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Introduction 

 Among the various specifications of production function models is the von 

Liebig model, established in the 1840s. According to the law of minimum the 

production level is a proportional function of the scarcest input applied in the plant. 

Although this model has received many critics about its appropriateness to determine 

input-output relationship with real data, several empirical studies have proved its 

capability of representing crop responses to fertilizers as well as the polynomial 

specification does. 

 Despite the fact that the von Liebig model has been present in the literature for 

many years, it recently begins to be recognized as a successful model for response 

analysis and that’s why it attracts our interest. However, this paper does not challenge 

to verify the characteristics of the von Liebig model or to proceed to the comparison 

of the model with other production functions, but our main focus is the measurement 

of technical efficiency inside the framework of the von Liebig model. 

 The analysis of the technical efficiency of von Liebig model can be succeeded 

through the stochastic frontier von Liebig function. The stochastic frontier production 

function gives the level of production, which is a function of a set of inputs, technical 

efficiency term and random error. The technical efficiency term indicate if the 

economic agents are technically efficient. 

 In the same context lies the work of Holloway and Paris, who estimated the 

frontier von Liebig function and reached the conclusion that the particular model fits 

to the data, indicating its appropriateness. In this paper, the estimation of the frontier 

von Liebig function is based on different methodology and specification compared to 

the one developed by Holloway and Paris. The difference lies on the fact that 

efficiency is estimated via an input oriented measure and we put an efficiency term in 
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each response function, in contrast to Holloway and Paris who employed an output 

oriented measure of efficiency with one inefficiency term outside the min operator. 

Additionally, instead of employing the Bayesian techniques for the estimation of the 

frontier production function that Holloway and Paris applied, we use the maximum 

likelihood estimation techniques extending Maddala’s and Nelson’s approach.  

 In our analysis the von Liebig specification has an error term for each regime, 

in contrast to Holloway and Paris’ specification that has one error term outside the 

min operator. Such an error term represents the producer’s weakness to control 

perfectly the applied inputs, because the levels of inputs vary across the field due to 

nonuniformity in the existing levels of the nutrients. That’s why we assume that each 

regime is a random variable with different variance. According to Paris and Knapp, 

this specification of von Liebig model is defined as a special case of disequilibrium or 

switching regression models. 

 The structure of the paper proceeds as follows. The first section provides a 

historical review of the von Liebig model and presents some of the main results on 

this model. The second section presents the theoretical von Liebig model and states its 

main characteristics to facilitate our understanding on the model structure. In the third 

section the method that is employed to estimate the linear and non linear von Liebig 

models and the main results are presented. In the forth section the frontier von Liebig 

function is formulated and estimated with the techniques employed in the previous 

section. The data set used for the estimation of the von Liebig function and the 

frontier von Liebig function were published by the Heady and Pesek. Finally, the 

sixth section concludes and provides some suggestions for further research. 
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Historical review 

Traditionally, crop yield response was specified as a polynomial function such 

as the quadratic or square root forms. These functions exhibit diminishing marginal 

productivity and input substitution. These properties plus the fact that the functions 

are linear in parameters and are relatively easy to estimate contributed to their 

historical popularity. Recently, they have been criticized because they force input 

substitution, do not allow for plateau growth and often over-estimate the optimal 

fertilizer quantity. 

 Agricultural economists thus continue to analyze and estimate alternative crop 

response models. Much of interest has focused is the “law of the minimum” which 

was first expressed by Carl Sprengel in 1828. He stated, “… when a plant needs 12 

substance to develop, it will not grow if any one of these is missing, and it will always grow 

poorly, when one of these is not available in a sufficiently large amount as requires by the 

nature of the plant”. Some years later, Justus von Liebig (1803-1873) re-examined 

Sprengel’s ideas and formulate the “law of minimum”. In his book “The Natural Laws 

of Husbandry” (1863) it is written, “Every field contains a maximum of one or several, 

and a minimum of one or several different nutrients. The yield of crops stand in relation to 

this minimum be it lime, potash, nitrogen, phosphoric acid, magnesia, or any other mineral 

constituent; this minimum governs and control the level and the persistence of yields. Should 

this minimum for example be lime or magnesia, the yield of grain and straw, of turnips, 

potatoes or clover will remain the same and be no greater even though the amount of potash, 

silica, phosphoric acid, etc., already in the soil be increased a hundred times. The crop yields 

on this field, however, will be increased by a simple fertilization with lime”. 

 The law of minimum posits two crucial characteristics, first a yield plateau 

and second nonsubstitution between nutrients. The nonsubstitution characteristic 

indicates that the continually increasing of the nonlimiting nutrients quantity does not 
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affect the yield, like the Leontief production function. An application of this property 

is that the isoquants of the crop production function have vertical and horizontal legs 

that joint at right angles.  

When the law of minimum first appeared the mathematical tools to analyze it 

were not significantly developed that’s why it did not receive a complete analysis and 

empirical testing. The first mathematical expression of the von Liebig hypothesis was 

linearity between the scarcest fertilizers and yields, and after 1951, with the evolution 

of mathematics, it could also be expressed as a nonlinear response function. Statistical 

and mathematical instruments for estimating von Liebig model and for comparing the 

different models among them were not available until 1977. 

 

Previous work 

Until today, many studies have been made in order to examine and test 

empirically the von Liebig hypothesis. Ackello-Ogutu, Paris and William (1985) were 

the first compared the von Liebig response function against the polynomial functions 

using a nonnested test. Using data for a dryland corn-soybean-wheat-hay rotation in 

Indiana, they found that the von Liebig function was preferred to both the square root 

and quadratic forms and that the square root was slightly better than the quadratic. 

Frank, Beattie and Embleton (1990), using nonnested hypothesis, compared 

the Von Liebig function with the quadratic and Mitscherlich-Baule functional forms. 

The Mitscherlich-Baule allows plateau growth and input substitution in contrast to the 

von Liebig and the quadratic does not include either a growth plateau neither input 

substitution. In this study they used the data from Heady and Pesek for dryland corn 

production using 114 observations and the results favor the Mitscherlich-Baule 

model.  
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Later on, Paris (1992) used the same data set to compare five alternative crop 

response functions, quadratic, square root, linear von Liebig, Mitscherlich-Baule and 

nonlinear von Liebig. The results from the nonnested hypothesis tests among the five 

alternative functions show that the data are represented better with von Liebig with 

Mitscherlich regimes that allows diminishing marginal productivity. 

