Bias Correction of the Cross-Validation Performance

Estimate and Speed Up of its Execution Time

Elissavet Greasidou

Thesis submitted in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science

University of Crete
School of Sciences and Engineering
Computer Science Department

University Campus, Voutes, Heraklion, GR-70013, Greece

Thesis Supervisor: Associate Professor lToannis T'samardinos

Heraklion, February 2017

This work was partially funded by the ERC Consolidator Grant No 617393 CAUSALPATH and the Toshiba
project: “Feasibility study towards the Next Generation of statistical Text to Speech Synthesis System”

UNIVERSITY OF CRETE

COMPUTER SCIENCE DEPARTMENT

Bias Correction of the Cross-Validation Performance Estimate and Speed Up of its

Execution Time

Thesis submitted by
Elissavet Greasidou
in partial fulfillment of the requirements for the

Masters’ of Science degree in Computer Science

THESIS APPROVAL

Author:

Elissavet Greasidou

Committee approvals:

Toannis Tsamardinos

Associate Professor, Thesis Supervisor

Toannis Tollis

Professor, Committee Member

Ioannis Stylianou

Professor, Committee Member

Departmental approval:

Antonios Argyros

Professor, Director of Graduate Studies

Heraklion, February 2017

Abstract

Cross Validation (CV) is a de-facto standard in applied statistics and supervised machine
learning both for model selection and assessment. The procedure is applied on a set of candidate
configurations (i.e. a set of sequences of modelling steps with specified algorithms and their hyper-
parameter values for each step) for model production, and the one with the best performance,
according to a pre-specified criterion, is selected. However, the “best” performance achieved
during CV is known to be an optimistically biased estimation of the generalization performance
of the final model. To date, a relatively limited amount of research has been devoted to the
correction of this bias, and all proposed methods either tend to over-correct or have limitations
which can make their use impractical.

In this thesis, we propose a Bootstrap-based Bias Correction method (BBC) which works
regardless of the data analysis task (e.g. classification, regression), or the structure of the models
involved, and requires only a small computational overhead with respect to the basic CV pro-
cedure. BBC corrects the bias in a conservative way, providing an almost unbiased estimate of
performance. Its main idea is to bootstrap the whole process of selecting the best-performing
configuration on the out-of-sample predictions of each configuration, without additional training
of models. In comparison to the alternatives, namely the Nested Cross Validation (NCV) [1],
and a method by Tibshirani and Tibshirani (TT) [2], BBC is computationally more efficient,
yields performance estimates competitive to those of NCV and is applicable to any CV pro-
cedure. Subsequently, we also employ the idea of bootstrapping the out-of-sample predictions
in order to speed up the execution time of the CV procedure. Specifically, using a bootstrap-
based hypothesis test we stop training of models on new folds of statistically-significantly inferior
configurations. The Bootstrap-based Early Dropping (BED) method significantly reduces the
computational time of CV with a negligible or no effect on performance. The two methods can
be combined leading to the BED-BBC procedure that is both efficient and provides accurate

estimates of performance.

iii

ITepiindn

H pédodoc dotavpwuévn emxdpworn (Cross Validation - CV) anotehel éva viegdxto tpdtuto
GTOV TOUEN TNG EPUPUOCHEVNS OTATIO TIXAC X ETOTTEVOUEVNG Unyovixic uddnone (supervised ma-
chine learning) t6co yiot Ty emAoY T eVOC LOVTENOU ahhd xou TNV a&lohdynom tou. H Saducaoio auth
eqopuoleton oe évo olvolo umodrpiwy dlpopphoewy (configurations) (6niadr, évo olvolo oxo-
houhy Brudtwy povtelonolnong ue xadoplouévoug ohyopliuous xat THES Yio TIC UTER-TUPAUUETEOUG
Toug Yl xde Brua) o exelvn pe Ty xahOTEEY ambd00T), GUUPLYVY UE £va TpoxaoploUévo XELThHELo,
emAéyetan. dotdo0, N “xalbtepn” amddoon mou emTLYYdvETHL XaTtd TN dtadxactio tou CV etvor
YVwoté Ot elvon pior aot6dolo pepohnmixs (biased) extipnon tne yevixeuorne tne anddoong Tou
Tehxol yovtélou. Méypl orjucpa, va oyeTXd TEPLOPIOUEVO UEROG TN €pELVag EYEL aplepwiel 0T
dtopdwon autic tne uepohndiac (bias), xou dhec or mpotevbuevee pévodol eite €youv Ty Tdom va
™V SopYdVoLY TEPLOGOTERD amd 6G0 YEEWLETOL 1} €YOUV TERLOPLOHOVS TIOU UTOEOUY VoL XAVOLY TN
XY \O™ TOUC AVEPIXTY).

Ye auth v epyoaocia, tpoteivoupe uia pédodo diopdwong tng uepoindiog Paciouévn otny uédodo
Tou bootstrap (Bootstrap-biased Bias Correction method - BBC) 1 onola Aettovpyel avedptnta
and TNy epyoaoio avdluong dedopévey (T.y. TadvounoT, TaAvdpduno), K T Sou TwY HOVTEAWY oL
EUTAEXOVTOL, Yo amAUTEL HOVO Lol uixer) utohoyio Ty emBdpuvon oe oyéon ue T Poaoixt| Swdixactio
tou CV. H BBC pétodog dopddvel tnv pepohndla ye cuvtnentixd tedmo napéyovtag Uia ayeddy
opeEOANTTY exTiunon tne amodoone. H Baowr 6éa etvan va egopuootel n uédodog tou bootstrap oe
OAn T Badixacio g emhoyhc TS xohUTEPNE ued6d0UL 6TIC EXTOC exTtaudeuuévou delypotog (out-of-
sample) npofAédeic tne xdde Sropbppwone (configuration), ywpeic tpdodetn exnaidevon Lovtérmy.
Ye olyxplon pe TI¢ evohhaxTixéc pedodoug, dMAadY TNV EUPWAELPEVY BLIC TAVEWUEVT ETXOPWOT)
(Nested Cross Validation - NCV) [1], xou v pédodo twv Tibshirani xou Tibshirani (TT) [2], n
BBC pédodog eivon umohoylotixd mo anodotxr, eivar egapudoyr oe onoladnrote dwdixacia CV,
xan 1) exTiunon Tng anodoong Tou TapEyel elvon avTtaywwioTixy| o oyéon ue exelvn tou NCV. Erniong,
YENOWOTOOUUE TNV W€ TNS EPopuoyhc TN bootstrap pedddou oTic extdg exnaudevuévou delypotog
(out-of-sample) npofréderc yioo Ty emtdyuvon tou ypdvou extéreonc tne CV Soduxaoioc. Lu-
YUEXPUIEVAL, YPNOWOTOWOVTOS éva oTaTIoTiXG éAeyyo unovéoewy (hypothesis test) Bacioyévo o
uédodo tou bootstrap, o TaaTdUE TNV EXTOUGELCT| HOVTEAWY GE XAULVOURYL UTOGUVOAX TWV OEBOUEVHV
(folds) yio ototiotxd-onuavtixd (statistically-signicantly) unodeéotepes Swapopphoeic (configura-
tions). H uédodoc Bootstrap-based Early Dropping (BED) yewver onpavtixd tov utoloyto ixé
xeovo tou CV ye auelntéa N xopla enldpacn otny anddoon. O 600 yédodol unopolv vo GuVOLO-
ctolv odnyoviag oty BED-BBC pédodo 7 onola etvon armodotixy| xon mapéyet axpyBelc extiunoelg

e ambd00Me.

Acknowledgements

First and foremost I would like to thank my supervisor, Ioannis Tsamardinos. He provided
great support and advice throughout my programme.

I would also like to thank Giorgos Borboudakis, Michalis Tsagris and Pavlos Charonyktakis
for their valuable comments, discussions and cooperation.

Special thanks go to the members of my dissertation committee, loannis Tollis and Ioannis
Stylianou.

Most of all I would like to thank my parents Eleni and Manolis, and my sister Maria, for their

continual love and support.

vii

viii

Contents

Abstract iii
List of tables xi
List of figures xiii

1 Introduction 1
1.1 Motivation e e 1
1.2 Contribution e e e 3
1.3 Outline e e e e 3

2 Literature Survey 5
2.1 Model Selection and Assessment 5
2.2 Dropping of Under-Performing Configurations 7

3 Background 9
3.1 Supervised Machine Learning o oL 9
3.2 Performance Estimation e 11
3.2.1 Hold-Out Cross-Validation 12

3.2.2 K-Fold Cross-Validation 14

3.3 Model Selection e 15
3.3.1 Bayes Model and Residual Error 15

3.3.2 Selecting the best (possible) model 0. 16

3.3.3 Algorithm and Hyper-Parameter Optimization 17

3.4 Simultaneous Model Selection and Evaluation 19
3.4.1 Train-Validation-Test Protocol 20

3.4.2 K-Fold Cross-Validation 21

3.4.3 Tibshirani and Tibshirani (TT) Bias Correction 22

3.4.4 Nested K-Fold Cross-Validation 22

3.5 Stratification of Folds 24

X

4 Proposed Method for Model Selection and Evaluation
4.1 Limitations of Existing Methods
4.2 The Bootstrap L
4.2.1 Primary applications of Bootstrap
4.3 Bootstrap Bias Correction

4.4 Computing Confidence Intervals

5 Bootstrap-Based Dropping of Under-Performing Configurations
5.1 Dropping of Under-Performing Configurations
5.2 Bootstrap-Based Dropping of Under-Performing Configurations

5.2.1 DiScussSion

6 Experiments and Evaluation
6.1 Simulation Studieso
6.1.1 Bias Correction Estimation
6.1.2 Model Selection Error
6.1.3 Relative Performance and Number of Trained Models
6.2 Experiments on Real Datasets
6.2.1 An Automated Pipeline for Supervised Machine Learning
6.2.2 Experimental Set-Up
6.2.3 Bias and variance estimation oL

