millions of entities, hundreds of relations, and billions of known

facts. Due to its latent variable structure, RESCAL does not require deep domain

knowledge and therefore can be easily applied to most domains.

Figure 4.7: RESCAL factorization model

In the �rst, naive solution, we run through all pairs of instances u, u′ in each

source and target �le sdk, tdk and compute the information loss using the RESCAL

approach. It is evident that for a large number of source �les that would be non-

scalable and actually our experiments showed that we need 6 minutes for RESCAL

to compute the score for 104 triples. The time increases linearly, hence we would

need approximately 6 × 102 minutes for 106 triples.

Given that computing the score for each pair of instances in the gold standard is

a process that requires a large number of computations and consequently renders

the computation of the weights non scalable for large datasets (in the order of

4.5. GOLD STANDARD 49

millions or billions of triples). We propose a second solution based on sampling the

pairs of source and target data and using these samples we consider the score for

each of applied transformations. We provide below a more detailed discussion.

In this approach, we would like to compute the weight per type of transformation

and not per transformation. More speci�cally, let T1,T2, . . .Tm be the types of

transformations supported by our framework. We store, for each pair (sdi, tdi) using

their gold standard gsi, a vector Fi that contains the number of transformations of

the same type that were employed on sdi to obtain tdi: Fi =<|| T1
i ||, . . . || Tm

i ||>.

In a vector Fi, if a transformation Tk
i is not employed to obtain target instances in

tdi, then the value in position k is zero.

score(Ti) =

||gs||∑
j=1

|| Fij ||

|| gs ||

Vector E is the vector that contains the average number of appearances of each

transformation type, that is E =< score(T1), score(T2), . . . , score(Tm) >. Once E is

obtained, we compute the squared cosine of E and each Fi: cos
2(Fi,E). We obtain

then the λ �les with the Fk's with the smallest cosine, that is the Fk's that include

the highest number of transformations.

We calculate λ using Jensen�Shannon divergence [35]. Jensen�Shannon diver-

gence is a popular method of measuring the similarity between two probability

distributions. It is based on the Kullback�Leibler divergence [36], with some no-

table (and useful) di�erences, including that it is symmetric and it is always a �nite

value.

DJS = 1
2DKL (P‖M) + 1

2DKL (Q‖M)

where M is the average of the two distributions,

M = 1
2(P +Q)

In our case, Q is the probability distribution of the transformation types in all �les

and P the probability distribution of λ �rst �les with the best distribution. If the

50 CHAPTER 4. SPIMBENCH

value of λ chosen by the user is not satisfactory, we recommend the use of the λ

value calculated with the assistance of Jensen�Shannon divergence.

Given the top-λ pairs of source and target instances (sdi, tdi), as well as their

respective gsi, we give those �les as input to RESCAL that returns a matrix A for

every URI we are interested in. Then we calculate the cosine similarity between the

matrices of every pair of the URIs we consider as a match. Those cosines correspond

to a score of the combination C = {T1,T2, . . .Tj} of the transformations the URIs

have undergone.

score(C) = score(T1)× score(T2)× . . . score(Tj)

Given the score for each combination C we can obtain the score for each indi-

vidual transformation using linear regression [37].

Linear regression is an approach for modeling the relationship between a scalar

dependent variable y and one or more explanatory variables denoted X. Given

a data set {yi, xi1, . . . , xip}ni=1 of n statistical units, a linear regression model as-

sumes that the relationship between the dependent variable yi and the p-vector of

regressors xi is linear. This relationship is modeled through a disturbance term or

error variable εi � an unobserved random variable that adds noise to the linear

relationship between the dependent variable and regressors. Thus the model takes

the form

yi = β1xi1 + · · ·+ βpxip + εi = xT
i β + εi, i = 1, . . . , n,

where T denotes the transpose, so that xT
i β is the inner product between vectors

xi and beta.

Often these n equations are stacked together and written in a vector form as

y = Xβ + ε,

where

4.6. EVALUATION 51

y =


y1

y2
...

yn

 , X =


xT
1

xT
2
...

xT
n

 =


x11 · · · x1p

x21 · · · x2p
...

. . .
...

xn1 · · · xnp

 , β =


β1

β2
...