Recently, Chambers and Lichtenberg (2001) developed dual representation of 

von Liebig technology and used nonparametric methods to test the two properties of 

the law of minimum, plateau yield and nonsubstitution of nutrients. The results of the 

tests were favoring the law of minimum. In the contrary, Bercks, Geoghegan and 

Stohs that also used nonparametric methods rejected the law of minimum. 
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Representation of the von Liebig Model 

 The law of minimum states that crop yields are proportional to the total 

availability of a limited nutrient up to the point where another nutrient becomes 

limiting. The most general formulation of the law of minimum is specified as 

 

                                     ( ) ( ) ( ){ }min , ,...,i N i P i C iy f N f P f C=                         ( )1  

 

where iy  is the actual level of crop production, ( )N if N , ( )p if P  up to ( )C if C  are the 

increasing individual response functions of the various fertilizers, N , P  and C  are 

the levels of fertilizer nutrients (i.e. Nitrogen, Phosphorus and Calcium) where 

1,2,....,i N=  observations. 

The potential yield function Nf , Pf  and Cf  can be expressed by a wide variety 

of functional forms. For many years the von Liebig hypothesis was represented as a 

linear relation because of the misinterpretation of the world relation. Von Liebig used 

the world relation to describe the dependence of crop yield on limiting nutrients but 

some analyzers confused his words and they gave a stricter meaning of the word, they 

interpreted it as a linear relation of crop yield with the limited nutrients. After some 

studies it was proved that the potential function could have a non-linear or any other 

functional form. The linear specification gives rise to the linear-response and plateau 

model (LRP) and by focusing upon two nutrients, say Phosphorus and Nitrogen, we 

restated the von Liebig hypothesis as 

 

                             { }min , ,P P N Ni i iy a P a N mβ β= + +                             ( )2  
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where iy  is corn yield, iP  and iN  are the applied quantities of the corresponding 

nutrients, phosphorus and nitrogen. The intercept Pa , in the potential yield function 

for phosphorus in (2), is a proportional function of the nutrient available in the soil 

and it takes only positive values. The same explanation applies to the other nutrient, 

the nitrogen. The parameters Pβ  and Nβ  show the slope of the corresponding 

response function of the two fertilizers. Finally, m  is the asymptotic plateau or in 

other words is the maximum corn yield. After some level of application of the two 

nutrients, say *P  and *N , the plant will no longer respond to the extra-applied 

quantity of these nutrients. Paris expresses the plateau as 

( )min ( ), ( ),..., ( )K W Lm f K f W f L=  where K , W ,…, L  are the fixed levels of the 

growth factors that are beyond the scope of the study.  So, in the point m  the plant 

reaches the maximum growth by the use of phosphorus and nitrogen and after this 

point the plant depends on an input that is not included in our study. 

 The nonlinear specification of response functions Pf  and Nf  can be 

represented by a wide spectrum of functional forms, including the Mitscherlich 

specification according to Paris. Using two inputs, Phosphorus (P) and Nitrogen (N), 

the model may be written as 

 

                          ( ) ( ){ }min 1 exp , 1 expP P N Ni iy m k P m k Nβ β⎡ ⎤ ⎡ ⎤= − − − −⎣ ⎦ ⎣ ⎦          ( )3  

 

where m  is the asymptotic plateau common to each potential yield function. The 

parameters Pk , Nk , Pβ  and Nβ  of the response function are expected to be positive. 

As in the linear specification, this model imposes a yield plateau and non-substitution 
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among inputs, but they differ in the fact that the nonlinear specification allows 

decreasing marginal productivity and decreasing returns to scale of inputs. 

 A single-variable-nutrient illustration of the linear response (LRP) is presented 

in figure 1. In this figure we include a positive Y -axis and a P -axis. The logic of this 

figure is that the plants obtain the nutrient from two sources, the soil P  represented 

by the negative segment of the P -axis and the fertilizer P  represented on the positive 

segment of the P -axis. When the unobserved soil P and fertilizer P are zero, the yield 

will be zero as well. When the fertilizer P is zero and the soil P is different zero, the 

yield would be positive and is represent by the dotted line. In the figure we can 

observe the point maxY  which is the maximum yield that can be produced, plateau, 

and if we increase further the amount of the fertilizer P the yield will not affected. 

In many cases, the inputs are not controllable with certainty because of the 

nonuniformity in the distribution of the inputs. The producer, when he applies a 

fertilizer in its field, he drops more quantity of fertilizer in some plots and in some 

others less. Therefore, the above production functions do not describe correctly the 

plant response. For example, assume that a given homogeneous field is depending on 

the growth factor phosphorus and therefore its yield response would be 

P P Py a Pβ= + . In the case that the plots across the field differ in the quantity of 

phosphorus, the kth plot receives k PkP e+  of the fertilizer phosphorus, where Pe  is a 

mean zero random variable. The term kP  is always known because it is the total 

quantity of phosphorus that is applied in the field divided by the acreage of the field. 

In contrast, the term Pke  is unobserved. Consequently, the production response 

function for the kth plot turns to be P P PPk k Pky a P eβ β= + + , given that the phosphorus 

binds. For convenience we set Pk P Pkeε β=  and so the production response function is 
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P PPk k Pky a Pβ ε= + + . We can make the same assumption for the second nutrient, 

nitrogen, and the plateau. If the nitrogen is limited, the response function is 

N NNk k Nky a Nβ ε= + +  where Nk N Nkeε β=  and if the plateau binds the response 

function is mk mky m ε= +  (Peter Berck and Gloria Helfand). In contrast, Paris states 

that the presence of the error term is inspired by the agronomic variability usually 

observed in vegetative regimes governed by limited nutrients because each nutrient 

has different implications for the vegetative as well as the maturity and productive 

stage of a crop. Therefore, the von Liebig hypothesis, respectively, with linear and 

nonlinear potential crop functions can be expressed as 

 

                           { }min , ,P P N Ni i Pi i Ni miy a P a N mβ ε β ε ε= + + + + +                         ( )4  

 

             ( ) ( ){ }min 1 exp , 1 expP P Ni i Pi N i Niy m k P m k Nβ ε β ε⎡ ⎤ ⎡ ⎤= − − + − − +⎣ ⎦ ⎣ ⎦ .          ( )5  

 

For an alternative and more concise specification of the random error assumes 

that the error associated with the dependent variable is unique and therefore it is not 

subject to the minimum operator. In this case, the von Liebig models take the 

following form 

 

{ }min , ,P P NNi i i iy a P a N mβ β ε= + + +                     ( )6  

 

( ) ( ){ }min 1 exp , 1 expP P N Ni i i iy m k P m k Nβ β ε⎡ ⎤⎡ ⎤= − − − − +⎣ ⎦ ⎣ ⎦           ( )7  
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 The estimation of the von Liebig specifications ( )4  and ( )5  is complex and it 

requires quite unusual computations because of the switching nature of the production 

function. The crop yield depends on the limited nutrient, so in each observation one of 

the several nutrients could be limited. Also, the estimation faces the problem of 

sample classification as it is not known a priori which one is the limiting nutrient. So, 

for the estimation of models ( )4  and ( )5  we execute the maximum likelihood that is 

used for the estimation of disequilibrium models as it was first proposed by Maddala 

and Nelson. 

