
Farcast: Improving Forecasting Accuracy via SDN

Michael Bamiedakis-Pananos

Thesis submitted in partial fulfillment of the requirements for the

Master of Science degree in Computer Science

University of Crete
School of Sciences and Engineering

Computer Science Department
University Campus, Voutes, Heraklion, GR-70013, Greece

Thesis Advisor: Assistant Prof. Xenofontas Dimitropoulos

This work was partially supported by Institute of Computer Science, Foundation of Research and
Technology Hellas

UNIVERSITY OF CRETE

COMPUTER SCIENCE DEPARTMENT

Farcast: Improving Forecasting Accuracy via SDN

Thesis submitted by
Michael Bamiedakis-Pananos

in partial fulfillment of the requirements for the
Master of Science degree in Computer Science

THESIS APPROVAL

Author:
Michael Bamiedakis-Pananos

Committee approvals:
Xenofontas Dimitropoulos
Assistant Professor, Thesis Supervisor

Maria Papadopouli
Associate Professor, Committee Member

Athanasios Mouchtaris
Associate Professor, Committee Member

Departmental approval:
Antonis Argyros
Professor, Director of Graduate Studies

Heraklion, June 2017

Abstract

Forecasting in computer networks is the process of anticipating future traffic demands
based on present and past data and by analysis of trends. Network providers use forecast-
ing in order to examine whether the traffic is routed efficiently, also they use it for band-
width allocation and congestion control. In this work, we propose an approach, which we
call Farcast, for improving the accuracy of network traffic load forecasting using Software
Defined Networking (SDN) principles. In Farcast, the traffic load predictions for moni-
tored links are sent to an SDN controller. The SDN controller has a global view of the
network and monitors the network state in time frames called inform intervals. In these
intervals, the SDN controller receives messages from network switches, about the cur-
rent traffic flows traversing the network. Then, the SDN controller assesses whether the
predictions will be accurate or not, based on the current traffic demands. If there are im-
minent inaccurate predictions, the controller ensures that the prediction error is reduced,
by re-routing, when possible, the flows in the network accordingly.

Farcast was implemented in a simulated SDN environment. The experiments simu-
late traffic bursts that are difficult to predict with traditional forecasting approaches. We
compare the performance of the AutoRegressive Integrated Moving Average (ARIMA)
forecasting method with Farcast. The results show that Farcast reduces the Mean Ab-
solute Percentage Error (MAPE) of the traffic load predictions, by up to one order of
magnitude, when the goal is to satisfy the predictions for a single link in the network.
Moreover, when adjusting the load of multiple monitored links concurrently, Farcast re-
duces the MAPE by up to 50%. Our approach can be deployed independently of the
machine learning algorithm used for the predictions.

For example, such a approach would be useful in the 40-Gigabit-capable Passive
Optical Network (XG-PON) standard. The PON is composed of Optical Netwok Units
(ONUs) and an Optical Line Terminator (OLT). The ONUs predict the future traffic load
and send bandwidth requests to the OLT, based on their predictions. The OLT performs
the dynamic bandwidth allocation based on the ONUs’ requests. In such schemes, the
dependability on forecasting is critical, as wrong predictions can lead to underutilization
of system resources or traffic congestion.

Περίληψη

Το Forecasting στα δίκτυα υπολογιστών είναι η διαδικασία πρόβλεψης μελλοντι-
κών αιτημάτων κυκλοφορίας με βάση τα υπάρχοντα και τα παρελθόντα δεδομένα και

την ανάλυση των τάσεων. Η πάροχοι δικτύου χρησιμοποιούν το Forecasting ώστε να
εξετάσουν εάν η κίνηση διοχετεύεται αποτελεσματικά, χρησιμοποιούν τις προβλέψεις

για την κατανομή εύρους ζώνης και τον έλεγχο συμφόρησης. Για τέτοιου είδους ε-

φαρμογές, η ακρίβεια των προβλέψεων για την μελλοντικό φόρτο κίνησης, έχει μεγάλη

σημασία για τους παρόχους δικτύου. Στη παρούσα διπλωματική, προτείνουμε μια προ-

σέγγιση, την οποία ονομάζουμε Farcast, για τη βελτίωση της ακρίβειας της πρόβλεψης
της κίνησης του δικτύου χρησιμοποιώντας τις αρχές των Δικτύων Καθοριζόμενων

από Λογισμικό (SDN). Στο Farcast, οι προβλέψεις που έγιναν από τους μεταγωγείς
δικτύου αποστέλλονται σε έναν ελεγκτή SDN. Ο ελεγκτής SDN έχει μια συνολική
εικόνα του δικτύου και είναι σε θέση να παρακολουθεί τη κατάσταση του δικτύου σε

ορισμένα χρονικά πλαίσια που ονομάζονται διαστήματα ενημέρωσης. Σε αυτά τα δια-

στήματα, ο ελεγκτής SDN λαμβάνει μηνύματα από τους μεταγωγείς δικτύου, σχετικά
με τις τρέχουσες ροές κυκλοφορίας που διέρχονται από το δίκτυο. ΄Επειτα, ο ελεγκτής

SDN αξιολογεί εάν οι προβλέψεις των μεταγωγέων πρόκειται να είναι ακριβείς ή όχι,
βασιζόμενος στις τωρινές ανάγκες της κίνησης. Αν υπάρχουν ανακριβείς προβλέψεις

που αναμένονται, εξασφαλίζει ότι το σφάλμα πρόβλεψης για κάθε μεταγωγέα μειώνε-

ται, αναδρομολογώντας, όταν αυτό είναι δυνατόν, τις υπάρχουσες ροές στο δίκτυο

ανάλογα.

Το Farcast υλοποιήθηκε σε ένα περιβάλλον προσομοίωσης SDN. Τα πειράματα προσο-
μειώνουν απότομες μεταβολές της κίνησης, οι οποίες είναι δύσκολο να προβλεφθούν

με τις παραδοσιακές μεθόδους πρόβλεψης. Συγκρίνουμε την απόδοση της μεθόδου

πρόβλεψης Αυτοπαλίδρομου Ολοκληρωμένου Μοντέλου Κινητού Μέσου ARIMA με
το Farcast. Τα αποτελέσματα δείχνουν ότι το Μέσο Απόλυτο Ποσοστιαίο Σφάλ-
μα (MAPE) μπορεί να υποστεί μείωση μιας τάξης μεγέθους όταν ο στόχος είναι να
ικανοποιηθούν οι προβλέψεις μιας σύνδεσης εντός του δικτύου. Επιπλέον, όταν πα-

ρακολουθείται ο φόρτος πολλαπλών συνδέσεων ταυτόχρονα, υπάρχει βελτίωση στο

MAPE, έως 50%. Η μέθοδος μας μπορεί να υλοποιηθεί ανεξαρτήτως του αλγορίθμου
μηχανικής μάθησης που χρησιμοποιείται για την εξαγωγή προβλέψεων.

Για παράδειγμα, μια τέτοια προσέγγιση θα ήταν χρήσιμη στο παθητικό οπτικό δίκτυο

χωρητικότητας 10 Gigabit (XG-PON). Το PON αποτελείται από οπτικές δικτυακές
μονάδες (ONUs) και μια γραμμή οπτικού τερματισμού (OLT). Τα ONUs προβλέπουν
το μελλοντικό φόρτο της κίνησης και στέλνουν αιτήματα εύρους ζώνης στην OLT, τα
οποία βασίζονται στις προβλέψεις τους. Η OLT κατανέμει δυναμικά το εύρος ζώνης
βασιζόμενο στα αιτήματα των ONUs. Σε τέτοια σενάρια, η αξιοπιστία των προβλέψεων
είναι μείζονος σημασίας, καθώς λάθος προβλέψεις μπορεί να οδηγήσουν σε υπολει-

τουργία των πόρων του συστήματος ή σε κυκλοφοριακή συμφόρηση.

Acknowledgements
Fist, I would like to thank my Professor, Xenofontas Dimitropoulos, for his valuable guid-
ance and encouragement during the course of this thesis. I would like to thank him for
giving me the opportunity to work with him and making me a member of the INSPIRE
group.
Then, I would like to specially thank Christos Liaskos, to whom I am grateful, for all of
his support, encouragement, contribution to this work, advices and excellent ideas.
I would like to thank all of the members of the group Manos, George, Vasileios, Pavlos,
Lefteris, Dimitris, Alexandros, Petros and Gabriel for their constant encouragement and
helpful discussions during the course of this thesis.
Last but not least, I would like to devote this work to my family and friends whose support
and belief in me was unparalleled.
The project leading to this application has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 338402.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Contribution . 2
1.3 Thesis Outline . 3
1.4 Related Work . 3

2 Background 7
2.1 Software Defined Networks . 7
2.2 ARIMA . 9
2.3 OMNeT++ . 12

2.3.1 Modeling Concepts . 13
2.3.2 NED Overview . 14
2.3.3 Events . 15

2.4 Components, Simple Modules, Channels 15
2.5 The INET Framework . 17
2.6 OfOMNeT . 19

2.6.1 OpenFlow Messages . 19
2.6.2 Openflow Switch . 20
2.6.3 Openflow Controller . 22

3 Approach 25
3.1 A Simple Use Case . 26
3.2 Prediction Intervals . 28
3.3 Farcast Flowchart . 29
3.4 Switch Functionality . 30
3.5 Controller Functionality . 31
3.6 Optimal Calculation of Path Load . 33
3.7 Farcast Limitations . 34

4 Evaluation 37
4.1 Benchmark . 37
4.2 ARIMA Implementation . 39
4.3 One Switch Results . 39

I

4.4 Three Switches Results . 43

5 Conclusions and Future Work 47

II

List of Figures

1.1 XG-PON network . 2

2.1 Simplified view of an SDN architecture. 8
2.2 Simple and compound modules. 14
2.3 Inheritance of component, module and channel classes. 16
2.4 UDP datagram. 18
2.5 Implemented OpenFlow messages. 20
2.6 OfOMNeT Switch. 21
2.7 OfOMNeT Controller. 22
2.8 OfOmnet Controller Behaviours. 23

3.1 A network using Farcast. 25
3.2 2 flows in the network. 26
3.3 Flow 2 down and flow 3 inserted. 27
3.4 Re-routing to aid forecasting. 27
3.5 One Farcast Prediction interval. 28
3.6 Farcast phases. 29
3.7 Farcast logic flowchart. 30

4.1 Farcast test scenario. 37
4.2 Inserting an elephant flow in each inform interval. 41
4.3 Subtracting an elephant flow in each time slot. 41
4.4 Inserting/Subtracting an elephant flow in each time slot. 42
4.5 Inserting an elephant flow when monitoring all switches. 44
4.6 Subtracting an elephant flow when monitoring all switches. 45

III

IV

Chapter 1

Introduction

1.1 Motivation

Forecasting is the process of making predictions for the future based on past and present
data and most commonly by analysis of trends. Network traffic analysis and prediction
resembles a proactive approach instead of a reactive approach, where a network is mon-
itored for security breaches or other malicious or out-of-order behaviour [1]. Internet
traffic forecasting can help to detect such misbehaviours of the network traffic, before
they actually occur. Security attacks like Denial-of-Service, viruses, crossfire attacks [2]
or spam could be predicted by comparing the real traffic with the predicted traffic of fore-
casting algorithms [3]. This results in an earlier detection of attacks which can benefit the
quality of service (QoS).

Internet traffic forecasting is of great benefit in areas like bandwidth allocation, network
security, network planning and predictive congestion control [4]. Long-period traffic fore-
casting is used for designing future capacity requirements by Internet-Service-Providers
(ISPs) and permits for better management decisions [5]. With better traffic forecasting,
reliable traffic engineering tools can be made, that adapt to future conditions of the net-
work [6].

On the other hand, short-period prediction could improve the dynamic resource alloca-
tion and can be used to improve the QoS mechanisms [7]. These network schemes help
in distributing the network bandwidth with regard to the predicted traffic [8]. Predictive
bandwidth allocation can be used in data centers in order to improve the link utilization [9]
and in ATM networks [10]. As an example in predictive bandwidth allocation, consider
the 40 Gigabit Passive Optical Network (40G-PON or XG-PON), which is a networking
standard for data links capable of delivering rates up to 40 Gbits/s over existing fibre.
These networks consist of an optical line termination (OLT) and several optical network
units (ONUs), as shown in Figure 1.1. The ONUs send traffic to the OLT, in each time
slot called frame. The OLT provides transmission slots to the ONUs, by performing a
Dynamic Bandwidth Allocation (DBA) algorithm after receiving requests from ONUs.

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: XG-PON network.
.

Because of the fibre’s differential distance of up to 40 km between the OLT and the
ONU’s, there are high propagation delays which should be taken into consideration. There
are works that develop fair algorithms for bandwidth allocation [11]. Interestingly, there
is recent work in which the authors create a DBA scheme for XG-PON, that relies on fore-
casting the additional arrivals in ONUs during the polling process [12]. By forecasting
the additional arrivals, the additional bandwidth requests are predicted, making improve-
ments to the network performance in latency and jitter.

However, traffic forecasting can be inaccurate. The traffic spikes that may occur are diffi-
cult to detect even when the traffic is directly observed [13], let alone when someone has
to predict them. The traffic spikes have an negative impact in bandwidth applications. For
example in the XG-PON case, traffic spikes will result in poor bandwidth allocation, as
the bandwidth requests are based on the ONUs predictions on their future traffic [14].

1.2 Thesis Contribution

This work proposes an approach, which we call Farcast, to improve the network traffic
forecasting accuracy, independently of the traffic model or the method used for forecast-
ing by the network’s components. Our goal is to improve the Internet traffic forecasting
accuracy, using Software Defined Networks (SDN). The SDN controller is the SDN’s
brain and has a global view of the whole network, therefore it has all the information it
needs about the traffic that traverses the network and the network’s topology. Thus, the
controller is the most suitable candidate for traffic shaping and traffic engineering, which
with a proper scheme, can result to more dependable Internet traffic forecasting.

