
Design level software optimization of

structural analysis tool through memoization

and application of concurrent computing

methods

Myron Tsatsarakis

Thesis submitted in partial fulfillment of the requirements for the

Masters’ of Science degree in Computer Science and Engineering

University of Crete
School of Sciences and Engineering
Computer Science Department

Voutes University Campus, 700 13 Heraklion, Crete, Greece

Thesis Advisor: Associate Prof. Polyvios Pratikakis

This work has been performed at the University of Crete, School of Sciences and Engineering,
Computer Science Department.

The work has been supported by the Foundation for Research and Technology - Hellas
(FORTH), Institute of Computer Science (ICS).





University of Crete
Computer Science Department

Design level software optimization of structural analysis tool through
memoization and application of concurrent computing methods

Thesis submitted by
Myron Tsatsarakis

in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science

THESIS APPROVAL

Author:
Myron Tsatsarakis

Committee approvals:
Polyvios Pratikakis
Associate Professor, Thesis Supervisor

Angelos Bilas
Professor, Committee Member

Kostas Magoutis
Associate Professor, Committee Member

Departmental approval:
Polyvios Pratikakis
Associate Professor, Director of Graduate Studies

Heraklion, July 2022





Design level software optimization of structural
analysis tool through memoization and application of

concurrent computing methods

Abstract

Performance is an important concern for the end user of an application. Latency,
unresponsiveness of commands and long wait times can make or break the expe-
rience. Some of the factors that prevent software engineers from achieving their
performance goals are the presence of legacy code and the inability to exploit all
the available hardware resources.

Legacy code acts as a barrier that prevents both feature extensibility and
optimization-oriented refactoring. It is considered to be a no-man’s-land, pre-
venting any fruitful discussion about its detailed functionality and side effects in
performance. On the other hand, hardware resources, such as CPU cores, can be
exploited to reduce the time cost of computationally expensive operations by the
application of concurrency. Data-oriented design for concurrency can provide an
increase in performance by distributing workload among cores, fully utilizing the
available hardware.

Our work is applied on a commercial structural design and analysis application
which suffers from the aforementioned setbacks. It comes with a large code-base,
guaranteeing a sizeable number of legacy modules. Furthermore, efficient hardware
utilization, was not possible during the early development times of the application
since the technological research regarding concurrent computation was not suffi-
ciently developed.

In the first part of this thesis we present a way to memoize the return values
of computationally expensive legacy code operations by designing an extensible
Memoization Model. We identify the computationally expensive operations by
conducting performance analysis using an external profiling tool and apply our
Memoization Model to the legacy code base in a non-intrusive way. We present
the requirements, design and implementations of our Memoization Model using
C++. Our evaluation indicates that the application of our Memoization Model,
yields up to 100% increase in performance and has been scheduled for a commercial
release, in a future update of the application.

In the second part of this thesis we present a way to concurrently calculate
computationally expensive properties of structural elements. We extend the design
of the manager component, responsible for calculating these expensive properties,
by applying concurrency semantics. We use the concept of asynchronous tasks
and our own implementation of a thread pool to aid our design. We present the
requirements, design and implementation of our concurrent manager component
using C++. Our evaluation indicates that our concurrent manager component,
yields up to 420% increase in performance and has been scheduled for a commercial
release, in a future update of the application.





Σχεδιαστική βελτιστοποίηση εφαρμογής στατικών

κτηριακών μελετών μέσω μεθόδων υπομνηματισμού

και κατανεμημένου υπολογισμού

Περίληψη

Η απόδοση μια εφαρμογής είναι σημαντικός παράγοντας για τον τελικό χρήστη. Καθυ-

στερήσεις, εντολές χωρίς ανταπόκριση και μεγάλες περίοδοι αναμονής υποβαθμίζουν

την εμπειρία χρήσης μιας εφαρμογής. Μερικοί από τους λόγους που εμποδίζουν τους

μηχανικούς λογισμικού από το να βελτιώσουνε την απόδοση των εφαρμογών είναι η

ύπαρξη παλαιωμένου κώδικα και η ανεπαρκής εκμετάλλευση πόρων υλισμικού.

Ο παλαιωμένος κώδικας αποτελεί εμπόδιο στην επεκτασιμότητα των δυνατοτήτων

μιας εφαρμογής και στην αναδόμηση του κώδικά της με σκοπό τη βελτιστοποίηση.

Η έλλειψη τεκμηρίωσής του εμποδίζει συζητήσεις σχετικά με τη λειτουργία και τις

παρενέργειες του στο σύστημα. Από την άλλη, πόροι υλισμικού όπως οι επεξεργαστι-

κοί πυρήνες μπορούν να εκμεταλλευτούν κατάλληλα ώστε να μειωθεί ο χρόνος των

υπολογιστικά ακριβών λειτουργιών, μέσω μεθόδων κατανεμημένου υπολογισμού. Ε-

φαρμόζουμε τη δουλειά μας σε μία εμπορική εφαρμογή στατικών κτηριακών μελετών

η οποία πάσχει από αυτά τα προβλήματα. Περιέχει μία μεγάλη βάση κώδικα με αρ-

κετές παλαιωμένες δομικές ενότητες. Επιπλέον, η επαρκής εκμετάλλευση των πόρων

υλισμικού δεν ήταν δυνατή κατά τη συγγραφή της εφαρμογής, καθώς η τεχνολογία

σε εργαλεία κατανεμημένου υπολογισμού δεν ήταν αρκετά αναπτυγμένη.

Στο πρώτο μέρος της εργασίας αυτής παρουσιάζουμε ένα τρόπο υπομνηματισμο-

ύ τιμών υπολογιστικά ακριβών και παλαιωμένων λειτουργιών, σχεδιάζοντας ένα ε-

πεκτάσιμο μοντέλο υπομνηματισμού. Ανακαλύπτουμε τις υπολογιστικά ακριβές λει-

τουργίες αναλύοντας την απόδοση της εφαρμογής και εφαρμόζουμε το μοντέλο υπο-

μνηματισμού σε παλαιωμένο κώδικα με μη παρεμβατικό τρόπο. Παρουσιάζουμε τις

απαιτήσεις, τη σχεδίαση και την υλοποίηση του μοντέλου υπομνηματισμού σε γλώσσα

C++ . Η αξιολόγηση της απόδοσης της δουλειάς μας δείχνει πως η εφαρμογή του
μοντέλου υπομνηματισμού προσφέρει μέχρι και 100% αύξηση της απόδοσης. Η εφαρ-

μογή του μοντέλου έχει προγραμματιστεί για εμπορική χρήση μέσω της ένταξής του

σε μελλοντική αναβάθμισή της εφαρμογής.

Στο δεύτερο μέρος της εργασίας αυτής παρουσιάζουμε ένα τρόπο κατανεμημένου

υπολογισμού υπολογιστικά ακριβών ιδιοτήτων κατασκευαστικών στοιχείων. Επεκτε-

ίνουμε τη σχεδίαση του στοιχείου διαχείρισης υπολογισμού των ιδιοτήτων αυτών ε-

φαρμόζοντας μεθόδους κατανεμημένου υπολογισμού. Χρησιμοποιούμε τις έννοιές α-

σύγχρονων διεργασιών και υλοποιούμε μια ομάδα νημάτων ως βοηθητικά εργαλεία της

σχεδίασής μας. Παρουσιάζουμε τις απαιτήσεις, τη σχεδίαση και την υλοποίηση του

κατανεμημένου στοιχείου διαχείρισης σε γλώσσα C++ . Η αξιολόγηση της απόδοσης
της δουλειάς μας δείχνει πως το κατανεμημένο στοιχείο διαχείρισης προσφέρει μέχρι

και 420% αύξηση της απόδοσης. Το κατανεμημένο στοιχείο διαχείρισης έχει προ-

γραμματιστεί για εμπορική χρήση μέσω της ένταξής του σε μελλοντική αναβάθμισή

της εφαρμογής.
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Chapter 1

Introduction

Performance is an important concern for the end user of an application. Latency,
unresponsiveness of commands and long wait times can make or break the expe-
rience. Civil engineers are a user base which favors performance in their go-to
software. They expect structural design and analysis software to be responsive to
user inputs and have minimal wait times during CPU intensive operations. Reality
can be often disappointing, since commercial structural analysis and design tool
suites are too complicated to develop while being void of performance problems.
Industry level software like AutoCAD from Autodesk [3] or STAAD by Research
Engineers International (REL) [29] can exhibit case specific performance issues
that lead to the frustration of thousands of users. However, some performance
problems can be attributed to specific factors.

One of those factors is legacy code bloat. It is a phenomenon present in any
kind of commercial application, from independently developed small scale plugins
to industry level tool suites. Legacy code is characterized by lack of unit tests, no
documentation, dependency hell, spaghetti code flow, comments that misinform
intent and by many more frustrating issues. It can impede the performance of
an application by providing a hard limit to code optimization. Software engineers
can improve the performance of a module by optimizing it’s code. However, if
that module is dependent on legacy code, then the application of optimization
techniques becomes limited, since a legacy code base acts as a no man’s land.
Furthermore, a legacy code module, that acts as a dependency to many other
modules, extends the coverage of the problem to a larger part of the application,
further limiting the actions of engineers.

1



2 CHAPTER 1. INTRODUCTION

A different factor that can impede performance is CPU utilization. Most in-
dustry level applications developed over fifteen years ago have been designed with
serial execution in mind. However, with the modern rise of parallel programming,
concurrent architectures and methods of writing mutually exclusive code have been
developed. Developments in research regarding concurrent computation has essen-
tially altered people’s perception of software engineering as a practice. It made
people realize that old code can be more efficiently rewritten to better utilize hard-
ware resources, creating the need of upgrading multiple old architectures to new
ones that favor concurrency.

Structural design and analysis applications face both of those issues. Their
long development history guarantees the existence of legacy code that impacts
performance in a substantial way. Furthermore, the mutually exclusive nature of
computations applied in structural elements leads to the need of more efficiently
utilizing hardware resources, to balance out the computational cost among pro-
cessors.

It is difficult to deal with the issues above in a foolproof manner. People
working with the legacy part of a code base tend to modify the code as little
as possible in order to minimize the possibility of unwanted bugs. The need of
introducing parallel computation without having the time and resources to delve
into the theoretical parts of concurrency fundamentals leads to diminishing results.
Usage of multiprocessing and concurrency API’s to parallelize small parts of a code
base, without conducting proper performance analysis, rarely leads to meaningful
results.

Both of these approaches do not strike at the heart of the problem. Legacy
code is not modernized. It is still regarded as legacy code with applied perfor-
mance fixes. Using tools that favor concurrency without basic knowledge of the
fundamentals does not lead to efficient CPU utilization neither to substantial per-
formance increases.

A more meaningful approach would be to refactor the problematic architectures
and present modern extensible ones that favor performance. Use of abstractions
and the application of generic programming leads to the construction of extensible
interfaces and intuitive tools. Other engineers can use these resources as blueprints
to refactor more and more parts of a code base with similar problematic architec-
tures.

In this work, we present the way we profile, analyze and optimize the architec-
ture of two legacy code-rich modules of a structural design and analysis application
for civil engineers. The results of this work are going to be commercially available,
since they have been scheduled for a future update of the product.

We apply our work on RAF [30], a structural design and analysis application
developed by Technical Software House (TOL) [10], a company which specializes
in the development of static building analysis software. The development of RAF
goes back to more than 21 years, guaranteeing the existence of a large legacy
code base. After conducting talks with the architects of RAF, we reached the
conclusion that there is a demand for an increase in performance on two modules
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Figure 1.1: The RAF user interface

of the application. These modules suffer from the aforementioned problems, them
being legacy code bloat that prevents extensibility, and potential for application
of concurrency in the architectural level.

These modules are the Solver and the Capacity Volume Manager. The Solver
is a command line tool which performs structural analysis, in the form of CPU
intensive calculations, on a structural model to ensure its safety and structural
integrity. The Capacity Volume Manager is responsible for calculating and storing
the Capacity Volumes of structural elements. The Capacity Volume of an element
is a computationally expensive property that represents it’s resistance against high
pressure, strong winds, earthquakes and other phenomena.

The architects of RAF have noticed that the Solver module has been taking
an unusually large amount of time to Solve structural models of medium to large
size. After applying embarrassing-parallelism optimizations using the OpenMP
tool, regarding data transferring, they did not notice a substantial increase in
performance. It is clear that a performance analysis of the module is required.

Our work regarding the Solver module consists of

• Profiling the performance of the solver using various structural models as
input.

• Analyzing the legacy code parts that contribute to a performance bottleneck.

• Designing, implementing and injecting a generic solution for the performance
problem.

• Testing and evaluating the results which lead up to a 2.0 speedup ratio in
performance.
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First we gather a collection of medium to large size input files of structural
models. These input files represent user generated, as well as tool generated,
structural models. The first ones allow us to conduct our research based on real
life structural engineering models and produce results observable by the typical
end user. The second ones help us focus the validation of our work on specific test
cases.