 

  

Estimation of the von Liebig model 

 The von Liebig specification as we said is a special case of disequilibrium or 

switching regression model in which each regime has its own stochastic disturbance. 

For estimating the von Liebig model we use the maximum likelihood method of 

Maddala and Nelson with some adjustments based in the characteristics of the von 

Liebig model. In the estimation we consider three regimes, phosphorus, nitrogen and 

plateau, and therefore the model consists of the following equations 

 

( ),Pi P i P Piy f P β ε= + , 

( ),Ni N i N Niy f N β ε= + , 

mi miy m ε= +  

 

where Piy  denotes the crop yield of the regime phosphorus, Niy  the crop yield of 

nitrogen and miy  of the plateau. The terms iP  and iN  are the quantities of each 

(8) 

(9) 

(10) 
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fertilizer respectively, and Pβ , Nβ  are the vectors of parameters. We define iy  the 

actual crop yield for the observation i  

 

{ }min , ,i Pi Ni miy y y y= . 

 

For simplicity, we assume that Piε , Niε  and miε  are independently and normally 

distributed with variances 2
Pσ , 2

Nσ  and 2
mσ  respectively. Also, we assume that they 

are pairwise independent, ( )cov , 0k k
i iε ε ′ =  where k k′≠  and , , ,k k P N m′ = . 

 According to the law of minimum, in the case of three regimes, the actual crop 

yields depend on the scarcest nutrient and therefore there are three possibilities for the 

observed yield, iy :  

  

i. The possibility the nutrient phosphorus is the scarcest input and so the crop 

yields is equal the response function of phosphorus 

( ),i P i P Piy f P β ε= +      If      ( ) ( ), ,P i P Pi N i N Nif P f Nβ ε β ε+ < +       and 

            ( ),P i P Pi mif P mβ ε ε+ < +  

 

ii. The possibility the nutrient nitrogen is the scarcest input and so the crop yields 

is equal the response function of nitrogen 

( ),i N i N Niy f N β ε= +      If       ( ) ( ), ,N i N Ni P i P Pif N f Pβ ε β ε+ < +      and 

                  ( ),N i N Ni mif N mβ ε ε+ < +  

 

iii.  The possibility the the crop yields is equal the plateau 

(11) 
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i miy m ε= +              If        ( ),mi P i P Pim f Pε β ε+ < +                and 

          ( ),mi N i N Nim f Nε β ε+ < +  

 

The likelihood function is based on the unconditional density function of the 

dependent variable, iy , and it is represented by the sum of three densities depending 

on which one of P , N  or m  is binding, as show below, 

 

( ) ( ) ( ), , , ,i P i Pi Ni i mi i N Pi i i Ni mi ih y h y y y y y y h y y y y y y= = > > + > = > +  

( ), ,m Pi i Ni i i mih y y y y y y> > =  

  

where ( ).zh  represents the density of y  when input z  is limiting, where , ,z P N m= . 

Given the assumptions about the error terms in equations (8) to (10), the densities 

( ).zh  are 

 

( ) ( ) ( ) ( ), ,P i Pi Ni i mi P i Ni i mi ih y y y y y y y P y y P y yφ= > > = > >  

( ) ( ) ( ) ( ), ,N Pi i i Ni mi i N i Pi i mi ih y y y y y y y P y y P y yφ> = > = > >  

( ) ( ) ( ) ( ), ,m Pi i Ni i i mi m i Pi i Ni ih y y y y y y y P y y P y yφ> > = = > >  

 

The function ( ).zφ  is density function for crop yield in regime z . Since Pε , Nε  and 

mε  are normally distributed, the function ( ).zφ  has a form such as 

( )
( )( )2

2

,

21
2

i z i z

z

y f P

z i
z

y e
β

σφ
πσ

−
−

=  

(12)

(16) 

(13)

(14)

(15)
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Also, the rest of the probabilities have the following forms 

( )
( ) 2

2
( , )

21
2

z i z

z

i

y f Z

zi i
y z

P y y e dy
β

σ

πσ

−∞ −

> = ∫  

Finally, in order to estimate the parameters of the model we have to maximize the 

likelihood function 

 

max
β

 ( )
1

( ) ,
n

i
i

L h yβ β
=

= ∑  

 

where the vector β  includes all the parameters we want to estimate, including the 

variances (see appendix B for details). To obtain the estimation of the set of 

parameters β  we take the first derivatives of likelihood and to get the variance-

covariance matrix of parameters we take the inverse matrix of the second derivatives 

of the likelihood. 

 After we get the estimates of the parameters and of the variances we can 

obtain estimates of the probabilities that each observation depends on the nutrient 

phosphorus, or nitrogen or the plateau. 

 

 

Data and results of the estimation 

 For the estimation we use the experimental data of Heady and Pesek that 

involve yield response of corn to the application of phosphorus and nitrogen and 

consist of 114 observations. These experimental data have become very popular and 

(17) 

(18) 
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have been previously used by many to investigate the von Liebig technology and to 

compare it with other productions functions. 

 In table 1 we present the estimation results of the linear and non-linear von 

Liebig functions. The signs of the parameters are positive as expected. The estimated 

coefficients in both von Liebig specifications are statically significant at the 1% level. 

The estimated yield plateaus defined by the two von Liebig models are not the same. 

The linear von Liebig model shows a yield plateau, estimated at 1.2681, which is 

lower than the yield plateau imposed by the nonlinear von Liebig model, estimated at 

1.3731.  

  

 

The stochastic frontier von Liebig model 

 The analysis of technical efficiency stands at the heart of microeconomic 

theory and this is why it is important to measure the technical efficiency of the von 

Liebig model. For the analysis of efficiency we need the frontier production function 

that represents the maximum output attainable, given a set of inputs. The 

measurement of technical efficiency is based upon deviations of observed output from 

the efficient production frontier. If the actual production point lies on the frontier it is 

perfectly efficient, but if it lies below the frontier then it is technically inefficient, with 

the ratio of the actual to the potential production defining the level of efficiency. 

 The first who attempted to estimate the frontier production function was Farrel 

but his attempt was not completely successful. Following that, Aigner, Lovell and 

Schmidt, and Meeusen and Van den Broeck, who carried out a large part of the 

empirical literature on efficiency in production, proposed the stochastic frontier model 

or composed error. The stochastic frontier model was based on the idea that 



 16

deviations from the production frontier might not be entirely under the control of the 

producer.  

 Technical efficiency is only one component of overall economic efficiency but 

it is the main condition of the producer in order to be economically efficient. Also, 

profit maximization requires a firm to produce the maximum output given the levels 

of inputs employed (be technically efficient), use the right mix of inputs given the 

relative price of each inputs (be input allocatively efficient) and produce the exact 

combination of outputs given the set of prices (be output allocatively efficient). 