Farcast is implemented in the OMNeT++ network simulator [15], using the OfOMNeT
framework [16]. We simulate a computer network and make predictions on specific links

1.3. THESIS OUTLINE 3

using the Auto Regressive Integrated Moving Average (ARIMA) method [17]. Then, we
simulate traffic bursts by inserting into the network more traffic than the ARIMA antici-
pates or by extracting traffic from the network. In the results we compare the performance
of the ARIMA method with the performance of Farcast. The results show that Farcast can
improve the Mean Absolute Percentage Error (MAPE) by one magnitude of order when
one link is monitored. Furthermore, when several links are monitored and there are no
back-up links to extract or insert traffic, we show that Farcast can improve the MAPE by
50%.

As an example of an application that Farcast could be useful, consider the XG-PON stan-
dard. Farcast can redistribute the existing traffic in order to help the ONUs make more
accurate predictions, by redirecting traffic from an ONU that made a bandwidth request
that is higher than the bandwidth the ONU needs, to an ONU that made a bandwidth re-
quest that is lower than the bandwidth it needs. In this way, the network performance will
be further improved.

1.3 Thesis Outline

The rest of this chapter presents the related work on forecasting. It contains work on im-
proving forecasting accuracy using different machine-learning methods. The rest of this
thesis is written based on the following outline.

Chapter 2 presents the Software Defined Networks and the OpenFlow protocol. Addi-
tionally, it shows the basic principles of time-series forecasting (TSF) using the ARIMA
method. Furthermore, it presents the OMNeT++ simulator and the OfOMNeT framework
which were used at the implementation.

Chapter 3 details the methodology of this work. It explains the intervals used for Farcast
monitoring and the additions that were implemented at the switches and the controller
respectively, in order to support Farcast. Moreover, it explains how the controller makes
its re-routing decisions. Finally, in this Chapter the limitations of Farcast are examined in
detail.

In Chapter 4 the setup used for evaluating Farcast’s performance is shown. A discus-
sion of the results is included.

Finally, the conclusion and future work directions are presented in Chapter 5.

1.4 Related Work

Internet traffic forecasting has been studied thoroughly, because of the topic’s interest and
importance. In [18, 19] the authors show that the ad hoc network traffic and the Ethernet

4 CHAPTER 1. INTRODUCTION

traffic, respectively, is self-similar. Particularly, in [18] they validate that the ad hoc net-
work traffic is forcastable, since self-similar time-series can be forecasted. Additionally,
in [20] the authors assess the predictability of network traffic and they conclude that net-
work traffic forecasting shows good potential. This potential is also shown in [21], where
the author focus on the predictability of the TCP/IP end-to-end throughput and latency.

The authors in [3] and [22] compare the ARIMA and Holt-Winters methods with a novel
neural network ensemble approach on the same datasets, to assess which method works
best for different time frames. They concluded that the Holt-Winters is the best option
with the daily forecasts, while the neural ensemble achieved best results for 5 minute and
hourly datasets. Additionally, they show that the neural network ensemble is competitive
compared with the Holt-Winters and the ARIMA.

In [4] the authors experiment with forecasting approaches for Internet traffic and propose
different models and architectures like combining FARIMA and Artificial Neural Net-
works (ANN). They select their model based on the White’s Neural Network test for non-
linearity and compare their hybrid forecasting models with well-known methods, such as
Holt-Winters, ARIMA, and FARIMA. They find that forecasting approaches which take
non-linearity into account lead to better overall forecasts for Internet traffic.

The authors in [8], present a Neural Network method for traffic forcasting for all links
of a backbone network, using both univariate and multivariate strategies. The former uses
only past values of the forecasted link, while the latter combines past values of the fore-
casted link and the past values of the neighbouring links that are expected to affect the
link which traffic is forecasted.

The authors in [23] introduce a multi-resolution finite-impulse-response neural-network-
based learning transform. This learning algorithm employs the analysis of a signal into
wavelet coefficients and scaling coefficients. When this algorithm is applied to network
traffic prediction, the results show that the accuracy of the neural network is improved.

In [5], the authors propose a new method for collecting historical data from Internet data
flows. Furthermore, they present the use of new long-term forecasting models based on
multiple settings of Time-Lagged-Feedforward Networks, which is a static neural net-
work, whose model includes a delay window that works as a short-term memory. Results
show that this approach is a good option for planning network links that transport Internet
traffic.

Additionally, in [24], the authors propose another model for long-term traffic prediction
by dealing with the internal relationship of long time scale network traffic, this paper
combines the regular trend and the smooth or seasonal trend of hours and days, then fits
the dual-related model to predict long time scale traffic. The result indicates that the pro-
posed model effectively identified the correlations of data between days and hours, and is
successful in forecasting approaches.

1.4. RELATED WORK 5

In [25], the authors develop a methodology to forecast the fluctuations of Internet traf-
fic in an international IP transit network. If needed, the origin-destination demands are
estimated a posteriori through traffic matrix inference techniques. Their methodology
relies on Principal Component Analysis and Time Series modeling. They show that five
components represent most of the traffic total variance and that these components are quite
stable over time. This stability allows them to develop a method that produces forecasts
automatically without any model to fit.

All previous works mentioned above focus on making the Internet traffic predictions more
accurate by improving the methods or generating new models/techniques that are used for
traffic prediction. Additionally, they compare how different models make predictions in
different situations like short-term, mid-term or long-term predictions to assess which
model is best for each situation. The difference with our work is that it is focused on
making the traffic predictions accurate independently of the prediction algorithm used by
using the Software Defined Network’s global view of the network to reroute flows.

In [7] the authors advocate the use of time series analysis for Web traffic modeling and
forecasting. They show that the number of Web requests handled by a server or the amount
of data retrieved per hour by a server can be accurately modeled with seasonal ARIMA
models. Then, they use these models to make medium-term predictions of client requests
characteristics. The predictions are taken into consideration for dimensioning decisions.

The authors in [26], present a novel network attack diagnostic methodology, based on
the characterizations of the dynamic statistical properties of normal network traffic. They
develop an anomaly-tolerant non-stationary traffic prediction technique and then intro-
duce dynamic thresholds where they define adaptive anomaly violation conditions as a
combined function of magnitude and duration of the traffic deviations. They show that
the approach is efficient and effective under the presence of different attacks such as mail-
bombing attacks and UDP flooding attacks. While this work is mostly statistical, it shows
how powerful the network traffic prediction is for the detection of network attacks.

Adaptive traffic engineering depends on the ability to obtain accurate snapshots of the
network’s state in little time, as well as to react rapidly to state changes. In such traf-
fic engineering methods, a control server periodically measures the traffic load in the
network and dynamically changes the routes so as to minimize the network congestion
[27, 28, 29, 30, 31]. However, traffic engineering using the measured traffic only mit-
igates the observed congestion and never avoids the future congestion. The difference
with our work is that we replace the computer server with a SDN controller. Additionally,
instead of measuring the traffic load and avoiding the congestion, we take into account the
predictions about future traffic and ensure their validity, if they do not lead to congestion.

Predictive traffic engineering has the same goals with the adaptive traffic engineering,
however the server monitors the traffic predictions instead of the actual traffic in the net-

6 CHAPTER 1. INTRODUCTION

work. In [6], the authors propose a prediction procedure that consider the short-term and
longer-term future traffic demands, in order to adapt their traffic engineering decisions.
They focus on the results of traffic engineering instead of the accuracy of the predictions,
while we focus on ensuring the prediction’s validity.

Chapter 2

Background

This chapter focuses on the background of this thesis. It contains a description of the
Software Defined Networks architecture, which is used in Farcast for monitoring and re-
routing flows to help the switches make more accurate predictions. In addition, it defines
the time-series forecasting and describes the ARIMA methodology for predicting the next
value in a time-series. Furthermore, it gives a description of the OMNeT++ simulator and
the OfOMNeT framework, which is used for SDN simulations in OMNeT++.

2.1 Software Defined Networks

Traditional enterprise networks are characterized by high design complexity, which gen-
erally leads to a significant amount of administrative manual intervention. The more
complex a network is, the more likely it is to be prone to failures, making it more difficult
to upgrade and manage [32]. To configure the network’s policies, the network operators
need to set the configuration of each network device, separately, using low-level com-
mands [33]. These commands are often vendor specific, making it even harder to set the
network behaviour across different vendor hardware.

In addition, the control plane than manages the forwarding decisions and the data plane
that forwards traffic according to the control plane’s decisions are implemented together
in the networking devices. This reduces flexibility making it harder for the researchers to
make innovations at the networking infrastructure. Because of the network inflexibility,
the Internet architecture is hard to evolve [34].

Software Defined Networking (SDN) is a network approach that allows the network op-
erator to perform the administrative functions of controlling, changing and managing the
network behaviour dynamically, by using open interfaces and abstractions of low-level
functionality. SDN changes the network limitations by separating the network’s control
plane from the data plane. This makes the network switches inexpensive, since they just
become simple forwarding devices, while all the control logic is placed in a centralized
controller [35, 36].

7

8 CHAPTER 2. BACKGROUND

Figure 2.1 shown a simplified view of an SDN architecture. The decoupling of the control
plane and the data plane is shown, as the forwarding devices, e.g. the OpenFlow switches,
are separated from the controller platform. The Southbound APIs are used for the SDN
controller and forwarding devices communications, e.g. the OpenFlow protocol. The
southbound APIs define the way that the SDN controller interacts with the underlying in-
frastructure. Furthermore the northbound APIs are used for the SDN controller to interact
with the services and applications running over the network. This gives the SDN network
programmability. In simple terms, the northbound interface is an interface that allows the
controller to communicate with higher level components, while the southbound interface
allows the controller to communicate with lower-level components.

In SDN the forwarding decisions are flow-based. A flow is defined by a set of packet

Figure 2.1: Simplified view of an SDN architecture. [33].

field values acting as a match criterion and a set of actions on the flow. The matching
criteria group together a set of packets from a source to a destination. On this particular
group, a set of actions, meaning instructions is implemented. Using this approach, the
group of packets will receive similar service from the network regardless of the device
that handles them, since the controller sets the behaviour of all the devices in the net-
work. This flexibility allows for innovation as new protocols can be implemented easily,
as well as, adaptability in situations were different control logic needs to be implemented
by the network operators. Another plus of the SDN architecture is that the controller has a
global view of the network, making it easier to make topology aware forwarding decisions
[37, 38].

All the control logic is moved to an external entity, the SDN controller or Network Op-

2.2. ARIMA 9

erating System (NOS) [39]. The NOS allows the programming of the forwarding devices
of the network and can be seen as the operating system of the network. On top of the
NOS, several software applications are run. These applications interact with the network
hardware through the logical abstractions and resources provided by NOS.

The limitations of SDN is that with the increasing number of forwarding devices in the
network, the number of messages exchanged between the devices and the controller,
increases. Additionally, the more distant a switch is, the more delay is added to the
controller-switch communication. Moreover, the controller is a single point of failure
in the network, if the controller is compromised by an external malicious entity, the whole
network’s security is also compromised. Finally, the controller’s processing power bounds
the performance of the network. These issues can be solved by having a cluster of con-
trollers manage the network instead of just a single controller. Of course, adding more
controllers raises the cost of deploying such a network.

The OpenFlow standard is managed by the Open Networking Foundation, a user-led or-
ganization dedicated to the promotion of Software Defined Networking. The Openflow is
a communications standard between the control and forwarding layer of the SDN archi-
tecture. OpenFlow allows the direct access and manipulation of the forwarding plane of
network devices and allows switches from different vendors to be managed using a single
open protocol. The OpenFlow is layered on top of the Transmission Control Protocol
(TCP) and controllers listen on TCP port 6653 for switches that want to set up a connec-
tion.

The SDN architecture provides the network operators with flexibility, adaptability and
innovation. SDN is expected to be adopted by a majority of the enterprises and its market
is expected to grow to $12.5 billion by 2020 [40], which is another indicator of its overall
contribution to networks’ performance.

2.2 ARIMA

A time series is an successive order sequence of values of a variable at equally spaced time
intervals [17]. A time series tracks the movement of chosen data points such as the the
amount of traffic forwarded by a switch over a specified period of time with data points
recorded at regular intervals.

Time series analysis can by used to see how a variable changes over time. It can also
be used to examine how the changes are associated with the chosen data compare to shifts
in other variables over the same time period.

Alternative, one can search for patters of seasonality in a time-series to find out if there
is a pattern in situations exhibiting dependency between the data points and the chosen
variable. A time series model assumes that past patterns will occur in the future. Another

10 CHAPTER 2. BACKGROUND

relevant concept is the horizon or lead time, which is defined as the time in advance that a
forecast is issued.

Seasonality, [41], in a time series is a regular pattern of changes that repeats over S time
periods, where S defines the number of time periods until the pattern repeats again. How-
ever non seasonal behaviour will still matter as with seasonal data it is likely that short
run non-seasonal components will still contribute to the model.

Time series forecasting (TSF) uses information regarding historical values and associated
patterns to predict future activity. To make a time series forecast is to infer the probability
distribution of a future observation from the population, given a sample z of past values.
The goal of TSF is to model a black-box predicting the series’ behaviour based on histori-
cal data and not how it works. The performance of a forecasting model is evaluated by an
accuracy measure such as the sum squared error (SSE) and the mean absolute percentage
error (MAPE):

et = yt − ŷt−h (2.1)

SSE =

P+N∑
i=P+1

e2i (2.2)

MAPE =
1

N

P+N∑
P+1

|ei|
yi
× 100% (2.3)

where:

• et denotes the forecasting error at time t.

• yt the desired value.

• ŷt,p the predicted value for period t and computed period p.

• P is the present time.

• N the number of forecasts.

The MAPE is a common metric in forecasting applications [17, 5, 42, 43, 22, 4] and it
measures the proportionality between the forecasting error and the actual value. Reported
disadvantages of MAPE are associated with instabilities, when the original time series
carries small values, and with asymmetrical penalties applied to positive errors compared
to the negative ones [4]. In [44], the authors write that, although the MAPE has become
an industry standard, it is advisable to also consider other summary measures.