Using the Visual Studio Profiler, we benchmark the CPU usage of various
executions of the Solver. After analyzing the output of the profiler, we notice that
up to 75% of CPU time is dedicated to a specific iteration pattern, with linear
time asymptotic complexity, present in various functions of the code base. The
legacy code of the module along with the fact that these functions are present in
multiple call trees during execution, makes it impossible to modify the application
control flow leading to these calls.

Instead, we propose a new design that eliminates the linear complexity of this
pattern. After injecting an initialization step, we replace the old iteration pattern
with a new Memoization Model, resulting in a constant time complexity. We
notice a theoretical and practically confirmed reduction in the execution time of
the Solver module when we compare the constant time complexity of the new
model with the linear complexity of the old pattern. The new model relies on a
key-value store, for which we propose two different implementations, one using a
Hash Table and another using a Trie data structure.

After successfully tackling the performance issue, we are presented with the
problems of regression testing the functionality of the solver and of profiling the
resulted speedup in execution time. For regression testing, we compare the contents
of output files we generate using the old iteration pattern and the new Memoization
Model. Finally, we benchmark the execution time by comparing the total execution
time of the Solver module before and after applying our work, using the same
structural model as input. We notice up to a 2.0 speedup ratio in execution time
among our input files. The new Memoization Model has already been merged in
the main development branch of the Solver module and has been scheduled for a
future release.

The Capacity Volume Manager provides methods which allow the user to re-
quest an instance of a Capacity Volume of a structural element. If the Capacity
Volume is already calculated, it is immediately returned. Otherwise, the Capac-
ity Volume must be calculated before being returned. The calculation of a single
Capacity Volume takes a considerable amount of time, while multiple instances
of Capacity Volume calculations share zero state among them. This raises the
possibility of batch calculating multiple Capacity Volumes concurrently.

Our work regarding the Capacity Volume Manager module consists of

• Understanding and analyzing the design of the Capacity Volume Manager.

• Designing, implementing and injecting an architecture which allows for con-
current requests of Capacity Volumes.
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• Testing and evaluating the results which lead up to a 4.2 speedup ratio in
performance.

Initially, we analyze the design of the Capacity Volume Manager and focus on
the operation that allows the requests of Capacity Volumes. We call the method
that matches this operation GetOnion, since onion is slang for Capacity Volume
among structural engineers, due to the onion-like graphical representation of a
Capacity Volume. GetOnion allows the user to communicate with the Capacity
Volume Manager interface and request Capacity Volumes. Since we cannot modify
the established interface to a large extent, we treat the signature of GetOnion as
an invariant while designing our solution.

GetOnion returns the requested Capacity Volume to the user. If the requested
Capacity Volume is not already calculated upon request, then it is calculated on
demand before being returned. Calculating the Capacity Volume is a compu-
tationally expensive operation which can be concurrently executed for multiple
Capacity Volumes. We extend the functionality of the Capacity Volume Manager
by redesigning the control flow of GetOnion. We use mutex objects to enable con-
current calculation of Capacity Volumes, while preventing data races and enabling
mutual exclusion of critical sections.

After introducing concurrency semantics to the Capacity Volume Manager, we
are presented with the question of how to handle thread management. We present
two different solutions, one of them using the asynchronous facilities of the STL,
the other one using a thread pool of our own implementation. Both these solutions
along with the new design of the Capacity Volume Manager share the same STL
futures/promises semantics.

Lastly, we implement our own testing and benchmarking suite and use it to
generate a large amount of Capacity Volume requests concurrently. We use this
suite to conduct concurrency, regression and coverage tests of our new concurrent
design. Finally, we benchmark the old and new design of the Capacity Volume
Manager, noticing up to a 4.2 speedup ratio on the same collection of requests.
The Concurrent Capacity Volume Manager has already been merged in the main
development branch and has been scheduled for a future release.

The rest of the text is organised as follows

• Our work is split in two parts, the first one regarding our work related to the
Solver module, the second one regarding our work related to the Capacity
Volume Manager module

• On each part, we offer a background section, where we give information
about the context our work is applied on.

• Then, we describe the methods and processes used to conduct our work.

• Afterwards, we present the way we evaluate our work in terms of testing and
performance, as well as present our results.
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• Finally, we present other research related to our work as well as possible
ways to extend it.



Chapter 2

Solver Memoization

2.1 Background

The Solver is one of the many modules of the RAF tool suite. It is a command line
tool, integrated with the UI of the main RAF application. The Solver module helps
structural engineers in estimating the seismic performance of existing reinforced
concrete buildings.

In particular, the Solver evaluates the inelastic seismic response of reinforced
concrete buildings by analyzing the characteristics of reinforced concrete sections
while also accounting for the effects of distributed plasticity. The Solver mainly
performs linear algebra computations to calculate the freedom matrices of struc-
tural components. The freedom matrix describes a component’s resistance to
external forces. To calculate the freedom matrix, the Cholesky Decomposition
algorithm is used [5]. The Solver tool is partial implementation of A computa-
tional tool for evaluation of seismic performance of reinforced concrete buildings
by S.K.Kunnath, A.M.Reinhorn, J.F.Abel [15].

As input, the Solver module accepts two text files. The first one describes the
schema of a structural model and has a .XSD suffix. The second one includes the
contents of the structural model itself and has a .XML suffix. The Solver creates
C++ data bindings using the .XSD schema and parses the .XML input file using
CodeSynthesis XSD, a Schema to C++ data binding compiler [6]. As output, the
Solver produces a text file containing the analysis results which has a .ROU suffix.

The execution of the Solver module is comprised of 4 distinct steps

1. Parse the structural model from the .XML input file.

2. Convert the model to a compatible memory format.

3. Solve the model, in terms of performing seismic analysis.

4. Produce the output text file.

The Solver tool has been written in the FORTRAN programming language and
compiled using the Intel FORTRAN Compiler [12]. During the time of our work,
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the architects of RAF are in the process of modernizing the module by rewriting
its code using the C++ language. In order to future proof our work, we have used
C++ and the FORTRAN to C interoperability routines [13] to inject our code to
the pre-existing FORTRAN legacy code base.

To perform seismic analysis, by solving an input model on step 3, the Solver
must determine the motion vector U⃗ of the building model. This is determined by
multiplying the inverse of the freedom matrix K to the external forces vector F⃗ .
To calculate the freedom matrix, the Cholesky Decomposition algorithm is used,
which is considered a time consuming operation.

U⃗ = K−1F⃗

The architects of RAF have noticed that the Solver takes significant time to
solve small to medium size structural models. They suspected that the the memory
conversion on step 2 acts as a performance bottleneck. Most of the work on step
2 consists of iterations of copy-transforming a vector to another format, which is
considered an embarrassingly parallel problem. They used the OpenMP API [23]
to distribute the work among threads. However, the results did not live up to a
significant speedup of the Solver’s execution time. It is clear that a performance
analysis of the Solver is needed to identify potential performance bottlenecks.

2.2 Methods

2.2.1 Performance Profiling

To profile the Solver tool we collected user provided input files. These files contain
a structural model produced by users of RAF. The architects of RAF consider
these inputs to take an unusually large amount of time to be solved. We profile a
complete execution of the Solver tool, from parsing the input file to producing the
output file.

To do this, we use the Visual Studio 2019 CPU Usage Diagnostic Tool [19].
From now on we will refer to this tool as Visual Studio Profiler. The Visual
Studio Profiler collects information about the functions that are executing in an
application and provides a list of them, ordered in descending CPU usage time.
After we pick the function with the highest percentage of Self CPU usage and
dive into its call tree, we notice that most of the CPU time is not spent on the
Cholesky decomposition method as one would expect, but on a specific iteration
pattern. This pattern is prevalent on utility functions that provide the user with
information about the Beam Distributed Load Elements and Beam Concentrated
Force Load Elements of the structural model.

As we observe the Visual Studio Profiler results in figure 2.1, 20% of CPU time
is spent at the iteration loop shown at the code section of the screen. This loop
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Figure 2.1: Visual Studio CPU usage report
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pattern is present in at least two other functions named MDL BEAM AUXIL -
RESULTS mp GET PARAMETERS and MDL BEAM AUXIL RESULTS mp -
GET NUMBER ELEMENTS, as shown at the profiler results window.

The columns shown at the profiler results window are the function name, Total
CPU and Self CPU respectively. Total CPU indicates how much CPU time was
spent by the function and any functions called by it. High Total CPU values point
to the functions that are most expensive overall. Self CPU indicates how much
time was spent in the function body, excluding the time spent on functions that
were called by it. High Self CPU values may indicate a performance bottleneck
within the function itself.

The iteration pattern is considered a CPU bottleneck since it corresponds to a
large value of Self CPU time.

2.2.2 Memory layout of the Solver database

Before we dive into the details of the iteration pattern, we need to understand how
Beam Distributed Load Elements and Beam Concentrated Force Load Elements
are represented in memory.

After studying the corresponding FORTRAN header files we understand that
Beam Distributed Load Elements and Beam Concentrated Force Load Elements
share the same attributes and memory layout. Given this, we only need to analyze
the layout of Beam Distributed Load Elements. Each element consists of 5 at-
tributes that describe it in its entirety. The names of these attributes are relevant
to their structural properties. Since we consider the structural engineering element
irrelevant to our work, we abstract their names to attr0, attr1, attr2, attr3,
attr4. attr0, attr1, attr2 are one dimensional dynamically allocated integer
sized arrays. attr3, attr4 are two dimensional dynamically allocated floating
point sized arrays, with the second dimension having a constant size of 2. We can
think of attr3, attr4 as having the same layout with the rest of the attributes,
with the difference being that each element has the size of two floating points in-
stead of one integer. The Beam Distributed Load Elements format and layout in
the Solver memory database are shown in figure 2.2 and figure 2.3.

2.2.3 The iteration pattern CPU Bottleneck

The problematic iteration format is present in various parts of the code base. Two
functions that contain this pattern have had a significant impact in CPU time.
They are used to retrieve a utility value from the BeamDistributedLoads Solver
database and are called many times in the application code.

The iteration loop parses the BeamDistributedLoads Solver database the num-
ber of Beam Distributed Load Elements that match the function parameters. One
of the functions that utilizes this iteration returns the above count. Another
function returns attributes of an element that matches the above count. We will
abstract the names of these functions to GetNumber and GetAttributes.
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Figure 2.2: Beam Distributed Load Element layout in memory

1 type BeamDistributedLoads
2 integer (4 ) s ize ;
3 integer ( 4 ) , dimension ( : ) , allocatable : : a t t r 0 ;
4 integer ( 4 ) , dimension ( : ) , allocatable : : a t t r 1 ;
5 integer ( 4 ) , dimension ( : ) , allocatable : : a t t r 2 ;
6 real (8 ) , dimension ( : , : ) , allocatable : : a t t r 3 ;
7 real (8 ) , dimension ( : , : ) , allocatable : : a t t r 4 ;
8 end type
9 ! a t t r3 , a t t r 4 second dimension has s i z e 2

Figure 2.3: Memory format of Beam Distributed Load Elements in FORTRAN
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1 function GetNumber ( dbase , val0 , val1 , va l2 ) result ( cnt )
2 integer (4 ) cnt
3 type ( BeamDistributedLoads ) dbase
4 integer (4 ) val0 , val1 , va l2
5 integer (4 ) i
6
7 cnt = 0 ;
8 do i = 1 , dbase%s ize
9 i f ( dbase%at t r 0 ( i ) == val0 ) then
10 i f ( dbase%at t r 1 ( i ) == val1 ) then
11 i f ( dbase%at t r 2 ( i ) == val2 ) then
12 cnt = cnt + 1 ;
13 end i f
14 end i f
15 end i f
16 end do
17
18 return
19 endfunction

Figure 2.4: The GetNumber function

As shown in detail in figure 2.4, the GetNumber function takes as input the
BeamDistributedLoads Solver database, and three integer values val0, val1,
val2. The output of GetNumber is the number of Beam Distributed Load Ele-
ments whose attributes attr0, attr1, attr2 match the values val0, val1, val2
one by one. GetNumber parses the BeamDistributedLoads Solver database in
line 8 and compares each attribute to its corresponding input value in lines 9 - 11.
If a set of attr0, attr1, attr2 matches the input sequence described by val0,
val1, val2 then a counter variable is incremented in line 12. After the parsing is
done, GetNumber returns this counter variable as declared in line 1.

