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Abstract

We consider the problem of imaging small defects embedded in strongly scattering
media, often called clutter, using an active array of transducers that can play the
dual role of emitters and receivers. Our data is the array response matrix collected
by sending short pulses from each source and recording the response at all array
elements. Imaging in strong clutter is quite challenging because the array data are
dominated by noise due to the multiple scattering of the waves with the medium
heterogeneities. To successfully image in this regime using simple coherent imaging
functionals we follow the methodology of coherent signal enhancement through
data filtering. In particular we consider the approach of [14] and seek to select
time-frequency windows that contain the coherent echoes from the reflectors we
wish to image using the Local Cosine Transform (LCT). The selection is performed
by detecting a pattern disruption in the behavior of the singular values of the
local-cosine coefficients transformed matrix. Following [2], we also consider two
random matrix theory based selection procedures. The first one is image based
and selects time-frequency windows using a criterion that examines the maximum
of an appropriately normalized migration image. The second one uses a filter
[15] to exclude multiple scattering contributions from the data and then selects
the time-frequency windows for which the defect is detectable by looking at the
largest singular value of the filtered response matrix. The filter proposed in [15] is a
rank one projection (ROP) that is very simple to implement and can be combined
with the LCT filter. We study the performance of the different approaches with
extensive numerical simulations, carried out in a non-destructive testing setup.
Our simulations suggest that the combination of the LCT with the ROP filter
gives the best results.



Introduction

Overview

In this thesis, we address the problem of detecting and imaging defects in strongly
scattering media, a situation that appears in applications such as non-destructive
evaluation of concrete [5]. We illustrate in Figure 1, a typical configuration for
active array imaging using a linear array of transducers. Our data is the array
response matrix P(t) = P (t, ~xr, ~xs), for r, s = 1, . . . , N , measured in the time
interval t ∈ [0, T ], using an array of transducers that can act both as sources and
receivers. The acoustic signal P (t, ~xr, ~xs) corresponds to the total pressure field
recorded on the rth transducer located at ~xr when a pulse f(t) is sent from the
array element located at ~xs. In some situations, we might also have data for the
incident field, i.e., the pressure field recorded on the array in the absence of the
reflector.

Figure 1: Typical configuration of active array imaging using a linear array of
transducers. On the left the data acquisition setup is illustrated. On the right
we show an example of an imaging domain. An image is created by associating a
value of an imaging functional to each point ~ys.

The simplest coherent imaging method that one can use to locate reflectors
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embedded in homogeneous or weakly heterogeneous media is Kirchhoff Migration
(KM). KM has found applications in non-destructive testing [20, 29, 3], optical
coherent tomography [28, 27], seismology [11, 31, 10], ultrasonic imaging [26, 33],
or in radar [19, 16, 39]. In time domain, KM consists in creating an image by
associating the value of the following functional at each point ~ys in the search
domain,

IKM(~ys) =
N∑
r=1

N∑
s=1

P (τ(~xs, ~y
s) + τ(~ys, ~xr), ~xr, ~xs) . (1)

This simply consists in evaluating the array data P (t, ~xr, ~xs) at time equal to the
sum of the travel times from the source to the search point τ(~xs, ~y

s) and then from
the search point to the receiver τ(~ys, ~xr). The travel times are computed using a
model for the background medium. Alternatively, the frequency domain analogue
of (1) is

IKM(~ys) =
N∑
r=1

N∑
s=1

∫
dωP̂ (ω, ~xr, ~xs)exp[−iω(τ(~xs, ~y

s) + τ(~ys, ~xr))] (2)

where P̂ (ω, ~xr, ~xs) is the Fourier transform of P (t, ~xr, ~xs). KM transforms the
array data to an image IKM(~ys) by summing over the array elements the back-
propagated data from the receiver to the image search point ~ys and then back to
the source. The point ~ys spans the image domain D, as depicted in Figure 1. The
back-propagation is performed in (2) using only the phase of the Green’s function,
however, the amplitude can also be taken into account as is often done in seismic
applications [11]. The maxima of the imaging function IKM give estimates as to
the location of the reflectors while the image resolution depends on the array size,
the distance between the reflectors and the array, the central frequency and the
bandwidth of the pulse [11]. KM gives very nice results in smooth media and is
very robust to additive noise. In strongly scattering media, however, the coherent
echoes from the reflector that we wish to image are overwhelmed by the incoherent
field due to the inhomogeneities of the surrounding medium. Consequently, KM
produces images that are heavily speckled and peak at unpredictable locations.
In order to produce reliable, statistically stable results in clutter, coherent inter-
ferometric imaging methods have been established [12, 13, 22]. Nonetheless, this
methodology also fails when the target to be imaged is at distance from the array
that exceeds one transport mean free path of the scattering medium [36, 13].

We consider here three recently developed filtering methods for successfully
imaging in strongly scattering media: (i) the adaptive time-frequency LCT based
filter [14], (ii) the rank one projection (ROP) filtering technique [15], which is
an alternative to the single scattering filter (SSF) [2], and (iii) a simpler filter
that detects the time-frequency windows of interest by defining an image based
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criterion such as the maximum of the image normalized by its L2-norm as presented
in [2, 4, 25].

The LCT-based approach proposed in [14] consists in windowing the data in
time-frequency windows using the local cosine transform (LCT). Then the window
that contains the coherent echoes from the reflectors we wish to image are identified
by examining the behavior of the largest singular values of the matrix of the LC
coefficients across frequencies. More presicely, in windows that contain clutter
echoes only, the singular values are clustered together, whereas, in windows that
contain coherent echoes and for a particular frequency range of interest (usually
the lower frequencies) the top singular values behave differently. The filter consists
in zeroing the LC coefficients in all other windows and in projecting the matrix
of LC coefficients on the subspace corresponding to the top singular values in the
selected windows and for the selected frequency range. This method is therefore
a time-frequency selection procedure that is adaptive and data driven.

The method proposed by Aubry et al. in [2] projects the response matrix
on the subspace corresponding to the top singular value, but after applying the
single scattering filter (SSF) which is a projection of the data on the subspace that
contains single scattering contributions. This approach uses random matrix theory
tools to identify the time-frequency windows for which the reflector is detectable.
In particular, the probability density function of the largest singular value of the
SSF filtered matrix is estimated from the incident field. The ROP filter [15] is
an alternative to SSF [2]. The idea is the same, however the projection to the
single scattering sub-space is performed in a different way as explained in [15].
From a practical point of view, the procedure followed in SSF is less efficient
because half of the array data is disregarded, and that is why we prefer to use
the ROP filter. Note that in [15] an additional filter that selects the direction of
arrival of the coherent echoes is proposed. Although it significantly improves the
results, we do not consider this filter here as we want to focus our attention on the
time-frequency selection and compare the results obtained using either the random
matrix theory methodology or the LCT-based approach. The direction of arrival
selection could be added as the last step on any of the approaches discussed here
to further improve the results.

Random matrix theory is used following the approach proposed in [2]. Given
data for the incident field, a time-frequency decomposition is performed. The size
of the time window is mainly computed so as all the array data from a hypothetical
reflector in our search domain can fit in one window in time. The ROP filter is
then applied and the largest singular value of the filtered matrix is computed for all
windows and frequencies. From these data the power spectral density of the largest
singular value is estimated as well as its primitive. Subsequently a probability of
false alarm is fixed and this implies a threshold value for the largest singular value.
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The procedure of time-frequency decomposition and filtering is repeated on the
total field, and time-frequency windows are selected for which the largest singular
value is above the threshold set in the previous step. We should note here that,
although we mention that the incident field is needed in the random matrix theory
approach, it is not needed in the usual sense used in inverse scattering problems
but in a rather weaker sense. Instead, what is needed is the incident field for one
realization of the cluttered medium, and, in fact not necessarily the same one for
which the total field is obtained. This is easier to obtain in practice which makes
this approach attractive for non-destructive testing applications.

The dissertation is organized as follows: In Chapter 1 we review some basic
facts for the wave equation. In Chapter 2 we formulate the array imaging problem
and present the setup for our numerical simulations. All filtering methods used for
detection and imaging in strongly back-scattering media are described in Chapter
3. In Chapter 4, we assess the performance of the different filtering techniques
with numerical simulations carried out in a non-destructive testing setup. We end
with a summary and conclusions.
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Chapter 1

The wave equation

1.1 Overview

We present here a few basic facts on the wave equation. We begin with the scalar
(acoustic) wave equation in Section 1. We use this equation in the next chapter
to write the mathematical model for the data. The pressure field at the sensors is
the time convolution of the source excitation and the Green’s function described
briefly in Section 2. An easy way to deal with convolutions is to work in the Fourier
frequency domain, where the wave equation reduces to the Helmholtz equation,
as explained in Section 3. We describe there a few important properties of the
Green’s function and give explicit formulas for the case of homogeneous media.