Another useful metric in forecasting applications is the SMAPE [45]. This metric is
defined by equation :

SMAPE =
1

n

n∑
t=1

|Ft −At|
(|At|+ |Ft|)/2

(2.4)

2.2. ARIMA 11

However, in this thesis, only the MAPE will be taken into consideration, as both the
MAPE and SMAPE provide similar results in terms of comparing a network’s predic-
tion accuracy with and without Farcast.

Within the Forecasting community the following forecasting types can be defined, de-
pending on the time scale [46, 22]:

• Long-term forecasting, meaning one to several months of years which is useful for
management and financial decisions.

• Middle-term, typically from one to several days used to plan resources.

• Short-term, from one to several hours, crucial for optimal control or detection of
abnormal situations.

• Real-time, which concerns samples not exceeding a few minutes and requires an
on-line forecasting system.

This thesis will take into consideration only the last case, because of the time required
to simulate the network and the flows traversing through the network. The Autore-
gressive Integrated Moving-Average (ARIMA) is an important forecasting approach that
goes through model identification, parameter estimation and model validation [17, 22].
A model is a description of a system using mathematical concepts and language. The
ARIMA model is based on a linear combination of past values (AR components) and er-
rors (MA components).

The AR part of ARIMA indicates that the evolving variable of interest is regressed on
its own lagged (prior) values. Linear regressions is an approach for modelling the rela-
tionship between a scalar dependent variable and one or more explanatory variables. The
MA part indicates that the regression error is actually a linear combination of error terms
whose values occurred contemporaneously and at various times in the past. The I indi-
cates that that the data values have been replaced with the difference between their values
and the previous values (this differencing may take place multiple times). The purpose of
these features is to make the model fit the data as well as possible.

The non seasonal model is denoted by the form ARIMA (p,d,q), where parameters p,d
and q are non negative numbers. p is the number of time lags of the autoregressive model,
d is the degree of differencing (the number of times the data have had past values sub-
tracted) and q is the order of the moving-average model. The ARIMA model can be
estimated using the Box-Jenkins approach [17]. We denote y the dth difference of Y:

y =


Yt, if d = 0

Yt − Yt−1, if d = 1

(Yt − Yt−1)− (Yt−1 − Yt−2), if d = 2

(2.5)

12 CHAPTER 2. BACKGROUND

The general forecasting equation is:

ŷt = φ1yt−1 + . . .+ φpyt−p − θ1et−p − . . .− θqet−q (2.6)

Where:

• ŷt is the predicted value.

• θ’s and φ’s are estimated.

• e is white noise.

2.3 OMNeT++

OMNeT++ [47, 48, 15] is an object-oriented modular discrete event network simulator
framework. OMNeT++ stands for Objective Modular Network Testbed in C++ and its
architecture is generic and supports multiple problem domains such as:

• protocol modeling

• modeling of wired and wireless communication networks

• multiprocessors and other distributed or parallel systems

• modeling hardware architectures

• any system where the discrete event approach is suitable.

In OMNeT++ each component of a simulated system is implemented in a module. The
modules are reusable (if well-written) and can be combined in various ways to form differ-
ent models. These modules are connected to each other via gates. The can communicate
with each other with the use of messages, meaning the topology is dependent of the way
in which the modules are connected, thus the simulation topology is parametrizable. The
modules pass the messages through the gates and connections, and they can carry arbi-
trary data structures. The module’s behaviour can be parametrized, thus a router module
can be parametrized to simulate different vendor routers.

An OMNeT++ model is consisted of:

• NED language topology descriptions, that describe the network topology using
modules, gates, connections and parameters.

• Message definitions in which different message types are defined.

• Simple module sources, which are C++ files.

The simulation system provides the following components:

2.3. OMNET++ 13

• Simulation kernel: contains the code that manages the simulation. It is written in
C++ and compiled into a shared or static library.

• User interfaces: OMNET++ user interfaces are used in simulation execution to
provide debugging or batch execution of simulation.

A discrete event system is a system where state changes (events) happen at discrete in-
stances in time, and events take zero time to happen. Between two consecutive events
nothing happens, meaning there is no change that takes place in the system between two
consecutive events. This is in contrast to continuous systems where state changes are
continuous. Systems that can be viewed as discrete event systems can be modeled us-
ing discrete event simulation (DES). For example, the computer networks are viewed as
discrete event systems. Take into consideration some events, such as:

• The start of a packet transmission.

• The end of the packet transmission.

• The expiry of a retransmission timeout.

This means that between two events, there is not other interesting event that changes the
system’s state. If we are interested in a single packet transmission, we would only care
about two events, the start of the transmission and the end of the transmission. The time
when events occur is called event timestamp, while in OMNeT++ the term arrival time
is used. Time within the models is termed simulation time, opposed to real time or CPU
time which refer to how long the simulation program has been running and how much
CPU time it has consumed, respectively.

Discrete event simulation maintains a set of future events. The initialization step pro-
duces a set of events that ensure that the simulation starts, then inserts newly spawned
events as the simulation progresses. The events are always processed in timestamp order
to maintain causality, meaning that future events cannot interfere on earlier events. An
event may trigger other events, for example a packet drop event may cause a packet re-
send event.

The simulation stops when there are no more events lefts to process in the simulation or
when the simulation time expires because it reached a certain limit, before the simulation
exits the user has the option to record statistics to output files.

2.3.1 Modeling Concepts

The active modules in OMNeT++ are called simple modules, they are written in C++, us-
ing the OMNeT simulation class library. The simple modules can be grouped together to
form compound modules and, again, the compound modules can be grouped to form other
compound modules, as shown in Figure 2.2. A gate is the input and the output interface
of a module, there are output and input gates and they can be linked with a connection.

14 CHAPTER 2. BACKGROUND

Figure 2.2: Simple and compound modules, [15].

An output gate sends a message and an input gate receives it. The connections can be
created between the submodules of a module, between the module and the submodules
and between the modules. The messages typically travel through a chain of connections
starting and arriving in simple modules. The connections can be parametrized in terms of
propagation delay, data rate and bit error rate. Also, the connection types can be defined
and then reused as many times as necessary in the same or different simulation models.
Furthermore, modules can have parameters which are mainly used to pass configuration
data to simple modules and help in defining the network topology.

Parameters are variables that belong to a module. Parameters can be used in building
the topology and to supply input to the C++ code that implements simple modules and
channels. Parameters can be of type double, int, bool, string and xml. Parameters can get
their values from NED files or from the configuration file (omnetpp.ini).

2.3.2 NED Overview

In OMNeT++, the user describes the simulation model in the Network Description (NED)
language. The user declares simple modules and connects them in NED, he can also label
some compound models as networks. Additionally, channels are a another component
type that can, also, be used in compound modules. NED provides features that let it scale
to large projects:

• Hierarchical: A single entity that is too complex can be broken down to smaller
modules and used as a compound module.

• Component-Based: All modules, both simple and compound are reusable. This
makes the components reusable without making copies of the same code. Addi-
tionally, it allows component libraries such as the INET framework to exist.

• Interfaces: Module and channel interfaces can be used as a placeholder where nor-
mally a module or channel type would be used.

2.4. COMPONENTS, SIMPLE MODULES, CHANNELS 15

• Inheritance: Modules and channels can be subclassed. The derived modules and
classes may include new parameters and gates in addition to the inherited ones. It
is also possible to set values to the existing parameters or set the gate size of a gate
vector.

• Packages: The NED language features a Java-like package structure to reduce the
risk of name clashes between different models.

• Inner types: Channel types and module types used locally by a compound module,
can be defined within the module to reduce namespace pollution.

• Metadata annotations: Metadata can be used to carry extra information for various
tools, the runtime environment or even for other modules in the module.

2.3.3 Events

OMNET++ uses messages to represent events. Messages are represented by instances
of the cMessage class and its subclasses. When a message is sent from one module to
another, the place where the event will occur is the destination module of the message and
the event time is the arrival time of the message. When a module wants to set a timeout
expired event, it will send a message to itself. Events are consumed in arrival time order
and more specifically:

• A first-come-first-served policy is follows on the execution of events, meaning that
the earlier a message arrives the earlier it is executed. If two messages’ arrival time
is equal,

• events with the higher scheduling priority is executed, first. If priorities are the
same,

• the message that was scheduled/sent earlier is executed first.

Scheduling priority is a user assigned integer attribute of messages.

2.4 Components, Simple Modules, Channels

OMNeT++ simulation models are composed of modules, that are simple and compound,
and connections which may have associated channel objects. The channels and the mod-
els are programmable in C++ by the user. Modules and channels are represented with the
cModule and cChannel classes, respectively. cModule and cChannel are both derived
from the cComponent class.

The user can define simple module types by subclassing cSimpleModule, while com-
pound modules are established with the cModule, even though the user may override it.
The cChannel’s subclasses include the three build-in channel-types: cIdealChannel,

16 CHAPTER 2. BACKGROUND

cDelayChannel and cDatarateChannel. By subclassing cChannel or any other chan-
nel class, the user can create new channel types. The inheritance relationships between
the modules are shown in Figure 2.3. Simulation signals are emitted by components and

Figure 2.3: Inheritance of component, module and channel classes [15].

and can be used for:

• extracting statistical properties of the model without specifications of whether and
how to record them

• receiving notifications about changes in the simulation model changes and acting
upon them

• introducing a publish-subscribe communication between the modules

• emitting information for purposes like animation effects.

Signals propagate in the module hierarchy up to the root. At any level, the module can
register listeners that will be notified when a signal value is emitted.

Signals are identified by signal names, however for efficiency dynamically assigned iden-
tifiers (IDs) are used. The signals are global, so all modules and channels resolving to a
particular signal will get back the same numeric signal ID.

2.5. THE INET FRAMEWORK 17

2.5 The INET Framework

The INET Framework [49, 16] is an open-source library for the OMNeT++ simulation
environment. It provides protocols, agents and other models for researchers and students
working with communication networks. INET is useful for designing and validating new
protocols, or exploring new scenarios. Several other simulations frameworks take INET
as a base and extend it into specific directions, such as vehicular networks, overlay/peer-
to-peer networks, or long-term-evolution (LTE).

The INET Framework contains implementations of the protocols IPv4, IPv6, TCP, UDP,
SCTP, UDP and several application models for the OMNeT++ simulator. The hosts and
routers in the INET Framework are compound modules, composed of many ingredients.
The ingredients of our interest are:

• Interface Table (InterfaceTable): This module contains the table of the network
interfaces in the host. Interfaces are registered dynamically during the initialization
phase by modules that represent network interface cards.

• Routing Table (IPv4RoutingTable): This module represents the IPv4 routing ta-
ble. It contains member functions for adding, deleting, enumerating and looking up
routes and finding the best matching route for a given destination IPv4 address.

• Network Interfaces: Network interfaces are compound modules composed of a
MAC module and a queue. Some examples are the EthernetInterface and the
WLAN interface.

• Network Layer: The INET Framework provides modules that represent protocols
of the network layers that are usually grouped into a compound layer. IPv4 Network
Layer for IPv4, and IPv6 Network layer for IPv6. The IPv4 Network layer contains
the modules IPv4, ARP , ICMP and ErrorHandling. The IPv4 module per-
forms the IP encapsulation/decapsulation and routing of datagrams, using the IPv4
routing table C++ interface function call. The ARP module is put into the path
of packets leaving the network layer towards the Network Interfaces and performs
address resolution for interfaces like the Ethernet that need it. Finally, ICMP
handles the sending and receiving functions for the ICMP packets.

• Transport Layer protocols: Transport Layer is represented by modules that are con-
nected to the network layer. The INET Framework supports TCP, UDP, SCTP
modules.

• Applications: They typically connect to TCP or UDP and model the user behaviour
and the application program’s behaviour e.g. a browser and an application level
protocol e.g. HTTP. The module StandardHost supports any number of TCP,
UDP and SCTP applications, their types being parametric.

The UDP protocol is a very simple datagram transport protocol which, essentially, con-
nects the network layer to the applications. It performs packet multiplexing and demulti-
plexing to ports and some basic error detection. The frame format is shown in Figure 2.4.

18 CHAPTER 2. BACKGROUND

Figure 2.4: UDP datagram.

The ports represent the communication end points, allocated by the applications that need
to send or receive the datagrams. The "Data" field is the encapsulated payload of the ap-
plications, the "Length" field is the length of the Data and the "Checksum" field is used to
ensure "Data" integrity.

The INET framework contains a UDP module that performs the encapsulation/decapsu-
lation of the application packets, a UDPSocket class provides the application the socket
interface and some sample applications. There are three important applications for this
thesis the UDPSink, the UPDBasicAPP and the UDPBasicBurst.

The UDPsink binds a UDP socket to a given local port and prints the source, desti-
nation and length of each received packet.

The UDPBasicApp sends UDP packets to the IP address given in the destAddresses
parameter. The application sends a message to one of the targets in each sendInterval
interval. Before a packet is sent, it is emitted in the sendPK signal. The application
simply prints the received UDP datagrams. The rcvdPk signal can be used to detect the
received packets. The number of sent and received messages are saved as scalars at the
end of the simulation. The UDPBasicApp has also the starttime and endtime param-
eters that specify the start and the end of the UPD flow’s life.

The UDPBasicBurst module sends UPD packets to the given IP addresses in bursts, or
acts as a packet sink. It is compatible with both IPv4 and IPv6. It contains the following
parameters:

• Addressing: The destaddresses parameters can contain zero, one or more destina-
tion addresses, separated by spaces. If no IP addresses are given, the module will
act as a packet sink. If there are more than one addresses, one of them is randomly
chosen, either for the whole simulation run, or for each burst, or for each packet,
depending on the value of the chooseaddressmode parameter. The destination ad-

2.6. OFOMNET 19

dress RNG parameter controls which random number generator (RNG) is used for
randomized address selection. The self addresses are ignored. The peer can be a
UDPSink or another UPDBasic Burst.