6.2.4 Results and Discussion e

7 Conclusion
7.1 Contribution
7.2 Future Work s

25
25
26
27
29
31

33
33
34
36

List of Tables

6.1

6.2

Datasets Used; |Dpooi| refers to the portion of the datasets (30%) from which the
sub-datasets were sampled and |Dpgidout| to the portion (70%) from which the true
performance is estimated. L
Under Model selection: the percentage of the times, over the 10 sub-datasets, that
the model selected by KCV-pooling and BBC is the same as the one selected by
NCV (KCV-average over folds and TT), and BED for different thresholds ¢. Under
Number of trained models: the number of models trained by BED relatively to
KCV. e

x1

List of Figures

3.1
3.2

3.3

3.4

6.1

6.2

6.3

6.4

Supervised Learning 10
Hypothetical learning curve for a classifier on a given task: a plot of 1-Err versus
the size of the training set M. (Figure from [3]) 13
10-Fold Cross-Validation. In each round/iteration of Cross-Validation one fold (in
colour) is used for testing and the rest of the folds are merged into the training set. 15
Nested K-Fold Cross-Validation with K = 5 for both the outer and the inner loop
of the procedure. 24

Density of the Be(a, b) distribution for the parameters used in the simulation
studies. The parameters are such that 4 = a/(a + b) = (0.6, 0.7, 0.8, 0.9). 40
Average performance bias for the estimates of KCV, BBC, NCV, TT, BED, and
BED-BBC for 60% true classification accuracy. KCV and BED are clearly opti-
mistic for sample size < 300. BBC is slightly conservative. TT’s bias greatly varies
for sample size < 100 with the number of models and overcorrects for sample size
> 200. NCV and BED-BBC exhibit the smallest bias, especially for sample size
K100, . . 42
Average performance bias for the estimates of KCV, BBC, NCV, TT, BED, and
BED-BBC for 70% true classification accuracy. KCV and BED are clearly opti-
mistic for sample size < 300. BBC is slightly conservative. TT’s bias greatly varies
for sample size < 100 with the number of models and overcorrects for sample size
> 200. NCV and BED-BBC exhibit the smallest bias, especially for sample size
K100, . . e 43
Average performance bias for the estimates of KCV, BBC, NCV, TT, BED, and
BED-BBC for 80% true classification accuracy. KCV and BED are clearly opti-
mistic for sample size < 300. BBC is slightly conservative. TT’s bias varies with
the number of models and overcorrects for sample size > 500. NCV and BED-BBC
exhibit the smallest bias, especially for sample size < 100. 44

xiii

6.5 Average performance bias for the estimates of KCV, BBC, NCV, TT, BED, and
BED-BBC for 90% true classification accuracy. KCV and BED are clearly opti-
mistic for sample size < 500. BBC is slightly conservative. TT’s bias varies with
the number of models. NCV and BED-BBC exhibit the smallest bias, especially
for sample size < 100. e e 45
6.6 Model selection error for KCV and BED for true classification accuracy € {60, 70, 80,90} %.
BED has the same or slightly greater (no more than 0.005 points of accuracy)
model selection error than KCV. The error decreases with higher rates of true
classification accuracy. Lo 46
6.7 Boxplots of the relative true performance (left) and the relative number of trained
models (right) for true classification accuracy € {60, 70, 80,90}% for all sample sizes
({50, 100, 200, 300, 500, 1000}) and number of configurations ({50, 100, 200, 300, 500, 1000, 2000})
for the BED and KCV methods. There is a negligible to no effect on performance
when using the BED method. However, the number of models that are trained is
greatly reduced. 47
6.8 Average performance bias for the estimates of KCV-pooling, KCV-average over
folds, BBC, NCV and TT. KCV-pooling exhibits lower bias than KCV-average
over folds. BBC and NCV, both correct the bias of the corresponding version of
KCV in a conservative way, although results vary with dataset. TT over-corrects
compared to BBC and NCV and its bias is higher for sample sizes equal to 40. . . 52
6.9 Standard deviation of bias for the estimates of KCV-pooling, KCV-average over
folds, BBC, NCV and TT. KCV has the smallest variance but it overestimates
performance. BBC, NCV and TT exhibit similar stds, although results vary with
dataset. 52
6.10 Average performance for the estimates of KCV-pooling, KCV-average over folds,
BBC, NCV and TT and the true performance of the models that they select
(Holdout). The methods of each column select the same model. KCV-pooling and
KCV-average over folds over-estimate the performance. BBC and NCV are slightly
conservative and TT mainly over-estimates for small sample sizes and over-corrects
for larger ones. 53
6.11 Standard deviation of performance for the estimates of KCV-pooling, KCV-average
over folds, BBC, NCV and TT and the true performance of the models that they
select (Holdout). The methods of each column select the same model. Holdout
and KCV have the lower stds. BBC, NCV and TT have similar stds. 54
6.12 Average performance bias for the estimates of BED and BED-BBC for B = 1000
and different values of the threshold ¢. They all exhibit similar results, with BED-
BBC with t = 0.99 having the lowest bias. BBC has a minor effect on the correction
of the bias of BED for the datasets. 56

Xiv

6.13

6.14

6.15

6.16

Standard deviation of bias for the estimates of BED and BED-BBC for B = 1000
and different values of the threshold ¢. They all exhibit similar results.
Average performance for the estimates of BED and BED-BBC for different thresh-
olds ¢ and the true performance of the models that they select (Holdout). The
methods of each column select the same model. BED and BED-BBC are slightly
conservative. L L L e
Standard deviation of performance for the estimates of BED and BED-BBC for
different thresholds ¢t and the true performance of the models that they select
(Holdout). The methods of each column select the same model. They all have
similar stds. L
Boxplots of the relative true performance (left column), and the relative number of
trained models (right column) for the sylvine, madeline, philippine, jasmine, and
christine datasets for all sample sizes ({20, 40, 60, 80,100, 500}) for the BED and
KCV methods. There is a negligible to no effect on performance when using the

BED method, However, the number of models that are trained is greatly reduced.

XV

58

61

Chapter 1

Introduction

An important task in various areas of science (e.g. biology, finance, chemistry) and in industry is
to find a systematic way of predicting a phenomenon given a set of measurements. For instance,
financial analysts try to predict how a company’s stock will perform based on such factors as
current company performance measures, financial trends, competition and global events. A
cancer researcher will try to predict whether a patient is likely to develop cancer in the next few
years, on the basis of clinical measurements and history for that patient, and demographics. For
years, experts would rely on accumulated knowledge or they would need to derive theoretical
frameworks from first order principles in order to study such problems. However, for highly
complex problems, the cognitive abilities of humans or simple approaches are not enough.

In recent years, alongside with great advances in terms of technology, algorithms and tech-
niques have been developed within the theoretical computer science field, machine learning, and
statistics to address the limitations of previous methods. Machine learning, today, provides nu-
merous tools and algorithms for the automatic analysis of large amounts of data in order to reveal
the predictive structure of complex problems.

Machine learning is the study of algorithms that can infer predictive models from data in
regards to some task such as classification or regression. In supervised machine learning the data

comprises of pairs of input variables (i.e. the features) and an output variable (i.e. the target).

1.1 Motivation

Performance estimation is, undoubtedly, one of the most important tasks of machine learning.
Its importance is twofold; it is a measure to evaluate the generalization ability of a predictive
model (i.e. how well it will perform given new, unseen data from the same distribution) and it
is also used to compare a set of models against each other in order to choose the best one (i.e.
to perform model selection). Therefore, it is crucial to have methods that can produce reliable
and robust performance estimates that are not affected by extraneous factors such as sampling

or partitioning of the data.

The ideal (also simplest) scenario for assessing the performance of a model would be to do so
on a Hold-Out test set (a set of observations that was not included in the training of the model).
However, when a large enough dataset cannot be held-out or when it is difficult to collect new
observations, resampling methods such as Cross-Validation and the bootstrap are employed for
estimating generalization performance.

In a typical supervised machine learning analysis multiple models are often constructed
through a series of steps that include, among others, preprocessing of the data, feature (vari-
able) selection, and the application of a learning algorithm, and the one with the smallest Cross-
Validation error rate is selected and its associated performance is reported. For each of these
steps there exists a wide selection of algorithms to choose from and most of them will have hyper-
parameters'that need tuning. This leads to a large number of configurations®to be evaluated,
and to an even larger number of models that will be constructed from these configurations.

Unfortunately, as the number of configurations under evaluation is getting larger, the risk of
overfitting increases and the performance estimated by Cross-Validation is no longer an effective
estimate of generalization but it is rather optimistically biased [1—11]. This phenomenon is called
the problem of multiple comparisons in induction algorithms and has been analyzed in detail by
Jensen in [12]. In addition, with increasing number of learned models, Cross-Validation becomes
more computationally demanding which makes its use prohibitive.

A simple mathematical proof of the bias, due to the problem of multiple comparisons in induc-
tion algorithms, is as follows. Let p; be the average true performance (loss) of the models produced
by configuration ¢ when trained on data of size | Dyyqin | from the given data distribution. The sam-
ple estimate of i; on the tuning sets (if there are several as in Cross-Validation) is m,, and so we ex-
pect that u; = E{m;} for estimations that are unbiased. Returning the estimate of the configura-
tion with the smallest loss returns min{ml1, ..., m,}, where n is the number of configurations tried.
On average, the estimate on the best configuration on the tuning sets is E{min{m]1, ..., m, }} while
the estimate of the true best is min{u1, ..., un} = min{E{m1}, ..., E{m,}}. The optimism (bias)
is Bias = min{E{ml}, ..., E{my}} = E{min{mi,...,m,}} = 0. For metrics such as classification
accuracy and AUC, where higher is better, the min is substituted with max and the inequality
is reversed.

The problem of bias of the estimated error rate based on K-Fold Cross-Validation (CV) has
been addressed by researchers only in the last few years, even though it was pointed out as early
as in 1984 by [13]. Proposed solutions to the problem include methods that use new procedures
for performance estimation, and methods that try to assess the bias of the minimum error rate of
the K-Fold CV and subtract it from the performance estimate. However, all proposed methods

either tend to over-correct or have limitations which can make their use impractical.