1.2 The acoustic wave equation

The propagation of sound waves is modeled by a first order system of equations
driven by a force ~F(t, ~x) exerted by an acoustic source. The pressure field p(t, ~x)
and the particle velocity ~v(t, ~x) satisfy the equations of conservation of momentum

%(~x)
∂~v(t, ~x)

∂t
+∇p(t, ~x) = ~F(t, ~x), (1.1)

and conservation of mass

∂p(t, ~x)

∂t
+K(~x)∇ · ~v(t, ~x) = 0, (1.2)

where t > 0 and ~x ∈ Rn. The bulk modulus is indicated by K(~x) and the mass
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density of the medium is given by %(~x). The source ~F(t, ~x) is causal supported at
t > 0 and for t 6 0 the medium is in its equilibrium state where,

p(t, ~x) = 0, ~v(t, ~x) = 0. (1.3)

We take the time derivative in (1.2) and substituting (1.1) in order to reduce the
first order system (1.1-1.2) to a second order equation for the pressure field. The
pressure field p(t, ~x) satisfies

%(~x)

K(~x)

∂2p(t, ~x)

∂2t
− %(~x)∇ · [∇p(t,

~x)

%(~x)
] = −%(~x)∇ · [

~F(t, ~x)

%(~x)
], (1.4)

where t > 0 and ~x ∈ Rn. The initial conditions are given by

p(0, ~x) =
∂p(0, ~x)

∂t
= 0. (1.5)

The wave equation takes the canonical form by

1

c2(~x)

∂2p(t, ~x)

∂2t
−∆p(t, ~x) = F (t, ~x), (1.6)

for t > 0 and ~x ∈ Rn, where the wave speed is

c(~x) =

√
K(~x)

%
, (1.7)

and the source density is

F (t, ~x) = −∇ · ~F(t, ~x), (1.8)

assuming that % is constant.

1.3 The Green’s function - time domain

In order to introduce the mathematical model for the array measurements we
need an explicit relation between the pressure field p(t, ~x) and the acoustic source
F (t, ~x). Explicitly, we need to invert the wave operator in (1.6), which we denote
by L. It is a linear operator defined on the vector space of twice continuously
differentiable functions of t and ~x, which vanish together with their time derivative
at t = 0. Equation (1.6) becomes Lp = F and has the unique solution
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p = L−1F. (1.9)

The inverse L−1 is an integral operator with kernel given by the causal Green’s
function G(t, ~x, ~y) and (1.9) is given by the explicit form

p(t, ~x) =

∫ t

0

ds

∫
Rn

d~yF (s, ~y)G(t− s, ~y, ~x), (1.10)

which is the Duhamel’s principle. The causal Green’s function satisfies

1

c2(~x)

∂2G(t, ~x, ~y)

∂t2
−∆~xG(t, ~x, ~y) = δ(~x− ~y)δ(t), ~x, ~y ∈ Rn, t > 0,

G(t, ~x, ~y) = 0, t < 0, (1.11)

in the sense of distributions, where ∆~x is the Laplace operator in the ~x variable,
and δ is the Dirac distribution. Note that since both the source and Green’s
function are causal (supported at positive time), we have∫ t

0

dsF (s, ~y)G(t− s, ~x, ~y) = F (t, ~y) ?t G(t, ~x, ~y), (1.12)

and then eq. (1.10) is rewritten as a time convolution

p(t, ~x) =

∫
Rn

d~yF (t, ~y) ?t G(t, ~y, ~x). (1.13)

1.4 The Green’s function - frequency domain

We define the Fourier transform as

p̂(ω, ~x) =

∫ ∞
−∞

dtp(t, ~x)eiωt (1.14)

and the corresponding inverse Fourier transform is

p(t, ~x) =

∫ ∞
−∞

dω

2π
p̂(ω, ~x)e−iωt. (1.15)
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In the transformations (1.14-1.15) above, ω indicates the angular frequency - mea-
sured in radians per second - and the relation between the angular frequency and
the frequency ν (measured in Hz) is given by

ω = 2πν. (1.16)

Moreover, the relation between the frequency ω, the wavenumber k and the wave-
length λ is described by

k =
ω

c0
=

2π

λ
, λ =

c0
ν
, (1.17)

where c0 denotes the reference wave speed. In the Fourier (frequency) domain
convolutions become products, so then the wave field of (1.13) becomes

p̂(ω, ~x) =

∫
Rn

d~yF̂ (ω, ~y)Ĝ(ω, ~y, ~x), (1.18)

where Ĝ(ω, ~y, ~x) is the Fourier transform of the causal Green’s function. This is
the same as the outgoing Green’s function of the Helmholtz equation given by

[∆~x +
ω2

c2(~x)
]Ĝ(ω, ~y, ~x) = −δ(~x− ~y). (1.19)

Note that if we started directly with (1.19), we would have to use the Sommerfeld
radiation condition to specify the outgoing Green’s function. The Sommerfeld
radiation condition is

lim
|~x−~y|→∞

|~x− ~y|(n−1)/2[ (
~x− ~y)

|~x− ~y|
− i ω

c0
]Ĝ(ω, ~x, ~y) = 0. (1.20)

Two important properties of the Green’s function are: the reciprocity and the
Kirchhoff-Helmholtz asymptotic identity. The latter identity, is used for example
in resolution analysis and studies of imaging with ambient noise sources [21]. The
reciprocity identity,

Ĝ(ω, ~x, ~y) = Ĝ(ω, ~y, ~x), (1.21)

suggests that the wave field at ~x due to a point source at ~y is the same as the
wave field at ~y, due to a point source at ~x . This statement permits us to switch
the role of sources and receivers in the analysis of imaging functions.
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The Green’s function in 2D and 3D

In three dimensions the Green’s function Ĝ0(ω, ~x, ~y) in homogeneous media is
expressed by

Ĝ0(ω, ~x, ~y) =
eik|~x−~y|

4π|~x− ~y|
. (1.22)

The two-dimensional Green’s function is given by

Ĝ0(ω, ~x, ~y) =
i

4
H

(1)
0 (k|~y − ~x|), (1.23)

where the H
(1)
0 is the zero order Hankel function of the first kind. If we take

into account the asymptotic approximation of the H
(1)
0 at large arguments the

expression of (1.23) becomes

Ĝ0(ω, ~x, ~y) ≈ 1

2

√
i

2πk|~x− ~y|
eik|~x−~y| (1.24)

It should be noted that in both two and three dimensions the Green’s function Ĝ0

is the product of a smooth amplitude multiplied by the oscillatory

exp(ik|~x− ~y|) = exp(iωτ(~x, ~y)) (1.25)

The amplitude of Ĝ0 is independent of the frequency in three dimensions, but not
in two dimensions.
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Chapter 2

Imaging problem and numerical
setup

2.1 Overview

In this chapter we describe the problem of active array imaging and we present
the setup used in our numerical simulations.

2.2 Formulation of imaging problem

We consider the problem of array imaging in strongly back-scattering media, in
which the reflections from the object to be imaged are corrupted by the noisy back-
scattered field due to the medium heterogeneities. Our data is the array response
matrix P(t) obtained by sending pulses f(t) from each array transducer ~xs and
recording the echoes at all receiver elements ~xr. Wave propagation is governed by
the acoustic wave equation,

1

v2(~x)

∂2p(t, ~x)

∂t2
−∆p(t, ~x) = f(t)δ(~x− ~xs), ∀ ~x ∈ Ω, t > 0,

p(0, ~x) = 0,
∂p(0, ~x)

∂t
= 0, ∀ ~x ∈ Ω (2.1)

in an open and unbounded domain Ω ⊂ R2. We assume a broadband pulse

f(t) = e−iω0tfB0(t)
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with Fourier transform

f̂(ω) =

∫ ∞
−∞

ei(ω−ω0)tfB0(t)dt = f̂B0(ω − ω0), (2.2)

supported in the frequency interval centered at ω0 with bandwidth B0. The
wave speed v(~x) is described by

1

v2(~x)
=

1

c2(~x)

(
1 + εµ

(
x

`
,
z

`z

)
+ ν(~x)

)
(2.3)

where ~x = (x, z). In (2.3), c(~x) is the smooth part of the velocity. For simplicity
we assume, in what follows, that c(~x) = c0. The z-axis indicates the direction of
propagation, also called range, and the x-axis is the cross-range direction. In (2.3),

µ
(
x
`
, z
`z

)
, is a random function that we use to model the medium inhomogeneities.