βp

 , ε =


ε1

ε2
...

εn


After all, for every pair of URIs, we sum the weights of the transformations

applied to the URI from the source dataset and calculate the �nal weight as follows:

finalWeight = 1−
i=n∑
i=0

(T0, · · · ,Ti)

We have to note here that if the �nal weight is greater than 1.0 we consider it as 1.0

apart from owl:disjointWith, and owl:propertyDisjointWiththat we consider

equal to 0.0.

4.6 Evaluation

In this Section we are going to discuss the implementation of SPIMBench (Sec-

tion 4.6.1), also to show the experiments that we conducted for testing the abil-

ity of the SPIMBench generator to scale (Section 4.6.2). Our study on weight

distribution(Section 4.6.3) intends to show the di�culty of each of the proposed

transformations of SPIMBench. We also ran experiments to test the capacity of

instance matching systems to address the challenges set by the datasets produced

by SPIMBench and the capability of the instance matching systems to �nd the

correct matches as those are reported by the gold standard (Section 4.6.4).

4.6.1 Implementation

The Semantic Publishing Benchmark (SPB) is developed in the context of LDBC

(http://www.ldbc.eu) for testing the performance of RDF engines inspired by

the Media/Publishing industry. The benchmark o�ers a data generator that uses

real reference data to produce datasets of various sizes and tests the scalability

http://www.ldbc.eu

52 CHAPTER 4. SPIMBENCH

aspect of RDF systems. In addition, it the benchmark's workload consists of (a)

editorial operations that add new data, alter or delete existing data (b) aggregation

operations that retrieve content according to various criteria.

In SPIMBench9 we used and extended SPB's data generator to produce the tar-

get dataset to be used along with the source data as input to an instance matching

tool. The datasets are expressed in RDF Turtle format10 and are produced in

parallel. Di�erent sizes of datasets allows us to test the ability of the instance

matching systems to scale.

Figure 4.8: SPIMBenchModel

We discuss SPIMBench 's implementation in Figure 4.8. SPIMBench takes as

input a con�guration �le that contains data transformation and data generation pa-

rameters. Guided by the con�guration �le source, target data and an intermediate

gold standard are produced.

The most complex task is the generation of the �nal weighted gold standard.

The weights are calculated through the RESCAL factorization model. In order to

be as scalable as possible SPIMBench uses a sampling technique (Jensen�Shannon

divergence) and keeps only the target data to which an important number of trans-

formations has been applied. Each selected target data along with the source data

are given as input to RESCAL. The result is a detailed weighted gold standard �le

9The code of SPIMBench is available at https://github.com/jsaveta/SPIMBench
10http://www.w3.org/TR/turtle/

https://github.com/jsaveta/SPIMBench
http://www.w3.org/TR/turtle/

4.6. EVALUATION 53

that records for each pair of (source, target) instances an entry that stores (a) the

type of transformation applied, (b) the property on which it is applied and (c)

the weight for the individual transformation. There is also a simpler weighted gold

standard that records for each pair of (source, target) instances the weight of the

distance between them.

4.6.2 Scalability

We ran all experiments on a two eight-core Intel Xeon CPUs (2.30GHz) with 384GB

of main memory using Debian Wheezy on a Linux Kernel 3.12.3.

In order to test the performance of SPIMBench regarding its ability to produce

large synthetic datasets to be used by instance matching systems, we produced

datasets of 10K, 50K, 100K, 1M, 10M, 100M, 250M and 500M triples using the

benchmark's data generator. In the experiments, we considered that 5%, 10%, 15%

and 25% of the produced source triples related to creative works were transformed.

Data set I1 I2 (15%) I3 (25%)

10K 400 60 100
50K 2K 300 500
100K 4K 600 1K
1M 40K 6K 10K
100M 4M 600K 1M
250M 10M 1.5M 2.5M
500M 20M 3M 5M

Table 4.18: Data sets and the instances involved in transformations

Table 4.18 shows the number of creative work instances(column I1) for each of

the produced data sets. Columns I2, I3 give the number of creative work instances

that are involved in the transformations when 15% and 25% respectively of the

instances in I1 are considered. We show just 15% and 25% indicatively.