!The term hyper-parameters refers to the algorithm parameters whose values are user defined.
2A sequence of modelling steps with specified algorithms and hyper-parameter values for each step (see Sec-
tion 3.4).

Chapter 1. Introduction 3

1.2 Contribution

In this thesis we propose a new, general method for correcting the bias in Cross-Validation
procedures, which works regardless of the data analysis task (e.g. classification, regression) or
the structure of the models being involved in it. It has low computational overhead with respect
to the Cross-Validation procedure and produces an almost unbiased expected error estimate even
when the number of training samples is small. Unlike other methods, it is also suitable for
correcting the bias of all Cross-Validation procedures including the Leave-One-Out CV and the
Hold-Out CV.

The bootstrap bias correction (BBC) for Cross-Validation takes advantage of the bias cor-
rection properties of the bootstrap [I4]. BBC is a simple method both conceptually and to
implement, and only requires the predicted values of the models from which we want to choose
the best one and assess its performance.

We also present and evaluate a method for dropping under-performing configurations along
the way of Cross-Validation in order to speed it up. It uses the bootstrap in order to compare

the configurations in terms of their performance in each iteration of CV.

1.3 Outline

The rest of the thesis is organized as follows. Chapter 2 surveys existing work on model selec-
tion and performance estimation and on the speeding up of the Cross-Validation procedure by
specifically dropping under-performing configurations.

Chapter 3 defines terms and provides an overview of concepts from supervised machine learn-
ing. It presents and reviews some commonly used methods for performance assessment of a
predictive model, model selection, and for simultaneously performing the two tasks.

In Chapter 4 the bootstrap and some of its primary applications are introduced. Then, the
proposed bootstrap-based method for bias correction (BBC) is presented together with a method
for calculating the confidence intervals of the performance estimate.

Chapter 5 introduces a method for eliminating under-performing configurations early in the
K-Fold Cross-Validation procedure in order to speed it up.

In Chapter 6 we empirically compare the BBC method against the most popular methods
for performance estimation and present results validating our method. We also describe the
automated pipeline for supervised machine learning which we used to evaluate our proposed
algorithms.

Finally, we conclude in Chapter 7 and overview possibilities for future work.

Chapter 2

Literature Survey

2.1 Model Selection and Assessment

Estimating the performance of a predictive model is an important task not only to assess how
well the model generalizes to new, unseen data drawn from the same distribution, but also for
selecting the combination of algorithms (e.g. for feature selection, for learning a classifier) and
their hyper-parameter values which will induce the final, best performing model (a process also
called model selection). These are fundamental tasks of a supervised machine learning analysis
and they are usually performed simultaneously.

The Hold-Out method, where an independent test set is sequestered for assessing the perfor-
mance of the selected model, is the simplest and most straightforward protocol for performance
estimation. When the sample size is large enough, the Hold-Out estimate is a good approximation
of the true performance.

Popular empirical estimators of performance based on resampling are the bootstrap [141] and
the Cross-Validation (CV) protocol. CV was independently introduced by Stone [15], Allen [16],
and Geisser [17] as a model selection method. Stone proposed the use of The Leave-One-Out
Cross-Validation (LOO-CV) procedure as a way to choose the best algorithm hyper-parameter
values and to assess the performance of the resulting diagnostic model. He was the first to
differentiate between the use of CV for model selection and performance estimation. Allen in [10]
proposed the Prediction Sum of Squares (PRESS) statistic for model selection. PRESS is similar
to the LOO-CV where every measurement (sample) is considered in turn as a test case, for the
model trained on all but the held out measurement. Geisser, independently in [17] introduced
the Predictive Sample Reuse Method for model selection and assessment, a method equivalent
to K-fold Cross-Validation.

Kohavi in [1], studied the use of K-Fold Cross-Validation and the bootstrap as performance
estimation methods under different settings and compared them on real-world datasets. He
concluded that the K-Fold Cross-Validation method is generally preferable to the bootstrap and

has lower variance compared to the LOO-CV, and recommends the use of stratified 10-Fold

Cross-Validation for model selection. He also shows, through large scale experiments, that both
the K-Fold CV and the bootstrap produce biased estimates of performance.

When comparing a large number of models in order to choose the one with the best perfor-
mance, bias, towards better performance, is always present, unless the sample size is really large.
This phenomenon is called the problem of multiple comparisons in induction algorithms and has
been analyzed in detail in [12]. The problem of the optimistically biased K-Fold Cross-Validation
estimate was pointed out as early as in 1984 by Breiman et al. in [I3]. A more recent publica-
tion [7] empirically validates that the risk of overfitting increases with the number of models that
are being tested and that the performance estimate of the K-Fold Cross-Validation is no longer
a good approximation of the generalization performance. To date, a relatively limited amount of
research has been devoted to the correction of this bias or to the development of new methods for
performance estimation, and all proposed methods either tend to over-correct or have limitations
which can make their use impractical.

Varma and Simon in [0] also showed in practice how optimistically biased is the K-Fold CV
estimate and suggested the Nested K-Fold Cross-Validation (NCV) as a more reliable alterantive
(see Section 3.4.4). NCV introduces an outer loop to the K-Fold CV procedure which results,
essentially, in the “cross-validatory assessment of the cross-validatory choice” as was defined by
Stone [15]. The NCV protocol, according to [6] and [10], produces an almost unbiased (but
conservative) estimate of performance; however it is computationally expensive as the number
of models that need to be trained is quadratic to the number of folds K. When the number of
models is in the order of hundreds, the computational cost increases dramatically.

Tibshirani and Tibshirani (TT) [2] proposed a simple method for approximately estimating
the bias of the K-Fold Cross-Validation protocol in order to correct it (see Section 3.4.3). The
method requires minimum computational overhead in regards to the K-Fold CV procedure and
[10] have shown (within the scope of their experiments) that it is robust and its results are
statistically equivalent to the ones of NCV. However, TT is not suitable for LOO-CV or when
the size of the test set is too small, and it was shown to over-estimate the bias in some settings [13].

Bernau et al. in [9] introduced two variants of a weighting-based method as a smooth analyti-
cal alternative to NCV; the WMC and the WMCS. The method is based on repeated subsumpling
and computes a weighted mean of the resampling error rates for different models. The WMCS
variant yields the best estimates between the two. It is competitive compared to the NCV on
real data and has lower computational cost. However, the method is quite complex and is based
on the assumption that the unconditional error rate estimates follow a multivariate normal dis-
tribution. If the number of tested models is really high, this assumption might be difficult to
hold true.

Ding et al. in [I1] proposed a resampling-based inverse power law (IPL) method for bias
correction and compared its performance to those of NCV, TT, and WMC/WMCS on both

simulated and real datasets. They estimate the error rate of each classifier by fitting a learning

Chapter 2. Literature Survey 7

curve which is constructed from repeatedly resampling the original dataset for different sample
sizes and fitting an inverse power law function. The IPL method outperforms the other methods in
terms of performance estimation but, as the authors point out, it exhibits significant limitations.
Firstly, it is based on the assumption that the learning curve for each classifier can be fitted
well by inverse power law. In addition, if the sample size of the original dataset is small, the
method will provide unstable estimates. Finally, the IPL method has higher computational cost
compared to TT and the WMC/WMCS methods.

Krstajic et al. in [19] describe and suggest algorithms for Repeated K-Fold Cross-Validation
and Repeated Nested K-Fold Cross-Validation for model selection and assessment. The former
is to deal with the variability in the reported optimal parameters of the simple K-Fold Cross-
Validation which results from the arbitrary partitioning of the data in folds. The latter is to avoid
the optimistically biased error estimation reported by the K-Fold Cross-Validation. Although
both of the algorithms are shown to produce more reliable results compare to the simple K-Fold

Cross-Validation, they are very computationally expensive.

2.2 Dropping of Under-Performing Configurations

To the best of our knowledge, the only work that focuses on the speeding up of the learning
process by specifically eliminating , early in the CV procedure, under-performing configurations
is the one by Krueger et al. [20]. Their method is called Fast Cross-Validation via Sequential
Testing (CVST), and it uses nonparametric testing together with sequential analysis to choose
the best performing configuration on the basis of linearly increasing subsets of data.

The CVST algorithm uses subsets of the data of size m = s- % as training sets, where s is the
current step, S is the maximum number of steps of the algorithm and M is the total number of
data points. The remaining M —m data samples, serve as the test sets. By pairing this approach
with an early stopping criterion, they aim to further speed up the model selection procedure.

The method starts with the whole set of configurations C' and drops the under-performing
ones at each step s. This is performed by applying the Friedman or the Cochrans’s Q test (for
regression and classification tasks respectively) on the predictions of the models produced by the
k first configurations (ordered by their mean performance so far) on the M —m data points until a
value k for k has been found so that the tests indicate a significantly different performance of the
configurations. Then, the £, ..., |C| configurations are further tested through sequential analysis
(see [20]) to determine which of them will be discharged. If the remaining/active configurations
have had similar performance in the last wg,, iterations, the execution stops. The final best
configuration is then the one that has the best average ranking, based on performance, in the

last wgiop iterations.

Chapter 3
Background

In this Chapter we briefly describe the supervised machine learning problem and formally de-
fine the notion of a predictive model (Section 3.1). In Section 3.2 we discuss the importance
of estimating the performance (generalization error) of a model and present some of the most
commonly used protocols for doing so. In Section 3.3, we describe the problem of model selection
and how its solution is approximated in practice. Then in 3.4, we proceed with the description of
procedures for simultaneously selecting and evaluating the (approximately) best model. Finally,

we briefly explain stratified sampling and its benefits.

3.1 Supervised Machine Learning

In machine learning, the task of supervised learning refers to the process of constructing a pre-
dictive model from a finite set of acquired data. In order for the resulting model to efficiently
predict the output variable, there needs to exist a relation between the input variables and the
output. In cancer research, for instance, the goal is to infer a decision rule (i.e. the model) using
different measurements from past cases, such as values of subsets of biomarkers, the location,
stage, and size of the tumor, as well as the age, weight, risk behavior and clinical history of the
patients (i.e. input variables), in order to predict or diagnose cancer on a new patient (i.e the
output).