Technical efficiency can be measured in two ways. The first one is to achieve a given 

level of output by the optimal combination of inputs and it is called an input-

orientation. The second approach is the opposite; the optimal output is being 

produced given a set of inputs, and it is called an output-orientation. 

 The concept of technical efficiency can be illustrated using an example with 

two inputs ( ,P N ) and a production process that expresses the von Liebig model. In 

figure 2 the individual is producing a given level of output ( 2y ) using an input 

combination defined by point A. The same level of output can be produced by 

reducing the use of both inputs until the point B that lies on the isoquant associated 

with the minimum level of inputs required to produce 2y . The input-oriented level of 

technical efficiency for the input phosphorus is defined by the ratio *
1 10 / 0P P  and for 

the input nitrogen is *
1 10 / 0N N . Suppose now that we are producing 2y  output using 

an input combination defined by point D (E). This point is on the isoquant 2y  but it 

does not lie in the efficient set of inputs, therefore the technical inefficiency is due to 

the excess use of the input N ( P ) and if we decrease its use until the point B and 

leave constant the input P ( N ) we produce the same output 2y .  
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 Furthermore, in the figure we can illustrate the output-orientation measure of 

allocative efficiency. Suppose that the individual uses an input combination defined in 

point B and produces 1y  output. If the applied inputs are used efficiently by the 

individual, its output produced at point C, can be expanded very simply to point B so 

that it would be technically efficient. Hence, the output-oriented measure of technical 

efficiency can be given by 0C/0B.  

 Previous work on the estimation of frontier von Liebig function has been done 

by Holloway and Paris. For the estimation of the technical efficiency they employed 

the output-orientation allocative efficiency. The form of frontier von Liebig that they 

give is  

{ }min , ,W W N Ni i i iy a W a N m vβ β ε= + + + +  

 

where v  is the inefficiency term and tu  is the random disturbance. For the estimation 

they used the empirical data by Hexem and Heady that illustrates the effects of the 

nutrients water and nitrogen in crop yield. The results of their estimation show that 

the frontier von Liebig model is an appropriate frontier production function.  

 In this paper, for the calculation of technical efficiency in the von Liebig 

model we use the input-oriented measure and we suppose that the response functions 

are linear. In addition, we estimate three von Liebig frontier functions because there 

are three possible cases as we previously mentioned. Case 1 is when we are in the 

point B and we produce 1y  instead of 2y  which is the efficient quantity to produce, 

and therefore the von Liebig frontier function has the following specification 

 

{ }min , ,i P P i Pi Pi N N i Ni Ni miy a PTE a N TE mβ ε β ε ε= + + + + +  (25)
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 The other two cases appear when only one of the two inputs is inefficiently 

applied. These cases occur when the producer applies the combinations of inputs 

indicated by points D and E in the figure. Particularly, in point E nitrogen is used 

efficiently, in contrast to phosphorus that is applied inefficiently. Hence, in case 2, a 

technically efficient term is introduced in the response function of phosphorus and the 

frontier von Liebig function is 

 

{ }min , ,i P P i Pi Pi N N i Ni miy a PTE a N mβ ε β ε ε= + + + + + . 

 

The same can be said when we are in point D where we use excess quantity of the 

nutrient nitrogen in contrast to phosphorus of which we use the exact quantity needed 

in order to produce efficiently the quantity 2y . As previously, only nitrogen that is 

inefficient has an efficiency term in its response function and the frontier function in 

case 3 is 

 

{ }min , ,i P P i Pi N N i Ni Ni miy a P a N TE mβ ε β ε ε= + + + + +  

 

The terms PTE  and NTE  are the technical efficiencies of the nutrients phosphorus and 

nitrogen respectively. They show the percentage of the relative input that is used 

efficient. If the technical efficiency equals unity, the input is used efficiently. In 

contrast, if the technical efficiency is below unity, the use of input is not efficient. For 

example, suppose in figure 2 that we use the set of inputs that is implied on the point 

A and we produce 1y . If we reduce phosphorus and nitrogen by the proportion 

(26) 

(27)
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1 PTE−  and 1 NTE−  respectively, we reach the point B and, thus, achieve technical 

efficiency. 

 We assume that the technical efficiency can be also written as exp( )TE u= −  

where u  derives from a half normal distribution, ( )20, uu N σ+ . The term u  takes 

only positive values, 0u ≥ , and therefore, technical efficiency satisfies the condition 

of technical efficiency 0 1TE< ≤  (when 0u =  ⇒  exp( 0) 1− =  ⇒  there is not 

technical inefficiency and when 0u >  ⇒  0 exp( ) 1u< − <  ⇒  there is technical 

inefficiency). 

  

Estimation of frontier von Liebig function 

  We have three von Liebig frontier functions that we must estimate, each one 

illustrating a different case. For the estimation of these stochastic frontier von Liebig 

models we use the same method as in the previous estimation of von Liebig model, 

the maximum likelihood method. The difference between these estimations is that we 

have two independent random variables in the response functions of phosphorus and 

nitrogen with different distribution: the error components Pε  and Nε  and the terms Pu  

and Nu . Hence, the probability function arises from the sum of the two different 

distributions and is expressed as 

 

( ) ( ) ( )2 21

2 2
0

ln2 1 1exp
2 2

i z z i z z
z

z uz z uz z

y a Z TE TE
y dTE

TEε ε

β
φ

πσ σ σ σ

⎧ ⎫⎡ ⎤− − −⎪ ⎪= − +⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∫  

 

where zεσ  and uzσ  are the standard deviations of the error component and of the zu  

respectively, where ,z P N= .  We note that the probability function (29) represents 

(29)
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only the response functions that contain a technically efficient term. If the response 

function does not contain a technical efficient term, the distribution function would 

like the (9)(see Appendix C for details). 

 

Results 

 For the estimation of the von Liebig frontier functions we use the same 

experimental data Heady and Pesek that we used in the previous estimation of the von 

Liebig function.  

 Table 2 contains the estimations of the three different von Liebig frontier 

functions. The signs of the parameters for the three models are positive as we 

expected to be. All the estimated coefficients and intercepts are statistically significant 

at the 0.05% level. Also, we notify that the estimations of the three models are similar 

with the estimations of the linear von Liebig model in which there are no technically 

efficient terms. 

 In the first model, where both response functions of the inputs, P and N, have 

a technically efficient term, the standard deviation of the technical efficient term for 

phosphorus is statistically significant at the 0.05% level. In contrast, the standard 

deviation of the technically efficient term for nitrogen is not significantly different 

from zero. That means that only the input phosphorus is technical inefficiency. 

 The estimation of the second model is the same with the estimation of the first 

model with the difference that we do not estimate the standard deviation of the 

technically efficient term for nitrogen. On the contrary, the estimation of the third 

model is not exactly the same; only the estimated value of the plateau is the same 

along the three models. In addition, the estimated standard deviation of technical 
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efficiency of nitrogen in the third model is not significantly different from zero. This 

means that the input nitrogen is used efficiently.  