The length scales ` and `z denote the correlation lengths in the cross-range and
range directions, while the parameter ε is the strength of the fluctuations. The
term ν(~x) is the reflectivity of the object that we wish to image. We assume that
ν(~x) has compact support and our objective in the imaging problem is to find
the support of ν(~x) from the given data matrix P(t). Alternatively, a reflector
can be also modeled as an impenetrable scattering body. This is what we will do
in our numerical simulations where the reflector is modeled as a soft scatterer by
imposing to the pressure field to be zero on its boundary.

2.3 Setup of numerical simulations

We will consider either one or two reflectors embedded in three different types
of clutter: isotropic, layered and combined (see Figure 2.1). In all cases, the
smooth part of the velocity is constant c(~x) = c0 = 1km/s, and the fluctuations
are generated with random Fourier series. We select, appropriately, the numerical
parameters so as to be in a regime that is typically encountered in ultrasonic non-
destructive testing experiments [3]. In the isotropic medium we have, µi(~x) =
µ(x

`
, z
`
), with correlation function

E{µi(~x1)µi(~x2)} =

(
1 +
|~x1 − ~x2|

`

)
e−
|~x1−~x2|

` , ` = λ0/4,

and standard deviation εi = 0.1. In the layered medium, µl(~x) = µ( z
`z

) with
correlation function

E{µl(z1)µl(z2)} =

(
1 +
|z1 − z2|

`z

)
e−
|z1−z2|

`z , `z = λ0/50,
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and εl = 0.17. In the combined medium, the fluctuations are given by the combi-
nation

µc(~x) =
1√
2

(µi(~x) + µl(~x))

with εc = 0.1. We considered here this combination to give the same weight in the
isotropic and layered fluctuations while keeping the std of µc equal to one. Any
other combination of isotropic and anisotropic fluctuations can be also considered.

Isotropic Layered Combined
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Figure 2.1: The two reflectors embedded in three different cluttered media.
Isotropic on the left, layered in the center and combined on the right.

Our array is composed by N = 80 elements located at (xr, z) = (24λ0 + (r −
1)λ0

2
, 2λ0), r = 1, . . . , N . To obtain the array response matrix we solve numerically

the wave equation in the heterogeneous medium with velocity v(~x). The pulse
f(t) is a Ricker wavelet, a first derivative of a Gaussian, with central frequency
f0 = 10MHz and supported in a large bandwidth [0, 30]MHz.

Each reflector is a small disk of diameter λ0 and is modelled as a soft scatterer,
i.e., the acoustic field is zero at its boundary. The reflectors that we wish to image
are located at ~y?1 = (37λ0, 65λ0), ~y

?
2 = (37λ0, 72λ0), for all cluttered media, as

shown in Figure 2.1 above. From the detection and imaging point of view, this
configuration is quite challenging due to the fact that the second reflector ~y?2 is
relatively hidden behind the first one ~y?1 with respect to the array elements. In
this thesis, we will show results either for two reflectors, or for only one, in which
case we consider the first reflector ~y?1 located closer to the array of transducers.
Length is measured in units of the central wavelength λ0 = 0.1mm.

The numerical method that we use is based on a first order in time formula-
tion of the wave equation with unknowns the velocity (the time derivative of the
displacement) and the pressure field. A leap-frog finite difference scheme is used
for the discretization in time and mixed-finite elements for the discretization in
space. Specifically, the velocity is discretized with piecewise linear basis functions
and the pressure field by piecewise constants. The convergence analysis of the
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finite element method is carried out in [6, 7]. To model wave propagation in un-
bounded domains we follow the perfectly matched absorbing layer technique [9].
The methodology is presented in the case of elastic wave propagation in [8] and
its generalization to visco-acoustic wave propagation is considered in [24].
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Chapter 3

Time-frequency window selection
methods

3.1 Overview

In this chapter, we present three newly established filtering methodologies that
select time-frequency windows which contain the coherent echoes from the reflec-
tors we wish to image. The first one is a quite simple idea that relies on the
values of the imaging functional obtained by backpropagating the windowed data.
More precisely a time-frequency window is retained when the maximum value
of the image obtained, normalized by its L2-norm, is above a certain threshold.
The important quantity is the value of the threshold which can be determined by
studying the statistical distribution of the image values in background media with
the same scattering properties in the absence of the reflectors. This method was
first proposed in [2] and is also considered in [4, 25]. We describe it briefly in
Section 3.2. The second method instead of looking at the corresponding images,
selects the appropriate time-frequency windows focusing only on the data, exploit-
ing their singular value decomposition and using ideas from pattern recognition.
This method is therefore an adaptive and data driven procedure which segments
the data in time-frequency windows using the local cosine transform (LCT). The
method was first proposed in [14] and theoretically analyzed in the case of random
layered media in [1]. We present its basic steps in Section 3.3. The last method
that we call the rank one projection (ROP) filter, is described in Section 3.4. This
is a filter that seeks to select the single scattering component of the scattered
field. The idea was first developed by Aubry et al. in [2] in the form of the single
scattering filter (SSF). ROP is an alternative to SSF, the goal is the same but the
procedure for extracting the single scattering component of the data is different
and as our numerical results suggest ROP is more efficient than SSF. ROP can
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be either applied as an additional filter to the time-frequency windows selected by
the LCT-based approach or it can be used together with random matrix theory
ideas for selecting the appropriate time-frequency windows. In the latter case, the
singular value decomposition of the filtered windowed data is computed and a win-
dow is retained when the value of the largest singular value (the singular values
are normalized by their quadratic mean) exceeds a certain threshold. Again, it
is the value of the threshold that is the critical parameter that determines which
windows are selected/rejected. As for the first method the value of the threshold
is obtained using statistical properties of the scattered field from the background
medium in the absence of reflectors. In this case, the relevant quantity is the sta-
tistical distribution of the largest singular value (normalized as mentioned above)
of the filtered data. A detailed comparison between the three approaches which
summarizes the results of this thesis is presented in [37].

The aim of all these filtering techniques is to enhance the signal to noise ratio of
the coherent reflections so as to increase the efficiency and robustness of coherent
imaging in strongly scattering media. In order to persuade the reader for the
necessity of such filtering, we plot in Figure 3.1 the KM results obtained using
the raw data as recorded on the array for the simulation setup shown in Figure
2.1. The images look extremely noisy and unreliable for both the layered and the
combined media. In the isotropic clutter, the KM image finds the first reflector
but not the second one which is lost in the noise. Our objective is to study the
performance of different techniques that enhance the coherent signal received from
the reflectors and improve these results.

3.2 KM-based time-frequency window selection

Motivated by the detection criterion based on the peak of the echographic image
obtained with focused beamforming (FB) [2, 4], we investigate first how the KM
imaging results can be improved by exploiting the knowledge of the incident field
in connection with random matrix theory ideas. In this case we need data not
only for the total field, but also for the incident field. These can be computed
by solving the wave equation as described in Section 2.2 above, for the scattering
medium of interest, except that the reflectors are being removed. Note that we do
not need the incident field for the exact same realization of the random medium:
we can use any realization of the random process µ with the same characteristics,
i.e., correlation function and strength of fluctuations.

We decompose the data in time-frequency windows using the LCT window seg-
mentation procedure [18, 30, 14]. It should be noted, that the LCT decomposes
the traces in orthonormal bases constructed with smooth time windows modulated
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Figure 3.1: KM images for one and two reflectors in strong clutter. From left to
right, isotropic, layered and combined medium. Top row: one reflector. Bottom
row: Two reflectors. The images are obtained using the raw data as recorded on
the array. The scattering media are the ones illustrated in Figure 2.1.

by cosines [18, 30, 14]. The smooth windows avoid the appearance of artificial dis-
continuities in the transformed signals, which generate large amplitude coefficients
at high frequencies. The LCT is efficient for detection and filtering, because we
can use the well-established fast algorithms for its implementation [18, 30, 14].
This procedure constructs a binary tree and at each level, l, of the tree the data
are decomposed into 2l windows. The level and window of the tree is chosen adap-
tively following the algorithm proposed in [14]. We present briefly the main steps
of this algorithm in Section 3.3.