To define supervised learning more formally, we will first need to introduce some notation.
Let () € A&, for j = 1,..., N denote the value of the input variable X; also known as feature, and
let the n-dimensional vector x; = (:cz(l),:c?), ...,SCZ(N)) € X1 x Xy, ..., xXn = X of input variables
denote the i-th sample or instance of our data (i.e. a set of measurements). Finally, let y; € Y
correspond to the value of the output variable Y for the i-th instance, also known as target. Then,

our data D comprises of a finite set of data points or training examples:
D= {(mz,yl),z = 1,...,M} e X x y,

where each training example (x;,y;) is a pair of input features and a target variable.

10

(N\
Training Data
. J
(. N\
Learning
Algorithm
. J
(R
o)
. J

Figure 3.1: Supervised Learning

In the statistical sense, the input variables X1, X1, ..., Xy and the output variable Y are drawn
randomly from X x) with respect to their joint probability distribution P(X,Y’) (population),
where X is the vector of input variables. When implementing a learning algorithm, the data are
usually represented as a 2-dimensional array A € RM*N where the columns and the rows of the
array correspond to the features and the samples accordingly.

In this context, the problem of supervised learning aims to learn a function:
f:X—>),

from a collection of M training examples D, so that its predictions f(X) are as close to being
accurate as possible (i.e. are good estimators of the corresponding values of y). f is also called
a hypothesis. Figure 3.1, simplistically, illustrates the process.

When the target variable Y that we are trying to predict is qualitative, also referred to as
categorical, (i.e. Y takes on only a small number of discrete values), then the function f: X — Y,
where Y = {c1, ¢, ..., } is called a classifier and the learning task is called classification. When
Y is quantitative or numerical then the function f: X —), Y = R is called a regressor and the
learning problem is called regression.

Similarly to the target, we can distinguish input variables into numerical and categorical.
An input variable x is called numerical when X; = R, and categorical when X; is a finite set
of distinct values. Examples of the former case are age and weight, and of the latter case are
gender and ethnicity. In the special case of the categorical variable taking only two distinct values
(e.g. malignant, benign), the variable is called binary. Another type of variable is the ordered
categorical or ordinal where there exists a natural ordering between the values that the variable
takes. For example, suppose that you have a variable, that measures the economic status of a

person, and takes the values “low”, “medium” and “high”.

Chapter 3. Background 11

3.2 Performance Estimation

In every supervised machine learning problem, it is important to obtain an accurate estimation
of the performance of the inferred model; that is to assess how well the model generalizes to new,
unseen data. In order to achieve this, we employ a loss function L :) x Y — R which measures
the discrepancy between the truth Y and the predicted values f(X).

The most commonly used loss function for classification is the zero-one loss function:

1, ifY # f(X
L(Y, (X)) = I

0, otherwise

which penalizes the errors in predictions in a equal way. In the case of regression, the most used

loss function is the squared error loss function:

LY, f(X)) = (Y = f(X))?

where the larger the differences between the true values of Y, and the predicted values f(X), the
proportionally more they will be penalized.

In this framework, we can restate the problem of supervised machine learning as finding a
model that minimizes the generalization error. We use f(D) to denote the model built from the
learning set D, and f(X, D) to denote the output (predictions) of that model when applied on
the set of input variables X.

Definition 3.2.1 The generalization error, also known as test error, of a model f(D) is ':

Errp = Exy{L(Y, f(X, D))|D} (3.1)

where D is the set of data points used to train f(D), and L is the loss function for measuring
errors between Y and f(X, D). Here the training set D is fized, and test error refers to the error

for this specific training set [J].

In [3] the authors point out that the estimation of conditional error cannot easily be done
effectively given only the information in the same training set. Most of the methods described
later on in this Chapter, effectively estimate a related quantity which is the expected generalization

Eerror.

!Ex f(X) denotes the expectation of f(z),z € X with respect to the distribution of the random variable X. It
is defined as

Ex{f(X)} =), P(X = 2)f(x)

TEX

12

Definition 3.2.2 The expected generalization error, also known as expected test error, of a model

f(D) is:
Err = E)(?y{L(Y, f()(7 D))} = ED{ETTD} (32)

which averages over all that is random, including the randomness related to the training set D
that was used to infer the model.

Typically, as the complexity of a model increases, it adapts more to the training data. This
results in a model with lower bias but higher variance. What we are aiming for, is a useful
trade-off between bias and variance in a model so that it gives minimum expected generalization
error.

A naive and clearly poor estimate of the expected test error Err is the training error or

resubstitution estimate:
M
— — 1
Ertirain = E(D, f(D)) = — > L(yi, f(x:)) (33)
M i=1

which is essentially, the average loss over all training samples that we used to fit the model. As
the model becomes more complex though, the training error decreases and could even drop to
zero. In this case, the model will be overfitting the data and training error will be an overly
optimistic estimate of how well the model generalizes to new data.

From this moment on, we will be using the notation E(D’, f(D)) to refer to the mean error/loss
of model f(D) on a specific test set D’. The datasets D and D’ could differ or be equal as in
equation 3.3.

In the following subsections we present a few of the most commonly used methods for per-
formance assessment. A fair amount of research [3-7,10,21,22] has focused on the study of their

fitness for assessment of test error and for model selection (see Section 3.3).

3.2.1 Hold-Out Cross-Validation

In an ideal scenario, we would first want to build the predictive model f(D) from a dataset D,
make it operational on its intended environment, and then apply f(D) on a newly collected set
of training examples D’ € (X x Y)\D and estimate the model’s performance on D’. However,
in most real applications it is not always possible to draw additional data, thus making the
estimation of the performance on set D’ infeasible.

We could simulate this idea by randomly splitting the original dataset D into two disjoint
subsets; the training set, Dirqin, consisting of m observations and the test set, Diegst, of the
remaining M — m observations. The training set is used to fit the model and the test set, often
referred to as the hold-out set, is used to evaluate the performance. This method is known as the
Hold-Out Cross-Validation or Hold-Out CV and produces the Hold-Out estimate of the expected

test error:
Errholdout = E(Dtest7 f(Dtrain)) (34)

Chapter 3. Background 13

«Q
o

1-Err
0.4
|

0.2

0 50 100 150 200
Size of Training Set

Figure 3.2: Hypothetical learning curve for a classifier on a given task: a plot
of 1-Err versus the size of the training set M. (Figure from [3])

Since Dypqin and Dyes: are non-overlapping, we could consider them to be independent, avoid-
ing thus the optimism of the training error estimation of equation 3.3. However, a learning curve
related bias is still introduced due to the fact that the Hold-Out CV estimate is conditioned
on less than M samples. The learning curve of a model is simply a graphical representation of
the increase of performance (or decrease of error) with experience (i.e. the number of training
examples). As seen in Figure 3.2, we typically expect the prediction error to decrease as the
sample size increases, and to gradually reach a plateau.

Ideally, the sizes of the Dy;qin and Dyegt sets would be such, so that the trained model operates
on the plateau of the learning curve, and yet there would be enough test samples left to get an
accurate estimation of the performance. However, if the training set is relatively small, then the
estimate of the expected test error would be biased upward. For example in Figure 3.2 we would
expect this behavior for |Dyygin| < 100. Unfortunately though, the learning curve is not known
a priori. In [23], Guyon investigates the problem and proposes a formula for efficiently splitting
the data, which will lead in large enough training sets and yet small error rates. A rule of thumb
is to have 2/3 of the data serve as the training set and the rest as the test set [1].

Another drawback of the method is that the choice of m is arbitrary as there are S(M, 2) ~ 2M
possible ways to split the data, where S(M,2) is a Stirling number of the second kind [24]. This,
could lead us to assume that there is variance in the estimate of the performance of the Hold-
Out CV method depending on the specific choice of split for the data. This variance could be
eliminated by trying all possible S(M,2) splits of the samples or by repeatedly and randomly
splitting the data and averaging the results. This leads to the so called Repeated Hold-Out

Cross-Validation protocol, which will not be presented in detail here.

14

However, when we have large enough training and test sets, the Hold-Out CV is a generally
acceptable and robust method for providing a good approximation of the generalization error.
Its simplicity and low computational cost make it appealing in such cases.

In the case that the number of the training examples is rather small to medium, the Hold-Out

CV estimate might not be reliable and therefore other protocols are preferred.

3.2.2 K-Fold Cross-Validation

The K-Fold Cross-Validation (K-Fold CV) protocol is probably the most widely used method for
performance assessment for small and medium sample sizes. It has been proposed independently
by Stone, Allen and Geisser in [15—17] respectively.

K-Fold CV consists of randomly splitting the data into K « M mutually exclusive subsets
Fy, Fs, ..., Fi, also known as folds, of approximately equal size. It then uses the samples in
D\F;,i = 1,..., K to train the model f(D\F;) and the remaining samples in F; to estimate its
performance. The K-Fold C'V estimate of the expected test error is then defined as:

K
Brrxey = = 3, B(E, {(D\R) (35
i=1

which is the average of the prediction errors of the produced models f(D\F;),i = 1,..., K for
their respective test sets F;. Again here, E(D’, f(D)) refers to the mean loss of model f(D) when
applied on D’.

Figure 3.3 illustrates the K-Fold CV procedure for K = 10. The top rectangle represents
the original dataset D which is divided into 10 folds represented by the smaller rectangles. Each
smaller rectangle/fold is considered in turn as the test set (shown in blue), for the models trained
on the rest of the rectangles/folds (shown in white).

K-Fold CV could be considered to be an extension of the Hold-Out CV repeating it K times.
One of its major advantages is that each data point (z,y) serves once as a test case, thus making
the test size equal to the total number of samples in the dataset |D].

The K-Fold CV protocol effectively estimates the expected test error [3]. Similarly to the
Hold-Out CV method, this estimate could be biased upward depending on the learning curve of
the model under assessment on the given task, leading to an overestimation of the true prediction
error. Increasing K, thus having larger training sets, would result in a less conservative estimate
of the performance. Unfortunately, this would also result in higher variance in the estimation
since the training sets would become more similar to one another, making the resulting models
more correlated. K could be as large as |[D| = M. This is a special case of K-Fold CV, known as
the Leave-One-Out Cross-Validation, (LOO-CV) method.