The GetAttributes function takes the same input as the first one in addition
to an integer value count representing a desirable counter value. The output
of the function are the four floating-point values of the attributes attr3, attr4
of the BeamDistributedLoads Solver database Element. The selection of this
element is described as follows in figure 2.5. First a struct is declared that contains
the return values of the function in lines 1 - 6. The GetAttributes function
operates in the same way as the GetNumber function, in lines 15 - 20, by parsing
the BeamDistributedLoads Solver database and incrementing a counter variable.
In lines 21 - 23, if the counter variable reaches the values supplied by the input
count, the index of the element is stored and the control flow breaks out of the
loop. Lastly, in lines 29 - 32, the right Element is selected using the stored index
and it’s attributes attr3, attr4 are returned.
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1 type Att r ibute s
2 real (8 ) v0 ;
3 real (8 ) v1 ;
4 real (8 ) v2 ;
5 real (8 ) v3 ;
6 end type
7
8 function GetAttr ibutes ( dbase , val0 , val1 , val2 , count )
9 result ( a t t r s )
10 type ( At t r ibute s ) a t t r s
11 type ( BeamDistributedLoads ) dbase
12 integer (4 ) val0 , val1 , val2 , count
13 integer (4 ) i , cnt , idx
14
15 cnt = 0 ;
16 do i = 1 , dbase%s ize
17 i f ( dbase%at t r 0 ( i ) == val0 ) then
18 i f ( dbase%at t r 1 ( i ) == val1 ) then
19 i f ( dbase%at t r 2 ( i ) == val2 ) then
20 cnt = cnt + 1 ;
21 i f ( cnt == count ) then
22 idx = i ;
23 exit ;
24 end i f
25 end i f
26 end i f
27 end i f
28 end do
29 a t t r s%v0 = dbase%at t r 3 ( idx , 1 ) ;
30 a t t r s%v1 = dbase%at t r 3 ( idx , 2 ) ;
31 a t t r s%v2 = dbase%at t r 4 ( idx , 1 ) ;
32 a t t r s%v3 = dbase%at t r 4 ( idx , 2 ) ;
33
34 return
35 endfunction

Figure 2.5: The GetAttributes function
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1 integer (4 ) n , i
2 type ( At t r ibute s ) a t t r s
3 . . .
4 n = GetNumber ( dbase , val0 , val1 , va l2 ) ;
5 do i = 1 , n
6 . . .
7 a t t r s = GetAttr ibutes ( dbase , val0 , val1 , val2 , n ) ;
8 . . .
9 end do
10 . . .

Figure 2.6: Usage pattern of GetNumber and GetAttributes functions in the code
base

2.2.4 Complexity Analysis of the iteration pattern

We pinpoint the reason why these two functions, and the iteration pattern in
particular, pose a CPU bottleneck by

• performing an algorithmic complexity analysis on the iteration pattern

• examining the usage conventions of these functions in various parts of the
code base

By examining the simplified code in figure 2.4 and figure 2.5 it is clear that the
algorithmic complexity of the iteration pattern is O(n) , where n is the number of
Beam Distributed Load Elements in the Solver database. The body of the iteration
loop, i.e. an increment of the counter variable, is used as the unit of measurement.
The number of Beam Distributed Load Elements in the Solver database, i.e. the
n variable, is dependent on the Solver input file. By extension, it is clear that the
the algorithmic complexity of both GetNumber and GetAttributes is O(n).

By examining the usage conventions of the two functions, with the help of the
Visual Studio Profiler, we notice a usage pattern as described in figure 2.6, in many
parts of the code base. First GetNumber is called and it’s return value is used as an
iteration number limit. As part of the iteration body GetAttributes is called. Its
return value is used in an irrelevant context. By calculating the total algorithmic
complexity of the usage pattern we get a quadratic, O(n2) complexity. This is
done by multiplying the GetAttributes complexity times the loop iterations and
adding the GetNumber complexity, as follows

O(n) + n ∗O(n) = O(n) +O(n2) = O(n2)

It is clear that in many parts of the code, where this usage pattern is applied,
a quadratic notation calculation is instantiated, presenting a clear bottleneck to
the CPU.
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2.2.5 The Memoization Model Requirements

The functions described above are part of a legacy code base. For this reason
we cannot modify the control flow that leads to the call of these functions. To
tackle this issue we provide a way to return the same result but in a reduced
algorithmic complexity. The solution we propose is essentially a memoization
mechanism to cache the return values of these functions and access them in a
constant algorithmic complexity, using a key-value store. This solution comes
with the following requirements

• The Beam Distributed Load Elements Solver database in memory needs to
be immutable, after it is loaded. This way the pure property of the above
functions is guaranteed. The property states that for a function to be pure,
its return values are identical for identical arguments. By fulfilling the pure
property we are able to create a mapping between a function input collection
and its return value.

• The collection of all the BeamDistributedLoads Element attribute permuta-
tions, attr0, attr1, attr2 must not be unreasonably large. Each attribute
permutation corresponds to a mapping in the key-value store. This ensures
that the memory footprint of our solution will stay in a reasonable limit.

Regarding the first requirement, we know that the collection of structural ele-
ments of the model is indeed immutable, after consulting the architects of RAF.
That is, after the Solver loads the structural elements of the input file, they take
the form of read-only attributes in memory, while the analysis step takes place.

Regarding the second requirement, we run an analysis of our own on a large
size input file, to determine the size of attribute permutations. We produce the
following results. attr0 can have a value in the range of [1, 5220]. attr1 can have a
value in the range of [1, 2]. attr2 can have only the value of 1. Knowing that each
each permutation takes up 12 bytes in memory, since a permutation is comprised
of three 4-byte integer numbers attr0, attr1, attr2, we can approximate the
memory footprint that comes with storing the total number of permutations as
follows

permutation size =(attr0 value range size)

∗(attr1 value range size)

∗(attr2 value range size)

∗(permutation tuple size)

∗(size of integer in bytes) ⇒
permutation size =5220 ∗ 2 ∗ 1 ∗ 3 ∗ 4 ⇒
permutation size =125280 bytes ≈ 122 kilobytes
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Figure 2.7: FORTRAN to C interoperability function signature

We confirm the legibility of our results with the architects of RAF. These
results show us that the memory footprint of our model is of a reasonable size.

Before implementing our solutions we ensure we can take an extra step of future
proofing them. Most of the Solver code base is written in FORTRAN. During the
time span of our work, the architects of RAF are in the process of migrating
the Solver code base to the C++ language. We wanted to make sure that the
implementation of our solution would not need a future code migration. Since the
bottleneck has been found in a FORTRAN part of the code base, we implement
our solution in C++ and then use FORTRAN to C interoperability routines to
inform the compiler to link C++ with FORTRAN object files together. In the
future, one would only need to eliminate these interoperability function calls to
port our solution in C++.

2.2.6 The Memoization Model Interface

To tackle the bottleneck problem we create a mapping between a permutation of
attr1, attr2, attr3 and the number of BeamDistributedLoads Elements that
contain this permutation. We store our mappings using a key-value store. We
provide two different C++ implementations of the key-value store. One using a
Hash Table and another one using a Trie data structure.

Both our solutions share a common interface. We also give the architects of
RAF the option to switch between a preferred implementation at compile time.

Our interface consists of a private state object and three different public oper-
ations in the form of functions.

The state object emulates the key-value store depending on the selected im-
plementation. From now on we refer to the key-value store as the CachedLoad-
sMap. The CachedLoadsMap holds mappings between unique keys and values. A
CachedLoadsMap key is a permutation of values of BeamDistributedLoads Ele-
ment attributes attr1, attr2, attr3.

As shown in figure 2.8, a CachedLoadsMap value contains the number of
BeamDistributedLoads Elements whose attributes match the permutation of the
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1 struct Value {
2 int count ;
3 std : : vector<int> i n d i c e s ;
4 } ;

Figure 2.8: The value signature of a mapping of CachedLoadsMap

1 void I n s e r t ( const BeamDistributedLoads& dbase ) ;
2 int GetCount ( int val0 , int val1 , int va l2 ) ;
3 int GetIndex ( int val0 , int val1 , int val2 , int po s i t i o n ) ;

Figure 2.9: The interface signatures

CachedLoadsMap key, we refer to this number as count . A CachedLoadsMap
value also contains a collection of indices of those Elements as indexed in the
BeamDistributedLoads Solver database, we refer to this collection as indices.
Each index corresponds to an element whose attributes match the permutation of
its corresponding key . The indices are stores in ascending order, while their size
matches their respective count.

As shown by their signatures in figure 2.9. The three public operations are
Insert, GetCount, GetIndex.

Insert is used to initialize the CachedLoadsMap. The input of Insert is
the BeamDistributedLoads Solver database. We populate the CachedLoadsMap
based on the element attributes. We parse the database fields inserting all pos-
sible attributes, attr0, attr1, attr2, to CachedLoadsMap. During parsing, if
a permutation is found more than once, we update the value of the associated
mapping.

GetCount is used to eliminate the linear complexity of the GetNumber function.
It takes as input a permutation of attribute values val0, val1, val2 as key, accesses
CachedLoadsMap and returns the count field of the mapped value.

GetIndex is used to eliminate the linear complexity of the GetAttributes

function. It takes as input a permutation of attribute values val0, val1, val2
as key as well as a position parameter, accesses CachedLoadsMap, accesses the
mapped value’s indices collection and returns the index at position.

The detailed functionality as well as the algorithmic complexity of these oper-
ations depends on their respective implementation.

2.2.7 The Memoization Model Hash Table Implementation

One of our implementations of the interface uses a Hash Table as the Cached-
LoadsMap object, as shown in figure 2.10 line 9. A std::unordered map container of
the STL library is essentially our CachedLoadsMap instance. std::unordered map is
an associative container that contains key-value pairs with unique keys. Internally,
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1 struct Key {
2 int va l0 ;
3 int va l1 ;
4 int va l2 ;
5 } ;
6
7 class UnorderedMapImpl {
8 private :
9 std : : unordered map<Key , Value> map{} ;
10
11 public :
12 void I n s e r t ( const Key& key , int index ) ;
13 auto Find ( const Key& key ) −> Value ;
14 } ;
15
16 void UnorderedMapImpl : : I n s e r t ( const Key& key , int index ) {
17 auto i t = map . f i nd ( key ) ;
18 i f ( i t == std : : cend (map) ) {
19 const auto& [ newIt , ] = map . emplace ( key , Value {} ) ;
20 i t = newIt ;
21 }
22 i t−>second . count += 1 ;
23 i t−>second . i n d i c e s . emplace back ( index ) ;
24 }
25
26 auto UnorderedMapImpl : : Find ( const Key& key ) −> Value {
27 auto i t = map . f i nd ( key ) ;
28 return ( i t != std : : cend (map) ? i t−>second : Value {} ) ;
29 }

Figure 2.10: The UnorderedMapImpl class
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the elements are not sorted in any particular order, but organized into buckets.
Which bucket an element is placed into depends entirely on the hash of its key.
Keys with the same hash code appear in the same bucket [33].

The signature of our key is a struct of three integer values to hold a permutation
of attributes attr0, attr1, attr2, as shown in figure 2.10 lines 2 - 4. The signature
of our value is the aforementioned struct described in figure 2.8. The private
interface of the implementation supports two operations, Insert and Find.

The implementation of Insert is shown in figure 2.10 from line 16. The two
input arguments of Insert are the key to be inserted or updated and the index of
the BeamDistributedLoads Solver database that is associated with the permuta-
tion of val0, val1, val2 described by the key. In lines 17 - 21 we search for the
key input in CachedLoadsMap and insert it, if a mapping does not already exist.
In lines 22 - 23 we construct or update the associated value by increasing its count
field by one and by appending the index to the end of its indices collection.

The implementation of Find is shown in figure 2.10 from line 26. The input
arguments of Find are the key to be searched. The return value of Find is the
value associated with the input key in CachedLoadsMap. If the input does not
exist in CachedLoadsMap, an empty value is returned. However, for the use cases
of our work, we always supply a valid key. Find is utilized by both GetCount

and GetIndex public interface operations. GetCount returns the count field of the
associated value returned by Find. GetIndex accesses the value’s indices collection
and returns the element found at position.

Throughout C++ code emplace semantics are used when inserting new el-
ements to STL containers to construct these elements in place. This way we
avoid any extra copy or move operations required when using standard insert or
push back semantics.

The algorithmic complexity of both Insert and Find is O(1), since both insert
and look-up operations to a Hash Table take constant time on average as stated
in the C++ reference pages [35], [34].

2.2.8 The Memoization Model Trie Implementation

One of our implementations of the interface uses a Trie as the CachedLoadsMap
object, as shown in figure 2.11 line 14. A Trie is a tree data structure used to locate
keys within a set. In most cases these keys are strings comprised of multiple linked
nodes, where each node contains an individual character of the key. In our case, the
key is a permutation of attributes attr0, attr1, attr2 while each node consists
of an attribute value that is part of a permutation. This way, we form a tree data
structure where the children of an attribute value is the collection of all possible
attribute values that can come next, forming permutation paths. The leaves of the
tree contain valid contents of a value as shown in figure 2.8. A visualization of a
Trie is shown in figure 2.13. The private interface of the implementation supports
two operations, Insert and Find.