Here we prefer to select the level of the tree by fixing the size of the window to
the smallest possible, so as to keep all the array data from a hypothetical reflector
in our search domain in the same window. For our setup this corresponds to
level l = 4 and dividing the data in 16 windows. In each window, we compute
the Fourier transform of the data and the image IKM for each frequency ω. This
means that we construct a set of images ĨKM = ĨKM(j, ω) parametrized by the
time window j and the frequency ω. It should be noted, that the discretization of
the image domain should be selected appropriately so that the value at each pixel
is independent. To achieve this we chose a discretization that is of the order of
the array resolution, in our case this corresponds to a pixel size λ0 × λ0. We can
therefore assume that each image has Q independent coordinates q = 1, · · · , Q
and following [2, 3, 4, 25] we normalize them by their quadratic mean (L2-norm),
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ĨKM(j, ω)[q] =
|IKM(j, ω)[q]|√

1
Q

∑Q
q=1 |IKM(j, ω)[q]|2

, q = 1, 2, ..., Q. (3.1)

The next step consists in estimating ρĨKM (σ) the image probability density func-
tion, by computing a histogram of the normalized images and averaging over all
time-frequency couples [2, 3, 4, 25]. From the theoretical point of view, in the

case of strong clutter, the normalized image value ĨKM(j, ω)[q] is expected to be
the modulus of a gaussian complex random variable with zero mean and variance
unity and therefore the corresponding probability density function is given by the
Rayleigh law [38, 23],

ρR(σ) = 2σ exp(−σ2). (3.2)

However, in practice we prefer to compute the probability density function directly
from the data rather than rely on this expression. For the KM image, the variable
of interest is the maximum of the image. The distribution function F Ĩmax(σ) of

the maximum of the image, Ĩmax(= max
[̃
IKM

]
), is defined by the Qth power of

the distribution function FĨKM (σ) of its image coordinate, computed by,

FĨKM (σ) =

∫ σ

0

dxρĨKM (x). (3.3)

In general for a given probability of error γ, a detection threshold can be obtained
from,

α = F−1 (1− γ) . (3.4)

Therefore, given a probability of error γ, we compute a threshold αKM using
the distribution function F Ĩmax(σ) calculated for the incident field and then we
select the windows j and frequencies ω so that,

Ĩmax(j, ω) > αKM. (3.5)

The detection criterion (3.5) suggests that for a given time window j and frequency
ω, the reflector is detectable with the given probability of error γ if the maximum
of the image at time window j and frequency ω is larger then the threshold αKM.
These are the time-frequency couples (j?, ω?) that the algorithm selects. Finally,
the KM image is built by using the data for the selected time-window(s) j? and
frequency bandwidth(s) Bj? .

3.3 LCT-based time-frequency window selection

We briefly review here the LCT-based time-frequency window selection algorithm
proposed in [14]. The input of the algorithm is the array response matrix P(t), for
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time t ∈ [0, T ] sampled on a mesh with NT = 2m points. We also need to specify
the maximum level of the tree, D ≤ m, to be used in the LCT. This is chosen
so that we have enough samples of the signal at each level of the tree. The LCT
decomposition is performed on a binary tree that has 2l windows at each level l.
For each node (j, l) of the tree, corresponding to window j at tree level l, the local
cosine transform of the response matrix is computed.

P̂l(tlj, ω
l
n) =

{
P̂ l(tlj, ω

l
n, ~xr, ~xs)

}
r,s=1,...,N

,

with

P̂ l(tlj, ω
l
n, ~xr, ~xs) =

∫ T

0

dt P (t, ~xr, ~xs)

√
2

∆tl
χ

(
t− tlj
∆tl

)
cos[ωln(t− tlj)]

where

tlj = j∆tl =
jT

2l
, j = 0, 1, . . . , 2l and ωln =

π (n+ 1/2)

∆tl
, n ∈ N l,

for frequency indices so that ωln belongs in the available bandwidth B

N l =
{
n = 0, 1, . . . , NT/2

l − 1, s.t. ωln ∈ B
}
. (3.6)

We show in Figure 3.2 an illustration of the binary tree used in the time-frequency
decomposition of the array data. Level l = 0 corresponds to one window that
contains the data traces over the entire duration of the recording. At level l = 1,
the data are segmented in two time windows indexed by j = 0 and j = 1. At level
l = 2, the data are segmented in four time windows indexed by j = 0, 1, 2 and 3,
etc.

The detection criterion of the algorithm in [14] relies on the singular value
decomposition of the local cosine matrices of coefficients. For each l and tlj we

compute the SVD of P̂l(tlj, ω
l
n), frequency by frequency. Let us denote by σl,jq (ωln)

the singular values, for q = 1, ..., N . We then form the matrices of the first NSV

normalized singular values,

Sl,j =
{
σ̃l,jq (ωln)

}
1≤q≤NSV , n∈N l

S

, where σ̃l,jq (ωln) =
σl,jq (ωln)

maxn′ σ
l,j
q (ωln′)

(3.7)

over the restricted set of frequency indices

N l
S =

{
n = 0, 1, . . . , NT/2

l − 1, s.t. ωln ∈ BS

}
.

The number of the singular values NSV and the selected frequency bandwidth BS

depend on the data and have to be chosen appropriately. Typically we should have
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Figure 3.2: Illustration of the time windowing segmentations of the array data
traces at different tree levels indexed by l.
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2M ≤ NSV ≤ N with M the number of scatterers we are searching for, and N the
dimension of the response matrix. The bandwidth BS is the part of the frequency
spectrum on which the scatterers are detectable. This depends on the clutter and
is very different, for example, in isotropic and finely layered random media, but
we do not need to know it in advance, it can be determined directly from the data.

The algorithm next adaptively selects the level of the tree and the windows
that contain coherent echoes. The distinction is based on a break of a pattern
recognition idea that is carried out as follows. Compute the first two singular
values of the matrices Sl,j and form their ratio,

λl,j = γl,j2 /γ
l,j
1 , (3.8)

γl,jq , q = 1, 2, being the first and the second singular values of Sl,j, respectively.
At each level l, the window that contains the coherent echoes is selected by looking
at the maxima of λl,j. Adaptive refinement until the finest tree level at which the
maximum persists is performed, and the optimal couples (j?, l?) are determined.
Finally the array data are filtered by zeroing the LCT coefficients in all other
windows that have not been selected and by projecting the LCT matrix on the
subspace corresponding to the top singular values in the selected windows. The
algorithm’s output is the filtered response matrix that will be denoted here PLCT.
More information about the adaptive LCT-based filtering algorithm can be found
in [14].

3.4 Rank One Projection (ROP) filter

In this section we describe a filtering algorithm that aims at separating the single
scattered echoes of the reflectors from the multiple scattered field from the back-
ground. This algorithm has been proposed in [15] and is an alternative to the
SSF filter of Aubry et al. [2, 3]. We do not consider here the direction of arrival
selection proposed in [15], and focus only on the first three steps of the algorithm
described in Section 4.2 of [15]. These are the following: Given the data Po(t)
filtered in a time window of interest centered at time to, selected for example with
the LCT-based algorithm described in the previous section, we first compute the
Fourier transform of the data,

P̂o(ω) =

∫ ∞
−∞

Po(t)e
iωtdt.

Then we back-propagate the data to a test point ~yo = (0, Lo) located at the
range Lo = to/(2c0), c0 being the smooth part of the velocity assumed here to be
constant. This step is performed so as to remove the fast oscillatory phase from
the data corresponding to the range difference between the array and the reflector,
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P̂BP(ω, ~xr, ~xs) = P̂o(ω, ~xr, ~xs)e
−iω(τ(~yo,~xs)+τ(~xr,~yo)).

Here τ(~x, ~y) denotes the travel time between points ~x and ~y, which in the case
of a constant velocity c0 is simply the distance between the two points divided by
the velocity.

Figure 3.3: Array imaging illustration of a reflector located at ~y = (y, Lo + η). ~xs
is a source and ~xr is a receiver on the array. The point ~yo = (0, Lo) denotes the
test point at which we back-propagate the data. The array aperture a is small
compared to the range Lo.

Assuming the reflector is far enough from the array and in a small cross-range
distance from the array center, so that the paraxial approximation is valid, the
phase of the back-propagated response matrix corresponding to a reflector located
at ~y = (y, Lo + η) which is at the vicinity of ~yo (see Figure 3.3 for a schematic)
reduces to

ω

c0

(
2η +

|y|2

Lo
− (~xr + ~xs) · y

Lo

)
(3.9)

and is independent of the difference ~xr − ~xs.
Exploiting this remark, the next step of ROP consists in rotating the back-

propagated data by 90 degrees. This corresponds to a change of variables from
(~xs, ~xr) to (x̄rs, x̃rs) defined by x̄rs = ~xs+~xr

2
and x̃rs = ~xr − ~xs. For an array with

N elements, the rotated matrix has dimensions (2N − 1) × (2N − 1) and is zero

outside a rhombus structure. If we denote KK = P̂BP(ω, :, :) we define the rotated
matrix KR as

KR[i + j− 1, i− j− (1− N) + 1] = KK[i, j], ∀i = 1, . . . ,N, j = 1, . . . ,N.