• Bursts: The first burst starts at startT ime. Bursts start by sending a packet, imme-
diately. Following the first packet more packets are sent at sendInterval intervals.
The sendInterval parameter can be a random value. A constant interval with jitter
can be specified. The length of the burst is set using the burstDuration parameter
(if a send interval value is greater than the burst’s duration the burst will consist of
only one packet). The time between two consequent bursts is the sleepDuration
parameter, which can be zero. Finally, the applications stop time is specified by the
stoptime parameter.

• Packets: Packet length is controlled by the messageLength parameter. The mod-
ule adds two parameters to packets before sending. These are the sourceID and
the msgID which is incremented by 1 after any packet is sent.

• Sink Operation: When the destAddresses parameter is empty, the module only
receives packets and makes statistics.

2.6 OfOMNeT

In OfOMNeT [50], the OpenFlow components are integrated in the network simulation
environment OMNeT++. Using the INET Framework, an OpenFlow switch and a basic
controller are developed.

The OfOMNeT is the simulation model of the OpenFlow system in the INET frame-
work for OMNeT++. In OfOMNeT the OpenFlow switch and the OpenFlow controller
nodes are implemented according to the OpenFlow version 1.2 specifications [51]. Farcast
implemented additional functionality in the OpenFlow controller, the OpenFlow switch
modules as well as the OpenFlow controller behaviour application. The changes made to
OfOMNeT for Farcast are discussed in chapter 4.1.

2.6.1 OpenFlow Messages

As shown in Figure 2.5, all the implemented messages are subclasses of theOFP_Header
message, which includes the OpenFlow message header definition and the C++ class,
so the modelisation of the messages is as close to the real messages as possible. The
OFP_Feutures_Request and the OFP_Feature_Reply messages are sent during
the initialization of the OpenFlow channel between the controller and a switch. The
OFPPacketIn message is used to inform the controller about an unmatched incoming
packet or to send a packet to the controller if this is the corresponding action of a match.
The message sent to the controller can either contain the whole encapsulated packet or

20 CHAPTER 2. BACKGROUND

Figure 2.5: Implemented OpenFlow messages [50].

simply the buffer ID of the buffered packet. The OFP_Packet_Out message is sent by
the controller to the switch. Using this message the controller instructs the switch to send
a packet out of a specified switch port. Finally, the controller can modify the switch’s flow
table using the OFP_Flow_Mod message, which include the packet match field and the
corresponding actions.

2.6.2 Openflow Switch

The separation of the data plane and the control plane implemented in OfOMNeT is shown
in Figure 2.6. The data plane consists of an EtherMAC module and an OFP rocessing
module. The EtherMAC module is connected to the outside and receives the incoming
messages on the data plane. The received data frames are passed to the OF_Processing
modules without modifications which implement the OpenFlow switch functionality on
the data plane. This functionality comprises the required flow table lookups for all in-
coming packets, for possible matches or informing the OFA_Switch module on the
control plane about packet-in events of unmatched packets. The OF_Processing mod-
ule considers different complexities to the applied operations by applying a service time
parameter which delays the simulation for a configured amount of time.

For inter-module communication between the data plane and the control plane in the
switch, the OMNeT++ signal is used. The OFA_Switch_Processing module emits
a no-match-found signal and the OFA_Switch module subscribes to this signal. The
OFA_Switch module implements the OpenFlow switch functionality on the control
plane and is responsible for the communication with the controller. On module startup,
the OFA_Switch module establishes a TCP connection to the controller and negotiates
the supported OpenFlow version and capabilities. When a no-match-found event occurs
the OFA_Switch module takes the unmatched packet and sends an OFP_Packet_In
message for the controller. The message can contain either the full payload of the re-

2.6. OFOMNET 21

Figure 2.6: OfOMNeT Switch [50].

ceived packet or the buffer ID of the packet. If only the buffer ID is sent, the Buffer
module stores the packet until the reply from the controller arrives, in this case the reply
will be an OFP_Packet_Out reply. The option of whether the packet is buffered or not
is parametrizable and configured via a parameter in the switch.

The control plane of the OpenFlow switch in OfOMNeT has additional modules that are
part of the TCP/IP stack and are required as theOFA_Switchmodule is modeled as TCP
application because the OpenFlow channel uses a TCP connection (the channel between
the controller and the switch). Through the OpenFlow channel the OFP_Packet_Out
andOFP_Flow_Modmessages are transmitted from the controller. for eachOFP_Flow_Mod
message received, theOFA_Switchmodule extracts the embedded match and action and
adds an entry to the FlowTable module.

Finally, for the received OFP_Packet_Out messages, the OFA_Switch module needs
to emit an event to theOF_Processing module, which will apply the corresponding out-
put action. Specifically, this action can either be a flood-packet or a send-packet action.
Therefore, the OF_Processing module is also subscribed to the associated actions sig-
nal. Again, the event may either contain the complete packet, or just the Buffer ID with
which the packet can be retrieved from the Buffer module.

22 CHAPTER 2. BACKGROUND

2.6.3 Openflow Controller

Figure 2.7 shows the OpenFlow controller architecture in OfOMNeT. The control plane
part consists of TCP/IP applications applications, similar to those of the OpenFlow switch,
responsible for the controller-switch communications.

Figure 2.7: OfOMNeT Controller [50].

It, also, contains theOFA_Controller module that realizes the controller functional-
ity. TheOFA_Controller module contains a service time parameter which simulates the
processing time of real OpenFlow controllers. The OFA_Controller module provides
public methods which can be used to send OFP_Packet_Out and OFP_Flow_Mod
messages the the OpenFlow switch. The controller behaviour is realized in a separate
module called OF_Controller_App. This is a controller module interface that imple-
ments various controller behaviours. This way it is easier to configure the desired con-
troller behaviour, just by altering aOFA_Switch configuration parameter. The packet-in
signal are received from the OFAController module. Depending in the controller’s be-
haviour set the received signal processes different operations and once finished triggers
different public methods at the OFAController module. The authors implemented three
operations for the controller behaviour the Hub, Switch and Forwarding modules.

• Hub and Switch behaviours: They model ordinary Ethernet and switch functional-
ity, implemented as test for the OpenFlow protocol. For example in Figure 2.8(a),

2.6. OFOMNET 23

Figure 2.8: OfOmnet Controller Behaviours [50].

host 1 wants to send a packet to host 2. The packet arrives at the first OpenFlow
switch which does not have an entry to its FlowTable, consequently it sends a
PacketIn message to the OpenFlow controller, which in turn sends a FlowMode
message and then a PacketOut message to the first OpenFlow Switch. Then, the
packet arrives at the second OpenFlow Switch which also does not have an entry
in its FlowTable, therefore the same process is repeated. Afterwards, the packet
arrives at its final destination.

• Forwarding Behaviour: This model has a complete knowledge about the network,
therefore it knows which switches are intermediate between a target and a destina-
tion. It uses this knowledge to setup a path between the transmitter and the receiver.
For example in Figure 2.8(b), when the packet arrives at the first OpenFlow switch,
the controller sends a FlowModmessage to the second OpenFlow switch to setup a
path for the packet, then it sends a FlowModmessage to the first OpenFlow switch.
Finally, the controller sends a PacketOut message to the first switch, in order to
send the first unmatched packet through the path. The second behaviour decreases
the number of messages send from the controller, and when the packet arrives at the
second OpenFlow switch, it is forwarded immediately to it final destination, thus
decreasing delay.

24 CHAPTER 2. BACKGROUND

Chapter 3

Approach

Farcast’s goal is to improve the switches’ forecasting accuracy, using SDN. This chapter
shows the procedure that Farcast uses to help the switches’ predictions be valid, then it
dwells deeper into the changes that need to be made to the controllers and switches in
order for Farcast to be operational. Farcast’s logic could be generalized to include all the
switches in a network.

In order to test Farcast we designed a network, which is shown in Figure 3.1. This net-
work consists of two computer networks (Network 1 and Network 3) multiple OpenFlow
switches and a controller. Network 1 forwards traffic to Network 2, through three access
switches, then through various topologies of OpenFlow switches to a prediction switch.
Afterwards, the prediction switch forwards the traffic to Network 2. The prediction switch
makes predictions about the amount of traffic it will forward to Network 2. The controller
is responsible for making the prediction switch accurate in case it detects an anomaly. In

Figure 3.1: A network using Farcast.

25

26 CHAPTER 3. APPROACH

case the controller estimates that the flows in the network are not sufficient for a switch to
achieve it prediction, it has to reroute the flows in the network, accordingly. Section 3.1
contains a simple example of good Farcast functionality and decisions.

3.1 A Simple Use Case

In this section, a simple case of Farcast functionality is demonstrated by using a simple
example. Figure 3.2 shows a simple network, in which a client sends traffic to a server. In
between the client and the server are 4 switches. The switches forward the traffic towards
the server through the routes established by the SDN controller. The number of different
paths from the server to the controller is 2, while the switches that make the predictions
are the 2 parallel switches in the middle.
For simplicity, we assume that there exist only two flows within the network that have the

Figure 3.2: 2 flows in the network.

same data-rate. These are Flow 1 (red) and Flow 2 (blue) and each one follows a different
path to reach the server. Naturally, the each one of the two switches predicts an x amount
of traffic as the two flows have the same data-rate.

Figure 3.3 shows a change in the state of the flows of the network. Now Flow 2 (blue) is
removed from the network, while Flow 1 remains unchanged. Furthermore, a new flow,
named Flow 3 (purple) is inserted in the same path as Flow 1 (red). For simplicity Flow 3
has the same data-rate as Flow 1.

This scenario makes both of the predictions go wrong, as the switch in the path of Flow 1
has predicted an x amount of traffic but it the traffic amount will, actually, be 2x because
of the new flow inserted in the path. Additionally, the switch below has predicted an x

3.1. A SIMPLE USE CASE 27

Figure 3.3: Flow 2 down and flow 3 inserted.

amount of traffic, while there is no traffic traversing through its path. The controller is
able to fix these predictions by stitching the path of either Flow 1 or Flow 3 to be the
one previously followed by Flow 2. This is shown in Figure 3.4, where Flow 3 (purple)
is reassigned to the s path. Now, both switches will achieve their predictions of x. In

Figure 3.4: Re-routing to aid forecasting.

this example, the accuracy of the prediction will be affected by the reaction time of the
controller, meaning that the sooner the controller realises there is something wrong with
the prediction of the switches, the sooner it will be able to stitch the paths and help them
in their predictions. In the following sections, we show in depth, how Farcast works to
achieve this functionality.

28 CHAPTER 3. APPROACH

3.2 Prediction Intervals

The controller has to be in close communication with the switches, in order to be informed
of the switches’ predictions and the flows that traverse through the network. Figure 3.5
shows the time slots in which the controller-switch communications take place. Here, one
prediction interval is shown. This prediction interval is divided into several inform inter-
vals. The prediction intervals denote the times that the switches make predictions for the
future traffic, while the inform intervals denote the time slots, where the switches inform
the controller of the flows that traverse the network and the total amount of traffic that was
forwarded outside the network up to this point. Thus, the prediction interval is the time
between two consecutive predictions, while the inform interval is the time between two
consecutive information slots. In Figure 3.5 the prediction interval is 60 seconds, while
the inform interval is 20 seconds.

Each prediction corresponds to the traffic amount that the switch expects to forward

Figure 3.5: One Farcast Prediction interval.

until the next prediction. Thus, in Figure 3.5 the prediction made in the first prediction
interval corresponds to the traffic load expected until the 60th second. This prediction is
sent to the controller immediately.

The information sent by the switches to the controller in the inform slots, correspond
to the traffic that traversed the network in the previous information interval. Thus, in Fig-
ure 3.5 the information sent to the controller at the 40th second corresponds to the flows
and traffic between the 20th and the 40th second.

Farcast interval’s logic is summarized in Figure 3.6. In each prediction phase the pre-
diction switches make their predictions and send them to the controller. In each inform
phase, the switches send to the controller information about the flows. Then, the controller
makes the necessary corrections to the flows paths, if needed, in the correction phase. This
loop is continued until the end of the prediction phase. Finally, the process starts all over
at the end of the prediction interval, where the switches send their new predictions to
the controller. When the controller receives the information about the traffic, it assesses
whether the prediction made at the start of the prediction interval is correct (more on that
in section 3.5). Afterwards, it reroutes the flows if needed to help the switch achieve its
prediction. This procedure is followed in each inform interval.

3.3. FARCAST FLOWCHART 29

Figure 3.6: Farcast phases.

3.3 Farcast Flowchart

Figure 3.7 shows the flowchart of the controller’s logic in Farcast. The initial state, de-
noted with the double circle, is when a new prediction arrives at the controller. The
controller saves this prediction and goes to the next state where it checks whether the
prediction interval has ended. As we are following the example of Figure 3.5 and the
prediction has just arrived, it goes to the next step which is checking whether the In-
form interval has started. The controller switches back and forth, between these two steps
named the intervals ending check loop, until the Inform Interval Start occurs. When that
happens, the controller receives the flow updates from the switches. Having this infor-
mation, the controller can now assess whether the switch’s prediction is accurate. If the
prediction is accurate or if the prediction is not accurate but the controller does not have
the necessary flows to help the switches, the controller returns to the intervals ending
check loop. Otherwise the controller reroutes the suitable flows and returns to the in-
tervals ending check loop. When the prediction interval reaches its end, the controller
reroutes the flows it has already rerouted in this prediction interval, because if it did not

30 CHAPTER 3. APPROACH

reroute them, these flows would make the next switch prediction inaccurate. Additionally,
the controller sends a message to the switch to inform it about the amount of help it gave
it to reach the predicted traffic amount. Otherwise, the switch would assume that it was
right about its prediction and continue making wrong predictions until the link becomes
empty or overloaded.

In the rest of this chapter, we discuss in depth about the switches and the controller’s

Figure 3.7: Farcast logic flowchart.

behaviour, the Farcast’s limitations and the changes made to OfOMNeT to support Far-
cast.