 
 
 
Measurement of the technical efficiency 

 The second step in the analysis of the stochastic frontier model is to calculate 

the technical efficiency for each observation of the experimental data. For the 

calculation we use the estimated parameter values from the von Liebig frontier 

function.  

 In order to measure the technical efficiency we take the conditional 

expectation of technical efficiency given the value of crop yield, which is  

 

( )
( )

( )

1

0

,z z z i z

zi i

TE f TE y dTE
E TE y

h y
=

∫
 

 

where ( )h y  is the value of likelihood function got evaluated at estimates and 

( ),f TE y  is the joint density of the technical efficiency and the crop yield and is 

express as 

 

( ) ( ) ( ), , , , , , ,zi i zi zi z i i mi i zi zi i z i i mi if TE y TE y y y y y y TE y y y y y yϕ ϕ′ ′= = > > + > = > +  

( ), , ,zi zi i z i i mi iTE y y y y y yϕ ′> > =  
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where ( ).φ  is the joint probability function of ziTE with the iy  which is bound to the 

limited input. Because we assume that the error terms are independently distributed 

the joint density can be also written as 

 

( ) ( ) ( ) ( ), ,zi i zi zi i z i i mi if TE y TE y y P y y P y yϕ ′= = > > +  

( ) ( ) ( ) ( ) ( ) ( ), ,zi zi i z i i mi i zi zi i z i i mi iP TE y y y y P y y P TE y y P y y y yϕ φ′ ′> = > + > > >  

 

The forms of the joint density is  

 

( ) ( ) ( )2 21

2 2
0

ln2 1, exp
2 2

i z z i z z
zi zi i z

z uz z uz

y a Z TE TE
TE y y dTE

ε ε

β
ϕ

πσ σ σ σ

⎧ ⎫⎡ ⎤− − −⎪ ⎪= = − +⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∫  

 

where , ,z z P N′ =  and z z′≠ . We use this procedure for measuring the technical 

efficiency for the three cases (see appendix D for details). 

The tables (3) and (4) contain the results of the term technical efficiency for 

the three case we estimated. We note that the results of case 1 are similar with the 

case 2 and 3. The nutrient phosphorus is technical efficient only for one of the 114 

observations of the experimental data and the most observations use only the 80% of 

the nutrient phosphorus efficient. In contrast, the nutrient nitrogen is used technical 

efficiency from all the observations of the data. 

 

 

 

 

 

 

(32)

(33)



 23

Conclusion 

In the last year the von Liebig model attracts the interest of the agricultural 

economist and it was proved that it could perform as well as the polynomial functions. 

In this paper we analyze the von Liebig model and we estimate the von Liebig 

production function and the stochastic frontier von Liebig functions in order to 

measure the technical efficiency. For the estimation we use an extension of maximum 

likelihood of Maddala and Nelson that it was constructed for the estimation of the 

disequilibrium models. 

We estimate three stochastic frontier von Liebig functions, each one describe 

different case, and for the measurement of technical efficiency we use the input 

orientation. In the first case we assume that both inputs are technical inefficient, in the 

second and in the third we assume that one of the inputs are technical inefficient. The 

results show that the nutrient phosphorus is technical inefficient, in contrast to 

nitrogen that is technical efficient. Also, the estimations of the case 3 in which we 

assume that the phosphorus is technical efficient and the nitrogen is technical 

inefficient, are exactly the same with the estimations of the von Liebig model without 

technical efficient term because the results show that the nitrogen is technical 

efficient. 

Further research in this area should include the measure of technical efficiency 

using different distribution of half normal. Also, the measure of allocative efficiency 

of inputs is very interest. If the prices of inputs are available, we can find input 

combinations minimizing the cost of production.  
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E

Appendix A 
 
 
Figure 1: LRP representation of crop yield to Phosphorus 

 
 
 
 
 
 
Figure 2: Input and output oriented efficiency measures 
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Table 1 

Estimated von Liebig function 
 

 

Linear von Liebig 

{ }min 0.2641 0.9395 ,0.2895 0.9824 ,1.2681i i Pi i Ni miy P Nε ε ε= + ∗ + + ∗ + +  

                        ( )0.0534 ( )0.1016          ( )0.0307  ( )0.0697          ( )0.0144  

ˆ 0.2359Pσ = ,   ˆ 0.1294Nσ = ,   ˆ 0.0935mσ = ,   log 79.7382L =  
                         ( )0.0304           ( )0.0168          ( )0.0104  
 

 

Von Liebig with Mitscherlich regimes 

( ) ( )( ){ }min 1.3731 1 0.8729 exp( 1.9617 ) ,1.3731 1 0.802 exp 1.5431i i Pi i Niy P Nε ε= − ∗ − ∗ + − ∗ − ∗ +

             ( )0.0227   ( )0.0248        ( )0.2345              ( )0.0227  ( )0.0217        ( )0.1431  

ˆ 0.1426Pσ = ,   ˆ 0.1225Nσ = ,   log 70.6505L =  
                                      ( )0.0151           ( )0.0126  
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Table 2 

Estimated frontier von Liebig functions 

                                    Frontier von Liebig    Frontier von Liebig    Frontier von Liebig 

Parameters                  Function (case1)           Function (case2)       Function (case3) 

Pa  0.2201 
(0.0302) 

0.2201 
(0.0302) 

0.2641 
(0.0534) 

Na  
 

0.2909 
(0.0306) 

0.2910 
(0.0307) 

0.2894 
(0.0307) 

Pβ  
 

1.5266 
(0.0894) 

1.5266 
(0.0894) 

0.9395 
(0.1016) 

Nβ  
 

0.9875 
(0.0724) 

0.9785 
(0.0693) 

0.9914 
(0.0728) 

m  
 

1.2681 
(0.0144) 

1.2681 
(0.0144) 

1.2681 
(0.0144) 

Pεσ  
 

0.1333 
(0.0248) 

0.1333 
(0.0248) 

0.2359 
(0.0304) 

Nεσ  
 

0.1293 
(0.0168) 

0.1294 
(0.0168) 

0.1293 
(0.0168) 

mεσ  
 

0.0926 
(0.0106) 

0.0926 
(0.0106) 

0.0935 
(0.0104) 

uPσ  
 

0.4406 
(0.0880) 

0.4406 
(0.0880) 

- 

uNσ  
 

0.0114 
(0.0261) 

- 0.0114 
(0.0264) 
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Case2: Nutrient Phosphorus