Recalling now (3.9), since the phase of the coherent part of P̂BP is independent of
x̃rs, the matrix KR should be independent of its column index. This is what the
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ROP filter enforces by averaging over x̃rs the rotated matrix,

KA[i, j] =
1

n[i]

∑
k

KR[i, k], ∀i = 1, . . . , 2N− 1, j = 1, . . . , 2N− 1

where n[i] is the number of non-zero elements of the i-th row of the matrix KR
precomputed in advance. The matrix KA computed as described above is the
matrix with identical columns that best approximates KR with respect to the
Frobenius norm, taken in the space of matrices with the same rhombus support
as KR (see also Section 4.2 in [15]). The next step of ROP consists in rotating
back the matrix to its physical coordinates and by removing the zero elements
introduced during the rotation step. Let us denote P̂ f(ω, :, :) the resulting matrix
of dimensions N ×N (for each frequency).

The last step of the ROP filter is undoing the back-propagation to the test
point ~yo,

P̂ROP(ω, ~xr, ~xs) = P̂ f(ω, ~xr, ~xs)e
+iω(τ(~yo,~xs)+τ(~xr,~yo)).

As mentioned above the ROP filter can be viewed as an alternative of the SSF
filter [2]. The difference between the two filters is in the way the rotation and
projection steps are performed, while both ROP and SSF exploit the same idea
that the coherent reflected field should be independent of the difference variable x̃rs.
In connection to random matrix theory, and assuming knowledge of the incident
field, ROP can be used for selecting the time-frequency windows at which the
reflectors are detectable. The approach is similar to the one described in [2], and
we review it in the next section. Alternatively ROP can be applied just as an
additional filter after selecting the time-frequency windows with the LCT-based
algorithm presented in Section 3.3. We will call this approach LCT+ROP.

3.5 ROP-DORT based time-frequency window

selection

The idea is to decompose the data in time-frequency windows, apply the ROP
filter for each window and frequency, and base the selection on whether the largest
singular value of the filtered response matrix is above a certain threshold deter-
mined using the data for the incident field. Therefore, as in Section 3.2, we assume
the incident field is known, and we decompose the data in time windows by select-
ing the size of the window to be the smallest possible so as to keep all the array
data from a hypothetical reflector in the search domain inside the same window.
For our setup this corresponds to level l = 4 and dividing the data in Nl = 16
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windows. We denote ∆t the window size and assuming that the data are available
in the time window [tbegin, tend], we define Tj, as

Tj = tbegin + (j − 1)∆T for j = 1, . . . , Nl.

The central time for each window is Tj+1/2 =
Tj+Tj+1

2
, j = 1, . . . , Nl. For the

incident field, we compute, for the data restricted in each window j = 1, . . . , Nl,
the SVD of the filtered by ROP response matrix, frequency by frequency. The
ROP filter is applied as descibed in the previous section and the only parameter
that is changing is the test point ~yjo that depends on the window j, ~yjo = (0, Lj+1/2)
with Lj+1/2 = c0

2
Tj+1/2.

Denoting by Nf the number of frequencies we have Nl×Nf×N singular values
σjq(ωn), j = 1, . . . , Nl, n = 1, . . . , Nf and q = 1, . . . , N . Then the singular values,
at each window j and frequency ωn, are normalized by their quadratic mean,

σ̃jq(ωn) =
σjq(ωn)√

1
N

∑N
p=1(σ

j
p(ωn))2

. (3.10)

and the first singular value, denoted σROP
1 (j, ωn) is obtained. Given a probability

of error γ we estimate the threshold αROP from the primitive FROP
1 (σ) of ρROP

1 (σ),
the probability density function of the largest singular value σROP

1 . This is the
first important step. Next using this threshold, we can select the time-frequency
windows of interest by choosing the couples (j, ωn) for which the largest singular
value of the filtered by ROP data for the total field is above this threshold.
For the total field, we compute, in the same way as for the incident field, the
filtered response matrix and its first singular value as a function of frequency ωn
and window j. We denote this as σtotal

1 (j, ωn). Using the threshold αROP computed,
we chose the windows j and frequencies ωn for which

σtotal
1 (j, ωn) > αROP (3.11)

The result is the selection of one (or more) time windows and a corresponding
frequency range of interest. The final image is computed using the filtered data
in the selected window(s) and frequency range after applying DORT [34, 35], that
is after projecting the filtered data on the subspace corresponding to the largest
singular value. We will call this approach ROP+DORT and compare it with the
LCT+ROP approach in the next chapter.
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Chapter 4

Numerical results

4.1 Overview

In this chapter we compare how the different time-frequency selection procedures
described in the previous chapter perform using our simulated data.

4.2 Results with the KM-based time-frequency

window selection

We start with the KM-based time-frequency window selection procedure. The esti-
mator ρĨKM (σ) of the image probability density function compared to the Rayleigh
law ρR(σ), is displayed in Figure 4.1.
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Figure 4.1: The estimator ρĨKM (σ) (blue) of the image the probability density
function is compared with the Rayleigh law (light green) for the three cluttered
media.

For a probability of error γ = 0.001 (we will use this value throughout the
dissertation), the corresponding numerical values of the detection threshold are

24



summarized in Table 4.2.

Isotropic Layered Combined

α = 9.1 α = 16.0 α = 11.8

Table 4.1: Summary table of detection thresholds for the KM-based time frequency
window selection.

After calculating the detection thresholds, we can go further and perform the
KM-based detection test in order to select the time-frequency windows of interest.
We first consider the data for one reflector. The detection criterion of eq. (3.5)
provides, after application of the detection thresholds indicated in Table 4.2, that
the target can be detected at the selected time-windows j? and frequency ranges
Bj? shown in Table 4.2.

Medium Detection criterion Selected windows Selected bandwidths

Isotropic Ĩmax(j, ω) > 9.1 j? = 7, 8 B7 = [1.7, 6.6] MHz
B8 = [1.7, 10.0] MHz

Layered Ĩmax(j, ω) > 16.0 j? = 6, 7 B6 = [1.7, 3.2] MHz
B7 = [1.7, 3.9] MHz

Combined Ĩmax(j, ω) > 11.8 j? = 7, 8 B7 = [1.7, 5.9] MHz
B8 = [1.6, 5.9] MHz

Table 4.2: One reflector: Summary table of selected windows and bandwidths,
based on the KM detection criterion.

We remark that the bandwidths selected do not contain the lower part of the
frequency spectrum below 1.5MHz and are confined below the central frequency
of 10MHz. Especially for the layered medium, the selected frequencies are below
4MHz. This is in agreement with the theory that suggests that in layered clutter
only the lower frequencies can penetrate deep enough in the medium and see the
reflector. The amplitude of the coherent field decays exponentially with ω2 and
therefore the higher frequencies cannot be used for imaging [1].

We next compute the KM images obtained by using the selected windows and
bandwidths depicted in Table 4.2. The results are significantly better than the
KM images obtained with the raw data shown in Figure 3.1. We next consider the
case of two reflectors. The selected time-frequency windows are given in Table 4.2.
The corresponding images are shown in Figure 4.3. The results are not very good:
This method does not succeed in selecting only the windows that contain echoes
from the reflectors and although the first reflector can be successfully imaged, the
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second one is lost in the noisy reverberations. As we will see next, better results can
be obtained with the other two time-frequency window selection methodologies.

Isotropic Layered Combined
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Figure 4.2: One reflector case. KM images obtained by using the selected windows
and bandwidths depicted in Table 4.2.

Medium Detection criterion Selected windows Selected bandwidths

Isotropic Ĩmax(j, ω) > 9.1 j? = 7, 8, 9, 10 B7 = [1.7, 6.6] MHz
B8 = [1.7, 11.4] MHz
B9 = [1.7, 11.7] MHz
B10 = [1.7, 8.8] MHz

Layered Ĩmax(j, ω) > 16.0 j? = 6, 7, 8 B6 = [1.7, 3.2] MHz
B7 = [1.7, 3.4] MHz
B8 = [1.7, 3.5] MHz

Combined Ĩmax(j, ω) > 11.8 j? = 7, 8, 9 B7 = [1.7, 6.0] MHz
B8 = [1.7, 6.0] MHz
B9 = [1.6, 6.0] MHz

Table 4.3: Two reflectors: Summary table of selected windows and bandwidths,
based on the KM detection criterion.