The implementation of Insert is shown in figure 2.12 from line 1. The two
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1 class TrieImpl {
2 private :
3 struct Node ;
4 public :
5 using NodeUPtr = std : : unique ptr<Node>;
6 using ChildrenMap = std : : unordered map<int , NodeUPtr>;
7 using Key = std : : vector<int>;
8
9 private :
10 struct Node {
11 ChildrenMap ch i l d r en {} ;
12 Value value {} ;
13 } ;
14 NodeUPtr root { std : : make unique<Node>()} ;
15
16 public :
17 void I n s e r t ( const Key& path , const int& index ) ;
18 auto Find ( const Key& path ) −> Value ;
19 } ;

Figure 2.11: The TrieImpl class signature

input arguments of Insert are the key to be inserted or updated and the index
of the BeamDistributedLoads Solver database that is associated with the per-
mutation of val0, val1, val2 described by the key. In lines 3 - 9 we follow the
permutation path described by the input key, inserting any nodes that are missing
along the way. Once we have reached a leaf node, we construct or update the
contents of the value, in lines 10 - 11.

The implementation of Find is shown in figure 2.12 from line 14. The input
arguments of Find are the key to be searched. The return value of Find is the
value associated with the input key in CachedLoadsMap. In lines 16 - 21 we follow
the input key path until we reach a leaf node. In line 22 we return the value of
the leaf node. If we do not manage to completely follow the path described by the
input key until the end, then the key not exist, so we return an empty value, in
line 19. However, for the use cases of our work, we always supply a valid key. Find
is utilized by both GetCount and GetIndex public interface operations. GetCount
returns the count field of the associated value returned by Find. GetIndex accesses
the value’s indices collection and returns the element found at position.

Throughout C++ code std::unique ptr STL semantics are used for the pointer
attribute fields of the TrieImpl class. std::unique ptr is a smart pointer that owns
and manages another object through a pointer and disposes of that object when the
unique ptr goes out of scope [32]. Use of std::unique ptr instances help us denote
the ownership of objects in a syntactic way, as opposed to using raw pointers,
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1 void TrieImpl : : I n s e r t ( const Key& key , int index ) {
2 Node∗ node = root . get ( ) ;
3 for ( const auto& n : key ) {
4 i f ( node−>ch i l d r en . f i nd (n) ==
5 std : : cend ( node−>ch i l d r en ) )
6 node−>ch i l d r en . emplace (
7 n , std : : make unique<Node> ( ) ) ;
8 node = node−>ch i l d r en . at (n ) . get ( ) ;
9 }
10 node−>value . count += 1 ;
11 node−>value . i n d i c e s . emplace back ( index ) ;
12 }
13
14 auto TrieImpl : : Find ( const Key& key ) −> Value {
15 Node∗ node = root . get ( ) ;
16 for ( const auto& n : key ) {
17 i f ( node−>ch i l d r en . f i nd (n) ==
18 std : : cend ( node−>ch i l d r en ) )
19 return Value {} ;
20 node = node−>ch i l d r en . at (n ) . get ( ) ;
21 }
22 return node−>value ;
23 }

Figure 2.12: The TrieImpl class methods



22 CHAPTER 2. SOLVER MEMOIZATION

Figure 2.13: Optimally constructed Trie in terms of node size

where ownership is not communicated to the user. std::unique ptr instances also
relieve us of the mental task of recalling to delete dynamically allocated memory
once the lifetime of an object has ended. std::unique ptr handles the deallocation
of memory, once the owned object goes out of scope.

The algorithmic complexity of both Insert and Find is O(1). The complexity
of accessing a Trie is linear to the length of the key, since we traverse a tree path
with number on nodes equal to the total elements the key is comprised of. In our
case, the key length is 3 items, evaluating to a constant time complexity. To store
pointers to the children of each node we use a std::unordered map STL container.
Access complexity to this container is constant time, so it does not affect the total
access complexity of the Trie.

To construct a Trie with the minimum number of nodes, we need to take
into account the value range of each part of the key and the depth of the tree with
which it is associated. By consulting our analysis to determine the size of attribute
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permutations in section 2.2.5 as well as the architects of RAF we know that attr0
can have a value in a range that can span to large number. attr1 can have a
value in the range of [1, 2]. attr2 can have only the value of 1. To construct our
Trie having wit the minimum number of nodes, we place the attribute with the
highest value range closest to the root. Then we place the rest of the attributes in
a descending order according their value ranges, as we go down the levels of the
tree. Figure 2.13 demonstrates an optimally constructed Trie.

2.2.9 Linking our work with the code base

To link our work with the pre-existing Solver code base we follow the steps below

• Design and tweak our interface in way that allows extensibility with other
structural elements, apart from Beam Distributed Load Elements, while we
maintain its ability to be linked with pre-existing code.

• Encapsulate our interface public C++ operations, into FORTRAN function
calls using FORTRAN to C interoperability semantics.

• Replace the problematic iteration patterns in FORTRAN code with the
above FORTRAN-encapsulated interface operations.

The problematic iteration pattern was not only applied in parts of the code
that had to do with Beam Distributed Load Elements. After examining the results
of our profiling session we notice the same pattern appearing on code segments
related to Concentrated Force Load Elements as well as similar patterns having
been applied for other elements. After completing our Memoization Model im-
plementation regarding Beam Distributed Load Elements, we extend the interface
in order to include Concentrated Force Load Elements as well. We achieve this
by extending the key signature of our CachedLoadsMap container to additionally
include the type of the element i.e. Beam Distributed Load, Concentrated Force
Load. This way, we maintain the basic structure of our interface while enabling
the addition of similar structural elements.

To enable calling our interface functions using FORTRAN code we encapsulate
each of our public operations into a a FORTRAN function with the exact same
signature. We provide these signatures with any interoperability language syntax
needed to successfully compile and link the object files together.

Lastly, we replace the problematic iteration patterns in legacy code with calls
to the above functions, as well as make any other necessary adjustments in code
as shown in figure 2.14. We do not forget to call the Insert operation in the part
of the code after the Solver database has been generated.

2.3 Evaluation

We evaluate our work in terms of regression testing and performance profiling.
To perform our testing we supply the Solver with a collection of input files. For
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1 function GetNumber ( dbase , val0 , val1 , va l2 ) result ( cnt )
2 integer (4 ) cnt
3 type ( BeamDistributedLoads ) dbase
4 integer (4 ) val0 , val1 , va l2
5
6 cnt = GetCount ( val0 , val1 , va l2 ) ;
7
8 return
9 endfunction
10
11 function GetAttr ibutes ( dbase , val0 , val1 , val2 , count )
12 result ( a t t r s )
13 type ( At t r ibute s ) a t t r s
14 type ( BeamDistributedLoads ) dbase
15 integer (4 ) val0 , val1 , val2 , count
16 integer (4 ) idx
17
18 idx = GetIndex ( val0 , val1 , val2 , count ) ;
19 a t t r s%v0 = dbase%at t r 3 ( idx , 1 ) ;
20 a t t r s%v1 = dbase%at t r 3 ( idx , 2 ) ;
21 a t t r s%v2 = dbase%at t r 4 ( idx , 1 ) ;
22 a t t r s%v3 = dbase%at t r 4 ( idx , 2 ) ;
23
24 return
25 endfunction

Figure 2.14: The new GetNumber and GetAttributes functions.
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regression testing, we compare the Solver analysis results of each input file. For
performance profiling, we benchmark the total execution time of the Solver.

2.3.1 The input file collection

The Solver takes as input a structural model in the form an .XML file that adheres
to a specific .XSD schema. After the Solver performs structural analysis on the
input file, an output .ROU file is produced, containing the analysis results. We
have a collected a number of input files which help us test the Solver.

Our input collection consists of the following files

• u dist48000.xml

• u dist16170.xml

• g dist55000.xml

• g conc55000.xml

• g dist55000 conc55000.xml

• g dist29800 conc29800.xml

• g dist10200 conc10200.xml

u dist48000.xml, u dist16170.xml are end-user generated structural models.
We use end-user generated structural models to evaluate our work based on real-life
data. This way, the performance evaluation simulates end-user times more closely.
u dist48000 contains 48000 Beam Distributed Load Elements while u dist16170
contains 16170. The higher the number of Beam Distributed Load Elements or
Beam Concentrated Force Load Elements in an input file, the more times our work
is evaluated during execution.

g dist55000.xml, g conc55000.xml, g dist55000 conc55000.xml, g dist29800 c-
onc29800.xml, g dist10200 conc10200.xml are tool generated input files contain-
ing Beam Distributed Load Elements and Beam Concentrated Force Load El-
ements. g dist55000.xml and g conc55000.xml contain 55000 Beam Distributed
Load Elements and 55000 Beam Concentrated Force Load Elements respectively.
g dist55000 conc55000.xml contains 55000 Beam Distributed Load Elements as
well as 55000 Beam Concentrated Force Load Elements. Same pattern goes for
g dist29800 conc29800.xml and g dist10200 conc10200.xml.

Due to the lack of end-user structural models, we implement a Solver Input
Generator tool in Python to generate more input files for testing.

2.3.2 Contents of an input file

An input file represents a structural model comprised of various structural ele-
ments. Some of these elements are the following
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• Storey, a property that represents the floor of a building.

• Node, a structural component that represents a connection point among com-
ponents like Beams. A Node is tied to a storey.

• Beam, a horizontal or vertical structural component that represents a con-
nection between two Nodes.

• Shell, a two dimensional plane component that represents a surface. It is a
connection among three of four Nodes.

• Restrain, a Node property that represents the Node’s movement and rotation
restrictions among the xyz axes.

• Node Mass, a Node property that represents the Node’s mass.

• Node Force, a Node property that represents an external force applied to the
Node.

• Beam Distributed Load, a Beam property that represents an external force
applied evenly along the Beam’s length.

• Concentrated Force Load, a Beam property that represents an external force
applied to a specific point along the Beam’s length.

Our work is applied on the Solver memory database of Beam Distributed Load
Elements and Beam Concentrated Force Load Elements. A high number of these
elements in an input file leads the Solver execution control flow to take advantage
of our Memoization Model multiple times.

2.3.3 The input file generator script

Due to the lack of more end-user structural models, we implement a tool in Python
that helps us generate and visualize Solver input files. This tool takes as input the
three dimensional size of a structural model in the form of 3 integers and produces
a fully connected structural model, while applying multiple Distributed Loads or
Concentrated Force Loads per Beam. We use a template .XML input file and
.XSD schema and extend their contents by injecting XML elements. Furthermore,
we use a graphics library to visualize the generated model as shown in figure 2.15.
Green lines represent Beam connections while red squares represent Nodes.

2.3.4 Regression Testing

We need to make sure that the integrity of the structural analysis results of the
Solver is not invalidated. We conduct regression testing using our input files collec-
tion. We use an input file to execute the Solver before applying our Memoization
Model. Then we use the same input file to execute the Solver after applying our
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Figure 2.15: A 10 x 10 x 10 generated structural model

Figure 2.16: Comparing two versions of the same output file



28 CHAPTER 2. SOLVER MEMOIZATION

Memoization Model. Then we compare the respective output files using a file
content comparison tool, as shown in figure 2.16. If both files are identical, then
regression testing is a success. We perform regression testing to all the implemen-
tations of the Memoization Model.

2.3.5 Performance Evaluation

To observe the performance benefits of the Memoization Model we need to profile
it in terms of execution time and speedup. We conduct performance profiling using
our input file collection and by timing the total execution time of the Solver.

We conduct performance profiling using all the files of our input collection.
We profile the total execution of the Solver on each file by inserting timepoints at
the beginning and end of the execution of the Solver and by calculating the total
duration. We disable output file generation during profiling.

We test each input file on the following cases

• Without using the Memoization Model.

• Using the Hash Table implementation of the Memoization Model.

• Using the Trie implementation of the Memoization Model.

• Using a FORTRAN implementation of the Memoization Model.

The last implementation is provided by the architects of RAF and uses raw
FORTRAN arrays to store data.

While presenting our performance results we use the concept of speedup as
introduced in the book Computer architecture : a quantitative approach, on pages
46 - 47 [26].

speedup =
Told

Tnew

where Told is the execution time of the Solver on a specific input file without using
any implementation of the Memoization Model and Tnew is the execution time
of the Solver on the same input file using an implementation of the Memoization
Model.

We conduct our performance profiling on two different machines. One of them
is a Virtual Machine set up on a NUMA architecture, while the other one is a
typical end-user PC.

2.3.6 Evaluation on NUMA architecture Virtual Machine

The specifications of our machine are the following.

