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Εντοπισμός θέσης σε ασύρματα δίκτυα βασισμένος σε

χαμηλής διάστασης αποτυπώματα

Περίληψη: Ο ακριβής εντοπισμός θέσης σε εσωτερικό περιβάλλον αποτελεί μια
σημαντική διαδικασία για πολλά διάχυτα υπολογιστικά συστήματα, με πληθώρα

εφαρμογών που βασίζονται στο IEEE 802.11, Blutetooth, τεχνολογίες υπερήχων και
σε τεχνολογίες υπερήθρων.

Η έμφυτη αραιότητα που παρουσιάζεται στο πρόβλημα του εντοπισμού θέσης

μας παρακινεί να χρησιμοποιήσουμε την πρόσφατη θεωρία της συμπιεστικής δειγμα-

τοληψίας (Compressive Sensing - CS), η οποία ορίζει οτι εάν έαν σήμα έχει αραιή
αναπαράσταση σε μια κατάλληλη βάση τότε μπορεί να ανακατασκευαστεί με μεγάλη

ακρίβεια από ένα μικρό αριθμό τυχαίων γραμμικών προβολών.

Η παρούσα μεταπτυχιακή εργασία εισάγει αρχικά μια νέα τεχνική εύρεσης θέσης

μοντελοποιώντας τις μετρήσεις της ισχύς του σήματος - που έχουν ληφθεί από

διάφορα σημεία πρόσβασης (Access Points - APs) - με πολυδιάστατη Γκαουσιανή
κατανομή. Χρησιμοποιείται επίσης η θεωρία της συμπιεστικής δειγματοληψίας για την

ακριβή εκτίμηση εύρεσης θέσης βασισμένη στις μετρήσεις της ισχύς του σήματος, ενώ

μειώνεται σημαντικά η ποσότητα της πληροφορίας που εκπέμπεται από μια ασύρματη

συσκευή με ελάχιστους πόρους ενέργειας, δυνατότητα αποθήκευσης και επεξεργασίας,

σε μια κεντρική μηχανή (server). Η δυνατότητα της θεωρίας της συμπιεστικής δειγμα-
τοληψίας να συμπεριφέρεται σαν αδύναμη διαδικασία κρυπτογράφησης αποδεικνύεται

από το γεγονός ότι η προτεινόμενη προσέγγιση παρουσιάζει αυξημένη ανθεκτικότητα

σε πιθανές εισβολές από κακόβουλους χρήστες. Τέλος, παρουσιάζεται ένα υβριδικό

μοντέλο εκτίμησης πορείας, το οποίο χρησιμοποιεί την αποδοτικότητα του φίλτρου

Kalman σε συνδυασμό με την θεωρία της συμπιεστικής δειγματοληψίας και το
πολυδιάστατο Γκαουσιανό μοντέλο.

Τα πειράματα αποκαλύπτουν αυξημένη επίδοση εκτίμησης θέσης, ενώ τα επίπεδα

υπολογιστικής πολυπλοκότητας παραμένουν χαμηλά, σε σύγκριση με προηγούμενες

στατιστικές μεθόδους.

Λέξεις - κλειδιά: Συμπιεστική δειγματοληψία (CS), αραιή αναπαράσταση,
πολυδιάστατο Γκαουσιανό μοντέλο, απόκλιση Kullback-Leibler, μετρήσεις λαμ-
βανόμενης ισχύς του σήματος, φίλτρο Kalman



Low-dimensional Signal-Strength Fingerprint-based Positioning in
Wireless LANs

Abstract: Accurate indoor localization is a significant task for many ubiquitous
and pervasive computing applications, with numerous solutions based on IEEE
802.11, Bluetooth, ultrasound and infrared technologies being proposed.

The inherent sparsity present in the problem of location estimation moti-
vates in a natural fashion the use of the recently introduced theory of compressive
sensing (CS), which states that a signal having a sparse representation in an
appropriate basis can be reconstructed with high accuracy from a small number of
random linear projections.

This thesis proposes a novel localization technique based on a multivariate
Gaussian modeling of the signal strength measurements collected from several
access points (APs) at different locations. It is also exploited the framework of CS
to perform accurate indoor localization based on signal-strength measurements,
while reducing significantly the amount of information transmitted from a wireless
device with limited power, storage, and processing capabilities to a central server.
Equally importantly, the inherent property of CS acting as a weak encryption
process is demonstrated by showing that the proposed approach presents an
increased robustness to potential intrusions of an unauthorized entity. Finally, a
hybrid path tracking system is presented, which exploits the efficiency of a Kalman
filter in conjunction with the power of compressive sensing to represent accurately
sparse signals and a region-based multivariate Gaussian model.

The experimental evaluation reveals an increased localization performance,
while maintaining a low computational complexity when compared with previous
statistical fingerprint-based methods.

Keywords: Compressive sensing, sparse representation, multivariate Gaus-
sian model, Kullback-Leibler divergence, RSS measurements, Kalman filter



Low-dimensional Signal-Strength Fingerprint-based Positioning in
Wireless LANs

Résumé: La localisation précise en intérieur est un élément important pour
nombre d’applications pervasives et ubiquitaires et met en oeuvre des solutions
diverses basées sur IEEE 802.11, Bluetooth, les ultrasons, et les infrarouges.

La faible densité du signal présenté dans le problème de la localisation est
une propriété exploitée dans la récente théorie du "Compressive Sensing" (CS),
qui établit qu’un signal qui a une faible densité dans une base donnée peut être
reconstruit avec grande précision a partir d’un petit nombre de projections linéaires.

Cette thèse propose une approche innovante basée sur un modèle Gaussien à
plusieurs dimensions des mesures des signaux collectes sur des points d’accès (APs)
à des positions différentes. La théorie du "Compressive Sensing" (CS) est aussi
utilisée afin de réaliser une localisation précise en intérieur, basée sur la mensuration
de la force du signal. Le résultat de l’ application de cette théorie est la réduction
significative du pourcentage des informations transmises par un point d’ accès sans
fil (PDA, ordinateur portable etc.) avec une puissance, capacité d’ enregistrement
et capacité du processeur limités dans un serveur central. La propriété de la théorie
du CS de donner un résultat faible concernant le processus de chiffrement est
prouvé par le fait que l’ approche proposé présente une résistance croissante aux
intrusions potentiels des utilisateurs sans autorisation d’ entrée dans le système.
Enfin, un système de tracking est présenté, utilisant d’ un côté l’ efficacité du filtre
Kalman et de l’ autre côté l’ efficience de la théorie du CS en combinaison avec le
modèle Gaussien multi-varié, basé sur des régions.

L’ évaluation expérimentale de la méthode révèle une performance croissante
en ce qui concerne la localisation. En même temps, la méthode utilisée maintient
une complexité computationnelle basse, comparée à d’ autres méthodes statistiques
d’ empreinte digitales.

Mots-clés: Compressive sensing, faible densité, modèle Gaussien multi-varié,
divergence Kullback-Leibler, RSS mesures, filtre Kalman
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Chapter 1

Introduction

Contents
1.1 RSS-based WLAN Positioning Systems . . . . . . . . . . . . 2

1.1.1 Location-Sensing Techniques . . . . . . . . . . . . . . . . . . 2

1.1.2 Existing Positioning Systems . . . . . . . . . . . . . . . . . . 3

1.2 Problem Statement and Objectives . . . . . . . . . . . . . . . 3

1.3 Technical Challenges . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Location estimation systems have a great potential in several distinct areas, such
as in navigation, transportation, medical community, security, and entertainment.
With the wide deployment of mobile wireless systems and networks, location-based
services are made possible on mobile devices.

Location-sensing systems can be classified according to their dependency on
and use of: (a) specialized infrastructure and hardware, (b) signal modalities,
(c) training, (d) methodology and/or use of models for estimating distances,
orientation, and position, (e) coordination system (absolute or relative), scale,
and location description, (f) localized or remote computation, (g) mechanisms
for device identification, classification, and recognition (h) accuracy and precision
requirements. The distance can be estimated using time of arrival (e.g., GPS,
PinPoint [35]) or signal-strength measurements, if the velocity of the signal and
a signal attenuation model for the given environment, respectively, are known.
Positioning systems may employ different modalities, such as, IEEE 802.11 (Radar
[7, 15], Ubisense, Ekahau [2]), infrared (Active Badge [33]), ultrasonic (Cricket
[25, 26], Active Bat), Bluetooth [8, 13, 27, 5, 15], 4G [28], vision (EasyLiving), and
physical contact with pressure (Smart Floor), touch sensors or capacitive detectors.
They may also combine multiple modalities to improve the localization, such as
optical, acoustic and motion attributes (e.g.,[6]).

Most of the signal-strength based localization systems can be classified into
the following two categories, namely signature- or map-based and distance-
prediction-based techniques. The first type creates a signal-strength signature
or map of the physical space during a training phase and compares it with the
signature generated at runtime (at the unknown position) [7, 20, 34]. To build
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such signatures, signal-strength data is gathered from beacons received from
APs. During a training phase, at various predefined positions (of the map),
such measurements are collected, and signatures are generated that associate the
corresponding positions of the physical space with statistical measurements based
on signal-strength values acquired at those positions. Such maps can be formed
with data from different sources or signal modalities, such as ultrasound from
deployed sensors to improve location-sensing [25, 15]. The distance-prediction-based
techniques use the signal-strength values and radio-propagation models to predict
the distance of a wireless client from an AP (or any landmark) or even between two
wireless clients (peers) with estimated position (such as CLS [31]). In situations
where a deployment of a wireless infrastructure may not be feasible, positioning
mechanisms may exploit cooperation by enabling devices to share positioning
estimates [29, 9, 21, 31, 14, 11, 12, 35]. A survey of positioning systems can be
found in [17].

The IEEE 802.11 infrastructure does not require any specific hardware or in-
stallation costs. However, due to the nature of the indoor environment, transient
phenomena, such as shadowing and multipath fading, lead to radio channel
obstructions and variations of the RSS. Most of the fingerprint-based systems
have increased computational cost. This makes the design of accurate positioning
systems a difficult task and location estimation a challenging area of research.

On the other hand, the inherent sparsity of the physical space motivated in
a natural fashion the use of the recently introduced theory of compressive sensing
(CS) [68, 69] in the problem of target localization [71]. CS states that signals
which are sparse or compressible in a suitable transform basis can be recovered
from a highly reduced number of incoherent random projections, in contrast to the
traditional methods dominated by the well-established Nyquist-Shannon sampling
theory.

1.1 RSS-based WLAN Positioning Systems

The WLAN IEEE 802.11b/g is a standard used for providing wireless internet ac-
cess for indoor areas. It is operated at 2.4 GHz Industrial, Scientific and Medical
(ISM) band within a range of 50-100. As mentioned earlier, the RSS can be eas-
ily obtained by using any WLAN-integrated device, thus it is used by most of the
WLAN positioning systems.

1.1.1 Location-Sensing Techniques

There are three major techniques to obtain the location estimate from the RSS
[76, 38]. They are listed as follows:

1. Triangulation: The RSS can be translated into distance from the particular
AP according to a theoretical or empirical signal propagation model. Then,
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with distance measurements from at least 3 APs with known positions, lat-
eration can be performed to estimate the locations. This approach does not
give accurate estimate, as the indoor radio propagation channel is highly un-
predictable and thus the use of the propagation model is not reliable.

2. Proximity: This method finds the strongest RSS from a specific AP and de-
termines the location to be the region covered by this AP. This method only
gives a very rough position estimate but it is easy to be implemented.

3. Scene Analysis: This method first collects RSS readings at known positions,
which are referred to as fingerprints, in the area of interest. Then, it estimates
the locations by comparing the online measurements with the fingerprints
through pattern recognition techniques. This method is used by most WLAN
positioning systems, as it is able to compute accurate location estimates. This
is the approach used by the positioning and tracking system proposed in this
thesis.

1.1.2 Existing Positioning Systems

Some WLAN positioning systems that can be accessible to the public, show that
the use of fingerprinting achieves the best accuracy in indoor areas. Although the
Ekahau [2] attains the best accuracy, it uses the probabilistic method to compute the
estimated positions and thus requires a more comprehensive survey of RSS readings
in the region of interest. In addition, its position calculation is computed at the
server as the complexity of the probabilistic method is too high to be performed on
the mobile devices. This raises additional issues when using these systems. First,
the devices must be connected to the same network as the server to obtain position
estimates. Second, positions obtained from the server must be encrypted before it is
transmitted to the mobile devices, in order to protect the privacy of the users. The
aim of this thesis is to design an indoor positioning and tracking system that can
provide accurate position estimate with relatively low computational complexity, so
that it can be computed on mobile devices. This solution may have a database
server to keep track of the fingerprints database collected, and when downloaded to
the devices, they are connected to the server to obtain position estimates.

