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Abstract

Big data analytic frameworks like Apache Spark, handle the vast amount of
data by moving objects outside the JVM managed heap (off-heap) onto a fast
storage device. However, this strategy leads to high serialization/deserialization
(S/D) costs and high garbage collection (GC) overhead, when off-heap objects are
relocated back into the managed heap for processing. TeraHeap is a mechanism
that manages to eliminate these overheads, by extending the JVM to use a sec-
ond, high-capacity heap (H2) that is memory-mapped over a fast storage device
and coexists alongside the regular heap (H1). TeraHeap eliminates the S/D cost
with the use of memory-mapped I/O, and reduces the GC cost by avoiding GC
scans over the secondary heap. TeraHeap achieves this by (1) marking candidate
objects for placement in the H2 and indicating when to move them, (2) tracking
live objects in the H1 that are referenced from H2, (3) reclaiming dead objects
in H2. Originally TeraHeap was implemented in the Parallel Scavenge Collector,
where large GC pauses are allowed because the main concern is the application’s
throughput. However, this does not perform well with real-time applications, due
to its long pauses. Garbage-First (G1) Collector is for latency-sensitive applica-
tions, where the GC pauses are small and they meet a soft real-time goal with
high probability while achieving high throughput.

In this thesis, we imported the TeraHeap mechanism in G1 GC. We aim to
solve the off-heap problem of big data, in latency-sensitive applications that need
quick responses without long GC pauses. Importing TeraHeap in G1 introduces
unique challenges not encountered by Parallel Scavenge, highlighting the design
differences between the two collectors. These challenges encompass (1) concurrent
heap marking alongside the application threads, (2) G1’s use of evacuation rather
than compaction for small pauses during heap collection, and (3) the incremental
collection approach applied to the old generation. Our evaluation shows that for
the same DRAM size, TeraHeap improves performance by up to 72% compared to
native Spark. However, there is still room for further work in refining this import
process, given its demonstrated complexity and non-trivial nature.





Περίληψη

Στα frameworks ανάλυσης μεγάλων όγκων δεδομένων, όπως το Apache Spark,
χειρίζονται τον τεράστιο όγκο δεδομένων μετακινώντας αντικείμενα εκτός του διαχει-

ριζόμενου σωρού JVM (off-heap) σε μια συσκευή γρήγορης αποθήκευσης. Ωστόσο,
αυτή η στρατηγική οδηγεί σε υψηλά κόστη σειριοποίησης/αποσειριοποίησης (S/D)
και συλλογής σκουπιδιών (GC), όταν τα αντικείμενα εκτός σωρού μεταφέρονται πίσω
στον διαχειριζόμενο σωρό για επεξεργασία. Το TeraHeap είναι ένας μηχανισμός που
καταφέρνει να εξαλείψει αυτά τα κόστη, επεκτείνοντας το JVM ώστε να χρησιμοποιεί
ένα δεύτερο σωρό, υψηλής χωρητικότητας (H2) που είναι χαρτογραφημένη στη μνήμη
μέσω μιας γρήγορης συσκευής αποθήκευσης και συνυπάρχει παράλληλα με τον κα-

νονικό σωρό (H1). Το TeraHeap εξαλείφει το κόστος S/D με τη χρήση Ε/Ε με
χαρτογράφηση μνήμης και μειώνει το κόστος GC, αποφεύγοντας τις σαρώσεις GC
πάνω από τον δευτερεύοντα σωρό. Το TeraHeap το επιτυγχάνει αυτό (1) επισημαίνο-
ντας υποψήφια αντικείμενα για τοποθέτηση στο Η2 και υποδεικνύοντας πότε πρέπει

να μετακινηθούν, (2) εντοπίζοντας ζωντανά αντικείμενα στο Η1 που αναφέρονται α-

πό το Η2, (3) ανακτώντας νεκρά αντικείμενα του Η2 σωρού. Αρχικά, το TeraHeap
υλοποιήθηκε στον Parallel Scavenge Collector, όπου επιτρέπονται μεγάλες παύσεις
GC επειδή το κύριο μέλημα είναι η απόδοση της εφαρμογής. Ωστόσο, αυτό δεν α-
ποδίδει καλά με εφαρμογές σε πραγματικού χρόνο, λόγω των μεγάλων παύσεων. Ο

Garbage-First (G1) collector είναι για εφαρμογές ευαίσθητες στις καθυστερήσεις,
όπου οι παύσεις GC είναι μικρές και προσπαθούν να κυμαίνονται κάτω από ένα όριο
πραγματικού χρόνου, ενώ επιτυγχάνουν ταυτόχρονα υψηλή απόδοση.

Σε αυτή τη διατριβή, εισαγάγαμε τον μηχανισμό TeraHeap στο G1 GC. Στόχος
μας είναι να λύσουμε το πρόβλημα του μεγάλου όγκου δεδομένων, σε εφαρμογές ευα-

ίσθητες σε καθυστέρηση που χρειάζονται γρήγορες απαντήσεις χωρίς μεγάλες παύσεις

GC. Η εισαγωγή του TeraHeap στο G1 εισάγει μοναδικές προκλήσεις που δεν αντι-
μετωπίστηκαν στον Parallel Scavenge, τονίζοντας τις σχεδιαστικές διαφορές μεταξύ
των δύο συλλεκτών. Αυτές οι προκλήσεις περιλαμβάνουν (1) ταυτόχρονο μαρκάρισμα

του σωρού concurrently με τα νήματα της εφαρμογής, (2) ο G1 χρησιμοποιεί τη τεχνι-
κή evacuation αντί του compaction για τις μικρές παύσεις συλλογής του σωρού και
(3) η σταδιακή συλλογή που εφαρμόζεται στην παλιά γενιά. Η αξιολόγησή μας δείχνει

ότι για το ίδιο μέγεθος DRAM, το TeraHeap βελτιώνει την απόδοση έως και 72% σε
σύγκριση με το εγγενές Spark. Ωστόσο, υπάρχει ακόμη περιθώριο για περαιτέρω ερ-
γασία στην εισαγωγή του μηχανισμού αυτού στο G1, δεδομένου της πολυπλοκότητας
και του μη τετριμμένου χαρακτήρα του.
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Chapter 1

Introduction

Big data analytic frameworks like Apache Spark [5], are specifically crafted for
processing massive datasets. These frameworks face the challenge of processing
and caching vast amounts of data that may exceed the capacity of the available
heap [6]. To tackle the issues of growing datasets and limited DRAM capacity,
a common approach is to move objects outside the managed heap to an off-heap
storage device, like an NVMe SSD. On the other hand, this practice has some com-
plexities as well. It introduces high serialization/deserialization (S/D) overhead
when transferring data between the memory and the device. Because the data
are in their serialized form when residing in the off-heap device, the frameworks
can not compute directly over them. Therefore, these data need to be brought
back to the managed heap for further processing. Moving such a large volume of
objects back to the managed heap heightens the memory pressure. Many big data
frameworks are written in Java, in which memory management is an automatic
process that is managed by the Java Virtual Machine (JVM). In managed language
environments, such as JVM, high memory pressure in the managed heap incurs
excessive garbage collection (GC) overhead.

Moreover, lots of the objects in big data, stay alive throughout many commu-
tation stages, displaying long lifetimes [7, 8, 9]. Therefore the significant number of
long-lived objects places further memory pressure on the managed heap, leading to
frequent garbage collections with low yield. Garbage collections are stop-the-world
(STW) operations, where application threads are paused until the collection pro-
cess is finished. Therefore, the frequency of these events can affect the application’s
performance and responsiveness.

TeraHeap [4, 10] is a system that eliminates S/D and GC overheads for a
large portion of the data in managed big data analytics frameworks. TeraHeap
avoids the need for S/D by keeping all cached data on-heap but off-memory, using
memory-mapped I/O. To achieve this, it extends the JVM to use a second, high-
capacity heap (H2) that resides on a memory-mapped fast storage device and
is exclusively used for cached data. This secondary heap coexists alongside the
regular heap (H1), while maintaining the illusion of a single unified JVM heap.

1



2 CHAPTER 1. INTRODUCTION

TeraHeap provides a hint-based interface that uses key-object opportunism [11]
and enables frameworks to mark objects and indicate when to move them in H2.
During GC, TeraHeap starts from root key-objects and dynamically identifies the
objects to move to H2. It also reduces the GC overhead by avoiding costly GC
scans over objects in H2. Because the GC scans in H2 are fenced, TeraHeap needs
to address the following: (1) how to reclaim dead objects in H2 without GC scans,
and (2) how to track backward references (H2 to H1) with low GC cost and I/O
overhead.

TeraHeap was first implemented in the Parallel Scavenge Garbage Collector
(GC). It has been shown that with the same DRAM size, TeraHeap improves per-
formance by up to 73% compared to native Spark, and also it consumes up to 4.6×
less DRAM by doing so. Implementing TeraHeap under the Parallel Scavenge GC,
makes it well-suited for big data applications that do batch processing, due to its
emphasis on achieving high throughput. In batch processing, large volumes of data
are processed in parallel, where longer pause times during garbage collection are
acceptable. Parallel Scavenge GC is designed to maximize overall system efficiency,
by parallelizing the overall performance of batch-processing applications. Different
GC algorithm addresses specific performance needs, providing flexibility for Java
developers to choose the one that aligns with the demands of their applications.

In this work, we will import the TeraHeap mechanism to the Garbage First
Garbage Collector (G1 GC) [12, 13]. G1 GC strikes a balance between throughput
and low-latency requirements. This makes G1 GC particularly suitable for appli-
cations where minimizing pause times is a top priority. We aim for the benefits of
the TeraHeap, to be passed on to the latency-sensitive application through the G1
GC. Compared with STW collectors, G1 allows users to specify a soft real-time
goal for GC pauses and meets this goal with high probability. Catering to sce-
narios where low-latency performance is crucial, such as interactive or real-time
applications, G1 GC is the preferred garbage collector.