• CPU, Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz. Contains 2 NUMA
nodes of 14 physical cores each. Each of the 28 physical cores supports
hyper-threading technology totalling to 56 logical cores.
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Figure 2.17: Memoization Model speedup on all user input files

• RAM, 16 GB at 1500MHz

• OS, Microsoft Windows 10 Pro 64-bit

We repeat each measurement 3 times and present an average value.
In figure 2.17 we present the average speedup of each of our implementations

on different end-user input files. The horizontal axis shows our OnionManager

implementations while the vertical axis shows the speedup when compared with
the solver design without memoization. Each bar color represents a different input
file. The red error bars represent the standard deviation of each measurement.
We observe an approximate speedup of 2.0 regarding the input file with 48000
Distributed Load Elements. On the input file of 161700 elements the speedup
is approximately 1.2 due to the solver spending most of the execution time on
operations not related to our work.

In figure 2.18 we present the average speedup of each of our implementations
on different generated input files. The horizontal axis shows our OnionManager

implementations while the vertical axis shows the speedup when compared with
the solver design without memoization. Each bar color represents a different input
file. The red error bars represent the standard deviation of each measurement.
Regarding the blue colored inputs, which contain elements of a single category
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Figure 2.18: Memoization Model speedup on all generated input files
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each, we observe an approximate speedup of 2.3 and 3.3 respectively, among all
implementations. Regarding the orange colored inputs, which contain elements
of two categories each, we observe an approximate speedup of 7, 8.6 and 5.8
respectively among the HASH TABLE and TRIE implementations. The FOR-
TRAN RAW ARRAYS implementation offers a higher speedup due to the ab-
sence of hashing. Generated input files offer a higher approximate speedup than
user input files due the solver spending most of its execution time on memoized
operations.

2.3.7 Evaluation on the user PC machine

The specifications of our machine are the following.

• CPU, Intel Core i7-4790S CPU at 3.20 GHz, 4 cores, 8 Logical Processors
due to hyper-threading technology

• RAM, 16 GB at 1500MHz

• SSD, Samsung SSD 860 EVO 250GB

• OS, Microsoft Windows 10 Home 64-bit

Due to time constraints we do not repeat any measurements on our evaluation
on the user PC machine.

In figure 2.19 we present the speedup of each of our implementations on the
end-user generated structural model input file u dist48000.xml. The vertical axis
shows our OnionManager implementations while the horizontal axis shows total
the execution time. We observe a difference of approximately 100 seconds from
the original execution when applying any of our implementations, leading to a
about 2.0 speedup factor. The time spent on the problematic iteration pattern,
as denoted by our performance profiling analysis in section 2.2.1, has now disap-
peared, allowing the linear algebra calculations of the solving process to take up
the majority of the execution time.

In figure 2.20 we present the execution time of each of our implementations
on the tool generated input file g dist55000 conc55000.xml. The vertical axis
shows our OnionManager implementations while the horizontal axis shows to-
tal the execution time. We observe a difference of approximately 280 seconds
from the original execution when applying any of our implementations, leading
to a about 6.6 speedup factor. When we compare g dist55000 conc55000.xml with
u dist48000.xml we notice that, in g dist55000 conc55000.xml, the ratio of the sum
of Beam Distributed Load Elements and Beam Concentrated Force Load Elements
to the sum of the other structural elements is particularly high. Since we apply our
work on operations regarding Beam Distributed Load Elements and Beam Concen-
trated Force Load Elements, the large speedup ratio on g dist55000 conc55000.xml
is an expected result.



32 CHAPTER 2. SOLVER MEMOIZATION

0 50 100 150 200
Seconds

NONE

HASH TABLE

TRIE

FORTRAN
RAW ARRAYS

Im
pl

em
en

ta
tio

n

199.559

100.77

91.499

103.162

Total runtime of Memoization Model implementations
in user file of 48000 Beam Distributed Load elements

Figure 2.19: Memoization Model execution time on user input



2.3. EVALUATION 33

0 50 100 150 200 250 300 350
Seconds

NONE

HASH TABLE

TRIE

FORTRAN
RAW ARRAYS

Im
pl

em
en

ta
tio

n

330.432

48.631

49.186

47.919

Total runtime of Memoization Model implementations
in generated file of 55000 Beam Distributed Load elements

and 55000 Beam Concentrated Force Load Elements

Figure 2.20: Memoization Model execution time on generated input



34 CHAPTER 2. SOLVER MEMOIZATION

NONE HASH TABLE TRIE FORTRAN
RAW ARRAYS

Implementation

1

2

3

4

5

6

7

8

9

Sp
ee

du
p

Speedup of Memoization Model implementations
U_DIST_48000.xml
G_DIST_55000.xml
G_CONC_55000.xml
G_DIST_55000_CONC55000.xml
G_DIST_29800_CONC29800.xml
G_DIST_10200_CONC10200.xml

Figure 2.21: Memoization Model speedup on all inputs



2.4. RELATED WORK 35

In figure 2.21 we present the speedup of each of our implementations on multiple
input files. The horizontal axis shows our OnionManager implementations while
the vertical axis shows the speedup.

2.4 Related Work

The idea of a Trie data structure was described in 1960 by Edward Fredkin, who
also coined the term Trie. In the article Trie memory [7], he describes several
paradigms of trie memory and compares them to other memory paradigms.

Many Memoization techniques, which present similarities to our own work and
methodology, have been presented in the past.

Donald Michie in ”Memo” Functions and Machine Learning [18] coined the
term Memoization to describe to the process where a function can ”remember”
previously computed results.

R.S. Bird in Tabulation Techniques for Recursive Programs [4] describes ”a
process in which function values are computed once only and then stored in some
conveniently represented table for future use. Subsequent requests for the value
are answered by looking up the appropriate table entry.

John Hughes in Lazy-memo-functions [11] suggests applying memory address
equality between the current arguments of a function call and the memoized ar-
guments in order to reduce the equality checking costs among compound data-
structures.

Yanhong A. Liu, Scott D. Stoller, Tim Teitelbaum present the cache-and-prune
method in Static Caching for Incremental Computation [16]. This method presents
an way to ”incrementalize a program in order to use cached results of intermediate
computations”. The first two steps of the method are similar to the methodology
of our own work.

Mostow and Cohen in Automating Program Speedup by Deciding What to
Cache [21] present an extended analysis on common thought processes of opti-
mization strategies. Deciding what and when to cache as well as side effects of
caching, such as state changes are explored in their work.

Helmut A. Partsch in Specification and transformation of programs: a formal
approach to software development [25] discusses the application of the techniques
of Memoization and Tabulation, also known as dynamic programming, to the
Fibonacci function.

Umut A. Acar, Guy E. Blelloch, Robert Harper in Selective memoization [1]
present a framework for applying memoization selectively, allowing the user to
fine-grain the application of memoization according the the application needs.

2.5 Future Work

In our work we present a model to memoize the return values of specific functions.
We focus on functions related to Beam Distributed Load Elements. However, we
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have extended the signature of our attribute to key to additionaly include the type
of the element whose value we memoize. This made it possible for us to extend
the functionality of our model to functions related to Beam Concentrated Force
Load Elements. This way, our model can be extended to memoize return values of
functions related to other structural elements as well, provided that these elements
have a similar data format.

Our work can also be extended by providing a way to prune the memoized
values that are not used in any way. During the initialization step of our model,
a mechanism to filter out attribute keys can be applied, storing only the return
values that correspond to attributes keys that are used by the Solver. However,
this mechanism requires a way to determine which keys are useful. While there is
no definite way to answer that, analyzing many user files to gather key instances
that are repeated throughout each file, is a starting step to the right direction.

Additionally, our model could be restructured an applied in a more classic
memoization context. Instead of an initialization step, in which we memoize all
the possible return value, a value can be memoized when calling the function with
specific arguments for the first time. Then on subsequent times, the memoized
value that matches the arguments will be retrieved. While, this adds a one-time
computational overhead at the first time the function is called, it simplifies the
code as well as renders the initialization step obsolete.

Lastly, the possibility of evaluating the performance of our work on more end-
user generated files remains open. This would help us get more accurate results
regarding user functionality, since the amount of end-user files available to us,
during the time of our work, is limited.
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Capacity Volume Manager
Concurrency

3.1 Background

The Capacity Volume Manager is another RAF module. Its code is integrated
to the main RAF application along with its own UI windows and buttons. The
main RAF application is developed in C++ using the Visual Studio IDE [20]. The
Capacity Volume Manager is responsible for storing, calculating and providing the
user with the requested Capacity Volumes. A Capacity volume is an attribute of
a structural element. It contains information about the resistance of the element
to winds, earthquakes and other external forces. A Capacity Volume can also be
represented graphically, while its calculation is a time consuming, CPU intensive
operation. Capacity Volume Calculation is based on the method described by
Werner H. in the article Inclined bending of polygonal bordered reinforced concrete
cross-sections [36].

The end-user can request the Capacity Volume of an element. The request
is delegated to the Capacity Volume Manager. If the Capacity Volume is al-
ready calculated, the Manager supplies it to the rendering engine and a graphical
representation of the Capacity Volume is shown on screen. If it is not already
calculated, the Manager calculates and stores it before proceeding with the rest of
the operations.

The end-user can also request the Capacity Volumes of multiple elements.
These are handled in and calculated as a batch by the Capacity Volume Manager
following the above procedure in a linear fashion. During calculation, a progress
bar is shown on screen to inform the user of the completion status of the operation.

We have been informed by the architects of RAF that Capacity Volumes are
data unrelated entities in order to research the possibility of simultaneous calcu-
lation by utilizing more than one CPU cores.

37
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Figure 3.1: Graphical representation of Capacity Volume

Figure 3.2: Capacity Volume Calculation Progress bar



3.2. METHODS 39

1 enum MatProps { . . . } ; // Mater ia l Proper t i e s type
2 class ReinforceSchema { . . . } ; // Reinforce Schema type
3 using ReinforceSchemaSPtr =
4 std : : shared ptr<ReinforceSchema>;
5
6 using OnionKey = std : : tup l e
7 <MatProps , bool , double , double ,
8 double , ReinforceSchemaSPtr , double , double>;

Figure 3.3: Capacity Volume Key format

First, we present and analyze the current design of the Capacity Volume Man-
ager. Then we present our concurrent design. Lastly we talk about thread man-
agement issues.

3.2 Methods

3.2.1 The Linear Design

First we study and present the current design of the Capacity Volume Manager.
Based on this study we proceed to make decisions on how we can design a concur-
rent variant. The main component of the Capacity Volume Manager is a key-value
store that stores the already calculated Capacity Volumes. We refer to this key-
value store as OnionMap, since onion is slang for Capacity Volume among structural
engineers, due to the onion-like graphical representation of a Capacity Volume.
We will also refer to a Capacity Volume as Onion and to the Capacity Volume
Manager as OnionManager. OnionMap is implemented as a Hash Table using the
std::unordered map STL container.

An element of OnionMap is composed of a key and a value. The key is a
unique permutation of the values of 8 structural attributes while the value is a
shared pointer to a Capacity Volume instance as shown in figure 3.3. We refer to
a Capacity Volume key as OnionKey.

Throughout C++ code std::shared ptr STL semantics are used to denote Onion
instances or other resources. std::shared ptr is a smart pointer that retains shared
ownership of an object through a pointer. Several std::shared ptr objects may
own the same object. The object is destroyed and its memory deallocated when
the last remaining std::shared ptr owning the object is destroyed [28]. Usage of
std::shared ptr is prevalent in the RAF application code base since it simplifies the
memory management of shared resources.

Another important component of the OnionManager is the method that allows
the user of the Manager to request an Onion. We refer to this method as GetOnion.
The input argument of GetOnion is an OnionKey while its output is a shared
pointer to the calculated Onion. We describe the GetOnion method in figure 3.4
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1 class Onion {
2 public :
3 void Solve ( ) ;
4 } ;
5 using OnionSPtr = std : : shared ptr<Onion>;
6
7 class OnionManager {
8 public :
9 using OnionMap =
10 std : : unordered map<OnionKey , OnionSPtr>;
11 private :
12 OnionMap onionMap {} ;
13 public :
14 OnionSPtr GetOnion ( const OnionKey& key ) ;
15 } ;
16
17 OnionSPtr OnionManager : : GetOnion ( const OnionKey& key ) {
18 auto i t = onionMap . f i nd ( key ) ;
19 i f ( i t != std : : cend ( onionMap ) ) return i t−>second ;
20
21 OnionSPtr onion = std : : make shared<Onion>() ;
22 onion−>Solve ( key ) ;
23 onionMap . emplace ( key , onion ) ;
24 return onion ;
25 }

Figure 3.4: The OnionManager class
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from line 17. In lines 18 - 19 GetOnion accesses the OnionMap and returns the
requested Onion. If the Onion is not present in OnionMap then it is not calculated.
If it is not calculated, then, in lines 21 - 24, the OnionManager proceeds to
instantiate it, calculate it by calling its Solvemethod and store it to the OnionMap,
before finally returning a shared pointer to it.