4.3 Results using the ROP filter

We compare here the results obtained using the ROP filter either combined with
random matrix theory and DORT, or with the LCT-based methodology for se-
lecting the time-frequency windows that contain the coherent echoes from the
reflectors that we wish to image. We also show in the one reflector case the results
obtained by the SSF approach which is less efficient due to the fact that half of
the array data is disregarded (the results are similar for the two reflectors).
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Figure 4.3: Two reflectors case. KM images obtained by using the selected windows
and bandwidths reported in Table 4.2.

We will first compute the probability density function ρROP(σ) of the singular
values of the filtered response matrix. To do so we use the histogram H(σ),
computed as follows: The bins of the histogram are the intervals [m w, (m+ 1)w],
with w the width of the bin and m non-negative integers. The value of H(σ) is
the number of normalized singular values σ̃jq(ωn) contained in the same bin as σ,
for all time window indices j = 1, . . . , Nl, the Nf frequency indices n = 1, . . . , Nf ,
and the N singular value indices q = 1, . . . , N . Consequently, the estimator of the
probability density function of the singular values is given by

ρ̂ROP(σ) =
H(σ)

wNf Nl N
(4.1)

We show in Figure 4.4, the estimators ρ̂ROP (σ) for the filtered data after keeping
only one element in four of the filtered matrix so as to remove residual correla-
tions in the data. The filtered matrix is expected to be a random Hankel matrix
and therefore we compare the estimators to the Hankel law, ρH(σ) [17], i.e., the
probability density function of Hankel matrices of the same size as our matrix.
The estimation of the Hankel law ρH(σ) is performed numerically since up to
now no analytical expression has been recorded in the literature. As we can see,
the agreement between the theory and the experiments is almost perfect for the
isotropic and the combined medium (recall that we have kept only one out of four
elements of the filtered response matrix). In the layered case, the invariance in the
cross-range direction of the medium yields a Toeplitz matrix P(t) characterized
by persistent correlations [14]. That is why on the right plot of Figure 4.4, the
experimental distribution of the singular values of the filtered data for the layered
medium is compared to the filtered Toeplitz law ρT (σ) [17, 32]. The distribution
of singular values of a filtered random Toeplitz matrix is also generated numeri-
cally. As we observe in the right plot in Figure 4.4, the agreement between the
two curves is quite satisfactory, except the region of values where σ < 0.5.
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Figure 4.4: (Incident Field): Estimators ρ̂ROP (σ) are compared to the theoretical
curves (black curves). On the left and center plots, the blue curves correspond
to the estimators computed after keeping only one element in four of the filtered
matrix (to remove residual correlations in the data), are compared to the Hankel
law ρH(σ) (black curve). On the right plot the corresponding estimator ρ̂ROP (σ)
is compared to the Toeplitz distribution law ρT (σ) (black curve).

We show in Figure 4.5 the distribution functions FROP1 (σ) for the three cluttered
media. The detection thresholds are represented with red vertical lines where the
admitted probability error γ has been set to 0.001. The corresponding numerical
values of the detection thresholds for the ROP method, are summarized in Table
4.3.
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Figure 4.5: (Incident Field). The distribution functions FROP1 (σ) (blue curves),
obtained for the three different media. The red vertical lines represent the detection
thresholds αROP shown on Table 4.3, for a probability of error γ = 0.001.

In Table 4.3, the detection thresholds for the SSF technique, are also presented.
Recall that the response matrix filtered by SSF is of dimension N = 39 because
of half of the data is disregarded through the SSF rotation procedure.

After calculating the detection thresholds, we can go further and select the
time-frequency windows for which the reflectors are detectable. The results for
the combined medium are given in Tables 4.3 and 4.3, respectively, for both the
ROP and the SSF techniques.
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Scattering medium Combined Isotropic Layered

Detection threshold αROP = 6.6 αROP = 6.3 αROP = 8.1

Table 4.4: (Incident Field): Summary table of detection thresholds for the ROP
filter.

Scattering medium Combined Isotropic Layered

Detection threshold αSSF = 5.5 αSSF = 5.1 αSSF = 5.3

Table 4.5: (Incident Field): Summary table of detection thresholds for the SSF
filter.

Medium Detection criterion Selected windows Selected bandwidths

Combined σtotal
1 (j, ωn) > 6.6 j4? = 7, 8 B7 = [1.8, 8.1] MHz

B8 = [1.8, 8.1] MHz

Isotropic σtotal
1 (j, ωn) > 6.3 j4? = 7, 8 B7 = [1.7, 7.6] MHz

B8 = [2.3, 7.4] MHz

Layered σtotal
1 (j, ωn) > 8.1 j4? = 6, 7 B6 = [1.4, 3.3] MHz

B7 = [1.4, 3.5] MHz

Table 4.6: One reflector: Summary table of the selected windows and bandwidths,
based on the detection criterion of ROP combined with DORT.

Medium Detection criterion Selected windows Selected bandwidths

Combined σtotal
1 (j, ωn) > 5.5 j4? = 7, 8 B7 = [1.6, 6.0] MHz

B8 = [1.7, 6.0] MHz

Isotropic σtotal
1 (j, ωn) > 5.1 j4? = 7, 8 B7 = [1.8, 6.1] MHz

B8 = [1.9, 5.8] MHz

Layered σtotal
1 (j, ωn) > 5.3 j4? = 6, 7 B6 = [1.2, 3.2] MHz

B7 = [1.2, 3.2] MHz

Table 4.7: One reflector: Summary table of the selected windows and bandwidths,
based on the detection criterion of SSF.

At the top row of Figure 4.6, we present the KM images obtained using the SSF
filter at the selected windows and bandwidths shown on Table 4.3, while at the
bottom row the KM images obtained using the ROP filter combined with DORT
at the selected windows and bandwidths shown on Table 4.3, are illustrated. We
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observe that the results provided by the SSF approach are less precise and more
noisy.

Combined Isotropic Layered
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Figure 4.6: (Total Field). Top : The KM images obtained using the SSF filter at
the selected windows and bandwidths shown on Table 4.3 Bottom : The KM im-
ages obtained using the ROP filter combined with DORT at the selected windows
and bandwidths shown on Table 4.3.

It should be noted here, that the LCT selection algorithm is based on the
behavior of the larger singular values of the LCT of the response matrix P(t),
across frequencies. In particular, we seek to identify a break in the pattern among
the singular values as they vary over frequency. The idea is that, if only echoes
from the cluttered background medium are present in a window, the larger singular
values of the LCT in this window should all look alike and have a similar behavior
across frequencies [14]. On the other hand, we expect at least one singular value
with different behavior when echoes from a detectable object are present in the
time window.

We plot in Figure 4.7 the singular values in three windows at level l = 4.
Starting with the window indexed by j = 5, we note that the singular values
remain tightly clustered (especially in the lower part of the bandwidth below 5Hz),
until we reach the index j = 7. This is the window that contains the coherent
echoes from the reflector, and it is distinguished from the others by an anomalous
singular value (here we observe two) at the lower frequencies. This anomaly in the
behavior also appears for the other cluttered media considered in our simulations.
The frequency range over which the coherent echoes are detectable depends on the
characteristics of the background medium. In the layered case the reflector can
be detected only for the lower frequencies because higher frequencies are strongly
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attenuated by scattering as shown in [1]. A similar behavior is observed in the
combined medium while in the isotropic clutter the reflectors are detectable across
the whole frequency bandwidth (see Figure 4.10).
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Figure 4.7: Combined medium. The top 10 singular values as functions of fre-
quency. We illustrate the time windows at level 4 indexed by j = 5, 6, 7. Each
eigenvalue is plotted with a different color.

On the left plot of Figure 4.8, the LCT selection criterion (see Section 3.3,
[14]) for the combined medium, is depicted. It suggests that we have one reflector
located at window 7, at level 4 of the binary tree. The plot has a clear local
maximum in the desired time window of the reflector. On the right plot, we
illustrate the behavior of the top 10 singular values as a function of the frequency
in the selected time-window. We observe an anomalous behavior for the first
singular value (probably the second one), at the lower frequencies. The selected
frequency bandwidth is B = [0, 4.8] MHz.
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Figure 4.8: Combined medium. On the left, we see the LCT selection criterion
λ4,j as function of the window index j = 0, ..., 24 − 1. On the right we see the top
10 singular values with respect to the frequency in the selected window 7.