3.4 Switch Functionality

In Farcast, the OpenFlow switch functionality is extended, as the switches at the end of
the network predict the future amount of traffic, forwarded outside the network. This is
the first alteration of the OpenFlow switches functionality, however this alteration triggers
other changes that need to be made in order for Farcast to work as expected.

Initially, the OpenFlow switches sample at each time interval called prediction interval
as mentioned in section 3.2, the amount of traffic they forward outside of the network.
The prediction intervals are set at the initialization of the OpenFlow switches and do not
change afterwards. The prediction interval times do not change, since the time-series
forecast algorithms require samples at the same time intervals to predict the amount of

3.5. CONTROLLER FUNCTIONALITY 31

traffic of the next interval. After gaining a satisfying number of samples, the switches
start making predictions on the future amount of traffic. The prediction is made using the
ARIMA time-series forecast algorithm, section 2.2, then it is sent to the controller. The
controller ensures that the switch’s prediction will come true.

There are two cases, where the switch may make a wrong prediction. First, if it pre-
dicts a higher amount of traffic than the real amount of traffic and second, if it predicts a
lower amount of traffic than the real. In both cases, the controller has to make sure that
the switch learns that it made a wrong prediction. Otherwise, if the switch believes that
it makes good predictions by seeing its predictions are accurate, it will continue making
wrong predictions, as it will continue to predict higher and higher or lower and lower
amounts of traffic, respectively. However, the switch needs to know the amount of help it
received from the controller and subtract it from the amount of traffic it forwarded. Only
then, the switch will continue making accurate predictions. Consequently, the switch must
receive a message from the controller that informs it about the amount of traffic it received
from the controller, at some point before the next prediction.

Additionally, the controller has to have knowledge of the network’s traffic characteris-
tics, in order to help the switch’s prediction come true. Specifically, it needs to know each
flow’s bit rate, as, ultimately, the controller will alter the paths of specific flows to add or
subtract traffic from a specific prediction switch. A simple approach to the problem of in-
forming the controller about each flow’s rate would be the switches at the entrance of the
network to inform the controller about the flows they forward, just before the controller is
about to make an assessment on whether the prediction switches are right or wrong, more
on that in section 3.5. The intervals in which the controller makes these assessments are
called inform intervals, as already mentioned in 3.2. In order to make an approximation
of each flow’s rate, the switches count the number of bytes of each flow from the first
encounter of the flow inside an inform interval, until the end of the interval, afterwards
the total number of bytes of the flow is divided by the time it is present in the switch.

Finally, the controller needs to know each prediction switch’s amount of traffic forwarded
at each inform interval. The controller receives the flow rates from the switches at the net-
work’s entrance, as well as, the amount of traffic forwarded to the server, at each inform
interval. Only then, the controller will have enough knowledge to make an assessment
whether the prediction for each switch was right or wrong in each inform interval.

3.5 Controller Functionality

In Farcast, the controller has to implement additional functionality apart from its Open-
Flow feoatures. Its job is to make sure that the switches achieve their predictions regarding
the future traffic they forward outside of the network. As mentioned in section 3.4, the
controller receives messages from both the switches at the entry and at the exit of the
network, in order to be informed for the flows that exist in the network and the predic-

32 CHAPTER 3. APPROACH

tions of the switches, respectively. These messages are exchanged after each inform and
prediction interval, respectively. For simplicity, assume that the controller monitors only
one switch.

After each inform interval the controller has knowledge of both the switch’s predictions
and of the flows that traverse the network and their bit rate. Then, the controller needs
to make an assessment of whether the switch has made a right prediction or not by mak-
ing its own prediction for the future traffic of the switch. The formula for the controller
prediction in each interval is given in equation 3.1.

P =

N∑
x=1

f(x)Tnext (3.1)

Where:

• P is the controller’s prediction about the switch’s amount of traffic.

• N is the number of flows assigned to the given switch.

• Tnext is the time that remains until the next prediction interval.

• f(x) is the bit rate of the xth flow.

After making its own prediction, the controller checks if the controller’s prediction is
close to the switch’s prediction, equation 3.2, if not the controller needs to reassign flows
in order to make the switch achieve its prediction.

(1− p)S ≤ P ≤ (1 + p)S (3.2)

Where:

• S is the switch’s prediction.

• P is the controller’s prediction.

• p is a pre-set variable and 0 < p < 1.

Variable p is used to adjust the percentage of prediction error that is tolerable in Farcast.
If P is not within these bounds, the controller starts adjusting flow paths to achieve the
switch’s prediction. Say that D denotes the difference between the switch’s prediction
and the controller’s prediction, equation 3.3, and P does not satisfy the equation 3.2.

D = S − P (3.3)

Then, the controller has to add or remove flows from the switch to achieve the switch’s
prediction. The controller has available a number of flows that can be rerouted. The next
step is the calculation of which is the best combination of flows that needs to be rerouted,
to achieve the switch’s prediction. This is known as the knapsack problem. A simple

3.6. OPTIMAL CALCULATION OF PATH LOAD 33

solution would be to sort the flows by data rate then start adding/removing flows until no
more flows are needed to be added/removed [52].

Thus, the controller decides which flow’s paths to modify by sorting the flows starting
from the flow with the smaller bit rate, then adding or removing flows using the equation
3.4.

X =

{∑k
x=1,x 6∈A f(x)Tnext, if D > 0∑k
x=1,x∈A f(x)Tnext, otherwise

(3.4)

Where:

• X denotes the sum of the controller’s help to the switch. X cannot be greater than
|D|.

• A is the set of flows assigned to the switch.

• k is the last flow for which the condition X < |D| stands, after the flows are sorted.

• Tnext is the time that remains until the next prediction interval.

• f(x) is the bit rate of the xth flow.

This procedure summarizes the help given by the controller to the switch it monitors.
Additionally, the controller makes sure that the switch is not misled into believing it has
made right predictions, as it would affect its next predictions. Consequently, the controller
reroutes the changed flows at the end of the prediction interval and informs the switch
about the amount of help it received from the controller. This ensures the correctness of
the next switch’s predictions.

3.6 Optimal Calculation of Path Load

In this section Farcast is generalized to monitor all the prediction switches at the end of
the network. This stage receives as inputs the current traffic matrix and a set of possible
paths connecting each node pair in the network. It then produces the optimal aggregate
load that each network path should carry. This problem can be formulated as a Linear
Program (LP) as follows.

Let Me,e′ be the current traffic matrix containing the data rates between any two nodes
e and e′. Let the triplet 〈e, e′, k〉 , k = 1 . . .K index each of the K-paths that can con-
nect the entities e, e′. Furthermore, let f〈e,e′,k〉 represent the fraction of Me,e′ over path
〈e, e′, k〉. The objective of stage 1 is then achieved as follows [?]:

minimize: U
subject to:
∀e,e′ :

∑
∀k f〈e,e′,k〉 = 1

∀〈e,e′,k〉,∀l∈〈e,e′,k〉:
∑
∀e,e′ Me,e′f〈e,e′,k〉 ≤ U · Cl

(3.5)

34 CHAPTER 3. APPROACH

where Cl is the nominal capacity of link l and U ∈ [0, 1] a helper variable. The first
condition expresses the conservation of the traffic load, while the second one ensures that
the load of each link is within its capacity constraint.

In the farcast case, we monitor, forecast and regulate the traffic over a set of network
links L. At each minor time-tick, we derive a traffic rate that each link should carry in
order to meet the forecasting quotas. At a given time-tick, let these traffic rate values be:

ρl · Cl, l ∈ L, ρl ∈ [0, 1] (3.6)

These required traffic rate values can be treated as extra restrictions. In other words, the
second restriction of eq. (3.5) now takes the following form:

∀〈e,e′,k〉,∀l∈〈e,e′,k〉, l/∈L:
∑
∀e,e′ Me,e′f〈e,e′,k〉 ≤ U · Cl

∀l ∈ L :
∑
∀e,e′ Me,e′f〈e,e′,k〉 = ρl · Cl

(3.7)

Equation (3.5) can now be solved with any Linear Program solver, deriving the f〈e,e′,k〉
values, i.e., the aggregate traffic that each network path should carry.

There is a case where eq. (3.5) may be insolvable, since there may be insufficient traffic
in the network to support the data rates of relation (3.6). In this case, the administrator
must first prioritize the links in the L set. The link with the least priority is removed from
the L set, and we attempt to solve eq. (3.5) anew. If the equation remains insolvable,
we proceed to remove the least prioritized link from L iteratively. If the set L becomes
empty, we conclude that the farcast process cannot run in the given network conditions.

Mapping of entity pairs to paths. Given the current traffic matrix Me,f , the current
flow-to-path map and the current flow rates, this stage maps flows 〈e, e′〉 to paths 〈e, e′, k〉
in order to match the optimal f〈e,e′,k〉 values produced in stage 1. We proceed to update
the Farcasting logistics, as well as keep an updated track of the original path of each
moved flow (i.e., as it was at major time-ticks), exactly as in the one-link farcasting case.
The mapping is heuristic each time, we seek to move the least number of flows from their
paths, in order to meet the optimal f〈e,e′,k〉 values produced in stage 1, using equation 3.4.

3.7 Farcast Limitations

In order for Farcast to function as expected, the following cases should be taken into con-
sideration.

First, if the switch has made a prediction and the amount of traffic it expects is lower than
the actual amount of traffic assigned to it, the controller will assign a number of flows to
the switch to make up for this wrong prediction at some inform interval. However, since
the internet flows are bursty, the flows could terminate after the controller assigns them to
the switch and before the next inform interval. This means that the controller has helped

3.7. FARCAST LIMITATIONS 35

the switch less than the controller expected. Moreover, at the start of the next prediction
interval the controller will give false information to the switch, regarding the amount of
help that the switch received from the controller. As a result, the switch will have stored
wrong measurements regarding the amount of traffic that flows through it. This scenario
affects negatively the next prediction of the switch.

This problem can be mitigated by altering the paths of the flows that have large durations.
This scenario is feasible, since it is observed that in the Internet there are dragonflies and
tortoises [53, 54, 55, 56], meaning there exist many short-lived and a smaller number of
long-lived flows. Specifically, there is a 20% percentage of flows that have larger dura-
tion than the typical short-lived flows, some of these long-lived flows have a lifespan that
ranges from 10 minutes to even weeks. Examples of long-lived flows are the flows that are
associated with video/audio applications, torrents, games or network monitoring tools. It
is also important to note that the flow duration is not necessarily associated with the flow
size.

Another argument that supports this scenario is that there has been extensive work over
the years on flow classification [57], either port forwarding based [58, 59, 60] which
is less reliable than the packet payload inspection for specific string patterns of known
applications [61, 58, 62, 63, 59]. Furthermore, additional work has shown that even
the packet payload inspection methods are not necessary, as flow classification can be
realised by taking advantage of the social interaction of hosts [62, 64, 60] or flow fea-
ture extraction, such as flow duration, number and size of packets and interarrival times,
[65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75].

These arguments indicate that Farcast can become more reliable by altering the paths
of the flows that have the largest lifespans, because it is less likely for these flows to ter-
minate in an information interval. The controller could distinguish the long-lived flows
using the flow classification techniques mentioned above and then stitch their paths ac-
cordingly. The implementation of the flow classification methods is out of the scope of
this thesis and will not be further discussed. However, the fraction of long lived/short
lived flows is something that requires further testing.

Second, in case the switch has made a prediction and the amount of traffic it expects is
higher than the actual amount of traffic assigned to it, the controller will assign a number
of flows from the switch to different switches to make up for the wrong prediction. Since,
the internet flows are bursty, the flows could be terminated after the controller assigns
them to the other switches and before the next inform interval. As in the first case the
controller has helped the switch less that it expected, meaning it will give false informa-
tion to the switch and affect the switch’s next prediction, negatively. Again this problem
can be mitigated by altering the paths of the most long-lived flows.

Third, as mentioned in 3.4, after each inform interval, the access switches send the con-
troller information regarding the current flows. Also, the server switch informs the con-

36 CHAPTER 3. APPROACH

troller regarding the total amount of traffic it forwarded, so far, towards the server. Then,
the controller makes an estimation to assess whether the switch is right about its predic-
tion or not (see section 3.5). If the controller decides that the switch is wrong, it alternates
the paths of the flows, that if they are removed from/assigned to the switch can make
the prediction true. Then, the controller sends the FlowMod messages to the switches to
stitch the new paths. The controller’s reaction time, Ts, is the time it takes the controller
to follow the procedure described above. If the controller’s reaction time is not faster than
the inform interval time, the controller will not be able to help the switch, since the con-
troller will not be able to affect much the traffic that traverses the switch in each inform
interval. This problem could be solved by taking measurements of the controller’s reac-
tion time and ensuring that it is always significantly smaller than the information interval.
The relation of the controller’s reaction time and the information interval could be found
experimentally.

Fourth, if the unexpected traffic behaviour takes place at the last inform interval, the con-
troller will be unaware of the traffic state and will not be able to help the switch. This blind
spot does not affect much Farcast’s performance, since the blind spot’s time duration can
be decreased by choosing the inform intervals appropriately. For example if the prediction
interval is 60 seconds while the inform interval is 10 seconds, then then blind spot time
duration is 10 seconds, meaning 1

6

th of the prediction interval. The inform interval can
be decreased to further decrease this fraction of time, however care should be taken as
calibration is needed to find the balance between the third and the fourth limitation.

Finally, the controller should always take care that the total throughput in each avail-
able path does not exceed the path’s maximum capacity. This problem can be solved just
by the controller knowing each path’s limit and taking care not to exceed it and will not
be further discussed in this thesis.

Chapter 4

Evaluation

4.1 Benchmark

Farcast was implemented in OfOmnet (for a description of OfOMNeT, refer to section
2.6). Our aim was to simulate a network consisting of a set of OpenFlow switches that
forward the Internet traffic to the outside world. To accomplish this aim, a network was
developed, using the NED language, supported by the OMNeT++. The scenario is shown
in Figure 4.1.

Figure 4.1: Farcast test scenario.