The calculation of an Onion is a time-consuming operation. Each Onion in-
stance contains a private method called Solve. This method calculates the Onion
by populating its attribute fields with structural analysis results. We focus our at-
tention on producing a concurrent design that allows for multiple Onion instances
to run their respective Solve method at the same time. The main requirement for
this property is data independence among Onion instances. After examining the
contents of the Solve method and its access to any global state, as well as con-
sulting the architects of RAF, we make sure of the fact that multiple concurrent
instances of Solve are data independent and will not produce data races.

3.2.2 Concurrent Design Requirements

To enable true concurrency we present an OnionMap design that allows multiple
instances of GetOnion to run at the same time utilizing different threads of execu-
tion. To achieve this we redesign the execution flow of GetOnion while accounting
for the following facts

• Concurrent read and write access to OnionMap must be supported in order
to retrieve or store Onion instances.

• The Solve method of multiple Onion instances, with different keys, must be
allowed to run at the same time.

• Thread management must be abstracted from the rest of the application
with our design being non-intrusive to the other components of the RAF
application.

To guarantee mutual exclusion of code segments we use the concept of locks, im-
plemented as mutex objects using the STL std::mutex implementation. std::mutex
is a synchronization primitive that can be used to protect shared data from
being simultaneously accessed by multiple threads. std::mutex offers exclusive,
non-recursive ownership semantics [22]. To grab or release a mutex we use the
std::unique lock. std::unique lock is a general-purpose mutex ownership wrapper
allowing deferred locking, time-constrained attempts at locking, recursive lock-
ing, transfer of lock ownership, and use with condition variables [31]. Since we
make use of condition variables. std::unique lock is an ideal pick for us. With
std::unique lock we can follow RAII semantics, where the acquired mutex is re-
leased, when the std::unique lock instance goes out of scope.

OnionMap is implemented using the std::unordered map STL container. STL
containers do not support concurrent write operations by themselves, so we need to
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provide mutual exclusion of accessing the container ourselves, while maintaining a
valid view of its contents among threads. We use a global lock to to provide mutual
exclusion when a search/read or modification/write of OnionMap takes place. We
refer to this global lock as OnionMapMutex. This way we eliminate data races
on concurrent writes and on cases where a thread reads while another thread is
writing.

To handle the parallel calculation of Onion instances we utilize an additional
key-value store, implemented as std::unordered map. We refer to it as MutexMap.
We use OnionKey instances as keys and mutexes as values. This way each stored
Onion in OnionMap is associated with its unique mutex in MutexMap. Elements are
inserted to the MutexMap on demand, when a requested key is not already present.
With this mechanism we enable the concurrent calculation of Onion instances. A
global lock is used to access MutexMap. We refer to it as MutexMapMutex. After a
mutex acquired, we proceed to access OnionMap and retrieve the requested Onion.
If the Onion is not present in OnionMap, we run its Solve method and store it
before retrieving it.

In the case where, multiple Onion instances with different keys are requested,
their calculation will run concurrently, while OnionMapMutex and MutexMapMutex

serialize the access OnionMap and MutexMap to respectively, providing synchroniza-
tion.

In the case where, the same Onion with a specific key is requested multiple
times, all threads except one will block while trying to acquire the MutexMap lock
associated with the input OnionKey. The chosen thread will calculate and store the
Onion instance, then release MutexMapMutex. The remaining threads will acquire
MutexMapMutex, access OnionMap and return the already calculated Onion in a
linear fashion.

Furthermore, we need to abstract our design to make it compatible with the
rest of the RAF application. Since the application expects the OnionManager to
complete its requests in a linear fashion, there is no notion of thread joining present.
Instead of introducing threading in an external context, we adopt the notion of
requestable tasks using std::promise and std::future STL semantics. std::promise
provides a facility to store a value that is later acquired asynchronously via a
std::future object created by the std::promise object [27]. std::future provides a
mechanism to access the result of asynchronous operations [9].

We encapsulate each Onion to a future and allow the external user to decide
when to asynchronously acquire the value of the future, which is the actual Onion
instance. This way we minimize the code changes needed at the external context
of our work.

Finally regarding internal thread management we offer two solutions and we
give the user the option to pick one at run-time.

• We associate each Onion request task with a thread execution using the
std::async facilities of the STL.
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• We implement our own thread pool limiting the number of active threads to
the user machine CPU cores. Each Onion request task is then queued to the
thread pool for execution.

The function template std::async runs a function asynchronously and returns
a std::future that will eventually hold the result of that function call [2].

Using the std::async facilities simplifies our thread management and compli-
ments the usage of std::future objects. This way we introduce the notion of asyn-
chronous tasks to our work, without worrying about thread management conno-
tations. The disadvantage of this solution is the Operating System task scheduler.
In the event of having multiple time intensive tasks running asynchronously, a lot
of time is lost on context switching among different threads on the same CPU core.

By implementing our own thread pool and limiting the number of threads to
the number of CPU cores, we eliminate context switching. However, this way we
inject an extra level of indirection to our design which results in more room for
bugs of concurrent nature. With this solution, we also need to account for the
creation and use of promises, since the use of futures is already bound to our
design.

3.2.3 The Concurrent Design Implementation

To support our concurrent design, we extend the signature of the OnionManager
as shown in figure 3.5. In lines 17 - 26, we introduce MutexMap, to store our mu-
texes associated with OnionKey instances, as well as the container access mutexes
OnionMapMutex, MutexMapMutex. These mutexes are used to provide mutual ex-
clusion access to OnionMap and MutexMap respectively. Furthermore, we introduce
the RequestMode field to switch among implementations at run-time and the pri-
vate methods RequestOnion, GetOnionConcurrent, GetOnionSolve to aid us in
our design. In lines 28 - 29, we change the return value signature of the GetOnion
method and provide a set method to allow the user to switch among implemen-
tations at run-time. In lines 32 - 34, GetOnion now serves as a wrapper method
that acts as an entry point to our design.

The RequestOnion method is described in figure 3.6. RequestOnion is respon-
sible for abstracting the current Onion request as a task, depending on the selected
implementation, and returning a future object to the requested Onion. The user
can decide when to access the wrapped Onion object by calling the .get() method
of the returned future.

• The SERIAL LAZY implementation in line 9 does not spawn any new
threads of execution. Lazy evaluation of the task is performed when the
user calls the .get() method of the returned future. The Onion instances are
calculated in a serial fashion without introducing any concurrency semantics,
hence we call the GetOnionSolve method right away.
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1 using OnionFuture = std : : future<OnionSPtr>;
2 using Mutex = std : : mutex ;
3 using MutexUPtr = std : : unique ptr<Mutex>;
4
5 class OnionManager {
6 public :
7 using OnionMap =
8 std : : unordered map<OnionKey , OnionSPtr>;
9 using MutexMap =
10 std : : unordered map<OnionKey , MutexUPtr>
11 enum class RequestMode {
12 SERIAL LAZY,
13 CONCURRENT,
14 CONCURRENTPOOL
15 } ;
16 private :
17 OnionMap onionMap {} ;
18 Mutex onionMapMutex {} ;
19 MutexMap mutexMap{} ;
20 Mutex mutexMapMutex{} ;
21 RequestMode requestMode{CONCURRENTPOOL} ;
22
23 auto RequestOnion ( const OnionKey& key ) −> OnionFuture ;
24 auto GetOnionConcurrent ( const OnionKey& key )
25 −> OnionSPtr ;
26 auto GetOnionSolve ( const OnionKey& key ) −> OnionSPtr ;
27 public :
28 OnionFuture GetOnion ( const OnionKey& key ) ;
29 void SetRequestMode ( const RequestMode& val ) ;
30 } ;
31
32 OnionFuture OnionManager : : GetOnion ( const OnionKey& key ) {
33 return RequestOnion ( key ) ;
34 }
35
36 void OnionManager : : SetRequestMode ( const RequestMode& val ) {
37 requestMode = va l ;
38 }

Figure 3.5: The Concurrent OnionManager class signature
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1 using OnionPromise = std : : promise<OnionSPtr>;
2 using OnionPromiseSPtr = std : : shared ptr<OnionPromise>;
3 OnionThreadPool ThreadPool{
4 std : : thread : : hardware concurrency ( ) ; }
5
6 auto OnionManager : : RequestOnion ( const OnionKey& key )
7 −> OnionFuture {
8 switch ( requestOnionMode ) {
9 case RequestOnionMode : : SERIAL LAZY: {
10 return std : : async ( std : : launch : : de f e r r ed , [ this ] ( ) {
11 return GetOnionSolve ( key ) ; } ) ;
12 }
13 case RequestOnionMode : :CONCURRENT: {
14 return std : : async ( std : : launch : : async , [ this ] ( ) {
15 return GetOnionConcurrent ( key ) ; } ) ;
16 }
17 case RequestOnionMode : :CONCURRENTPOOL: {
18 OnionPromiseSPtr promise {
19 std : : make shared<OnionPromise >()} ;
20 OnionFuture fu tu r e = promise−>g e t f u t u r e ( ) ;
21 ThreadPool . AddJob ( [ this , promise ] ( ) {
22 const auto& re t = GetOnionConcurrent ( key ) ;
23 promise−>s e t v a l u e ( r e t ) ; } ) ;
24 return f u tu r e ;
25 }
26 default : a s s e r t ( fa l se ) ;
27 }
28 }

Figure 3.6: The RequestOnion method
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1 using Lock = std : : un ique lock<Mutex>;
2
3 auto OnionManager : : GetOnionConcurrent ( const OnionKey& key )
4 −> OnionSPtr {
5 Mutex∗ keyMutex{ nu l l p t r } ;
6 {
7 Lock (mutexMapMutex)
8 mutexMap . emplace ( key , std : : make unique<Mutex> ( ) ) ;
9 keyMutex = mutexMap . at ( key ) . get ( ) ;
10 }
11 Lock (∗keyMutex ) ;
12 return GetOnionSolve ( key ) ;
13 }

Figure 3.7: The GetOnionConcurrent method

• The CONCURRENT implementation in line 13 spawns a new thread of
execution for each task. Each Onion request acts as a separate thread of
execution. Handling of these threads is assigned to the Operating System.
With this implementation we do not have a way to handle thread oversub-
scription.

• The CONCURRENT POOL implementation in line 17 queues up a new
tasks for our ThreadPool. In line 3 we construct a global ThreadPool using
the maximum amount of hardware threads. ThreadPool is described later
in figure 3.9. On this case, we need generate the OnionFuture ourselves.
In lines 18 - 20, we construct the promise associated with the current task
and get its future, which we return in line 24. It is important to construct
the promise as a shared pointer, since it is a shared resource among the
main thread and the worker thread from our ThreadPool as indicated by its
capture in the lambda in line 21. The worker thread calculates the Onion.
When it is done, we notify the associated future, in line 23.

The GetOnionConcurrent method is described in figure 3.7. RequestOnion is
responsible for acquiring the right mutex associated with the current OnionKey. In
lines 7 - 9 we acquire the MutexMapMutex and insert a new mutex associated with
the current OnionKey to MutexMap, if it is not already present. Then we access
MutexMap to get a pointer to this mutex. In line 10, MutexMapMutex is released
since the scope of the lock ends. In line 11, we acquire the mutex associated with
the current key until the function reaches the end of its execution. In line 12, while
the mutex is acquired, we call GetOnionSolve and return its result.

The GetOnionSolve method is described in figure 3.8. GetOnionSolve is re-
sponsible for calculating and returning the requested Onion. It is an extended
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1 auto OnionManager : : GetOnionSolve ( const OnionKey& key )
2 −> OnionSPtr {
3 {
4 Lock ( onionMapMutex ) ;
5 auto i t = onionMap . f i nd ( key ) ;
6 }
7 i f ( i t != std : : cend ( onionMap ) ) return i t−>second ;
8 OnionSPtr onion = std : : make shared<Onion>() ;
9 onion−>Solve ( key ) ;
10 {
11 Lock ( onionMapMutex ) ;
12 onionMap . emplace ( key , onion ) ;
13 }
14 return onion ;
15 }

Figure 3.8: The GetOnionSolve method

implementation of the GetOnion method of the serial design of the OnionManager
that enables mutual exclusion access to the OnionMap. In lines 4 - 5, we acquire
OnionMapMutex and access OnionMap to check for the existence of the key. In
line 7, after OnionMapMutex is released, we check if the key is already present in
OnionMap. If it is present, then the Onion is already calculated, so we return it.
Otherwise, in lines 8 - 9, we create an Onion instance and execute its Solve method.
In lines 11 - 12, we acquire OnionMapMutex and insert the newly calculated Onion.
Lastly, in line 14, after the OnionMapMutex is release, we return the shared pointer
to the Onion instance.

