
ECAVI: A tool for Event Calculus Analysis

and Visualization

Parthena Basina

Thesis submitted in partial fulfillment of the requirements for the

Masters’ of Science degree in Computer Science and Engineering

University of Crete
School of Sciences and Engineering

Computer Science Department
Voutes University Campus, 700 13 Heraklion, Crete, Greece

Thesis Advisor: Prof. Dimitris Plexousakis

This work has been performed at the University of Crete, School of Sciences and Engineering,
Computer Science Department.

The work has been supported by the Foundation for Research and Technology - Hellas
(FORTH), Institute of Computer Science (ICS).

University of Crete
Computer Science Department

ECAVI: A tool for Event Calculus Analysis and Visualization

Thesis submitted by

Parthena Basina

in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science

THESIS APPROVAL

Author:
Parthena Basina

Committee approvals:
Dimitris Plexousakis
Professor, Thesis Supervisor

George Papagiannakis
Assistant Professor, Committee Member

Giorgos Flouris
Principal Researcher, Committee Member

Departmental approval:
Antonios Argyros
Professor, Director of Graduate Studies

Heraklion, March 2019

ECAVI: A tool for Event Calculus Analysis and
Visualization

Abstract

Although action languages are well-established as a means to model dynamic
domains, their adoption by knowledge engineers is often hindered by modelling
errors and steep learning curves. Event Calculus (EC), as one of the most promi-
nent action languages, has a way of representing causal and narrative information
which differentiates from other similar formalisms. It has been argued that visual
modelling tools could assist knowledge engineers in the modelling task and improve
the quality of the resulting models. The ADOxx Meta-Modelling platform enables
the development of modelling toolkits where the metamodel and the modelling
method are made by the developer.

In this thesis, we present the tool ECAVI (Event Calculus Analysis and VI-
sualisation), a domain independent visual modelling tool for designing dynamic
domains in the Event Calculus. ECAVI is mainly addressed to inexperienced
modellers (such as students who are working towards understanding the Event
Calculus), aiming to help them become acquainted with the features of Event
Calculus and to guide them during the process of designing their problems.

For the realisation of the tool we make use of the ADOxx meta-modelling
platform’s functionalities in order to design our graphical language based on the
syntax and semantics of the Answer Set Programming (ASP) formal language and
with the help of a Java program, we pair it with the state-of-the-art automated
reasoner, Clingo.

Even though ECAVI is still a work-in-progress, with several features that have
been planned but not implemented yet, we argue that the tool will be useful to a
diverse audience of knowledge modellers as a teaching assistant for the fundamental
concepts of reasoning about actions and change and also as a way to visualise full
ASP programs.

ECAVI: ΄Ενα εργαλείο για Ανάλυση και
Οπτικοποίηση του Λογισμού Συμβάντων

Περίληψη

Οι γλώσσες δράσης έχουν καθιερωθεί ως μέσο για τη μοντελοποίηση δυναμι-

κών τομέων, ωστόσο, η υιοθέτησή τους από μηχανικούς γνώσης συχνά εμποδίζεται

από σφάλματα μοντελοποίησης και απότομες καμπύλες μάθησης. Ο Λογισμός Συμ-

βάντων (ΛΣ), ως μία από τις πιο σημαντικές γλώσσες δράσης, μπορεί να αναπαρα-

στήσει αιτιώδεις και αφηγηματικές πληροφορίες με τρόπο που διαφοροποιείται από

άλλους παρόμοιους φορμαλισμούς. ΄Εχει υποστηριχθεί ότι τα εργαλεία οπτικής μο-

ντελοποίησης μπορούν να βοιθήσουν τους μηχανικούς γνώσης κατά τη διαδικασία της

μοντελοποίησης και να βελτιώσουν την ποιότητα των μοντέλων που προκύπτουν. Η

Meta-Modelling πλατφόρμα ADOxx επιτρέπει την ανάπτυξη εργαλείων μοντελοποίη-
σης όπου το μεταμοντέλο και η μέθοδος μοντελοποποίησης κατασκευάζονται από τον

προγραμματιστή.

Σε αυτή τη διπλωματική εργασία, παρουσιάζουμε το εργαλείο ECAVI, ένα ανεξάρ-
τητο τομέων εργαλείο οπτικής μοντελοποίησης για το σχεδιασμό δυναμικών τομέων

στον Λογισμό Συμβάντων. Το ECAVI απευθύνεται κυρίως σε άτομα δίχως εμπειρία
στη μοντελοποίηση (όπως μαθητές που βρίσκονται στο στάδιο της κατανόησης του

ΛΣ) με στόχο να τους βοηθήσει να εξοικειωθούν με τα χαρακτηριστικά του ΛΣ και

να τους καθοδηγήσει κατά τη διαδικασία σχεδιασμού των προβλημάτων τους.

Για την υλοποίηση του εργαλείου χρησιμοποιούμε τις λειτουργίες της metamod-
elling πλατφόρμας ADOxx ώστε να σχεδιάσουμε τη γραφική μας γλώσσα με βάση το
συντακτικό και τη σημασιολογία της Answer Set Programming (ASP) γλώσσας, και
με τη βοήθεια ενός Java προγράμματος τη συνδυάζουμε με τον σύγχρονο αυτοματο-
ποιημένο reasoner, Clingo.
Παρόλο που το ECAVI αποτελεί ακόμα δουλειά σε εξέλιξη, με αρκετά χαρακτηρι-

στικά που έχουν προγραμματιστεί αλλά δεν έχουν ακόμη εφαρμοστεί, υποστηρίζουμε

ότι το εργαλείο θα είναι χρήσιμο σε ένα κοινό ποικίλων ατόμων που ασχολούνται με

μοντελοποίηση γνώσης ως ένας βοηθός διδασκαλίας για τις θεμελιώδεις έννοιες της

συλλογιστικής σχετικά με τις ενέργειες και την αλλαγή μέσα στο χρόνο αλλά και ως

έναν τρόπο οπτικοποίησης πλήρων προγραμμάτων σε ASP.

Acknowledgements

First of all, I would like to thank my supervisor Professor Dimitris Plexousakis
for giving me the opportunity to complete my master thesis on a topic that I find
very interesting.

I would also like to express my deep gratitude towards my co-supervisors, Postdoc-
toral Researcher Theodore Patkos and Principal Researcher Giorgos Flouris of the
Institute of Computer Science, ICS-FORTH, for providing me with guidance and
support throughout the study of my master, for the precious advice they gave me
in all the times I faced problems and for always being available when I needed them.

A special thanks to the Information Systems Laboratory (ISL) in the Institute
of Computer Science (ICS) of the Foundation of Research and Technology Hellas
(FORTH) for providing me with financial assistance because otherwise I wouldn’t
have made it. A big thank you to Ms. Maria Moutsaki, secretariat of ISL for all
her help and support.

Furthermore, I’m also very grateful for my friends, for supporting me throughout
all the hard times I experienced. Both the friends I made in the Computer Science
Department since my first years as an undergraduate student have been there for
me all these years, as well as, the friends I made in most recent years have helped
me throughout many hardships. Eva, Giorgo, Michali, Aggele, Ioanna, Giorgo,
Dimitri, Vangeli, Lydia, Alex, Fani, Panagioti, thank you! Without your help and
understanding I wouldn’t have made it this far.

And last but definitely not least, a massive thank you to my family, most specially
to my parents Eleni and Prodromos and my sister Dimitra, for being there and
supporting me in my decisions, even when they didn’t agree with them. Their love
and encouragement helped me overcome any difficulty I faced.

”The world ain’t all sunshine and rainbows. It’s a very mean and
nasty place and I don’t care how tough you are it will beat you to your

knees and keep you there permanently if you let it.
You, me, or nobody is gonna hit as hard as life. But it ain’t about how

hard ya hit. It’s about how hard you can get hit and keep moving
forward. How much you can take and keep moving forward.

That’s how winning is done! Now if you know what you’re worth then
go out and get what you’re worth. But ya gotta be willing to take the

hits, and not pointing fingers saying you ain’t where you wanna be
because of him, or her, or anybody!

Cowards do that and that ain’t you! You’re better than that!”

Rocky Balboa

”We must accept finite disappointment but never lose infinite hope!”

Martin Luther King

Contents

Abstract i

Acknowledgements v

Table of Contents ix

List of Figures xi

List of Tables xiii

List of Algorithms xv

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 Thesis Outline . 3

2 Background 5
2.1 Event Calculus . 5
2.2 Answer Set Programming . 7
2.3 Agile Modelling Method Engineering 9
2.4 ADOxx Metamodelling Platform 9

2.4.1 The GraphRep class attribute 11
2.4.2 AdoScript . 12

3 Related Work 13
3.1 OMiLAB Modelling Method Projects 13
3.2 VizDSL: Interactive Information Visualization 14
3.3 ReACT! Interactive Educational Tool 15
3.4 Sealion IDE for ASP . 15

4 Methodology 17
4.1 Requirement Analysis . 17
4.2 Modelling Method . 20

4.2.1 The ECAVI Modelling Language 20

ix

4.2.2 Conceptualization of the Modelling Language 20
4.2.3 Implementation of the Modelling Language 22

4.2.3.1 Modelling Procedure 23
4.2.3.2 Visual Notation 24

4.3 Translation into ASP . 29
4.4 Meta-reasoning & Integrity Checks 32

5 Implementation & Use Case 35
5.1 Architecture . 35
5.2 An Example of Application - Use Case 39

6 Conclusions and Future Work 51
6.1 Conclusions . 51
6.2 Future Work . 52

Bibliography 53

Appendix A List of Classes & Relation Classes 59

Appendix B Sample List of Scripts in AdoScript 61

Appendix C AdoScript MessagePorts and Commands 65

Appendix D Documentation 67

x

List of Figures

2.1 ADOxx External Coupling Functionality 12

3.1 Screenshot of the ReACT! user interface. 15

3.2 Screenshot of the SeaLion’s visual interpretation editor. 16

4.1 The Generic Modelling Method Framework 20

4.2 The generic ADOxx Meta2Model 21

4.3 Screenshots of the 4 model types defined in the ECAVI tool 22

4.4 Graphical Notation of ECAVI . 23

4.5 Domain Objects Representation Example 24

4.6 States of an effect: (a) Default (b) Initiates (c) Terminates (d) Triggers 26

4.7 Triggering axiom with two fluent preconditions. 27

4.8 Initiates axiom with a fluent and an event precondition. 28

5.1 The architecture of the ECAVI modelling toolkit 36

5.2 Overview of the classes of the Java translator program. 37

5.3 Effect types enumeration . 37

5.4 Constraint types enumeration . 37

5.5 Domain Objects of Traffic Light example 39

5.6 Fluents and Events of the Traffic Light example 39

5.7 Simple effects of Traffic Light example 40

5.8 Effects with preconditions from the Traffic Light example 41

5.9 Simple trigger axiom . 41

5.10 Trigger axiom with preconditions. 42

5.11 Starting state objects. 42

5.12 Example of a notebook for the class Happens 43

5.13 Example of defining constraints for a triggered event 43

5.14 Examples of descriptions of object classes. 44

5.15 Tutorial: User is asked if he wants the tutorial displayed. 45

5.16 Tutorial: Description of the 4 modeltypes 45

5.17 Tutorial: Description displayed for the Domain Object Modeltype 46

5.18 Tutorial: Description displayed for the Fluent and Event Modeltype 46

5.19 Tutorial: Description displayed for the Domain Axiomatization Mod-
eltype . 47

xi

5.20 Tutorial: Description displayed for the Starting State Modeltype . 47
5.21 Run Step 1: Choose the models to translate 48
5.22 Run Step 2: Show option for answer sets 48
5.23 Run Step (optional): Define complex show option 48
5.24 Run Step 3: Define maxstep . 48
5.25 Example of an answer set produced by clingo 49

A.1 List of classes and relation classes of the ADOxx Static Library . . 59
A.2 List of classes and relation classes of the ADOxx Dynamic Library 59

C.1 Overview of AdoScript MessagePorts and Commands 65

xii

List of Tables

2.1 ADOxx Role/Task/Skill Matrix . 10

4.1 List of requirements specified for each distinct group of users in our
target group . 18

D.1 Development Versions . 67

xiii

xiv

List of Algorithms

1 Steps for translating XML into ASP 31
2 Add new menu item for the Run process 38
3 Add AdoScript Debug Shell . 38
4 Auto-generate Triggering Event (Happens) 61
5 Auto-generate Preconditions . 62
6 Run Export and Translation (only key parts) 63

xv

xvi

Chapter 1

Introduction

1.1 Motivation

Reasoning about actions, change and causality has been an important challenge
from the early days of Artificial Intelligence (AI). Action languages are well-
established logical theories for reasoning about the dynamics of changing worlds,
aiming at ”formally characterizing the relationship between the knowledge, the per-
ception and the action of autonomous agents” [31]. One of the most prominent
action languages is the Event Calculus [19, 25], which incorporates certain useful
features for representing causal and narrative information and has been applied
in domains as diverse as high-level robot cognition, argumentation [1, 5], service
composition [30], complex event detection [32], and others.

The Event Calculus, being a logical formalism, is generally hard to tackle by
the non-expert, and novice practitioners find it hard to properly model a domain
of interest. It has been argued [26] that visualisations generally help knowledge
engineers understand better the ramifications of their modelling decisions. In
the context of the Event Calculus, we argue that a visual representation of the
various axiom types may help knowledge engineers understand the semantics of the
different axiom types, thereby simplifying the learning process for inexperienced
modellers and reducing the number of modelling mistakes.

Fill and Karagiannis [8], investigated the role of visualization in the concep-
tualization of modelling methods and commented on the fact that ”the absence
of a graphical representation during modelling will inevitably force the engineer to
develop an adequate visualization for the elements of the syntax of the modelling
language, by taking into account the corresponding semantics”. This realization is
also enforced by many popular efforts in visualisation, such as the introduction of
UML [9] in the context of software engineering, or Protégé1 as a visual tool for
ontology editing.

A model represents a partial and simplified view of a system, so, the creation
of multiple models is usually necessary to better represent and understand the

1https://protege.stanford.edu/

1

2 CHAPTER 1. INTRODUCTION

system under study. Models allow the sharing of a common vision and knowledge
among technical and non-technical stakeholders, facilitating and promoting the
communication among them. They also make the project planning more effective
and efficient while providing a more appropriate view of the system to be developed
and allowing the project control to be achieved according to objective criteria.
The concepts of system, model, meta-model and their relations are the essential
concepts of Model-Driven Engineering (MDE) [3]. MDE focuses on the models,
rather than the code, using them as primary engineering artefacts [2]. ECAVI takes
a model-based approach, where the code is generated directly from the models,
in order to meet integration and interoperability requirements in the context of
MDE.

