
UNIVERSITY OF PARIS SOUTH 11
UNIVERSITY OF CRETE

DEPARTMENT OF COMPUTER SCIENCE

XML On - line Validation

(M.Sc. Thesis)

Dimitrios Kampas

Paris
June 2009

 ii

 iii

DEPARTMENT OF COMPUTER SCIENCE
LRI, UNIVERSITY OF PARIS SOUTH 11

AND UNIVERSITY OF CRETE

XML On – line Validation

Submitted in the 29th of June 2009 to the committee below
In partial fulfilment of the requirements for the degree of

Master in Computer Science
Under the common French-Greek graduate programme

 Author: __

 iv

 v

to all those who supported me…

 vi

XML on-line validation

Supervisors: Nicole Bidoit, Dario Colazzo

Dimitrios Kampas
Paris sud 11, Laboratoire de Recherche en Informatique

September 2, 2009

2

Contents

1 Introduction 7
1.1 Introduction . 7
1.2 Related Work . 8
1.3 Structure of the document . 9

2 Preliminaries 11
2.1 Regular expression . 11
2.2 Finite state machines . 15
2.3 Conflict Free Regular Expression 16

3 Derivatives 19
3.1 RE derivatives . 19
3.2 Using derivatives for membership checking 22

4 Conflict free RE Derivatives 25
4.1 Computing First . 27

5 Complexity OF MCA 31

6 Derivatives and DFA construction 35
6.1 Automata construction algorithm(ACA) 36

7 DFA construction optimization 41

8 Conclusion and future work 47

3

4 CONTENTS

Abstract

This work investigates the on-line validation of XML documents with re-
spect to a DTD, under memory constraints. We consider a simple approach
by examining the membership checking of a string with respect to a given
regular expression. A DTD is studied in the form of a regular expression
and an XML document is considered as a string. The membership checking
is examined for a class of regular expressions that is called conflict free or
single occurrence. It is shown that the majority of real worlds DTDs respect
this restriction.
We use Brzozowski derivatives as an easy and efficient way to perform mem-
bership checking avoiding the automata construction. We provide an algo-
rithm for membership checking on conflict free regular expressions. We
examine the complexity of this algorithm on different classes of conflict free
regular expressions and the condition, under which the complexity is linear,
is provided .
The second approach is based on automata construction. Instead of comput-
ing the derivatives for each string on the fly, we precompute all the possible
derivatives of the regular expression. We consider each derivative a state of
an automaton recognizing the language described by the regular expression.
The automata construction algorithm is provided and the problem of mul-
tiple derivations of same derivatives is examined.
Finally, we provide the basic notion of an optimization based on the symbol
consuming during derivation. It enables to compute each derivative only
once avoiding a considerable number of useless redundant derivations.

5

6 CONTENTS

Chapter 1

Introduction

1.1 Introduction

Recently, the Extended Markup Language (XML) [14, 6, 8] has been con-
sidered as the standard for data exchange on the Web.
Many applications use XML documents. An XML document must be well-
formed and well-structured. A well-formed XML document respects certain
syntactic rules. However, those rules say nothing specific about the struc-
ture of the document. There are two ways of defining the structure of an
XML document: DTD(Document Type Definition)[6, 8], the older and most
restricted, and XML Schema[8], which offers extended possibilities.

In its most restrictive form, the problem of stream validation is to verify
that an XML document is valid with respect to a given DTD in a single
pass and using a fixed amount of memory, depending of the DTD but not
on the size of the XML document. This is referred as on-line validation [15].

In this work we are concerned about the problem described above. We
approach the problem of validation in two ways: by using finite-state au-
tomata and by avoiding the construction of FSA. To put the problem in
perspective, note that validation with respect to a DTD amounts to check-
ing membership of the tree associated with the XML document in a regular
tree language. We focus on simple DTDs without constraints and the class
of grammars considered are restricted(conflict-free).This restriction has been
studied [10] in real worlds DTDs, and the result is that the majority of the
rules satisfies the conflict free property. We study a DTD in the form of a
regular expression. We use Brzozowski derivatives as introduced [4] in 1964

7

8 CHAPTER 1. INTRODUCTION

extended with the shuffle operator. Brzozowki derivatives are considered as
an efficient way for constructing recognizers from a regular expression. We
examine the efficiency of derivatives in membership checking [7] without au-
tomata construction [12] . We modify the automata construction algorithm
introduced in [12] in order to be more effective on conflict free regular expres-
sions. We give an optimized algorithm for automata construction avoiding
a considerable number of derivative computation .

The main results of the master thesis is the exponential time complex-
ity for membership checking without automata construction and the linear
time complexity for conflict free regular expressions where kleene star nested
depth is one.

1.2 Related Work

On-line validation of XML documents under memory contraints has been
studied in [15]. The authors categorised the DTDs in classes and for each
class they examined the automata construction. It is showed that for a
class of DTDs named nonrecursive one can construct nondeterministic fi-
nite automata exponential in the size of the DTD for strong validation.
For another class of automata, named recursive DTDs, it is showed that
strong validation can be performed only by push down automata. In [14]
the authors examine the class of DTDs that can be validated on-line using
an FSA, these DTDs are called streamable. The hope of the authors was
to prove that a DTD τ is streamable iff the set of trees accepted by the
local-automaton for a DTD equals the set of trees valid for τ . In [5] DTDs
are categorized as one-unambiguous or k-unambiguous and it is showed that
for one-unambiguous and nonrecursive DTDs there is an algorithm for con-
structing deterministic automaton that validates documents with respect to
a DTD. The size of the automaton is at most exponential with respect to the
size of DTD. The authors gave the conditions under which a k-unambiguous
and recursive DTD can be described by an one-counter automaton. In [1]
the relations between regular expressions, finite state automata and deriva-
tives have been investigated. In [12] the authors reexamine Brzozowski‘s
work and reported new techniques for constructing scanner generators. In
[9] Brzozowski‘s derivatives are extended in order to apply this technique to
XSD, SGML and Relax NG [9, 11, 13]. The behavior of an extended form of

1.3. STRUCTURE OF THE DOCUMENT 9

derivatives is studied and the problem of derivative explosion is examined in
the case of regular expressions containing interleaving and Kleene-star. In
[7] the authors introduced a different approach for membership checking to
conflict free REs where Kleene star is only applied to symbol disjuctions. A
linear time algorithm is presented which is based on the implicit representa-
tion of the constraints using a tree structure, and on a parallel verification
of all constraints, using a residuation technique reminiscent Brzozowksi‘s
derivatives.