The imaging results using the different approaches in the combined medium
are summarized in Figure 4.9. We observe that the LCT+ROP image is less noisy
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in the cross-range direction compared to the LCT image. We also find the image
produced by LCT+ROP better than the ROP+DORT image. Similar results have
been obtained for other realizations of the combined cluttered medium.
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Figure 4.9: Combined medium (Total Field). Left: The KM image of the data
obtained using the ROP filter combined with DORT at the selected windows and
bandwidths shown on Table 4.3. Middle: The KM image obtained using the data
at the selected window and bandwidth provided by the LCT-based algorithm,
j4? = 7 and B = [0, 4.8] MHz. Right: ROP filter is combined with LCT.

We next present results for isotropic and layered clutter. In the isotropic
regime, the RMT-based detection test of eq. (3.11) for the known detection thresh-
old calculated in Table 4.3, suggests that the reflector can be detected at windows
j4? = 7, 8 and bandwidths B7 = [1.7, 7.6]MHz and B8 = [2.3, 7.4]MHz, respectively,
as indicated in Table 4.3. The LCT-based detection criterion of eq. (3.8) for the
isotropic medium, is illustrated on the left plot of Figure 4.10. It indicates that
we have one reflector located at window 7 and at level 4 in the tree. The plot has
a clear maximum in the desired time window that contains the reflector’s echoes.
On the right plot, we investigate the behavior of the top 10 singular values with
respect to frequency for the selected window and level. We observe that the first
two singular values are detached from the rest for the whole frequency range. This
result permits us to keep the entire frequency band B = [0, 30] MHz.

The migration images for the isotropic medium that have been obtained using
the selected windows and bandwidths are depicted in Figure 4.11. We show on the
left plot, the image obtained after the application of the ROP method combined
with DORT at the desired time-windows jl? and bandwidths Bjl?

, summarized
in Table 4.3. In the middle plot, the image is produced while using the time-
frequency LCT-based filtering technique for the selected window 7 and bandwidth
B = [0, 30]MHz. We observe that the image is noisy and several maxima appear
close to the true position of the reflector due to the residual multiple scattering
on the filtered data. However, the additional action of the ROP filter significantly
improves the image by removing the multiple scattering contribution from the
filtered data, as shown on the right image of Figure 4.11. What is also surprising,
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Figure 4.10: Isotropic medium. On the left, we see the LCT selection criterion
λ4,j as function of the window index j = 0, ..., 24 − 1. On the right we see the top
10 singular values with respect to the frequency in the selected window 7.

is that the RMT-based detection leads to a significantly smaller bandwidth ≈
[2, 7]MHz that is used for the image on the left, which explains the worse range
resolution obtained in this case. The combination of LCT with ROP gives the
best results.
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Figure 4.11: Isotropic medium (Total Field). From left to right: The KM image of
the data while using the ROP filter combined with DORT at the selected windows
and bandwidths shown on Table 4.3, LCT and LCT+ROP image using j4? = 7 and
B = [0, 30]MHz.

For the layered clutter case, the detection threshold for ROP is calculated on
the right column of Table 4.3. For the given threshold, the detection criterion
described by eq. (3.11) is performed and selects the windows and bandwidths
summarized on Table 4.3, for which the target is detectable within a layered back-
scattering regime.

The LCT detection test is performed for the layered medium. The left plot of
Figure 4.12 suggests that we have one target located at window 6, at level 4. On
the right plot we show the behavior of the top 10 singular values as function of the
frequency in the selected time-window. We observe an anomalous behavior of the
first singular value (arguably two) only at the lower frequencies B = [0, 3]MHz.
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Figure 4.12: Layered medium. On the left, we see the LCT selection criterion λ4,j

as function of the window index j = 0, ..., 24 − 1. On the right we see the top 10
singular values with respect to the frequency in the selected window 6.

In Figure 4.13 we display the imaging results for ROP+DORT, LCT and
LCT+ROP. The bandwidths selected in this case by the two approaches are sim-
ilar, although the RMT-based criterion does not include the frequencies below
1.5MHz. We observe that the combination LCT+ROP gives again the best image.
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Figure 4.13: Layered medium (Total Field). From left to right: The KM image
of data while using the ROP filter combined with DORT at the selected windows
and bandwidths shown on Table 4.3, LCT and LCT+ROP using j4? = 6 and
B = [0, 3]MHz.

We finally present results for the two reflectors’ case. First for the combined
medium, we give the selected windows and bandwidths by the RMT-criterion in
Table 4.3.

In Figure 4.14 the LCT selection criterion of eq. (3.8) for the combined medium,
is illustrated. It suggests that we have two targets, one located at window 7 and
one at window 9. On the center and right plots we observe the behavior of the
top 10 singular values as function of the frequency in the selected time-windows.
In both plots, we observe an anomaly for the first singular value (probably two)
at the lower frequencies for B = [0, 4.8] MHz. This is the same bandwidth as the
one selected for the one reflector case (see Figure 4.9).
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Medium Detection criterion Selected windows Selected bandwidths

Combined σtotal
1 (j, f) > 6.6 j4? = 7, 8, 9 B7 = [1.8, 8.1] MHz

B8 = [1.8, 8.0] MHz
B9 = [1.8, 7.4] MHz

Isotropic σtotal
1 (j, f) > 6.3 j4? = 7, 8, 9, 10 B7 = [1.7, 7.6] MHz,

B8 = [2.3, 7.4] MHz
B9 = [2.0, 6.9] MHz
B10 = [2.2, 7.4] MHz

Layered σtotal
1 (j, f) > 8.1 j4? = 6, 7, 8 B6 = [2.2, 3.2] MHz

B7 = [1.9, 3.27] MHz
B8 = [2.0, 3.64] MHz

Table 4.8: Two reflectors: Summary table of the selected windows and bandwidths,
based on the detection criterion of ROP combined with DORT.
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Figure 4.14: Combined medium. On the left we plot the selection criterion that
suggests that we have two targets one located at window 7 and one at window 9.
On the center and right plots we plot the singular values in the selected windows
7 and 9, respectively.
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In the top row of Figure 4.15, the left and center images are obtained by apply-
ing the LCT-based filtering procedure in the selected time-windows and frequency
range. Indeed, we clearly detect the first reflector at time-window j4? = 7 and the
second one at j4? = 9. The application of the ROP filter combined with DORT to
the data at the desired time-windows j4? = 7, 8, 9, is shown on the right. We ob-
serve that the ROP filter combined with DORT provides a better focusing around
the correct positions of the reflectors in both range and cross-range direction com-
pared to the LCT-based filter. However, the image for the second target is weak
and this has nothing to do with the quality of the detection criterion but is rather
due to the physical masking of the second reflector from the first. The images
in the bottom row are produced by using the combination of LCT and ROP. We
observe in this case a significant improvement of the image for the remote target
mainly because this method allows us to image one reflector at a time.

LCT, j4? = 7 LCT, j4? = 9 ROP + DORT

25 30 35 40 45 50 55 60

50

55

60

65

70

75

80

25 30 35 40 45 50 55 60

50

55

60

65

70

75

80

25 30 35 40 45 50 55 60

50

55

60

65

70

75

80

LCT + ROP, j4? = 7 LCT + ROP, j4? = 9

25 30 35 40 45 50 55 60

50

55

60

65

70

75

80

25 30 35 40 45 50 55 60

50

55

60

65

70

75

80

Figure 4.15: Combined medium (Total Field). Top: LCT image at j4? = 7, 9, re-
spectively, and bandwidth B = [0, 4.8]MHz, the ROP filter combined with DORT
at the selected windows and bandwidths shown on Table 4.3. Bottom: The
LCT+ROP images.

Next, we present the results obtained in isotropic and layered media. We
consider first the isotropic medium. The selection criterion of eq. (3.11) for the
calculated threshold presented in the center column of Table 4.3, suggests the
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windows and bandwidths presented in Table 4.3. These are the couples of (jl?, Bjl?
)

at level l = 4, where the reflectors are detectable. The LCT window detection
test is shown in Figure 4.16. The left plot, provides that we have two targets,
one located at window 7 and one located at window 8. In the center and right
plots, we plot the the top 10 singular values as a function of frequency for the two
selected time-windows. What we see is an anomaly of the first two singular values
along the whole frequency band, in both plots. That break in the pattern of the
singular values enables us to use the frequency range B = [0, 30] MHz, as we did
in Figure 4.10.
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Figure 4.16: Isotropic medium. On the left we see the selection criterion that
suggests that we have two targets one located at window 7 and one at window 8.
On the center and right plots we see the singular values in the selected windows 7
and 8 respectively.