To the best of our knowledge, there does not exist any tool that focuses on
the visualization of Event Calculus semantics. Visic et. al. [33] introduced the
only good point-of-reference for our case, a domain-specific language (DSL) that
considers the ”modelling method engineering” as the application domain and al-
lows the method engineer to focus on the conceptual building blocks of a modeling
method rather than on a meta-modelling platform’s technical specificity.

Motivated by this fact, the object of this thesis is the design and development of
a new, domain independent modelling tool, ECAVI (Event Calculus Analysis and
VIsualisation), which offers a visual language for designing dynamic domains in the
Event Calculus, while assisting the user in the process of knowledge engineering,
through the ADOxx meta-modelling platform and with the help of a state-of-the-
art automated reasoner, Clingo.

1.2 Contributions

For the first version of the ECAVI modelling tool, we mainly focus on novice users
of Event Calculus, with basic or no knowledge of the formalism, such as students
that are working towards understanding the Event Calculus; our aim is for this tool
to be used as an assistant for teaching the fundamental concepts of reasoning about
actions and change and in the future, also assist the more experienced users. More
specifically, the first version of the ECAVI modelling tool relies on the following
contributions:

• The offer of a visual language for designing causal dynamic domains, sup-
porting phenomena such as context-dependent event occurrences, context-
dependent effects of events and concurrency. Next versions will further ex-
tend the language with more features, such as non-determinism, indirect
effects of events and others.

• The tight coupling of the visual domain representation with two powerful
logical formalisms, namely the Event Calculus and Answer Set Programming
(ASP), that enable the knowledge engineer to perform complex reasoning
tasks, such as progression, observation explanation etc.

1.3. THESIS OUTLINE 3

• Assist the user in the process of knowledge engineering, minimising the pos-
sibility for syntactical errors. More importantly, our current work concerns
also the raising of warnings and exceptions whenever logical fallacies are de-
tected, which may lead to contradicting or counter-intuitive behaviour, e.g.,
when the same property may become true and false at the same time.

• Adoption of a pedagogical approach in the process of designing causal do-
mains, aiming to help non-experts, such as students, to learn the basics of
how a conceptual model can be translated and executed through the logic
programming paradigm.

1.3 Thesis Outline

The thesis is organized as follows. Chapter 2 describes all the necessary back-
ground material needed for understanding the fundamentals of the 2 main parts
our tool comprises of, namely Event Calculus and the ADOxx Meta-modelling
tool. On Chapter 3 we review some tools that are relevant to our work and have
provided valuable insight towards the realisation of ECAVI. Chapter 4 describes
the full methodology behind the conceptualization of our tool and the visual no-
tation adapted on the ASP syntax and semantics. Chapter 5 presents the main
architecture of ECAVI, as well as, a full description of a simple use case imple-
mented with the tool. Finally, chapter 6 presents the main conclusions of this
thesis along with a description of the open issues and directions that define our
future work.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

This chapter provides the necessary background material in order to understand
and follow the main concepts of this thesis. It comprises of 3 main parts that define
our tool and are essential to our methodology and implementation: Event Calculus,
Answer Set Programming (ASP) and the ADOxx Metamodelling Platform.

2.1 Event Calculus

Commonsense reasoning is essential to intelligent behavior and thought. It allows
us to fill in the blanks, to reconstruct missing portions of a scenario, to figure out
what happened, and to predict what might happen next. Reasoning about the
world requires a large amount of knowledge about the world and the ability to use
that knowledge. Commonsense reasoning can be used to make computers more
human-aware, easier to use, and more flexible. Although it comes to us naturally
and appears to be simple, it is actually a complex process [27].

The Event Calculus is a narrative-based many-sorted first-order language for
reasoning about action and change. The basic notions of the Event Calculus
are events, fluents and timepoints. It explicitly represents temporal knowledge,
enabling reasoning about the effects of a narrative of events along a time line. It
also relies on a non-monotonic treatment of events, in the sense that by default
there are no unexpected effects or event occurrences.

Several fundamental entities must be represented: objects in the world and
agents such as people and animals, properties in the world that change over time
which we call fluents and such is the location of an object, events or actions that
occur in the world such as the action of a person moving an object, and at last we
need to represent time.

Formally, a sort E of events indicates changes in the environment, a sort F
of fluents denotes time-varying properties and a sort T of timepoints is used to
implement a linear time structure. The calculus applies the principle of inertia
for fluents, in order to solve the frame problem, which captures the property that
things tend to persist over time unless affected by some event.

5

6 CHAPTER 2. BACKGROUND

An event may occur or happen at a timepoint and a fluent has truth value
at a timepoint or over a timepoint interval (true or false). The occurence of an
event may affect the state of a fluent. We have commonsense knowledge about
the effects of events on fluents, specifically about, events that initiate fluents and
events that terminate fluents. For example, we know that the event of picking
up an object initiates the fluent of holding the object and the event of setting
down an object terminated the fluent of holding the object. We represent these
notions in first-order logic with the use of the Event Calculus domain-independent
predicates1:

• HoldsAt(F,T) represents that fluent F is true at timepoint T.

• Happens(E,T) represents that event E occurs at timepoint T.

• Initiates(E,F,T) represents that, if event E occurs at timepoint T, then the
fluent F will be true after T.

• Terminates(E,F,T) represents that, if event E occurs at timepoint T, then
the fluent F will be false after T.

• ReleasedAt(F,T) represents that fluent F is released from the commonsense
law of inertia at timepoint T and its truth value can fluctuate.

The commonsense notions of persistence and causality are captured in a set of
domain independent axioms, referred to as DEC [27], that express the influence of
events on fluents and the enforcement of inertia for the holdsAt and releasedAt
predicates. In brief, DEC (Discrete time Event Calculus) states that a fluent that
is not released from inertia has a particular truth value at a particular time if at
the previous timepoint either it was given a cause to take that value or it already
had that value. In DEC timepoints are restricted to the integers. For example,
initiates(e, f, t) means that if action e happens at timepoint t it gives cause for
fluent f to be true at timepoint t+ 1.

In addition to domain independent axioms, a particular domain axiomatisation
requires also axioms that describe the commonsense domain of interest, observa-
tions of world properties at various times and a narrative of known world events.
The role of the ECAVI tool is to assist knowledge engineers in designing Event Cal-
culus domain axiomatisations, without requiring them to master the complexities
of logic programming.

Satisfiability and logic programming-based implementations of Event Calculus
dialects have been proposed over the years. Recently, progress in generalising
the definition of stable model semantics [7] used in ASP has opened the way for
the reformulation of Event Calculus axiomatisations into logic programs that can
be executed with ASP solvers [21]. ASP is a form of knowledge representation
and reasoning paradigm oriented towards solving complex combinatorial search

1In the sequel, variables, starting with a upper-case letter, are implicitly universally quantified,
unless otherwise stated. Predicates and constants start with a lower-case letter.

2.2. ANSWER SET PROGRAMMING 7

problems. A domain is represented as a set of logical rules, whose models, called
answer sets, correspond to solutions to a reasoning task, such as progression or
planning. As will be described next, ECAVI implements a translation of Event
Calculus theories into ASP rules, which are then executed by the Clingo ASP
reasoner2.

2.2 Answer Set Programming

Answer Set Programming (ASP) is an approach to knowledge representation and
reasoning. Knowledge is represented as answer sets programs, and reasoning is per-
formed by answer set solvers. Answer set programming enables default reasoning,
which is required in commonsense reasoning.

The syntax of answer set programs derives from the Prolog language. We use
the syntax of the ASP-Core-2 standard. The semantics of answer set programs is
defined by the stable model semantics introduced by Michael Gelfond and Vladimir
Lifschitz [11, 23], where a conclusion is infered only if there is explicit evidence to
support it.

An answer set program consists of a set of rules of the form:

α : −β.

which represents that α, the head of the rule, is true if β, the body of the rule, is
true. Here is an answer set program:

p.

r :- p, not q.

The first rule p. is called a fact. It has an empty body and is written without the
:- (if) connective.The symbol , indicates conjunction (∧). The token not refers
to negation as failure and is different from classical negation (¬). The expression
not q represents that q is not found to be true.

We can perform automated reasoning on this program by placing it in a file
example.lp and running the answer set grounder and solver clingo on the file.
The clingo reasoner is a combination of the answer set grounder gringo and the
answer set solver clasp, offering more control over the grounding and solving
processes.

The syntax of answer set programs is defined as follows:

A signature consists of the following disjoint sets:

• A set of constants.

• For every n ∈ {1, 2, 3, ...}, a set of n-ary function symbols.

• For every n ∈ {0, 1, 2, ...}, a set of n-ary predicate symbols.

2https://potassco.org/

8 CHAPTER 2. BACKGROUND

Given a signature σ and a set of variables disjoint from the signature, we define
answer set programs as follows.

A term is defined inductively as:

• A constant is a term.

• A variable is a term.

• If τ1 and τ2 are terms, then −τ , τ1 + τ2, τ1 − τ2, τ1 ∗ τ2 and τ1/τ2 are terms.
The symbols +,-,*, and / are arithmetic symbols.

• If φ is an n-ary function symbol and τ1, ..., τn are terms, then φ(τ1, ..., τn) is
a term.

• Nothing else is a term.

A ground term is a term containing no variables and no arithmetic symbols.
An atom is defined inductively as follows:

• If ρ is an n-ary predicate symbol and τ1, .., τn are terms, then ρ(τ1, ..., τn) is
an atom.

• If ρ is an 0-ary predicate symbol, then ρ is an atom.

• If τ1 and τ2 are terms, then τ1 < τ2, τ1 <= τ2, τ1 = τ2, τ1! = τ2, τ1 > τ2,
and τ1 >= τ2 are atoms. The symbols <,<=,=, ! =, >, and >= are the
comparative predicates.

• Nothing else is an atom.

A ground atom is an atom containing no variables, no arithmetic symbols, and
no comparative predicates.
A rule is

α1 | ... | αk : −β1, ..., βm, not γ1, ..., not γn.

where α1, ..., αk, β1, ..., βm, γ1, ..., γn are atoms. α1|...|αk is the head of the rule,
and β1, ..., βm, not γ1, ..., not γn is its body.
A fact is a rule whose body is empty (m = 0 and n = 0).
A constraint is a rule whose head is empty (k = 0).
A ground rule is a rule containing no variables, no arithmetic symbols, and no
comparative predicates.
A logic program, answer set program or program is a set of rules.
A traditional rule is a rule whose head contains a single atom (k = 1).
A traditional program is a set of traditional rules.
A ground program is a program containing no variables, no arithmetic symbols,
and no comparative predicates.

Answer set programming languages, such as those of lparse, gringo, and DLV,
and the standard ASP-Core-2, further specify the following:

2.3. AGILE MODELLING METHOD ENGINEERING 9

• Constants are integers or start with a lowercase letter.

• Variables start with an uppercase letter.

• Function symbols start with a lowercase letter.

• Predicate symbols start with a lowercase letter.

2.3 Agile Modelling Method Engineering

The Agile Modelling Method Engineering (AMME) is a domain-independent method-
ology addressing the interaction between modelling and machine processing of
models, including, simulation, analysis and code-generation. The main character-
istics of AMME with regard to changing requirements are [12, 14]:

• Adaptability: the ability to modify existing concepts/properties (to meet
new requirements).

• Extensibility: the ability to add new concepts/properties to the existing
metamodel.

• Integrability: the ability to add bridging concepts/properties in order to
integrate existing building blocks.

• Operability: the ability to provide satisfying user interaction and model
understandability.

AMME relies on a methodological core called the Conceptualization Lifecycle
which establishes several phases for incrementally deriving modelling tools, from
modelling method creation until the technical deployment in the form of usable
software [14]. Thus, in ECAVI, we focus on this methodology in order to define
the requirements and design the modelling language of our tool.

2.4 ADOxx Metamodelling Platform

ADOxx is the creation of the Open Models Laboratory (OMiLAB)3, a dedicated
research and experimentation space for modelling method engineering. Both a
physical and virtual place, it is equipped with tools to explore method creation
and design, experiment with method engineering and deploy software tools for
modelling [12].

The ADOxx meta-modelling development and configuration platform4 enables
the development of modelling toolkits, where the metamodel and the modelling
method are made by the developer. The modelling toolkits implemented with
ADOxx follow a configuration approach on platform level (re-use of existing im-
plementations and functionality on platform level in different scenarios) that is
supported by an expert community.

3http://austria.omilab.org/psm/home
4https://www.adoxx.org/live/adoxx-documentation

10 CHAPTER 2. BACKGROUND

The tool has been used and tested for more than 20 years in research and
industrial projects and is considered a mature tool for metamodel development
with a great variety of features, high scalability and reliability [8].

In ADOxx the following roles are distinguished in relation to the task/skills
needed to perform certain modelling/meta-modelling tasks.

Table 2.1: ADOxx Role/Task/Skill Matrix

• Modelling Method Tool User: represents the target group of the toolkit
to be developed. The major task of this role relates to transforming the
domain knowledge into requirements for the modelling toolkit.

• Modelling Method Developer: has expertise in developing and trans-
lating the requirements into meta-model concepts (class hierarchy, relation
specification, cardinalities)

• ADOxx Developer: uses the input of the MM-Tool Developer and maps
these requirements to available ADOxx functionality and implements the
requirements accordingly.

In ECAVI, we have both the roles of the ADOxx Developer and the MM-Tool
Developer in order to implement the modelling language that translates the re-
quirements defined by the Tool User. Furthermore, ECAVI is designed so that any
MM-Tool User with no method knowledge can gain this knowledge with the use
of our tool.

2.4. ADOXX METAMODELLING PLATFORM 11

ADOxx provides two different toolkits, both of them implementing the ADOxx
meta2 model and operating on the same database. The Development Toolkit sup-
ports the creation of modelling methods, whereas the Modelling Toolkit allows for
the creation of models.

The specification and definition of a modelling method is defined by Kara-
giannis and Kühn [16]. Modelling methods are divided into two components: a
modelling technique, consisting of the modelling language and the modelling pro-
cedure, and the mechanisms and algorithms. The modelling language contains the
elements that describe the models and is defined by its syntax, semantics and nota-
tion. The modelling procedure is implicitly realised with the model types, whereas
each one is a set of modelling concepts that are grouped in a useful way.