Since Java 9 G1 is the default Garbage Collector, leading to widespread default
usage across many applications. For instance, LinkedIn employs the G1 Collec-
tor, covering around 80% of its application landscape [14]. Presto, which is a
distributed query engine that supports much of the SQL analytics workload at
Facebook is using G1 GC as well [15]. Presto is known for its ability to perform
fast interactive queries on large datasets. Moreover, Spark while collaborating
with major enterprises, has stated that they frequently encounter concerns associ-
ated with garbage collection during the Spark execution [16, 17]. The choice of a
GC algorithm can have dramatic effects on application performance and can even
influence application implementation choices. Therefore they recommend G1 GC
with some tuning for applications demanding real-time responsiveness.

In the initial implementation, TeraHeap was integrated with the Parallel Scav-
enge garbage collector. Importing TeraHeap into the G1 GC, however, presented a
non-trivial challenge due to the inherent differences between G1 and Parallel Scav-
enge. G1 employs an evacuation technique in its collections, contrasting with the
compaction technique utilized by Parallel Scavenge. A compaction must identify
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all the live objects and their new locations, to proceed with the copying. In Par-
allel Scavenege this operation is single-threaded. On the other hand, evacuations
are multi-threaded, and live objects can be copied to their new location as soon
as they are identified. Additionally, G1 incorporates a Concurrent Marking for
identifying live objects in the old generation, which traverse the heap concurrently
with the application. Also, the space reclamation in the old generation is incremen-
tal. This stands in contrast to the batch-like approach of Parallel Scavenge. The
adaptation of TeraHeap to G1 required addressing these distinct characteristics to
ensure compatibility and effective performance within the G1 garbage collection
framework. In this work, G1 was extended to do the following

• Identify the candidate objects to be moved in H2, while marking the managed
heap concurrently with the application.

• Move objects to H2, while incrementally collecting the old generation

• Reclaim dead objects in H2 without any GC scans

• Tracks backward references (H2 to H1) to find the live objects in the managed
heap (H1) and not reclaim them during a garbage collection

As the initial work of TeraHeap, we will also use the Spark framework which is
extended to use the TeraHeap mechanism through its hint-based interface, without
requiring modifications to the applications running on top of them. Our modifi-
cation took place within the HotSpot Java Virtual Machine of OpenJDK 17 [18].

We implement an early prototype approach, for the TeraHeap importation in
G1 GC. Our focus has been primarily on making the evacuation pauses and the
Concurrent Marking to utilize the secondary heap (H2). While this marks an
essential first step, there remains more work ahead to comprehensively address
other aspects of the integration process. Our evaluation shows that for the same
DRAM size, TeraHeap improves performance by up to 72% compared to native
Spark.
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Chapter 2

Background

This section provides some background related to Apache Spark, TeraHeap, and
the G1 Garbage Collector.

2.1 Apache Spark

Serialization in Spark [5] is the process of converting a Java object, which resides in
the computer’s memory (managed heap), into a format that is suitable for storing
it in memory or to an off-heap device. It also allows for the data to be trans-
ferred through the network and shared across multiple JVMs. The serialization
transforms the object into a compact sequence of bytes. On the other hand, de-
serialization is the reverse process, where the byte stream is used to reconstruct
the Java object. Serialization is useful for scenarios where you need to persistently
save the state of an object or transmit it efficiently across the network. However, it
comes with the trade-off of introducing additional complexity and overhead during
execution.

Spark represents a large collection of data as a Resilient Distributed Dataset
(RDD) [19]. RDDs are divided into smaller chunks called partitions. Each parti-
tion can be processed independently on different machines within a cluster. This
division allows Spark to perform computations in a distributed and parallel fash-
ion, making the processing more efficient and scalable.

The driver is the main program that defines the Spark application, while the
executors are the worker nodes that carry out the tasks of the application in a
distributed fashion. The Spark driver specifies a sequence of transformations and
actions on RDDs and these tasks are submitted to executors. Each transformation
generates a new RDD based on the existing one.

RDDs are lineage-based, meaning they keep track of the sequence of transfor-
mations applied to their base data. Spark operates in a lazy evaluation mode,
where transformations on RDDs are not immediately executed. Therefore when
you perform an action on an RDD, Spark needs to compute the data associated
with that RDD based on its lineage, and those intermediate results need to be

5
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recomputed each time. This also allows Spark to recompute lost data in case of
node failures.

The recomputation can be avoided by caching or persisting intermediate RDDs.
This is done through the use of persist() and cache() operations. Those intermedi-
ate results can be stored in memory (on-heap) or storage (off-heap), in a serialized
or deserialized form.

The cache() operation means that an RDD is stored on-heap in a deserialized
form. The persist() operation stores the RDD in a user-defined storage level.
Spark’s storage levels [20] are meant to provide different trade-offs between memory
usage (how much memory out of the JVM heap is used) and CPU efficiency (the
added cost of the serialization-deserialization process). The following are some
storage levels that Spark supports for persisted RDDs.

MEMORY ONLY Stores RDDs as deserialized Java objects in the JVM heap.
That is the most CPU-efficient option.

MEMORY AND DISK RDDs’ partitions that fit in memory are stored in
their deserialized form in the JVM heap. Partitions that do not fit in memory are
serialized and stored on disk. Old partitions can be evicted from memory based on
the LRU algorithm, to reclaim some space on the JVM heap for new partitions to
accommodate it. This is a good compromise between memory and CPU efficiency.

DISK ONLY RDDs are stored only on disk in their serialized form. This is the
most memory-efficient storage level, but it is also the slowest.

2.2 TeraHeap

Big data analytics frameworks process and cache massive data volumes that may
exceed the managed heap. Therefore, frameworks temporarily move long-lived
objects outside the managed heap (off-heap) on a fast storage device. However,
this approach faces two challenges. It increases the serialization/ deserialization
(S/D) cost and it heightened the memory pressure when off-heap objects are moved
back to the managed heap for processing. Moving a large volume of off-heap objects
back to the managed heap also increases the GC cost.

TeraHeap is a mechanism that eliminates these problems. It eliminates the S/D
overhead, by extending the JVM to use a second high-capacity heap (H2) that is
memory-mapped over a fast storage device [21, 22] and coexists alongside the regu-
lar heap (H1). Figure 2.1 displays the differences between the common approaches
and TeraHeap. Common approaches cannot avoid the S/D cost when attempting
to move objects off-heap. However, TeraHeap uses the Memory-mapped I/O to
craft the illusion of a single unified heap within the JVM, allowing the utilization
of the MEMORY ONLY storage level. This enables the objects to be stored in
their deserialized form in H2. Therefore Spark engages in on-heap caching, where
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Figure 2.1: (a) Native Spark Off-heap caching via S/D, (b) TeraHeap integrated
Spark, on-heap caching over a memory-mapped fast storage device

TeraHeap strategically moves objects off-DRAM over a fast storage device. This
allows for the JVM to directly access the deserialized objects in H2 without the
added cost of S/D.

Moreover, TeraHeap during garbage collection, tries to move all persisted ob-
jects in H2, and once they are moved they are never brought back to the managed
heap, as direct access from the device is feasible. This places less strain on H1, min-
imizing the memory pressure of the managed heap and as a natural consequence,
it contributes to a less frequent garbage collection. The GC cost is further reduced
by fencing the garbage collector from scanning the H2 heap to avoid excessive
I/O. As shown in the Figure 2.1, with the same DRAM size, TeraHeap consumes
less DRAM for the JVM-managed heap compared to the common approach. This
efficiency stems from TeraHeap’s ability to minimize the memory pressure on the
managed heap. TeraHeap utilizes the remaining DRAM for page cache purposes.

Frameworks use TeraHeap through its hint-based interface based on key-object
opportunism [11]. It enables the frameworks to mark candidate objects to populate
H2 and indicates when to move them off-DRAM. The hint-based interface works
at the framework level and is transparent to the applications written on top of
such frameworks.

TeraHeap addresses three main challenges, that we took into account during
its integration into G1 GC.

• Identifying and moving candidate objects to H2: it starts from root
key-objects that are candidate objects to populate H2 and dynamically iden-
tifies their transitive closure. Afterward, it indicates when to move them off
the managed heap.

• Reclaim H2 dead objects: During a garbage collection (GC) the heap
object graph is traversed. The GC scans over H2 are fenced, to avoid expen-
sive device I/O. Therefore, TeraHeap reclaims dead objects in H2 without
scanning over it during a GC.

• Tracking backward references (H2 to H1): Fencing GC scans in H2,
requires TeraHeap to further track down all the backward references (H2 to
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H1) to prevent the garbage collector from reclaiming live objects in H1 that
are referenced from live objects in H2.

Chapter 3 discusses the methodology employed to tackle these challenges, con-
sidering the distinctive nature of G1 GC.

2.3 Generational Collectors

Garbage collectors in JVM have the rationale that most objects are short-lived,
meaning that they become unreachable soon after their creation. For this reason,
the managed heap is divided into two areas, the young generation and the old
generation. Based on the object’s age, it may reside in the young space if it’s
relatively new, or in the old space if it is mature enough and it’s considered to
be a long-lived object. After every garbage collection, the age of an object is
increased.

The young generation is further divided into Eden and Survivor spaces. Eden
space holds all the new allocations that have been made by the mutator threads.
When Eden fills up, a garbage collection is invoked and the objects that were in
Eden space, are moved into the Survivor space. An object stays in the Survivor
space until it becomes of age, and by each collection it survives it’s again reallocated
in the Survivor space. When it reaches a certain aging threshold, it is promoted
to the old generation.

Based on the assumption that most objects die young, the young generation is
collected more frequently, because it is assumed to have more garbage. Thus there
are different types of collections, the ones that reclaim space only in the young
generation, and the ones that reclaim space from the young and the old as well,
but they are not as frequent.