1.3 Structure of the document

The report is organized as follows: the basic notion of regular expressions,
regular languages and finite state machines are reviewed in the preliminaries
(chapter 2). In chapter 3, we introduce derivatives and we extend Brzozowski
rules with shuffle. In chapter 4, we define a set of rules for conflict free
regular expressions and we describe an algorithm for succeeding membership
checking by using the rules defined. In the next chapter, we examine the
complexity of the algorithm for different classes of regular expressions. In
chapter 6, we investigate the approach based on automata construction.
We provide the algorithm for automata construction using the derivative
rules for conflict free regular expressions. In chapter 7, we introduce by
examples an optimized algorithm for derivative calculations that eliminates
the redundant calculation of derivatives.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminaries

We introduce here the basic formalism used throughout this paper. We also
recall some basic notions related to regular languages and finite state ma-
chines.

2.1 Regular expression

Regular Expression
The syntax for regular expression which we present below includes concate-
nation, alternation and Kleene-star. Moreover, we include the empty set (∅)
and the shuffle and repetition operators.

Definition 2.1 (Regular Expression(RE)) A regular expression over the
alphabet Σ is defined as follows:

r, s ::= ∅ emptyset
| ε emptystring
| α α ∈ Σ
| r · s concatenation
| r | s alternation
| r & s interleaving

11

12 CHAPTER 2. PRELIMINARIES

| r+ repetition

Table 2.1: RE Syntax

Remark 2.2 We use r∗ to denote the kleene-star, where r∗ = r+ ∪ {ε}.

Note 2.3 We use ⊗ to refer to any of {·, |, &}, when we need to specify
common properties for them.
We use the notation RE(< op1 >, . . . , < opn >) to refer to regular expres-
sions using the operators < op1 >, . . . , < opn >.
For convenience we refer to RE(·, |, &, ∗, +), as RE.

Example 2.4 By RE(·, |), we refer to all regular expressions using the
operators · and |. The RE r = (α · b) | c | (d · e · f) belongs to RE(., |). On
the contrary, t = (α · b)&(c · d) does not belong to that set.

Below we give the definition of shuffle of two words and two languages.

Definition 2.5 (Shuffle or interleaving) The
shuffle set of two words u, υ ∈ Σ∗, or two languages Lr, Ls ⊆ Σ∗ is defined
as follows: u& υ = {u1 · υ1 ·...· un · υn | u1 ·...· un = u, υ1 ·...υn = υ, ui

∈ Σ∗,υi ∈ Σ∗, n > 0}
Lr &Ls =

⋃
u1∈Lr,u2∈L2

(u1)& (u2)

Example 2.6 (ab)& (XY) is a set consisting of the permutations of abXY
such that a comes before b and X comes before Y: (ab)& (XY)={abXY,aXbY,aXYb,
XYab,XaYb,XabY}

Note 2.7 Shuffle is a very common operator used in XSD, relax NG and
SGML regular expressions.

In relax NG the interleave pattern allows child elements to occur in any
order. In the above example we present interleave pattern:

Example 2.8 This example would allow the card element to contain the
name and email elements in any order:

2.1. REGULAR EXPRESSION 13

<element name=”addressBook”>
<zeroOrMore>

<element name=”card”>
<interleave>

<element name=”name”>
<text/>

</element>
<element name=”email”>

<text/>
</element>

</interleave>
</element>

</zeroOrMore>
</element>

Example 2.9 Suppose now that we want to write a pattern for the HTML
head element which requires exactly one title element, at most one base el-
ement and zero or more style, script, link and meta elements and suppose
we are writing a grammar pattern that has one definition for each element.
Then we could define the pattern for head as follows:

<define name=”head”>
<element name=”head”>

<interleave>
<ref name=”title”/>
<optional>

<ref name=”base”/>
</optional>
<zeroOrMore>

<ref name=”style”/>
</zeroOrMore>
<zeroOrMore>

<ref name=”script”/>
</zeroOrMore>
<zeroOrMore>

<ref name=”link”/>
</zeroOrMore>
<zeroOrMore>

<ref name=”meta”/>
</zeroOrMore>

14 CHAPTER 2. PRELIMINARIES

</interleave>
</element>

</define>

In SGML and XSD the shuffle operator is similar.

Regular Language
The regular languages are those that can be described by regular expressions
according to the following definition.

Definition 2.10 (Regular language) The language specified by a regu-
lar expression r is a set of strings Lr ⊆ Σ∗ generated by the following rules:

L [[∅]] = ∅
L [[ε]] = {ε}
L [[α]] = {α}

L [[r · s]] = {u · υ | u ∈ L [[r]] and υ ∈ L [[s]]
L [[r | s]] = L [[r]] ∪ L [[s]]
L [[r & s]] =

⋃
u1∈Lr,u2∈Ls

u1 &u2

L [[r+]] = L [[r · r∗]]
L [[r∗]] = {ε} ∪ L [[r · r∗]]

Table 2.2: Regular language

We define below the set of symbols of a RE or a string and the cardinality
of the set as:

Definition 2.11 (Symbols of a regular expression) Sym(r) of any reg-
ular expression r is the set of all symbols appearing in r. Sym(u) of any
string u is the set of all symbols appearing in u.

Note 2.12 We denote as |Sym(r)| the cardinality of Sym(r).

Example 2.13 Suppose r = α · (b | c) · α, then Sym(r) = {α, b, c} and
|Sym(r)| = 3.

2.2. FINITE STATE MACHINES 15

2.2 Finite state machines

Finite State Machine
A finite state machine or finite state automaton is an abstract machine that
has a finite, constant amount of memory. Finite automata may operate on
languages of finite words. It can be conceptualized as a directed graph where
vertices are states and edges are transitions. There are a finite number of
transitions and states. There is an input string that determines which tran-
sition is followed.
In deterministic automata (DFA) for each state there is at most one tran-
sition for each possible input. In non deterministic automata (NFA), there
can be most than one transition from a given state for a given possible input.
We are interested by deterministic automata.

Definition 2.14 (DFA) A DFA over an alphabet Σ is a 5-tuple 〈Q,Σ, δ, q0, F 〉
where:

• a finite set of states (Q)

• a finite set of input symbols called the alphabet (Σ)

• a transition function (δ :Q × Σ → Q)

• a start state (q0 ∈ Q)

• a set of accepting states (F ⊆ Q)

Let M = 〈Q,Σ, δ, q0, F 〉 be a DFA and u = u0 · . . . · un−1 a string over the
alphabet Σ. M accepts the string u if a sequence of states s0, s1, . . . , sn

exists in Q with the following conditions:

1. s0 = q0

2. si+1 = δ(si, ui), for i = 0, . . . , n-1

3. sn ∈ F

As shown in the first condition, the machine starts in the start state q0.
The second condition says that given each character of string u, the machine
will transit from one state to another according to function δ.
The last condition says that the machine accepts u if the last input symbol of

16 CHAPTER 2. PRELIMINARIES

string u causes the machine to halt in one of the accepting states. Otherwise
the string u is rejected.