3.2.4 The Thread Pool Implementation

For our implementation we delegate thread management to the std::async facilities
of the STL. By using std::async, each asynchronous task spawns a new thread
of execution. This leads to the case where each Onion request is executed on
its separate thread. This leads to thread oversubscription when a large number
of Onion instances is requested. Since the Operating System is responsible for
scheduling which thread to run on which CPU core, we are limited in the ways
that we can handle the oversubscription issue.

To tackle this, we extend our implementation to use a thread pool of our
own design. We refer to this global thread pool as ThreadPool. ThreadPool is
constructed with a number of worker threads and an empty job queue. A job queue
is a queue of tasks to be asynchronously executed by the worker threads. Each
thread blocks on a mutex until a job is available on the queue. We wrap Onion

requests in jobs and delegate them to our ThreadPool. By using a ThreadPool we
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1 class OnionThreadPool {
2 public :
3 using Job = std : : funct ion<void ()> ;
4 using Condit ion = std : : c o nd i t i o n v a r i a b l e ;
5
6 private :
7 std : : vector<std : : thread> threads {} ;
8 std : : queue<Job> j obs {} ;
9 Mutex jobsMutex {} ;
10 Condit ion cond i t i on {} ;
11 bool shutdownPool{ fa l se } ;
12
13 void WaitForJob ( ) ;
14
15 public :
16 OnionThreadPool ( s i z e t numThreads ) ;
17 ˜OnionThreadPool ( ) ;
18 void AddJob( const Job &job ) ;
19 } ;

Figure 3.9: The ThreadPool class signature

control the number of running threads, essentially bypassing the oversubscription
issue.

The ThreadPool signature is described in figure 3.9. In lines 7 - 13 we intro-
duce a threads container to store our worker threads as well as a job queue. We
refer to the job queue as Jobs. We create an abstraction of a job instance using
std::function, a general-purpose polymorphic function wrapper [8]. We also intro-
duce JobsMutex, a mutex to provide mutual exclusion access to our jobs container.
We use Condition, a condition variable to notify our blocked threads for available
jobs and a utility shutdown flag to help with the destruction of our ThreadPool
instance. WaitForJob is a private method which implements a loop for threads to
block upon while waiting for a job to available in Jobs. In lines 16 - 18, we de-
clare our own constructor and destructor in order to manually manage the working
threads. We queue up jobs to the ThreadPool by using the AddJob method.

The ThreadPool methods are described in figure 3.10.

The constructor is described in figure 3.10 from line 1. The input is the number
of worker threads present in the ThreadPool. These threads are constructed and
placed in a container. Each thread is executing the WaitForJob method upon
construction, waiting for an available job.

The destructor is described in figure 3.10 from line 6. In lines 8 - 9, we acquire
JobsMutex to raise the shutdown flag. In lines 11 - 13, we proceed to wake up any
blocked worker threads and wait for them to join.
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1 OnionThreadPool : : OnionThreadPool ( s i z e t numThreads ) {
2 for ( s i z e t i = 0 ; i < numThreads ; ++i )
3 threads . emplace back ( [ this ] ( ) {WaitForJob ( ) ; } ) ;
4 }
5
6 OnionThreadPool : : ˜ OnionThreadPool ( ) {
7 {
8 Lock ( jobsMutex ) ;
9 shutdownPool = true
10 }
11 cond i t i on . n o t i f y a l l ( ) ;
12 for (auto& t : threads )
13 t . j o i n ( ) ;
14 threads . c l e a r ( ) ;
15 }
16
17 void OnionThreadPool : : AddJob( const Job& job ) {
18 {
19 Lock ( jobsMutex ) ;
20 jobs . emplace ( job ) ;
21 }
22 cond i t i on . no t i f y on e ( ) ;
23 }
24
25 void OnionThreadPool : : WaitForJob ( ) {
26 while ( true ) {
27 Job job {} ;
28 {
29 Lock ( jobsMutex ) ;
30 cond i t i on . wait ( l , [ this ]{
31 return ! j obs . empty ( ) shutdownPool ; } ) ;
32 i f ( j obs . empty ( ) ) return ;
33 job = jobs . f r on t ( ) ;
34 jobs . pop ( ) ;
35 }
36 job ( ) ;
37 }
38 }

Figure 3.10: The ThreadPool class methods
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AddJob is described in figure 3.10 from line 17. In lines 19 - 20, we acquire
JobsMutex to insert an element to Jobs. In line 22, we wake up one of the blocked
worker threads to handle this job.

WaitForJob is described in figure 3.10 from line 25. WaitForJob is essentially
an infinite loop where threads continuously acquire and handle available jobs from
Jobs. In lines 29 - 31 we acquire the JobsMutex and block until a job is available
in Jobs or the shutdown flag is raised. In line 32, if Jobs is empty that means
that the shutdown flag is raised, so we end the infinite loop execution by returning.
Otherwise, in lines 33 - 34, we pop a job from Jobs. In line 36, after we release
JobsMutex we execute our assigned job.

3.3 Evaluation

We evaluate our work in terms of regression testing and performance profiling.
To evaluate our work we create a Testing Pipeline and inject the execution our
tests at the startup phase of a development version of the RAF application. This
way, we run our regression tests and performance profiling before any major mod-
ules of the RAF application are initialized, thus accelerating our work flow. Our
regression tests take the form of comparing the contents of calculated Onion in-
stances. We compare Onion instances calculated by the Concurrent OnionManager
with their equivalent Onion instances, in terms of OnionKey, calculated by the
Serial OnionManager. Our performance profiling takes the form of generating
and calculating a large number of keys using the Concurrent and the the Serial
OnionManager and timing the total execution of the calculations.

Both regression testing and performance profiling is conducted with the help
of our own Testing Pipeline.

3.3.1 The Testing Pipeline

Our Testing Pipeline is comprised of GenerateKeys, an OnionKey instance gen-
eration function. RunBenchmark is a function that handles the execution of our
selected benchmark. Lastly, ScopeTimer is a utility class is responsible for insert-
ing time points at selected code sections.

With GenerateKeys we are able to generate a collection of OnionKey in-
stances by adjusting the value range of each value that is part of the signature
of an OnionKey instance. We adjust the limits of the value range of each part of
anOnionKey instance and proceed to generate all the possible permutations based
on those limits. The result is a collection of unique keys. Each one of those keys
will prompt an Onion instance calculation, when supplied to the OnionManager.
We confirm the structural validity of the values of our limits after consulting the
architects of RAF. With these limits we can generate all the possible permutations
of unique and valid OnionKey instances.

GenerateKeys is described in figure 3.11. In lines 1 - 7 and 11 - 24, we configure
the values of our OnionKey limits, thus tuning the size of our input collection. In
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1 using SchemaVec = std : : vector<ReinforceSchemaSptr >;
2 SchemaVec GetSolvableSchemas { . . . } // Val id Schemas
3
4 struct Limit {double b , e , s ; } ; // begin , end , s t ep
5 Limit l im0 { . . . , . . . , . . . } ;
6 Limit l im1 { . . . , . . . , . . . } ;
7 Limit l im2 { . . . , . . . , . . . } ;
8
9 using OnionKeyVec = std : : vector<OnionKey>;
10 OnionKeyVec GenerateKeys ( ) {
11 std : : vector<MatProps> matV{ . . . , . . . } ;
12 std : : vector<bool> bV{ false , true } ;
13 std : : vector<double> v0V{} ;
14 for (double i = lim0 . b ; i <= lim0 . e ; i += lim0 . s )
15 v0V . emplace back ( i ) ;
16 std : : vector<double> v1V{} ;
17 for (double i = lim1 . b ; i <= lim1 . e ; i += lim1 . s )
18 v1V . emplace back ( i ) ;
19 std : : vector<double> v2V{} ;
20 for (double i = lim2 . b ; i <= lim2 . e ; i += lim2 . s )
21 v2V . emplace back ( i ) ;
22 SchemaVec schemaV{ GetSolvableSchemas ( ) } ;
23 double d0 = . . . ;
24 double d1 = . . . ;
25 OnionKeyVec keys {} ;
26 for ( const auto& mat : matV)
27 for ( const auto& b : bV)
28 for ( const auto& v0 : v0V)
29 for ( const auto& v1 : v1V)
30 for ( const auto& v2 : v2V)
31 for ( const auto& schema : schemaV)
32 keys . emplace back (
33 { mat , b , v0 , v1 ,
34 v2 , schema , d0 , d1 } ) ;
35 return keys ;
36 }

Figure 3.11: The GenerateKeys function
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1 using OnionVec = std : : vector<Onion>;
2 using OnionFutureVec = std : : vector<OnionFuture>;
3
4 void OutputResults ( const OnionVec& r e s u l t s ) { . . . }
5 //OutputResu l t s s e r i a l i z e s onions to f i l e
6 RequestMode requestMode = . . . ;
7 //SERIAL LAZY, CONCURRENT, CONCURRENTPOOL
8
9 OnionVec RunBenchmark ( const KeyVec& keys ) {
10 OnionManager manager {} ; // Ser i a l , Concurrent
11 manager−>SetRequestMode ( requestMode ) ;
12 OnionFutureVec f u tu r e s {} ;
13 OnionVec r e s u l t s {} ;
14
15 {
16 ScopeTimer ( ”Total Duration” ) ;
17 for ( const auto& key : keys )
18 f u tu r e s . emplace back (manager−>GetOnion ( key ) ) ;
19 for (auto& f : f u tu r e s )
20 r e s u l t s . emplace back ( f . get ( ) ) ;
21 }
22
23 return r e s u l t s ;
24 }
25
26 const auto& keys = GenerateKeys ( ) ;
27 const auto& r e s u l t s = RunBenchmark ( keys ) ;
28 OutputResults ( r e s u l t s ) ; // For r e g r e s s i on t e s t i n g

Figure 3.12: The RunBenchmark function

lines 25 - 34, we generate all OnionKey instance permutations based on our limits
and insert them into a container. Lastly, in line 35, we return our collection of
unique OnionKey instances.

With RunBenchmark, we select an implementation of the OnionManager and
benchmark it by requesting all the keys present in the input collection and waiting
for the calculation of all Onion instances.

RunBenchmark is described in figure 3.12. In line 4 we define a function re-
sponsible for outputting the collection of calculated Onion instances to a file. We
use this function to perform regression testing to our work by comparing the files
containing Onion instance results generated by the Serial OnionManager to those
generated by our Concurrent OnionManager. In line 6 we select the implementa-
tion of our Concurrent OnionManager that we wish to benchmark. In lines 10 - 13
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1 class ScopeTimer {
2 public :
3 using Clock = std : : chrono : : s t e ady c l o ck ;
4 using Timepoint = std : : chrono : : t ime point<Clock>;
5
6 private :
7 std : : s t r i n g id ;
8 Timepoint begin ;
9 Timepoint end ;
10 public :
11 ScopeTimer ( const std : : s t r i n g& id ) ;
12 ˜ScopeTimer ( ) ;
13 } ;
14
15 ScopeTimer : : ScopeTimer ( const std : : s t r i n g& i d ) : id { i d } {
16 begin = Clock : : now ( ) ;
17 }
18
19 ScopeTimer : : ˜ ScopeTimer ( ) {
20 end = Clock : : now ( ) ;
21 u in t 64 t durat ion = end − begin ;
22 //Output to f i l e us ing id
23 }

Figure 3.13: The ScopeTimer class

we instantiate an OnionManager, apply a selected implementation and construct
our OnionFuture and Onion result containers. In line 16 we take advantage of
the RAII semantics of our ScopeTimer class, described in figure 3.13, to insert
timepoints at beginning and end of the local scope defined by lines 17 and 21.
Lines 17 - 20 are the actual benchmarked lines where the batch request and cal-
culation of the input OnionKey collection is taking place. Lastly, in line 23, we
return a collection of the Onion instance results, in case we want to output them
to a file.

In lines 26 - 28 we give the calling convention of our Testing Pipeline.

With ScopeTimer we are able to insert timepoints at the beginning and end
of a local scope by taking advantage of its RAII semantics.

The ScopeTimer class in described in figure 3.13. In lines 7 - 9 we define its id
as well as its contained timepoints. In line 16 of the constructor body, we retrieve
the timepoints of the class instance construction, from the Operating System.
In line 20 of the destructor body we retrieve the timepoint of the class instance
destruction, while on line 21 we calculate the lifetime duration of the instance and
proceed to output it to a file.
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3.3.2 Regression Testing

We need to make sure that the integrity of a calculated Onion instances is not
invalidated. We conduct regression testing using our Testing Pipeline. To con-
duct regression testing we first serialize a collection of calculated Onion instances
to an output text file. We compare the text file produced by calculated Onion

instances requested by the Serial OnionManager, with the text file of Onion in-
stances produced by the Concurrent OnionManager. These text files contain Onion

instances that correspond to the same OnionKey instances. If the text files are
identical, then the Concurrent OnionManager produces the same results as the Se-
rial OnionManager and consequently, regression testing is a success. We perform
regression testing to all the implementations of the Concurrent OnionManager. Re-
garding the size of the generated keys input collection, we make sure we produce
every practically possible permutation of OnionKey instances, achieving complete
input coverage.