2.4 Garbage-First Collector

Garbage-First (G1) Collector is a generational collector. G1 GC aims to strike a
balance between latency and throughput. It attempts to achieve high throughput
by meeting a pause time goal during its collections, with high probability [12]. All
collections are stop-the-world (STW) operations, meaning the application threads
are halted until the whole operation is completed. An objective of G1 is that it
should rarely need to do a full collection over the entire heap, which is a slow and
expensive STW operation. Alternatively, it does not collect the old generation in
a batch, but incrementally with small collections that meet the pause time goal.
But if these collections do not reclaim the old space fast enough a fallback to a full
GC will occur. Therefore G1 tries to minimize the duration of the STW pauses,
and this makes it ideal for latency-sensitive applications. When a fast response
from the application is expected, we want the garbage collection interference to
take as little time as possible. Thus we want to import TeraHeap to G1, for the
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big data applications that are latency-sensitive to benefit from TeraHeaps’ dual
heap management.

2.4.1 Heap Layout

Generational collectors split the heap into 3 big sections: Eden, Survivor, and Old
spaces. G1 differs from that by partitioning the heap into a set of equal-sized heap
regions, each a contiguous range of virtual memory [23]. Their size must be a
power of two (between 1MB - 32 MB) and the goal is to have no more than 2048
regions [24]. Each region is assigned to a space, therefore spaces are considered as
logical sets of regions. The percentage of heap allocation for each space is not fixed,
it can be dynamically adjusted after each collection based on the performance of
the previous collection.

If an object is bigger than the G1 region size, then it is considered humongous
and is allocated in a continuous set of regions.

2.4.2 Collections

With each collection, JVM tries to free as much space as possible, while ensuring
that there are enough free regions. There are three main collections in G1 GC

• Young collections, where only the young regions are collected. These are the
most frequent ones, as G1 is based on the hypothesis that most objects die
young.

• Mixed collections, where all the young regions are collected along with a few
candidate old regions. They collect the old generation incrementally while
following the “most garbage first” principle, hence the name Garbage-First.
They collect a part of the old generation, where the most amount of garbage
lies.

• Full collection, in which the entire heap is collected, i.e. both young and old
generations.

Young and mixed collections are trying to meet a soft real-time goal, by fol-
lowing the evacuation technique [12, 25] to reclaim garbage. For the evacuation
pauses, G1 has the concept of a collection set (CSet) [12, 3], which is a list of
regions that are being scheduled for collection. During an evacuation, a collection
set (CSet) of regions is chosen and it should be able to be collected within the
pause time limit. Figure 2.2 shows an example of a young evacuation. The circled
regions are the ones included in the CSet. The live data inside the CSet are copied
into a new set of regions, either survivor or old, based on each object’s age. At the
end of the evacuation, the CSet regions are freed and garbage is reclaimed. An
evacuation is triggered when the Eden space fills up, and no room is left for new
allocations.
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Figure 2.2: A sample of a mixed collection.

On the other hand, Full collections follow the compaction technique, where all
the live objects on the heap are marked-and-sweeped together [26]. There is no
need for a collection set here, nor the soft real-time goal is met. This is a costly GC
and it is triggered only when there is too much fragmentation in the old generation,
and there is not enough space to promote objects. All collections are parallel and
STW operations. In this work, we focus on making the evacuation mechanism
aware of the secondary heap. Consequently, we control all experimental runs so
that no Full GC is triggered (section 4.2). Porting the Full GC phase to TeraHeap
is orthogonal to this work.

2.4.3 Concurrent Marking

Upon start-up, G1 performs only Young collections and as time goes by, more and
more objects are promoted to the old generation. When the old generation occu-
pancy reaches a certain threshold [3], G1 schedules a Concurrent marking cycle.
This cycle happens concurrently with the application and tries to determine the
live objects in the old generation. We extended it so that during the old generation
liveness analysis [24], it would also find the transitive closures of the objects that
are meant to be moved in H2. Thus it does not only mark objects as live, but also
flags them for potential relocation to the secondary heap. When the concurrent
marking cycle completes, G1 knows how much live data and how many candidate
H2 data each old region has. Then G1, instead of performing young collections,
starts to perform mixed collections [3]. Mixed collections collect a part of the
old generation incrementally, based on the “most garbage first” principle, which
uses the information from the liveness analysis conducted during the Concurrent
Marking. When a sufficient number of old regions are collected, G1 reverts to per-
forming Young collections again. How many mixed collections are performed can
be tuned by numerous flags and thresholds (section 4.2). The transitive closures of
the root key-objects are found during the Concurrent Marking, and the subsequent
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Figure 2.3: G1 garbage collection cycle. The image was taken from this[3] article

mixed collections transfer the tagged objects from H1, to H2 incrementally.

In later sections, we will see that the Concurrent Marking Cycle consists of
five different phases, three of which are STW. These are the Initial Mark, Remark
and CleanUp phases. Figure 2.3 displays the G1 garbage collection cycle. Dur-
ing the Young-only phase, only young collections can be initiated. They collect
the young generation and promote objects in the old generation. When the old
generation occupancy reaches a certain threshold the Concurrent Marking begins.
In between the concurrent phases of the Marking young collections can occur.
When the Marking has been completed, a last young collection is initiated and
then the reclamation phase begins. In this phase, multiple mixed collections are
incrementally reclaiming space in the old generation. When G1 determines that
it has reclaimed enough old space, and further reclamation would be inefficient,
it stops the mixed collections. Then the cycle restarts again with the young-only
phase. Full collections can interrupt this cycle at any time, and restarting it again.
It’s worth noting that the Concurrent Marking can only be triggered during the
Young-only phase.

2.4.4 Humongous objects

Objects that are more than half a region’s size, are considered to be humongous.
A humongous allocation represents only one single-large object, and therefore it
must be allocated into a contiguous set of regions [27]. This can cause significant
fragmentation. Humongous objects are allocated directly to the old generation
and are handled differently. Those objects are never included in the CSet of an
evacuation pause, because they are too expensive to evacuate (they may exit the
pause time goal). Therefore we may include them in the transitive closure of
an object, but they are never actually moved to H2 during the evacuations. A
humongous allocation can potentially trigger a Concurrent Marking cycle or a
Full collection. Figure 2.4 shows a representation of the heap, with humongous
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objects.

Figure 2.4: Representation of G1 heap with humongous objects.

2.4.5 Write Barriers

A write barrier is a code block that is emitted into the program by the compiler
when a store operation occurs [28, 29]. It’s a mechanism that handles modification
to the object graph and ensures that generational invariants are maintained. G1
has two write barriers; a pre-write barrier, and a post-write barrier, where the
external code is inserted immediately before, or after the store operation respec-
tively [12]. As we progress through this work, in later sections we will explore their
necessity in garbage collection and how TeraHeap requires a more elaborate and
expensive post-write barrier.

2.5 Remember Sets

Because G1 employs a region-based approach, during garbage collection it is crucial
to track cross-region references. For that reason, G1 GC has independent Remem-
bered Sets (RSets) per region, to track incoming references from other regions.
Therefore only the roots and the region’s RSet must be scanned for references
into that region, instead of the whole heap which would be inefficient and increase
pause times.

To maintain RSets, G1 uses a post-write barrier [12, 30, 29] to record changes
in the heap. The card table divides each region into smaller units called cards.
When objects are modified, the corresponding cards are marked in the card table,
through the post-write barrier.

The marked cards are later scanned to identify outgoing references and update
the RSets of the corresponding regions. The processing of these cards, along
with RSet updates, occurs concurrently with the application by refinement threads
[31, 32, 30, 29] and at the beginning of each collection.

References originating from H2 are excluded from the RSets. To identify the
backward references (H2 to H1) we use a different approach (section 3.2), which
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requires a more elaborate and expensive post-write barrier.
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Chapter 3

Design and Implementation

TeraHeap manages to eliminate the S/D cost with the use of memory-mapped
I/O, and the GC cost is eliminated by fencing the garbage collection scans. In this
chapter, we will discuss the three main challenges of the TeraHeap mechanism [4],
which are (a) identifying and moving candidate objects to H2, (b) reclaim H2 dead
objects, and (c) tracking backward references (H2 to H1). Importing TeraHeap in
G1 GC indicates that the evacuation pauses and the Concurrent Marking traversals
should be fenced from scanning H2. We will also discuss the methodology employed
to tackle these challenges, considering the distinctive nature of G1 GC.

3.1 Identifying and moving Candidate objects to H2

Big data frameworks move specific objects outside the managed heap on an off-
heap fast storage device. More specifically, Spark moves off-heap intermediate
results (RDDs) organized into partitions. A partition is a group of objects with
a single-entry root reference [33]. Its objects are considered to be long-lived and
they are reused across computational stages and have similar lifetimes. Each time
such an object needs to be reused, the whole partition from the off-heap device is
deserialized and brought back into the managed heap for further processing.

TeraHeap provides a simple hint-based interface, that uses key-object oppor-
tunism [11] and enables Spark to tag those objects to be moved in H2. As the
JVM has the illusion of a single unified heap, H2 is considered an on-heap caching
that is mapped over a fast storage device. This allows for immediate access to
deserialized objects without the need for S/D. Therefore objects that are moved
in H2, are never relocated back into the managed heap (H1), which minimizes the
memory pressure of H1. Consequentially, the frequency of the garbage collections
on the managed heap is reduced.

Spark users explicitly annotate objects that need to be moved off-heap with
the persist() call. Using JNI calls during the persist() operation, TeraHeap tags
the object as a candidate to be moved in H2 [4]. This tag is essentially an extra
word in the Java object header, which tells the JVM that this object is a candidate

15
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for placement in the H2. This is the already existing mechanism of TeraHeap.

We extended the Marking process, to find the transitive closures of the objects
that were tagged for placement in H2, through the persist() call. During the
Concurrent Marking, the object graph is traversed. If it encounters a root key-
object selected for H2 placement, it tries to identify the objects in its transitive
closure and tag them for relocation in H2 as well. After the concurrent marking,
a series of mixed collections are to be followed. The tagged objects that were
found throughout the concurrent marking, are moved from H1 to H2 during the
incremental mixed GCs.

3.2 Reclamation of H2 Objects

Data-intensive processing frameworks like Spark, often employ direct I/O. The
data are fetched directly from the off-heap device into the managed heap. Since
the page cache is bypassed, this can lead to a reduction in page faults associated
with cache misses. TeraHeap on the other hand, has extended the JVM to use a
secondary heap (H2) over a fast storage device via memory-mapped I/O (mmio).
This can include I/O wait due to page faults when accessing the H2 backing device.