It is possible to define simple metamodels, which are the prerequisite of de-
ploying modelling toolkits, based on three concepts and their relations. A class is
one of the core constituents of the meta2 model of ADOxx and can be related with
other classes by means of relation classes, where it is possible to specify which class
may be connected with which classes by means of the specific relation class [8, 17].

2.4.1 The GraphRep class attribute

The GraphRep class attribute5 allows the design of a graphical representation for a
specific constructs in a graphical design application. Upon completion, the graph-
ical construct representation can be automatically translated into the platform-
specific code of ADOxx. It is of type LONGSTRING, hence it’s value is a text
that is interpreted as a script by the GRAPHREP interpreter.

There are five types of elements distinguished: Style elements, Shape elements,
Variable assigning elements, Context elements and Control elements.

The representation characteristic for following shape elements is modified by
five style elements: PEN, FILL, SHADOW, STRETCH and FONT.

The ADOxx GraphRep repository collects implementation of graphical repre-
sentation from different scenarios and projects and provides them to the commu-
nity. All community members as free to add, revise, use, modify, comment and
rate the GraphReps available in the repository6.

5https://www.adoxx.org/live/graphrep
6https://www.adoxx.org/live/adoxx-graphrep-repository-wiki/-/wiki/GRAPHREP+

Repository/FrontPage

12 CHAPTER 2. BACKGROUND

2.4.2 AdoScript

ADOxx features a powerful scripting language, export to XML for external pro-
cessing and offers the possibility to couple external applications.

External coupling with ADOxx enables the realisation of additional function-
ality on platform level that is not covered by the core functionality provided by the
tool7 (Fig. 2.1). In order to implement that, we use the AdoScript macro language
of ADOxx that is designed for this purpose and allows significant extension possi-
bilities with low programming effort. AdoScript enables integration via a so-called
“Message-Port Concept”, where specific ports are assigned to each kind of message
and the resulting messages are used for further usage and application8.

Figure 2.1: ADOxx External Coupling Functionality

AdoScript can be executed on many different ways, so it can be used where it is
needed:

• As menu entry: used for manual execution (e.g. Scripts 2)

• In events: If specific actions are executed, an AdoScript can be automati-
cally called

• In the Notebook via Programcall: similar to menu entries, but triggered
from within the Notebook.

• Automatically over Command Prompt: trigger during startup of ADOxx
and handover of AdoScript through the command prompt.

• From AdoScript Shell: as a debugging and development facilities to test
code snippets (Script 3).

7https://www.adoxx.org/live/external-coupling-overview
8https://www.adoxx.org/AdoScriptDoc

Chapter 3

Related Work

In the previous chapter, we described the main components of this thesis; Event
Calculus and the ADOxx metamodelling platform. As this thesis is targeted to-
wards the integration of those two components in order to implement a visual-
isation tool, this chapter studies in more detail other works that we deemed as
related to ours. Other visualization tools have been made for many purposes and
they have pointed out the advantages of visualisation. Moreover, extensive work
with Answer-Set programming has pointed out the capabilities of the language.

3.1 OMiLAB Modelling Method Projects

There exists a big variety of modelling toolkits implemented with the ADOxx
Metamodelling Platform. Most of those modelling method projects are available
on the OMiLAB website and have been extensively documented [17].

The members of the OMiLAB Network have studied the use of modelling tools
in education. Educational activities within OMiLAB address the pragmatics of
modelling for all user groups as well as modelling method engineering. The open-
ness of tools and materials enables the worldwide uptake/integration of community
results in formal and informal educational activities. The primary target groups
are universities, training facilities and similar institutions [12].

The rest of this section, describes some of the most known modelling method
projects available within OMiLAB, which are a good reference of work and provide
some helpful insight towards the capabilities of the ADOxx platform that we can
use for the implementation of our tool.

The Fundamental Conceptual Modelling Languages (FCML) method [15] and
its proof-of-concept Bee-Up Tool1 are aimed at being used as a multi-purpose
and multi-layered modelling approach, where method agility is manifested by a
multitude of notation alternatives in a single tool for different kinds of users,
and also by machine interpretable semantics on which functionality of varying
specificity may be built. The method provides the starting steps towards the design

1http://austria.omilab.org/psm/content/bee-up/info

13

14 CHAPTER 3. RELATED WORK

of domain-specific modelling languages, as well as, a resource of lessons learned
which can support both teaching activities in the area of conceptual modelling and
scientific experimentation at meta-modelling level.

One version of the entity-relationship languages is the Higher order Entity-
Relationship Modelling Language (HERM). Using HERM for database develop-
ment has important advantages over other extended entity-relationship models
yet, it is not suitable for a schema that consists of a large set of entity types with
a small set of attributes and a few tuples inside the entity classes. Kramer and
Thalheim [20] demonstrate the creation of a graphical modelling tool based on
ADOxx which creates a graphical HERM schema by allowing an automatic trans-
lation into a logical model after the modelling based on directives which represent
a first step on a compiler approach translation.

The Knowledge Work Designer [13], a modelling tool for flexible decision-aware
business processes. It is based on two principles: the separation of business logic
and process logic and the support of both structures and unstructured knowledge.
Process logic can be represented as a structured business process using BPMN, as
a non-structured case plan in CMMN or as a combination of both called BPCMN.
Decision tables are currently the only representation formalism for structured busi-
ness logic. Any other business logic can be stored in a file (business data or any
kind of document) and referenced via the document model. Future versions of the
tool will include support for other types of visual knowledge representation like
class diagrams, semantic networks, or ontologies.

3.2 VizDSL: Interactive Information Visualization

Visualization techniques are used as part of Model-Driven Engineering (MDE)
to visualise the code, the problem domain and the models used to describe the
domain. Morgan et. al. [26] introduced a platform-independent and extensible
modelling language, VizDSL, which allows non-IT experts to describe, model and
create interactive visualizations, quickly and easily. VizDSL is based on the Inter-
action Flow Modeling Language (IFML) for creating highly interactive visualiza-
tion. It can be used to model, share and implement interactive visualization based
on model-driven engineering principles.

Since VizDSL is platform-independent and extensible through its UML profile,
it is important to provide IFML extension details. VizDSL takes a model-based
approach rather than a procedural approach to the design process, to meet inte-
gration and interoperability requirements in the context of MDE.

The tool will evaluate its usability in terms of satisfaction, efficiency and ef-
fectiveness by means of user studies with users taken from the OGI Pilot2.

For the implementation of ECAVI, we studied the techniques used by VizDSL
and incorporated those that seemed fitting for our purpose.

2http://www.mimosa.org/oil-and-gas-interoperability-ogi-pilot

3.3. REACT! INTERACTIVE EDUCATIONAL TOOL 15

3.3 ReACT! Interactive Educational Tool

It is of the essence for the robotic systems to be provided with high-level cognitive
capabilities since the complexity of the tasks and the variability of environments
place high demands on the robots’ intelligence and autonomy.

Dogmus et. al. [4] presented an interactive educational tool for artificial intel-
ligence (AI) planning for robotics. ReACT! enables students to describe robots’
actions and change in dynamic domains via interactive user interface without first
having to know about the syntactic and semantic details of the underlying formal-
ism (Fig. 3.1). They also can solve hybrid planning problems using state-of-the-art
reasoners for hands-on applications of cognitive robotics without having to know
about their input/output language or usage.

The teaching of AI planning in robotics class for students from various de-
partments and with different backgrounds can be a very challenging and time-
consuming work. The job of the tool is to guide the students towards the rep-
resentation of dynamic domains generically and the solving of planing problems
using various planners/reasoners, without having to know the particular specifics.

Figure 3.1: Screenshot of the ReACT! user interface.

3.4 Sealion IDE for ASP

SeaLion 3 is an Integrated Development Environment for Answer-Set Programming
(ASP) [28]. It is developed as part of an ongoing research project on methods and
methodologies for developing answer-set programs.

SeaLion is designed as an Eclipse plugin, providing useful and intuitive features
for ASP and targets both experts and software developers new to ASP, but with

3http://www.sealion.at/

16 CHAPTER 3. RELATED WORK

familiarity with support tools as used in procedural and object-oriented program-
ming. The goal is to fully support the languages of the state-of-the-art solvers
Clasp and DLV, as opposed with other IDEs that support only a single solver.

The IDE is in an alpha version that already implements important core func-
tionality. The editor provides syntax highlighting, syntax checks, error reporting,
error highlighting, and automatic generation of a program outline. There is func-
tionality to manage external tools such as answer-set solvers and to define arbi-
trary pipes between them, as needed when using separate grounders and solvers.
Moreover, in order to run an answer-set solver on the created programs, launch
configurations can be created in which the user can choose input files, a solver con-
figuration, command line arguments for the solver, as well as output-processing
strategies. Answer sets resulting from a launch can either be parsed and stored
in a view for interpretations, or the solver output can be displayed unmodified in
Eclipse’s built-in console view.

The visualisation functionality of SeaLion is itself represented in an Eclipse
plugin, called Kara [18]. Kara is a tool for the graphical visualisation and editing
of interpretations (Fig. 3.2). It is started from the interpretation view. One can
select an interpretation for visualisation by right-clicking it in the view and choose
between a generic visualisation or a customised visualisation.

Figure 3.2: Screenshot of the SeaLion’s visual interpretation editor.

Chapter 4

Methodology

In the following chapter we describe the main goals that ECAVI aims to satisfy,
with a close relation to the kinds of users we focus on at this point, as well as, the
modelling method that we followed and the meta-reasoning and integrity checks
that are implemented so far.

4.1 Requirement Analysis

The process, as well as the outcome, of knowledge engineering can benefit by
following certain guidelines and good practices, especially in complex cases, such
as the domains that action languages are focusing on, which are dynamic and
incorporate perplex causal relations. According to Mueller [27], any method for
automated commonsense reasoning must incorporate 5 main key aspects:

• The representation of commonsense knowledge about the world and real
scenarios in it.

• The representation of objects, agents, time-varying properties, events and
time, otherwise referred to as commonsense entities.

• Dealing with object identity. Representation and reasoning about common-
sense domains, such as time, space and mental states.

• Address of the commonsense law of inertia, release from this law, concur-
rent events with cumulative and canceling effects, non-deterministic effects,
preconditions, and triggered events. Those phenomena are referred to as
commonsense phenomena.

• Use of representations of scenarios and commonsense knowledge to specify
processes for reasoning. Specifically, support of default reasoning, temporal
projection, abduction, and postdiction.

We incorporate these aspects in our tool with the use of the Event Calculus syntax
and semantics and by separating the design into 4 sub-models, further described
in Section 4.2.

17

18 CHAPTER 4. METHODOLOGY

Our aim is for this tool to be used as an assistant for teaching the fundamental
concepts of reasoning about actions and change. For this purpose, at this point of
the tool’s development, we focus on a target group of novice users and students
that are working towards understanding the Event Calculus.

Before we begin to identify the requirements for our tool, we must first distinguish
each group of users we focus on and what are their distinct needs. We separate
our first target group of users into 4 sub-groups:

1. Users with some knowledge and a little experience in logical programming
(e.g. Prolog) but no previous knowledge in Event Calculus.

2. Users with no knowledge in logical programming but with programming
background (e.g. knowledge of C, C++, Java etc.)

3. Users with no programming knowledge whatsoever but with some experi-
ence in modelling (e.g. people who have worked with other modelling tools
implemented on ADOxx such as the Business Process Management tool,
ADONIS).

4. Users with no programming knowledge neither any modelling experience.

User
Group 1

User
Group 2

User
Group 3

User
Group 4

Walk-through wizard/tooltips
to help make the first steps

into the tool
making the first model.

X X X

Tooltips that explain what
each object of the design

represents.
X X X X

Help to become acquainted
with specific features

of the language
(eg. delayed effect axioms)

X X X

Assistance in the process of
building an axiom,

avoid syntactical errors.
X X X X

Build ASP programs without
needing to know how the
answer-set solver works.

X X

Table 4.1: List of requirements specified for each distinct group of users in our
target group

4.1. REQUIREMENT ANALYSIS 19

At the above table we pinpoint the needs for our target group of users. Notice
that, in a couple of cases a certain target group isn’t considered to necessarily
have a certain need. For example, a user that has previous experience with other
modelling tools made on the ADOxx platform (eg. ADONIS) may not need tooltips
that show how to make the first model.

We also want to help the users that already know how Event Calculus works
(e.g. knowledge engineers) visualize their programs. Those users, however, will
need the support of further features from our tool such as non-determinism, indi-
rect effects of events and others. The need for our tool to support those users as
well, is considered part of our future work (see Section 6.2).

In addition, for the knowledge engineer that wants to interoperate with differ-
ent teams in the same project, quickly communicating the high-level behaviour of
a component without delving into the code details (by exchanging visual represen-
tation of the model), can be a key aspect in promoting productivity.

20 CHAPTER 4. METHODOLOGY

4.2 Modelling Method

Karagiannis and Kühn in 2002 [16] proposed a framework for the description of
modelling methods (see Fig. 4.1). In this framework a modelling method is com-
posed of a modelling technique and mechanisms and algorithms. The modelling
technique is further divided into a modelling language and a modelling proce-
dure [8, 15].

Figure 4.1: The Generic Modelling Method Framework

4.2.1 The ECAVI Modelling Language

In order to build our modelling tool, the modelling language of Event Calculus
needs to be realized. As described in Section 2.4, a modelling language consists of:

1. Syntax: the specification of a modelling construct
2. Semantic: the definition of the meaning of a modelling construct
3. Notation: the graphical representation of a modelling construct

A modelling construct can be a (concrete) class, relation class, modeltype or
attribute.

For the realization of our modelling language, the steps are clear1. First, we
define the conceptual aspects of the implementation of our modelling language
(namely the Event Calculus in our case), and then we move to the realization of
the Event Calculus meta-model with ADOxx.

4.2.2 Conceptualization of the Modelling Language

During this phase, we find a mapping between the generic ADOxx Meta2Model
(Fig. 4.2) and our modelling language, the Event Calculus.

1https://www.adoxx.org/live/modelling-language-implementation-on-adoxx

4.2. MODELLING METHOD 21

Figure 4.2: The generic ADOxx Meta2Model

In ADOxx there are 3 types of classes2:

• Pre-defined Abstract Classes derived from the ADOxx meta model classes
and implemented on platform level. These classes have a given semantic and
basic syntax in form of attributes.

• Abstract Classes as self-defined classes enabling to structure the meta model
and define syntax in form of attributes and semantic, which is inherited by
sub-classes. They inherit their behaviour from their super-class - which is
often a pre-defined abstract class from the ADOxx meta model.