The set of strings accepted by the DFA is formally defined as follows:

Definition 2.15 A language accepted by a DFA is defined as the a set of
strings {u | δ(q0, u) ∈ F}

Example 2.16 Consider the regular language 1∗(0(1∗)0(1∗))∗

• Q = {s1, s2},

• Σ = {0, 1},

• q0 = s1

• F = {s1},

• δ is defined as: s2 = (s1, 0), s2 = (s1, 1), s1 = (s2, 0), s1 = (s2, 1)

The DFA is the one follows:

Figure 2.1: finite state automaton

2.3 Conflict Free Regular Expression

Conflict free regular expressions have been studied as duplicate-free [16, 10]
or single occurrence [2, 3] regular expressions. Simply, it is the class of
regular expressions for which each symbol appear only once in the regular
expression. This restrictive class of regular expressions appear to be very
common among the real worlds DTDs [10] . A formal definition is given
below:

2.3. CONFLICT FREE REGULAR EXPRESSION 17

Definition 2.17 (Conflict Free RE(CF)) A regular expression r = s+

is conflict free if the subexpression s is conflict free.
A regular expression r = s ⊗ t is conflict free if for each conflict free subex-
pression s, t, Sym(s) ∩ Sym(t) = ∅.
Lemma 2.18 Let r be a conflict free RE(·, |, &) and u a word in Lr. Then
each symbol in u occurs only once.

PROOF
Induction hypothesis
Let us assume that, if u ∈ Lr for some conflict free regular expression
r ∈ RE(·, |, &), where |u| = n, then each symbol in u occurs only once.
Let us consider a word u1 ∈ Lr1 with:

• |u1| = n + 1.

• r1 is CF RE(·, |,&).

Case 1: r1 = s1 · s2.
Assume that u1 = υ1 · υ2 where υi ∈ Lsi and si is a CF RE(·, |, &).
By hypothesis: Lemma holds on s1, υ1 and s2, υ2.
Because r1 is CF we have that Sym(s1) ∩ Sym(s2) = ∅.
This mean that:
Each symbol in u1 occur once.

Case 2: r1 = s1 | s2.
Then u1 ∈ Ls1 or u1 ∈ Ls2 .
We have also that: By hypothesis: Lemma holds on s1, u1 or s2, u1 because
u1 ∈ Ls1 or u1 ∈ Ls2 . This means that:
Lemma holds for u1, r1.

Case 3: r1 = s1 & s2.
Assume that u1 = υ1 · υ2, where υi ∈ Lsi .
By hypothesis: Lemma holds on s1, υ1 and s2, υ2. Because r1 is CF we have
that Sym(s1) ∩ Sym(s2) = ∅. This means that:
Each symbol in u1 occur once.

Lemma 2.19 For a given conflict free RE(·, |, &) r, if a string u ∈ Lr then
|u| ≤ n, where n = |Sym(r)|.
PROOF
Immediate from 2.18

18 CHAPTER 2. PRELIMINARIES

Chapter 3

Derivatives

Derivatives were presented by Brzozowski in 1964 as an elegant method to
construct lexical recognizers. The concept of derivatives can be applied to
any language. Intuitively the derivative of a language L ⊆ Σ∗ with respect
to a symbol α ∈ Σ is the language containing the suffix of strings belonging
to L and whose initial symbol is α.

Definition 3.1 (Derivative of a language) The derivative of a language
L ⊆ Σ∗ with respect to a string u is defined to be DuL = { υ | u · υ ∈ L }.

Example 3.2 Consider the language L = {αbb, ααbb, cd}. Then the deriva-
tive of the language with respect to α is the set: Dα(L) = {bb, αbb}.

The above language is described by the regular expression:
r = α·(α·b | b)·b | c·d. We can define the derivatives of a regular expression
that describes the language Lr, avoiding the calculation of derivatives of
each element of the language. Below, the rules for regular expression calcu-
lation are given.

3.1 RE derivatives

Before the definition of derivatives is given, we need an intermediate function
ν that says when a regular expression r is nullable.

Definition 3.3 (nullable) A regular expression r is nullable iff ε ∈ Lr.

19

20 CHAPTER 3. DERIVATIVES

The function ν below aims at identifying nullable regular expressions and is
defined as follows:

ν(r) =

{
{ε} if r is nullable

∅ otherwise

The function ν is alternatively defined by:

ν(∅) = ∅
ν(ε) = {ε}
ν(a) = ∅

ν(r · s) = ν(r) ∩ ν(s)
ν(r | s) = ν(r) ∪ ν(s)

ν(r & s) = ν(r) ∩ ν(s)
ν(r+) = ∅

Table 3.1: function ν

Remark 3.4 The ν function of a kleene-stared RE r is : ν(r∗) = {ε}.
Definition 3.5 (Brzozowski’s derivatives) The definition of Brzozowski’s
derivatives is shown in table 3.2:

Da(∅) = ∅,
Da(ε) = ∅,

Da(b) =

{
ε if a = b,

∅ otherwise,

Da(r · s) = Da(r) · s ∪ ν(r) ·Da(s),
Da(r | s) = Da(r) ∪Da(s),

Da(r & s) = Da(r) & s ∪ Da(s) & r,

3.1. RE DERIVATIVES 21

Da(r+) = Da(r) · r∗,

Table 3.2: Brzozowksi’s derivatives

Remark 3.6 The derivative of a RE r under Kleene-star is: Da(r∗) =
Da(r) · r∗.

Example 3.7 Consider the language that is described by the regular ex-
pression r=(α | b)c (we eliminate · before c for convenience). Then the
derivative of r with respect to α is c. The derivative of r with respect to b
is c as well. And the derivative of r with respect to c is the empty set.

Note 3.8 We use the term residual RE or simply residual to refer to a
derivative of a RE.

Lemma 3.9 The derivative of a language Lr with respect to a symbol α
and the semantics of the derivative of the language Lr commute. Formally:
LDα(r) = Dα(Lr) .