Therefore H2 is never garbage collected during a GC, to avoid traversing the
H2 heap as a whole. If that were to happen, due to the nature of the graph
traversal, which often may suffer from random accesses and poor page locality,
then this may trigger a page fault for every reference in the graph that it would
be followed. Moreover, the liveness analysis and the compaction of H2 will incur
high I/O traffic due to excessive read and write operations.

For these problems to be avoided, TeraHeap reduces the GC cost by fencing the
garbage collector from scanning H2 objects. Upon encountering a reference from
H1 to H2, the collector is fenced from crossing into H2. Spark creates objects that
can be grouped in sets of similar and long lifetimes. TeraHeap leverages this, to
free pace in H2 without the need for GC scans. Space reclemation in H2 is achieved
by organizing H2 in virtual memory as a region-based heap. Each H2 region hosts
object groups with similar lifetimes, which enabled us to reclaim whole H2-regions
and their objects in bulk.

Thus TeraHeap must ensure that while reclaiming an H2 region, none of the
objects in that region is referenced from live objects in H1 or H2. To find such
H2-regions, TeraHeap should tracks cross-region (H2 to H2) and forwarding (H1
to H2) references without scanning the H2.

For this purpose, TeraHeap holds some metadata per H2-region: the depen-
dency list, and the live bit [4]. This functionality is integrated into the original
TeraHeap mechanism, which is encapsulated in the ’allocator’. The ’allocator’ is
responsible for the management of the H2 heap. To us, the ’allocator’ operates as
a black box, and our interaction with it is solely through its interface functions
when importing it into G1 GC. We used these metadata and imported them as
follows:
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Dependency list

• The dependency list keeps track of the cross-region references in H2. Each H2
region has its own dependency list, which holds all the H2 regions referenced
by its outgoing references.

• Newly transferred objects in H2, may also have cross-region references. After
their evacuation in H2, their once forwarding references now become cross-
region references. Therefore during their evacuation, we also check if they
have references in existing H2 regions to update their dependency list.

• During runtime a reference in H2 may get updated. This will be logged
through the extended post-write barrier (section 3.2) and during the next
GC, if there is a new cross-region reference found the dependency list will
be updated.

Live bit

• Each H2 region has its own life bit, which indicates its readability from other
objects.

• The garbage collector clears all the live bits at the beginning of the Concur-
rent Marking.

• During the Concurrent Marking heap traversal, for every forward reference
found, the live bit of the referenced H2 region is set. The dependency list
of this H2 region is traversed and for all the H2 cross-regions in the list, the
live bit is set as well.

• At the end of the Concurrent Marking, any H2 region not marked as live,
means that it is not reachable from any objects in H1 or H2. Therefore at
the end of the marking, these H2 regions are reclaimed in bulk.

3.3 Tracking Backward References (H2 to H1)

In each garbage collection, the live objects of the collected area (CSet) are found,
and the rest are reclaimed. Fencing GC scans in H2, requires further tracking
down the references from H2 to H1 in order to identify all live objects within the
collection area. To accomplish this, we implemented an extended card table over
H2, that is optimized for fast storage devices. It’s a byte array located in DRAM,
where each entry corresponds to a fixed-size H2 card segment (similar to vanilla
JVM). At the beginning of each collection, specific card segments are scanned, to
identify all the live objects in the CSet that are referenced from H2.

Each card table entry can take one of the following values:
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• clean: no backward references, the card segment is either empty or contains
only cross-region references.

• dirty: there was a pointer update inside this segment by a mutator thread.

• oldGen: there are references only to the old generation.

• youngGen: there are references to the young generation, and there may or
may not be some to the old as well.

To track the liveness coming from H2 during a normal young GC, we scan the
cards with values of dirty and youngGen. For a mixed GC, we also scan the oldGen
cards as well. Moreover, the first phase of the Concurrent Marking is piggybacked
on a Young GC which also does an initial marking (section 3.4). During this initial
marking, all the old objects that are directly reachable from the roots should be
marked as live. Therefore during the start of a Concurrent Marking, we need to
scan all the backward references; youngGen and dirty to find the live objects that
need to be evaluated during the young collection, and the oldGen to find the old
objects that need to be marked as live. During the evacuations, we adjust the
backward references to point to the new locations of the evacuated H1 objects.

To keep the H2 card table updated, it requires a more extended post-write
barrier. When a mutator thread makes a pointer store in the secondary heap, the
post-write barrier will be triggered and the corresponding H2 card entry will be
labeled as dirty. Later on, during the next garbage collection, all the H2 dirty
cards are scanned and their value is updated. If all the backward references inside
a card segment exclusively reference to objects in the old generation, then the card
value is set to oldGen. If there is at least one backward reference in the young
generation, then the card is set to youngGen. If no backward references are found,
the card value will be set to clean. Also if a new cross-region reference is found
during the dirty card scanning, the dependency list of the contained H2 region will
be updated. Scanning H2 card table is multithreaded, therefore the GC threads
can scan its card segments in parallel.

3.4 Remember Sets and Post-Write Barrier

G1 during an evacuation pause, should find all live objects in the CSet. The CSet
can contain young regions and maybe some old ones as well. To identify the live
objects in the CSet, G1 must firstly find the objects that are directly reachable
from the JVM roots and the old generation, thereafter everything reachable from
those is found during the evacuation process. Instead of scanning the whole heap,
G1 has the concept of individual Remember Sets (RSet) [12]. Each region possesses
its own RSet, encompassing potential locations in the old generation, that might
contain references within that specific region. Essentially, the RSet stores incoming
references from the old generation. Therefore, G1 in the root set of an evacuation,
includes the JVM roots and the RSets of the regions that form the CSet.
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Figure 3.1: TeraHeap design overview in G1 GC. Both heaps are region-based and
have their own card table

References originating from H2 are excluded from the RSets. To identify live
objects within the CSet that are referenced from H2, the H2 card table is employed.
As a result, the final root set also encompasses the H2 card segments that require
scanning for this particular type of collection.

To maintain RSets, G1 uses a post-write barrier [12, 30, 29] to record changes
in the heap, along with the use of a card table over the managed heap (H1). G1
partitions the heap into equal-sized areas, referred to as card segments, which are
smaller than the regions. The card table is a byte array, where each of its card
entries corresponds to an H1 card segment [31, 32]. When an application thread
performs a store within an H1 card segment, the post-write barrier marks its card
entry as dirty. A dirty card entry indicates that the associated card segment needs
scanning to identify outgoing references and update the RSets of the regions it
points to. The processing of these dirty cards, along with RSet updates, occurs
concurrently with the application by refinement threads [31, 32, 30, 29] and at the
beginning of each collection.

Importing TeraHeap to G1, requires a more extended post-write barrier to
monitor updates in both heaps. These updates may arise from interpreted or JIT-
compiled methods using the C1 and C2 JVM compilers. To discern the heap (H1 or
H2) in which the pointer store occurs, the JVM must determine the corresponding
card table and mark the relevant card as dirty. To achieve this, an additional range
check has been introduced in the post-write barrier, enabling the selection of the
appropriate card table. Consequently, the post-write barriers in both the template-
based interpreter and JIT compilers have been extended to generate assembly code
that incorporates these essential checks.

Figure 3.1 shows the design of TeraHeap implementation in G1 GC. JVM is
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extended to use a second, high-capacity managed heap (H2) over a fast storage
device that coexists with the regular managed heap (H1). H1 resides within the
DRAM, whereas H2 is memory-mapped over a fast storage device, such as NVMe.
Both heaps are region-based and they use independent card tables that are located
in DRAM. The post-write barrier was extended to choose between these two card
tables and update the appropriate one, based on which heap the store operation
has been made.

3.5 Concurrent Marking Cycle

In every Young collection, the old generation’s occupancy is constantly calculated
based on the promoted objects. When the occupancy reaches a certain threshold,
called IHOP (Initiating Heap Occupancy Percent) [3], a Concurrent Marking is
triggered at the end of the young GC.

The marking cycle traverses the whole heap and marks all the live objects in the
old generation, for the subsequent mixed collections to reclaim them incrementally.
We extended it to find root key-objects that were tagged through the TeraHeap
interface (via the persist operation) and calculate their transitive closure. This
tag, is called tera flag and it’s an extra word in the Java object header. When the
tera flag of an object is enabled, then it’s a candidate for placement in H2. This
tera flag lets the following mixed collections know to evacuate this object in the
secondary heap, instead of H1.

For the Concurrent Marking Cycle, G1 follows the principle of the snapshot-
at-the-beggining (SATB) [12, 31]. It’s like taking a snapshot of the heap at the
start of the marking cycle. Therefore The objects identified as garbage are only
the ones that were dead when the initial snapshot was taken. Moreover, all the
newly allocated objects that appear during the marking, are considered by default
to be live. Therefore, the set of live objects found during the Concurrent Marking
is composed of the live objects in the snapshot, and the objects that were allocated
after the snapshot was taken.

SATB algorithms need a pre-write barrier that is triggered before each pointer
store, to record and mark objects that are part of the logical snapshot. When
the barrier is triggered, the value of the pointer field is stored in a SATB buffer,
before it is overwritten. These old values are considered to be live and they are
traversed, in order to maintain the heap image that is in the snapshot taken at
the beginning.

At the outside of the SATB marking, a snapshot of the heap is taken. Then the
JVM roots and the young generation in the snapshot are originally scanned. This
scan aims to identify and mark directly reachable objects in the old generation.
Subsequently, following these identified live objects, the object graph of the old
generation in the snapshot is traversed, to mark the remaining live objects. To
accomplish this task, the SATB marking is broken down into five phases, some of
which are STW and others are concurrent.
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• Initial mark phase (STW): This phase is piggybacked on a Young GC.
While the root set is scanned, G1 additionally marks as live all the root
reachable objects in the old generation.