• (Concrete) Modelling Classes that can be used, when applying the corre-
sponding modelling language. Hence, all model objects created in every
model on ADOxx are an instance of a class.

First, we need to consider what classes and relation classes are needed in order
to represent the main constructs of a given language definition. Then, we need
to think of appropriate super classes (provided by the ADOxx Operationalizable
Meta Model) for new classes, as well as, accounting for the definition/configuration
of (new) attributes so that our meta model describes the full syntax and semantics
of our modelling language. Not all constructs that are part of the syntax of a
modelling language need to have a graphical representation; these constructs are
usually abstract (i.e. not instantiated in models) and are typically for reusability
of semantics (e.g. property inheritance). After that, we are ready to define an
intuitive graphical notation for the classes and relation classes in order to simplify
the modelling, with the use of the GraphRep class attribute (see Section 2.4.1).

2https://www.adoxx.org/live/classes

22 CHAPTER 4. METHODOLOGY

For our implementation, we make use of the pre-defined classes of the Static
Library in order to define our Domain Objects, the constants of our domain. The
Dynamic Library is then used to define models that describe the rest of our domain.

Relations between two objects of the same model are defined with a correspond-
ing instance of the relation class. In order to define relations between objects that
belong in different models, a special configuration of a Relation Class is needed,
called InterRef. InterRef makes the connections needed for our models to inter-
link3.

All the defined classes and relation classes of our implementation are shown in
Appendix A.

4.2.3 Implementation of the Modelling Language

In ECAVI, we rely on the ASP syntax and semantics (described in Section 2.2),
which implement Event Calculus theories. As for the visual notation deployed to
model the key aspects of the formal languages, we developed a set of visual cues
shown in Figure 4.4

(a) Domain Object Model (b) Fluent and Event Model

(c) Domain Axiomatization Model (d) Starting State Model

Figure 4.3: Screenshots of the 4 model types defined in the ECAVI tool

3https://www.adoxx.org/live/relations

4.2. MODELLING METHOD 23

Figure 4.4: Graphical Notation of ECAVI

4.2.3.1 Modelling Procedure

To accommodate the modelling process, we follow a common practice in knowledge
engineering for dynamic domains, which breaks down the modelling tasks into four
sub-models (Fig. 4.3):

• The Domain Object model (Figure 4.3a), which specifies all Object Symbols
(or Roles) and the Instances (or Constants) that populate our domain.

• The Fluent and Event model (Figure 4.3b), which specifies all dynamic as-
pects of our domain, in the form of fluents, events , and other user-defined
predicates. Together with the Domain Object model, this part defines the
signature (or alphabet) of our domain axiomatisation.

• The Domain Axiomatisation model (Figure 4.3c), which axiomatises the
dynamics of our domain. This is the main part of the modelling process,
supporting the user in defining effect axioms (Initiates, Terminates, Trig-
gers), coupled with preconditions and effects defined in the previous models,
e.g., fluent and event expressions.

• Finally, the Starting State model (Figure 4.3d) defines the initial state of
a domain, and the narrative of events that happen at various timepoints.
This is used as input to the clingo solver, to find answer sets satisfying the
domain dynamics.

With the help of Event Calculus, we can represent commonsense knowledge and
scenarios, and use the knowledge to reason about the scenarios (Erik T. Mueller [27]).
A full description of the basic notions of the Event Calculus and ASP, that we
mapped to graphical representations follows.

24 CHAPTER 4. METHODOLOGY

4.2.3.2 Visual Notation

We design the graphical representation of each object with the use of the GraphRep
class attribute. The following classes are part of the Static Library:

Object Symbol
A constant or variable that defines the context/domain of the
implementation. An object symbol has an arity defined by
the number of its instances.
The symbol R represents the fact that an Object Symbol is
perceived like a Role of an Instance.

Instance

An instance of an object symbol (constant or variable, called
term in ASP). An instance is associated with one or more
object symbol(s) via a ISA Association.

Has Role (Relation)

The connector that defines a relation between an Instance and
an Object Symbol. This relation is practically used to give a
role to an instance.

Figure 4.5 shows an example of how the Domain Objects are drawn in our model.
In this example, anakin has the role of father and luke and leia have the role of
child. All three of them also have the role of a person.

The corresponding EC definition is:

person(anakin;luke;leia).

father(anakin).

child(luke;leia).

Figure 4.5: Domain Objects Representation
Example

4.2. MODELLING METHOD 25

The following classes are part of the Dynamic Library:

Fluent

A time-varying property of the world. A fluent has a truth
value at a timepoint or over a timepoint interval; the possible
truth values are true and false.

Event
An event or action that may occur in the world. It may occur
or happen at a timepoint. After an event occurs, the truth
values of the fluents may change (i.e. an event may initiate
or terminate a fluent).

User-Defined Predicate

Applies a nature to an already defined instance. This type of
predicate differs from a fluent in a sense that it is not depen-
dent on time.
Eg. movableObj(Obj) :- object(Obj).

Predicate is a precondition to a fluent or an event (Relation)

This connector defines a relation between a User-Defined
Predicate and a Fluent or an Event.
Eg. fluent(rightOf(X,Y)):-

object(X), object(Y) movableObj(X), movableObj(Y).

HoldsAt

HoldsAt(f,t) represents that fluent f is true at timepoint t.
A fluent is linked to an instance of the HoldsAt class with the
InterRef relation.

Happens

Happens(e,t) represents that event e occurs at timepoint t.
An event is linked to an instance of the Happens class with
the InterRef relation.

Happens and HoldsAt can be negated. In ECAVI, we visualize the negation of an
Event Calculus predicate with the symbol ¬ with a red background on the left
side of the predicate (Fig. 4.7).

26 CHAPTER 4. METHODOLOGY

For a fluent we use the symbol of the hourglass to visualize the fact that the
fluent’s state may change from time to time. For an event we use the symbol of
a bell notification to imply that an action occurs at the time the event happens.
The same symbols are used on the HoldsAt and the Happens classes, respectively.
Both the HoldsAt and the Happens predicates occur at a certain timepoint and
for that purpose we added the symbol of a clock at the top right of their graphics.
Notice that, at the cases when an event occurs at some timepoints before or after
another (e.g. T-1, T+2, etc.), the corresponding timestamps are shown (Fig. 4.7)

Effect Predicates

Figure 4.6: States of an effect:
(a) Default (b) Initiates (c) Terminates (d) Triggers

When an effect is created, it assumes the default state (temporary state upon
creation). The user then, has to define the type of the effect. The effects of event
can be of 3 different types: Initiates, Terminates or Triggers (further described in
Section 2.1).

The effects of events may have preconditions that define if the event will have
its intended effect (qualification):

- A fluent precondition is a requirement that must be satisfied for an event
to have an effect. We express the fluent preconditions in the form of HoldsAt.

- An action precondition is a requirement that must be satisfied for the
occurrence of an event. We express the fluent preconditions in the form of
Happens.

Fluent Precondition (Relation)

The connector used for defining fluent preconditions. The
relation is outgoing from an instance of a HoldsAt class and
incoming to an instance of an Effect.
e.g. Fig. 4.7 shows an example of 2 fluent preconditions to an effect

Event Precondition (Relation)

Similar to the connector for a fluent precondition with the
only difference of a bullet at the starting end (in order to
distinguish between them with a glance).
e.g. Fig. 4.8 shows an example of an event precondition to an effect

4.2. MODELLING METHOD 27

Triggering Event (Relation)

The connector used for linking an effect to the event that has
the behaviour of a trigger.
Figures 4.7 & 4.8 display examples of triggering events to effects

Triggered Fluent (Relation)

An effect of type Initiates or Terminates has an outgoing rela-
tion to the fluent that will be triggered if all the preconditions
are true. This connector specifies this type of relation.
In Fig. 4.8, an example of a triggered fluent is shown on the right

side of the effect.

Triggered Event (Relation)

Similar to the previous connector, this connector specifies the
outgoing relation from an effect of type Triggers to the event
that will be triggered if all the preconditions are true.
In Fig. 4.7, an example of a triggered event is shown on the right

side of the effect.

Figure 4.7: Triggering axiom with two fluent preconditions.

Figure 4.7 illustrates an example of a triggering axiom where the effect has the
type ”Triggers” and in order for the event turnRed to be triggered on timepoint
T+1, the event newPedestrian has to occur at the timepoint T and 2 fluent pre-
conditions (waitingP & ¬isRed) have to be true as well.

28 CHAPTER 4. METHODOLOGY

Figure 4.8: Initiates axiom with a fluent and an event precondition.

Figure 4.8 displays an example of an axiom where the effect has the type ”Initiates”
and in order for the fluent waitingP to become true at timepoint T, the event
newPedestrian has to occur at timepoint T and a fluent precondition (isRed)
and an event precondition (¬turnGreen) have to be true.

For better visualization, the preconditions are shown before the effect, the trig-
gering event is shown above the effect and the triggered event/fluent on the effect’s
right side. This order and the connectors (arrows) are drawn this way to better
represent the flow of time.

Full examples with the implementation of a use case are shown in Section 5.2

4.3. TRANSLATION INTO ASP 29

4.3 Translation into ASP

The axiom shown in Figure 4.7 when translated into ASP composes the following
code:

happens (turnRed(t1),T+1) :-

not holdsAt(isRed(t1),T),

holdsAt(waitingP(PERSON2),T),

happens(newPedestrian(PERSON1),T),

PERSON1!=PERSON2.

Meaning:
At a certain timepoint T, if a new pedestrian (PERSON1) arrives at the traffic
light (t1) for the purpose of crossing to the other side of the road, and the light
is not red and there is already another pedestrian waiting (PERSON2), then the
traffic light will turn red at the next timepoint T+1

For simplicity, we assume that there is only one traffic light in this case with two
states: when the light is green the cars can move through and the pedestrians have
to wait, and when the light is red the cars will have to stop and the pedestrians
can cross the road.

In ASP, it is a common practice for predicates and constants to start with a
lower-case letter and for variables to start with an upper-case letter (more details
in Section 2.2). In our example, t1 is a constant that has already been defined
with the role of a traffic light. PERSON1 and PERSON2 are variables of the type
person that will each be mapped to an already defined constant of a person when
the resulting answer sets are produced by the reasoner. Moreover, T is a variable
that represents a timepoint which can equal to an integer. In this example there
are 2 fluents: isRed and waitingP, and 2 events: turnRed and newPedestrian.

In order to achieve the correct translation of the models, we export them into
XML format (a feature supported by ADOxx) and then an intermediate Java
program performs the required analysis on the XML exported file where for each
complex object it finds all the relations of this object (incoming and outgoing),
translates them according to the ASP syntax and writes the corresponding ASP
rules and axioms into the file that compiles the final ASP program that the Clingo
reasoner is gonna run.

As already mentioned in Section 4.2.2, the InterRef functionality enables us
to make mappings between objects that belong in different models. For example,
each instance of the HoldsAt class (in Domain Axiomatization model) is linked
with a fluent from the Fluents and Events Model. These kind of links are essential
for the translation into ASP. If any essential InterRef is missing, then our program
cannot move on to the translation of the XML extract into ASP code.

To make the process of the translation easier, we implemented Java classes
that imprint the full structure of each type of ”object” in ASP. An overview of the

30 CHAPTER 4. METHODOLOGY

classes that comprise the XML translator to ASP is shown in Section 5.
Essentially, the Java code reads the XML files in the order that ASP code is

commonly written (domain objects, rules and axioms before the definition of the
starting state). So, it first reads the Domain Objects Model export, parses the
constants and writes them into an ASP file (.lp extension). After that, it reads the
Fluents and Events Model export, parses and writes them into the file and then
moves on to the Domain Axiomatization Model export and at the end the Starting
State Model export. The main class of our program is the class XMLtoASP. For each
XML file exported from our model it makes the procedures shown in Algorithm 1.

Notable is the way we define which are the variables of the ASP program. Lines
8-12 of the algorithm describe our solution. When an argument has an InterRef
to a class type Instant, then it is a constant that has already been defined in
the Domain Objects Model, and is written into the ASP program with lower-case
letters. Otherwise, if the InterRef points to a Object Symbol class object, then we
assume that the argument is a variable of this role and is then written into the
ASP program file with upper-case letters.

4.3. TRANSLATION INTO ASP 31

Algorithm 1 Steps for translating XML into ASP

1: if Domain Object Model then
2: for all objects of type Instance do
3: get the Instance’s role(s)
4: WRITE the domain object into the .lp file
5: else if Fluent and Event Model then
6: # fluents and events have the same structure
7: for all events and fluents do
8: find all arguments by reading the InterRefs to Instances & Object Symbols
9: if the InterRef is an Instance then

10: the argument is an already defined constant
11: else if it is an Object Symbol then
12: we assume that the argument is a variable
13: WRITE fluents/event into the .lp file
14: else if Domain Axiomatization Model then
15: for all HoldsAt objects do
16: follow similar steps with before to find the InterRef to the fluent and

arguments
17: for all Happens objects do
18: follow similar steps with before to find the InterRef to the event and

arguments
19: for all Effects do
20: get the relation to the triggering event
21: if effect type = Initiates or Terminates then
22: get the relation to the triggered fluent
23: else if effect type = Triggers then
24: get the relation to the triggered event
25: if effect has preconditions then
26: for all effect preconditions (event and fluent) do
27: get event and fluent preconditions
28: WRITE the axiom into the .lp file
29: else if Starting State Model then
30: for all HoldsAt and Happens that comprise the starting state do
31: WRITE it into the .lp file

32 CHAPTER 4. METHODOLOGY

4.4 Meta-reasoning & Integrity Checks

The basic idea of ASP is to find solutions to a problem, in the form of answer sets
(usually stable models) of a logic program, which consists of rules and constraints
that define properties of the solutions. The problem is solved by computing stable
models using answer set solvers like clasp [10]. Simple reasoning over answer sets is
frequently supported by ASP systems but more specialised reasoning tasks require
more processing and are not easily done. In the previous years, there have been
some works focused on the job of meta-reasoning on answer sets [6, 29].

The adoption of the logic programming paradigm offers certain leverage to
the knowledge engineer, such as the ability to prove properties or to easily find
optimal solutions, yet the process of detecting and ironing out logical errors is often
cumbersome. This is due to the declarative nature of program execution, which
does not follow a procedural execution, but instead relies on logical dependencies
among rules in the encoding.

We aim to implement some extensive meta-reasoning into our tool that will help
the more experienced users run and visualize their programs better, but at this
point of ECAVI’s development, we focus on implementing simple meta-reasoning
tasks and integrity constraints that are designed for the purpose of helping the
user create full and syntactically correct programs.