1.2 Problem Statement and Objectives

A typical WLAN indoor tracking scenario consists of 1) a mobile device equipped
with a WLAN adapter, which is carried by a user and collects RSS from detectable
access points for localization 2) access points (APs), which can be commonly
found in most buildings and their exact positions are not necessarily known to the
localization systems, as they may belong to different network groups and possibly 3)
a database server, which stores the fingerprints collected by the mobile device. The
WLAN-enabled device can extract information, such as MAC address, SSID and
received signal strength (RSS) about these APs by receiving messages broadcasted
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from them. This thesis focuses on the WLAN localization and tracking problem
using RSS values for positioning. The mobile device carried by the user collects the
RSS from L different APs whose unique MAC addresses are used for identification.
Then, the system determines the current position based on this RSS measurements
and previously collected fingerprint database. The goal of this thesis is to propose
a WLAN positioning and tracking system that can give accurate position estimate.
In the context of this thesis, the mobile devices refer to the handheld devices (or
netbooks/laptops), which have degraded WLAN antennas, limited power, memory
and computation capabilities, thus a light-weight algorithm is required to allow
these devices to have real-time and accurate performance.

The localization problem is defined as follow. First, the device collects on-
line RSS readings from available APs periodically at a time interval ∆t, which is
limited by the device’s network card and hardware performances. These online
RSS readings can be denoted as r(t) = [r1(t), r2(t), ..., rL(t)], t = 0, 1, 2, ..., where
rl(t) refer to the RSS reading collected from AP l at time t. Then, the proposed
positioning and tracking system uses r(t) to compute the position estimate, denoted
as p̂(t) = [x̂(t), ŷ(t)]T , where (x̂(t), ŷ(t)) are the Cartesian coordinates of the
estimated position at time t.

1.3 Technical Challenges

The unpredictable variation of RSS in the indoor environment is the major technical
challenge for the RSS-based WLAN positioning systems. There are three main
reasons that lead to the variation of RSS.

1. First, due to the structures of the indoor environment and the presence of
different obstacles, such as walls and doors or human behavior, the WLAN
signals experience severe multi-path and fading and the RSS varies over time
even at the same location.

2. Secondly, since the WLAN uses the licensed-free frequency band of 2.4GHz,
the interference on this band can be very large. Example sources of interference
are the cordless phones, BlueTooth devices and microwave. Moreover, the
presence of human bodies also affects the RSS by absorbing the signals [37],
as human bodies contain large amount of water, which has the same resonance
frequency as the WLAN.

3. Finally, the orientation of the measuring devices also affects the RSS, as ori-
entation of antenna affects the antenna gain and the signal is not isotropic in
real indoor environment.

All of the above reasons make it infeasible to find a good radio propagation model to
describe the RSS-position relationship. Thus, a fingerprinting method is often used
instead to characterize the RSS-position relationship. This method computes the
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position estimate by matching the online RSS readings to the fingerprints collected
during training phase. This pattern matching process is a non-trivial problem
as there are derivations between the online RSS readings to the fingerprint RSS
readings due to the time-varying characteristics of the indoor radio propagation
channel. In addition, the movement of objects, including the movement of the user
who carries the mobile device, also affects the RSS readings. This type of variation
of RSS is needed to be addressed by the fingerprinting-based positioning systems,
in order to provide accurate position estimate.

Another challenge relates to the computational capabilities of the mobile de-
vices. PDAs have very limited computation speed and memory when comparing to
a laptop. Thus, some of the positioning systems that can be implemented on the
laptop may not be able to be used by the PDA. The computational complexity and
the use of memory must be taken into consideration when designing positioning
and tracking systems.

1.4 Scope

In this thesis, an indoor RSS-based WLAN positioning and tracking system is
proposed and implemented. Such system is able to address the challenges mentioned
in the previous section. The structure of this thesis is organized as follows.

First, Chapter 2 overviews related positioning systems for mobile computing.
It also describes five fingerprinting based methods: K-nearest neighbor (KNN),
confidence interval, percentiles, empirical distribution and spatial sparsity, which
are used as performance benchmarks to the proposed positioning system, and
they are implemented in Chapter 6 to compare the performance of the proposed
positioning system. In addition, it presents different ways to improve these
positioning methods, such as the determination of region of interest, according to
their probability densities, evaluation of the impact of the number of APs and the
use of filters with inputs of previous estimate. Finally, the Compressive Sensing
(CS) theory is introduced and briefly summarized in Section 2.4.

In Chapter 3, the Multivariate Gaussian (MvG) algorithm is introduced.
This chapter presents how the system is operated to estimate the user’s position.
It describes how the construction of the database is done using the collected
fingerprint by applying the algorithm during the training phase. At runtime the
system compares the signature at the unknown position with the signature of
each cell using the Kullback-Leibler Divergence estimation (KLD) between their
corresponding probability densities. The algorithm reduces the area of interest by
choosing a few regions of training cells, whose RSS readings from the database are
best-matched to the online RSS readings.
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Then, the CS-based positioning system is introduced in Chapter 4. The al-
gorithm converts the localization problem into sparse signal recovery problem,
so that CS theory can be applied. The inherent property of CS acting as a
weak encryption process is demonstrated by showing that the proposed ap-
proach presents an increased robustness to potential intrusions of an unauthorized
entity. The interactions between the mobile device and the server are also explained.

In Chapter 5, a hybrid path tracking system is presented, which exploits the
efficiency of a Kalman filter in conjuction with the power of compressive sensing to
represent accurately sparse signals and a region-based multivariate Gaussian model.
First, the path tracking model employs a region-based multivariate Gaussian
(MvG) model and then, for each region, a CS approach is applied as a refinement
step.

Chapter 6 describes in detail all the experimental results conducted in three
experimental sites and also on a simulated dataset. The experiments done at
the FORTH-ICS, CretAquarium and INRIA-Rocquencourt in Paris, focused
on the evaluation of the proposed positioning system, whereas the performance
of the proposed tracking system was evaluated using the data collected from INRIA.

Finally, Chapter 7 presents the concluding remarks and gives directions for
future work.
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2.1 Introduction

In this section, a brief overview of RSS-based WLAN positioning and tracking tech-
niques is given. The five fingerprinting-based methods, namely KNN, confidence
interval, percentiles, empirical distribution and spatial sparsity are summarized in
Sections 2.3.1, 2.3.2, 2.3.3, 2.3.4 and 2.3.5, as they are implemented in Chapter 6
to compare the performance of the proposed positioning system.

There are two additional concepts used on this thesis to develop the pro-
posed positioning and tracking system using the fingerprinting approach. Chapter 3
describes the operation of the MvG algorithm, which generates regions of interest.
Section 2.4 summarizes the compressive sensing theory which can be applied on
the localization problem to estimate the user’s location, described extensively in
Chapter 4.
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2.2 Indoor RSS-based WLAN Positioning Techniques

The main problem for the indoor RSS-based positioning systems is to identify the
RSS-position relationship, so that the user’s location can be estimated based on
the RSS collected at that location. There are two approaches in dealing with this
relationship [39]: use of signal propagation models [40, 41] and the location finger-
printing methods [42, 7, 43].

2.2.1 Signal Propagation Modeling

This technique uses the RSS readings collected by the mobile device to estimate the
distances of the device from at least two APs, whose locations are known, based on
a signal radio propagation model. Then triangulation is used to obtain the device’s
position [76].

The accuracy of this technique depends heavily on finding a good model
that can best describe the behavior of the radio propagation channel. However, the
indoor radio propagation channel is highly unpredictable and time-varying, due to
severe multipath in indoor environment, shadowing effect arising from reflection,
refraction and scattering caused by obstacles, walls and interference with other
devices operated at the same frequency (2.4GHz) as the IEEE 802.11b/g WLAN
standard, such as cordless phones, microwaves and BlueTooth devices. There are
two models that are often used for the indoor radio propagation channel:

1. The log-distance path loss model is a radio propagation model that predicts the
path loss a signal encounters inside a building or densely populated areas over
distance [64]. Experiments have shown that in different distance “d", the path
loss PL(d) in a specific position are randomly and distributed logarithmic-
normal (normal in dB) around the dependent distance mean value [65, 66].
The model is formally expressed as:

PR = PT − PL0 − 10n log 10
d

d0
−Xσ (2.1)

where PR is the received power in dBm, PT is the transmitted power in dBm,
PL0 is the path loss at the reference distance “d" (dB), d is the length of the
path, d0 is the reference distance (in our case, for indoor positioning is 1 m)
and n is the path loss exponent.

Xσ is a normal (or Gaussian) random variable with zero mean, reflecting the
attenuation (in dB) caused by flat fading. In case of no fading, this variable is
equal to 0. In case of only shadow fading or slow fading, this random variable
may have a Gaussian distribution with σ standard deviation in dB, resulting
in a log-normal distribution of the received power in Watts. In case of only
fast fading caused by multipath propagation, the corresponding gain in times
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Fσ = −10 log 10Xσ may be modelled as a random variable with Rayleigh or
Ricean distribution.

2. The Wall Attenuation Factor model [7] includes the effects of obstacles or walls
between the transmitter and receiver. The received power can be obtained by:

Pr = P0 − 10γlog10
d

d0
−

{
nw ·WAF, nw < C

C ·WAF, nw ≥ C
(2.2)

where nw is the number of obstacles or walls between the transmitter and re-
ceiver, C is a threshold up to which no significant attenuation can be observed
and WAF is the wall attenuation factor. The two empirical models require
the calibration of the parameters, such as the path loss exponent, which vary
depending on different environments. This often requires a comprehensive sur-
vey of the RSS distributions over the environment, which is a time consuming
process. In addition, the models assume the RSS is distributed isotropically
from the transmitter. This is often not the case for indoor environments due
to the presence of obstacles. The orientation of the antenna of the mobile
device also affects the RSS [37], but it is not reflected in the two models. Fi-
nally, the locations of the APs may not be known in the real scenario, as these
APs may be installed and owned by different vendors. All of these make the
models inadequate to describe the RSS-position relationship in real situation
and lead to errors in estimating the user’s location.

2.2.2 Location Fingerprinting

A wireless device that listens to a channel receives the beacons sent by APs
(at that channel) periodically and records their RSS values. Wireless devices
that run fingerprint-based positioning systems acquire such measurements and
generate statistical fingerprints for a position using these measurements. The
statistical-based generation of fingerprints can take place using various methods.
The physical space is represented as a grid of cells with fixed size and well-known
coordinates. During a training phase, at known positions of the physical space such
measurements are collected by a wireless client (training measurements). At each
position, the wireless client scans all the available channels and listens for beacons
from APs. During the runtime phase, the system also records the RSS values
from the received beacons (runtime measurements). As in the case of training, the
wireless client scans all the available channels.

A statistical-based signature is constructed for each cell of the grid using the
signal-strength measurements collected during the training phase (training
signatures). Similarly, applying the same statistical method, at runtime, a
statistical-based signature is also generated using the runtime measurements
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on-the-fly (runtime signature). The runtime signature is then compared with all the
training signatures. The cell with a training signature that has the smallest distance
from the runtime signature is reported as the estimated position. The fingerprint
of a cell is a vector of training signatures. Each entry of the vector corresponds to
one AP. The fingerprint of the unknown position is the corresponding vector of the
runtime signatures.

A location fingerprinting method is often used instead of the radio propaga-
tion model, as it can give better estimates of the user’s locations for indoor
environments. This method is divided into two phases, namely the training and
runtime phases. During the training phase, which is also referred to as the offline
phase, the RSS readings from different APs are collected by the WLAN-integrated
mobile device at known positions, which are referred to as the training cells,
to create a fingerprint database, also known as the radio map. The actual
positioning takes place in the runtime phase. The mobile device, which is carried
by the user collects RSS readings from different APs at an unknown position.
Then, these RSS online measurements are compared to the fingerprint database to
estimate the user’s location by using different methods described in the next section.

The accuracy of the estimated position of the user depends highly on the
number of training cells collected in the fingerprint database. If there are more
training cells, then the radio map has a finer resolution and thus allows a better
estimation [43]. In addition, since the RSS varies over time, collecting more time
samples of RSS readings at the same training cell also improves the position
estimation. Thus, this fingerprint database collection is a time consuming and
labour-intensive process. [44] uses the spatial correlation of adjacent training cells
to generate the database by interpolation from a small number of training cells and
this method is able to reduce the labour effort and time required for the offline phase.