PROOF. In case that r = ∅ or ε. The above is true.
We will prove that both languages are described by the same automaton.
Suppose that the regular expression r defines a language Lr described by an
automaton 〈Q,Σ, T, q0, F 〉.
Then, r1 = Dα(r), the regular expression r1 defines the language Lr1 , which
contains the strings u such that α.u belongs to Lr. Hence Lr1 is given by
the automaton 〈Q,Σ, T, δ(q0, α), F 〉(1).
The language Lr is described by the automaton 〈Q,Σ, T, q0, F 〉. The deriva-
tive of Lr, Dα(Lr) with respect to a symbol α is L1. By definition 3.1 the
automaton describing L1 is the automaton with initial state δ(q0, α).The
automaton is 〈Q,Σ, T, δ(q0, α), F 〉 (2). We see that both are described by
the same automaton.

22 CHAPTER 3. DERIVATIVES

3.2 Using derivatives for membership checking

Suppose we want to check whether a string u is contained in the language
defined by r. Formally, we want to check if u ∈ Lr. We have u ∈ Lr if and
only if ε ∈ LDu(r) which is true exactly when ν(Du(r))={ε}.
Combining the above leads to an algorithm for testing the membership of
a string to the language defined by a given regular expression. We will use
the symbol ` to express the relation r ` u (u is valid with respect to r)
defined as:

r ` ε ⇔ ν(r) = { ε }
r ` a · u ⇔ Da(r) ` u

Membership checking algorithm (MCA)
MCA computes a derivative of a regular expression for each symbol in the
string in order to check the membership of the string.If the final residual of
the regular expression is nullable, then u ∈ r. MCA is defined as follows:

Definition 3.10 (MCA) MCA takes as input a RE r and a string u and
returns true if u ∈ r. We define MCA as follows:

Algorithm MCA
Input: RE r, string u
Output: boolean

while u 6= ε and r 6= ∅
assuming u is α · u1

r ← Dα(r) ;
u ← u1 ;

end-while
if ν(r) = ε then return true else return false

Table 3.3: MCA

3.2. USING DERIVATIVES FOR MEMBERSHIP CHECKING 23

Example 3.11 Suppose r = α · c · b∗ and u = αcbb. We want to check if u
is valid with respect to r.

a · c · b∗ ` acbb

Da(a) · c · b∗ ∪ ν(α) ·Dα(c · b∗) ` cbb
c · b∗ ∪ ∅ ` cbb

Dc(c) · b∗ ∪ ν(c) ·Dc(b∗) ` bb
b∗ ∪ ∅ ` bb

Db(b∗) ∪ ν(b∗) ·Db(b∗) ` b
b∗ ∪ ∅ ` b

Db(b∗) ∪ ν(b∗) ·Db(b∗) ` ε
b∗ ∪ ∅ ` ε

ν(b∗) = {ε}(true)

When a derivative doesn’t match the string, we reach a derivative that is ∅,
and stop.

24 CHAPTER 3. DERIVATIVES

Chapter 4

Conflict free RE Derivatives

For conflict free regular expressions, taking advantage of the unique occur-
rence of each symbol in the regular expression, we could define the derivative
in such a way to avoid the calculation of a number of derivatives that lead
to empty set (example 3.9) during the MCA. We are interested to know a
priori the set of symbols which are potentially relevant to the computation
of the derivatives. For that purpose we define the First set as follows:

Definition 4.1 (First set) The First set of a regular expression r is de-
fined as: First(r) = {α ∈ Sym(r) | ∃ u: αu ∈ Lr}

First(r) represents the set of first symbols of words in Lr.
In order to calculate the First set of a regular expression r, we define a func-
tion F. Definition of F(r) is given by following rules:

F (∅) = F (ε) = ∅
F (α) = {α}, for any α

F (r | s) = F (r) ∪ F (s),

F (r · s) =

{
F (r), if ε /∈ L(r)
F (r) ∪ F (s), if ε ∈ L(r)

F (r & s) = F (r) ∪ F (s)
F (r+) = F (r)

Table 4.1: Function F

25

26 CHAPTER 4. CONFLICT FREE RE DERIVATIVES

We use the First set to rewrite the derivative rules shown in table 3.2 for
conflict free regular expressions, taking advantage of the single occurrence
restriction of the RE.

Definition 4.2 (Conflict free RE derivatives) The derivatives for a CF
regular expression with respect to a symbol α are defined as follows:

Da(∅) = ∅,
Da(ε) = ∅,

Da(b) =

{
ε if a = b,

∅ otherwise,

Da(r · s) =





Da(r) · s if a ∈ First(r),
Da(s) if a ∈ First(s) and ε ∈ L(r),
∅ otherwise,

Da(r | s) =





Da(r) if a ∈ First(r),
Da(s) if a ∈ First(s),
∅ otherwise,

Da(r & s) =





Da(r) & s if a ∈ First(r),
Da(s) & r if a ∈ First(s),
∅ otherwise

Da(r+) =

{
Da(r) · r∗ if a ∈ First(r),
∅ otherwise,

Table 4.2: CF regular expression Derivatives

4.1. COMPUTING FIRST 27

Remark 4.3 The derivative of a conflict free RE under Kleene-star is r:

Da(r∗) =

{
Da(r) · r∗ if a ∈ First(r),
∅ otherwise

Lemma 4.4 The Brzozowski derivative rules shown in table 3.2 are equiv-
alent with the derivative rules for Conflict free RE shown in table 4.2.

PROOF. For the shuffle operator the rules is:
Dα(r & s) = Dα(r) & s ∪ Dα(s) & r.
Suppose that there is a conflict free regular expression t = r & s.
Case 1: α ∈ First(r), then α /∈ Sym(s). So,
Dα(s) = ∅, Hence Dα(t) = Dα(r) & s.
Case 2: α ∈ First(s), then α /∈ Sym(r). So,
Dα(r) = ∅, Hence Dα(t) = Dα(s) & r.
Case 3: α /∈ Sym(t), then α /∈ Sym(s) and α /∈ Sym(r).
Hence, Dα(t) = ∅.
The proof proceed in a similar manner for the other rules.

4.1 Computing First

It is worth mentioning that it is not necessary to calculate the First set
for each residual regular expression during the MCA. We need to process
once the initial regular expression tree assigning to each symbol an id that
facilitate the First set calculation for every residual expression during the
derivation process.

At the implementation level, we could define a function that assigns an id
to each symbol. Intuitively, id identifies which symbols of a residual regular
expression are in the First set. The symbols contained in the First set, are
marked with the same id.
In order to compute the id for each symbol in the RE, we construct the
RE tree and we apply on it the recursive function recid:(r, id) → id. We
construct as many sets as the ids and in each set are contained the symbols
with the same id.