For our experiments, all the transformations that implement lexical, structural

and logical test cases are used with the same frequency.

We chose this high percentage(25%) (compared to other state-of-the-art works)

to show that data generation scales even when the amount of work necessary to

produce the target data set is large. Note that these percentages merely indicate

54 CHAPTER 4. SPIMBENCH

an upper bound of the actual percentage of test cases observed in the target data.

Indeed, for lexical transformations with a given probability, the triple selected ran-

domly to be transformed may actually not support a given value transformation

(e.g., change date format can only be applied to dates but not to numbers, se-

lected property is not an object property but a data type property as discussed in

Section 4.1).

A similar observation can be made for structural transformations, e.g., because

not all properties can be aggregated. In the generated test dataset, we observe that

the probability of actually obtaining a lexical transformation is approximately 0.87,

whereas the probability of a structural transformation is 0.82. For logical trans-

formations, this probability decreases to 0.42, explained by the fact that there is

a limited number of cases where meaningful logical transformations can be pro-

duced (see Section 4.3). For complex combination of transformations we observe

a probability of 0.6 whereas the probability in the case of a simple combination

of transformations is related to the probabilities of the individual transformations

is de�ned by. In the sequel, we refer to these probabilities as success probabilities

(sp). In summary, when we will refer to 25% of transformations of a given type,

this means that 25% of our instances are selected for transformation. Each triple

of such an instance has a probability sp to be considered by a transformation.

LEX STR LOG SIM COM

0.87 0.82 0.42 x× 0.87 + y × 0.82 + z × 0.42 0.6

Table 4.19: Success Probabilities

Table 4.19 shows the success probabilities for each of the lexical (LEX), structural

(STR), logical (LOG) transformations, simple combination (SIM), and complex

combination(COM)of transformations. In the case of simple combination, x, y,

and z correspond to the probability of selecting a triple for LEX, STR and LOG

transformations.

Figures 4.9 and 4.10 show the time required to produce the target datasets for

the input source datasets and for the aforementioned con�gurations. More speci�-

cally Figure 4.9 shows the time in seconds required to perform value, structural and

logical transformations for 5%, 10%, 15% and 25% transformation percentages.

4.6. EVALUATION 55

(a) 0% Transformations (b) 5% Transformations

(c) 10% Transformations (d) 15% Transformations

(e) 25% Transformations

Figure 4.9: Scalability results for the SPIMBench Data Generator

56 CHAPTER 4. SPIMBENCH

Figure 4.10 shows the time needed to compute the target instances when only

complex and simple transformations are considered. We can observe that the trans-

formations do not introduce any overhead (except in the case of complex ones) when

compared to the Figure 4.9(a) that shows the time required to produce the source

datasets with zero transformations. Note though that the time needed to perform

complex transformations is one order of magnitude higher than the time needed to

perform the simple ones. Nevertheless, we do not consider this to be an important

problem since this process is done once and o�ine to produce the source and target

datasets to be used by an instance matching system.

(a) Simple Transformations (b) Complex Transformations

Figure 4.10: Simple and Complex Transformations

Figure 4.11 shows the time in seconds required to produce the target instances

with 0%, 5%, 10%, 15% and 25% of value, structural and logical transformations

for all di�erent size of datasets.

4.6. EVALUATION 57

(a) 10K of triples (b) 50K of triples

(c) 100K of triples (d) 1M of triples

(e) 10M of triples (f) 100M of triples

58 CHAPTER 4. SPIMBENCH

(g) 250M of triples (h) 500M of triples

Figure 4.11: Scalability results for the SPIMBench Data Generator for di�erent
sizes of datasets

4.6.3 Weight Distribution

To determine how the weights are distributed for the di�erent test cases, we gener-

ated 1M triples (approximately 40K creative work instances). Again, we produced

all test cases for the 25% of source instances, and with the same con�guration for

the transformations (or test cases) as discussed previously in (Section 4.6.2).

The weight distribution was intended to represent the di�culty for each of the

test cases. This is also con�rmed by the results that we obtained from LogMap [38]

(see Section 4.6.4). Figure 4.12 shows the average weight for di�erent test cases.