Another disadvantage of this fingerprinting approach is the maintenance of
such databases. Since the RSS propagation environment varies with time, the
accuracy of using the database degenerates over time, as the current RSS readings
slowly deviate from the readings in the database. The database may even be ren-
dered useless, if the environment changes significantly. This requires the fingerprint
database to be rebuilt periodically, in order to ensure the accuracy of the positioning
system. In [45] a novel method is presented to update the radio map using the online
RSS readings, which can efficiently update the fingerprint database without the
labour and time overhead cost as required by rebuilding such database from scratch.

As shown in [46], the RSS readings collected by different network cards are
different, which can vary up to -25dBm. This indicates that the same fingerprint
database cannot be used by different mobile devices, which are equipped with
different WLAN network cards. That means that the fingerprint collection process
must be done on each device and lead to very high labour and time costs. Another
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method is to use the signal strength difference (SSD) between APs instead of the
RSS as the fingerprint [47].

Although there are limitations to the location fingerprinting, it is a simple
and effective method to be used by indoor positioning systems. This thesis also
uses this approach to estimate the user’s location.

2.3 Fingerprinting-based Positioning Methods

There are two approaches to estimate the user’s location based on the online RSS
measurements and the fingerprint database [48, 74]. The deterministic approach uses
only the average of the RSS time samples from each training cell to estimate the
location, whereas the probabilistic approach incorporates all the RSS time samples
for the computation. In the following sections we will analyse the KNN, confidence
interval, percentiles, empirical distribution and spatial sparsity methods.

2.3.1 K-Nearest Neighbour method (KNN)

Another common approach in location estimation problems is the use of the k-
Nearest Neighbor algorithm (kNN) [74], where an RSS map is constructed by av-
eraging separately the signal-strength values received from each AP. Let µR =

[µ1, . . . , µP ] be the signature vector of the unknown runtime cell cR, where µi
is the average RSS received from the i-th AP (i = 1, . . . , P ). Similarly, let
νT,c = [νc1, . . . , ν

c
P ] be the signature vector of the cell c extracted during the training

phase. Then, the algorithm computes the Euclidean distance between the runtime
and all the training cells, d(cR, c) = ‖µR − νT,c‖2 (c = 1, . . . , C), and reports the k
closest neighbors by sorting the distances in increasing order. The final estimated
position is given by computing the centroid of these k closest neighbors.

2.3.2 Confidence intervals

In the confidence intervals’ method the signature is a vector of confidence inter-
vals, each corresponding to an AP. Each confidence interval is generated using the
RSS values of the beacons received from the corresponding AP. Let us denote as
[T−i (t), T+

i (t)] the confidence interval for AP i at cell t during the training phase.
The fingerprint of a cell is the vector of these confidence intervals (for all APs) at
that cell. Similarly, at runtime, at the unknown position, the system records the
RSS values from a number of beacons sent by the APs and computes a confidence
interval for each AP. For example, the runtime confidence interval for AP i is the
[R−i , R

+
i ]. The runtime fingerprint is a vector composed by all confidence intervals

formed at runtime from all APs. An AP i participates in this technique by assign-
ing a vote (weight) for a cell t that indicates the similarity of its training confidence
interval [T−i (t), T+

i (t)] with the runtime confidence interval [R−i , R
+
i ] according to
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the following rule:

w(t) =



T+
i (t)−R−i
R+

i −T
−
i (t)

if T−i (t) < R−i < T+
i (t) < R+

i

R+
i −T

−
i (t)

T+
i (t)−R−i

if R−i < T−i (t) < R+
i < T+

i (t)

1 if R−i ≤ T
−
i (t) < T+

i (t) ≤ R+
i ,

or T−i (t) ≤ R−i < R+
i ≤ T

+
i (t)

0 if R−i < R+
i ≤ T

−
i (t) < T+

i (t),
or T−i (t) < T+

i (t) ≤ R−i < R+
i

(2.3)

By adding these votes, the confidence-interval based approach computes a weight
for that cell that indicates its likelihood to be the unknown position (at which the
corresponding runtime measurements were collected).

At the start of the runtime phase, each cell has a zero weight. For each cell,
the training confidence interval of each AP is compared with the corresponding (for
that AP) runtime confidence interval at the unknown cell c. The algorithm assigns
a weight at cell c, w(c), that indicates the likelihood that this cell is the position
of the device. Each AP participates by assigning a vote to that cell. Specifically,
the weight of that cell is increased by a specific value, indicated by the following
criteria: In the case that the training confidence interval is included in the runtime
confidence interval or the runtime confidence interval is included in the training
confidence interval, the weight of that cell is increased by one. In the case of partial
overlap of these two confidence intervals, the value corresponds to the ratio of this
overlap. The cell with the maximum weight is reported as the estimated position.

A main drawback of the weight as defined in (2.3) is its sensitivity to the
relative position of the endpoints (boundaries) of the confidence interval. Even a
small displacement of an endpoint (in the runtime confidence interval relative to
the training confidence interval) may affect significantly the value of the weight.
Furthermore, there are cases where the rule in (2.3) may result in equal weights
between the unknown runtime cell c and two completely distinct training cells t1,
t2. In the following, a typical example is presented for each case. For convenience,
consider the simplified scenario of a single AP and the signatures of one runtime and
two training cells, c 7→ [R−(c), R+(c)], t1 7→ [T−(t1), T

+(t1)], t2 7→ [T−(t2), T
+(t2)].

• Example 1 : the endpoints of the confidence intervals of the cells c and t1
satisfy the following relations,
case A: T−(t1) < R−(c) < R+(c) < T+(t1)

case B: T−(t1) < R−(c) < T+(t1) < R+(c) with R−(c) = T+(t1)−ε, R+(c) =

T+(t1) + ε

that is, the two cases differ by a small displacement of the runtime confidence
interval by ε. Although the two cases are not so different with respect to the
RSS measurements, however, in case A the rule (2.3) gives a weight equal to
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1, while in case B the weight is equal to

T+(t1)−R−(c)

R+(c)− T−(t1)
=
T+(t1)− T+(t1) + ε

T+(t1) + ε− T−(t1)
=

ε

T+(t1)− T−(t1) + ε
.

Clearly, when ε → 0 the weight in case B is equal to 0. That is, even if the
unknown runtime cell c coincides with the training t1 a small variation of the
RSS measurements may affect significantly the corresponding weight.

• Example 2 : the endpoints of the confidence intervals of the cells c, t1 and t2
are related as follows,
T−(t1) < R−(c) < T+(t1) < R+(c) , R−(c) < T−(t2) < R+(c) < T+(t2) with
|T−(t1)−R−(c)| = |R−(c)− T−(t2)|
|R−(c)− T+(t1)| = |T−(t2)−R+(c)|
|T+(t1)−R+(c)| = |R+(t2)− T+(c)|
By substituting in (2.3), the corresponding weights, that is, the values of the
first two ratios are equal, and thus the confidence interval method would assign
the same weight to both training cells, being unable to distinguish between t1
and t2.

2.3.3 Percentiles

This approach is similar to the confidence-interval one. However, instead of using
confidence intervals for constructing the fingerprints, percentiles are employed. A
set of percentiles can capture more detailed information about the signal strength
distribution than confidence intervals, and thus, resulting to more accurate finger-
prints. The weight of a cell c, w(c), is computed as follows:

w(c) =
N∑
i=1

√√√√ p∑
j=1

(Rij − T ij (c))2 (2.4)

where N is the number of APs, p the number of percentiles, Rij the j-th percentile
of runtime measurements from the i-th AP and T ij (c) the j-th percentile using the
training measurements from the i-th AP at the cell c.
As in the confidence interval case, the cell with the maximum weight is reported as
the estimated position. In the case of the top 5 weighted percentiles approach, the
centroid of the top five cells with the largest weight is reported as the estimated
position.

2.3.4 Empirical distribution

The signature of a cell is a vector of size equal to the number of APs that appear
in both the training and runtime measurements. Each entry of a training (runtime)
signature corresponds to the complete set of RSS values collected during the training
(runtime) phase, respectively. This method creates a signature based on the set of
signal-strength measurements collected at each cell from all APs. At runtime, at an
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unknown position, each cell is assigned a weight which corresponds to the average
empirical KLD distance of each AP (at that cell) from the runtime measurements
collected at the unknown position from the same AP. The cell with the smallest
weight is reported as the position.

2.3.5 Spatial sparsity

In a recent work [75], the problem of location estimation was treated in a frame-
work that also takes advantage of the spatial sparsity. In particular, the location
estimation is formulated as a constrained `1-norm minimization problem based on a
suitably learned dictionary. A signature is associated to each AP by averaging the
RSS measurements which would be received by the AP from each potential cell of
the discrete spatial domain. Then, the system builds the dictionary by concatenat-
ing the signatures from all APs. A similar signature is generated at the unknown
runtime cell, which is then projected on the dictionary to form the vector of measure-
ments. However, the lack of a random measurement matrix required when working
in the framework of CS may decrease the system’s performance under unpredictable
environmental conditions, while also the communication of the projected measure-
ments from the wireless device to the APs, where the localization takes place, could
pose undesired security issues.

2.4 Compressive Sensing Theory

Compressive sensing theory allows compressible signals to be recovered by fewer
samples than traditional methods, which according to the Nyquist sampling theory
requires the sampling rate to be at least twice the maximum bandwidth. This
is possible when signals of interest are sparse and are sampled incoherently. The
compressive sensing problem can be formulated as follow [67]:

Consider a discrete-time signal x as a N × 1 vector in RN . Such signal can be
represented as a linear combination of a set of basis {ψi}Ni=1. Constructing a N ×N
basis matrix Ψ = [ψ1, ψ2, . . . , ψN ], the signal x can be expressed as

x =
N∑
i=1

siψi = Ψs (2.5)

where s is a N × 1 vector and is an equivalent representation of x in a basis Ψ. A
signal is K-sparse when it can be represented as a linear combination of K << N

basis vectors. This means that there is only K nonzero entries for the vector s.
The overall compressive sensing measurement model can be expressed as

y = Φx = ΦΨs = Θs (2.6)

where Φ is a M ×N , M < N measurement sensing matrix for sensing the signal x,
Θ = ΦΨ is an M ×N matrix, and y is a M × 1 observation vector collected as a
result of this sensing process. This problem can be referred to as incoherent sampling
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if the largest correlation between the sensing matrix Φ and the representation basis
Ψ,

µ(Φ,Ψ) =
√
N · max

1≤i,j≤N
| < φi, ψj > | (2.7)

is small. Compressive sensing theory requires both the sparsity and incoherent
sampling, so that the signal can be recovered exactly with high probability. If M ≥
cK log(N/K) << N , where c is a small constant, the signal can be reconstructed
by solving the following `1 norm minimization problem:

ŝ = arg min
s∈RN

||s||1 s.t. Θs = y. (2.8)

This is a convex optimization problem that can be easily converted into a linear
program, known as basis pursuit, through primal-dual method [69, 68]. Additional
algorithms to solve this optimization problem can also be found in [68].

2.5 Indoor Positioning and Tracking

Most of the indoor tracking methods use past position estimates and motion dy-
namics to refine the current position estimate determined by the above positioning
methods. In addition, the dynamic motion model can also be used in conjunction
with the current position estimate to predict the future possible locations. The
motion dynamics can be modeled by a general Bayesian tracking model and a filter
is then derived to refine the position estimates [49]. There are two filters that are
used commonly to improve the accuracy of positioning systems, Kalman filter and
Particle filter.

2.5.1 Kalman filter

By assuming the Gaussian tracking noise model and linear motion dynamics, the
general filter becomes a Kalman filter, whose optimal solution is a minimum mean
square error (MMSE) estimate. Although the assumption of Gaussian RSS-position
relationship is not often the case [37], the application of the Kalman filter as the
post-processing step is able to improve the accuracy of the positioning systems
[49, 50, 51, 52]. The parameters of the Kalman filter are needed to be found ex-
perimentally. In [53] are provided some guidelines on how to set the parameters for
each update steps based on the map information.