AdoScript, the macro language of ADOxx, is designed for the purpose of pro-
viding the meta modeler with significant extension possibilities with low program-
ming effort (see Section 2.4.2). We make use of AdoScript for implementing a
number of features that make the user’s work with building axioms easier and also
enable us to support a number of integrity checks.

In ECAVI, we implement simple but fundamental checks for syntactical errors
either with the help of AdoScript or in Java at design time before the run of the
Clingo reasoner. In more detail:

• An instance must always have at least one role (object symbol).
For this purpose, the Java programs checks the Domain Object Object for
whether an instance isn’t mapped to any Object Symbol.

• Whatever the type of an Effect (Initiates, Terminates or Triggers)
there must always be an event that triggers this effect. For this
purpose, we developed a script in AdoScript that automatically generates
the triggering event for an Effect (see Script 4).

• An effect, with the type of Initiates or Terminates requires a fluent
to be triggered. So it must always have an outgoing relation to a fluent.
And if an effect is of type Triggers it must always have an outgoing
relation to an event to be triggered. Similarly with the triggering event,
a script is developed for the auto-generation of the corresponding objects.

• In order for an ASP program to run on the Clingo reasoner, the
starting state of the world of the designed domain has to be defined.

4.4. META-REASONING & INTEGRITY CHECKS 33

At the start of the script that implements all the main functionality of the
ADOxx External Coupling with Java and Clingo (Script preview 6) we check
whether the script was called from a Starting State Model. This model has
to be designed before we can move on to the translation into ASP.

Preconditions are not necessary for an effect. However, effects often have one or
more preconditions. A script was composed for the purpose of making the process
of generating a new precondition for an effect easier and quicker (Script 5). The
user has to right click on the effect the desired precondition is to be linked and
then choose from the context menu what kind of precondition it is gonna be (fluent
or event precondition).

The objects that are automatically generated are empty instances. The user
then has to open the object’s notebook and define the corresponding relations (i.e.
InterRef) and information. With this process, we point the user to the right way
of modelling an axiom, minimizing as well this type of syntactical errors.

Furthermore, the ADOxx meta-modelling platform has some build in function-
alities that enable us to enforce some conditions that are essential for building rules
in EC, like unique name assumptions and having the preconditions and all events
and fluents whatsoever already defined when applying them on an axiom.

After the user clicks the ”Run” option and chooses which models define his/her
program, those models are then exported into XML and the Java intermediate pro-
gram checks if there is an object with a missing relation before doing any other
activity (eg., an Instance has no Role, a HoldsAt precondition has no InterRef to
a fluent etc.). If any missing relation is found, then an error is raised pointing the
user to the object that is undefined, highlighting it as well.

A sample list of scripts is shown in Appendix B.

34 CHAPTER 4. METHODOLOGY

Chapter 5

Implementation & Use Case

In this chapter we describe how our tool was implemented. We present the archi-
tecture of the developed system specifying the role that each component has and
how everything comes together. We also present a basic use case scenario that was
designed as a sub-problem to a much more extensive real-life problem.

5.1 Architecture

ECAVI is developed with the use of the ADOxx metamodelling platform. We
try to develop a modelling language that is tailored to the Event Calculus way
of representing causal relations, making use of the ADOxx External Coupling
functionality with the AdoScript macro language (see Section 2). A high-level
overview of the tool’s architecture is shown in Figure 5.1.

The ADOxx meta-modelling platform comprises of the Development Toolkit
and the Modelling Toolkit. The whole realization of the ECAVI meta-model hap-
pens on the Development Toolkit, which we use in order to build the modelling
language of our tool, by defining our modelling constructs (classes, modeltypes and
attributes) stepping on some ADOxx pre-defined abstract classes and to define
our modelling procedure by separating the process of building a full ASP program
into 4 sub-models (see also Section 4.2). We design the graphical representation
for each class and relation class by defining the class attribute GraphRep and with
the help of the GraphRep online repository (see Section 2.4.1). Furthermore, we
use the Development Toolkit to realise the external coupling that provides the tool
with additional functionality, with the help of the AdoScript macro language (see
Section 2.4.2).

The AdoScript Message-Ports and Commands (see Appendix C) enable us to
define new menu entries, realize specific model checking and provide additional
add-on-programming. The scripts 2 and 3 in Appendix B give an example of how
AdoScript provides add-on functionality. AdoScript is the actual link between
ADOxx and Clingo following these steps:

35

36 CHAPTER 5. IMPLEMENTATION & USE CASE

Figure 5.1: The architecture of the ECAVI modelling toolkit

1. Export the designed models in XML.

2. Provide the XML files as input to the Java program that implements the
translation of the designs into ASP programs.

3. Run the translated ASP program on the Clingo reasoner and save the re-
sulting answer sets into a file.

4. Provide the Clingo results as input to the Java program that parses them
into XML format which is needed for the results to be displayed back into
the model.

In the Modelling Toolkit, the end user makes use of the modelling language that
was realised in the Development Toolkit. The user will follow the modelling pro-
cedure steps in order to design a new domain of application that will be translated
into an ASP program and given into the Clingo reasoner to produce the resulting
answer sets. During the user’s work in the Modelling Toolkit, the various func-
tionalities implemented in AdoScript and defined in the Development Toolkit will
be triggered either consciously by the user (e.g. when a user chooses to add a
precondition to an Effect from its context menu) or automatically when another
event happens and causes the functionality to be triggered (e.g. when an Effect
is created and its type is chosen, a couple of object instances are automatically
created and linked with it).

5.1. ARCHITECTURE 37

The Java intermediate program is made for the purpose of translating the
designed models into an ASP program and vice versa. On the way to making
the translation from XML to ASP and vice versa, easier and more efficient, we
implemented Java classes that imprint the full structure of each type of ”object”
in ASP. In more detail, each model designed in ADOxx is exported as an XML
file. The Java program parses each one of the XML files and with a certain order
that follows the common practice of writing ASP programs (first constants, then
events and fluents, then the axioms and at the end the starting state), translates
them into ASP and writes them into the file that the Clingo reasoner runs and
produces the desired answer sets. It then parses the results and produces the XML
file that is read by AdoScript and displayed back into the model. The algorithm
that the Java uses in order to translate the XML into ASP is shown in Section 4.3.

Figure 5.2: Overview of the classes of the Java translator program.

Figure 5.2 shows an overview of the Java classes that were implemented. Each
ADOxx object class is mapped with a corresponding class in Java. In addition, we
added 2 enumerations for the types of an effect (Fig. 5.3) and for the constraint
operator types (Fig. 5.4). The constraints are defined for predicate arguments, for
example in section 4.3, the 2 instances of type person are part of the constraint
PERSON1 != PERSON2.

Figure 5.3: Effect types enumeration

Figure 5.4: Constraint types enumeration

38 CHAPTER 5. IMPLEMENTATION & USE CASE

The following script is an excerpt of the AdoScript code that has the functionality
of adding a new menu item under a new top-level menu called ”Menu algorithms”.
This menu item called ”Run...” calls the script where the whole process of the
communication between ADOxx and clingo is implemented with the help of the
Java program. An excerpt of the script that implements the whole run process is
shown in Appendix B.

Algorithm 2 Add new menu item for the Run process

add the item as a new menu item under a new top -level menu called

"Model algorithms" for each component

ITEM "Run ..."

acquisition:"Model algorithms" modeling: "Model algorithms"

analysis: "Model algorithms" simulation: "Model algorithms"

evaluation: "Model algorithms" importexport:"Model algorithms"

execute an external ASC file when clicking on the menu , could be

in a file space (as below) or also in library using db:\\

EXECUTE file: ("D:\\ Nena\\ AdoScript \\ runClingo.asc")

The Script 3 shows the process of adding a new menu item, under the top-level
menu ”Extras”, that opens a Debug Shell where the user can enter AdoScript code
that he wants to test out. This functionality was mostly designed for helping us
test out the code we added for the functionalities we implemented, but can be
helpful, as well, for users that already have gained experience with the tool and
want to use AdoScript to ”play” with their models.

Algorithm 3 Add AdoScript Debug Shell

ITEM "AdoScript Debug Shell"

acquisition: "Extras" modeling: "Extras"

analysis: "Extras" simulation: "Extras"

evaluation: "Extras" importexport: "Extras"

IF (type (adoscript) = "undefined"){

SETG adoscript:""

}

CC "AdoScript" EDITBOX text:(adoscript)

fontname:"Courier New" fontheight :12

title: "Enter the code you want to test ..." oktext:"Run"

IF (endbutton = "ok"){

SETG adoscript :(text)

EXECUTE (text)

}

5.2. AN EXAMPLE OF APPLICATION - USE CASE 39

5.2 An Example of Application - Use Case

In this section, an example of application (ie. a use case) is described. Even
though we made the use case intentionally trivial, it can be generalized to account
for more complex domains with larger knowledge bases.

As part of a general-purpose smart city project, an engineer wishes to model
the behaviour of a particular type of traffic lights that change from red to green
and back according to some rules. The desirable behaviour is for the light to stay
green for cars as long as a predefined number of pedestrians show up and wait to
cross the road. The idea is to model the dynamics of the traffic light domain with
a given ruleset, so that it can be integrated in the overall smart city system and
be stress-tested through simulation to fine-tune its parameters.

Figures 5.5, 5.6, 5.7, 5.8, 5.9, 5.10, 5.11 describe the creation of our use case
step-by-step. Beside each figure, we also show the corresponding ASP code.

trafficLight(t1).

person(p1).

person(p2).

automobile(a1).

automobile(a2).

Figure 5.5: Domain Objects of Traffic Light example

Figure 5.5 shows how the Domain Objects of our problem are designed. We have
defined an instance of a traffic light (t1), two instances of type person (p1,p2) and
two more instances of type automobile aka. cars (a1,a2).

fluent(isRed(TRAFFICLIGHT)) :-

trafficLight(TRAFFICLIGHT).

fluent(waitingP(PERSON)) :-

person(PERSON).

fluent(waitingA(AUTOMOBILE)) :-

automobile(AUTOMOBILE).

event(turnRed(TRAFFICLIGHT)) :-

trafficLight(TRAFFICLIGHT).

event(turnGreen(TRAFFICLIGHT)) :-

trafficLight(TRAFFICLIGHT).

event(newPedestrian(PERSON)) :-

person(PERSON).

event(newAutomobile(AUTOMOBILE)):-

automobile(AUTOMOBILE).

Figure 5.6: Fluents and Events of the
Traffic Light example

40 CHAPTER 5. IMPLEMENTATION & USE CASE

The definition of the fluents and the events of the traffic light use case is demon-
strated in Figure 5.6. For our problem we have 3 fluents which define the state of
an instance (the top 3 objects of the figure with the symbol of the hourglass). The
first fluent’s argument is an instance of the trafficLight role and is used to describe
if the traffic light is red. The second fluent, has a person as its argument and is
used to define if the person is waiting to cross the street. And, finally, the third
fluent describes the state where a car is waiting for the light to turn green again.

Moreover, we define 4 events which describe actions that occur at a certain time
(the bottom 4 objects in the figure with the symbol of the bell). The first 2 events
describe the action of a traffic light becoming red and a traffic light becoming green.
The third event happens when a new person arrives at the stop for the purpose
of crossing the road and the last event describes the action of a new car arriving
at the location the traffic light is.

Fluents and events may contain both variables and instances as arguments.
They may also contain other predicates, where in this case, a user-defined predicate
object is made and connected with the fluent/event using the relation/connector
shown in Section 4.2.3.2.

initiates(turnRed(TRAFFICLIGHT),

isRed(TRAFFICLIGHT), T):-

trafficLight(TRAFFICLIGHT), time(T).

terminates(turnGreen(TRAFFICLIGHT),

isRed(TRAFFICLIGHT), T):-

trafficLight(TRAFFICLIGHT), time(T).

Figure 5.7: Simple effects
of Traffic Light example

In Figure 5.7 the ”simple” effects with no preconditions of our problem are de-
fined. At the top of the picture, an initiates effect is displayed and at the bottom,
a terminates effect is displayed that affect the state of a traffic light. The meaning
of those effects is: at a certain time T if the event turnRed occurs then the traffic
light will turn red and respectively, at a time T if the event turnGreen occurs then
the traffic light will turn green.

Figure 5.8 demonstrates 3 effects that have preconditions. The first one, at
the top of the picture, is a positive effect axiom where, at a certain time, if the
traffic light is red and a new car arrives, then the car has to wait (for the light
to turn green). The second positive effect axiom describes the behaviour where,

5.2. AN EXAMPLE OF APPLICATION - USE CASE 41

if the traffic light is not red (ie. if it’s green and the cars can move through) at a
certain time and a new pedestrian arrives, then the pedestrian has to wait. Notice
that in this axiom, the holdsAt precondition which is negated in the ASP code,
also has the negation sign visualized with a red background on the left side of the
holdsAt object.

initiates(newAutomobile(AUTOMOBILE),

waitingA(AUTOMOBILE), T) :-

holdsAt(isRed(TRAFFICLIGHT),T),

automobile(AUTOMOBILE).

initiates(newPedestrian(PERSON),

waitingP(PERSON),T) :-

not holdsAt(isRed(TRAFFICLIGHT),T),

person(PERSON),

trafficLight(TRAFFICLIGHT),

time(T).

terminates(turnRed(TRAFFICLIGHT),

waitingP(PERSON),T) :-

holdsAt(waitingP(PERSON),T),

trafficLight(TRAFFICLIGHT),

person(PERSON),

time(T).

Figure 5.8: Effects with precon-
ditions from the Traffic Light ex-
ample

At the bottom of the picture, a negative effect axiom is shown, a terminates effect
which shows that, at a certain time, if a person is waiting to cross the street and
the traffic light turns to red, then the pedestrian will no longer wait and can cross
the street.

happens(turnGreen(TRAFFICLIGHT),T+1):-

happens(turnRed(TRAFFICLIGHT),T).

Figure 5.9: Simple trigger axiom

In the Figure 5.9 we can see a simple trigger axiom which describes the transi-
tion of a traffic light’s state from one timepoint to another. In particular, if the
traffic light was red at time T , then on time T+1 the traffic light will become green.

42 CHAPTER 5. IMPLEMENTATION & USE CASE

happens (turnRed(t1),T+1) :-

not holdsAt(isRed(t1),T),

holdsAt(waitingP(PERSON2),T),

happens(newPedestrian(PERSON1),T),

PERSON1!=PERSON2.