0.98%
0.94%

0.91%

0.97% 0.97%

0.8%

0.85%

0.9%

0.95%

1%

value% structure% seman5cs% simple% complex%

av
er
ag
e&
w
ei
gh
t&

test&case&

Figure 4.12: Average weights for di�erent test cases

One can see that lexical(or value)transformations have a higher weight than the

structural, and logical (or semantics-aware) ones. This means that they should be

4.6. EVALUATION 59

less challenging for instance matching systems. On the other hand, and as expected,

logical transformations are the most di�cult since those change the topology of the

graph of the instance. Structural transformations also change the topology of the

graph but these concern only properties.

For a more in-depth analysis of the weight distribution, and in particular to

explain the high average weight for simple and complex combination of transfor-

mations, we further studied the distribution of weights in each transformation, as

depicted in Figure 4.13. Clearly, high weights represent the majority of weights

for lexical transformations, whereas more than half of the weights are in a lower

range for logical transformations. Now looking at simple and complex combina-

tion of transformations, we observe that the majority of weights is again in the

highest range. This distribution relates to the success probability sp we previously

mentioned.

0%#

20%#

40%#

60%#

80%#

100%#

value# structure#seman4cs# simple# complex#

%
"o
f"p

ai
rs
"w
ith

in
"w
ei
gh
t"r
an

ge
"

test"case"

0.88#:#0.84#

0.92#:#0.88#

0.96#:0.92#

1#:#0.96#

Figure 4.13: Weight distribution for di�erent test cases

Indeed, for the simple combination case, we have seen that the success prob-

ability of a lexical transformation is 0.87 whereas the probability of obtaining a

logical transformation is 0.42. So, overall, lexical transformations will dominate

the weight distribution.

For the complex combination case, the weight is high because in our experiments

we consider transformations only regarding the instance properties. These have a

higher weight than the structural transformations since, as discussed earlier, the

success probability sp of the latter is 0.82 while for the former is 0.60.

60 CHAPTER 4. SPIMBENCH

4.6.4 Performance of instance matching systems

We demonstrate the applicability of SPIMBench by using it to evaluate Logic-based

and Scalable Ontology Matching (LogMap) [38] with di�erent data set sizes and

di�erent test cases.LogMap is an ontology matching system with 'built-in' reason-

ing capabilities. LogMap can deal with semantically rich ontologies containing tens

(and even hundreds) of thousands of classes. We ran the experiments using the

MoRe [39] and HermiT [40] reasoners. Given an OWL �le, HermiT can determine

whether or not the ontology is consistent, identify subsumption relationships be-

tween classes and much more. While, MORe outputs the classi�cation hierarchy

entailed by the terminological part of the hierarchy.

Figure 4.14: LogMap

The results and the runtimes were identical for the two reasoners so we present

only HermiT's results. Once again, we used 25% of transformations for our exper-

iments. We restricted the sizes of the input data sets to 10K, 25K and 50K triples.

We chose to evaluate SPIMBench with LogMap as it is a continuously evolving

system and has also demonstrated very good results.

In all cases, we measured recall, precision, and f-measure. Figures 4.15, 4.16,

and 4.17 report our results for the di�erent types of transformations and all the

aforementioned datasets. Note that the results reported there concern only the

instances that were used for the test cases and not all the instances that were

generated.