• Root region scanning phase (Concurrent): Root regions are the re-
gions that the prior young GC just evacuated into. These can be old or
survivor regions. The root regions are scanned for direct references to the
old generation and mark them as live. This phase must be completed before
the next Young GC can start. After this phase, all the old objects that
are directly referenced from the young generation and the roots, have been
marked as live.

• Concurrent marking phase (Concurrent): Traverse the old generation
concurrently with the application threads, to find and mark all live objects.
This is done with the use of a tricoloring algorithm [34]. This phase can be
interrupted by young collections.

• Remark phase (STW): Drain the remaining SATB buffers to trace and
mark their objects if they are unvisited.

• Cleanup phase (STW): At the end of the marking, G1 knows how much
live data each old region has. In this phase, all the old regions that are full
of garbage are freed. For the rest old regions, an estimated ’price’ for their
evacuation is computed. This metric is called gc-efficiency and is based on
the reclaimable space the old region has, over the estimated time it needs to
be reclaimed. The efficient old regions are included in the candidate region
set. This set holds the old regions that are candidates for mixed collection.
G1 sorts these regions, cheapest first, resulting in a ranking of old regions
that indicate their desirability to be included in a mixed collection.

The intuition is that, at the end of the Concurrent Marking, we would have a
candidate-set of old regions, sorted based on their efficiency. From this candidate-
set, mixed collections will choose each time the most efficient old regions to include
in their collection set (CSet). Every mixed GC that would follow, will include as
many old regions, as the pause time allows. The mixed collections are stopped
when the space reclamation of the old generation is determined to be costly and
inefficient [24], or when the candidate-set is empty. It’s worth noting, that only
the old regions that existed at the time of the snapshot can be included in the
candidate-set for the incremental collections.

To import TeraHeap we need to also compute the H2 candidate data that each
old region has and account it to their gc-efficiency computation. Thus we will
have three statistics for each old region: (a) liveness ratio, which is the total live
data in the region, (b) h2-liveness ratio, which is a subset of the liveness ratio and
counts for the amount of live data that are tagged to be moved in H2, (c) and the
gc-efficiency.
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The concept is that regions with more H2 live data will have a higher possibility
of being chosen for collection [12]. Leading to a more relieved managed heap where
its memory pressure won’t cause frequent garbage collections. Thus we account
the H2 live data as reclaimable space and try to get them higher in the sorting
ranking for them to be chosen for collection. To achieve this we extended all
the Concurrent Marking phases to (a) enable the tera flag of the objects that are
included in the transitive closure, (b) increase the h2-liveness ratio of an old region
if there is such an object in it, and (c) fence the marking upon finding a forwarding
reference (H1 to H2), as to not traverse the H2 heap.

The first phase of the marking is also extended to clear the H2 regions’ live
bit. Throughout the whole marking, upon encountering a forwarding reference,
we set the live bit of the H2 region, and the live bit of its H2 cross-regions found
through its dependency list. During the final phase, H2 regions that don’t have
their live bit set (they are full of garbage) are reclaimed. Lastly the gc-efficiency
is evaluated for every old region and the candidate region set is built. Originally
G1, used the following equation to calculate the gc-efficiency for every region:

Reclaimable Bytes / (RSet scan time + Copy time)

The reclaimable space, is the amount of garbage and the regions’ unallocated
space that is left unused. The denominator represents the time required for the
region to be reclaimed, and it is comprised of the estimated time it needs to (1)
scan the region’s RSet, and (2) copy the region’s live data into another region. Note
that a region may have a small amount of live data, yet still have low estimated
efficiency because of a large remembered set. G1 then sorts these regions based on
their estimated efficiency in descending order. The cost of collecting an old region
may change over time so this initial sorting is considered approximate.

We alter the gc-efficiency equation as follows:

(Reclaimable bytes + H2 bytes) / (RSet scan time + Copy to H1 time)

As previously mentioned, H2 data (h2 liveness ratio) is accounted as reclaimable
space, and their copy time to H2 is not included in the calculation. We only esti-
mated the time it needs to evacuate objects into H1. This choice was motivated
by the strategic objective of prioritizing the ranking of the regions that contain
more H2 data. This amortization decision was taken based on the fact that the H2
data are only copied once and they are never moved from H2. Thus minimizing
the impact on the overall efficiency.

Furthermore, it is important to mention that not the whole transitive closure
of a root key-object is found, only a subset of it. That’s because only the old
generation in the snapshot is traversed. Any subtree of the object graph extend-
ing back into the young generation or to newly allocated objects, those remain
untraversed.

In more detail, the transitive closure of an object starts to form when the root
key-object is found. We know if an object should be tagged as an H2 candidate,
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only if its parent object was tagged as well. Therefore if we lose track of the
parent object, we also lose track of its whole subtree that should be included in
the closure. G1 only tries to mark the old generation. For that reason alone, it
does not follow the old to young references. Moreover, the newly allocated ones are
not traversed, as they are not included in the snapshot and therefore considered
live by default. Taking into account the preceding statements, we don’t include in
the transitive closure the objects’ subtrees that have been spawned into the young
generation or the newly allocated ones, because G1 does not traverse those areas.
Therefore we lose track of these subtrees.

As far as the SATB is concerned, we did not extend the pre-write barrier be-
cause there was no need to. The processing of the SATB buffers and the concurrent
marking happen interchangeably. Through the processing of a SATB buffer, all
the overwritten values that it holds, are marked as live and traversed, as to main-
tain the initial logical snapshot. Those objects may already be visited by the
Concurrent Marking traversal.

Thus if an object is in the SATB buffer and waits for processing, it may already
be marked (1) either before its insertion in the buffer (2) or after its insertion
through another objects referencing to it. In both cases, it will also have its tera
flag enabled if needed because it would be traversed through its parent object.
Otherwise, the object was not visited before, therefore it will be traversed earlier
than its parent, during the SATB processing. Therefore we do not know if it should
be included in any transitive closure to enable its tera flag, because we don’t know
yet this information about its parent either. Later on, when its parent will finally
be traversed through the Concurrent Marking, G1 will see that this subtree is
already visited and will not traverse it again. In consequence, an object’s subtree
may also be excluded from the transitive closure if the object has been modified
and processed through a SATB buffer.

3.6 Evacuations

When Eden space fills up, an allocation failure will occur and an evacuation will
be performed [12]. An evacuation is a garbage collection technique, where a set of
regions (CSet) is chosen to be collected [12]. Those regions should be able to be
collected within the pause time goal. G1 has two types of evacuations, the young
and mixed collections. We extended those pauses to be aware of the secondary
heap, and refrain them from reclaiming H1 objects that are still referenced by live
H2 objects. Mixed collections were also extended to transfer H2-tagged objects
off-DRAM into H2, while incrementally collecting the old generation. Evacuations
are multi-threaded. As soon as a live object is identified, (1) it is copied to its new
location, (2) the new address is communicated to the object referencing it, and
(3) the new address is also stored within the old object’s header for other objects
to discover. With the last two steps, G1 ensures that pointers are appropriately
adjusted, maintaining the integrity of the object graph. Traversing the evacuated
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object’s references, the directly reachable objects are found to be live and the
evacuation process continues. After the copying has been completed, the regions
in the CSet are reclaimed and freed.

To identify the live objects inside the CSet, the object graph is traversed start-
ing from the roots. The ‘root set’ contains the JVM roots, the RSets of the regions
in the CSet and the H2 cards that need to be scanned. Objects are evacuated to
a new set of regions, either in H1 or if we are on a mixed GC, in H2.

As previously mentioned, the TeraHeap implementation is encapsulated within
the ’allocator,’ the key entity responsible for managing the H2 heap. The ’allocator’
was originally built to work along with the Parallel Scavenge collector. In Parallel
Scavenge, TeraHeap moves objects in H2 during full collections, which are single-
threaded by default. Therefore when the ’allocator’ is asked to give the next
available address in H2, it can only handle one response at a time. The evacuations
in G1 though are multi-threaded. Thus we surrounded this action with locks.
When many threads are trying to transfer objects in H2 at the same time, they will
have to wait to get the new location that they can evacuate into. Otherwise, there
may be problems like two threads trying to copy two different objects to the same
H2-address, resulting in a corrupted heap. In more detail, the two evacuations are
extended as follows.

Young Collections During young collections, we are not moving objects in H2.
But the following adjustments were made (1) fence the collector from scanning
objects in H2 and (2) prevent reclamation of H1 live objects that are referenced
from H2 (tracking of backward references). For the first task, G1 distinguishes if
a reference is from H1 or H2, by using a reference range check and manages to
fence the traversal. For the second task, we scan the H2 card table, but only the
cards with the state youngGen and dirty. The backward references are adjusted
to point to the new location of the evacuated objects in H1. Since the H2 dirty
cards are scanned, their state is updated to clean/youngGen/oldGen.

Mixed Collections Mixed collections are incrementally reclaiming a part of
the old generation. Each mixed collection collects the whole young generation and
selects a few old regions out of the sorted candidate region set. If the evacuation
manages to complete before the pause time limit, then there is a possibility that
G1 can collect even more space in the old generation. If the remaining pause
time allows it, G1 has an optional CSet that contains the next most efficient
old regions from the candidate set, and tries to collect them as well. The old
generation is collected incrementally through multiple mixed collections. Once
G1 determines that it has reclaimed a sufficient amount of old space, and deems
further old generation collection inefficient, it transitions back to performing young
collections.

Mixed collections have the same attributes as the young collections, with the
only difference being that during the H2 card table scanning, we also scan the
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oldGen cards. Moreover, we extended this evacuation to move objects in the H2
as well. If an object has its tera flag enabled then G1 knows that its relocation
must be in the secondary heap.
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Chapter 4

Evaluation

We implement TeraHeap in G1 GC of OpenJDK17 and evaluate it with 8 widely
used applications in Spark. Our benchmarking experiments were conducted on an
Intel Xeon machine with 32 CPUs of E5-2630 v3, each running at a clock speed of
2,40 GH. It has 256 GB of RAM and it operates on the CentOS Linux 7 platform
with x86 64 architecture. The machine also has an NVMe of 1,6 TB that we will
use as a fast storage device.