Figure 5.10: Trigger axiom
with preconditions.

The Figure 5.10 demonstrates the same axiom that we analysed in Sections 4.2.3.2
and 4.3. If describes the effect: if a new pedestrian arrives at the traffic light, at
time T, and the light is not red (ie. it is green for the cars) at the same time, and
another person is already waiting to cross the street, then the traffic light will turn
red at the time T+1.

happens(newPedestrian(p1),0).

happens(newPedestrian(p2),2).
Figure 5.11: Starting state
objects.

In Figure 5.11 we can see the 2 happens objects that the starting state of our
problem consists of. The starting state is initialized with the appearance of the
person p1 at time 0 (T) and then the appearance of a second person p2 at time 2
(T+2).

The graphic representation of the axioms aims to visualise a certain flow of
actions. In particular, the effects have incoming arrows from the fluents and the
events that are considered as preconditions to them. The connector between the
events that are the triggering point for an effect to take place (if all the precondi-
tions are met) and the corresponding effect, is drawn with a bullet on each edge,
and the fluent or event that is the result of the effect has an arrow pointing to it.

The ADOxx Notebook is where the user can interact with an instance of a
class and is accessed with a double-click on the object. In the object’s notebook,
the user can give values to the attributes of each class. For each different type of
class, we define which attributes are part of the notebook (e.g. all the InterRefs
are defined in the notebook). The Notebook can be divided into chapters and the
attributes can be grouped inside chapters.

5.2. AN EXAMPLE OF APPLICATION - USE CASE 43

Figure 5.12: Example of a notebook for the class Happens

An example of the notebook for the class Happens is demonstrated. This object is
the triggered event of the Trigger axiom shown in Figure 5.10. The Notebook of
the class Happens is divided into 3 chapters. Figure 5.12 displays the first chapter,
where the user is called to define the InterRef to the event to be mapped to the
Happens instance, choose if the instance is negated, change the value of time if
needed (default value is 0), define the argument(s) with the necessary InterRefs
and choose if the arguments will be displayed on the drawing area.

Figure 5.13 displays the second chapter of the Happens class Notebook. In
this chapter, the user can define the constraints that need to be applied in order
for an effect to have the desired results. In order to define a constraint, we must
choose the type of the constraint (the types are shown in Fig. 5.4), what role the 2
arguments of the constraint have and then define the InterRefs to the objects that
include the arguments that are part of the constraint. In our example of the trigger
axiom, the constraint we have added is for the 2 instances of type person to be
different, PERSON1 != PERSON2. Those arguments are part of the triggering event
and one of the fluent preconditions (newPedestrian & waitingP) so we define the
InterRefs to those two objects. Then we choose the role these arguments have,
person in our case, and then choose the operator from the drop-down list.

Figure 5.13: Example of defining constraints for a triggered event

44 CHAPTER 5. IMPLEMENTATION & USE CASE

Notice that, the names of the Happens and HoldsAt objects are auto-generated
when the object is created. The auto-generated name is displayed on the first
chapter of the object’s notebook, in read-only mode, so that the user will know
the name of the object when defining an InterRef to it.

The third chapter of the Happens class Notebook includes 2 textfields, Descrip-
tion and Comment. Those two textfields are part of every object class implemented
in ADOxx. We use the Description field in order to provide a sample description of
what objects of this class are used for (e.g. what we use an object of type Happens
for). The Comment field is for the user to write whatever comment he may find
helpful regarding this object instance, during his design. A couple of examples of
the Description chapter are shown in Figure 5.14

Figure 5.14: Examples of descriptions of object classes.

All of the above figures are parts of the 4 model types that define our problem
(further described in Section 4.2). The user is free to implement the models in any
order he desires but in order to make the desired mappings (InterRefs) to other
models, a certain order of implementation has to be applied. For this purpose,
we designed a walk-through wizard, in the form of infoboxes, that help first time
users of the tool learn and understand the correct order to design their domains.

5.2. AN EXAMPLE OF APPLICATION - USE CASE 45

Upon the start of the Modelling Toolkit, the user is asked if he wants the tutori-
al/infoboxes displayed (Fig. 5.15)

Figure 5.15: Tutorial: User is asked if he wants the tutorial displayed.

If the ”Yes” option is chosen then the tutorial continues, otherwise it is skipped.
Upon the click of the ”Yes” option a small description of the 4 model types is
displayed (Fig. 5.16).

Figure 5.16: Tutorial: Description of the 4 modeltypes

First, the Domain Object Model has to be designed for the initialization of the con-
stants that define the problem. Then the Fluents and Events Model is designed,
after that the Domain Axiomatization Model and last is the Starting State Model.
The last three of those models need InterRefs to the Domain Object Model in order
to define the arguments of each predicate and the last 2 models need InterRefs to
the Fluents and Events Model, as well, so that fluents and events can be mapped
to HoldsAt and Happens objects correspondingly. This order of the model design
also incorporates the semantic of Event Calculus and ASP where the constants
and the preconditions must already be defined for the axioms to apply.

46 CHAPTER 5. IMPLEMENTATION & USE CASE

Following the above, when each of the 4 modeltypes is opened (i.e. when the
model window is activated), a description of the model and the object classes that
comprise that model is displayed (Figures 5.17, 5.18, 5.19, 5.20).

Figure 5.17: Tutorial: Description displayed for the Domain Object Modeltype

Figure 5.18: Tutorial: Description displayed for the Fluent and Event Modeltype

5.2. AN EXAMPLE OF APPLICATION - USE CASE 47

Figure 5.19: Tutorial: Description displayed for the Domain Axiomatization Mod-
eltype

Figure 5.20: Tutorial: Description displayed for the Starting State Modeltype

Each of those tooltips are also accessible for the user to read - if need be - later
via a top-level menu option called ”Show model description”.

48 CHAPTER 5. IMPLEMENTATION & USE CASE

Figure 5.21: Run Step 1: Choose the models to translate

Figure 5.22: Run Step 2: Show option for answer sets

Figure 5.23: Run Step (optional):
Define complex show option

Figure 5.24: Run Step 3: Define
maxstep

5.2. AN EXAMPLE OF APPLICATION - USE CASE 49

Figures 5.21, 5.22, 5.23, 5.24 show the steps that follow after the user chooses to
run the script that implements the translation to ASP (script 6).

On the first step, the user is called to choose the which models will comprise
his ASP program. A check has to be done at this point, if at least one model of
each type is chosen since all modeltypes are needed for a complete ASP program.
However, more models of each modeltype can be chosen, for if the domain that was
designed is too big then it is a good practice to split the design of each modeltype
into more than one models.

On the second step, the user chooses the value of the #show directive. This
directive is used for advising the solver to project stable models onto instances
of a certain predicate, meaning if the option holdsAt/2 is chosen, then for each
answer set only the holdsAt instances are going to be displayed. Below an example
of an answer set that clingo produces for our traffic lights problem when the show
option is holdsAt.

Figure 5.25: Example of an answer set produced by clingo

If the user desires to enter a more complex option to the show directive, then
he has to choose the last choice shown in Step 2 (Fig. 5.22). When this choice is
selected, then the intermediate step shown in Figure 5.23 is displayed and the user
can write the command he desires. The example command shown in the figure
enables the printing of only certain arguments from a predicate.

The DEC.lp file defines the Discrete Event Calculus Domain independent ax-
iomatization that we use for our program. In this file, the variable maxstep is
used for defining the max timepoint for which the clingo reasoner is gonna run.
On the final step, the user defines the value of the variable maxstep (Fig. 5.24).
In DEC.lp we defined:

time(0..maxstep)

meaning that the variable of time takes values from 0 to maxstep. In our example
the maxstep equals to 5 and in the answer set example in Figure 5.25 we can see
that the timepoints in the answers are up to the number 5.

50 CHAPTER 5. IMPLEMENTATION & USE CASE

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we presented ECAVI, a new, domain independent modelling tool,
which supports the modelling of dynamic domains in the Event Calculus through
a visual interface for generating axioms. In essence, our tool offers a visual meta-
modelling platform for knowledge engineering, providing meta-reasoning capabili-
ties to support the inexperienced modeller become acquainted with the features of
Event Calculus, and simplifying the process of creating complex models, thereby
assisting him/her during the complex learning process.

Visualisation has been identified as a useful means to improve the performance
of knowledge engineers, while the need to visualise logical concepts, especially in
dynamic domains, has been around for many years; nevertheless, very few tools
have focused on the visualisation of action languages. An initial attempt to il-
lustrate similar calculi in an abstract level (like the Situation Calculus) has been
presented in [34]; our proposal is more expressive, and provides a more distinguish-
able flow of actions. The SeaLion IDE for Answer-Set Programming [28] is also
making a remarkable attempt towards providing graphical representation for the
ASP language, yet it only focuses on a specific target group of users with some or
more extensive background knowledge. Moreover, VizDSL [26], a visual Domain-
Specific Language for highly interactive visualisations argues that “visualisation
facilitates knowledge sharing between different user groups with different levels of
expertise and experience, without requiring extensive background knowledge or
training”. Similar to our work, [4] introduced an interactive educational tool for
students that want to learn AI planning for robotics. The tool guides the student
to model a dynamic domain and solve a planning problem, however no graphical
visualisation of the axioms is provided. ECAVI is an attempt to offer a complete
solution towards this direction, being a domain-independent educational tool that
models dynamic domains via a visual interface that focuses on making the stu-
dent understand actions, change and causality. The Unified Modelling Language
(UML) [9] has been a guide towards realising a visual notation for our purposes.

51

52 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

6.2 Future Work

ECAVI is in a work-in-progress phase and is only a first prototype. The features
presented in Chapter 5 have already proven their usefulness in some preliminary
tests, but cannot be considered complete, and do not fully realise our vision to-
wards a meta-modelling platform for modelling dynamic domains. Despite the
encouraging (informal) feedback received by students who tried the tool, we still
need to perform a more extensive normative evaluation of the current features of
ECAVI that will quantify the gains in terms of modelling time and task comple-
tion time that users of different levels have while using the tool (as opposed to
the standard baseline of using a plain text editor). Specifically, we will evaluate
the tool’s usability in terms of satisfaction, efficiency and effectiveness by means
of user studies both from the perspective of the variety of students with different
backgrounds, as well as, the perspective of the teacher.

We already identified some bugs in the modelling interface what will be finished
in a subsequent step. The need for minor revisions of the current features and/or
the incorporation of new ones is expected to emerge through the evaluation process,
allowing us to further improve and refine the usability of the tool and to identify
weak/strong features.

Moreover, upcoming versions will consider more features of the Event Cal-
culus, such as non-determinism, indirect effects of events and others. With the
integration of more capabilities in our tool, full programs that have already been
implemented in ASP can be imported and visualised with the help of ECAVI. We
also plan extend the integrity checks and the meta-reasoning capabilities of our
implementation, by raising warnings and exceptions during design time.

Furthermore, we plan to extend our focus to other types of users, i.e., users
with different levels of modelling experience. Clearly, more experienced users have
different needs, therefore new features will have to be supported, such as more
complex meta-reasoning tools and tools analysing the resulting models to iden-
tify potential errors or poor modelling choices. Such features may be useful to
experienced users who typically model large domains with hundreds of rules.

In the long run, we envision ECAVI to take the form of a fully visual inte-
grated development environment for modelling dynamic domains, complete with a
debugger, step-by-step execution and other features typically found in IDEs, while
supporting alternative action languages, such as the Situation Calculus [24, 22] or
similar action formalisms.

Bibliography

[1] Alexander Artikis, Marek Sergot, and Jeremy Pitt. An executable specifica-
tion of a formal argumentation protocol. Artif. Intell., 171(10-15):776–804,
July 2007.

[2] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Software
Engineering in Practice: Second Edition. Morgan & Claypool Publishers, 2nd
edition, 2017.

[3] Alberto Rodrigues da Silva. Model-driven engineering: A survey supported
by the unified conceptual model. Computer Languages, Systems & Structures,
43:139–155, 2015.

[4] Zeynep Dogmus, Esra Erdem, and Volkan Patoglu. React!: An interactive
educational tool for ai planning for robotics. 58(1):15–24, 2015. Exported
from https://app.dimensions.ai on 2018/11/13.

[5] Uwe Egly, Sarah Alice Gaggl, and Stefan Woltran. Aspartix: Implementing
argumentation frameworks using answer-set programming. In Proceedings of
the 24th International Conference on Logic Programming, ICLP ’08, pages
734–738, Berlin, Heidelberg, 2008. Springer-Verlag.

[6] Wolfgang Faber and Stefan Woltran. Manifold answer-set programs for meta-
reasoning. In Proceedings of the 10th International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning, LPNMR ’09, pages 115–128, Berlin,
Heidelberg, 2009. Springer-Verlag.

[7] Paolo Ferraris, Joohyung Lee, and Vladimir Lifschitz. Stable models and
circumscription. Artificial Intelligence, 175(1):236–263, 2011.

[8] Hans-Georg Fill and Dimitris Karagiannis. On the conceptualisation of mod-
elling methods using the ADOxx meta modelling platform. Enterprise Mod-
elling and Information Systems Architectures, 8:4–25, 2013.

[9] Martin Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling
Language. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
3 edition, 2003.

53

54 BIBLIOGRAPHY

[10] Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub.
Clasp: A conflict-driven answer set solver. In Proceedings of the 9th Inter-
national Conference on Logic Programming and Nonmonotonic Reasoning,
LPNMR’07, pages 260–265, Berlin, Heidelberg, 2007. Springer-Verlag.

[11] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic
programming. pages 1070–1080. MIT Press, 1988.

[12] David Götzinger, Elena-Teodora Miron, and Franz Staffel. Omilab: An open
collaborative environment for modeling method engineering. 2016.

[13] Knut Hinkelmann. Business Process Flexibility and Decision-Aware
Modeling—The Knowledge Work Designer, pages 397–414. Springer Inter-
national Publishing, Cham, 2016.

[14] Dimitris Karagiannis. Agile modeling method engineering. In Proceedings of
the 19th Panhellenic Conference on Informatics, PCI ’15, pages 5–10, New
York, NY, USA, 2015. ACM.

[15] Dimitris Karagiannis, Robert Andrei Buchmann, Patrik Burzynski, Ulrich
Reimer, and Michael Walch. Fundamental conceptual modeling languages in
omilab. In Domain-Specific Conceptual Modeling, 2016.