Table 3 

Case 1: Nutrient Phosphorus Case 1: Nutrient Nitrogen

Table 3

Case3: Nutrient Nitrogen

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

11
100 9
970.8
10.7
20 6
20.5
10 4
00.3
00.2
00 1

Number of obsLevels of TE

1141
00 9
00 8
00 7
00 6
00 5
00 4
00 3
00 2
00 1

Number of obsLevels of TE

0.726730.72885
MMeeddiiaannMMeeaann

0.990970.99097
MMeeddiiaannMMeeaann

11
100.9 
970.8 
10.7 
20.6 
20.5 
10.4 
00.3 
00.2 
00.1 

Number of obs Levels of TE 

0.726730.72885
MMeeddiiaannMMeeaann

114 1
0 0.9
0 0.8
0 0.7
0 0.6
0 0.5
0 0.4
0 0.3
0 0.2
0 0.1

Number of obsLevels of TE

0.990970.99094
MMeeddiiaannMMeeaann
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Appendix B 
 
Estimation of von Liebig function 
 
In the estimation we consider three regimes, phosphorus, nitrogen and plateau, and 

therefore the model consists of the following equations 

( ),Pi P i P Piy f P β ε= + , 

( ),Ni N i N Niy f N β ε= + , 

mi miy m ε= +  

where 
 Piy , Niy , miy : crop yields of the regime phosphorus, nitrogen and plateau respectively 

iP , iN : quantities of fertilizer phosphorus and nitrogen respectively,  

Pβ , Nβ : vectors of parameters 

m  : plateau 

 

 We define iy  the actual crop yield for the observation i  

 

{ }min , ,i Pi Ni miy y y y= . 

 

We assume that Piε , Niε  and miε  are independently and normally distributed with 

variances 2
Pσ , 2

Nσ  and 2
mσ  respectively, and that they are pairwise independent, 

( )cov , 0k k
i iε ε ′ =  where k k′≠  and , , ,k k P N m′ = . 

The likelihood function is  

( ) ( ) ( ), , , ,i P i Pi Ni i mi i N Pi i i Ni mi ih y h y y y y y y h y y y y y y= = > > + > = > +  

( ), ,m Pi i Ni i i mih y y y y y y> > =  

  

(5) 

(1) 

(2) 

(3) 

(4) 
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where ( ).zh  represents the density of y  when input i  is limiting, where , ,z P N π= . 

Given the assumptions about the error terms the likelihood function can be written as 

 

( ) ( ) ( ) ( ) ( ) ( )( )i P i Ni i mi i N i Pi i mi ih y y P y y P y y y P y y P y yφ φ= > > + > > +  

( ) ( ) ( )m i Pi i Ni iy P y y P y yφ > >  

 

The function ( ).zφ  is density function for crop yield in regime z . Since Pε , Nε  and 

mε  are normally distributed, the function ( ).zφ  has a form such as 

( )
( )( )2

2

,

21
2

i P i P

P

y f P

P i
P

y e
β

σφ
πσ

−
−

=  

( )
( )( )2

2

,

21
2

i N i N

N

y f N

N i
N

y e
β

σφ
πσ

−
−

=  

( )
( )2

221
2

i

m

y m

m i
m

y e σφ
πσ

−
−

=  

 

Also, the rest of the probabilities have the following forms 

( )
( ) 2

2

( , )

21
2

P i P i

P

i

y f P

Pi i
y P

P y y e dy
β

σ

πσ

−∞ −

> = ∫  

( )
( ) 2

2
( , )

21
2

N i N

N

i

y f N

Ni i
y N

P y y e dy
β

σ

πσ

−∞ −

> = ∫  

( )
2

2
( )

21
2

m

i

y m

mi i
y m

P y y e dyσ

πσ

−∞ −

> = ∫  

 

(7) 

(6) 

(8) 

(9) 

(10) 

(11) 

(12) 
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Finally, in order to estimate the parameters of the model we have to maximize the 

likelihood function 

max
β

 ( )
1

( ) ,
n

i
i

L h yβ β
=

= ∑  

 

max
β

 ( ) ( )
( )( ) ( )

2
2 2

2 22

, ( , ) ( )
2 221 1 1* *

2 2 2

i P i P N i N

N mP

i i

y f P y f N y m

P i
y yP N m

L y e e dy e dy
β β

σ σσβ φ
πσ πσ πσ

− − −∞ ∞− −−

= = +∫ ∫  

 

( )( ) ( )
2

2 2

2 22

, ( , ) ( )
2 221 1 1* *

2 2 2

i N i N P i P

N mP

i i

y f N y f P y m

y yN P m

e e dy e dy
β β

σ σσ

πσ πσ πσ

− − −∞ ∞− −−

+∫ ∫  

 
( ) ( ) ( )2 22

2 22
( , )( , )

2 221 1 1* *
2 2 2

i N i NP i P

m NP

i i

y m y f Ny f P

y ym P N

e e dy e dy
ββ

σ σσ

πσ πσ πσ

− −−∞ ∞− −−

∫ ∫  

 

 

where the vector β  includes all the parameters we want to estimate, including the 

variances. To obtain the estimation of the set of parameters β  we take the first 

derivatives of likelihood and to get the variance-covariance matrix of parameters we 

take the inverse matrix of the second derivatives of the likelihood. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(13) 
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(14) 

(15) 

(16) 

(17) 

(18)

Appendix C 
Estimation of frontier von Liebig function 

 

Case 1: 

 

The model consists of the following equations 

Pi P P i Pi Piy a PTEβ ε= + + , 

Ni N N i Ni Niy a N TEβ ε= + + , 

mi miy m ε= +  

 

where Pa , Na : intercepts of response function of phosphorus and nitrogen respectively 

         Pβ , Nβ : coefficients of response functions of phosphorus and nitrogen respectively 

         iP , iN : apply quantities of phosphorus and nitrogen respectively 

         PiTE , NiTE : technical efficiency of nutrients phosphorus and nitrogen respectively 

         m  : plateau 

We define iy  the actual crop yield for the observation i  

 

{ }min , ,i Pi Ni miy y y y=  

 

The likelihood function is the same with the likelihood function we use for the estimation 

of von Liebig function, 

 

( ) ( ) ( ) ( ) ( ) ( )( )i P i Ni i mi i N i Pi i mi ih y y P y y P y y y P y y P y yϕ ϕ= > > + > > +  

( ) ( ) ( )m i Pi i Ni iy P y y P y yϕ > >  
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(20)

(21) 

(22) 

(23) 

Because the response functions of phosphorus and nitrogen contain two random 

variables, the density of crop yield is the sum of the two distributions of these random 

variables and is expressed as 

( ) ( ) ( )2 21

2 2
0

ln2 1 1exp
2 2

i z z i z z
z z

z uz z uz z

y a Z TE TE
y dTE

TEε ε

β
ϕ

πσ σ σ σ

⎧ ⎫⎡ ⎤− − −⎪ ⎪= − +⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∫  

( ) ( ) ( )2 21

2 2
0

ln2 1 1exp
2 2

i

z z i z z
z zi i z

z uz z uz zy

y a Z TE TE
P y y dTE dy

TEε ε

β
πσ σ σ σ

∞ ⎧ ⎫⎡ ⎤− − −⎪ ⎪> = − +⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∫ ∫  

where ,z P N= , 

For the response function of plateau that contains only error term, the density function 

is  

( )
( )2

221
2

i

m

y m

m i
m

y e σφ
πσ

−
−

=  

( )
2

2
( )