Definition 4.5 (id) We define id as follows:

28 CHAPTER 4. CONFLICT FREE RE DERIVATIVES

Input: a RE r, id
Output: id

recid(r, n) =
if r = ε then return n - 1
if r = α then id(α) = n
if r = r1 · r2 then return recid(r2, recid(r1, n) + 1)
if r1 | r2 then return max {recid(r1,n), recid(r2,n)}
if r = r+

1 then return recid(r1,n)

Table 4.3: Recid function

Note 4.6 We rewrite every atom RE α∗ as: (α+ | ε).
The id initial value is 1.

Example 4.7 Consider the regular expression:
r = αbc∗(def∗ | gh)xy. We want to calculate the First(r).

We rewrite the RE r = αb(c+ | ε)(de(f+ | ε) | gh)xy We apply the re-
cid on r. The result is the one shown below:
r = α1b2c3

∗(d3e4f5
∗ | g3h4)x5y6

Note 4.8 Due to the fact that the id is subtracted by one every time ε is
encpuntered, we have that id(c) = id(d) = 3 and id(f) = id(x) = 5.

Then we construct the above sets:
Firstid=1 = {α}, Firstid=2 = {b}, Firstid=3 = {c, d, g},
Firstid=4 = {e, f}, Firstid=5 = {f, x}, Firstid=6 = {y}.
So during the derivation process we check the id of the initial symbol of the
residual RE and we choose the First set with equal id.
For the regular expression r where the id(α) = 1, the First set is the Firstid=1.
If we derive wrt α we have:
r1 = Dα(r) = b2c3

∗(d3e4f5
∗ | g3h4)x5y6.

We go on checking the id(b) = 2. The First set is the Firstid=2. If we
derive wrt to b we have:

4.1. COMPUTING FIRST 29

r2 = Db(r) = c3
∗(d3e4f5

∗ | g3h4)x5y6

The id(c) = 3, hence the First set if Firstid=3 and so on.

30 CHAPTER 4. CONFLICT FREE RE DERIVATIVES

Chapter 5

Complexity OF MCA

In this section we examine the time and space complexity of MCA for conflict
free REs. For that purpose we first define the depth of repetition for a regular
expression.

Definition 5.1 (Depth of repetition) For a given regular expression r,
we define as depth of repetition dept(r) of r the maximum number of nested
kleene-closure or repetition symbols in a regular expression.

dept(∅) = 0
dept(ε) = 0
dept(b) = 0

dept(r ⊗ s) = max(dept(r), dept(s))
dept(r+) = dept(r) + 1
dept(r∗) = dept(r) + 1

Table 5.1: Depth

Example 5.2 Consider the regular expression: r = (a · b | c+)∗.The depth
of repetition dept(r) of r is 2.

Intuitively, the following lemma states that for a conflict free RE r without
any of the repetition operators {+, *}, the symbol with respect of which we
derive r is not contained in the residual RE.Formally:

31

32 CHAPTER 5. COMPLEXITY OF MCA

Lemma 5.3 For a given conflict free RE(·, |, &) r, the derivative s = Dα(r)
of r with respect to a symbol α is such that α /∈ Sym(s).

PROOF
If r = ∅. Lemma holds.
Suppose r 6= ∅ a conflict free RE(·, |,&), and α ∈ Sym(s).Then ∃ u ∈ Ls

such that α occurs in u. Thus we have that, α occurs twice in α · u, Absurd
by lemma 2.18.
Hence α /∈ Sym(s).

Theorems 5.5, 5.7 and 5.10 provide the complexity of MCA for different
classes of REs.

The lemma below states the linear complexity of membership checking for
a CF regular expression with no repetition operators. Formally:

Theorem 5.4 The time complexity of checking the membership of a string
u with respect to a CF RE(·, |, &) r is O(n), where n = |Sym(r)|.

PROOF
There are two cases:

1. If u /∈ Lr.

• If |Sym(r)| ≤ |u|.
Let u = α1 · · ·αm, where m ≥ n. Then Dα1···αn(r) = ∅, because
after n derivation r has no more symbols. The complexity is: O(n
+ 1) ∼ O(n).

• If |u| ≤ |Sym(r)|.
Let u = α1 · · ·αm, m ≤ n. Then Dα1···αm(r) = ŕ. Because after
m derivations there are no more symbols that derive in u, the
complexity is: O(m) ≤ O(n).

2. If u ∈ Lr.
Let u = α1 · · ·αm. Then by lemma 5.4: Dα1···αm(r) = ε. After m steps
there no more symbols in u to derive. Hence the complexity is:
O(m) ≤ O(n).

Above we propose a way to calculate the number of derivations for checking
the membership of a string u with respect a given RE r. The number of

33

derivations N(u, r) is the summary of the derivations of each symbol of the
string u in the regular expression s that it is derived. Formally:

Proposition 5.5 For a given string u = α1 · · ·αn and a RE r. The number
of derivations for computing Du(r) is:

N(u, r) =
|u|∑

i=1

N(αi, Dα1···αi−1(r)), where

N(α, r) =

{
1 if dept(r) = 0,

dept(r) if dept(r) > 0

The following lemma denotes that the complexity remains linear in the case
of a conflict free RE r with dept(r) = 1.

Theorem 5.6 The time complexity of checking the membership of a string
u with respect to a CF RE r of dept(r) = 1, is O(m), where m = |u|.
PROOF
We assume that u = α1 · · ·αm. There are two cases:

1. u ∈ Lr. Then each residual RE s during derivation process has dept(s)
≤ 1, and Du(r) = ε. So by proposition 5.6 we have: N(u, r) =
1 + · · ·+ 1︸ ︷︷ ︸

m

= m.

2. u /∈ Lr.

• If Dα1···αp(r) = ∅, for some p ≤ m.
Then N(u,r) = p. Hence the time complexity is O(m).

• If Du(r) = ŕ.
Then after m derivations there are no more symbols to derive in
u. So N(u, r) = m. Hence the complexity is O(m).

Hence the time complexity is O(m).

Lemma 5.7 The time complexity of checking the membership of a string
u w.r.t a CF RE r = (((r1)∗ ⊗ r2)∗ ⊗ · · · ⊗ rk−1)∗ is O(km), where ri =
α1
∗ · · ·αk

∗, dept(r) = k and m = |u|.

Lets see a small example before we go on with the proof.

Example 5.8 Consider the RE r = ((α∗b∗ | c∗)∗)∗ and a string u = αα for
which we want to check if u ∈ Lr.