[16] Dimitris Karagiannis and Harald Kühn. Metamodelling platforms. In Proceed-
ings of the Third International Conference on E-Commerce and Web Tech-
nologies, EC-WEB ’02, pages 182–, London, UK, UK, 2002. Springer-Verlag.

[17] Dimitris Karagiannis, Heinrich C. Mayr, and John Mylopoulos. Domain-
Specific Conceptual Modeling: Concepts, Methods and Tools. Springer Pub-
lishing Company, Incorporated, 1st edition, 2016.

[18] Christian Kloimüllner, Johannes Oetsch, Jörg Pührer, and Hans Tompits.
Kara: A system for visualising and visual editing of interpretations for answer-
set programs. In Hans Tompits, Salvador Abreu, Johannes Oetsch, Jörg
Pührer, Dietmar Seipel, Masanobu Umeda, and Armin Wolf, editors, Ap-
plications of Declarative Programming and Knowledge Management, pages
325–344, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[19] RA Kowalski and MJ Sergot. A logic-based calculus of events. newgeneration
computing 4., 1986.

[20] Frank Kramer and Bernhard Thalheim. Holistic conceptual and logical
database structure modeling with adoxx. In Domain-Specific Conceptual Mod-
eling, 2016.

[21] Joohyung Lee and Ravi Palla. Reformulating the Situation Calculus and
the Event Calculus in the General Theory of Stable Models and in Answer
Set Programming. Journal of Artificial Intelligence Research, 43(1):571–620,
January 2012.

BIBLIOGRAPHY 55

[22] Hector J. Levesque, Fiora Pirri, and Raymond Reiter. Foundations for the
situation calculus. Electron. Trans. Artif. Intell., 2:159–178, 1998.

[23] Vladimir Lifschitz. What is answer set programming? In Proceedings of
the 23rd National Conference on Artificial Intelligence - Volume 3, AAAI’08,
pages 1594–1597. AAAI Press, 2008.

[24] J. McCarthy and Stanford Artificial Intelligence Laboratory. Situations, Ac-
tions, and Causal Laws. Memo (Stanford Artificial Intelligence Project). Com-
tex Scientific, 1963.

[25] Rob Miller and Murray Shanahan. Some alternative formulations of the event
calculus. In Computational logic: logic programming and beyond, pages 452–
490. Springer, 2002.

[26] Rebecca Morgan, Georg Grossmann, and Markus Stumptner. Vizdsl: Towards
a graphical visualisation language for enterprise systems interoperability. 2017
International Symposium on Big Data Visual Analytics (BDVA), pages 1–8,
2017.

[27] Erik Mueller. Commonsense Reasoning. Morgan Kaufmann, 1st edition, 2006.

[28] Johannes Oetsch, Jörg Pührer, and Hans Tompits. The sealion has landed:
An ide for answer-set programming—preliminary report. In Hans Tompits,
Salvador Abreu, Johannes Oetsch, Jörg Pührer, Dietmar Seipel, Masanobu
Umeda, and Armin Wolf, editors, Applications of Declarative Program-
ming and Knowledge Management, pages 305–324, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg.

[29] Tony Ribeiro, Katsumi Inoue, and Gauvain Bourgne. Combining Answer Set
Programs for Adaptive and Reactive Reasoning. Theory and Practice of Logic
Programming, 13(4-5-Online-Supplement), July 2013.

[30] Mohsen Rouached, Olivier Perrin, and Claude Godart. Retracted: To-
wards formal verification of web service composition. In Schahram Dustdar,
José Luiz Fiadeiro, and Amit P. Sheth, editors, Business Process Manage-
ment, pages 257–273, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[31] F. Van Harmelen, V. Lifschitz, and B. Porter. Handbook of Knowledge Rep-
resentation. Elsevier Science, San Diego, USA, 2007.

[32] Michiel van Lambalgen and Fritz Hamm. The proper treatment of events.
Erkenntnis, 65(3):441–447, 2006.

[33] Niksa Visic, Hans-Georg Fill, Robert Andrei Buchmann, and Dimitris Kara-
giannis. A domain-specific language for modeling method definition: From
requirements to grammar. 2015 IEEE 9th International Conference on Re-
search Challenges in Information Science (RCIS), pages 286–297, 2015.

56 BIBLIOGRAPHY

[34] Susumu Yamasaki and Mariko Sasakura. A calculus effectively performing
event formation with visualization. In Jesús Labarta, Kazuki Joe, and Toshi-
nori Sato, editors, High-Performance Computing, pages 287–294, Berlin, Hei-
delberg, 2008. Springer Berlin Heidelberg.

Appendices

57

Appendix A

List of Classes & Relation Classes

Figure A.1: List of classes and relation classes of the ADOxx Static Library

Figure A.2: List of classes and relation classes of the ADOxx Dynamic Library

59

60 APPENDIX A. LIST OF CLASSES & RELATION CLASSES

Appendix B

Sample List of Scripts in AdoScript

Algorithm 4 Auto-generate Triggering Event (Happens)

Get the "Type" attribute value of from object

CC "Core" GET_ATTR_VAL objid: (idInstId) attrname: ("Type")

SETL type: (val)

IF (type="Initiates" OR type="Terminates" OR type="Triggers") {

get the id of class "Happens"

CC "Core" GET_CLASS_ID classname:"Happens"

create the object/instance of the class

CC "Core" CREATE_OBJ modelid :(idModelId) classid :(classid)

IF (ecode != 0) {

CC "AdoScript" ERRORBOX ("The object could not be

created!")

}

SETL newInstanceID :(objid)

get the id of the connector "triggered_by"

CC "Core" GET_CLASS_ID relation classname:"triggered_by"

IF (ecode != 0) {

CC "AdoScript" ERRORBOX ("The relation triggered_by

couldn ’t be found!")

}

CC "Core" CREATE_CONNECTOR modelid :(idModelId)

classid :(classid)

fromobjid :(instid) toobjid :(newInstanceID)

IF (ecode != 0) {

CC "AdoScript" ERRORBOX ("The relation triggered_by

could not be created!")

}

this has to be called to update the modeling window

CC "Modeling" REBUILD_DRAWING_AREA

}

}

61

62 APPENDIX B. SAMPLE LIST OF SCRIPTS IN ADOSCRIPT

Algorithm 5 Auto-generate Preconditions

get the id of class "HoldsAt"

CC "Core" GET_CLASS_ID classname:"HoldsAt"

create the object/instance of the class

CC "Core" CREATE_OBJ modelid :(id_ModelId) classid :(classid)

IF (ecode != 0) {

CC "AdoScript" ERRORBOX ("The object could not be created!")

}

SETL newInstanceID :(objid)

get the id of the connector "fluent_precondition"

CC "Core" GET_CLASS_ID relation classname:"fluent_precondition"

IF (ecode != 0) {

CC "AdoScript" ERRORBOX ("The relation fluent_precondition

couldn ’t be found!")

}

CC "Core" CREATE_CONNECTOR modelid :(id_ModelId) classid :(classid)

fromobjid :(newInstanceID) toobjid :(id_InstId)

IF (ecode != 0) {

CC "AdoScript" ERRORBOX ("The relation triggered_by could not be

created!")

}

this has to be called to update the modeling window

CC "Modeling" REBUILD_DRAWING_AREA

63

Algorithm 6 Run Export and Translation (only key parts)

CC "Modeling" GET_ACT_MODEL

SETL nCurrentModelID: (modelid)

IF (modelid != -1) {

CC "Core" GET_MODEL_INFO modelid: (nCurrentModelID)

SETL sCurrentModeltype: (modeltype)

only run script if a model of a specific type is open

IF (sCurrentModeltype = "Starting state model") {

Step 2 - open a configuration screen.

a configuration screen can be realized using the CoreUI

MessagePort for model select boxes and the like or custom

screens using a DLL for the matrix dialog

CC "CoreUI" MODEL_SELECT_BOX

oktext:"Next Step" boxtext:"Please select your models:"

title:"(STEP 1): Select models to translate into ASP"

multi -sel mgroup -sel setdbclick :0

SETL boxResult: (endbutton)

...

Export model as XML

...

Write export to tmp file

SET sJARpath: ("<insert JAR path here >")

SET sTranslationResult:

("<local path >\\ translatedFromXML.lp")

...

perform a transformation using external functionality

developed in Java

SYSTEM ("cmd /c java -jar " + sJARpath + " " + sJARargs)

result:rc

IF (rc != 0) {

CC "AdoScript" ERRORBOX ("File with name: " +

sXMLFileName + " didn’t run.")

EXIT

}

set file were the Clingo results will be printed into

SET sClingoResult: ("<local path >\\ TL_clingo_result.txt\"")

SYSTEM ("cmd /c clingo.exe <local path >\\ DEC.lp \"" +

sTranslationResult + "\" -c maxstep=" + maxstep + " > " +

sClingoResult) result:rc

IF (rc = 0) {

CC "AdoScript" ERRORBOX ("Couldn ’t run clingo!")

EXIT

}

CC "AdoScript" INFOBOX ("Run Complete!")

}

}

64 APPENDIX B. SAMPLE LIST OF SCRIPTS IN ADOSCRIPT

Appendix C

AdoScript MessagePorts and Commands
AdoScript MessagePorts and Commands

General AdoScript Commands

CC

EXECUTE

SEND

SYSTEM

START

CALL

SET

SETL

SETG

LEO

IF ELSIF ELSE

WHILE

FOR

BREAK

NEXT

EXIT

FUNCTION

PROCEDURE

MessagePort "AdoScript"

Browser

BROWSER

EDIT_BROWSER

Conversions:

LEO_TO_XML

Files

COPY_FILES

DB_FILE_LIST

DELETE_FILES

DIRECTORY_DIALOG

DIR_CREATE

DIR_LIST

DIR_REMOVE

FILE_COPY

FILE_DELETE

FILE_DIALOG

FILE_EXISTS

FREAD

FWRITE

GET_CWD

GET_TEMP_FILENAME

IS_DIR_EMPTY

MOVE_FILES

SET_CWD

Output Window

CREATE_OUTPUT_WIN

OUT

SET_OUTPUT_WIN_SUBTITLE

SET_OUT_MAX_LINE_COUNT

Web Service

SERVICE

Percentage Window

PERCWIN_CREATE

PERCWIN_DESTROY

PERCWIN_IS_CANCELED

PERCWIN_SET

Simple UI

EDITBOX

EDITFIELD

INFOBOX

LISTBOX

MLISTBOX

MSGWIN

QUERYBOX

ERRORBOX

WARNINGBOX

VIEWBOX

TreeListBox

TLB_CREATE

TLB_ADD_BUTTON

TLB_EXPAND

TLB_EXPAND_ALL

TLB_EXPAND_TO

TLB_INSERT

TLB_REMOVE

TLB_SELECT

TLB_SELECT_ALL

TLB_SHOW

Sleep

SLEEP

Type Checking

SET_MP_TYPE_CHECKING

MessagePort "Core"