In this scenario, the client, shown in Figure 4.1, forwards the packets of each UDP [76]
flow towards the server. The server is only responsible for consuming the data sent by
the client, it does not send acknowledgements to the client. The only response that the
server has to send back to the client is the ARP reply as specified by the ARP protocol
[77]. We chose this approach, since the UDP protocol is more predictable than the TCP
[78], as TCP operates using the mechanism known as congestion control. Furthermore,

37

38 CHAPTER 4. EVALUATION

we wanted to avoid the overhead of the server acknowledgements in our simulations.

Figure 4.1 shows one access switch that forwards to client’s packets into the network and
one server switch that forwards the packets from the network to the server. The network
is consisted of 4 layers of switches. Each layer consists of 3 switches. Each switch in the
network is connected to all the switches of the next and previous levels. The controller is
connected to all the switches and is responsible for stitching each flow’s path to its final
destination, the server. Each link’s capacity is 100 Mbps.

In section 3.5, the controller’s functionality is described. In this paragraph we describe,
in short, the changes that were introduced in OfOMNeT to accomplish this functional-
ity. The controller module has to be able to monitor the current network’s state in each
prediction and inform interval (for a description of the intervals, refer to the introductory
parts of chapter 3). The state of the network that the controller has to have knowledge
of, consists of each flow’s characteristics (port destination and rate in MB/s) and each
OpenFlow switch’s prediction (only the switches that connect to the server switch make
predictions for the future traffic). Therefore, the controller module under Farcast is able to
receive information from the switches regarding the state of the network, then it can make
an assessment whether each switch that made a prediction is right or wrong. Moreover,
an algorithm to address the knapsack problem was introduced, as described in section 3.5.
Additionally, a depth-first-search algorithm (DFS) [52] was implemented, in order for the
controller to find all the paths from the switch, that sends the PacketIn to the controller, to
server. The DFS finds all possible paths, however the controller chooses only the shortest
and link disjoint paths. Since, there are only three OpenFlow switches at each side of the
network, the controller chooses, always, three unique shortest disjoint paths. Only these
paths are used for the path stitching. Finally, the controller is able to send information
about how much help each switch received to the switches that made the predictions.

As stated in section 3.4, in each predict interval, the OpenFlow switches that connect
directly with the server switch (purple switches in Figure 4.1) need to record the amount
of traffic sent to the server switch. Using these recordings they call the ARIMA algorithm,
implemented in Python, in order to predict the amount of traffic at the next prediction in-
terval. Following the prediction, the OpenFlow switches need to send the prediction to
the controller, as the controller is responsible for monitoring the network and helping the
OpenFlow switches achieve their prediction in each interval. Furthermore, in each pre-
dict interval, the OpenFlow switches that are directly connected with the server switch
have to accept an inform message from the controller. The inform message contains the
amount of help received by the controller. The amount of help received by the controller
is then subtracted from the amount of traffic that passed from the OpenFlow switch to the
server switch, since the real traffic if not for the controller’s help, would be the sum of the
controller’s help and the traffic that went through the switch. Additionally, the OpenFlow
switches that directly connect with the access switch, meaning the entrance to the network
(red switches in Figure 4.1), need to send each flow’s rate to the controller, to assist the
controller’s estimation of the predictions success or failure.

4.2. ARIMA IMPLEMENTATION 39

The number of extra messages used by Farcast to monitor the network are given by the
following equation:

N = SI + P (I + 2) (4.1)

Where:

• N is the number of extra monitoring messages.

• P is the number of monitored prediction switches.

• I is the number of inform intervals.

• S is the number of access switches that inform the controller about the flows.

4.2 ARIMA Implementation

In this work we used the ARIMA model implemented in the class statsmodels [79] for
python. The ARIMA model was trained on real-world data obtained from the Department
of Information Systems [80]. We trained the ARIMA on real world data, because the ob-
jective of this thesis is to improve a forecasting method’s prediction validity, using SDN.
Therefore the training of the machine learning algorithm for each simulation was out of
the scope of this thesis and too time consuming for our simulations.

The ARIMA method was called by the monitored switches at each time interval of 1 min-
utes, and provided the prediction of the traffic amount of traffic for the next time interval.
The inform intervals lasted for 10 seconds each.

4.3 One Switch Results

In this section, the performance of Farcast is examined if only one switch is monitored.
The controller receives the predictions of one switch and then reroutes the flows, accord-
ingly, to make the monitored switch achieve its prediction.

The network forwards 30 UDP flows from the client to the server and the controller at
first distributes these flows to the three disjoint paths, one of which contains the moni-
tored switch. Afterwards, an elephant flow, meaning a flow that equals 10 UDP flows is
inserted to each inform interval for the first experiment and removed for the second ex-
periment, to assess the accuracy of the predictions with and without Farcast.

In Figure 4.2 an elephant flow is inserted to the network at the monitored switch’s path,
at each inform interval. This experiment was repeated 50 times for each inform interval,
meaning that in order to provide results, 250 simulations were run. The MAPE shown in
Figure 4.2 is the average MAPE of 50 times of simulation for each inform interval.

40 CHAPTER 4. EVALUATION

We expect that the accuracy of the ARIMA predictor to fall, since it predicts much lower
traffic than the real, that actually traverses through the network.

Moreover, we expect Farcast to remove flows from the monitored switches path and be
closer to the initial prediction of the switch. Since, the implementation of the flow re-
routing is heuristic, we expect that the number of the transmitted messages, M , that the
controller uses to reroute the flows is:

M = 2 ∗K ∗ P (4.2)

Where:

• M is the number of transmitted messages.

• P is each path’s length, 5 in this test’s case. The final switch does not count, as it
always forwards the traffic towards the server and the controller does not need to
send it re-routing messages.

• K is the number of flows that need to be rerouted, which is 10 in this test’s case,
since the flows that need to be rerouted are the 10 smaller flows that already exist
in the monitored switch’s path, before the elephant is inserted into this path.

• The number of transmitted messages are multiplied by 2, since the flows need to be
re-routed at their initial paths, at the end of the prediction interval.

Figure 4.2 shows the MAPE, when inserting an elephant into the monitored switch’s
path, in random moments within each inform interval. The blue line corresponds to the
ARIMA predictor without the controller’s help. The MAPE in this case is at 200%, if the
elephant is inserted in the first inform interval and falls to 40% if the elephant is inserted
at the final inform interval. This is expected, since the sooner the elephant is inserted to
the path after the prediction, the more erroneous the prediction will be, as more data will
be transmitted within the prediction interval.

The red line corresponds to the Farcast’s MAPE, which is significantly lower than the
ARIMA predictor alone and is always stable at 20%. Therefore, Farcast can help the
switch come closer to achieving, its prediction. In this case, using 100 re-routing mes-
sages for removing flows from the monitored switch to the other switches, plus the 26
messages used for monitoring the network.

4.3. ONE SWITCH RESULTS 41

Figure 4.2: Inserting an elephant flow in each inform interval.

Figure 4.3: Subtracting an elephant flow in each time slot.

42 CHAPTER 4. EVALUATION

In the second experiment 30 flows were shared across the three paths, however this
time an elephant was inserted to the monitored switch’s path at the start of the simulation.
Therefore, the ARIMA predictor expects and predicts the traffic of both the 10 mice flows
and the 1 elephant’s flow for the monitored switch.

Figure 4.3 shows the performance of an ARIMA predictor in comparison to the per-
formance of the Farcast predictor, when an elephant is subtracted from the monitored
switch’s path in a random moment within each inform interval. The experiment was re-
peated 50 times for each inform interval.

The blue line corresponds to the ARIMA MAPE and shows the accuracy of a predic-
tor of an unexpected event without using Farcast. The MAPE starts at 52% if the elephant
is subtracted at the first inform interval and gradually falls for each inform interval, until
it reaches 11% at the final inform interval.

The red line shows the Farcast’s performance in this case, which is again lower than the
ARIMA predictor’s alone and stable around 9%. Ten flows are removed by the controller
from the other switches to make the monitored switch achieve its prediction, therefore the
number of exchanged messages is 100 for the re-routing, plus 26 for the monitoring. The
MAPE here is lower than the MAPE in the previous experiment, since the MAPE metric
favours predictions that are too low.

Figure 4.4: Inserting/Subtracting an elephant flow in each time slot.

4.4. THREE SWITCHES RESULTS 43

In the third experiment each path is given 10 flows at first. Then, an elephant is in-
serted at a random moment in each inform interval, finally it is removed from the network
at the inform intervals end. This reflects a bursty behaviour of a network, where a large
amount of traffic is inserted to the monitored switch’s path for a small amount of time.
Each simulation was repeated 50 times for each inform interval.

Figure 4.4 shows the MAPE of the ARIMA predictor and Farcast for this situation. The
blue line corresponds to the ARIMA predictors accuracy, which is stable at 18% for each
inform interval. This is expected, as we insert the same amount of traffic in each inform
interval, therefore the MAPE should be the same, independent of the inform interval. The
red line corresponds to Farcast’s MAPE, which is significantly lower than the ARIMA
predictor’s alone, at 1%. The number of the exchanged messages is again 100 for the
re-routing and 26 for the monitoring messages.

In each experiment, it is shown that for one monitored switch, Farcast lowers the MAPE
significantly, therefore Farcast can be used for improving the predictor’s performance. In
the next section, the results of Farcast, when monitoring all the prediction switches at the
end of the network are shown.

4.4 Three Switches Results

In this section, we study the performance of Farcast, when all the prediction switches are
monitored by the controller. The main difference with the previous section is that now,
the controller receives prediction messages from all the prediction switches and tries to
minimize all of the predictions MAPE.

The limitation of Farcast is that the controller cannot create or terminate flows that al-
ready exist in the network. In order to minimize the MAPE error, the controller needs to
reassign flows that already exist to the prediction switches path. Therefore, when the con-
troller estimates that only one switch has made an erroneous prediction about the load of
traffic it expects in the future, it has to make a decision. In Farcast, the prediction switches
are prioritized, meaning that the controller tries to fix some predictions in expense of other
predictions.

At the initialization stage, the controller sets a percentage of error that the network can
tolerate for each switch. This is of course, a choice of the user that implements Farcast
and can be set to zero for each switch. However, if this percentage is set to zero, then the
controller will not be able to fix predictions for cases where only one prediction switch
is wrong on its prediction. Do not confuse the percentage error that Farcast tolerates for
each switch with the MAPE extracted after the simulation is finished.

Farcast works best in scenarios where the traffic is bursty for more than one prediction
switch. Ideally, when one switch predicts lower traffic than the actual, while another pre-

44 CHAPTER 4. EVALUATION

dicts higher traffic than the actual. In these cases Farcast can reassign flows from the
second switch to the first and minimize both switches’ MAPE.

This is shown in Figure 4.5, where while the switch predicts higher traffic than the actual
while the rest of the prediction switches forecast lower traffic than the actual, meaning
that Farcast can make their erroneous predictions cancel out.

In Figure 4.5, switch 10 makes a prediction and then an elephant comes through its path
in the next prediction interval. This sets its prediction MAPE error 65%. However, switch
11 and 12 predict an amount of traffic when suddenly 5 flows are removed from each
one’s paths. This event makes their MAPE error 32% and 32%, respectively. The con-
troller intervenes and flows from the switch 10 are stitched to the other two paths making
the MAPE errors go down to 14%, 10% and 17%, respectively. For this scenario, the

Figure 4.5: Inserting an elephant flow when monitoring all switches.

average number of transmitted messages is 136, meaning an average 100 messages for re-
routing and 36 standard messages for monitoring. We know that the number of extra flows
removed from switch 10 is 2 since the number of the re-routing messages is 120, and Far-
cast sends 10 re-routing messages for each re-assigned flow, 5 for the initial path stitching
and 5 at the end of the prediction interval where the flows are rerouted to their initial paths.

The opposite scenario is shown in Figure 4.6, where this time, the elephant is removed
from switch 10, while 5 flows are assigned to each of switch 11 and 12. The controller

4.4. THREE SWITCHES RESULTS 45

assigns the extra flows of switch 11 and 12 to switch 10, lowering the MAPE error of all
the switches.

Figure 4.6: Subtracting an elephant flow when monitoring all switches.

In this case the MAPE error without using Farcast is 53%, 30% and 30% for switches
10, 11 and 12, respectively. The number of exchanged messages is 136 again, as the
scenario is very similar to the previous one. In both simulations, the MAPE of switch 12
is always higher than the MAPE of switch 11, since switch 12’s predictions has been set
be of lower importance to the controller.

46 CHAPTER 4. EVALUATION

Chapter 5

Conclusions and Future Work

In this thesis, an approach named Farcast was designed and evaluated for improving
forecasting accuracy via SDN. The methodology covers all steps from the moment the
switches make the predictions about the amount of future traffic and send them to the
controller, to the monitoring of the network’s state and the re-routing of flows. In the ex-
periments we examined how much Farcast can improve the forecasting accuracy in each
time slot an anomaly happens. Moreover, we examined how much it can improve the
forecasting accuracy, when three links are monitored and there is no backup link to accept
extra traffic in case of a traffic burst.

Farcast showed that it is capable of improving the forecasting accuracy, in some instances
as high as by one magnitude of order compared to simple forecasting. Additionally, we
showed that the number of extra messages sent is a function of the path length and the
number of monitored switches. Furthermore, Farcast improves the forecasting perfor-
mance independently of the forecasting method used. Therefore, in a network monitored
by Farcast, the forecasting method can be improved independently.

The next step could be implementing Farcast and evaluating its performance under heavy
loads of traffic used in XG-PON networks, to assess whether it can be used for improving
the XGPON’s bandwidth assignment. In the XG-PON standard different ASNs should
cooperate to take full advantage of Farcast. This means that the ASNs should be inter-
connected and connected to a central controller, which will be able to redirect the flows
amongst them. However, further experimentation is needed to prove that Farcast will be
useful in XG-PON networks, as Farcast must adapt in the very fast Internet speeds of
XG-PON.