We use Spark v3.3.0 with Kryo Serializer [35], a state-of-the-art highly opti-
mized S/D Library for Java, recommended by Spark. For each instance of Spark,
we use one executor with 8 mutator threads. To capture the effect of large datasets
and limited DRAM capacity, we used cgroups to restrict the available DRAM for
all processes in a single instance of Spark.

We conducted benchmarks by running both native Spark and TeraHeap-inte-
grated Spark, comparing their performance under the same DRAM sizes. A specific
budget from the cgroup DRAM was allocated for the managed heap (H1), with the
remaining DRAM devoted to system-related purposes, such as Spark drivers and
page cache I/O. For every benchmark, we divided the DRAM differently between
native and TeraHeap runs.

4.1 Native Spark Configuration

We use native Spark to compare it with TeraHeap and see the effects that we
have on the Spark application performances. Benchmarks with native Spark use
MEMORY AND DISK as storage level. Therefore the executor’s memory (H1
heap) is placed in DRAM, and persisted RDDs are placed either on the on-heap
cache (H1) if there is any space left, or they are serialized in the off-heap cache over
the NVMe. Standard practices [36, 37] have used 70% - 80% of DRAM capacity
for the JVM heap. For this reason, we also set the managed heap (H1) to be
between 70% - 80% of DRAM, and report the best results.

Native Spark employs direct I/O for storing and loading data on the off-heap
space, bypassing the page cache. Thus, the rest of the DRAM that is not used for
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H1, is exclusively utilized by the Spark drivers.

4.2 Spark Configuration for TeraHeap

TeraHeap’s configuration is comparable to native Spark, in that we configure both
to use similar resources. We configure TeraHeap to allocate the managed heap
(H1) on DRAM and memory-mapped the secondary heap (H2) over a file in the
NVMe device [21, 22]. The H2 heap is mapped to the JVM virtual address space
where the application can directly access the data without any S/D.

With TeraHeap-integrated Spark, the I/O mapping allows us to use the MEM-
ORY ONLY option for storage level. This enables TeraHeap to have direct access
to the deserialized objects in off-heap storage device (H2). Spark operates without
awareness of any specific device, as the operating system takes control of the I/O
processes. Because H2 is mapped onto the device, this can include I/O wait due to
page faults when accessing H2. Thus, the remaining DRAM here is used not only
by Spark drivers but for page cache as well to reduce the I/O wait. The division
of DRAM here is hand-tuned and we report the best results.

4.3 Tuning G1 GC

G1 collects the heap in two ways: evacuation pauses and full GC. Evacuations are
small pauses that collect only a part of the heap, while the full GC collects the
whole heap resulting in a larger pause. In our implementation, we target streaming
and real-time applications requiring small pauses. Thus, we implemented Tera-
Heap only within the evacuations. Implementing TeraHeap within the full GC is
outside the scope of this thesis and left to future work.

Notably, if the secondary heap is not empty, running the native implementa-
tions of a full collection would lead to a corrupted heap, because it cannot track
backward references (H2 to H1). The garbage collector must not reclaim H1 live
objects that are referenced by live H2 objects. Therefore in our experiments, we
tuned G1 GC to avoid full collections, by using the flags listed in Table 4.1. Also,
we run all our benchmarks with 8 GC threads to parallelize the collection process,
by setting the flag -XX:ParallelGCThreads=8.

G1 results in a full GC when the old generation is heavily fragmented, and
there is not enough old space to promote objects into, or for humongous alloca-
tions; since humongous objects are directly allocated in the old generation. To
eliminate the full GC occurrences by fine-tuning G1 GC, firstly it is important to
understand under what conditions G1 may trigger such an event. Full collections
can occur unpredictably, including during a Concurrent Marking Cycle or while
mixed collections are happening. Our goal is to proactively prevent both of these
scenarios. The initial three flags in Table 4.1 are used for the tuning of the Con-
current Marking Cycle, the following four flags are for the mixed collections tuning
and the last one is for the humongous objects.
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G1 initiates the start of a Concurrent Marking Cycle, when the IHOP threshold
is met, which is the occupancy percent of the old generation. By default that is
45%, but if the application keeps allocating and promoting objects at a high rate,
then the old generation occupancy may reach a much higher level (like 90%),
before even the Concurrent Marking finishes. In that case, G1 will trigger a full
GC and the Concurrent Marking will be aborted. To avoid this scenario we lowered
the IHOP percent to 10%, thus we ensure that G1 will initiate the start of the
Concurrent Marking earlier, before the old generation occupancy reaches high
levels to the point of initiating a full GC.

If Concurrent Marking Cycles are starting early enough, but are taking a lot
of time to finish then there is also the possibility of G1 initiating a full GC. That’s
because the subsequent mixed collections are delayed, therefore the old generation
is not timely reclaimed. Increasing the concurrent marking threads will help the
marking process to finish faster. We have configured these threads to the count of
8.

After the Marking is finished, mixed collections follow, incrementally reclaiming
space in the old generation. If the application’s promotion rate is higher than the
rate at which we reclaim memory in the old generation, then a full GC can be
initiated. That’s because mixed collections did not reclaim enough space in the
old generation quickly enough. How much old space they are able to reclaim, is
tuned by numerous flags. Therefore, we have fine-tuned G1 GC to ensure that
mixed collections can collect as much of the old generation as they can, in a
single operation emulating the behavior of a full collection. Thus all the candidate
old regions found during the Concurrent Marking will be collected in a batch,
reclaiming enough old space in time, for a full GC not to occur. As shown in
Table 4.1 we have also tuned the pause time goal to a higher target, as the mixed
collections can only reclaim space under this time limit.

Moreover, one of the main contributors to significant heap fragmentation in
G1, is the presence of humongous objects. As explained in Section 2.4.3, these are
bigger than half of the G1 region size and they are directly allocated to the old
generation in a continuous set of regions. These regions can accommodate only
one object, which is the humongous object. Therefore the last region of such an
allocation is unused, resulting in a waste of heap space. When many long-lived
humongous objects exist, G1 exhibits significant heap fragmentation in the old
generation, resulting in frequent full collections. We minimize humongous objects,
by making the G1 regions larger. More specifically we set the region’s size to 32
MB as it is the maximum region size allowed by G1.

Humongous objects are never moved because it is too expensive to do so, they
are only reclaimed when they are deemed to be dead. Thus, such objects are
never included in the CSet of TeraHeap’s mixed collections and even if they are
candidates for H2 placement they are never moved off-heap. By minimizing the
amount of objects G1 considers as humongous, we also enable TeraHeap’s mixed
collections to transfer more objects off-heap, reducing the memory pressure of the
managed heap even more. Less memory pressure means less likelihood of initiating



30 CHAPTER 4. EVALUATION

-XX:InitiatingHeapOccupancyPercent=10 Sets the old generation occupancy threshold that trig-
gers a marking cycle. The default is 45%

-XX:-G1UseAdaptiveIHOP Turn off this behavior of G1, of adapting the IHOP
percent

-XX:ConcGCThreads=8 Sets the number of parallel marking threads

-XX:MaxGCPauseMillis=50000 Sets a target value for the desired maximum pause
time. The default value is 200 milliseconds.

-XX:G1OldCSetRegionThresholdPercent=100 Sets an upper limit on the number of old regions to be
included in the CSet of a mixed collection The default
is 10 percent of the Java heap

-XX:G1HeapWastePercent=0 Sets the percentage of heap that you are willing to
waste. If the total reclaimable bytes from the old gen-
eration is less than this threshold, then G1 reverts
back to young collections.

-XX:G1MixedGCLiveThresholdPercent=100 Sets the maximum liveness of an old region to be in-
cluded in a mixed collection. If there are no such old
regions, G1 reverts back to young collections. The de-
fault is 65%

-XX:G1HeapRegionSize=32m Sets the size of a G1 region. The value can be a power
of two and can range from 1MB to 32MB.

Table 4.1: Flags used for tuning G1 GC, to avoid full collections[1, 2].

a full GC.

4.4 Workloads and datasets

For our experiments with Spark, we use the eight memory-intensive workloads from
the Spark Bench suite [38], used in the Parallel Scavenge implementation of Tera-
Heap [4]. These workloads include five graph-based workloads from GraphX [39]:
Page Rank (PR), Connected Component (CC), Shortest Path (SSSP), SVDPlus-
Plus (SVD) and Triangle Count (TR), and three machine learning workloads from
MLLib [40] : Linear Regression (LinR), Logistic Regression (LogR) and Support
Vector Machine (SVM).

Considering the volume of cached data associated with each workload, we
sought to determine a suitable DRAM size that cannot accommodate all of them,
simulating the effect of big data applications. The reported DRAM size is also
influenced by the benchmarks’ ability to progress within these constraints. The
Table 4.2 contains information about each workload, concerning their dataset size
and the DRAM division for the execution of TeraHeap and native Spark. For the
native Spark, the managed heap (H1) occupies approximately 70% - 80% of the
DRAM capacity. The reported H1 size reflects the configuration where no out-
of-memory errors were encountered during execution. TeraHeap’s managed heap
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Dataset DRAM H1 Native H1 TeraHeap
Benchmark (GB) (GB) (GB) (GB)

PR 10 8 5
CC 3 GB 14 11 6
SSSP 10 8 8

TR 192 MB 10 8 8
SVD 9 7 6

LogR 7 5 2
LinR 24 GB 7 5 2
SVM 11 9 2

Table 4.2: Configuration of each workload for native Spark and
TeraHeap integrated Spark.

(H1) size is hand-tuned and we reported the best results that the application could
progress in, without initiating a full collection.

4.5 Time breakdown

Each experiment was conducted five times and we report the average end-to-end
execution time. The execution time is broken down into four components: other
time, S/D time, young GC time, mixed GC time, and full GC time.