34 CHAPTER 5. COMPLEXITY OF MCA

We have to derive twice with respect to α. The derivative of r with respect
to α is:
r1 = Dα(r) = α∗b∗ · (α∗b∗ | c∗)∗ · ((α∗b∗ | c∗)∗)∗ and
Dα(r1) = α∗b∗ | α∗b∗ · (α∗b∗ | c∗)∗ | α∗b∗ · (α∗b∗ | c∗)∗ · ((α∗b∗ | c∗)∗)∗.

In this example we notice the exponential behavior of the regular expression
after two derivations.

PROOF
If we derive with respect to a symbol α ∈ Sym(r), due to the rule Dα(r∗) =
Dα(r) · r∗, we have that Dα(r) = Dα(r1)︸ ︷︷ ︸

s1

· r∗1︸︷︷︸
s2

· ((r1)∗ ⊗ r2)∗︸ ︷︷ ︸
s3

· · · r︸︷︷︸
sk

.

It is obvious that Dα(r) is not conflict free and ν(si) = {ε}.
So if we go on the derivation process w.r.t. to a symbol b ∈ Sym(r1), we
have to apply the rule:
Dα(r · s) = Dα(r) · s ∪ ν(r) ·Dα(s), where r = Dα(r1) and s = r∗1 · ((r1)∗ ⊗
r2)∗ · · · r.
So, Dbα(r) = Dbα(r1)︸ ︷︷ ︸

q1︸ ︷︷ ︸
t1

| Db(r1)︸ ︷︷ ︸
q1

· r∗1︸︷︷︸
q2︸ ︷︷ ︸

t2

| Db((r1)∗ ⊗ r2)︸ ︷︷ ︸
q1

· ((r1)∗ ⊗ r2)∗︸ ︷︷ ︸
q2︸ ︷︷ ︸

t3

| · · ·

| Db((r1)∗ ⊗ r2)︸ ︷︷ ︸
q1

· ((r1)∗ ⊗ r2)∗︸ ︷︷ ︸
q2

· (((r1)∗ ⊗ r2)∗)∗︸ ︷︷ ︸
q3

· · · r︸︷︷︸
qk︸ ︷︷ ︸

tk

It is obvious that the form of Dbα(r) =
⋃k

i=1 ti, where ti = •qi and 1 ≤
i ≤ dept(si), by •qi we represent the concatenation of one or more regular
expressions.
In order to calculate the number of derivations for Du(r), we consider that

dept(si) is bounded by k. Hence N(u, r) ≤
|u|∑

i=1

ki ⇒ N(u, r) ≤ k(km−1)
k−1 .

Hence the complexity is O(km).

Theorem 5.9 The complexity of checking the membership of a string u
w.r.t. a CF RE r is O(km), where k = dept(r) and |u| = m.

PROOF
By lemma 5.8, we have that for the subset of conflict free regular expressions
of the form: r = (((r1)∗⊗ r2)∗⊗ · · · ⊗ rk−1)∗ the complexity of checking the
membership of the string u w.r.t. r is O(km). Hence, in the general case of
a conflict free regular expression r, the complexity is O(km).

Chapter 6

Derivatives and DFA
construction

The MCA decides if a string is valid with respect to a given RE. If we con-
sider a regular expression as a DTD and a given string as an XML document
then, we claim that MCA is suitable for on-line XML documents validation
with respect to a given DTD. The disadvantage of this algorithm is that for
every given XML document we have to check its validity by calculating the
derivatives for each symbol of the XML document. If, instead of computing
the derivatives on the fly, we precompute the derivative for each symbol in
Σ, we can construct a DFA recognizing the language of the RE. In [12], an
algorithm is presented that builds an automata using the derivatives. In this
section we present a different version of this algorithm using the set First.

Before we present the algorithm for automata construction by using deriva-
tives, we define the notion of equality of two REs.

Definition 6.1 (Equivalence of regular expressions) Two regular ex-
pressions r,s are equivalent when they describe the same languages. For-
mally: r ≡ s iff Lr = Ls.

Example 6.2 Let r1 = (α | b∗)∗ and r2 = (α | b)∗, then r1 ≡ r2 because
Lr1 = Lr2.

35

36 CHAPTER 6. DERIVATIVES AND DFA CONSTRUCTION

Algorithm ACA
Input: a RE r
Output: 〈Q,Σ, δ, q0, F 〉

trans q (α, (Q, δ)) =
let Dα(q) = qα

if ∃ q1 ∈ Q such that q1 ≡ qα

{(Q, δ ∪ (q, α) 7→ q1)}
else

let Q1 = Q ∪ {q1}
let δ1 = δ ∪ {Q1, δ1, qα}
in collect (Q1, δ1, qα)

collect(Q, δ, q) = enclose(trans q)(Q, δ) F(r)

constrDFA r =
let q0 = Dε(r)
let (Q, δ) = collect({q0}. {},q0)
let F = {q | q ∈ Q and νq = ε}
in 〈Q,Σ, δ, q0, F 〉

Table 6.1: ACA

6.1 Automata construction algorithm(ACA)

Table 10 gives the algorithm for Constructing a DFA
〈Q,Σ, δ, q0, F 〉 using derivatives.
The function trans constructs the transition from a state q when a symbol
α is encountered.
The function collect collects all the possible transitions from the state q.
The function constrDFA constructs the DFA.

The DFA construction algorithm as it is presented in table 10 introduces a
new state when no equivalence state is present. Brzozowski proved that this
check for state equivalence guarantees the minimality of the DFA produced
by ACA, but checking equivalence is expensive. In practice we weaken the

6.1. AUTOMATA CONSTRUCTION ALGORITHM(ACA) 37

notion of equality to similarity.

Definition 6.3 Let ∼= denote the similarity of two REs. Two regular ex-
pressions r1 and r2 are similar, formally: r1

∼= r2, if they respect one of the
following rules shown in table 11:

(r) & (s) ∼= (s) & (r)
(r)& (ε) ∼= r

(r & s)& (t) ∼= r & s& t
(∅)& (r) ∼= ∅
(r · s) · t ∼= r · (s · t)

∅ · r ∼= ∅
r · ∅ ∼= ∅
ε · r ∼= r
r · ε ∼= r

(r | s) | t ∼= r | (s | t)
∅ | r ∼= r
r | ∅ ∼= r

(r∗)∗ ∼= r∗

ε∗ ∼= ε

Table 6.2: Similarity rules

Note 6.4 Now we can rewrite the ACA, substituting the equality by simi-
larity as follows: ∃ q1 ∈ Q such that q1

∼= qα.

Lemma 6.5 If two regular expressions are similar, then they are equivalent.