Another step should be experimenting with the prediction intervals and the inform in-
tervals length and finding the best lengths for forecasting accuracy improvement. The
inform interval length is very important for Farcast, as the shorter the length of the in-
terval, the faster the controller will be able to determine and eliminate possible outliers.
However, the length of the interval should be long enough for the controller to be able to

47

48 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

react to the outliers. Experimentation is needed in order to find the best prediction-inform
intervals ratio in order to maximize the efficiency of Farcast.

Moreover, in the current version of Farcast, the network components clocks were consid-
ered to be synchronized, meaning that the monitoring messages were sent by the switches
at the start of the inform intervals without a prior request from the controller. Farcast
needs all the monitoring messages at the start of the inform interval before making reas-
signment decisions. In a real world scenario, the controller should request the switches’
predictions and monitoring messages, since in the real world it is not safe to assume that
all the network components are fully synchronized.

Finally, a method for determining which flows are long lived and which are not should
be implemented and attached to the controller, in order for the controller to make better
reassigning decisions. The long-lived flows are safer for improving the switches’ fore-
casting accuracy, since they are more likely to continue to exist within an inform interval
in which they are reassigned. The reassignment of long-lived flows will make Farcast
more dependable.

Bibliography

[1] Huma Parveen and Rishi Srivastava, “Network Traffic Analysis and Prediction – A
Literature Review,” International Journal of Research and Development in Applied
Science and Engineering (IJRDASE), 2016.

[2] C. Liaskos, X. Dimitropoulos, and L. Tassiulas, “Backpressure on the backbone:
A lightweight, non-intrusive traffic engineering approach,” IEEE Transactions on
Network and Service Management, vol. to appear, pp. 1–14, 2016.

[3] P. Cortez, M. Rio, M. Rocha, and P. Sousa, “Internet Traffic Forecasting
using Neural Networks.” IEEE, 2006, pp. 2635–2642. [Online]. Available:
http://ieeexplore.ieee.org/document/1716452/

[4] C. Katris and S. Daskalaki, “Comparing forecasting approaches for Internet
traffic,” Expert Systems with Applications, vol. 42, no. 21, pp. 8172–
8183, Nov. 2015. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/
S0957417415004315

[5] M. L. F. Miguel, M. C. Penna, J. C. Nievola, and M. E. Pellenz, “New models
for long-term Internet traffic forecasting using artificial neural networks and
flow based information.” IEEE, Apr. 2012, pp. 1082–1088. [Online]. Available:
http://ieeexplore.ieee.org/document/6212033/

[6] T. Otoshi, Y. Ohsita, M. Murata, Y. Takahashi, K. Ishibashi, and K. Shiomoto,
“Traffic prediction for dynamic traffic engineering,” Computer Networks, vol. 85,
pp. 36–50, Jul. 2015. [Online]. Available: http://linkinghub.elsevier.com/retrieve/
pii/S1389128615001565

[7] J.-C. Bolot and P. Hoschka, “Performance engineering of the World Wide Web:
Application to dimensioning and cache design,” Computer Networks and ISDN
Systems, vol. 28, no. 7-11, pp. 1397–1405, May 1996. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/0169755296000736

[8] P. Cortez, M. Rio, P. Sousa, and M. Rocha, “Topology Aware Internet Traffic
Forecasting Using Neural Networks,” in Artificial Neural Networks – ICANN 2007,
D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell,
M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos,

49

http://ieeexplore.ieee.org/document/1716452/
http://linkinghub.elsevier.com/retrieve/pii/S0957417415004315
http://linkinghub.elsevier.com/retrieve/pii/S0957417415004315
http://ieeexplore.ieee.org/document/6212033/
http://linkinghub.elsevier.com/retrieve/pii/S1389128615001565
http://linkinghub.elsevier.com/retrieve/pii/S1389128615001565
http://linkinghub.elsevier.com/retrieve/pii/0169755296000736

50 BIBLIOGRAPHY

D. Tygar, M. Y. Vardi, G. Weikum, J. M. de Sá, L. A. Alexandre, W. Duch,
and D. Mandic, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,
vol. 4669, pp. 445–454, dOI: 10.1007/978-3-540-74695-9_46. [Online]. Available:
http://link.springer.com/10.1007/978-3-540-74695-9_46

[9] S. R. Talpur and T. Kechadi, “A forecasting model for data centre bandwidth utilisa-
tion,” in The SAI Intelligent Systems Conference (IntelliSys 2016), CentrEd at ExCel
London, London, United Kingdom, 21-22 September 2016, 2016.

[10] S. Chong, S.-q. Li, and J. Ghosh, “Ann based forecasting of vbr video tra c for
dynamic bandwidth allocation in atm networks,” 1995.

[11] M.-S. Han, “Simple and feasible dynamic bandwidth and polling allocation for
XGPON.” Global IT Research Institute (GIRI), Feb. 2014, pp. 298–304. [Online].
Available: http://ieeexplore.ieee.org/document/6779186/

[12] P. Sarigiannidis, D. Pliatsios, T. Zygiridis, and N. Kantartzis, “DAMA: A data
mining forecasting DBA scheme for XG-PONs.” IEEE, May 2016, pp. 1–4.
[Online]. Available: http://ieeexplore.ieee.org/document/7495169/

[13] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing network-wide traffic anomalies,”
SIGCOMM Comput. Commun. Rev., vol. 34, no. 4, pp. 219–230, Aug. 2004.
[Online]. Available: http://doi.acm.org/10.1145/1030194.1015492

[14] B. Huifeng, Z. Xianlong, Z. Hongfeng, and Z. Likun, “Traffic-load prediction based
on echo state network improved by bayesian theory in 10g-epon,” The Journal
of China Universities of Posts and Telecommunications, vol. 22, no. 2, pp. 69
– 73, 2015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S1005888515606410

[15] “OMNeT.” [Online]. Available: https://omnetpp.org/doc/omnetpp/manual/#cha:
overview

[16] “INET Framework.” [Online]. Available: https://omnetpp.org/doc/inet/api-current/
inet-manual-draft.pdf

[17] G. E. P. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time series analy-
sis: forecasting and control, fifth edition ed., ser. Wiley series in probability and
statistics. Hoboken, New Jersey: John Wiley & Sons, Inc, 2016.

[18] Qilian Liang, “Ad hoc wireless network traffic-self-similarity and forecasting,”
IEEE Communications Letters, vol. 6, no. 7, pp. 297–299, Jul. 2002. [Online].
Available: http://ieeexplore.ieee.org/document/1018756/

[19] W. Leland, M. Taqqu, W. Willinger, and D. Wilson, “On the self-similar
nature of Ethernet traffic (extended version),” IEEE/ACM Transactions on
Networking, vol. 2, no. 1, pp. 1–15, Feb. 1994. [Online]. Available:
http://ieeexplore.ieee.org/document/282603/

http://link.springer.com/10.1007/978-3-540-74695-9_46
http://ieeexplore.ieee.org/document/6779186/
http://ieeexplore.ieee.org/document/7495169/
http://doi.acm.org/10.1145/1030194.1015492
http://www.sciencedirect.com/science/article/pii/S1005888515606410
http://www.sciencedirect.com/science/article/pii/S1005888515606410
https://omnetpp.org/doc/omnetpp/manual/#cha:overview
https://omnetpp.org/doc/omnetpp/manual/#cha:overview
https://omnetpp.org/doc/inet/api-current/inet-manual-draft.pdf
https://omnetpp.org/doc/inet/api-current/inet-manual-draft.pdf
http://ieeexplore.ieee.org/document/1018756/
http://ieeexplore.ieee.org/document/282603/

BIBLIOGRAPHY 51

[20] A. Sang and S.-q. Li, “A predictability analysis of network traffic,” Computer
Networks, vol. 39, no. 4, pp. 329–345, Jul. 2002. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S1389128601003048

[21] R. Wolski, “Forecasting network performance to support dynamic scheduling using
the network weather service.” IEEE Comput. Soc, 1997, pp. 316–325. [Online].
Available: http://ieeexplore.ieee.org/document/626437/

[22] P. Cortez, M. Rio, M. Rocha, and P. Sousa, “Multi-scale Internet traffic forecasting
using neural networks and time series methods,” Expert Systems, pp. no–no, Dec.
2010. [Online]. Available: http://doi.wiley.com/10.1111/j.1468-0394.2010.00568.x

[23] V. Alarcon-Aquino and J. Barria, “Multiresolution FIR neural-network-based
learning algorithm applied to network traffic prediction,” IEEE Transactions on
Systems, Man and Cybernetics, Part C (Applications and Reviews), vol. 36, no. 2,
pp. 208–220, Mar. 2006. [Online]. Available: http://ieeexplore.ieee.org/document/
1624547/

[24] L. Tang, S. Du, and S. Ji, “Forecasting network traffic at large time scale by using
dual-related method.” IEEE, Aug. 2016, pp. 1336–1340. [Online]. Available:
http://ieeexplore.ieee.org/document/7603372/

[25] R. Babiarz and J.-S. Bedo, “Internet Traffic Mid-term Forecasting: A
Pragmatic Approach Using Statistical Analysis Tools,” in NETWORKING
2006. Networking Technologies, Services, and Protocols; Performance of
Computer and Communication Networks; Mobile and Wireless Communications
Systems, D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern,
J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen,
M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, F. Boavida,
T. Plagemann, B. Stiller, C. Westphal, and E. Monteiro, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, vol. 3976, pp. 110–122. [Online]. Available:
http://link.springer.com/10.1007/11753810_10

[26] J. Jiang and S. Papavassiliou, “Detecting Network Attacks in the Internet
via Statistical Network Traffic Normality Prediction,” Journal of Network and
Systems Management, vol. 12, no. 1, pp. 51–72, Mar. 2004. [Online]. Available:
http://link.springer.com/10.1023/B:JONS.0000015698.32353.61

[27] N. Wang, K. Ho, G. Pavlou, and M. Howarth, “An overview of routing
optimization for internet traffic engineering,” IEEE Communications Surveys
& Tutorials, vol. 10, no. 1, pp. 36–56, 2008. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4483669

[28] H. Wang, H. Xie, L. Qiu, Y. R. Yang, Y. Zhang, and A. Greenberg,
“COPE: traffic engineering in dynamic networks,” ACM SIGCOMM Computer
Communication Review, vol. 36, no. 4, p. 99, Aug. 2006. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1151659.1159926

http://linkinghub.elsevier.com/retrieve/pii/S1389128601003048
http://ieeexplore.ieee.org/document/626437/
http://doi.wiley.com/10.1111/j.1468-0394.2010.00568.x
http://ieeexplore.ieee.org/document/1624547/
http://ieeexplore.ieee.org/document/1624547/
http://ieeexplore.ieee.org/document/7603372/
http://link.springer.com/10.1007/11753810_10
http://link.springer.com/10.1023/B:JONS.0000015698.32353.61
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4483669
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4483669
http://portal.acm.org/citation.cfm?doid=1151659.1159926

52 BIBLIOGRAPHY

[29] A. Elwalid, C. Jin, S. Low, and I. Widjaja, “MATE: MPLS adaptive
traffic engineering,” vol. 3. IEEE, 2001, pp. 1300–1309. [Online]. Available:
http://ieeexplore.ieee.org/document/916625/

[30] D. Awduche, “MPLS and traffic engineering in IP networks,” IEEE Communications
Magazine, vol. 37, no. 12, pp. 42–47, Dec. 1999. [Online]. Available:
http://ieeexplore.ieee.org/document/809383/

[31] S. Kandula, D. Katabi, B. Davie, and A. Charny, “Walking the tightrope: responsive
yet stable traffic engineering.” ACM Press, 2005, p. 253. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1080091.1080122

[32] T. Benson, A. Akella, and D. A. Maltz, “Unraveling the complexity of network
management.” in NSDI, 2009, pp. 335–348.

[33] D. Kreutz, F. M. V. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-Defined Networking: A Comprehensive
Survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015. [Online].
Available: http://ieeexplore.ieee.org/document/6994333/

[34] B. Raghavan, M. Casado, T. Koponen, S. Ratnasamy, A. Ghodsi, and
S. Shenker, “Software-defined internet architecture: Decoupling architecture from
infrastructure,” in Proceedings of the 11th ACM Workshop on Hot Topics in
Networks, ser. HotNets-XI. New York, NY, USA: ACM, 2012, pp. 43–48.
[Online]. Available: http://doi.acm.org/10.1145/2390231.2390239

[35] V. Kotronis, A. Gamperli, and X. Dimitropoulos, “Routing centralization across do-
mains via sdn: A model and emulation framework for bgp evolution,” Computer
Networks, 2015.

[36] E. Lakiotakis, C. Liaskos, and X. Dimitropoulos, “Application-network collabora-
tion using sdn for ultra-low delay teleorchestras,” in IEEE ISCC PEDISWESA Work-
shop 2017, To Appear.

[37] P. Sermpezis and X. Dimitropoulos, “Inter-domain sdn: Analysing the effects of
routing centralization on bgp convergence time,” in MAMA workshop (ACM SIG-
METRICS), 2016.

[38] V. Kotronis, X. Dimitropoulos, R. Kloti, B. Ager, P. Georgopoulos, and S. Schmid,
“Control exchange points: Providing qos-enabled end-to-end services via sdn-based
inter-domain routing orchestration,” in Open Networking Summit (ONS), 2014.

[39] V. Kotronis, X. Dimitropoulos, and B. Ager, “Outsourcing the routing control logic:
better internet routing based on sdn principles,” in ACM Hot Topics in Networks
(HotNets), 2012.

[40] David H. Deans, “Why SDN revenue will grow by 72% CAGR through to 2020,”
Nov. 2016. [Online]. Available: https://www.telecomstechnews.com/news/2016/
nov/15/sdn-revenue-will-grow-by-72-cagr-through-2020/

http://ieeexplore.ieee.org/document/916625/
http://ieeexplore.ieee.org/document/809383/
http://portal.acm.org/citation.cfm?doid=1080091.1080122
http://ieeexplore.ieee.org/document/6994333/
http://doi.acm.org/10.1145/2390231.2390239
https://www.telecomstechnews.com/news/2016/nov/15/sdn-revenue-will-grow-by-72-cagr-through-2020/
https://www.telecomstechnews.com/news/2016/nov/15/sdn-revenue-will-grow-by-72-cagr-through-2020/

BIBLIOGRAPHY 53

[41] “Seasonality,” https://onlinecourses.science.psu.edu/stat510/node/67.