3.3.3 Performance Evaluation

To observe the performance benefits of our Concurrent design of the OnionManager
we need to profile it in terms of execution time and speedup. We conduct perfor-
mance profiling using our Testing Pipeline.

Our input collection of unique OnionKey instances has the size of 3224, 1612,
806 unique element requests. We profile the time it takes for the OnionManager

to process the OnionKey requests of the above input collection on the following
cases

• Using the old Serial implementation (aka OLD) of the OnionManager.

• Using the SERIAL LAZY implementation of the Concurrent OnionManager.
This way we execute our concurrent methods using only a single thread.

• Using the CONCURRENT (aka ASYNC ) implementation of the Concurrent
OnionManager This way each Onion request is executed in a separate thread.
In this case, we end up with 3224, 1612, 806 threads running at the same
time.

• Using the CONCURRENT POOL (aka THREAD POOL) of the Concurrent
OnionManager, limiting the number of worker threads to 1, 2, 4, 6, 8 on an
end-user machine. This way, the number of threads running at the same
time does not exceed the amount of the logical cores of our machine.

• Using the CONCURRENT POOL of the Concurrent OnionManager, limiting
the number of worker threads to 12, 16, 24, 32 on an end-user machine. This
way we observe how thread oversubscription affects the performance of our
implementation.
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While presenting our performance results we use the concept of speedup as
introduced in the book An Introduction to Parallel Programming, on page 58 [24].

speedup =
Tserial

Tparallel

where Tserial is the execution time of the Serial Capacity Volume Manager on a
specific number of Capacity Volume requests and Tparallel is the execution time
of an implementation of the Concurrent Capacity Volume Manager on the same
number of Capacity Volume requests.

We also use the concept of efficiency as introduced on the same page of the
same book.

efficiency =
speedup

p

where p is the number of running threads during the execution time of an imple-
mentation of the Concurrent Capacity Volume Manager on a number of Capacity
Volume requests. We calculate our efficiency on a software thread level, not based
on the number of hardware CPU cores of our machine. This way, we can observe
the behavior of our efficiency on cases of thread oversubscription.

We conduct our performance profiling on two different machines. One of them
is a Virtual Machine set up on a NUMA architecture, while the other one is a
typical end-user PC.

3.3.4 Evaluation on NUMA architecture Virtual Machine

The specifications of our machine are the following.

• CPU, Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz. Contains 2 NUMA
nodes of 14 Physical cores each. Each of the 28 physical cores supports
hyper-threading technology totalling to 56 logical cores.

• RAM, 16 GB at 1500MHz

• OS, Microsoft Windows 10 Pro 64-bit

We repeat each measurement 3 times and present an average value.
In figure 3.14 we present the average speedup of each of our implementations

on a different number of requests. The horizontal axis shows our OnionManager
implementations while the vertical axis shows the speedup when compared with
theOLD OnionManager design. For the THREAD POOL implementation, we pick
the number of 14 worker threads that matches the physical cores of a NUMA node.
Each bar color represents a different number of concurrent requests. The red error
bars represent the standard deviation of each measurement. The SERIAL LAZY
implementation does not offer any speedup since the code is executed in a single
thread. The ASYNC implementation offers an approximate speedup of 3.0. Since
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Figure 3.14: Speedup of Concurrent Capacity Volume Manager implementations
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Figure 3.15: Speedup of CONCURRENT POOL implementation

each request is simultaneously running on a different thread, a large amount of
time is spent on context switching and on NUMA node to node communication.
The THREAD POOL of 14 worker threads bypasses this issue by achieving a max
approximate speedup of 10.0. Each thread is mapped on a physical core of a specific
NUMA node, eliminating delays due to hyper threading or node communication.

In figure 3.15 we present the average speedup of our THREAD POOL imple-
mentation on a different number of requests. The horizontal axis shows the number
of active worker threads while the vertical axis shows the speedup when compared
with the OLD OnionManager design. Each line color represents a different number
of concurrent requests. We do not show the standard deviation of each measure-
ment on this plot. speedup increases with the number of threads until it reaches it’s
peak in the approximate value of 10 matching to a thread number of 14-16 threads.
Since 14 threads is the number of physical cores for a NUMA node, we notice a
decrease in speedup from then on due to hyper-threading. After 28 threads, node
to node communication comes into play since the number of logical cores per node
is exhausted.

In figure 3.16 we present the average efficiency of our THREAD POOL im-
plementation on a different number of requests. The horizontal axis shows the
number of active worker threads while the vertical axis shows the efficiency of the
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Figure 3.16: Efficiency of THREAD POOL implementation
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Figure 3.17: Speedup of THREAD POOL implementation on 1612 requests with
error bars

corresponding speedup value when compared with the OLD OnionManager design.
Each line color represents a different number of concurrent requests. We do not
show the standard deviation of each measurement on this plot. We notice a larger
drop in efficiency from when exceeding the 14 physical core limit until reaching
reaching the 28 logical core capacity per node. This shows that hyper-threading
has a larger impact on our implementation than node to node communication.

In figure 3.17 we present the average speedup of our THREAD POOL imple-
mentation on a 1612 requests. The horizontal axis shows the number of active
worker threads while the vertical axis shows the speedup when compared with the
OLD OnionManager design. We present this plot to show the standard deviation of
each of our measurements. Our measurements showed large numbers of deviation
while hyper-threading on a single node was in effect.

3.3.5 Evaluation on the user PC machine

The specifications of our machine are the following.

• CPU, Intel Core i7-4790S CPU at 3.20 GHz, 4 cores, 8 Logical Processors
due to hyper-threading technology
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Figure 3.18: Speedup of Concurrent Capacity Volume Manager implementations

• RAM, 16 GB at 1500MHz

• SSD, Samsung SSD 860 EVO 250GB

• OS, Microsoft Windows 10 Home 64-bit

Due to time constraints we do not repeat any measurements on our evaluation
on the user PC machine.

In figure 3.18 we present the speedup of our most efficient implementations on
1612 requests. The vertical axis shows our OnionManager implementations while
the horizontal axis shows the speedup when compared with the OLD OnionManager

design. For the THREAD POOL implementation, we pick the number of 8 worker
threads that matches the logical cores of our machine. The ASYNC implementa-
tion offers an approximate speedup of 3.5 while the THREAD POOL increases it
to 4.0. The difference in speedup is attributed to context-switching costs on the
ASYNC implementation.

In figure 3.19 we present the speedup of our most efficient implementations on
1612 requests. The vertical axis shows our OnionManager implementations while
the horizontal axis shows the execution time in seconds. For the THREAD POOL
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Figure 3.19: Execution time of Concurrent Capacity Volume Manager implemen-
tations
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Figure 3.20: Comparison of time lost due synchronization while a single thread is
running

implementation, we pick the number of 8 worker threads that matches the log-
ical cores of our machine. The results are analogous to the plot in figure 3.18.
Approximately 115 seconds of the ASYNC implementation are spend on context
switching. This translates to about 13% of the total execution time being spend
on context switching.

In figure 3.20 we present the execution time of our single threaded imple-
mentations 1612 requests. The vertical axis shows our OnionManager implemen-
tations while the horizontal axis shows the execution time in seconds. For the
THREAD POOL implementation, we pick the number of 1 worker threads, essen-
tially enabling single threaded execution. We notice that about 26 seconds are
lost on our worker thread which translates to about 6% of the total execution time
spent on synchronization with the main thread.

In figure 3.21 we present the speedup of our THREAD POOL implementation
on a different number of requests. The horizontal axis shows the number of active
worker threads while the vertical axis shows the speedup when compared with
the OLD OnionManager design. Each line color represents a different number of
concurrent requests. We do not show the standard deviation of each measurement
on this plot. Speedup increases with the number of threads until it reaches it’s
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Figure 3.21: Speedup of THREAD POOL implementation
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Figure 3.22: Efficiency of THREAD POOL implementation

peak in the approximate value of 4.0 matching to a thread number of 8 threads.
On this machine we notice an increase in speedup even after exceeding the number
of our 4 physical cores, utilizing 8 logical cores due to hyper-threading. After 8
cores we do not notice any further increase since oversubscription occurs.

In figure 3.22 we present the efficiency of our THREAD POOL implementation
on a different number of requests. The horizontal axis shows the number of active
worker threads while the vertical axis shows the efficiency of the corresponding
speedup value when compared with the OLD OnionManager design. Each line color
represents a different number of concurrent requests. The results are analogous to
the plot in figure 3.21.

3.4 Related Work

In the book Patterns for Parallel Programming [17], Timothy Mattson, Beverly
Sanders, Berna Massingill describe terminology and thinking methods to apply-
ing concurrency in serial programs. A lot of the concepts introduced in this book
have been helpful in designing the Concurrent Capacity Volume Manager. The
book presents four design spaces in regards to designing concurrent systems. Re-
garding Data Decomposition, we make sure that each Capacity Volume calculation
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is abstracted as a data-independent task. While our thread pool is designed in a
way that complements Task-Parallelism, we end up achieving Data-Parallelism due
to queuing, to our thread pool, the same task of Capacity Volume calculation ap-
plied on different Capacity Volume data. Implementation Mechanisms such as the
synergy of the the STL facilities of std:: async and std:: future aid us in designing
the abstraction of a Capacity Volume request as a task. Supporting Structures
such as mutexes and thread pools help us achieve mutual exclusion of critical code
sections as well aiding us in organising Task Parallelism.

Our implementation of our Thread Pool is partly based on Implementation
and Usage of a Thread Pool based on POSIX Threads by Ronald Kriemann [14].
While we implement the concept of list scheduling, we do allow the user to balance
the load of our pool.

3.5 Future Work

In our work we present a Concurrent Design of the Capacity Volume Manager that
makes it possible to calculate multiple Capacity Volumes at the same time.

We pinpoint a flaw in our CONCURRENT POOL implementation that may
reduce the performance gains in certain cases. We present a case where multiple
requests for the same Capacity Volume key are queued up one after another.
The number of these requests exceed the number of logical cores of our machine.
After these requests, other requests for different Capacity Volume keys are queued
up. Our thread pool implementation processes job requests in first-come first-
served manner. Since multiple requests for the same Capacity Volume key are
near the front of the queue, these are the ones processed first. The thread pool
does not process any subsequent requests until the first ones, whose size match the
number of the worker threads, are finished. Since all requests assigned to worker
threads request the same Capacity Volume, only one of them will proceed with its
calculation, while the rest will wait its results. This behavior is an intended side
effect of the mutex selection related to a Capacity Volume Key. All worker threads
will wait on the shared selected Capacity Volume key mutex, minus one thread
which will proceed with the Capacity Volume calculation. The other threads will
proceed to retrieve the already calculated Capacity Volume, after the calculation
is done, and the mutex is released.

We offer two solutions to this problem. The first one is to prioritize and group
together requests that correspond to different keys, in the thread pool queue.
However, this may break the job abstraction, by injecting code related to Capacity
Volumes, in the thread pool implementation. The second is to design a mechanism,
which places a currently executing job at the end of the queue if this job is detected
to wait on a mutex for a long amount of time.
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Chapter 4

Conclusion

We present the way we profile, analyze and optimize the architecture of two legacy
code-rich modules of a structural design and analysis application for civil engineers.

On the first module, the Solver, we conduct performance profiling and pinpoint
a problematic iteration pattern that provides a CPU bottleneck to the execution
time of the module. After we analyze the pattern and present an internal memory
layout of the structural element database of the Solver, we design a Memoiza-
tion Model that eliminates the bottleneck, by replacing the iteration pattern. We
present the requirements, interface and provide two implementations of our exten-
sible Memoization Model. Lastly, we discuss the way we future proof our work by
linking it the the pre existing legacy code-base of the Solver module. Furthermore,
performance regressions tests and evaluate the performance gains of our work us-
ing end-user and tool generated input files. Our Memoization Model achieves up
to a 2.0 speedup ratio and and has already been scheduled for a future commercial
release.

On the second module, the Capacity Volume Manager, we present its current
design and pinpoint the requirements to extend its design resulting in the Concur-
rent calculation of Capacity Volumes. Then we present our Concurrent design of
the Capacity Volume Manager and its three different implementations. We also
present a thread pool implementation that compliments one of our Concurrent
Capacity Volume implementations. Lastly, we create our own testing pipeline and
inject at the startup of the main application. Through its usage we perform regres-
sion tests and evaluate the performance of our work. Our Concurrent Capacity
Volume Manager achieves up to a 4.2 speedup ratio and and has already been
scheduled for a future commercial release.

67
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