Example 6.6 Consider the REs r1 = α · b(c · d) and r2 = (α · b · c) · d.
These REs are similar as is indicated in table 11 and equivalent because the
describe the same regular language.

Example 6.7 Consider the RE r = ab | cd. We want to construct the
automaton using derivatives.

38 CHAPTER 6. DERIVATIVES AND DFA CONSTRUCTION

We give each symbol and id. r = a1b2 | c1d2.
First(r) = {α, c}. r1 = Dα(r) = b, r2 = Dc(r) = d.
First(r1) = {b}, r3 = Db(r1) = ε
First(r2) = {d}, Dd(r2)

The DFA is shown in figure 2:

Figure 6.1: Finite state automaton

Example 6.8 Consider the regular expression: r = αbc∗

(def∗ | gh)xy. We want to construct the automaton describing the Lr.

We give an id to each symbol in the regular expression: r = α1b2c3
∗(d3e4f5

∗+
g3h4)x5y6

First(r) = {α}, r1 = Dα(r) = b2c3
∗(d3e4f5

∗+ g3h4)x5y6

First(r1) = {b}, r2 = Db(r1) = c3
∗(d3e4f5

∗+ g3h4)x5y6

First(r2) = {c,d,g}, Dc(r2) = r2, r3 = Dd(r2) = e4f5
∗x5y6, r4 = Dg(r2) =

h4x5y6

First(r3) = {e}, First(r4) = {h}, r5 = De(r3) =f5
∗x5y6 , r6 = Dh(r4) =

x5y6

First(r5) = {f,x}, First(r6) = {x}, Df (r5) = r5, r7 = Dx(r5) = y6 , Dh(r6)
= r7

First(r7) = {y}, r8 = Dy(r7) = ε

Note 6.9 Having all the derivatives of r, we have the states of the automa-
ton.We can construct the automaton as shown in the previous example.

Example 6.10 Consider the Regular expression
r = ((αb)& (cd))∗. We want to calculate all the
possible derivatives of r.

6.1. AUTOMATA CONSTRUCTION ALGORITHM(ACA) 39

r = ((α1b2)& (c1d2))∗

First(r) = {α, c}, r1 = Dα(r) = b2&(c1d2) · r, r2 = Dc(r) = d2 & (α1b2) · r
First(r1) = {b, c}, r3 = Db(r1) = (c1d2) · r, r4 = Dc(r1) = (d2 & b2)·r
First(r2) = {α, d}, Dα(r2) = b2 & d2 =r4, r5 = Dd(r2) = (α1b2) · r
First(r3) = {c}, r6 = Dc(r3) = d2 ·r
First(r4) = {b, d}, Db(r4) = r6, r7 = Dd(r4) = b2·r
First(r5) = {a}, Dα(r5) = r7

First(r6) = {d}, Dd(r6) = r
First(r7) = {b} = r

Remark 6.11 It is obvious from the example that during the derivation
process we end up examining the same derivative several times.

40 CHAPTER 6. DERIVATIVES AND DFA CONSTRUCTION

Chapter 7

DFA construction
optimization

In this chapter, we provide an optimization for automata construction by
avoiding the calculation of same derivatives more than once. The intuitive
idea is based on the fact that the symbol with respect to which the derivation
proceeds, is consumed during the derivation. So we can simulate the deriva-
tion process by giving each symbol in the regular expression an identifier
helping to determine the position of the symbol.

Example 7.1 Consider r = xy, we want to calculate all the possible deriva-
tives of r.

First we want give each symbol an id as follows:
id(x) = 1
id(y) = 2

The id of x is 1 because it is the initial of the regular expression and the
id of y is 2 because it is concatenated x. We construct a derivative array
putting the initial ids to the first line and subtracting one to every of the
next lines until all ids are zero as follows:

x y
1. 1 2
2. 0 1
3. 0 0

The process simulates the derivation process where each symbol is consumed.

41

42 CHAPTER 7. DFA CONSTRUCTION OPTIMIZATION

Each line of the array is then translated to a regular expression in a straight-
forward manner. We consider that the symbols with null ids are not occur-
ring in the regular expression. If all the ids are zero, then the derivative is
ε. The derivatives are shown below:

1. ab
2. a
3. ε

Example 7.2 Consider r = x | yz. We want to calculate all the possible
derivatives.

We give the ids as follows:

id(x) = 1
id(y) = 1
id(z) = 2

Ids of x and y are 1 because they are separated by alternation.

The derivative array is as follows:
x y z

1. 1 1 2
2. 0 0 1
3. 0 0 0

The derivatives are:

1. x | yz
2. z
3. ε

Example 7.3 Consider r = ab (c | de)fg. We want to calculate all the
possible derivatives.

We apply the derivative array method for each one of the following regular
expressions: r1 = ab, r2 = c | de, r3 = fg.
As a result:
For r1 the derivatives are:
1. ab
2. b

43

3. ε

For r2 the derivatives are:
1. c | de
2. e
3. ε

For r3 the derivatives are:
1. fg
2. g
3. ε

Then we combine the above derivatives. We consider the derivatives of r1

leaving the rest of r as it is and when all of the symbols of r1 have been
consumed we go on with the rest and so on. The result is the one follows:

1. ab(c | de)fg
2. b(c | de)fg
3. (c | de)fg
4. efg
5. fg
6. g
7. ε

Example 7.4 Consider r = (ab (c | de)fg)& (xy), we want to calculate all
the possible derivatives of r.

We consider r1 = ab(c | de)fg and r2 = xy. Due to the fact that r1 and r2

are separated by shuffle, we have to combine each derivative of r1 with each
derivative of r2. So we have 21 derivatives. The process of combining the
derivatives of both subexpressions is quadratic. The possible derivatives are
the one shown below:

We translate each line of the array to a RE. If the id of a symbol is zero
then the symbol does not exist in the RE. The REs are shown below:

44 CHAPTER 7. DFA CONSTRUCTION OPTIMIZATION

1.(ab(c | de)fg)& (xy)
2.(b(c | de)fg)& (xy)
3.((c | de)fg)& (xy)
4.(efg)& (xy)
5.(fg)& (xy)
6.(g)& (xy)
7. xy
8.(ab(c | de)fg)& (y)
9.(b(c | de)fg)& (y)
10.((c | de)fg)& (y)
11.(efg)& (y)
12.(fg) & (y)
13.(g)& (y)
14.y
15.ab(c | de)fg
16.b(c | de)fg
17.(c | de)fg
18.efg
19.fg
20.g
21.ε

The advantage of calculating the derivatives by using the derivative array
is that we eliminate the calculation of same derivatives more that once.
Specially in the case of regular expressions containing the shuffle operator
the number of derivatives using the algorithm described in [7] is exponential
to the cardinality of symbols of the regular expression.