LOO-CV is a variant of K-Fold CV, in which each data sample takes the role of the test set
in turn and the rest serve as the training set. The LOO-CV is approximately unbiased, since

almost the entire dataset is used for fitting the model each time, but can have higher variance than

Chapter 3. Background 15

Data

i=1 - = E(F,f(D\F))

i=2 - = E(F, f(D\F,))

i=9 B | = EEr0\R)

i=10 = E(F10, f (D\Fy0))

T
training folds test fold

Figure 3.3: 10-Fold Cross-Validation. In each round/iteration of Cross-
Validation one fold (in colour) is used for testing and the rest of the folds
are merged into the training set.

K-Fold CV as the M training sets greatly overlap each other [3]. It is also highly computationally
intensive, as it needs to fit M models (as many as the samples) in order to produce the error
estimate.

A typical value for K that has been found to produce good results, relatively balancing out

the trade-off between bias and variance, is K = 10 [1].

3.3 Model Selection

3.3.1 Bayes Model and Residual Error

Assuming that the conditional probability distribution of Y given X, P(Y|X), is known, then
the best model for a specific task would be derived as follows. The expected test error can be

written as:

Err = Exy{L(Y. f(X. D))} = Ex{Eyx{L(Y, f(X, D))} (3.6)

and the model fp which minimizes it, is a model which minimizes the inner expectation for each

point z of the input space X

fB= arg@inEY|X=x{L(Ya)} (3.7)
yE

16

The model fp is referred to as the Bayes model and its expected generalization error Err(fg) is
known as the residual error in supervised machine learning. This is the minimal error that can

be achieved, due to random deviation (or noise) in the data.

3.3.2 Selecting the best (possible) model

Having defined the Bayes model, solving the problem of finding the best model, would be equal to
the problem of estimating the conditional probability distribution P(Y|X) from the set of training
examples Dy qin. However, a close estimation of P(Y'|X) requires |Dyyqin| to grow exponentially
with the number of input variables which renders this solution infeasible [25].

In practice, when dealing with problems of high dimensionality, one must make assumptions
on the properties of the function f. In particular, a collection of candidate models of specific
structure is assumed to contain the best one, and then, optimization is performed among these
models, based on the learning set, in order to find the one which minimizes the expected error.
This collection of models is often referred to as the Hypothesis space and is denoted by H. It is
likely that the final selected model f is not close to the Bayes model fp of the specific problem

(i.e. Err(f)>» Err(fB)), however there may exist models in H which approximate fp.

Definition 3.3.1 The approximation error, defined by:
Erryg = Tfmg{Err(f)} — Err(fB) (3.8)
€

s a measure of how well the models in H can approximate the optimal model fg.

It is intuitive that the larger the hypothesis space H, the smaller the approximation error
will be. However, when fitting multiple models on a finite training set, the estimation of the
performance of the selected one will be optimistically biased (i.e. the model will be overfitting
the data). This phenomenon is also called the problem of multiple inductions in machine learning
and is described in detail in [12]. Loosely, when the number of trained models is large, then a
more complex model with low bias and high variance (i.e. the ”luckiest” one for the particular
training set) will be consistently chosen and it will generalize poorly on new data.

When performing a machine learning analysis, this finite set of models that we wish to find the
best performing one from, typically consists of a few different learning algorithms (e.g. polynomial
regression, SVM, neural network) combined with several different combinations of values for
their hyper-parameters. The term hyper-parameters refers to the set of parameters for a certain
algorithm that are user defined and cannot be directly estimated from the training set. For
example, the degree of a polynomial regression model or the number of hidden layers of a neural

network.

Chapter 3. Background 17

3.3.3 Algorithm and Hyper-Parameter Optimization

It is important to note here that there exist conceptual differences between model selection in the
context of machine learning and in the context of statistical modelling. In the case of statistical
modelling, all the final candidate models f are produced, their performance is evaluated based
on an estimator of generalization performance (e.g. Hold-Out CV, K-Fold CV), and the best one
among them is then chosen and put to use. However, in the case of machine learning the term
model selection often refers to the problem of algorithm and hyper-parameter optimization or
tuning where only the combination of the learning algorithm and its hyper-parameter values that
produced the best performing model (again on the basis of an estimation of their performance)
are returned. The latter term is more appropriate to use in the case of retraining the selected
combination of algorithm and its hyper-parameter values on the entire dataset. Retraining on all
data returns a different model than the one employed for estimating the performance. However,
under the assumption that the loss of a learning algorithm drops monotonically, on average, with
increasing sample size, this is generally a better model to put in use.

In our practice, we employ the retraining step on the complete dataset and so we use the
terms model selection and algorithm and hyper-parameter optimization (or tuning) without any
distinction between them, to refer to the process of finding the best combination of algorithm
and its hyper-parameter values.

More formally, let A represent a learning algorithm, and A represent a set of algorithms
{A(l),A(z)7 ...,A(l)}. Let, also, 0@ e ©0) represent the vector of hyper-parameter values of the
i-th algorithm A®. We will denote by A(D,6) = f(D,#) the model produced when applying
algorithm A with hyper-parameter values 6 on data D. Each hyper-parameter space O of
a learning algorithm is a subset of the cross product of the domain spaces of each individual
hyper-parameter of the algorithm which could be continuous or discrete. Then the problem of

Algorithm and Hyper-Parameter Tuning becomes:

{A*,0*} = argmin {Err(A(D,6))} (3.9
ADed,0Dee®
i=1,...,0

Finding {A*,0*} is usually difficult, since the generalization error of each model needs to be

computable. However, good enough 6 can be found which approximate the performance of 6*.
As with performance estimation, when the size of the dataset D is relatively large, one could
use the Hold-Out Cross-Validation method (see Section 3.2.1). Instead of fitting just one model
on the training set Di.qin and testing its performance on the test or holdout set Dicg, now, a

number of different models are fit on Dy4;n, and the one that minimizes the error on Dy is

chosen:

{A*)0*} = argmin {E(Dtest, A(Dtrain, 0))} (3.10)
AeA dDea®
i=1,..,1

18

This method exhibits the same advantages and disadvantages in terms of bias and variance
as when it is used for performance estimation (see Section 3.2.1).
The most commonly used method for small and medium datasets is the K-Fold Cross-

Validation with the appropriate adjustments to perform tuning:

K
1 _
{A*,0*} = argmin {—) E(F, A(D\F,0))} (3.11)
AWeapeo K o
i=1,...,l

Finding {A*,0*} that satisfy even the last two equations is not an easy task since it still
requires optimizing over the combinations of algorithms A € A and different settings of their
respective hyper-parameter values. The set A can be restricted to a few different algorithms.
However, some of the hyper-parameters of the learning algorithms could be taking values from
continuous domains or from infinite sets. Some of the more general methods for approximating
a solution, that are also used in practice are manual search, grid search, random search and
Bayesian optimization. In manual search a human analyst, based on their knowledge on the
problem or using rules-of-thumb, will try some initial choices for A and # and according to the
performance of the resulting model, they will tweak them and repeat the process until some
well performing values have been identified. Grid search refers to the process of exhaustively
searching through a manually specified subset of the hyper-parameter space of a learning algo-
rithm and is an automated procedure. Random search simply samples hyper-parameter settings
for a predefined number of times or until some condition has been met. It has been shown to
achieve same or better performance than grid search and is computationally more efficient in
high dimensional hyper-parameter spaces [26]. Bayesian optimization is a methodology for the
global optimization of noisy black-box functions. In general, Bayesian optimization first assumes
a statistical model that captures the dependence of a loss function on hyper-parameter values.
It then proceeds by repeatedly using this model to identify hyper-parameter settings in a way
that trades off exploration (i.e. choose hyper-parameter values that their performance is uncer-
tain) and exploitation (i.e. choose hyper-parameter values that are promising), evaluate their
performance and update the original model with the new observations. Bayesian optimization
has been well studied [27-30] and in practice, it seems to obtain better results with fewer trials
of hyper-parameter settings than grid search and random search.

In all cases, optimizing over must be made cautiously; the model trained with hyper-
parameter values 6 should be neither too complex nor too simple. A too complex model will have
adapted to the data and will have low error on the training set but higher error on the test set
(i.e. it will generalize poorly). In this case, we say that the model is overfitting. On the contrary,
when the model is too simple, it is said to underfit the data because it is unable to capture the
true relation between the input variables X and the output Y. This kind of model will show high
error on both the training and the test set. The most appropriate choice for the values 6 would

be those that balance the trade-off between variance and bias so that the model is of moderate

Chapter 3. Background 19

complexity.

3.4 Simultaneous Model Selection and Evaluation

In practice, when analyzing real problems, it is desirable that both the final model (i.e. combi-
nation of learning algorithm and its hyper-parameter setting) is selected and its performance is
evaluated. The combination of the two tasks is not trivial. However, there exist methods that
have been studied [3—7,10,21,22] for their properties and effectiveness in doing so, and are widely
used in the field of machine learning.

Typically, a supervised learning analysis will also consist of performing a few more steps
than just optimizing for the learning algorithm and its hyper-parameter values. For instance,
imputation may need to be applied if the data has missing. Binarization of categorical variables,
standardization of numerical features or completely different representations of the data could
also be tried. Feature selection could also be applied in the case that we need to restrict the input
space of the problem or when we are more interested in identifying which of the input variables
are more related to the outcome (i.e. diagnose the causes of the problem).

Most of these extra steps will also require to choose among a plethora of algorithms that
also need tuning. The correct way to proceed is to incorporate all these steps in the protocol
that is used for model selection and evaluation. As discussed in [3], if feature selection is applied
to all the data prior to using some estimator of performance and hyper-parameters (e.g. Cross-
Validation), then the assessment of the error of each model will not be performed on a completely
independent test set since those samples were already used in the process of selecting the features.
In general, every step in an analysis which involves “peeking” into the output variable, should
be incorporated in the preferred protocol.