Other time encompasses mutator threads time, concurrent processing (Con-
current Marking and refinement processes) and the I/O overhead caused by the
cache misses. In TeraHeap, the off-heap cache (H2) is memory-mapped onto the
device, thus the other time also includes I/O wait due to page faults. S/D time
includes both shuffle and caching S/D time. In TeraHeap though, all S/D time is
attributed only to shuffling, as the cached objects are stored in their desirialized
form due to the use of the MEMORY ONLY storage level. The JVM reports the
time spent for each GC through a log file [41].

S/D overhead takes place within the mutator threads. For its estimation, we
use a sampling profiler [42] to collect execution samples from the stack trace of
these threads. We grouped all the samples for the paths that originate from the
top-level writeObject() and readObject() methods of the KryoSerializationStream
and KryoDeserializationStream classes. These samples include both shuffle and
caching paths of Spark. Then we calculate the ratio of S/D samples to the total
samples provided by the profiler as an estimation of the time spent in S/D. This
information is plotted separately in our execution time breakdowns. The profiler
operates with a 10 ms sampling interval, ensuring minimal overhead. That is the
same technique used in the original TeraHeap implementation [4].
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Figure 4.1: Performance of native and TeraHeap integrated Spark in the graph-
based workloads

4.6 Results

Figure 4.1 and Figure 4.2 show our performance results of TeraHeap and native
Spark. We found that using the same DRAM size, TeraHeap reduces execution
time between 15% (SVM) and 72% (SVD) compared to native Spark. Also, Ter-
aHeap provides better performance. The improvement in GC overhead reaches
up to 78%. This overhead primarily arises due to the occupation of the heap
by cached objects in Spark, leading to more frequent GC triggers. On the other
hand, TeraHeap transfers objects to H2 which places less strain on H1. Moreover,
TeraHeap reduces S/D cost between 3% (TR) and 92% (LogR), as it allows for
direct access to the deserialized objects in H2. The outcomes of our evaluations
are illustrated and analyzed in this section.

Note that in several benchmarks, the Other time differs between the native and
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TeraHeap implementations. This difference can be attributed to a combination of
locality effects by TeraHeap object reordering, and delays caused by page fault I/O.
Specifically, TeraHeap gradually moves all the persisted RDDs in H2 according to
their transitive closure, shaping its page locality. Objects that are of the same
RDD are grouped together, ensuring their close proximity in the device (H2). By
allowing direct access and computation over H2 objects, TeraHeap optimizes data
operations with a favorable cache locality, improving the mutator threads time
(Other time). When native Spark exhibits poor cache locality, our charts will
reflect the TeraHeap locality effect through a reduction in TeraHeap’s Other time.
However, if native Spark demonstrates a good cache locality like TeraHeap, then
the impact of I/O page faults will cause an increase in TeraHeap’s Other time. We
observed both of these scenarios in our evaluation measurements.

In the case of PR, CC, SSSP, and SVD the page locality of TeraHeap aligns
well with the specific memory access patterns and usage scenarios. Figure 4.1
displays the performance of those workloads. TeraHeap outperforms native Spark,
exhibiting less cache misses and achieving a notable reduction in Other time. In
these graph-based workloads, we note an improvement in the GC cost of 78%, 67%
, 65% and 43% in PR, CC, SSSP, and SVD, respectively. TeraHeap transferred
lots of the objects in H2, without the need to bring them back into the managed
heap like native. Thus the frequency of garbage collection and also their duration
has been reduced, compared to native Spark. Resulting in an improvement to the
overall GC overhead.

Moreover, in the SVD workload, there is a notable improvement in the S/D
cost. This improvement highlights the fact that the SVD workload caches a sig-
nificant number of RDDs. Native Spark incurs a significant cache S/D overhead,
as it undergoes serialization each time it offloads persisted RDDs to the device
and deserialization each time it brings them back on-heap for processing. The
limited size of the managed heap and the large volume of cached data intensify
the recurrent movement of cache data to and from the managed heap, leading to
heightened S/D cache overhead. However, TeraHeap doesn’t have S/D cost for
caching the objects. TeraHeap stores the persisted data in their deserialized form
in H2, and once transferred to the device they are never moved. Therefore it only
incurs the S/D costs for shuffling. This applies to all the other workloads as well,
but in the SVD it was particularly pronounced. Additionally, the S/D overhead
on the PR, CC, SSSP, and SVD workloads sees reductions of 62%, 68%, 49% and
89%, respectively.

As for the TR workload, its cached data fits on the on-heap cache. Smaller heap
sizes led to an out-of-memory error. In native Spark, the primary S/D overhead
stems from the shuffling process. Given that native doesn’t place a lot of data
off-heap because they can fit on the managed heap, it doesn’t have a lot of S/D
caching overhead. Both native Spark and TeraHeap incur shuffling overhead, but
since TeraHeap doesn’t introduce extra caching overhead, we expect to see only a
small difference in the S/D times. Figure 4.1 shows a reduction in the S/D cost
by 3% and for the GC cost an improvement of 59%. TeraHeap is similar to native,
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Figure 4.2: Performance of native and TeraHeap integrated Spark in the machine
learning workloads

but due to the major page faults occurring, there is a slightly larger other time.
During the mixed collections of the TeraHeap, 73% of the cached data have been
transferred to H2, leading to potential page faults upon access. However, native
Spark experiences minimal off-heap transfers, as indicated by the small deviation
of the S/D cost. Therefore most of the cached data in native Spark resides on-heap,
which minimizes additional I/O overhead.

In the machine learning (ML) workloads, the training phase involves 100 iter-
ations, during which streaming access is performed on the cached RDDs. Given
the small size of the page cache and the largeness of the dataset, this scenario in-
duces numerous major page faults in TeraHeap. As a consequence, data retrieval
directly from the storage device becomes necessary during each computational it-
eration, which comes with an I/O overhead. However, native Spark avoids the
page fault penalty by bypassing the page cache. Nevertheless, it loses this advan-
tage through the caching overhead, as it serializes and deserializes the RDDs while
it brings them back and forth into the managed heap. Figure 4.2 displays these
ML workloads and their performance. The other time with TeraHeap is increased
by 45%, 51% and 4% in LinR, LogR, and SVM, respectively, compared to native
Spark due to the page faults occurring. Therefore, these workloads benefit more
from a larger page cache. Moreover, in LinR and LogR there is an improvement
on the GC overhead of 72% and in S/D 92%. As for the SVM workload, there is
an improvement of 54% in the GC cost, and 52% in the S/D cost.

Throughout all our experiments, we observed a notable reduction in both the
S/D cost and the GC cost. The cached RDDs were efficiently transferred to the
secondary heap (H2), relieving the managed heap (H1). Thus, the managed heap
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in TeraHeap experiences less memory pressure compared to native Spark. Con-
sequently, the frequency of the collections has been diluted, and the number of
garbage collections occurring has dropped by up to 83%. Moreover, TeraHeap
doesn’t have to scan long-lived cached objects during its garbage collections, as
they have been moved in H2. In contrast, native Spark because of the on-heap
cache, includes such objects in the garbage collection scans, introducing an addi-
tional overhead.

While we did not completely eliminate humongous objects, their count has been
reduced between 0 and 2 GB at most. This signifies that in big data applications,
there might be instances where objects exceed 16 MB, which is half the size of a
G1 region. Moreover, we estimated that 1% - 3% of the GC time is devoted to the
scanning phase of the H2 card table, to find backward references.

With native Spark, when the application wants to access an element of a cached
RDD partition and is not on-heap, then it’s a cache miss. For each cache miss,
Spark brings back into the managed heap the whole partition, not just the element
the application was trying to access. Thus the memory pressure is heightened due
to the cached data on-heap. Thus we note that TeraHeap has a reduction in GC
frequency by up to 83%, and the pause times duration are shorten by up to 82%.
It’s worth noting that the native Spark was not able to avoid full collections, even
with the fine-tuning of G1 GC. It has a greater need for full collections contrary
to TeraHeap, because of its high memory pressure. During the TeraHeap runs,
we noticed that almost all of them necessitated an initial full garbage collection,
caused by metaspace allocation failure, which is the space in JVM that holds
class metadata. These full collections were triggered before any mixed collections
could take place, ensuring that the H2 heap remained empty, and thus, the full
collections did not risk creating a corrupt heap. Subsequently, TeraHeap did not
need to initiate another full garbage collection. This observation highlights that,
despite having a smaller DRAM heap (H1) in certain workloads as shown in Table
4.2, TeraHeap successfully mitigates memory pressure. Thus, TeraHeap also helps
G1 GC to stay true to its promise and reduce the costly fallbacks to a full GC.

Our results align closely with those reported in the original TeraHeap paper
that uses the Parallel Scavenge Collector [4]. Figure 4.3 displays those results.
Note that TH is the TeraHeap performance and Spark-SD is the native. Moreover,
the benchmark LR is the linear regression and LgR the logistic regression, whereas
ours were called LinR and LogR, respectively.
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Figure 4.3: These are the findings presented in [4] for the TeraHeap implementation
in the Parallel Scavenge Collector. They closely resemble the findings we presented
for TeraHeap in G1 GC.



Chapter 5

Related work

Related work falls in four categories: (1) off-heap cache over a fast storage device,
(2) region-based memory management for big data systems, (3) minimizing S/D
overhead that comes with off-heap processing, and (4) why we chose TeraHeap
compared to the other works

Managed big data analytics frameworks face challenges when dealing with
growing datasets, typically requiring an amount of data that do not always fit
in the managed heap. To address this, frameworks often move objects off-heap on
a fast storage device. Unfortunately, this introduces high S/D costs and memory
pressure when bringing off-heap objects back to the managed heap for processing.
Therefore managing objects off-heap presents limitations, including increased S/D
overhead and high GC cost, when objects are brought back to the managed heap
for further processing.

5.1 Off-heap caching

Recent researches focus on NVM or NVMe SSD devices for storing cached data
outside the managed heap (off-heap).

Panthera [43] introduced a semantic-aware GC tailored for big data analytics
over hybrid memories. This mechanism allocates the new generation in DRAM and
splits the old generation into DRAM and NVM, optimizing data object placement
through static analysis. However, it increases the GC overhead by scanning and
compacting objects on the managed NVM heap, which costs more than collecting
the DRAM heap.