2.5.2 Particle filter

The particle filter is a sequential Monte Carlo method that generates random
samples, known as particles, according to a motion models and estimates their
probability densities [54, 55]. Unlike the Kalman filter, the particle filter can be
applied on non-Gaussian and non-linear models. In addition, map information can
be used to further improve the performance of the particle filter by assigning zero
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weights to the invalid particles, such as those across the wall [56, 57]. Backtracking
based on the map information is also proposed in [58]. Moreover, information
obtained from accelerometers and inertial measurement units (IMU) can also be
used to refine the motion models and let the filter to generate particles that are
more relevant and hence improve the tracking accuracy [59, 60].

However, the major drawback of the particle filter is its high computation
complexity. For example, 1600 particles are needed for each filter update for a
40m × 40m experimental area to achieve the best performance [57]. This large
computation workload can not be handled by the mobile devices to give real-time
updates to the user. Hence, this thesis chooses the Kalman filter to post-process
the estimates instead of the particle filter, which may severely hinder the operations
of the mobile devices.

2.5.3 Other fingerprinting methods

Besides the use of the above filters, several other methods are also used for the
indoor positioning and path tracking. Recently significant work has been published
in the area of location-sensing using RF signals. Like CLS, Radar [7] employs
signal-strength maps that integrate signal-strength measurements acquired during
the training phase from APs at different positions with the physical coordinates
of each position. Each measured signal-strength vector is compared against the
reference map and the coordinates of the best match will be reported as the
estimated position. Bahl et al. [23] improved Radar to alleviate side effects that
are inherent properties of the signal-strength nature, such as aliasing and multipath.

Ladd et al. [20] proposed another location-sensing algorithm that utilizes the
IEEE 802.11 infrastructure. In its first step, a host employs a probabilistic model
to compute the conditional probability of its location for a number of different
locations, based on the received signal-strength measurements from nine APs. The
second step exploits the limited maximum speed of mobile users to refine the re-
sults and reject solutions with a significant change in the location of the mobile host.

Kung et al. [19] propose a method for evaluating the impact of the IEEE
802.11 APs on positioning in order to strengthen the role/contribution of a “good"
AP while the emphasizing the role of the “bad" APs. The “goodness" of an AP in-
dicates the capability of that AP to estimate accurately its distance from the others.

Youssef et al. [34] substantially improved the accuracy (e.g., reporting an
1.3m error in 90% in their experiments conducted in their department) by
employing an autoregressive model that captures the autocorrelation in signal
strength measurements of the same AP at a particular location. Specifically, the
time series generated from signal strength measurements collected from an AP is
represented by a first-order autoregressive model. The fingerprints are formed for
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each cell and AP, including three values, namely the degree of autocorrelation,
the mean and the variance of the empirical measurements collected from that
AP at that cell. Finally, an interesting approach propose fingerprints based
on attributes that characterize the effects of multipath (e.g., channel response)
in order to detect changes of the positions of wireless hosts were presented in [24, 36].

Niculescu and Badri Nath [22] designed and evaluated a cooperative location-
sensing system that uses specialized hardware for calculating the angle between
two hosts in an ad-hoc network. This can be done through antenna arrays or ul-
trasound receivers. Hosts gather data, estimate their position, and propagate them
throughout the network. Previously, these authors [21] introduced a cooperative
location-sensing system in which position information of landmarks is propagated
towards hosts that are further away, while at the same time, closer hosts enrich
this information by determining their own location. Another location-sensing
system in ad-hoc networks performs positioning without the use of landmarks or
GPS and presents the tradeoffs among internal parameters of the system [9]. The
location-sensing systems presented in [29] and [16] are the closest to CLS and are
compared in detail in [14].

Active Badge [32] uses diffuse infrared technology and requires each person
to wear a small infrared badge that emits a globally unique identifier every
ten seconds or on demand. A central server collects this data from fixed infrared
sensors around the building, aggregates it and provides an application programming
interface for using the data. The system suffers in the case of fluorescent lighting
and direct sunlight, because of the spurious infrared emissions these light sources
generate. A different approach, SmartFloor [3], employs a pressure sensor grid
installed in all floors to determine presence information. It can determine positions
in a building without requiring users to wear tags or carry devices. However, it is
not able to specifically identify individuals.

Examples of localization systems that combine multiple technologies are UbiSense
[4], Active Bats [1] and SurroundSense [6]. UbiSense can provide a high accuracy
using a network of ultra wide band (UWB) sensors installed and connected into
a building existing network. The UWB sensors use Ethernet for timing and
synchronization. They detect and react to the position of tags based on time
difference of arrival and angle of arrival. An RFtag is a silicon chip that emits an
electronic signal in the presence of the energy field created by a reader device in
proximity. Location can be deduced by considering the last reader to see the card.
RFID proximity cards are in widespread use, especially in access control systems.
The Active Bats architecture consists of a controller that sends a radio signal and a
synchronized reset signal simultaneously to the ceiling sensors using a wired serial
network. Bats respond to the radio request with an ultrasonic beacon. Ceiling
sensors measure time-of-flight from reset to ultrasonic pulse. Active Bat applies
statistical pruning to eliminate erroneous sensor measurements caused by a sensor
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hearing a reflected pulse instead of one that travelled along the direct path from
the Bat to the sensor. A relatively dense deployment of ultrasound sensors in the
ceiling can provide within 9 cm of the true position for 95% of the measurements.
SurroundSense runs on a mobile phone to provide logical localization by generating
fingerprints using sound, accelerometers, cameras and IEEE 802.11. Tesoriero et al.
[30] propose a passive RFID-based indoor location system that is able to accurately
locate autonomous entities, such as robots and people, within a physical-space.

Ariadne [18] is an automated location determination system. It uses a two
dimensional construction floor plan and only a single actual strength measurement.
It generates an estimated signal strength map comparable to those generated
manually by actual measurements. Given the signal measurements for a mobile, a
proposed clustering algorithm searches that signal strength map to determine the
current mobile’s location.

In a recent work [73], the physical space is discretized as a grid consisting of
cells with known coordinates. Then, a statistical signature is extracted for each
cell in the training phase by modeling the RSS values received from a set of
APs using a multivariate Gaussian distribution (MvG). In the runtime phase, a
similar statistical signature is generated at the unknown position, which is then
compared with the training signatures by means of a statistical similarity measure,
namely, the Kullback-Leibler divergence (KLD). The major benefit of the MvG
proposed algorithm, when compared with other methods, is the significantly
reduced computational complexity and implementation simplicity, as well as the
high accuracy in several specific environments (obstacle-free, robust measurements)
as it was revealed by the experimental evaluation.

The problem of indoor location estimation is also treated in a probabilistic
framework using Hidden Markoc Models [10]. In particular, a reduced number
of locations sampled to construct a radio map is employed in conjunction with
an interpolation method, which is developed to effectively patch the radio map.
Furthermore, a Hidden Markov Model (HMM) that exploits the user traces to
compensate for the loss of accuracy is employed to achieve further improvement
of the radio map due to motion constraints, which could confine possible location
changes. Both the proposed multivariate Gaussian model-based algorithm [73]
and the HMM-based approach belong to the class of the probabilistic localization
techniques. Usually, a probabilistic localization method is characterized by an
increased performance when compared with a deterministic one, since it provides
not only a point estimate of the user’s position but also gives a confidence
interval for the quality of this estimate. This can be used to improve further the
estimation accuracy with the goal of reducing the uncertainty. However, a first key
observation is the highly reduced complexity of the MvG method [73] compared
to the HMM-based approach. In particular, it is a one-iteration method, where
in each iteration only the simple estimate of a mean vector, a covariance matrix,
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and the computation of the Kullback-Leibler divergence between multivariate
Gaussians (given in closed form) are required. On the other hand, the HMM-based
localization technique requires several iterations to converge, while in each iteration
several model parameters have to be estimated (approximately of the same
dimensions as the parameters of our proposed method). However, the reduced
computational complexity of the Gaussian-based technique comes at the cost of a
potentially degraded location estimate under certain circumstances. For instance,
in the case of corrupted measurements (e.g., due to an access point failure or the
presence of an obstacle) the MvG method [73] is much more sensitive, since it is
based on measurements collected instantaneously. In contrast, the HMM-based
approach could provide a more accurate estimate via the prior knowledge of a
transition-probability matrix, which is preserved and re-estimated in each iteration
in conjunction with the refinement achieved by an Expectation Maximization
algorithm. In conclusion, the major benefit of the MvG proposed algorithm [73],
when compared with the HMM-based approach, is the significantly reduced
computational complexity and implementation simplicity, as well as the high
accuracy in several specific environments (obstacle-free, robust measurements) as it
was revealed by the experimental evaluation. On the other hand, the HMM-based
approach can be proved to be more robust in the case of system failures, but at the
cost of requiring increased computational resources.

Liao et al. proposed a method to predict the user’s orientation, which is
then used for the next position estimate to improve the accuracy, from the
previously computed location estimates [61]. A Viterbi-like algorithm, which is de-
veloped to enhance the RADAR system and is also implemented by [62], makes use
of historical data based on the KNN method to determine the location estimates.
Finally, a nonparametric information filter based on the kernel-based probabilistic
method is proposed in [63]. This filter, whose computational complexity is lower
than particle filter, is able to deal with tracking scenarios where Kalman filter is
inapplicable.

2.6 Chapter Summary

This chapter gives a brief overview of different methods developed for the RSS-based
WLAN indoor positioning systems. Five fingerprinting methods, KNN, confidence
interval, percentiles, empirical distribution and spatial sparsity are described in de-
tails, as they are served as the performance benchmarks for the proposed positioning
system. Moreover, several indoor tracking techniques that are able to improve the
accuracy through the use of previous estimates and motion models are also discussed.
Compressive Sensing theory is also introduced.
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3.1 Introduction

The vast majority of current fingerprint positioning methods does not take into ac-
count the interdependencies among the RSS measurements at a certain position from
the various APs. These interdependencies provide important information about the
geometry of the environment and can be quantified using the second-order spatial
correlations among the measurements. Hence, the employment of multi-dimensional
distributions is expected to provide a more accurate representation of the RSS pro-
files, leading to improved positioning performance. Of course, simple models should
be used whose parameters (second-order statistics) could be accurately and easily
estimated in a practical positioning scenario.
Based on this observation, a novel fingerprint approach has been designed and eval-
uated. Specifically, it makes two distinct contributions:

1. It proposes and evaluates a novel fingerprinting approach that exploits the spa-
tial correlations of signal-strength measurements collected from various wire-
less APs based on a multivariate Gaussian model.

2. It performs a comparative performance analysis of various signal-strength fin-
gerprinting methods and Ekahau in the premises of two research laboratories
and an aquarium under different conditions, as it will be shown in Chapter 6.
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3.2 Multivariate Gaussian Model and Statistical Simi-
larity Measure

The multivariate Gaussian-based approach takes into consideration not only the
signal strength measurements from each AP but also the interplay (covariance) of
measurements collected from pairs of APs. As in other fingerprinting approaches,
the physical space is discretized in a grid consisting of cells with known coordinates.
During a training phase, signal-strength measurements are collected from the
IEEE 802.11 APs at known positions of the physical space. The signature of each
position is formed using a multivariate Gaussian distribution. At runtime, at the
unknown position, the system creates a signature based on the signal-strength
measurements collected by the wireless device on-the-fly, which is then compared
with the signature of each cell, constructed using the training measurements.

The signature comparison and position estimation is based on the Kullback-
Leibler divergence (KLD): the cell corresponding to the minimum KLD is reported
as the estimated position. The method generalizes this approach by applying it
iteratively in different spatial scales.

3.3 Positioning based on Statistical Signatures

Unlike other fingerprint positioning methods, this one focuses on the interdependen-
cies among the RSS measurements in a cell from various APs. These interdependen-
cies provide information about the geometry/topology of the environment and can
be quantified using the second-order spatial correlations among the measurements.
According to this proposed approach, in the training phase, a statistical signature
is extracted for each cell of the grid by modelling the acquired signal-strength mea-
surements using a multivariate Gaussian distribution. The density function of a
multivariate Gaussian in RK , with a mean vector µ and covariance matrix Σ, is
given by:

p(x|µ,Σ) =
1

(2π)K/2|Σ|1/2
exp
(
−1

2
(x− µ)TΣ−1(x− µ)

)
, (3.1)

where |Σ| is the determinant of Σ.