Essentially, the modelling procedure consists of multiple steps and we need to optimize in
terms of the combinations of all the algorithms involved in each step and their respective hyper-
parameters. Let ¢ denote a sequence of modelling steps, with specified algorithms and hyper-
parameter values for each step, also referred to in this work as configuration. For example, ¢ could
be “standardization of numerical variables, LASSO for feature selection with hyper-parameter
lambda equal to 0.1, Random Forests with 1000 trees”. Let C' = {¢1, ca, ...c;} denote a finite set of
candidate configurations to be tried. Then, f(D,c) is the model produced when the sequence of
modelling steps c is applied to D. It is important to note that ¢ is completely defined (i.e. there
are no undefined hyper-parameters or other choices to be made on it). In this sense, optimizing
over ¢ is the same as performing a grid search for all possible combinations of algorithms and
their respective hyper-parameter settings for all steps in the analysis pipeline.

All the procedures in the following Sections will be described in the context of the model

selection problem being the optimization of an entire analysis pipeline.

20

Algorithm 1 Train-Validation-Test

Input: A training set D = (x,y) € X x Y, A finite set of learning configurations C'
Output: A model M, An estimation of performance P of model M

1: function: TVT (D, C)
2: randomly partition D into three disjoint subsets Dy qin, Dyatidation and Dyegt
3: for each configuration ¢ € C do
4: €ec = E(Dvalidationa f(Dtraina C))
5: end for
6: c* = argmin{é.}
_ceC
7. P = E(Dtestv f(Dtrain v Dvalidationv C*))
8 M = f(D,c*)

9: return M, P

3.4.1 Train-Validation-Test Protocol

A simple way of assessing the performance of the selected model would be to use the test set
error estimate E(Diest, f(Dirain,c*)) of the Hold-Out method (see equation 3.10). Simple yet
naive, since the model was chosen due to its performance on the test set and therefore it cannot
be considered independent from it. As a result, the reported performance estimate on the same
test set will be optimistically biased.

To produce a reliable estimation of the performance of the model, we need to evaluate it on
a separate, independent test set. To do so, we can modify the Hold-Out protocol as shown in
Algorithm 1. First, the dataset is split into three disjoint sets Dyrain, Dyatidation @nd Diest. Then,
model selection (i.e. chose the best configuration ¢ € C) is performed on Dirgin U Dyatidation
using test sample estimates (Lines 3-6). After the best configuration c* is identified, the unbiased
expected generalization error of the model trained on Dyrgin U Dyatidation 1S €stimated on Dyt
in Line 7. Finally, the returned model is learned on the entire set of learning examples (Line 8).

As with the simpler cases of Hold-Out for performing model selection (see Section 3.3.3) or
performance estimation (see Section 3.2.1), one major drawback is that it “wastes” data. Again,
a learning curve related bias is introduced as the Hold-Out CV estimates are always conditioned
on less than |D| samples. If the training set is relatively small, then the estimate of the expected
test error would be biased upward (see Figure 3.2). Also, the arbitrary choice of splitting of the
data will introduce some variance to the estimate. Ideally, we want a large enough training set so
that the fitted model operates on the plateau of the learning curve, and yet there would be enough
samples to ensure accurate estimates of the performance. A rule-of-thumb for splitting the data
is 60% of the data instances for the training set |Dyyqin| and 20% for each of the validation and

test sets | Dyatidation| and |Diest|.

Chapter 3. Background 21

Algorithm 2 K-Fold Cross-Validation

Input: A training set D = (x,y) € X x Y, A finite set of learning configurations C, A positive
integer K

Output: A model M, An estimation of performance P of model M

function: KCV(D,C,K)
randomly partition D into K disjoint subsets Fj,7 = 1..K of approximately equal size
for i =1to K do

for each configuration c € C do

¢ = E(F;, f(D\F,c))

end for
end for
€e = 21 &

c* = argmin{é.}

ceC
10: P = min{é.}
ceC
11: M = f(D,c*)
12: return M, P

3.4.2 K-Fold Cross-Validation

The K-Fold Cross-Validation method could also be used to simultaneously perform model selec-
tion and model assessment. The procedure is detailed in Algorithm 2. First, the data instances
are randomly split into K « M mutually exclusive subsets Fi, F5, ..., Fx, also known as folds, of
approximately equal size. Then, model selection is performed using K-Fold estimates in Lines 3-9
(ie. find the configuration ¢* which minimizes the mean error over the K test folds Fj). €,
is the average loss in fold F; of the model trained on D\F; with configuration ¢. The model
returned is the one learned from the entire dataset using the best configuration ¢* (Line 11) and
its performance P is evaluated as the mean performance of the K different models that were
constructed on different subsets of the data with configuration c¢*, f(D\F;, c*).

Similarly to the case of the simple Hold-Out CV method, where we only had one test set for
both selecting and evaluating the model, the K-Fold CV will not provide an accurate estimate of
the expected generalization error since this same quantity was used to guide the model selection
procedure. Indeed, as it has been shown in [1, 6,8, 10, 13,22] the K-Fold CV estimate of the
performance will be biased, especially when the number of data samples is relatively small.

To guarantee an unbiased estimate, the test sets (folds) on which the expected test error is
evaluated should be kept out of the entire process of model selection and only be used once the
best configuration c¢* is selected. A protocol that follows this procedure is the Nested K-Fold
Cross- Validation described in detail in 3.4.4.

22

Algorithm 3 Tibshirani and Tibshirani

Input: A training set D = (x,y) € X x Y, A finite set of learning configurations C, A positive
integer K

Output: A model M, An estimation of performance P of model M

1: function: TT(D,C, K)

2: M,PKcv,C*,C;‘ = KCV(D,C, K)
3 Bias = £ 31 (el) —)
4: P= Pxoy + B/’LES

5. return M, P

3.4.3 Tibshirani and Tibshirani (TT) Bias Correction

The Tibshirani and Tibshirani (TT) protocol applies the idea of approximately estimating the
bias of the minimum K-Fold CV error rate in K-Fold Cross-Validation [2]. The method is outlined
in Algorithm 3. Apart from the best overall configuration ¢*, the TT protocol also needs the
configurations ¢}, which minimize the expected error for each of the folds Fj,i = 1,..., K (Line 2).
Then, the bias due to model selection is estimated for each fold as the average loss of the model
trained with the overall best found configuration ¢*, minus the average loss of the model trained
with the best configuration ¢ for that particular fold. The overall bias Bias then, is the mean

bias over the K folds (Line 3). The adjusted estimate of performance of the T'T protocol is then:

K
— — 1 (i NG
Errrr = Errgov + 5 Z(e,(f*) - eg*)) (3.12)
i=1
where éf*) is the average loss in fold ¢ of the model trained with configuration c¢* and ég,:) is

the average loss in fold ¢ of the model trained with configuration ¢}. Assuming that the (iata
partitioning is the same, then K-Fold C'V and TT return the same model.

The TT has minimum computational overhead as it does not require the training of any addi-
tional models other than the ones already trained by the K-Fold Cross-Validation. Tsamardinos
et al. in [10], show that the method is robust providing conservative performance estimates
which are statistically equivalent to those of the Nested K-Fold Cross-Validation protocol (see
Section 3.4.4). They suggest the use of TT over the Nested K-Fold Cross-Validation mailny due
to its lower computational complexity. However, TT is not suitable for LOO-CV or when the

size of the test set is too small, and it was shown to over-estimate the bias in some settings [13].

3.4.4 Nested K-Fold Cross-Validation

Varma and Simon in [0], report a bias in error estimation when using K-Fold Cross-Validation,
and suggest the use of the Nested K-Fold Cross-Validation (NCV) protocol as an almost unbiased
estimate of the true performance. NCV introduces an outer loop to the K-Fold CV procedure

which results, essentially, in the “cross-validatory assessment of the cross-validatory choice” as

Chapter 3. Background 23

Algorithm 4 Nested K-Fold Cross-Validation

Input: A training set D = (x,y) € X x Y, A finite set of learning configurations C, A positive
integer K

Output: A model M, An estimation of performance P of model M

1: function: NCV(D,C, K)
2: randomly partition D into K disjoint subsets Fj,7 = 1..K of approximately equal size
3: for i =1 to K do
4 ¢ = KCV(D\F;,C,K)
5. 6 = B(F, f(D\F,,c}))
6: end for
. P=+3K ¢
8 ¢*=KCV(D,C,K)
9: M= f(D,c*)
10: return M, P
was defined by Stone [15]. Algorithm 4 details the method. First, the data samples are randomly

split into K « M mutually exclusive subsets F, Fs, ..., Fi, also known as folds, of approximately
equal size. Then, model selection (i.e. find the best configuration ¢*) is performed using K-Fold
Cross-Validation on D\F; and the expected generalization error é; of f(D\F;, c*) (i.e. the model
trained using configuration ¢* on all the data but fold Fj) is evaluated on F;, for i = 1,..., K
(Lines 3-6). The (unbiased) expected generalization error of the final selected model is evaluated
as the average generalization error of the models f(D\F;,c*) over the folds (Line 7). Finally,
the best configuration c¢* is determined by performing model selection on the entire dataset D
using K-Fold Cross-Validation (Line 8), and the final model is learned on D using the chosen
configuration c*.

It is important to note that the final returned model is the same as the one returned by the
K-Fold Cross-Validation protocol (assuming same splitting of the data into folds). The main
drawback of the method is that it is computationally expensive since the number of models that
need to be trained are > K2 - |C|, where C is the configurations set.

Although Varma and Simon [6] are (probably) the first to explicitly study the effectiveness
of the Nested Cross-Validation protocol, the method (or similar ones) has been used as early as
2003 and 2005 [31-33] and has gained popularity since then due to its almost unbiased (slightly
conservative [10]) error estimate.

Figure 3.4 illustrates the Nested K-Fold Cross-Validation protocol where K = 5 for both the
outer and the inner loop of the procedure. Each of the folds of the outer loop serves in turn as
a test set (shown in blue) for estimating the performance of the configuration returned by the

5-Fold Cross-Validation (the inner loop).