The obtained results con�rm the di�culty of the test cases as shown from the

weight distribution. We notice that LogMap responds optimally regarding the

precision as it does not �nd many matches that are not actually a match. On the

4.6. EVALUATION 61

1.00$ 0.99$

0.59$

0.91$
1.00$0.99$ 0.93$ 0.95$ 0.96$ 1.00$0.99$ 0.96$

0.73$

0.93$
1.00$

0$

0.2$

0.4$

0.6$

0.8$

1$

value$ structure$ seman8cs$ simple$ complex$

va
lu
e&

test&case&

Recall$ Precision$ f@measure$

Figure 4.15: Recall, precision, and f-measure for test cases on 10K dataset

0.98% 0.98%

0.75%
0.90%

0.98%0.98% 0.98% 0.98% 0.98% 0.97%0.98% 0.98%
0.85%

0.94% 0.98%

0%

0.2%

0.4%

0.6%

0.8%

1%

value% structure% seman7cs% simple% complex%

va
lu
e&

test&case&

Recall% Precision% f?measure%

Figure 4.16: Recall, precision, and f-measure for test cases on 25K dataset

0.98% 0.98%

0.72%

0.92%
0.98%0.98% 0.97% 0.95% 0.98% 0.97%0.98% 0.97%

0.82%
0.95% 0.98%

0%

0.2%

0.4%

0.6%

0.8%

1%

value% structure% seman7cs% simple% complex%

va
lu
e&

test&case&

Recall% Precision% f?measure%

Figure 4.17: Recall, precision, and f-measure for test cases on 50K dataset

other hand, LogMap fails to �nd matches when the instance is involved in multiple

semantics-aware test cases (hence, the lower recall for those).

Regarding runtime, LogMap needs approximately 100 seconds for the dataset

62 CHAPTER 4. SPIMBENCH

size of 10K triples. What we observed was that the time needed for the matching

was not increasing in a linear way. Sometimes 25K triples required more time than

50K triples. This inconsistency might be derived from the network overhead as we

ran LogMap through the web application. The reason we did not choose to run it

through the jar �le that they provide was that we needed to de�ne the properties

that were going to be matched.

The second instance matching system we unsuccessfully tried to use for the

evaluation task was Community Edition of Combining Matchers (COMA) 3.0 [41].

The reason for the failure of the experiment was that COMA focusses on matching

schemas and ontologies. It has support for instance-based ontology matching but

does not aim for instance matching per se.

In summary, we conclude that SPIMBench generates a variety of test cases that

is well suited to identify strong points and weak points of state-of-the-art instance

matching systems such as LogMap in terms of matching quality.

Chapter 5

Conclusions

In this thesis we presented the Semantic Publishing Instance Matching Benchmark,

in short, SPIMBench, a benchmark inspired from the Semantic Publishing Bench-

mark SPB. SPIMBench, like SPB, is based on the BBC (http://www.bbc.com/)

ontologies, which lie in the Semantic Publishing domain.

The di�erentiator of SPIMBench with the existing instance matching bench-

marks is that it is, to the best of our knowledge, the �rst benchmark proposing a

data generator, a gold standard, and test cases that take into consideration expres-

sive OWL constructs that go beyond the usual RDFS constructs.

SPIMBench proposes and implements a scalable data generator that produces

synthetic source and target data consistent with the extended SPIMBench schema

to be used for testing the performance of instance matching systems; SPIMBench

also proposes and implements a set of transformations on source data to obtain the

target data. The set of transformations supported by SPIMBench includes value

and structural ones as those have been proposed in a large number of represen-

tative instance matching benchmarks; and �nally the logical ones that go beyond

the standard RDFS constructs and include expressive OWL constructs, namely in-

stance (in)equality, equivalence of classes and properties, property constraints and

complex class de�nitions.

The SPIMBench data generator also produces a weighted gold standard that

records for each pair of (source, target) instances an entry that stores (a) the type

63

http://www.bbc.com/)

64 CHAPTER 5. CONCLUSIONS

of transformation applied, (b) the property on which it is applied (in the case of

structural and lexical transformations) and (c) the weight that records the distance

between the two instances. The detailed gold standard can be used for debugging

instance matching systems since we explicitly store the transformations applied to

a source to obtain a target instance as well as their degree of similarity. In the

future, we plan to de�ne new metrics of precision and recall that take into account

the computed weights.

The experimental evaluation showed that SPIMBench scales for a very large

number of triples and modi�cations. In fact, our experiments showed that the gen-

eration of the target data and the gold standard does not introduce any additional

processing overhead.

An objective for future research is to customize SPIMBench in order to be fully

con�gurable and domain independent. Hence, the user will be able to use the

domain of his choice rather than the prede�ned one. In addition, we will aim to

use di�erent schemas for source and target datasets. Last but not least,we plan

to further pursue this idea by de�ning new precision/recall metrics that take into

account weights.

Bibliography

[1] I. Bhattacharya and L. Getoor, Entity resolution in graphs. Mining Graph

Data. Wiley and Sons, 2006.