21
2

m

i

y m

mi i
y m

P y y e dyσ

πσ

−∞ −

> = ∫  

 

Therefore the likelihood function that we maximize is  

max
β

 ( )
1

( ) ,
n

i
i

L h yβ β
=

= ∑  

 

max
β

( ) ( ) ( )2 21

2 2
0

ln2 1 1exp *
2 2

i P P i P P
P

P uP P uP P

y a PTE TE
L dTE

TEε ε

β
β

πσ σ σ σ

⎧ ⎫⎡ ⎤− − −⎪ ⎪= − +⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∫  

 
( ) ( )

2

2
( )2 21

2
2 2

0

ln2 1 1 1exp *
2 2 2

m

i i

y m
N N i N N

N
N uN N uN Ny y m

y a N TE TE
dTE dy e dy

TE
σ

ε ε

β
πσ σ σ σ πσ

−∞ ∞ −⎧ ⎫⎡ ⎤− − −⎪ ⎪− + +⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∫ ∫ ∫
 

( ) ( )2 21

2 2
0

ln2 1 1exp *
2 2

i N N i N N
N

N uN N uN N

y a N TE TE
dTE

TEε ε

β
πσ σ σ σ

⎧ ⎫⎡ ⎤− − −⎪ ⎪− +⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∫  

 

(19)
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(25) 

(26) 

(27) 

(26)

( ) ( )
2

2
( )2 21

2
2 2

0

ln2 1 1 1exp *
2 2 2

m

i i

y m
P P i P P

P
P uP P uP Py y m

y a PTE TE
dTE dy e dy

TE
σ

ε ε

β
πσ σ σ σ πσ

−∞ ∞ −⎧ ⎫⎡ ⎤− − −⎪ ⎪− + +⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∫ ∫ ∫
 

( ) ( ) ( )
2

2
2 21

2
2 2

0

ln1 2 1 1* exp *
2 22

i

m

i

y m
P P i P P

P
P uP P uP Pym

y a PTE TE
e dTE dy

TE
σ

ε ε

β
πσ σ σ σπσ

− ∞− ⎧ ⎫⎡ ⎤− − −⎪ ⎪− +⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∫ ∫
 

( ) ( )2 21

2 2
0

ln2 1 1exp
2 2

i

N N i N N
N

N uN N uN Ny

y a N TE TE
dTE dy

TEε ε

β
πσ σ σ σ

∞ ⎧ ⎫⎡ ⎤− − −⎪ ⎪− +⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∫ ∫  

 
 
 

Case 2: 
 
The model consists of the following equations 

Pi P P i Pi Piy a PTEβ ε= + + , 

Ni N N i Niy a Nβ ε= + + , 

mi miy m ε= +  

 

We define iy  the actual crop yield for the observation i  

 

{ }min , ,i Pi Ni miy y y y=  
 

 
The difference with the case 1 is that there is a technical efficient term only in response 

function of phosphorus because we assume that the use of the other nutrient (nitrogen) is 

technical efficiency. 

The likelihood function is  

 
( ) ( ) ( ) ( ) ( ) ( )( )i P i Ni i mi i N i Pi i mi ih y y P y y P y y y P y y P y yϕ ϕ= > > + > > +  

( ) ( ) ( )m i Pi i Ni iy P y y P y yϕ > >  

 

(24) 
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(27) 

(28) 

(29) 

(30) 

(31) 

The form of ( )P Pi iy yϕ = , ( )Pi iP y y>  are the same as in the case 1 because the 

response function of phosphorus continues having two random variables, the technical 

efficient term and the disturbance term. At the contrary, the ( )N Ni iy yφ =  and 

( )Ni iP y y=  have the form of normal distribution function, like the (8) and (11). 

Therefore the maximum likelihood is 

max
β

 ( )
1

( ) ,
n

i
i

L h yβ β
=

= ∑  

( ) ( ) ( )
2 2

2 2
( ) ( )2 21

2 2
2 2

0

ln2 1 1 1 1exp * *
2 2 2 2

N N i

N m

i i

y a N y m
i P P i P P

P
P uP P uP P y yN m

y a PTE TE
L dTE e dy e dy

TE

β
σ σ

ε ε

β
β

πσ σ σ σ πσ πσ

− − −∞ ∞− −⎧ ⎫⎡ ⎤− − −⎪ ⎪= − + +⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∫ ∫ ∫

 
( ) ( ) ( )

2 2

2 2
( )2 21

2 2
2 2

0

ln1 2 1 1 1* exp *
2 22 2

i N N i

N m

i i

y a N y m
P P i P P

P
P uP P uP Py yN m

y a PTE TE
e dTE dy e dy

TE

β

σ σ

ε ε

β
πσ σ σ σπσ πσ

− − −∞ ∞− −⎧ ⎫⎡ ⎤− − −⎪ ⎪− + +⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∫ ∫ ∫

 
( ) ( ) ( )

2 2

2 2
( )2 21

2 2
2 2

0

ln1 2 1 1 1* exp *
2 22 2

i N N i

m N

i i

y m y a N
P P i P P

P
P uP P uP Py ym N

y a PTE TE
e dTE dy e dy

TE

β
σ σ

ε ε

β
πσ σ σ σπσ πσ

− − −∞ ∞− −⎧ ⎫⎡ ⎤− − −⎪ ⎪− +⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∫ ∫ ∫
 

 

Case 3: 
 
The model consists of the following equations 

Pi P P i Piy a Pβ ε= + + , 

Ni N N i Ni Niy a N TEβ ε= + + , 

mi miy m ε= +  

 

We define iy  the actual crop yield for the observation i  

 

{ }min , ,i Pi Ni miy y y y=  
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(32) 

We put a technical efficient term only in response function of nitrogen because we 

assume that the use of the other nutrient (phosphorus) is technical efficiency. 

The likelihood function is  
 

( ) ( ) ( ) ( ) ( ) ( )( )i P i Ni i mi i N i Pi i mi ih y y P y y P y y y P y y P y yϕ ϕ= > > + > > +  

( ) ( ) ( )m i Pi i Ni iy P y y P y yϕ > >  

 

The form of ( )N Ni iy yϕ = , ( )Ni iP y y>  is like the (19) and (20) respectively, because 

the response function of nitrogen has two random variables, the technical efficient 

term and the disturbance term. At the contrary, the ( )P Pi iy yφ =  and ( )Pi iP y y=  

have the form of normal distribution function, like the (7) and (10) respectively. 