In the top row of Figure 4.17, the left and the right migration images are obtained
using the LCT-based filter. The results are satisfactory only for the scatterer which
is closer to the array of transducers. The remote reflector is not clearly detected
at the desired window j4? = 8. On the right, we show the image obtained using
the ROP filtering method combined with DORT. We observe good results with
respect to the first reflector but the amplitude of the image is low in the vicinity
of the second reflector. In the bottom row, the migration images obtained using
the LCT+ROP filter are illustrated. The second reflector is in this case correctly
imaged.

Finally we present the results obtained in the layered medium. The implemen-
tation of the detection test taking into account the detection threshold of the right
column of Table 4.3, provides the selected time-windows and the corresponding
frequency bandwidths depicted in Table 4.3.

We illustrate in Figure 4.18 the LCT detection criterion at level l = 4. It
suggests that we have two targets: one located at window 6 and one at window 8.
On the center and right plots we see the singular values in the selected windows
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LCT, j4? = 7 LCT, j4? = 8 ROP + DORT
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Figure 4.17: Isotropic medium (Total Field). Top: LCT image at j4? = 7, 8, respec-
tively, and bandwidth B = [0, 30]MHz, the ROP filter combined with DORT at the
selected windows and bandwidths shown on Table 4.3. Bottom: The LCT+ROP
images.
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6 and 8, respectively. In both plots, we can see an anomaly of the first singular
value (probably the second one) only at the zone of lower frequencies for B = [0, 3]
MHz.
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Figure 4.18: Layered medium. On the left we plot the selection criterion that
suggests that we have two targets one located at window 6 and one at window 8.
On the center and right plots we plot the singular values in the selected windows
6 and 8 respectively.

The resulting KM images obtained from the filtered data in the layered back-
scattering regime are in Figure 4.19. We can conclude that in this case of clutter
as well, the use of LCT+ROP produces the images with the higher SNR.
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LCT, j4? = 6 LCT, j4? = 8 ROP + DORT
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Figure 4.19: Layered medium (Total Field). Top: LCT image at j4? = 6, 8, respec-
tively, and bandwidth B = [0, 3]MHz, the ROP filter combined with DORT at the
selected windows and bandwidths shown on Table 4.3. Bottom: The LCT+ROP
images.
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Conclusion

In this thesis we considered recently developed filtering methodologies for coherent
signal enhancement that allow for imaging small defects in strongly scattering
media. The data are segmented into time-frequency windows and the windows that
contain coherent detectable echoes are selected. The selection is carried out either
following the LCT-based methodology as in [14] or a random matrix theory based
approach [2]. The LCT-based method selects time-frequency intervals in which the
coherent signal is detectable by seeking for a pattern disruption in the behavior
of the singular values of the local-cosine transformed response matrix. Random
matrix theory is used either with a criterion that relies on the maximal value of
the image or in conjunction with a filter that aims at removing multiple scattering
contributions from the data. This filter, which we call the rank one projection
(ROP), was proposed in [15] and can be also regarded as an autonomous step that
can be applied to the time-frequency filtered data provided by the LCT-based
algorithm. We show with extensive numerical simulations, carried out in a non-
destructive testing setup, that the LCT-based approach benefits by the additional
application of ROP and this is the method which provides the images with the
higher SNR in all cluttered media configurations considered.
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Περίληψη

Θεωρούμε το πρόβλημα της ανίχνευσης και απεικόνισης μικρών ατελειών (defects) σε
μέσα με ισχυρή σκέδαση, χρησιμοποιώντας μια ενεργή συστοιχία μετατροπέων που

μπορούν να παίξουν τον διττό ρόλο των πομπών και δεκτών. Τα δεδομένα μας είναι

ο πίνακας απόκρισης συστοιχίας που συλλέγεται στέλνοντας βραχείς παλμούς από

κάθε πηγή και καταγράφοντας την απόκριση του μέσου σε όλους τους δέκτες. Αυτό

το πρόβλημα βρίσκει εφαρμογές στη σεισμική απεικόνιση, δηλαδή την απεικόνιση

γεωλογικών σχηματισμών του υπεδάφους, καθώς και στον μη καταστροφικό έλεγχο

υλικών με τη χρήση υπερήχων. Στην εργασία αυτή επικεντρώσαμε το ενδιαφέρον μας

στη δεύτερη εφαρμογή.

Η απεικόνιση σε μέσα με ισχυρή σκέδαση αποτελεί μια σημαντική πρόκληση διότι

στα δεδομένα της συστοιχίας κυριαρχεί ο θόρυβος εξαιτίας της πολλαπλής σκέδασης

των κυμάτων από τις ανομοιογένειες του μέσου. Για την επιτυχή λύση του προ-

βλήματος της απεικόνισης σε ένα τέτοιο περιβάλλον ακολουθούμε τη μεθοδολογία

της συνεπούς βελτίωσης σήματος διαμέσω του φιλτραρίσματος των δεδομένων. Ειδι-

κότερα, θεωρούμε την προσέγγιση της εργασίας [14] και αναζητούμε να επιλέξουμε τα

παράθυρα χρόνου-συχνότητας που εμπεριέχουν τις ανακλάσεις από τις ατέλειες που

επιθυμούμε να απεικονίσουμε. Η μέθοδος που ακολουθούμε βασίζεται στη χρήση του

τοπικού μετασχηματισμού συνημιτόνου (Local Cosine Transform (LCT)). Η επιλογή
των παραθύρων χρόνου-συχνότητας συντελείται με την ανίχνευση μιας διαφορετικής

συμπεριφοράς των ιδιαζουσών τιμών του μετασχηματισμένου πίνακα απόκρισης ως

συνάρτηση της συχνότητας.

Θεωρούμε επίσης δύο διαδικασίες επιλογής παραθύρων που χρησιμοποιούν ιδέες

από τη θεωρία τυχαίων πινάκων (random matrix theory). Η πρώτη εξ αυτών, βασίζε-
ται στο αποτέλεσμα της απεικόνισης και πιο συγκεκριμένα στο μέγιστο της εικόνας

(κατάλληλα κανονικοποιημένης) που προκύπτει από τα δεδομένα για κάθε παράθυρο

χρόνου-συχνότητας.

Η δεύτερη διαδικασία, χρησιμοποιεί ένα φίλτρο (ROP) για να αποβάλλει από τα
δεδομένα τις συνεισφορές της πολλαπλούς σκέδασης κι έπειτα επιλέγει τα παράθυρα

χρόνου-συχνότητας, για τα οποία η ατέλεια είναι ανιχνεύσιμη, κοιτώντας τη μεγαλύτε-

ρη ιδιάζουσα τιμή του φιλτραρισμένου πίνακα απόκρισης. Σε αυτήν την περίπτωση

δηλαδή η επιλογή βασίζεται μόνο στα δεδομένα του προβλήματος.
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Και στις δύο διαδικασίες είναι απαραίτητη η μελέτη των ιδιοτήτων του πίνακα

απόκρισης στο μέσο με ισχυρή σκέδαση απουσία των ατελειών. Καθώς μας ενδια-

φέρουν μόνο στατιστικές ιδιότητες του πίνακα απόκρισης δεν είναι απαραίτητο να

γίνουν μετρήσεις στο ίδιο μέσο απουσία του σκεδαστή (κάτι που μπορεί να μην είναι

πάντα πρακτικά δυνατό). Αρκεί να έχουμε μετρήσεις του πίνακα απόκρισης σε ένα

υγιές μέσο (χωρίς ατέλειες) με τα ίδια χαρακτηριστικά πολλαπλής σκέδασης με το

μέσο που μας ενδιαφέρει να ελέγξουμε.

Πρέπει να τονίσουμε ότι το φίλτρο ROP που αφορά την επιλογή του πεδίου που
έχει υποστεί μόνο απλή σκέδαση (single scattering) είναι πολύ απλό στην εφαρμογή
του και μπορεί να συνδυαστεί με το φίλτρο LCT. Η εφαρμογή του επιφέρει σημαντική
βελτίωση του λόγου σήματος προς θόρυβο στα αποτελέσματα της απεικόνισης. Αυτό

αναδεικνύεται ιδιαιτέρα χρήσιμο όταν το μέσο έχει πολλαπλές ατέλειες.

Μελετήσαμε την απόδοση των διαφορετικών προσεγγίσεων με εκτεταμένες προ-

σομοιώσεις που διεξάγονται στο πλαίσιο δοκιμών μη καταστροφικού ελέγχου υλικών.

Οι προσομοιώσεις μας δείχνουν ότι ο συνδυασμός του LCT φίλτρου με το φίλτρο
ROP παρέχει τα καλύτερα απεικονιστικά αποτελέσματα.
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