24

Data

i=2 :- L Outer loop - Performance

Estimation

J=2 :- — Inner loop - K-Fold CV

Figure 3.4: Nested K-Fold Cross-Validation with K = 5 for both the outer
and the inner loop of the procedure.

3.5 Stratification of Folds

Most of the methods described in this Chapter, require that the dataset is split into two or more
subsets. The Train-Validation-Test and the K-Fold CV protocols partition the data into three
and K disjointed subsets respectively. When the dataset is large enough, randomly splitting
the data will (usually) guarantee that the distribution of the output classes will be the same in
each subset. However, with small sample sizes or with unbalanced class distributions it could
be the case that some of the subsets’ distributions are different from the distribution of the
original dataset. In extreme cases, some of the subsets will contain no samples from one or more
of the classes. Then, the estimation of performance for that subset will exclude some classes.
Stratified partitioning of the dataset ensures that the resulting subsets will maintain the original
distribution. Kohavi in [1] and Tsamardinos et al. in [10] recommend the use of stratification as

a better option compared to random splitting, both for bias and variance.

Chapter 4

Proposed Method for Model

Selection and Evaluation

In this Chapter we briefly outline the limitations of existing methods for model selection and
assessment (Section 4.1). We then describe the bootstrap procedure and some of its primary
applications in Section 4.2. In Section 4.3, we present our proposed method for model selection
and evaluation of its performance and discuss its properties and advantages compared to the
existing ones. We conclude with a method (still under evaluation) for calculating the confidence

intervals of the estimated performance (Section 4.4).

4.1 Limitations of Existing Methods

In a real supervised machine learning analysis, it is important not only to find the best model, but
also to evaluate its performance (i.e. how the model generalizes to unseen data). A few of the most
commonly used methods for simultaneously performing the two tasks are the Train-Validation-
Test protocol, the Tibshirani & Tibshirani protocol and the Nested K-Fold Cross-Validation
protocol which are described in detail in Sections 3.4.1, 3.4.3, and 3.4.4 respectively. However,
all these protocols, appear to have limitations under some circumstances which can make them
impractical.

The Train-Validation-Test protocol simulates the ideal, data-rich scenario where each task
(i.e. training, selection, assessment) will be carried out using different, independent and large
enough (virtually infinite) sets of data samples drawn from the same distribution P(X,Y’). In
practice, it is often not possible to draw additional data, and the set of learning instances D
constitutes the only available data. When the training set is relatively small, then a learning
curve bias is introduced in the estimate. On the other hand, the arbitrary choice of splitting of
the data samples will introduce variance to the estimate (see Sections 3.2.1, 3.4.1).

The Tibshirani & Tibshirani (TT) [2] and the Nested K-Fold Cross-Validation protocols [(],

both provide a conservative performance estimate [10]. TT tries to approximately estimate

26

the bias in the Cross-Validation error estimate without any significant computational overhead,
however it is not suitable for the LOO-CV or when the size of the test set is too small. The
Nested K-Fold Cross-Validation protocol provides an almost unbiased error estimate [6] but the
use of it can be prohibitive due to its computational cost since the number of models that need
to be trained are quadratic to the number of folds.

The WMC/WMCS method [9] is quite complex and is based on a parametric assumption
which in some cases might be difficult to hold true.

The IPL method [!1] outperforms the aforementioned ones in terms of performance esti-
mation but it exhibits significant limitations; it has higher computational cost than TT and
WMC/WMCS, collapses when the size of the original dataset is small and it makes the assump-
tion that the learning curve for each classifier can be fitted well by inverse power law.

We propose a new, general method for correcting the bias in Cross-Validation procedures,
which works regardless of the data analysis task (e.g. classification, regression) or the structure
of the models being involved in it. It has low computational overhead with respect to the Cross-
Validation procedure and it was proven, through experiments (see Chapter 6), to produce an
almost unbiased expected performance estimate even when the number of training samples is
small. Unlike the TT, it is also suitable for correcting the bias of both the LOO-CV and the
Hold-Out CV.

4.2 The Bootstrap

The bootstrap was formally introduced by Efron in [34] and it is a very general resampling
procedure for making statistical inferences when the usual parametric assumptions of a population
are questionable or violated. The term “bootstrap” refers to the notion of “pulling oneself up
by one’s bootstrap” which is a metaphor for “a self-sustaining process that proceeds without
external help”.

To better understand bootstrapping, one must first understand the concept of a sampling dis-
tribution. The term sampling distribution refers to the probability distribution that would result
from the computed values of a statistic (e.g. sample mean, sample median, sample standard devi-
ation) on all possible samples of a given size M of a population of interest. A statistic is assumed
to be fixed in the population, but its estimate would vary for different samples of the population.
The bootstrap simulates this procedure in order to approximate the sampling distribution by
treating the available data as the population. It repeatedly draws observations from the data
to create a large number of samples known as the bootstrap samples. Each bootstrap sample is
drawn randomly with replacement and has the same sample size as the original. The statistic of
interest is then computed on each of the bootstrap samples and the resulting distribution is the
estimate of the population distribution of that statistic, also known as the bootstrap distribution
of the statistic. When resampling a dataset of size M with replacement, on average only 0.632 of

the original observations will end up being included since the probability of any given observation

Chapter 4. Proposed Method for Model Selection and Evaluation 27

not being selected after M samples is (1 — 1/M)™ ~ e~! ~ 0.368. Consequently, each of the
bootstrap samples will randomly depart from the original. And since the observations in the
samples vary randomly, the values of the statistic calculated for each one will be different. For

more details on the bootstrap see [11].

4.2.1 Primary applications of Bootstrap

The bootstrap has many applications in statistics and machine learning. For example, one could
use the bootstrap to approximate the standard error of a sample estimate of a population parame-
ter 6, to correct its bias, or to compute the confidence intervals of #. For all these applications the

same philosophy of bootstrap is followed: replace the population with the empirical population.

Standard Error Approximation

Let us first introduce some notation. Suppose 6 is a population parameter that we need to
examine and let § be an estimator of 6 on the basis of a random sample of size M from a
population. The empirical standard deviation of a series of bootstrap replications of 0 can be

~

used to approximate the standard error SE(6):

B .2
(67 — 6%) (4.1)
b=1

A 1

where
. 1 &
* %
G—E;%

and é,;“ is the parameter estimation for the b-th bootstrap sample, and B is the number of total
bootstrap samples.

Another resampling technique used for approximating the standard error is the Jackknife
[35-37], with the bootstrap being a more general method and applicable in the case when the

population parameter is the sample median where the Jackknife fails.

Bias Correction

For most sample statistics, the sampling distribution of 6 (i.e. a sample statistic) for large
sample size M is normal with mean 6 (i.e. the corresponding population parameter). However,

the mean of the sampling distribution of 6 will often be different from 6 with a bias equal to

Bias(f) = E(f) — 6. A bootstrap based approximation of this bias is:

B

— A 1 . A

Biaspoot (0) = D165 - 0) (4.2)
b=1

28

where 0; is the estimate of the b-th bootstrap sample. The corrected estimator is then

A~ — ~

0. = é — Biaspoot (0)

Confidence Intervals

When computing a sample statistic, it is desirable to know how well it estimates the underlying
population value. Confidence intervals, for a given population parameter 6, address this issue by
providing a sample based range of values that contain 6 with a high probability. This probability
is known as confidence level (1 — a) and is usually specified to be 95% or 99%. One of the
most popular and simple methods for constructing confidence intervals using bootstrap is the
percentile method. First, B independent bootstrap samples of size M (the size of the original
sample) are drawn. Then, the parameter 6 is estimated for each of the bootstrap samples to
get (07,05, ...,0%). Next, the bootstrap replications of 6 are ranked in ascending order so that
(Ekl) < 02"2) < ... < HE"B)). The lower and upper confidence bounds are the B - a/2-th and
B - (1 — a/2)-th ordered elements respectively. For example, for B = 1000, which is the smallest
number of replications that is usually recommended, and a = 0.05, the resulting bootstrap
percentile confidence interval would be [02‘25), 02‘975)]. A confidence stated at a 1 — a level can be
thought of as the inverse of a significance level, a. For more theoretical details on the bootstrap
confidence intervals and differents methods for constructing them, as well as a comparison of

them, see [38].

Bootstrap Performance Estimation

In machine learning, a bootstrap based variation of the Repeated Hold-Out Cross-Validation (see
Section 3.2.1) protocol can be used to perform model assessment. Instead of repeatedly splitting
the data D (with |D| = M) into two disjoint subsets Dyyqin and Dyes; and averaging the results,
where |Dyrginl, | Diest| < M, the bootstrap method will create multiple training sets D;,, of size
M by sampling D with replacement. These training sets, as mentioned before, will consist, on
average, of the 0.632 of the original samples. The bootstrap estimate of the expected test error

for B bootstrap samples is:

B

—~ 181 &)
Errboot = E bgl M Z=21 L(yla f()(xz’Dzn)) (43)

where f (®) (24, Din) is the predictions for the vector of input values xz; of the model trained on
the training set D;, of the b-th bootstrap sample. Unfortunately, this is not a good estimator
of the expected error since the models () that are used to predict the outcome of a vector of
input variable values z;, might have been trained using the data point (y;,z;) (i.e. the test data
and the train data overlap). When (y;,z;) ¢ D;,, then % Zi‘il L(ys, f® (x4, D)) is similar to

the K-Fold Cross-Validation error of equation 3.5, otherwise it is similar to the training error of

Chapter 4. Proposed Method for Model Selection and Evaluation 29

equation 3.3. This will lead to the overfitting of the models f® and Er\rboot being considerably
biased downward.

An improvement on that is the Leave-One-Out bootstrap error estimate, which mimics the
K-Fold Cross-Validation one:

ErrLoosoot = Z 2 L(yi, fO (i, Din)) (4.4)

\B ‘|
where B~% is the set of bootstrap samples that do not contain the pair (y;,x;). This solves
the problem of overfitting, however Err LOOboot 18 conditioned on less than M observations (see
learning curve bias in Section 3.2.1) and will be upward biased (i.e. overestimated).