Therefore the maximum likelihood is 

max
β

 ( )
1

( ) ,
n

i
i

L h yβ β
=

= ∑  
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( ) ( ) ( )
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⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∫ ∫ ∫
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∫ ∫ ∫
 
 
 
 
 
 
 
 
 
 
 
 

(33) 
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Appendix D 
Measurement of Technical efficiency 
 
Case1 
 

For the measure of technical efficiency of phosphorus in case 1 we estimate 

the conditional expectation of the technical efficiency for the phosphorus, 

 

( )
( )

( )

1

0

,P P i p

Pi i
i

TE f TE y dTE
E TE y

h y
=

∫
 

 

where ( )h y  is the value of likelihood function got evaluated at estimates and 

( ),P if TE y  is the joint density of the technical efficiency and the crop yield and has 

the following expression 

 

( ) ( ) ( ), , , , , , ,Pi i Pi Pi Ni i mi i Pi Pi i Ni i mi if TE y TE y y y y y y TE y y y y y yϕ ϕ= = > > + > = > +  

( ), , ,Pi Pi i Ni i mi iTE y y y y y yϕ > > =  

 

where ( ).φ  is the joint probability function of PiTE with the iy  which is bound to the 

limited input. Because we assume that the error terms are independently distributed 

the joint density can be also written as 

 

( ) ( ) ( ) ( ), ,Pi i Pi Pi i Ni i mi if TE y TE y y P y y P y yϕ= = > > +  

( ) ( ) ( ) ( ) ( ), ( ) ,Pi Pi i Ni i mi i Pi Pi i Ni i mi iP TE y y y y P y y P TE y y P y y y yφ φ> = > + > > =  

 

(34) 

(35) 

(36)
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The forms of the joint density is  

 

( ) ( ) ( )2 21

2 2
0

ln2 1, exp
2 2

i P P i P P
Pi Pi i P

P uP P uP

y a PTE TE
TE y y dTE

ε ε

β
ϕ

πσ σ σ σ

⎧ ⎫⎡ ⎤− − −⎪ ⎪= = − +⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∫  

 

( ) ( ) ( )2 21

2 2
0

ln2 1, exp
2 2

i

P P i P P
Pi Pi i P

P uP P uPy

y a PTE TE
P TE y y dTE dy

ε ε

β
πσ σ σ σ

∞ ⎧ ⎫⎡ ⎤− − −⎪ ⎪= = − +⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∫ ∫  

 
 
The forms of ( )Ni iy yφ =  and ( )Ni iP y y>  are like (19) and (20) respectively, and the 

forms of ( )mi iy yφ =  and ( )mi iP y y>  are like (21) and (20) respectively. 

The same procedure we use for the measurement of technical efficiency of 

nitrogen. We estimate the conditional expectation of the technical efficiency for the 

nitrogen, 

 

( )
( )

( )

1

0

,N N i N

Ni i
i

TE f TE y dTE
E TE y

h y
=

∫
 

 

where ( )h y  is the value of likelihood function got evaluated at estimates and 

( ),N if TE y  is the joint density of the technical efficiency and the crop yield and has 

the following expression 

 

( ) ( ) ( ) ( ), ,Ni i Pi i Ni Ni i mi if TE y P y y TE y y P y yϕ= = = > +  

( ) ( ) ( ) ( ) ( ), ( ) ,Ni Ni i Pi i mi i Pi i Ni Ni i mi iTE y y P y y P y y P y y P TE y y y yφ φ> = > + > > =  

 

(37)

(38)

(39) 

(40)
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The forms of the joint density is  

 

( ) ( ) ( )2 21

2 2
0

ln2 1, exp
2 2

i N N i N N
Ni Ni i N

N uN N uN

y a N TE TE
TE y y dTE

ε ε

β
ϕ

πσ σ σ σ

⎧ ⎫⎡ ⎤− − −⎪ ⎪= = − +⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∫
 

 

( ) ( ) ( )2 21

2 2
0

ln2 1, exp
2 2

i

N N i N N
Ni Ni i N

N uN N uNy

y a N TE TE
P TE y y dTE dy

ε ε

β
πσ σ σ σ

∞ ⎧ ⎫⎡ ⎤− − −⎪ ⎪= = − +⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∫ ∫
 
 
 
The forms of ( )Pi iy yφ =  and ( )Pi iP y y>  are like (19) and (20) respectively, and the 

forms of ( )mi iy yφ =  and ( )mi iP y y>  are like (21) and (20) respectively. 

 

Case 2 

For the measure of technical efficiency of phosphorus in case 2 we estimate 

the conditional expectation of the technical efficiency for the phosphorus, 

 

( )
( )

( )

1

0

,P P i p

Pi i
i

TE f TE y dTE
E TE y

h y
=

∫
 

 

where ( )h y  is the value of likelihood function got evaluated at estimates and 

( ),P if TE y  is the joint density of the technical efficiency and the crop yield and has 

the following expression 

 

( ) ( ) ( ) ( ), ,Pi i Pi Pi i Ni i mi if TE y TE y y P y y P y yϕ= = > > +  

(41)

(42)

(43) 

(44)
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( ) ( ) ( ) ( ) ( ), ( ) ,Pi Pi i Ni i mi i Pi Pi i Ni i mi iP TE y y y y P y y P TE y y P y y y yφ φ> = > + > > =  

 

The forms of the joint density ( ),Pi Pi iTE y yϕ =  and ( ),Pi Pi iP TE y y>  are like (37) 

and (38) and the forms of ( )Ni iy yφ = , ( )Ni iP y y> , ( )mi iy yφ =  and ( )mi iP y y>  are 

like (8), (11), (21) and (20) respectively. 

 

Case 3 

For the measurement of technical efficiency of nitrogen we estimate the 

conditional expectation of the technical efficiency for the nitrogen, 

 

( )
( )

( )

1

0

,N N i N

Ni i
i

TE f TE y dTE
E TE y

h y
=

∫
 

 

where ( )h y  is the value of likelihood function got evaluated at estimates and 

( ),N if TE y  is the joint density of the technical efficiency and the crop yield and has 

the following expression 

 

( ) ( ) ( ) ( ), ,Ni i Pi i Ni Ni i mi if TE y y y P TE y y P y yϕ= = > > +  

( ) ( ) ( ) ( ) ( ), ( ) ,Ni Ni i Pi i mi i Pi i Ni Ni i mi iTE y y P y y P y y P y y P TE y y y yφ φ= > > + > > =  

 

The forms of the joint density ( ),Ni Ni iTE y yφ =  and ( ),Ni Ni iP TE y y>  are like (41) 

and (42) respectively, and the forms of the ( )Pi iy yϕ = , ( )Pi iP y y> , ( )mi iy yφ =  and 

( )mi iP y y>  are like (7), (10), (21) and (20) respectively. 

(45) 

(46)
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