TMO [44] monitors application DRAM usage and transparently offloads cold
data to an NVMe SSD device. It provides direct access to the off-heap device,
without the need for S/D. Nevertheless, it cannot avoid slow GC scans over the
device.

Other works [45, 46, 47] target NVM or NVMe SSD for storing managed heaps
beyond DRAM, but unlike these works, TeraHeap eliminates slow GC traversals
over the fast storage device. It archives this by fencing the garbage collector from
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scanning the off-heap data.

5.2 Region-based memory management

Broom [48] demonstrates that big-data systems generate objects with predefined
lifetimes. By using region-based memory management, Broom efficiently locates
objects that reside in shared regions, leading to improved garbage collection (GC)
times. However, Broom employs region annotations, necessitating the refactoring
of application source code, which adds some additional complexity to the devel-
oper.

Facade [49] transforms programmer-specified classes for off-heap allocation. It
separates the application objects between the managed heap which is garbage-
collected, and the off-heap which is region-based, and reclaims data at the end of
each iteration. The developer though, should identify these “boundary classes”
and annotate their code, as to specify when they can be freed from off-heap.

YakGC [50] on the other hand, finds objects with similar lifespans as defined
by the application, and allocates them in an epoch on a second region-based heap,
effectively reducing garbage collection (GC) time. However, it also adds an extra
burden on developers, while it requires the annotation of epochs.

In contrast to previous approaches, TeraHeap requires adding hints only at the
framework layer. The hint-based interface operates seamlessly at the framework
level, remaining entirely transparent to the developers of the applications.

5.3 Minimizing S/D overhead

Transferring objects from the managed heap to a fast storage device (off-heap)
poses a challenge as frameworks usually can not perform direct computations over
them. Consequently, there is a need to relocate these objects back to the man-
aged heap for processing, causing high memory pressure. This reallocation process
incurs significant serialization/deserialization (S/D) overhead, particularly for ap-
plications employing complex data structures [51, 52, 53]. There are some systems
though that support off-heap computation over byte arrays with primitive types
[54], but not over arbitrary objects. Other works [55, 56, 57] manage to reduce the
S/D cost but they require custom hardware extensions and maybe some modifica-
tions to the programming model. Also, some recent works [52, 58, 53] show that
by reducing the number of objects copied across buffers, they can also reduce the
S/D cost. However, none of these works address the GC cost problem that comes
along with the memory pressure on the managed heap.

Attempts like Skyway [51] and SSDStreamer [59] minimize the S/D overhead
but do not effectively handle the GC overhead. For instance, Skyway transfers
objects directly through the network, and SSDStreamer which is an SSD-based
caching system uses DRAM as a stream buffer for SSD devices.
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Moreover, there are also several other libraries [60, 61, 35] that are attempting
to enhance the S/D efficiency, but also fall short in mitigating the substantial
garbage collection (GC) costs associated with big data frameworks.

In this landscape, TeraHeap stands out as the first solution to eliminate both
GC and S/D for a substantial portion of objects in big data analytics frameworks.
It manages to minimize the S/D by providing direct access to the off-heap, by
mapping it [21, 22] over a fast storage device.

5.4 TeraHeap contribution

TeraHeap [4], originally designed for the Parallel Scavenge Garbage Collector
(GC), has emerged as a powerful solution to the challenges faced by big data
analytics frameworks like Spark [5] and Giraph [62]. Specifically, it addresses
the common issues of high serialization/deserialization (S/D) costs and the high
memory pressure when H2 objects are moved back to the heap for processing
while remaining transparent to the end user. TeraHeap, for the same DRAM size,
demonstrates significant performance gains including up to a 73% improvement
and a 4.6× reduction in DRAM consumption, compared to native Spark. Also, it
improves up to 28% and needs 1.2× less DRAM capacity than native Giraph. Fi-
nally, it outperforms Panthera [43], a state-of-the-art garbage collector for hybrid
memories, by up to 69%.

Our work builds upon these prior efforts, importing the proven advantages
of TeraHeap into G1 GC, which is well-suited for applications with low latency
requirements. The integration aims to extend the benefits of TeraHeap to latency-
sensitive applications within the big data domain, combining the strengths of Ter-
aHeap’s innovative mechanisms with the efficiency and adaptability of the G1
Garbage Collector.
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Chapter 6

Future work

6.1 Full GC

In the pursuit of optimizing the G1 garbage collector, future work aims for the
awareness of the Full GC regarding the secondary heap. Additionaly Full GC
would be extended to identify the transitive closures of the root key-objects and
transfer them in H2.

As the Full GC does not need to meet the real pause time goal, humongous
objects can be moved in H2 as well, if they are included in a transitive closure.
Those are large objects allocated in continuous regions, where nothing else can
be allocated in the regions in which they reside. This can cause fragmentation
issues in the managed heap, as they may have significant space left over in their
last region, ultimately mitigating the risk of out-of-memory (OOM) errors [27].
Humongous objects are never moved, thus by transferring them off the managed
heap, the frequency of garbage collections is expected to decrease.

Furthermore, we could run latency-sensitive application and see the effects it
has on latency, without setting the pause time limit and all this tuning we have
made. Consequently, the integration of TeraHeap into the full garbage collection
of G1 not only addresses the challenges posed by humongous objects but also helps
G1 GC to maintain small pauses under the targeted pause time goal, without many
fallbacks to a full collection. Upon the completion of this task, we could be able
to measure the latency improvements of the applications.

6.2 Pause Time Estimation

To meet the pause time goal in the evacuation process, the collection set is carefully
chosen to ensure it can be collected within the available time frame [12]. For young
collections, the entire CSet consists of young regions. Predicting the number of
such regions in advance is essential for meeting the desired pause time goal. Thus
G1 keeps track of the real pause times, to dynamically adjust the size of the
young generation after each evacuation. This leads to a natural period between
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evacuation pauses.

In mixed collections, G1 may include additional old regions if pause time allows.
The regions are chosen based on the garbage-first policy. However, the selection of
regions ceases when the ”best” remaining old region surpasses the specified pause
time limit. For this purpose, G1 must estimate the time it needs for an old region
to be evacuated, as to check if it can be reclaimed without exceeding the pause
time limit.

Therefore G1 needs to estimate the pause time as close to reality as possible,
to stay true to his promise of meeting the soft real-time goal. For future work,
this estimation could be expanded to consider the scanning of H2 cards and the
evacuations in the secondary heap, which are more expensive because of the device.
Currently, we only take into account the objects that will be transferred in H2,
and we consider them as reclaimable space. These help to promote more objects in
H2 but the inaccuracy of the predicted time results in mixed collections exceeding
their pause time limit. In our evaluation, this did not happen as we have set the
pause time target to a greater limit.

6.3 Remember Sets

As of now the backward references (H2 to H1) are identified through the H2 card
table scanning. H1 though has remember sets that keep track of incoming pointers
for all its regions. Remember sets have different levels of precision [32, 30], and a
potential future work would be to see how we could incorporate references from
H2 into the remember sets as well. This analysis will shed light on the trade-offs
between the two methods and guide the selection of the most effective strategy for
handling H2 references.

6.4 Asynchronous H2 transfers

During the mixed collections, we transfer objects in H2 via memcpy which is a
synchronous blocking operation. Therefore, for each object we evacuate in H2,
we will be accessing H2 again to adjust its pointers as many times as the amount
of its references. Each time one of its referenced objects is evacuated, we will be
accessing H2 to update its reference and point to the new location of the evacuated
object.

As a part of future work, we envision transforming this process into an asyn-
chronous operation. For example, a way to approach this is as follows. While
traversing the CSet object graph, the objects for placement in H2 are identified
but not moved. Their new H2 locations are determined and stored within their
headers. Even if the H2 objects are not moved yet, their pointers are adjusted
while residing in the managed heap. Once all relocations in H1 have been suc-
cessfully completed, and all the H2 objects have their new location stored in their
header, then we can proceed to the relocation process in H2. This can ensure that
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all the tera-flagged objects have their pointers adjusted before moving them in
H2. Therefore there is no need to access the secondary heap for pointer stores,
but only for evacuations. To expedite this, H2 objects could be copied in batches
asynchronously, introducing efficiency to the overall operation.

6.5 Multi-threaded Allocator

“Allocator” is the encapsulated implementation of TeraHeap. To import TeraHeap
in G1 GC, we use the allocator interface to interact with the secondary heap. The
allocator was originally designed to facilitate single-threaded operations. However,
the garbage collections in G1 are multi-threaded. Therefore an interesting direction
for future work would be to make the allocator support multi-threaded requests.

This enhancement could eliminate the need for locks when interacting with the
allocator’s interface. By doing so, contention is reduced, which can lead to better
responsiveness, especially when multiple threads need to make progress without
having to deal with lock-related delays.
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Chapter 7

Conclusion

With the exponential growth of datasets, big data frameworks like Apache Spark
demand for a larger heap size. In managed language environments like JVM,
large heaps incur excessive GC overhead. Therefore, frameworks avoid using large
heaps and resort to expensive off-heap S/D when managing large datasets. How-
ever, the repeated S/D creates significant CPU overhead that cannot currently
be reduced without increasing GC overhead. Such overheads can be eliminated
using TeraHeap, which extends the JVM heap over a fast storage device. Ter-
aHeap is an on-heap cache mechanism, provides direct access over cached data,
eliminating both GC and S/D cache overheads. TeraHeap was originally imple-
mented in the Parallel Scavenge Collector for batch-processing applications, and
it has shown significant improvements in the applications’ performance. In our
work, we imported TeraHeap mechanism into the Garbage-First (G1) Collector.
G1 has a great balance between throughput and low-latency requirements. The
garbage collection pauses under G1, are trying to meet a soft real-time goal with
high probability. Thus, we aim for the benefits of TeraHeap, to be passed on to
the latency-sensitive application through G1 GC. Our results show that TeraHeap
improves performance by up to 72% compared to native Spark. Moreover, the
S/D and GC overheads are reduced by up to 92% and 78%, respectively.
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