[42] H. A. Malki, N. B. Karayiannis, and M. Balasubramanian, “Short-term
electric power load forecasting using feedforward neural networks,” Expert
Systems, vol. 21, no. 3, pp. 157–167, Jul. 2004. [Online]. Available:
http://doi.wiley.com/10.1111/j.1468-0394.2004.00272.x

[43] J. W. Taylor, L. M. de Menezes, and P. E. McSharry, “A comparison of univariate
methods for forecasting electricity demand up to a day ahead,” International
Journal of Forecasting, vol. 22, no. 1, pp. 1–16, Jan. 2006. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0169207005000907

[44] H. Hippert, C. Pedreira, and R. Souza, “Neural networks for short-term
load forecasting: a review and evaluation,” IEEE Transactions on Power
Systems, vol. 16, no. 1, pp. 44–55, Feb. 2001. [Online]. Available: http:
//ieeexplore.ieee.org/document/910780/

[45] R. J. Hyndman and A. B. Koehler, “Another look at measures of forecast
accuracy,” International Journal of Forecasting, vol. 22, no. 4, pp. 679–
688, Oct. 2006. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/
S0169207006000239

[46] X. Ding, Canu, S., and Denoeux, T., “Neural network based models for forecasting.”
in In Proc. of Applied Decision Technologies Conf., 1995.

[47] A. Varga et al., “The omnet++ discrete event simulation system,” in Proceedings of
the European simulation multiconference (ESM’2001), vol. 9, no. S 185. sn, 2001,
p. 65.

[48] A. Varga and R. Hornig, “An overview of the omnet++ simulation environment,” in
Proceedings of the 1st International Conference on Simulation Tools and Techniques
for Communications, Networks and Systems & Workshops, ser. Simutools ’08.
ICST, Brussels, Belgium, Belgium: ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), 2008, pp. 60:1–60:10.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1416222.1416290

[49] “INET Framework.” [Online]. Available: https://inet.omnetpp.org/

[50] D. Klein and M. Jarschel, “An openflow extension for the omnet++ inet frame-
work,” in Proceedings of the 6th International ICST Conference on Simulation Tools
and Techniques. ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), 2013, pp. 322–329.

[51] “Open Networking Foundation. OpenFlow Switch Specification - Version 1.2.”
[Online]. Available: https://www.opennetworking.org/images/stories/downloads/
sdn-resources/onf-specifications/openflow/openflow-spec-v1.2.pdf

https://onlinecourses.science.psu.edu/stat510/node/67
http://doi.wiley.com/10.1111/j.1468-0394.2004.00272.x
http://linkinghub.elsevier.com/retrieve/pii/S0169207005000907
http://ieeexplore.ieee.org/document/910780/
http://ieeexplore.ieee.org/document/910780/
http://linkinghub.elsevier.com/retrieve/pii/S0169207006000239
http://linkinghub.elsevier.com/retrieve/pii/S0169207006000239
http://dl.acm.org/citation.cfm?id=1416222.1416290
https://inet.omnetpp.org/
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.2.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.2.pdf

54 BIBLIOGRAPHY

[52] S. S. Skiena, The Algorithm Design Manual, 2nd ed. Springer Publishing Company,
Incorporated, 2008.

[53] L. Quan and J. Heidemann, “On the characteristics and reasons of long-
lived internet flows.” ACM Press, 2010, p. 444. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1879141.1879198

[54] N. Brownlee and K. Claffy, “Understanding Internet traffic streams: dragonflies
and tortoises,” IEEE Communications Magazine, vol. 40, no. 10, pp. 110–117, Oct.
2002. [Online]. Available: http://ieeexplore.ieee.org/document/1039865/

[55] K. Thompson, G. Miller, and R. Wilder, “Wide-area Internet traffic patterns and
characteristics,” IEEE Network, vol. 11, no. 6, pp. 10–23, Dec. 1997. [Online].
Available: http://ieeexplore.ieee.org/document/642356/

[56] K.-c. Lan and J. Heidemann, “A measurement study of correlations of Internet flow
characteristics,” Computer Networks, vol. 50, no. 1, pp. 46–62, Jan. 2006. [Online].
Available: http://linkinghub.elsevier.com/retrieve/pii/S1389128605001118

[57] H. Kim, K. Claffy, M. Fomenkov, D. Barman, M. Faloutsos, and K. Lee, “Internet
traffic classification demystified: myths, caveats, and the best practices.” ACM
Press, 2008, pp. 1–12. [Online]. Available: http://portal.acm.org/citation.cfm?doid=
1544012.1544023

[58] S. Sen, O. Spatscheck, and D. Wang, “Accurate, scalable in-network identification
of p2p traffic using application signatures.” ACM Press, 2004, p. 512. [Online].
Available: http://portal.acm.org/citation.cfm?doid=988672.988742

[59] A. W. Moore and K. Papagiannaki, “Toward the Accurate Identification of
Network Applications,” in Passive and Active Network Measurement, D. Hutchison,
T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor,
O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos,
D. Tygar, M. Y. Vardi, G. Weikum, and C. Dovrolis, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2005, vol. 3431, pp. 41–54. [Online]. Available:
http://link.springer.com/10.1007/978-3-540-31966-5_4

[60] T. Karagiannis, A. Broido, M. Faloutsos, and K. claffy, “Transport layer
identification of P2p traffic.” ACM Press, 2004, p. 121. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1028788.1028804

[61] P. Haffner, S. Sen, O. Spatscheck, and D. Wang, “ACAS: automated construction
of application signatures.” ACM Press, 2005, p. 197. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1080173.1080183

[62] T. Karagiannis, K. Papagiannaki, and M. Faloutsos, “BLINC: multilevel
traffic classification in the dark,” ACM SIGCOMM Computer Communication
Review, vol. 35, no. 4, p. 229, Oct. 2005. [Online]. Available: http:
//portal.acm.org/citation.cfm?doid=1090191.1080119

http://portal.acm.org/citation.cfm?doid=1879141.1879198
http://ieeexplore.ieee.org/document/1039865/
http://ieeexplore.ieee.org/document/642356/
http://linkinghub.elsevier.com/retrieve/pii/S1389128605001118
http://portal.acm.org/citation.cfm?doid=1544012.1544023
http://portal.acm.org/citation.cfm?doid=1544012.1544023
http://portal.acm.org/citation.cfm?doid=988672.988742
http://link.springer.com/10.1007/978-3-540-31966-5_4
http://portal.acm.org/citation.cfm?doid=1028788.1028804
http://portal.acm.org/citation.cfm?doid=1080173.1080183
http://portal.acm.org/citation.cfm?doid=1090191.1080119
http://portal.acm.org/citation.cfm?doid=1090191.1080119

BIBLIOGRAPHY 55

[63] T. Choi, C. Kim, S. Yoon, J. Park, B. Lee, H. Kim, H. Chung, and T. Jeong,
“Content-aware Internet application traffic measurement and analysis.” IEEE, 2004,
pp. 511–524. [Online]. Available: http://ieeexplore.ieee.org/document/1317737/

[64] M. Iliofotou, P. Pappu, M. Faloutsos, M. Mitzenmacher, S. Singh, and G. Varghese,
“Network monitoring using traffic dispersion graphs (tdgs).” ACM Press, 2007, p.
315. [Online]. Available: http://portal.acm.org/citation.cfm?doid=1298306.1298349

[65] Z. Li, R. Yuan, and X. Guan, “Accurate Classification of the Internet Traffic Based
on the SVM Method.” IEEE, Jun. 2007, pp. 1373–1378. [Online]. Available:
http://ieeexplore.ieee.org/document/4288902/

[66] N. Williams, S. Zander, and G. Armitage, “A preliminary performance comparison
of five machine learning algorithms for practical IP traffic flow classification,” ACM
SIGCOMM Computer Communication Review, vol. 36, no. 5, p. 5, Oct. 2006.
[Online]. Available: http://portal.acm.org/citation.cfm?doid=1163593.1163596

[67] S. Zander, T. Nguyen, and G. Armitage, “Automated traffic classification and
application identification using machine learning.” IEEE, 2005, pp. 250–257.
[Online]. Available: http://ieeexplore.ieee.org/document/1550864/

[68] T. Auld, A. W. Moore, and S. F. Gull, “Bayesian Neural Networks for Internet Traffic
Classification,” IEEE Transactions on Neural Networks, vol. 18, no. 1, pp. 223–239,
Jan. 2007. [Online]. Available: http://ieeexplore.ieee.org/document/4049810/

[69] M. Roughan, S. Sen, O. Spatscheck, and N. Duffield, “Class-of-service mapping
for QoS: a statistical signature-based approach to IP traffic classification.” ACM
Press, 2004, p. 135. [Online]. Available: http://portal.acm.org/citation.cfm?doid=
1028788.1028805

[70] L. Bernaille, R. Teixeira, and K. Salamatian, “Early application identification.”
ACM Press, 2006, p. 1. [Online]. Available: http://portal.acm.org/citation.cfm?
doid=1368436.1368445

[71] A. McGregor, M. Hall, P. Lorier, and J. Brunskill, “Flow Clustering Using
Machine Learning Techniques,” in Passive and Active Network Measurement,
D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C.
Mitchell, O. Nierstrasz, C. Pandu Rangan, B. Steffen, D. Terzopoulos,
D. Tygar, M. Y. Vardi, C. Barakat, and I. Pratt, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, vol. 3015, pp. 205–214. [Online]. Available:
http://link.springer.com/10.1007/978-3-540-24668-8_21

[72] J. Erman, A. Mahanti, M. Arlitt, and C. Williamson, “Identifying and discriminating
between web and peer-to-peer traffic in the network core.” ACM Press, 2007, p.
883. [Online]. Available: http://portal.acm.org/citation.cfm?doid=1242572.1242692

http://ieeexplore.ieee.org/document/1317737/
http://portal.acm.org/citation.cfm?doid=1298306.1298349
http://ieeexplore.ieee.org/document/4288902/
http://portal.acm.org/citation.cfm?doid=1163593.1163596
http://ieeexplore.ieee.org/document/1550864/
http://ieeexplore.ieee.org/document/4049810/
http://portal.acm.org/citation.cfm?doid=1028788.1028805
http://portal.acm.org/citation.cfm?doid=1028788.1028805
http://portal.acm.org/citation.cfm?doid=1368436.1368445
http://portal.acm.org/citation.cfm?doid=1368436.1368445
http://link.springer.com/10.1007/978-3-540-24668-8_21
http://portal.acm.org/citation.cfm?doid=1242572.1242692

56 BIBLIOGRAPHY

[73] A. W. Moore and D. Zuev, “Internet traffic classification using bayesian analysis
techniques,” ACM SIGMETRICS Performance Evaluation Review, vol. 33, no. 1,
p. 50, Jun. 2005. [Online]. Available: http://portal.acm.org/citation.cfm?doid=
1071690.1064220

[74] J. Erman, A. Mahanti, M. Arlitt, I. Cohen, and C. Williamson, “Offline/realtime
traffic classification using semi-supervised learning,” Performance Evaluation,
vol. 64, no. 9-12, pp. 1194–1213, Oct. 2007. [Online]. Available: http:
//linkinghub.elsevier.com/retrieve/pii/S0166531607000648

[75] J. Erman, M. Arlitt, and A. Mahanti, “Traffic classification using clustering
algorithms.” ACM Press, 2006, pp. 281–286. [Online]. Available: http:
//portal.acm.org/citation.cfm?doid=1162678.1162679

[76] J. Postel, “User Datagram Protocol (RFC 768),” IETF Request For Comments, Aug.
1980.

[77] D. C. Plummer, “RFC 826: Ethernet Address Resolution Protocol: Or converting
network protocol addresses to 48.bit Ethernet address for transmission on Ethernet
hardware,” Nov. 1982. [Online]. Available: ftp://ftp.internic.net/rfc/rfc826.txt

[78] J. Postel, “RFC 793: Transmission Control Protocol,” Sep. 1981.

[79] “Seasonality,” http://statsmodels.sourceforge.net/.

[80] “Internet traffic Time Series Datasets,” http://www3.dsi.uminho.pt/pcortez/series/.

http://portal.acm.org/citation.cfm?doid=1071690.1064220
http://portal.acm.org/citation.cfm?doid=1071690.1064220
http://linkinghub.elsevier.com/retrieve/pii/S0166531607000648
http://linkinghub.elsevier.com/retrieve/pii/S0166531607000648
http://portal.acm.org/citation.cfm?doid=1162678.1162679
http://portal.acm.org/citation.cfm?doid=1162678.1162679
ftp://ftp.internic.net/rfc/rfc826.txt
http://statsmodels.sourceforge.net/
http://www3.dsi.uminho.pt/pcortez/series/

	1 Introduction
	1.1 Motivation
	1.2 Thesis Contribution
	1.3 Thesis Outline
	1.4 Related Work

	2 Background
	2.1 Software Defined Networks
	2.2 ARIMA
	2.3 OMNeT++
	2.3.1 Modeling Concepts
	2.3.2 NED Overview
	2.3.3 Events

	2.4 Components, Simple Modules, Channels
	2.5 The INET Framework
	2.6 OfOMNeT
	2.6.1 OpenFlow Messages
	2.6.2 Openflow Switch
	2.6.3 Openflow Controller

	3 Approach
	3.1 A Simple Use Case
	3.2 Prediction Intervals
	3.3 Farcast Flowchart
	3.4 Switch Functionality
	3.5 Controller Functionality
	3.6 Optimal Calculation of Path Load
	3.7 Farcast Limitations

	4 Evaluation
	4.1 Benchmark
	4.2 ARIMA Implementation
	4.3 One Switch Results
	4.4 Three Switches Results

	5 Conclusions and Future Work