[2] A. Elmagarmid, P. Ipeirotis, and V. Verykios, �Duplicate Record Detection:

A Survey,� IEEE Transactions on Knowledge and Data Engineering, vol. 19,

no. 1, 2007.

[3] C. Li, L. Jin, and S. Mehrotra, �Supporting e�cient record linkage for large

data sets using mapping techniques,� in WWW, 2006.

[4] J. Noessner, M. Niepert, C. Meilicke, and H. Stuckenschmidt, �Leveraging

Terminological Structure for Object Reconciliation,� in ESWC, 2010.

[5] M. Dean and G. Schreiber, �OWL Web Ontology Language Reference,� http:

//www.w3.org/TR/owl-ref, 2004.

[6] F. Manola, E. Miller, and B. McBride, �RDF Primer,� www.w3.org/TR/

rdf-primer, February 2004.

[7] R. Isele, A. Jentzsch, and C. Bizer, �Silk Server - Adding missing Links while

consuming Linked Data,� in COLD, 2010.

[8] A.-C. N. Ngomo and S. Auer, �LIMES - A Time-E�cient Approach for Large-

Scale Link Discovery on the Web of Data,� IJCAI, 2011.

[9] M. Weis, F. Naumann, and F. Brosy, �A Duplicate Detection Benchmark for

XML and Relational Data,� in IQIS, 2006.

65

http://www.w3.org/TR/owl-ref
http://www.w3.org/TR/owl-ref
www.w3.org/TR/rdf-primer
www.w3.org/TR/rdf-primer

66 BIBLIOGRAPHY

[10] J. Euzenat and et. al., � Results of the Ontology Alignment Evaluation Initia-

tive 2009,� in OM, 2009.

[11] �ISLAB, Instance Matching Benchmark,� http://islab.dico.unimi.it/iimb/.

[12] �Oaei instance matching,� http://oaei.ontologymatching.org/2010/, 2010.

[13] �Oaei instance matching,� http://www.instancematching.org/oaei/imei2011.

html, 2011.

[14] B. C. Grau and et. al., �Results of the Ontology Alignment Evaluation Initia-

tive,� in OM, 2013.

[15] K. Zaiss, S. Conrad, and S. Vater, �A Benchmark for Testing Instance-Based

Ontology Matching Methods,� in KMIS, 2010.

[16] K. Zaiss, �Instance-Based Ontology Matching and the Evaluation of Matching

Systems,� Ph.D. dissertation, Mathematisch-Naturwissenschaftlichen Fakul-

taet der Heinrich-Heine-Universitaet Dusseldorf, 2010.

[17] B. Alexe and et. al., �STBenchmark: Towards a benchmark for mapping sys-

tems,� in PVLDB, 2008.

[18] M. Neiling, S. Jurk, H.-J. Lenz, and F. Naumann, �Object identi�cation qual-

ity,� in DQCIS, 2003.

[19] H. Köpcke, A. Thor, and E. Rahm, �Comparative evaluation of entity resolu-

tion approaches with FEVER,� in VLDB, 2009, demo Track.

[20] D. Brickley and R. Guha, �RDF Vocabulary Description Language 1.0: RDF

Schema,� www.w3.org/TR/2004/REC-rdf-schema-20040210, 2004.

[21] A. Ferrara, D. Lorusso, S. Montanelli, and G. Varese, �Towards a Benchmark

for Instance Matching,� in OM, 2008.

[22] �Ontology Alignment Evaluation Initiative,� http://oaei.ontologymatching.

org/.

http://islab.dico.unimi.it/iimb/
http://oaei.ontologymatching.org/2010/
http://www.instancematching.org/oaei/imei2011.html
http://www.instancematching.org/oaei/imei2011.html
www.w3.org/TR/2004/REC-rdf-schema-20040210
http://oaei.ontologymatching.org/
http://oaei.ontologymatching.org/

BIBLIOGRAPHY 67

[23] A. Ferrara, S. Montanelli, J. Noessner, and H. Stuckenschmidt, �Benchmarking

Matching Applications on the Semantic Web,� in ESWC, 2011.

[24] D. Barbosa, A. O. Mendelzon, J. Keenleyside, and K. Lyons, �ToXgene: an

extensible template-based data generator for XML,� in WebDB, 2002.