Let P be the number of APs from which the mobile device receives the measure-
ments, M be the number of measurements from each AP, and Si = [y1, . . . ,yP ]

denote the M × P matrix for the i-th cell ci, whose j-th column yj ∈ RM
contains the received signal-strength values from the j-th AP. The signal-strength
measurements are modelled by a multivariate Gaussian distribution due to its
simplicity and the closed-form expression of the associated similarity measure
(KLD). More specifically, the signature Si of the i-th cell is given by:

ci 7→ Si = {µi,Σi} , (3.2)
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where µi = [µi,1, . . . , µi,P ], with µi,j being the mean of the j-th column of the
measurement matrix Si, and Σi is the corresponding covariance matrix, with its
mn-th element being equal to the covariance between the m-th and n-th columns of
Si. Hence, the mn-th element of Σi corresponds to the spatial correlation between
the RSS measurements of the i-th cell received from the m−th and n-th APs. Thus,
if C is the number of cells in the grid representing the physical space, during the
training phase, the following set of training signatures (T) is generated:

{Si, T }Ci=1 =
{
{µi, T ,Σi, T }

}C
i=1

. (3.3)

In addition, the i-th training cell, ci,T , is also associated to a set of indices Ii,T
indicating its corresponding “active” APs, that is, the APs from which it acquires
the measurements during the training phase.

During the runtime phase (R), we assume that the mobile user is placed at
an unknown cell (cR), whose location must be estimated. Following the approach
used in the training phase, if SR = [y1,R, . . . ,yP ′,R] is the M ′ × P ′ runtime
signal-strength measurement matrix of cR, a signature is generated as follows,

cR 7→ SR = {µR,ΣR} . (3.4)

Notice here that in general the dimensions of the runtime measurement matrix
are smaller than the dimensions of the corresponding training matrix (M × P ).
This is due to the fact that during runtime it is more difficult to collect exten-
sive measurements than during training. Furthermore, the set of APs operating
during the training phase is not necessarily the same with the set of APs at runtime.

Let us denote as Ii,TR the set of APs from which signal-strength measure-
ments were collected both at runtime and training at cell i. For the runtime (cR)
and the i-th training cell (ci,T ), we extract their corresponding mean sub-vectors
µsR, µ

s
i,T and covariance sub-matrices Σs

R, Σs
i, T according to the indices of Ii,TR .

Finally, if pR(x|µsR,Σs
R) and pi,T (x|µsi,T ,Σs

i, T ) denote the multivariate Gaussian
densities of cR and ci,T , respectively, their KLD is given by the following closed-form
expression:

D(pR||pi,T ) =
1

2

(
(µsi,T − µsR)T (Σs

i, T )−1(µsi,T − µsR)

+ tr
(
Σs
R(Σs

i, T )−1 − I
)
− ln |Σs

R(Σs
i, T )−1|

)
,

(3.5)

where tr(·) denotes the trace of a matrix (sum of its diagonal elements) and I is
the identity matrix. KLD is a (non-symmetric) measure of the difference between
two probability distributions, well established and widely used in probability and
information theory. The estimated location [x∗R, y

∗
R] is given by the coordinates of

the i∗-th cell, which minimizes (3.5), that is,

i∗ = arg min
i=1,...,C

D(pR||pi,T ) . (3.6)
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Algorithm 1 The multivariate Gaussian-based positioning method (spatial scale
of a cell)

1. During training phase, collect RSS measurements from APs at each cell
trainingAP(c): set of APs from which data are collected at cell c

2. During runtime, collect RSS measurements from each AP at the unknown
position
runtimeAPs: set of APs from data are collected
effectiveAP (c) : trainingAP (c) ∩ runtimeAP

3. During runtime, perform the following steps for each cell c:

• Generate the signature for cell c using only training measurements col-
lected from APs ∈ effectiveAP(c) (i.e., training signature(c))

• Generate the runtime signature using only runtime measurements col-
lected from APs in effectiveAP(c) (i.e., runtime signature(c))

• Estimate the KLD distance of the training and runtime signatures

4. Report as the estimated position the cell c∗ with the smallest KLD distance

3.3.1 Multiscale spatial aggregation of fingerprints

To improve the accuracy, we propose a generalization of the approach presented in
Algorithm 1: instead of applying the multivariate Gaussian per cell, we apply it
in an iterative fashion in multiple spatial scales (e.g., regions). First, the physical
space is divided into overlapping regions of equal size and the multivariate Gaussian
algorithm is applied for each region separately. To generate the fingerprint of a
region, we employ all the signal-strength measurements from all APs collected at
positions within that region. This spatial aggregation reduces the likelihood of
selecting a false region/cell (a region/cell that does not include/correspond to the
actual position) over the correct one. Essentially, via this aggregation an incorrect
region is eliminated (in the first iteration) while the “weight" of the correct region
is enhanced by considering the signatures of the neighboring to the actual position
cells. The region-based multivariate Gaussian algorithm proceeds iteratively: after
it estimates the region at which the device is located, it repeats the process by
dividing the selected region into sub-regions and applying the algorithm on them.
There have been considered only two spatial scales: i) in the coarse granularity the
area is divided into regions and ii) in the second (fine) level granularity the area
reduces to a single cell.

The original area of interest is discretized in G regions, each of N cells. Let
Ai be a GK ×N matrix whose j-th column (∈ RGK) contains the received
signal-strength values from the j-th AP collected at cells of region i during training.
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Let us denote with Ai,T (x|µsi,T ,Σs
i, T ) the multivariate Gaussian density of

region i and pR(x|µsR,Σs
R) the multivariate Gaussian density of the unknown

position (runtime signature). The KLD distance can be computed as in (3.5) and
the region closest to the unknown position is given by

i∗A = arg min
i=1,...,G

D(pR||Ai,T ) . (3.7)

After the estimation of the correct region, the process is repeated (using Algorithm 1)
to compute the cell in that region that corresponds to the unknown position (con-
sidering only the cells of that region). Finally, Table 3.1 gathers the symbols used
in the MvG setup.

Table 3.1: MvG symbols and notation
N Number of APs
Si K ×N matrix for the i-th cell
ci i-th cell
µi Mean values of the APs of the i-th cell
Σi Covariance matrix of the i-th cell
L Number of training cells
T Set of training signanutres
Ii,T Active APs of the i-th cell
R Runtime phase
cR Cell to be estimated
SR K ′ ×N ′ run time measurement matrix
Ii,TR Set of the common APs
~µsR Mean sub-vector of cR
~µsi,T Mean sub-vector of ci,T
Σs
R Covariance sub-matrix of cR

Σs
i, T Covariance sub-matrix of ci,T

pR(~x|~µsR,Σs
R) Multivariate Gaussian of cR

pi,T (~x|~µsi,T ,Σs
i, T ) Multivariate Gaussian of ci,T

i∗ Estimated location

3.4 Chapter Summary

This chapter introduced a novel localization method that creates signal-strength
fingerprints using multivariate Gaussian distributions. It estimates the position
of the device by computing the region with the training fingerprint that has the
closest KLD distance from the runtime fingerprint. Furthermore, in the case of
the multivariate Gaussian-based algorithm we experimented with a multiple spatial
scale iterative approach in which, we applied the algorithm on larger regions, to
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select the correct one, and then within the selected region to estimate the correct
cell.
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4.1 Introduction

Due to the unpredictable nature of the RSS distribution at indoor environment,
most of the indoor RSS-based WLAN positioning systems use the fingerprinting
approach to acquire the explicit RSS and position relationship, in order to compute
a more accurate estimation of user’s position.

4.2 Positioning and Inherent Spatial Sparsity

The compressive sensing based positioning system proposed in this chapter is also
a fingerprinting method. Unlike traditional fingerprinting systems, the proposed
system reformulates the localization problem into a sparse-natured problem and
thus the compressive sensing concept can be applied to find the estimated positions.

4.3 CS-based Positioning System

In the following, let x ∈ RN denote the signal of interest, that is, a vector of RSS
measurements. The efficiency of a compressive sensing (CS) method for signal
approximation or reconstruction depends highly on the signal’s sparsity structure
in a suitable transform domain associated with an appropriate sparsifying basis
Ψ ∈ RN×D. In terms of signal approximation it has been demonstrated [68, 69]
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that if x is K-sparse in Ψ (meaning that the signal is exactly or approximately
represented by K elements of this basis), then it can be reconstructed from
M = rK � N non-adaptive linear projections onto a second measurement
basis, which is incoherent1 with the sparsity basis, and where r > 1 is a small
overmeasuring factor. For instance, in standard signal processing applications,
several natural signals are often sparse in a discrete cosine transform (DCT) or in
a Fourier basis.

The measurement model in the original space-domain is expressed as follows,

g = Φx , (4.1)

where g ∈ RM is the measurement vector and Φ ∈ RM×N denotes the measurement
matrix. By noting that x can be expressed in terms of the basis Ψ as x = Ψw,
where w ∈ RD denotes the vector of transform coefficients, the measurement model
has the following equivalent transform-domain representation

g = ΦΨw . (4.2)

Examples of measurement matrices Φ, which are incoherent with any fixed
transform basis Ψ with high probability (universality property [69]), are random
matrices with independent and identically distributed (i.i.d.) Gaussian or Bernoulli
entries.

Since the original vectors of RSS measurements, x, are not sparse in general,
in the following study we focus on the more general case of reconstructing their
equivalent sparse representations, w, given a low-dimensional set of measurements
g and the measurement matrix Φ.

The inherent sparsity in the problem of location estimation comes from the
fact that the device to be localized can be placed in exactly one of the C non-
overlapping cells. Let w = [0 0 · · · 0 1 0 · · · 0]T ∈ RC be an indicator vector with
its j-th component being equal to “1” if the device is located in the j-th cell. Thus,
in the framework of CS, the problem of estimating the location of a mobile device
is reduced to a problem of recovering the one-sparse vector w. Of course in practice
we do not expect an exact sparsity, thus, the estimated position corresponds simply
to the largest-amplitude component of w.

By employing the M compressive measurements and given the K-sparsity
property in basis Ψ, the sparse vector w, and consequently the original signal x,
can be recovered perfectly with high probability by taking a number of different
approaches. In the case of noiseless CS measurements the sparse vector w is

1Two bases Ψ1, Ψ2 are incoherent if the elements of the first are not represented sparsely by
the elements of the second, and vice versa.
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estimated by solving a constrained `0-norm optimization problem of the form,

ŵ = arg min
w
‖w‖0, s.t. g = ΦΨw , (4.3)

where ‖w‖0 denotes the `0 norm of the vector w, which is defined as the number of
its non-zero components. However, it has been proven that this is an NP-complete
problem, and the optimization problem can be solved in practice by means of a
relaxation process that replaces the `0 with the `1 norm,

ŵ = arg min
w
‖w‖1, s.t. g = ΦΨw . (4.4)

In [68, 69] it was shown that these two problems are equivalent when certain
conditions are satisfied by the two matrices Φ, Ψ (restricted isometry property
(RIP)). In the later case, the sparse vector w can be recovered using M & K · logD

CS measurements.

The objective function and the constraint in (4.4) can be combined into a
single objective function, and several of the most commonly used CS reconstruction
methods solve the following problem,

ŵ = arg min
w

(
‖w‖1 + τ‖g −ΦΨw‖2

)
, (4.5)

where τ is a regularization factor that controls the trade-off between the achieved
sparsity (first term in (4.5)) and the reconstruction error (second term). Commonly
used algorithms are based on linear programming [70], convex relaxation [68, 77],
and greedy strategies (e.g., Orthogonal Matching Pursuit (OMP) [78, 79]).

As it was mentioned before, a common characteristic of all RSS-based finger-
print methods is their implementation in two distinct phases, namely, a training
phase (off-line), where the central server is mainly involved, and a runtime phase
(on-line), which concerns the wireless device to be localized. In the following two
subsections the several requirements of each phase are described in detail. Besides,
for convenience the following notations are used in the subsequent derivations: i)
yT denotes any quantity y that is related with the training phase, ii) yR denotes
that y is associated with the runtime phase.

4.3.1 Training phase specifications

During the training phase, a set of RSS samples is collected at each cell from each
AP. Let xij,T ∈ Rnj,i denote the vector of training RSS measurements received
at cell j from AP i. In general nj,i 6= nj′,i′ for j 6= j′, i 6= i′. To compensate
for the potentially different number of RSS measurements from cell to cell we set
Ni = minj{nj,i}, i = 1, . . . , P , j = 1, . . . , C. Then, these vectors are collected
from all cells by a central server, which forms a single matrix Ψi

T ∈ RNi×C for
the i-th AP by concatenating the corresponding C vectors. Then, this matrix
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is used as the appropriate sparsifying dictionary for the i-th AP, since in the
ideal case the vector of RSS measurements at a given cell j received from AP i

should be closer to the corresponding vectors of its neighboring cells, and thus
it could be expressed as a linear combination of a small subset of the columns of Ψi

T .