Model Groups

COPY_MODELGROUP_REFERENCE

CREATE_MODELGROUP

DELETE_MODELGROUP

DELETE_MODELGROUP_REFERENCE

GET_MODELGROUPS_OF_MODELTHREAD

GET_MODELGROUPS_OF_MODELVERSION

GET_MODELGROUP_ACCESS

GET_MODELGROUP_CHILDREN

GET_MODELGROUP_ID

GET_MODELGROUP_MODELS

GET_MODELGROUP_NAME

GET_MODELGROUP_PARENT

GET_MODELGROUP_REFERENCES

GET_MODELGROUP_REFERENCE_THREAD

GET_ROOT_MODELGROUP_ID

MOVE_MODELGROUP_REFERENCE

SET_MODELGROUP_ACCESS

SET_MODELGROUP_NAME

UPDATE_MODEL_LIST

UPDATE_SINGLE_MODEL

Models

CREATE_MODEL

DELETE_MODEL

DISCARD_MODEL

GET_ACCESS_MODE

GET_ALL_MODEL_THREADS

GET_ALL_MODEL_VERSIONS

GET_ALL_MODEL_VERSIONS_OF_THREAD

GET_MODEL_BASENAME

GET_MODEL_CHANGECOUNTER

GET_MODEL_HIERARCHY

GET_MODEL_ID

GET_MODEL_INFO

GET_MODEL_MODELTYPE

GET_MODEL_THREAD_OF_VERSION

GET_MODEL_VERSION

IS_MODEL_LOADED

LOAD_MODEL

RENAME_MODEL

SAVE_MODEL

SAVE_MODEL_AS

SET_CHECK_ACCESS_STATE

SET_MODEL_ACCESS_MODE

Application Models

CREATE_APP_MODEL

GET_ALL_APPMODEL_IDS

GET_APPMODEL_ID

GET_APPMODEL_INFO

Classes

GET_CLASS_ID

GET_CLASS_NAME

Objects and Connectors

CONVERT_OBJ

CREATE_CONNECTOR

CREATE_OBJ

DELETE_CONNECTOR

DELETE_OBJ

DELETE_OBJS

GET_ALL_CONNECTORS

GET_ALL_OBJS

GET_ALL_OBJS_OF_CLASSID

GET_ALL_OBJS_OF_CLASSNAME

GET_ALL_OBJS_WITH_ATTR_VAL

GET_CONNECTORS

GET_CONNECTOR_ENDPOINTS

GET_OBJ_ID

GET_OBJ_NAME

LOCK_OBJECT

UNLOCK_OBJECT

Attributes

GET_ALL_ATTRS

GET_ALL_ATTRS_OF_TYPE

GET_ALL_NB_ATTRS

GET_ATTR_ID

GET_ATTR_NAME

GET_ATTR_TYPE

GET_ATTR_VAL

GET_FACET_ENUMERATIONDOMAIN

GET_FACET_VAL

SET_ATTR_VAL

SET_FACET_VAL

Records

ADD_REC_ROW

GET_ALL_REC_ATTR_ROW_IDS

GET_OWNER_OBJ_OF_REC_ROW

GET_RECORD_MULTIPLICITY

GET_REC_ATTR_ROW_COUNT

GET_REC_ATTR_ROW_ID

GET_REC_CLASS_ID

MOVE_RECORD_ROW

REMOVE_REC_ROW

Interrefs

ADD_INTERREF

GET_ALL_REFERENCING_MODELS

GET_DANGLING_INTERREFS

GET_DANGLING_INTERREFS_OF_AP

GET_INCOMING_INTERREFS

GET_INTERREF

GET_INTERREF_COUNT

GET_INTERREF_TYPE

GET_REFERENCED_MODELS

MOVE_INCOMING_INTERREFS

MOVE_MODEL_INCOMING_INTERREFS

 _IGNORE_NONMOVABLE

QUERY_NON_MOVABLE_MODEL

 _INCOMING_INTERREFS

REMOVE_ALL_INTERREFS

REMOVE_INTERREF

Attribute Profiles

CREATE_ATTRPROF_DIRECTORY

CREATE_ATTRPROF_VERSION

CREATE_ATTRPROF_VERSION_EXT

DELETE_ATTRPROF_DIRECTORY

DELETE_ATTRPROF_THREAD

DELETE_ATTRPROF_VERSION

GET_ALL_ATTRPROFS_IN_MODEL

GET_ALL_ATTRPROF_SUBDIRS

GET_ALL_ATTRPROF_THREADS_IN_DIR

GET_ALL_ATTRPROF_VERSIONS_OF_THREAD

GET_ATTRPROFCLASS_ID

GET_ATTRPROFCLASS_OF_ATTR

GET_ATTRPROF_CLASS_OF_THREAD

GET_ATTRPROF_CLASS_OF_VERSION

GET_ATTRPROF_DIRECTORY_NAME

GET_ATTRPROF_SUPERDIR

GET_ATTRPROF_THREAD_ID_OF_NAME

GET_ATTRPROF_THREAD_NAME

GET_ATTRPROF_THREAD_OF_VERSION

GET_ATTRPROF_VERSIONSTRING

GET_ATTRPROF_VERSION_USAGE

GET_REFERENCED_ATTRPROF_VERSION_ID

GET_ROOT_ATTRPROFDIR_ID

IS_ATTRPROF_CLASS

IS_ATTRPROF_THREAD

IS_ATTRPROF_VERSION

RENAME_ATTRPROF_DIRECTORY

RENAME_ATTRPROF_THREAD

UPDATE_ALL_ATTRPROFS

UPDATE_SINGLE_ATTRPROF

Expressions

EVAL_EXPRESSION

GET_EXPR_TEXT

SET_EXPR_TEXT

GET_EXPR_UPDATE

SET_EXPR_UPDATE

UPDATE_ALL_EXPR_ATTRS

UPDATE_EXPR_ATTRS

Programcall

EXECUTE_PROGRAMCALL

Libraries

GET_CURRENT_LIBS

IS_VERSIONING_ENABLED

DISCARD_LIB

GET_ALL_APPLIBS

GET_LIB_ID

GET_LIB_NAME

LOAD_LIB

SAVE_LIBRARY

Model Types

GET_ALL_CLASSES_OF_MODE

GET_ALL_MODELTYPES

GET_ALL_MODES_OF_MODEL_TYPE

Users

GET_USER_PREFERENCES

SET_USER_PREFERENCES

Error Codes

ECODE_TO_ERRTEXT

Copy Buffers

CREATE_COPYBUFFER

DELETE_COPYBUFFER

FILL_COPYBUFFER

PASTE_COPYBUFFER

Miscellaneous

GET_ENV_STRING

GET_OS_INFO

GET_PRODUCT_VERSION

SET_ENV_STRING

MessagePort "CoreUI"

Attribute Profiles

ATTRPROF_SELECT_BOX

Colors in the Tabular Representation

RESET_OBJ_BACKGROUND objid:

RESET_OBJ_FOREGROUND objid:

SET_OBJ_BACKGROUND

SET_OBJ_FOREGROUND

Model Select Box

MODEL_SELECT_BOX

Model Type Filter

EXEC_MT_FILTER_DLG

MessagePort "Application"

Actions

INSERT_CONTEXT_MENU_ITEM

INSERT_ICON

REMOVE_CONTEXT_MENU_ITEM

REMOVE_MENU_ITEM

SET_CMI_SELECT_HDL

SET_ICON_CHECKED

SET_ICON_CLICK_HDL

SET_ICON_VISIBLE

SET_MENU_ITEM_CHECKED

SET_MENU_ITEM_HDL

GET_DB_NAME

GET_MAX_USER_COUNT

GET_VERSION

Components

DISABLE_COMP

ENABLE_COMP

EXEC_COMP_POPUP

GET_ACTIVE_COMP

GET_COMP_ENABLED

SET_ACTIVE_COMP

Configuration

GET_ACCESS_PERM

GET_CUSTOMER_NUMBER

Exit

CLOSE

EXIT

Messaging System

MARK_MESSAGES_UNREAD

MESSAGE_DELETE

MESSAGE_SEARCH

MESSAGE_SEND

Status Bar

SET_STATUS

User

GET_ONLINE_SINCE

GET_USER

GET_USER_DISPLAYNAME

Misc

EXEC_PRTSETUP_DLG

GET_DATE_TIME

GET_PATH

GET_SCREEN_RES

MessagePort "Modeling"

Drawing Area

COMPUTE_REGION_IMAGE_MAP

DYE

UNDYE

UNDYE_ALL

EXEC_GFX_DLG

GENERATE_GFX

GEN_GFX_FILE

GEN_GFX_STR

GET_DRAWING_AREA_SIZE

GET_GFX_SELECTED_AREA

GET_OBJECTS_WITHIN_AREA

GET_NEXT_SWIMLANE

GET_PREV_SWIMLANE

GET_VISIBLE_AREA

GET_ZOOM_FACTOR

REMOVE_GFX_SELECTED_AREA

SET_CONNECTOR_MARKS

SET_DRAWING_AREA_MIN_SIZE

SET_DRAWING_AREA_SIZE

SET_FOCUS_NODE

SET_GFX_SELECTED_AREA

SET_LAYOUT

SET_ZOOM_FACTOR

Object Selection

DESELECT

DESELECT_ALL

FIND

GET_SELECTED

SELECT

SELECT_ALL

SET_ATTR_ACCESS_MODE

Modelling Component

NUMBER_MODEL

RESET_NUMBERING

Active Model

ACTIVATE_MODEL

GET_ACTIVE_MODEL (with SEND)

GET_ACT_MODEL

CLEAR_UNDO_REDO

CLOSE

CLOSE_ALL

CREATE_WINDOW_FOR_LOADED_MODEL

EXEC_NEW_DLG

GET_ALL_MODIFIED

GET_MODIFIED_COUNT

GET_OPENED_MODELS

IS_OPENED

OPEN

SAVE

SAVE_ALL

SET_MODIFIED

Print

EXEC_PRINT_DLG

Cardinalities

CHECK_CARDINALITIES

Representation

GET_REPRESENTATION

SET_REPRESENTATION

Modes

GET_ALL_VIEW_MODES

GET_VIEW_MODE

GET_VISIBLE_CLASSES

GET_VISIBLE_RELATIONS

SET_VIEW_MODE

Objects

COPY_SELECTED

CUT_SELECTED

PASTE

ALIGN_SELECTED

RUN_MODEL_NUMBERING

RUN_NAME_GENERATION

SET_OBJ_POS

SET_OBJ_VISIBLE

SET_ALL_OBJS_VISIBLE

SET_MOUSE_ACCESS

SET_COLOR_REPRESENTATION

Notebook

CLOSE_ALL_NOTEBOOKS

CLOSE_NOTEBOOK

EXEC_NOTEBOOK

GET_NOTEBOOK_POS_SIZE

REFRESH_PROFILEREFS

SET_NOTEBOOK_POS

SET_NOTEBOOK_SIZE

SHOW_NOTEBOOK_CHAPTER

Autosave

GET_AUTOSAVE

SET_AUTOSAVE

Window

GET_MAX_MODEL_WINDOW_SIZE

GET_WINDOW_POS_SIZE

GET_WINDOW_STATE

MINIMIZE_ALL

SET_WINDOW_POS

SET_WINDOW_SIZE

SET_WINDOW_STATE

MessagePort "ImportExport"
ADL

ADL_IMPORT

ADL_IMPORT_APPMODELS

ADL_EXPORT

ADL_EXPORT_APPMODELS

Dialogues

SHOW_IMPORT_START_DLG

SHOW_IMPORT_SELECT_DLG

SHOW_EXPORT_DLG

EXEC_ADL_IMPORT_DLG

EXEC_ADL_EXPORT_DLG

UDL (Development Toolkit only)

UDL_IMPORT

UDL_EXPORT

MessagePort "Analysis"

RUN_ANALYTIC_EVALUATION

EXEC_ANALYTIC_EVALUATION_START_DLG

MessagePort "Simulation"

CHECK_ALL_TRANSITION_CONDITIONS

GET_TIME_BASE

EXEC_PATH_ANALYSIS_DLG

RUN_PATH_ANALYSIS

EXEC_VOLUME_ANALYSIS_DLG

RUN_VOLUME_ANALYSIS

EXEC_STEADY_WORKLOAD_ANALYSIS_DLG

EXEC_FIXED_WORKLOAD_ANALYSIS_DLG

MessagePort "Evaluation"

EXEC_DYNAMIC_EVAL_MODULE_DLG

EXEC_DYNAMIC_EVAL_START_DLG

LOCK_SHELL

UNLOCK_SHELL

RUN_DYNAMIC_EVALUATION

MessagePort "Documentation"

ACFILTER_DISABLE

ACFILTER_ENABLE

ACFILTER_GFX_DISABLE

ACFILTER_GFX_ENABLE

ACFILTER_GFX_IS_ENABLED

ACFILTER_IS_ENABLED

DOCU_EXPORT

EXEC_ACFILTER

EXEC_EXPORTDIALOG

NEW_DOCU_EXPORT

EXEC_MENUENTRY

EXEC_OPTIONSDIALOG

RESET_SILENT_MODES

USERSETTINGS_RESTORE_FROM_DB

USERSETTINGS_SAVE_TO_DB

USERSETTINGS_SET_TO_DEFAULT

XML_ADD_CALLBACK

XML_BREAK

XML_CLOSE

XML_DISPLAY_ERROR

XML_FIND_NODE

XML_GET_ATTRIBUTE

XML_GET_CHILD_NODE

XML_GET_NAME

XML_GET_NOTEBOOK_ATTRIBUTES

XML_GET_PARENT_NODE

XML_GET_VALUE

XML_HOLD_NODE

XML_MODEL_DOCU

XML_MODELGROUP_STRUCTURE_OF_USER

XML_MODELS

XML_OPEN

XML_PARSE

XML_RELEASE

XML_SET_SCRIPT

XML_TOC_FOR_USER_ID

XML_VALIDATE

XML_WRITE_ATTRIBUTE

XML_WRITE_CONTENT

XML_WRITE_END_NODE

XML_WRITE_PLAIN

XML_WRITE_START_NODE

MessagePort "AQL"

CHECK_AQL_EXPRESSION

EVAL_AQL_EXPRESSION

MessagePort "UserMgt"

For both ADOxx toolkits

GET_ALL_SYSUSERGROUPS

GET_ALL_SYSUSER_IDS

GET_ALL_USERGROUPS

GET_ALL_USERGROUPS_OF_CURRENT_SYSUSER

GET_ALL_USERGROUPS_OF_CURRENT_USER

GET_ALL_USERGROUPS_OF_SYSUSER

GET_ALL_USERGROUPS_OF_USER

GET_ALL_USERS

GET_ALL_USERS_OF_SYSUSERGROUP

GET_ALL_USERS_OF_USERGROUP

GET_SYSUSERGROUP_ACCESS_STR

GET_SYSUSERGROUP_ID

GET_SYSUSER_ACCESS_STR

GET_SYSUSER_ID

GET_SYSUSER_SETTINGS

GET_USERGROUP_ID

GET_USER_ACCESS_STR

GET_USER_ID

GET_USER_SETTINGS

USER_SELECT_BOX

VERIFY_PASSWORD

For both ADOxx toolkits, admin-users only

ACTIVATE_READONLY_COMMANDS_FOR_BPMTK

ADD_SYSUSERS_TO_GROUPS

ADD_USERS_TO_GROUPS

CHANGE_SYSUSER_SETTINGS

CHANGE_USER_SETTINGS

CREATE_SYSUSER

CREATE_USER

REMOVE_SYSUSERS_FROM_GROUPS

REMOVE_USERS_FROM_GROUP

SET_SYSUSER_ACCESS_STR

SET_USER_ACCESS_STR

Commands only for the ADOxx Development Toolkit

BALANCE_SYSUSERGROUPS

CREATE_SYSUSERGROUP

CREATE_USERGROUP

DELETE_SYSUSERGROUPS

DELETE_SYSUSERS

DELETE_USER

DELETE_USERGROUPS

DELETE_USERS

GET_USERGROUP_ACCESS_STR

SET_SYSUSERGROUP_ACCESS_STR

SET_USERGROUP_ACCESS_STR

MessagePort "Drawing"

CHECK_POSITIONS_IN_VARIANT

CREATE_LAYOUT_ALGORITHM

DELETE_LAYOUT_ALGORITHM

EXCLUDE_FROM_ACTIVE_VARIANT

EXEC_LAYOUT_ALGORITHM

GEN_CLASS_ICON_STR

GEN_GFX_FILE

GEN_GFX_STR

GEN_MODELTYPE_ICON_STR

GET_ACTIVE_VARIANT

GET_VARIANTS_OF_MODELTYPE

INCLUDE_INTO_ACTIVE_VARIANT

IS_INCLUDED_IN_ACTIVE_VARIANT

SET_ACTIVE_VARIANT

SET_CONNECTOR_REP

MessagePort "DB"

GET_ALL_DATES_OF_LAST_CHANGE

GET_ALL_REFERENCED_MODELS_DB

GET_ATTR_VAL_DB

GET_DATE_OF_LAST_CHANGE

GET_DBMS

GET_MODEL_LIST_CHANGE_COUNT

GET_DBSERVER_TIMESTAMP

MessagePort "Explorer"

GET_SELECTED_MODELS

SET_EXPLORER_UPDATEMODE

Figure C.1: Overview of AdoScript MessagePorts and Commands

65

66 APPENDIX C. ADOSCRIPT MESSAGEPORTS AND COMMANDS

Appendix D

Documentation

We used Answer Set Programming, the ADOxx Metamodelling Platform and Java
for the development of the tool. We used the IntelliJ IDE for writing Java. The
versions used for each technology are:

Technology Version

Java 11
IntelliJ 2018.2.5
Clingo 4.5.4
ADOxx 1.5

Table D.1: Development Versions

A PC with the Clingo reasoner and the ADOxx platform installed is needed. The
JAR file that implements the translation and connects the 2 end-points will be
provided.

In order to use our modelling language, the user has to import the library
of our modelling language on the ADOxx Development Toolkit and then assign
an ADOxx user instance to that library. Then he can connect to the ADOxx
Modelling Toolkit with that user instance’s credentials and ECAVI is ready to
use.

67