[25] J. Euzenat, P. Shvaiko, and et. al., Ontology matching. Springer, 2007, vol. 18.

[26] E. Ioannou, N. Rassadko, and Y. Velegrakis, �On generating benchmark data

for entity matching,� Journal on Data Semantics, vol. 2, no. 1, pp. 37�56,

2013.

[27] I. Fundulaki, �D1.1.1 Overview and analysis of existing benchmark frame-

works,� Linked Data Benchmark Council, Tech. Rep., 2013, available at

http://ldbc.eu/results/deliverables.

[28] W3C OWL Working Group, �OWL 2 Web Ontology Language,� http://www.

w3.org/TR/owl2-overview/, 2012.

[29] P. Hayes, �RDF semantics,� http://www.w3.org/TR/rdf-mt/, 2004, W3C

Recommendation, 10 February 2004.

[30] B. Motik, B. C. Grau, I. Horrocks, Z. Wu, A. Fokoue, and

C. Lutz, �OWL 2 Web Ontology Language Pro�les (Second Edition),�

http://www.w3.org/TR/owl2-pro�les/, w3C Recommendation 11 December

2012.

[31] D. L. McGuinness and F. van Harmelen, �OWL Web Ontology Language,�

http://www.w3.org/TR/owl-features/, 2004.

[32] I. Fundulaki, N. Martinez, R. Angles, B. Bishop, and V. Kotsev, �D2.2.2 Data

Generator,� Linked Data Benchmark Council, Tech. Rep., 2013, available at

http://ldbc.eu/results/deliverables.

[33] D. Krompass, M. Nickel, X. Jiang, and V. Tresp, � Non-Negative Tensor Fac-

torization with RESCA,� in ECML/PKDD, 2013, workshop on Tensor Meth-

ods for Machine Learning.

http://ldbc.eu/results/deliverables
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/rdf-mt/
http://www.w3.org/TR/owl-features/
http://ldbc.eu/results/deliverables

68 BIBLIOGRAPHY

[34] M. Nickel, V. Tresp, and H.-P. Kriegel, �Factorizing YAGO: Scalable Machine

Learning for Linked Data,� in WWW, 2012.

[35] B. Fuglede and F. Topsoe, �Jensen-shannon divergence and hilbert space em-

bedding,� in IEEE International Symposium on Information Theory, 2004, pp.

31�31.

[36] J. M. Joyce, �Kullback-leibler divergence,� in International Encyclopedia of

Statistical Science. Springer, 2011, pp. 720�722.

[37] S. Weisberg, Applied linear regression. John Wiley & Sons, 2014.

[38] E. Jiménez-Ruiz and B. C. Grau, �Logmap: Logic-based and scalable ontology

matching,� in ISWC. Springer, 2011, pp. 273�288.

[39] A. A. Romero, B. Grau, I. H. Ian, and E. Jiménez-Ruiz, �More: a modular

owl reasoner for ontology classi�cation.� in ORE, 2013, pp. 61�67.

[40] R. Shearer, B. Motik, and I. Horrocks, �Hermit: A highly-e�cient owl rea-

soner.� in OWLED, vol. 432, 2008.

[41] S. Massmann, S. Raunich, D. Aumuller, P. Arnold, and E. Rahm, �Evolution

of the coma match system,� in The Sixth International Workshop on Ontology

Matching. Springer, October 2011, pp. 146�171.

	List of Figures
	List of Tables
	Introduction
	Related Work
	Benchmarks
	Ontology Alignment Evaluation Initiative(OAEI)
	ONTOlogy Matching Benchmark With Many Instances (ONTOBI)
	STBenchmark
	Discussion on Instance Matching Benchmarks

	Benchmark generators

	Preliminaries
	SPIMBench: Semantic Publishing Instance Matching Benchmark
	SPIMBench Schema
	Metrics
	Transformations
	Lexical/Value Transformations
	Structural transformations
	Logical Transformations
	Simple and Complex Transformations

	Data Generator
	Gold Standard
	Computing the weights

	Evaluation
	Implementation
	Scalability
	Weight Distribution
	Performance of instance matching systems

	Conclusions
	Bibliography