Having the above derivatives we have all the states of the automaton. The
transitions can easily be found. For two derivatives d1 and d2 we know
that if: ||Sym(d1)| - |Sym(d2)|| = 1 there is a transition between d1 and d2

states, with transition symbol the symbol that is not contained in Sym(r1)
∩ Sym(r2) .

45

From To
1 2 and 8
2 3 and 9
3 4 and 10
4 5 and 11
5 6 and 12
6 7 and 13
7 14
8 9 and 15
9 10 and 16
10 11 and 17
11 12 and 18
12 13 and 19
13 14 and 20
14 21
15 16
16 17
17 18
18 19
19 20
20 21

Example 7.5 Consider r = ab∗c∗de. We want to calculate all the possible
derivatives.

We give each symbol an id following the above rules: id(a) = 1, id(b) = 2,
id(c) = 3, id(d) = 3, id(e) = 4.
We assign to d the same id as for c because d is going to be consumed when
c is consumed. It is impossible that d appears in the first position of a
derivative. For example consider a string u = abcde. u ∈ Lr. Then if we
derive wrt to u1 = abc we have:Du1(r) = c∗de, if we go on and derive wrt
to u2 = abcd we have: Du2(r) = e.
We construct the derivative array for the regular expression as follows:

a b c d e
1. 1 2 3 3 4
2. 0 1 2 2 3
3. 0 0 1 1 2
4. 0 0 0 0 1
5. 0 0 0 0 0

46 CHAPTER 7. DFA CONSTRUCTION OPTIMIZATION

We translate the above array into regular expression derivatives as follows:

1. ab∗c∗de
2. b∗c∗de
3. c∗de
4. e
5. ε

Example 7.6 Consider r = (ab (c | de)fg)∗. We want to calculate all the
possible derivatives.

In this case we calculate the derivatives as in example 7.3 for the RE r1 =
ab (c | de)fg but we consider that ε is not one of the derivatives of r. Due
to the existence of kleene star Sym(Du(r)) 6= ∅, ∀ u.

Remark 7.7 It is easy the automata of r to be constructed using the au-
tomata of r1.

Note 7.8 The above algorithm, as it is described by the examples, provide
a more efficient way to calculate the derivatives for a regular expression for
automata construction. As we showed in the examples we avoid repetition of
the calculation of derivatives more than once as described in [12]. Specially
in the case of nested nullable regular expressions where the calculation of
derivatives is exponential the above algorithm seems to be quadratic. Com-
paring it with the linear algorithm for membership checking described in [7],
our algorithm seem to be applicable in a larger family of conflict free regular
expressions.

Chapter 8

Conclusion and future work

The main aspect of our work is to provide a way to succeed XML on-line
validation avoiding the automata construction. All the previous works based
on automata construction provide the conditions under which the size of the
automaton is not exponential. It is shown that only on a particular class
of regular expressions, automata construction is an efficient way to succeed
on-line validation.
Our approach is based on residual techniques. Particularly we use Brzo-
zowski derivatives. The derivatives are considered an elegant and efficient
way to construct recognizers succeeding the minimal states of automata.
We used this technique on conflict free regular expression to provide on-line
validation on the fly. We studied the membership checking of a string wrt
to a regular expression, which is a simplification of XML on-line validation.
We defined a set of rules extended with shuffle, taking advantage of the
conflict free property of the regular expression. We avoided a considerable
number of derivations compared with the rules provided by Brzozowski. We
calculated the time complexity for membership checking without automata
construction, by applying the rules we have defined on conflict free REs.
Furthermore, we provided a way to use our rules on automata construction
eliminating a considerable number of calculation. Nevertheless, we have not
succeeded the optimal calculation process. At the last part we provide in the
form of examples an algorithm that provide an optimization on the number
of calculations for automata construction. We believe that this algorithm is
applicable to every class of conflict free regular expression.
Our future work has two directions: Firstly we want to examine more in
depth the optimized algorithm for automata construction, giving the poten-
tial classes of conflict free regular expressions that it is applicable. Further-

47

48 CHAPTER 8. CONCLUSION AND FUTURE WORK

more, we want to provide the time complexity of this algorithm and com-
pare it with the already known ones for automata construction. Secondly,
we want to study more the on-line validation technique avoiding automata
construction. We want to provide optimization on different classes of reg-
ular expressions, theoretically, and examine the efficiency of this technique
in real worlds DTDs.

Bibliography

[1] B. K. Anne and D. Wood. One unambiguous regular languages. Infor-
mation and computation, 1998.

[2] G. J. Bex, F. Neven, T. Schwentick, and K. Tuyls. Inference of concise
dtds from xml data. VLDB, 2006.

[3] G. J. Bex, F. Neven, and S. Vansummeren. Inferring xml schema defi-
nitions from xml data. VLDB, 2007.

[4] J. A. Brzozowski. Derivatives of regular expressions. JACM, 1964.

[5] C. Chitic and D. Rosu. On validation of xml streams using finite state
machines. WebDB, 2004.

[6] W. Fan and L. Libkin. On xml integrity constraints in the presence of
dtds. ACM, 2002.

[7] G. Ghelli, D. Colazzo, and C. Sartiani. Linear time membership for a
class of xml types with interleaving and counting. PLAN-X, 2008.

[8] A. H. Laender, M. M. Moro, C. Nascimento, and P. Martins. An x-ray
on web-available xml schemas. SIGMOD, 2009.

[9] C. S. McQueen. Application of brzozowski derivatives to xml schema
processing. Extreme Markup Languages, 2005.

[10] M. Montazerian, P. T. Wood, and S. R. Mousavi. Xpath query satisfi-
ability is in ptime for real-world dtds. Xsym, 2007.

[11] M. Murata, D. Lee, M. Mani, and K. Kawagushi. Taxonomy of xml
schema languages using formal language theory. ACM, 2005.

[12] S. Owens, J. Reppy, and A. Turon. Regular expression derivatives
reexamined. Appel, 1988.

49

50 BIBLIOGRAPHY

[13] R. Price. Beyond sgml. ACM, 1998.

[14] L. Segoufin and C. Sirangelo. Constant-memory validation of streaming
xml documents against dtds. ICDT, 2007.

[15] L. Segoufin and V. Vianu. Validating streaming xml documents. ACM
PODS, 2002.

[16] P. T. Wood. Containment for xpath fragments under dtd constraints.
ICDT, 2003.

	Initial part of master.pdf
	master_thesis