Moreover, a measurement matrix Φi
T ∈ RMi×Ni must be associated with

each transform matrix Ψi
T , where Mi is the number of CS measurements. In the

proposed algorithm, a standard Gaussian measurement matrix is employed, with
its columns being normalized to unit `2 norm.

4.3.2 Runtime phase specifications

A similar process is followed during the runtime phase. More specifically, let xic,R ∈
Rnc,i be the RSS measurements received at the current unknown cell c from the
i-th AP. Notice that, since the acquisition time interval during the runtime phase is
smaller than that in the training phase, it holds that nc,i < n′c,i, where n

′
c,i denotes

the length of the corresponding RSS vector generated at the same cell during the
training phase. The runtime CS measurement model associated with the cell c and
AP i is written as

gc,i = Φi
Rx

i
c,R , (4.6)

where Φi
R ∈ RMc,i×nc,i denotes the corresponding measurement matrix during the

runtime phase.

In order to overcome the problem of the difference in dimensionality between
the training and runtime phase, while maintaining the robustness of the reconstruc-
tion procedure, we select Φi

R to be a subset of Φi
T with an appropriate number

of rows such as to maintain equal measurement ratios, Mi
Ni

=
Mc,i

nc,i
. Then, the

measurement vector gc,i is formed for each AP i according to (4.6) and transmitted
to the server, where the reconstruction takes place via the solution of (4.5), with
the training matrix Ψi

T being used as the appropriate sparsifying dictionary.
We emphasize at this point the significant conservation of the processing and
bandwidth resources of the wireless device, by computing only low-dimensional
matrix-vector products to form gc,i (i = 1, . . . , P ) and then transmitting a highly
reduced amount of data (Mc,i � nc,i). Then, the CS reconstruction is performed at
the server for each AP independently and the final location estimate is the centroid
of the estimated cells. The reason for carrying out the location estimation in a
disjoint fashion among the APs is that, due to the network configuration, the RSS
values are received independently.

The experimental evaluation presented Chapter 6 reveals an increased esti-
mation accuracy of the proposed CS-based localization algorithm when compared
with the statistical localization methods introduced in the previous sections.
Finally, the overall CS-based localization method is summarized in Algorithm 2,
while Table 4.1 gathers the symbols used in the CS setup.
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Algorithm 2 The Compressive Sensing positioning method

1. Training phase: collect RSS measurements from all APs at each cell
For each AP i generate Φi

T and Ψi
T

2. Runtime phase: collect RSS measurements from each AP at the unknown
position
For each AP i generate xic,R

3. At runtime perform the following steps:

• Send the length of runtime RSS measurements, nc,i, to the server

• From each Φi
T extract the columns until line nc,i and send it to the

wireless device

• Compute the measurements vector gc,i and send it to the server

• Perform CS reconstruction at the server by solving (4.5)

4. Report the estimated position, c∗, as the centroid of the individual estimates
given by the CS reconstruction scheme per AP

The amount of transmitted data is further reduced in the proposed implementation
by selecting to process the RSS readings of only the top P ′ strongest APs, that
is, the APs with the highest mean RSS value of the corresponding vectors ψiR,c.
An additional advantage of this process is that in many cases we discard the
potentially confusing information from APs from which either there was not any
reception at all, or there was a link failure with the device during the runtime phase.
The experimental evaluation presented in the next section reveals an increased
estimation accuracy of the proposed CS localization algorithm. Finally, the overall
system architecture is shown in Fig. 4.1(a).

In a recent work [72], a CS-based indoor localization method was introduced
based on RSS measurements. In particular, the location estimation algorithm is car-
ried out on the mobile device by using the average RSS values in order to construct
the transform basis. The sparsity-based CS localization algorithm proposed in this
chapter differs from the work in [72] in several aspects. In contrast to [72], where the
estimation is performed by the wireless device with the potentially limited resources,
in our system the computational burden is put on the server, where increased storage
and processing resources are available. Besides, in the proposed localization scheme
the CS approach is applied directly on the raw RSS measurements and not on their
average as in [72], thus exploiting their time-varying behavior. Then, the estimation
of the unknown position is performed by solving a constraint optimization problem
for reconstructing a sparse vector with its coordinates being “1” or “0” depending on
whether the mobile device is placed or not at the corresponding cell.
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Table 4.1: CS-WLAN symbols and notation
P number of APs
C number of cells
xij,T , xij,R training/runtime RSS vector at cell j from AP i

nj,i number of RSS measurements at cell j from AP i

Ni = minj{nj,i} number of RSS measurements kept at all cells for AP i

Mi number of CS measurements generated for AP i

gj,i CS measurement vector at cell j for AP i

Φi
T , Φi

R training/runtime measurement matrix for AP i

Ψi
T sparsifying matrix (dictionary) for AP i

w position indicator (sparse) vector

4.4 CS Weak Encryption Property and Secure Position-
ing

Due to their acquisition process, CS measurements can be viewed as “weakly en-
crypted” for an attacker without knowledge of the measurement matrices Φi

T . CS-
based encryption provides both signal compression and encryption guarantees, with-
out the additional computational cost of a separate encryption protocol and thus it
could be useful in location estimation, where the implementation of an additional
software layer for cryptography could be costly. The encryption property of a CS
approach relies on the fact that the matrix Φi

T is unknown to an unauthorized en-
tity, since Φi

T can be generated using a (time-varying) cryptographic key that only
the device and the server share. An attack could be considered as the attempt to
estimate the key by trying to find the special structure of the Φi

T matrix [82]. In
this proposed approach no cryptographic key is required, since it is based only on
the matrices Φi

T (i = 1, . . . , P ). More specifically, the server extracts the sub-matrix
Φi
R from Φi

T and then permutes its lines forming a new Φi
R,p, which is then sent

to the wireless device, where the associated measurement vector gc,i = Φi
R,pψ

i
R,c

is computed. A potential attacker has two options, either to try capturing Φi
R,p

by intercepting the server→ device direction, or by acquiring gc,i by intercepting
the opposite direction. In the first case, modern network cryptographic protocols
could guarantee that the decryption of Φi

R,p is almost infeasible in practice due to
the combinatorial nature of the inverse problem. In the second case, as it will be
illustrated in Chapter 6, even the exact knowledge of gc,i is insufficient, resulting
in a significantly increased estimation error, when the attacker does not achieve the
exact estimate of Φi

R,p. Finally, the overall security system architecture is shown in
Fig. 4.1(b).
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(a)

(b)

Figure 4.1: Flow diagram of the (a) CS-WLAN localization scheme (b) secure CS-
WLAN localization scheme
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4.5 Chapter Summary

This chapter introduced an indoor localization method based on CS RSS finger-
prints. In the present work, the unknown location was estimated by performing
separate reconstruction for each AP. The enhanced encryption capabilities of the
proposed CS-WLAN architecture, without the additional computational cost of a
separate encryption protocol, are also evaluated in Chapter 6.
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5.1 Introduction

Chapters 3 and 4 describe two positioning systems that can accurately estimate a
stationary user’s position. These positioning systems are combined in this chapter
in order to track a dynamic mobile user. The proposed indoor tracking system
uses the Kalman filter in conjunction with the power of compressive sensing to
represent accurately sparse signals and a region-based multivariate Gaussian model.
This chapter first describes briefly the general Bayesian tracking model and how it
can be reduced to a Kalman filter. Then, the proposed indoor tracking system is
presented.

5.2 General Bayesian Tracking Model

The problem can be modeled by a general Bayesian tracking model, with

d(t) = ft(d(t− 1), w(t)) (5.1)

z(t) = ht(d(t), w(t)) (5.2)

where d(t) = [x(t), y(t), vx(t), vy(t)]. It is mentioned also that x, y are the cartesian
coordinates of user’s location and vx(t), vy(t) are the velocities at the x, y directions.
Assuming that the tracking is a Markov process of order one, the state evolves as
a function of previous state and w(t) which is a i.i.d. process noise vector. The
measuremenent z(t) depends on the current state and the i.i.d. measurement noise
vector w(t) through the function ht.
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The current location of the mobile user can be estimated recursively from
the set of measurements up to time t,

z(i : t) = {z(i), i = 1, 2, ..., t}, (5.3)

which in terms of pdf is denoted as

P (x(t)/z(1 : t)). (5.4)

5.3 Kalman Filter

If we assume that the process and measurement noises are Gaussian and the motion
dynamic model is linear, then we can use the Kalman filter. The process and
measurement equations of the Kalman tracking model are given by:

x(t) = Fx(t− 1) + w(t) (5.5)

z(t) = Hx(t) + v(t) (5.6)

where x(t) = [x(t), y(t), vx(t), vy(t)]
T is the state vector, z(t) is the measurement

vector and matrices F and H define the linear motion model. The process noise
w(t) ∼ N(0,S) and the measurement noise v(t) ∼ N(0,U) are assumed to
be independent with covariance matrices S and U, respectively. The current
location of the mobile user is assumed to be the previous location plus the dis-
tance travelled, which is computed as the time interval ∆t times the current velocity.

The steps to obtain the final estimates of the state vector x̂(t) and the error
covariance P(t) during the prediction and the update stage are computed by the
following set of equations:

x̂−(t) = Fx̂(t− 1) (5.7)

P−(t) = FP(t− 1)FT + S (5.8)

K(t) = P−(t)HT (HP−(t)HT + U)−1 (5.9)

x̂(t) = x̂−(t) + K(t)(z(t)−Hx̂−(t)) (5.10)

P(t) = (I−K(t)H)P−(t) (5.11)

5.4 CS-Kalman Filter-based Indoor Tracking

First, the path tracking model employs a region-based multivariate Gaussian
(MvG) model and then, for each region, a CS approach is applied as a refinement
step.

The device periodically collects the online RSS from each APs at a time in-
terval ∆t. Then, the indoor tracking system uses the RSS to estimate the user’s
location at time t, which is denoted as p̂(t) = [x̂(t), ŷ(t)]T . For each time step t,
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Figure 5.1: Flow diagram of the proposed indoor tracking system.

the measurement vector z(t) is the current user’s estimated location computed by
the positioning system.

The Kalman filter can be applied on the CS-based positioning system de-
scribed in Chapter 4 to improve the accuracy in estimating the dynamic user’s
route. The online measurement vector collected at time t, is first evaluated at the
localization stage to reduce the area of interest by selecting the relevant training
regions according to the MvG algorithm. The system uses not only the online
RSS measurements, but also the previous user’s location estimate to select the
appropriate training regions, based on physical proximity. Fig. 5.1 shows the
proposed indoor tracking system that is build on the top of the MvGs-CS-based
positioning system.

5.5 Chapter Summary

In this chapter, a hybrid path tracking system is presented, which exploits the
efficiency of a Kalman filter in conjunction with the power of compressive sensing to
represent accurately sparse signals and a region-based multivariate Gaussian model.
By using the user’s previous estimated locations, the tracking system is able to refine
the current estimate in two ways: 1) to select appropriate training regions and 2)
to apply Kalman filter for better location estimate. This selection of the training
regions ensures that the reduced region of interest are within the walking range of
the user and provides a way to reject the invalid online RSS readings. The tracking
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system also introduces the Kalman filter stage, which uses the temporal position
estimation, p(t), into the current final estimation.
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6.1 Introduction

In this chapter, the localization performance of the algorithms decribed in the previ-
ous chapters is presented. The evaluation took place in three distinct environments
with different area and topology. More specifically, the training signatures are gen-
erated by collecting signal-strength values at various predefined cells of the two grids
corresponding to the two environments. In both cases, training measurements were
collected at each cell of the grid, while runtime measurements were collected at 30

randomly selected cells. The trainer remained still for approximately 90 sec and
30 sec to collect beacons at each position during training and runtime, respectively,
resulting in more than 100 and 200 RSS values per AP at each cell for the runtime
and training phase, respectively. To capture signal-strength values, iwlist, which
polls each channel and acquires the MAC address and RSS measurements from each
AP (in dBm), and tcpdump, a passive scanner relying on libpcap, for the retrieval
of each packet were employed. A Sony Vaio and a Toshiba laptop with the same
wireless adapter (ipw2200) were used for the collection of both training and runtime
signal-strength values. Besides, in the subsequent experiments we evaluate two dis-
tinct scenarios in both environments, differing in the number of people which were
present during the collection of the RSS measurements. In the following, let Sc-A
and Sc-B denote the scenario corresponding to the presence of a small and a large
number of people, respectively.
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6.2 Evaluation at FORTH

The evaluation at FORTH took place in the Telecommunication and Networks Lab
(TNL), an area of 7 m× 12 m, which was discretized in a grid structure with cells of
55 cm× 55 cm. During the runtime phase two datasets are collected corresponding
to the two scenarios: (i) Sc-A: the dataset was collected on a Sunday, at around
2 a.m., with only one person present in the laboratory, except the one collecting
the measurements, (ii) Sc-B: the dataset was collected on a typical weekday at
around 5 p.m., during which there were from 10 to 15 people in the laboratory, and
several others walking in the hallways outside. The training set was common for
both Sc-A and Sc-B scenarios, and was collected on the same day as the Sc-A run-
time dataset, including measurements from 84 different cells. The total number of
APs covering the area was 10, while on average 5.4 APs were detected at a given cell.

In order to evaluate the performance of the various fingerprinting methods
we computed the localization error, measured as the Euclidean distance between
the centers of the reported cell and the cell at which the mobile user was actually
located at runtime.

Figs. 6.1(a)-6.1(b) present the localization error of the different signature-
based approaches during the Sc-A and the Sc-B scenario, respectively. As it can
be seen, the multivariate Gaussian model (MvG) outperforms the percentiles,
the confidence interval (90%), and the empirical distribution approaches. More
specifically, for the Sc-A dataset, the median error is equal to 2.19 m and 1.10 m
for the confidence interval and percentiles, respectively, while the MvGs results in
an error of 1.09 m. Regarding the Sc-B dataset, the median error of the MvGs
is 1.10 m, while the confidence interval (90%) and the percentiles methods report
an error of 2.60 m and 2.20 m, respectively. In general, it is expected that as the
number of APs that participate in the signature generation increases, so does the
accuracy of distinguishing the correct cell from other further-away cells, which may
have similar training fingerprints with the runtime one due to transient phenomena
or radio propagation characteristics in the given environment. To measure the
impact of the number of APs on the localization accuracy, we associate each AP
with a popularity index that indicates the number of cells at which measurements
from the beacons of that AP were collected during both training and runtime
phases. Let |{c|APi ∈ effectiveAP (c)}| denote the popularity index of AP i. The
APs were sorted in a descending order based on their popularity indices and the
analysis was repeated using the top k most popular APs for the Sc-A and Sc-B
datasets.

The number of selected APs is another factor that affects the localization
performance. As we expected, the higher the number of APs, the lower the
localization error as shown in Fig. 6.2. However, the effect of an increasing number
of APs diminishes after a certain threshold. This stems from the fact that the
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(a) Sc-A dataset
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Figure 6.1: Localization performance of various fingerprint positioning methods at
FORTH.
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Sc-B dataset is subject to a larger number of transient phenomena than the Sc-A
dataset, and thus affecting the estimation accuracy. This also explains the fact that
the number of APs affects more the performance during the Sc-B than the Sc-A
scenario.
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Figure 6.2: Impact of the number of APs on localization error. The
x-axis indicates the number of the top x APs considered in both
training and runtime datasets.

Figs. 6.3(a)-6.3(b) show the localization accuracy as a function of the num-
ber of RSS measurements for the MvG method. The % indicates the percentage
of RSS measurements considered in both the training and runtime datasets. In
general, the larger the measurement set, the more accurate the position estimation.
Moreover, the increase in the number of RSS measurements affects more the
performance in the Sc-B scenario, where the environment is more dynamic with the
presence of an increased number of people.

Finally, we evaluate and compare the performance of the proposed CS-based
localization approach with the statistical fingerprint-based MvG method. For this
purpose, the CS reconstruction problem (4.5) is solved using a primal-dual interior
point method (L1) and the orthogonal matching pursuit (OMP) algorithm1. Both
CS methods employ only the 25% of the total runtime RSS measurements.

Figs. 6.4(a)-6.4(b) show the corresponding cumulative probability distribu-
tions of the localization error for the three methods. In particular, the median
error for the Sc-A scenario is equal to 1.09 m for the MvG, and 1.08 m for the
L1 and OMP approaches. Similar results are obtained for the Sc-B scenario

1Matlab codes can be found in http://www.acm.caltech.edu/l1magic/,http://sparselab.
stanford.edu/.

http://www.acm.caltech.edu/l1magic/, http://sparselab.stanford.edu/
http://www.acm.caltech.edu/l1magic/, http://sparselab.stanford.edu/
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Figure 6.3: Localization error as a function of the number of RSS measurements for
the MvG method.
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with a median error of 1.09 m for the MvG and 1.08 m for the L1 and OMP
methods. The similarity in performance in the case of TNL can be attributed
to the simple topology of the indoor space and the relative position of the
APs with respect to the people which were present in the lab, that did not af-
fect significantly the variability of the RSS measurements between the two scenarios.

Besides, the difference in performance between the CS-based approach and
the percentiles or the empirical distribution method, stems from the difference in
the way they combine the individual estimations per AP into a single final estimate.
More specifically, the CS-based approach for the location estimation is carried out
for each AP separately, using the compressed RSS measurements, and the final
estimate is given by the centroid of the individual estimated positions. On the other
hand, the percentiles and the empirical distribution methods perform an averaging
over all APs of the values of the corresponding distance function before the final
location estimation. For instance, in the case of the empirical distribution method,
each cell is assigned a weight which corresponds to the average empirical KLD of
each AP (at that cell) from the runtime measurements collected at the unknown
position from the same AP. As a result, two very distinct cells with similar KLD
averages may be reported erroneously to be close to each other. This is not the
case for a CS-based approach, where a potentially wrong estimate based on a single
AP can be eliminated if the estimates based on the remaining APs are close to the
true cell.
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Figure 6.4: Performance evaluation of the CS-based methods at FORTH.
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6.3 Evaluation at CretAquarium

Cretaquarium is the largest and most popular aquarium in Greece, covering an
area of 1760 m2 and consisting of more than 40 tanks. The physical space was
represented as a grid with cells of 1 m× 1 m, with seven IEEE 802.11 APs covering
the whole testbed, out of which 3.4 on average can be detected at a given cell.
Training and runtime signal-strength measurements were collected in December,
January and February of 2011 for the entire testbed during the two different
scenarios, namely, the Sc-A and the Sc-B. During the Sc-A there were only two
people (the ones collecting the signal-strength measurements) most of the time in
the aquarium. On the other hand, in the Sc-B scenario there was a scheduled visit
of a class of students with about 25 people near the trainers during the whole time
period of the data collection. The training set was common for both scenarios and
was collected during different days of December and January 2011.

Under normal conditions (Sc-A), the median localization error using the MvG
method is 1.48 m, while the percentiles resulted in a median localization error of
2.20 m, as shown in Fig. 6.5(a). During the Sc-B scenario, the median error for the
percentiles method increases at 3.29 m, while the MvG gave an estimation error of
4.15 m (Fig. 6.5(b)). In both scenarios, the confidence intervals and the empirical
distribution approach result in significantly higher errors. As it was also the case for
the experimental evaluation in the premises of TNL, the largest the measurement
set, the more accurate the position estimation is. Moreover, the relatively small
size of the signal-strength measurement dataset has a noticeable effect on the
performance of the multivariate Gaussian method in the Sc-B scenario, since the
accuracy in estimating the signature (mean and covariance) for each cell decreases
due to the high variability of the RSS measurements, whose statistics require an
increased sample-size to be expressed accurately.

As the above results reveal, the presence of an increased number of people
interfering with the two trainers, along with the complicated topology of the
Cretaquarium facilities make the accurate location estimation a challenging task.
As a final evaluation, we compare the performance of the proposed CS-based
localization technique with the MvG region-based approach. In the previous
subsection it was mentioned that one of the advantages of a CS method is its
inherent ability to extract the salient signal’s information content by suppressing
potential noise-like features. The complicated topology of the Cretaquarium, as
opposed to the simple topology of the TNL, along with the multi-path and/or
fading phenomena characterizing the RSS measurements due to the tanks, enforce
the presence of such noise-like features. Thus, we expect that CS-based methods
will present an increased robustness resulting in a more accurate position estimate.

Indeed, as it is shown in Figs. 6.6(a)-6.6(b), for the Sc-A scenario the median
error is equal to 1.48 m and 1.10 m for the MvG and the L1 method, respectively,
while OMP results in a median error of 1.09 m. Besides, for the Sc-B scenario
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Figure 6.5: Performance evaluation of various fingerprint positioning methods at
Cretaquarium.



48 Chapter 6. Performance analysis

the corresponding median error is equal to 4.15 m and 4.14 m for the MvG and
the L1 method, respectively, while the OMP approach results in a median error of
3.59 m. The increased localization performance associated with the Sc-A scenario is
justified by the decreased variance of the RSS measurements, since the major factor
that affects the behavior of the received signal is the reflection from the tanks and
the potential fading when there is not a nearby AP to the mobile user. As before,
only 25% of the total runtime RSS measurements were employed in the CS approach.

From the above, we notice that the proposed CS-based localization method
improves the localization accuracy when compared with the MvG method in a
more complicated environment, as the Cretaquarium is. A reason for this is that,
in contrast to the MvG which employs the average RSS statistics (means and
covariances), the CS-based scheme exploits directly the raw RSS measurements,
via the low-dimensional measurement vectors, and thus it is able to account for the
time-varying nature of the RSS readings. Moreover, a CS approach is characterized
by the inherent property that it suppresses the noise-like features of the signal to
be reconstructed, while extracting its prominent information content. This is not
the case with the MvG method, where the statistical signatures (fingerprints), and
consequently the computed KLD, could be affected more from potential noise-like
fluctuations in the RSS measurements.

As it was mentioned in the previous subsection for the TNL environment,
the increased accuracy of a CS-based approach when compared with the percentiles
or the empirical distribution methods, is due to the different way the individual
estimates per AP are averaged into a single final position estimate.

Moreover, the experimental evaluation using the collected data from two dis-
tinct environments shows that apart from a suitable selection of the sparsifying
basis Ψ and the measurement matrix Φ, another factor that affects significantly
the localization accuracy is the selection of the reconstruction algorithm. For the
present experimental configurations in both the TNL and Cretaquarium, the OMP
algorithm is an appropriate choice. However, one of the advantages of the CS
framework is that the generation of CS measurements is fully decoupled with the
process of reconstructing the corresponding sparse vector, that is, with the same set
of CS measurements g, the localization performance can be improved by developing
a more efficient reconstruction technique.

A guiding application was designed for the aquarium to provide personalized
information to visitors about the habitats in the tank in front of them. For this
purpose, the physical space was divided into 17 zones according to the application
requirement. The positioning system reported the zone in which the visitor was
located. Experiments were contacted using the Ekahau, a commercial positioning
system, which also employs RSS-based fingerprints. The tests took place at the
same period and for the same runtime cells under an Sc-B scenario, that is, with
a relatively large number of visitors moving close to the trainers. In each zone the
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Figure 6.6: Performance evaluation of CS-based methods at Cretaquarium.
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system was tested at three different positions. The correct zone was reported in
80% of the times resulting in a median error of 4.6 m.

6.4 Evaluation at INRIA

In this section, the performance of the proposed CS-WLAN localization method is
evaluated and compared with previous fingerprint-based algorithms.

The dataset used in the present evaluation was acquired in the building 21
of INRIA, at Rocquencourt campus (Paris). The wireless coverage is achieved
by employing an infrastructure consisting of five IEEE 802.11 APs. The area
used in the formation of the RSS map is discretized in cells of equal dimensions
0.76 m × 0.76 m. The RSS map consists of measurements from different cells and
for an average number of five APs per cell. The time intervals during the ac-
quisition in the training and runtime phase were set to 90 sec and 30 sec, respectively.

The estimation accuracy of the methods tested hereafter is evaluated in terms
of the localization error, which is defined as the Euclidean distance between the
centers of the estimated cell and the true cell where the mobile user is located at
runtime. Runtime measurements in 32 distinct cells are employed in the subsequent
evaluation.

Fig. 6.7 presents the localization error of the three methods introduced briefly in
Chapters 2 and 3 (region-based MvG, kNN (k = 3), and spatial sparsity-based).
The median error is equal to 1.99 m and 2.34 m for the kNN, and the spatial
sparsity-based methods, respectively, while the MvG approach results in a median
error of 1.56 m. Fig. 6.8 shows the estimation error for the proposed CS-based
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Figure 6.7: Performance comparison of previous fingerprint-based localization meth-
ods at INRIA.



6.4. Evaluation at INRIA 51

method, averaged over 100 Monte-Carlo runs, where in each run a distinct
measurement matrix is generated. The reconstruction performance is compared
between several widely-used norm-based techniques and Bayesian CS algorithms.
More specifically, the following methods are employed2: 1) `1-norm minimization
using the primal-dual interior point method (L1EQ-PD), 2) Orthogonal Matching
Pursuit (OMP), 3) Stagewise Orthogonal Matching Pursuit (StOMP), 4) LASSO,
5) BCS [80], and 6) BCS-GSM [81]. As it can be seen, the BCS and BCS-GSM
methods outperform the others with a median error of 1.89 m and 1.78 m, respec-
tively (`1 2 m, OMP 2.03 m, StOMP 2.01 m, and Lasso 2.30 m). In this experiment
only 8% of the total runtime RSS measurements vector is employed. The effect of
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Figure 6.8: Performance evaluation of the CS-WLAN localization method for several
reconstruction algorithms at INRIA.

the number of CS measurements in the estimation accuracy is further examined
for the top two candidates, namely, the BCS and BCS-GSM. Fig. 6.9 shows the
corresponding localization error as a function of the percentage of the number of
RSS measurements (M = rN with r ∈ {5%, 10%, 15%, 20%}). As we expected, the
localization accuracy increases by increasing the number of CS measurements, and
for 15% of the RSS values the proposed approach outperforms the MvG method,
which was the best among the previous fingerprint-based techniques.

Fig. 6.10 compares the location error of the MvG and the BCS-GSM (with 25%

of RSS measurements) methods, as a function of the input SNR. Each RSS vector is
corrupted by additive white Gaussian noise with the SNR varying from 10 to 40 dB.
As it can be seen, the proposed CS-based approach presents a clear superiority
against MvG, especially for lower SNR values.

Finally, Fig. 6.11 illustrates the encryption capabilities of the proposed CS local-

2For the implementation of methods 1)-5) the MATLAB codes can be found in: http:
//sparselab.stanford.edu/, http://www.acm.caltech.edu/l1magic, http://people.ee.duke.
edu/~lcarin/BCS.html

http://sparselab.stanford.edu/
http://sparselab.stanford.edu/
http://www.acm.caltech.edu/l1magic
http://people.ee.duke.edu/~lcarin/BCS.html
http://people.ee.duke.edu/~lcarin/BCS.html
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Figure 6.9: Localization accuracy of CS-WLAN using BCS and BCS-GSM, as a
function of the number of CS measurements at INRIA.
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Figure 6.10: Localization accuracy of the MvG and BCS-GSM methods for varying
input SNR at INRIA.
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ization method for the BCS and BCS-GSM algorithms. In particular, the average
localization error (over 100 Monte-Carlo runs) is shown as a function of the per-
centage of permuted lines ({0% : 20% : 100%}) of the true matrices Φi

R, where
the reconstruction is performed by considering exact knowledge of the measurement
vectors gc,i. The results agree with our intuition that as the complexity of the per-
mutation increases, the estimation accuracy decreases without an exact estimate of
the true measurement matrix.
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Figure 6.11: Evaluation of CS-WLAN encryption property using BCS and BCS-
GSM, for a varying number of permuted lines of Φi

R at INRIA.
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6.5 Evaluation on simulated data

In this section, the performance of the proposed CS-WLAN localization method is
evaluated and compared with previous fingerprint-based algorithms on a simulated
space. It presents the experimental results of the proposed method by generating
simulated RSS sequences using an appropriate propagation model in a more
complicated indoor environment. The formulas used for the generation of the
simulated data can be found in [83].

The estimation accuracy of the methods tested hereafter is evaluated in terms
of the localization error, which is defined as the Euclidean distance between the
centers of the estimated cell and the true cell where the mobile user is located at
runtime. Runtime measurements in 32 distinct cells are employed in the subsequent
evaluation.

Fig. 6.12 presents the localization error of the three methods introduced briefly in
Chapters 2 and 3 (region-based MvG, kNN (k = 3), and spatial sparsity-based).
The median error is equal to 2.76 m and 2.01 m for the kNN, and the spatial
sparsity-based methods, respectively, while the MvG approach results in a median
error of 2.15 m.

Fig. 6.13(a) shows the estimation error for the proposed CS-based method,
averaged over 100 Monte-Carlo runs, where in each run a distinct measurement
matrix is generated. The reconstruction performance is compared between several
widely-used norm-based techniques and Bayesian CS algorithms. More specifically,
the following methods are employed: 1) `1-norm minimization using the primal-dual
interior point method (L1EQ-PD), 2) Orthogonal Matching Pursuit (OMP), 3)
Stagewise Orthogonal Matching Pursuit (StOMP), 4) LASSO, 5) BCS, and 6)
BCS-GSM. As it can be seen, the BCS and BCS-GSM methods outperform the
others with a median error of 1.06 m and 1.04 m, respectively (`1 1.62 m, OMP
5 m, StOMP 4.1 m, and Lasso 1.24 m). In this experiment only 8% of the total
runtime RSS measurements vector is employed.

The effect of the number of CS measurements in the estimation accuracy is
further examined for the top two candidates, namely, the BCS and BCS-GSM.
Fig. 6.13(b) shows the corresponding localization error as a function of the percent-
age of the number of RSS measurements (M = rN with r ∈ {5%, 10%, 15%, 20%}).
As we expected, the localization accuracy increases by increasing the number of CS
measurements, and for 15% of the RSS values the proposed approach outperforms
the MvG method, which was the best among the previous fingerprint-based
techniques.

Fig. 6.14(a) compares the location error of the MvG and the BCS-GSM (with
25% of RSS measurements) methods, as a function of the input SNR. Each RSS
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vector is corrupted by additive white Gaussian noise with the SNR varying from
10 to 40 dB. As it can be seen, the proposed CS-based approach presents a clear
superiority against MvG, especially for lower SNR values.

Finally, Fig. 6.14(b) illustrates the encryption capabilities of the proposed
CS localization method for the BCS and BCS-GSM algorithms. In particular, the
average localization error (over 100 Monte-Carlo runs) is shown as a function of the
percentage of permuted lines ({0% : 20% : 100%}) of the true matrices Φi

R, where
the reconstruction is performed by considering exact knowledge of the measurement
vectors gc,i. The results agree with our intuition that as the complexity of the
permutation increases, the estimation accuracy decreases without an exact estimate
of the true measurement matrix.
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Figure 6.12: Performance comparison of previous fingerprint-based localization
methods for the simulated dataset.
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(a) Performance evaluation of the CS-WLAN localization method for several
reconstruction algorithms.
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(b) Localization accuracy of CS-WLAN using BCS and BCS-GSM, as a func-
tion of the number of CS measurements on simulated data.

Figure 6.13: Performance evaluation of the CS-WLAN on simulated data
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(a) Localization accuracy of the MvG and BCS-GSM methods for varying
input SNR.
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(b) Evaluation of CS-WLAN encryption property using BCS and BCS-GSM,
for a varying number of permuted lines of Φi

R.

Figure 6.14: Localization accuracy for varying input SNR and performance evalua-
tion of the CS-WLAN encryption on simulated data
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6.6 Tracking Results in INRIA

Fig. 6.15 shows the original and estimated route of the mobile user during a test
inside the building.

Figure 6.15: Original and estimated route of the mobile user using CS-KALMAN
path tracking model at INRIA

Fig. 6.16 shows the localization error of the method introduced in Chapter 5,
compared with the MvGs and a kNN-based approach (K = 3). The median error is
equal to 1.9 m and 1.69 m for the kNN and the MvGs methods, respectively, while
the BCS-GSM approach results in a median error of 1.36 m.
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Figure 6.16: Performance evaluation of the CS-KALMAN path tracking model at
INRIA
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6.7 Chapter Summary

This chapter evaluates the performances of the proposed MvG, CS-WLAN position-
ing and indoor tracking system. There are three experimental sites. The experiments
carried in FORTH-ICS, CretAquarium and INRIA-Rocquencourt campus.
The empirical experimental evaluation revealed that the multivariate Gaussian
method usually outperforms previous statistical signal-strength fingerprint ap-
proaches, while the CS-based approach achieved a superior performance when com-
pared to the multivariate Gaussian-based technique.
The reason for this is that, in contrast to the MvG which employs the average RSS
statistics (means and covariances), the CS-based scheme exploits directly the raw
RSS measurements, via the low-dimensional measurement vectors, and thus it is
able to account for the time-varying nature of the RSS readings. Moreover, a CS
approach is characterized by the inherent property that it suppresses the noise-like
features of the signal to be reconstructed, while extracting its prominent information
content. This is not the case with the MvG method, where the statistical signatures
(fingerprints), and consequently the computed KLD, could be affected more from
potential noise-like fluctuations in the RSS measurements.





Chapter 7

Conclusions and Future Work

This thesis introduced and compared two novel localization methods based on
RSS measurements. In the first case, statistical signal-strength fingerprints are
created using multivariate Gaussian distributions. Then the position of the device
is estimated by computing the region with the training fingerprint that has the
minimum KLD from the runtime fingerprint. In the second case, the localization
problem was reduced in a sparse reconstruction problem in the framework of CS.
The dimensionality of the original RSS measurements was reduced significantly via
random linear projections on a suitable measurement basis, while maintaining an
increased localization accuracy.

The empirical experimental evaluation revealed that the multivariate Gaus-
sian method usually outperforms previous statistical signal-strength fingerprint
approaches, while the CS-based approach achieved a superior performance when
compared to the multivariate Gaussian-based technique. We performed an evalu-
ation of various fingerprint methods in the premises of FORTH and an aquarium.
The presence of people, as well as the density and placement of APs have a
prominent impact on the positioning accuracy. Furthermore, in the case of the
multivariate Gaussian-based algorithm we experimented with a spatial multiscale
iterative approach in which we applied the algorithm on larger regions to select
the correct one, and then within the selected region to estimate the correct cell.
Something similar was performed in the case of percentiles by selecting the top 5
candidate cells. We showed that it improves the accuracy by eliminating the distant
incorrect cells and taking also into consideration the effect of neighboring cells
around the correct one. Other related works have also shown that the integration
of user mobility models can further improve the accuracy. In the context of the
aquarium, in which mobility patterns do exist, the integration of user mobility
models could be helpful.

Finally, a hybrid path tracking system is presented, which exploits the effi-
ciency of a Kalman filter in conjunction with the power of compressive sensing
to represent accurately sparse signals and a region-based multivariate Gaussian
model. The experimental evaluation reveals an increased localization performance,
while maintaining a low computational complexity.

We have been also experimenting with other modalities, such as infrared,
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cameras and QR codes to improve the location estimation. Specifically, in front of
each landmark (e.g., tank of the aquarium or office in TNL), a unique QR code
can be placed along with three infrared sensors (e.g., WII bar). The camera of the
mobile device of a visitor may capture the QR code, recognize it, and thus identify
the landmark, in front of which this visitor is standing. Similarly, when the camera
captures the infrared light from at least two infrared sources, it can estimate its
distance from the landmark by measuring the distance of the two infrared sources
on the recorded image. We plan to extend our localization system by incorporating
these multi-modalities measurements.

There is a growing interest in statistical methods that exploit various spatio-
temporal statistical properties of the received signal to form robust fingerprints. In
general, a channel exhibits very transient phenomena and is highly time-varying.
At the same time, the collection of signal measurements is subject to inaccuracies
due to various issues, such as hardware misconfigurations, limitations, time
synchronization, fine-grain data sampling, incomplete information, and vendor-
specific dependencies (often not publicly available). Thus, the general problem of
building a theoretical framework to analyze these fingerprint techniques taking into
consideration the above limitations opens up exciting research opportunities.

Regarding the part of CS, in the present work, the unknown location was
estimated by performing separate reconstruction for each AP. A straightforward
extension will be the use of the joint sparsity structure of the indicator vector w

among the APs for the simultaneous location estimation. Moreover, the random
nature of the measurement vectors associated with an RSS vector could be exploited
in order to enhance the encryption capabilities of the proposed CS localization
approach, without the additional computational cost of a separate encryption
protocol. Besides, a more thorough study should be carried out for the robustness
of the inherent encryption property in terms of the several network parameters.
The choice of appropriate sparsifying and measurement bases is crucial for an
increased localization accuracy. The design of new transform and measurement
bases, Ψ, Φ, respectively, being adaptive to the specific characteristics of the RSS
data is also of significant importance.
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