To solve the bias problem, Efron [21] proposed the 0.632 bootstrap estimator:
Erro.632000t = 0.368E7T¢rqin + 0.632ETT LOOboOt (45)

where Er\rtmm is the training error or resubstitution estimate of equation 3.3. Intuitively, the
idea is to reduce the bias of the LOO-bootstrap estimate by pulling it toward the training error.
However, when Er\rtmm is close to zero (i.e. in highly overfitted situations), the estimator will
be downward biased [21].

In our knowledge, the bootstrap estimator for selecting a model or assessing its performance
is not widely used in the field of machine learning. Kohavi in [1], compares the estimate of K-Fold
Cross-Validation and that of the 0.632 bootstrap on a variety of real-world data with different
characteristics and finds that “the bootstrap has low variance, but extremely large bias on some
problems”. He concludes his research by recommending using stratified 10-Fold Cross-Validation.
It is also important to note here that the bootstrap method is highly computationally expensive

due to the large number of models that need to be trained.

4.3 Bootstrap Bias Correction

In this Section, we present a new, general method for correcting the bias in Cross-Validation
procedures, which works regardless of the data analysis task (e.g. classification, regression) or
the structure of the models being involved in it. The method takes advantage of the bias correction
properties of the bootstrap [14], briefly described in Section 4.2.1. It shares some common ground
with the 0.632 bootstrap and with the Nested K-Fold CV but is less expensive than both of them.
It has low computational overhead with respect to the Cross-Validation procedure which results
from repeatedly sampling the different models’ predictions.

The bootstrap bias correction (BBC) for Cross-Validation is a simple method for correcting
the bias of all Cross-Validation procedures (e.g. K-Fold CV, LOO-CV). It only requires that
the predicted values of the models from which we want to choose the best one and assess its

performance are known. The method is outlined in Algorithm 5 and is paired with a CV procedure

30

Algorithm 5 Bootstrap Bias Correction for CV

Input: A training set D = (x,y) € X x Y, A finite set of learning configurations C, A positive
integer K, A positive integer B -

Output: A model M, An estimation of performance Py,,; of model M, The bias Bias of the
CV procedure estimate

1. function: BBC(D,C, K, B)
2: M, P,Preds =CV(D,C,K)
3: draw B bootstrap samples from D of size |D| with replacement: (DZ.(Tll), DZ(Z), ceey DZ.(f))
4: for b =1 to B do , ,
5o = argrgin{E(yi(n),Preds(acgn),c))} # where E(y,z) = & Zi‘il L(y;, x;)
ce
~ = b b
6: é, = F(gu)t, Preds(xgu)t,c))
7: end for
1 vB
8: Pboot =B Zb:l €b
9: Bias = P — Py __

10: return M, Py, Bias

for model selection whose performance corrects. Essentially, Algorithm 5 outlines a complete

method for model selection and evaluation of its performance.

The algorithm begins by calling the K-Fold Cross-Validation procedure of Algorithm 2 (Line 2)
which returns the final selected model M, its (biased) performance P as estimated by the pro-
cedure, and an array of predictions Preds. We assume that Preds is a 2-dimensional array of
size |D| x |C|, whose columns correspond to the models that were produced using the set of
configurations C' (see Section 3.4) in the CV procedure and its rows correspond to the predicted
values of these models for each sample z;. In order for the K-Fold CV procedure to agree with our
bias correction method, we use a slightly different way to compute the CV performance estimate;
instead of performance P being calculated as the average performance of the models that were
trained with the best found configuration ¢* over the K folds (see Algorithm 2), now, we pool
together all the predictions for each configuration and the performance P, is just the average
performance over all predictions for the best configuration c*. When the number of samples in
each fold is the same, and for some metrics (e.g. accuracy), P = P,oo. However, when the folds
are of different size, or the AUC metric is optimized, Pp,o =~ P.

Next, B bootstrap samples of size |D| (i.e. the number of data points) are drawn with

()

replacement (Line 3). We use D;,’ to denote the data points that are contained in the b-th

bootstrap sample (around 0.632 of the original samples) and D(()z)t

(®) (b)

in in

to denote the set of the ones

that are not. Subsequently, we use x;’ and y; ’ to denote the set of input variable values and

the set of their respective output values of the samples that are included in the b-th bootstrap.
b)

n

Then, for each bootstrap sample D;,’ we find the configuration ¢; that minimizes the loss

function L and we estimate its performance on DY (Lines 4-7). Preds(x(b)

out in» C) Tepresents the

(®)

predictions of the model(-s) trained with configuration c for the set of samples x;,’. Essentially,

Chapter 4. Proposed Method for Model Selection and Evaluation 31

(0)

in

that there is no need for another model to be trained or even for predictions to be produced.

c and z;’ act as indices to the predictions matrix Preds. We use this notation to point out
The BBC method only needs the array of predictions already produced by the respective Cross-
Validation procedure. The estimated performance of the best model is then the average of the
performances of the best selected models for each bootstrap sample (Line 8). The model returned
by the method is the one that has the best performance averaged over all pooled predictions. In
the case of having accuracy as the metric of performance and assuming same split of the data
in folds, it is the same as the ones returned by K-Fold Cross-Validation (averaging over folds),
TT and the Nested K-Fold Cross-Validation, but with different estimation of the performance
(Line 10).

In conclusion, the BBC method provides an almost unbiased estimate of the performance of
the final selected model. It is faster than the Nested K-Fold Cross-Validation protocol and it is
designed to work with all kinds of CV procedures and also with small sample size (where TT
fails).

4.4 Computing Confidence Intervals

When assessing the performance of a model, it is desirable to know how well the estimate reflects
the true performance. Confidence intervals provides us with a sample based range of values
that contain the true performance with high probability. One of the most popular and simple
methods for constructing confidence intervals using bootstrap is the percentile method explained
in Section 4.2.1.

In the BBC procedure B bootstrap samples are independently drawn from the predictions’
array (essentially), and for each of them the best configuration is found and its performance is
estimated. In order to use the percentile method for the construction of confidence intervals, the
only extra work that needs to be done is to rank the bootstrap replications of performance of the
BBC method in ascending order. Then, the lower and upper confidence bounds are the B-a/2-th
and B - (1 — a/2)-th ordered elements respectively, where (1 — a) is the confidence level.

We are still evaluating how well fit this method is for this purpose, but it seems to provide
good results in our experiments. We also plan to test other, more reliable methods for calculating

confidence intervals such as the BC, method [39].

32

Chapter 5

Bootstrap-Based Dropping of

Under-Performing Configurations

In this Chapter we introduce a method, based on the bootstrap, for eliminating under-performing
configurations early in the K-Fold Cross-Validation procedure in order to speed it up. Section 5.2
presents the way the method is incorporated within K-Fold Cross Validation and describes the

approach to identifying under-performing configurations.

5.1 Dropping of Under-Performing Configurations

K-Fold Cross Validation has become a de-facto standard in machine learning for model selection
and evaluation and it is commonly paired with grid search. When the space of hyper-parameter
values is large, K-Fold Cross Validation can become computationally expensive and thus pro-
hibitive to be applied in full.

We present a procedure, based on bootstrap testing, for dropping under-performing configu-
rations early within a Cross-Validation procedure in order to speed up its execution time. We call
our method Bootstrap-based Early Dropping (hereafter BED), and we have studied its behaviour
through extensive experimentation both on simulated and real data (see Chapter 6).

To the best of our knowledge, the only work that focuses on the speeding up of the learning
process by specifically eliminating, early in the CV procedure, under-performing configurations
is the one by Krueger et al. [20]. Their method is called Fast Cross-Validation via Sequential
Testing (CVST), and it uses nonparametric testing together with sequential analysis to choose

the best performing configuration on the basis of linearly increasing subsets of data.

34

5.2 Bootstrap-Based Dropping of Under-Performing Configura-

tions

BED is incorporated within the K-Fold Cross Validation procedure and it is outlined in Algo-
rithm 6. We use f(-, Dirain, ¢) to denote the model trained on dataset Dyyqin, with configuration
¢, and f(Diest, Dirain, ¢) to denote the output (i.e. the predictions) of that model when applied
on Diest.

The K-Fold CV with BED procedure starts with every configuration ¢ € C being active, and
discards (removes from C') under-performing configurations at each iteration i of the procedure,
based on their performance on the last i iterations. More specifically, at each iteration 4, the
following steps are executed. First, for each configuration ¢ € C' a model is trained on D\{F;},
and their predictions for the test fold F; are stored in a 2-dimensional array Preds; (Lines 4-6).
Consequently, each column of Preds; corresponds to a configuration in C' and each of its rows
corresponds to a data sample in F;. Then, the union of the arrays Predsy for k = 1, ..., 7 is stored
in Preds; that is all the produced predictions up to iteration 7 (Line 7). Again, the columns
of Preds correspond to the configurations in C'; but its rows contain the predictions for all the
test folds F} for k = 1,...,4. Next, the array of predictions Preds, along with the corresponding
true output (labels) y, the set C, the desirable number of bootstraps B, and a threshold ¢ are
passed to the BED procedure that determines which of the configurations in C' will be eliminated
before the next iteration. Finally, the configurations that were found to be under-performing are
removed from the set of configurations C' in Line 10.

After all K iterations of the K-Fold CV procedure have been executed, the final, best con-
figuration is chosen among the ones that are left in the set C', and its performance is estimated
(Lines 12-17). In Algorithm 6 this is performed by finding the configuration ¢* which minimizes
the mean loss over all predictions. This way, the BBC procedure for bias correction (see Sec-
tion 4.3) can be directly applied. One could also calculate the mean loss over the predictions
of each fold F; independently, and then average the results, as is usually the case for K-Fold CV
(see Section 3.4.2).

The BED procedure is detailed in Algorithm 7. It takes as input a 2-dimensional array of
predictions Preds of size M x N and the corresponding true labels y (a vector of M values), a
set of configurations C' = {c1, ¢3, ..., cy }, the number B of bootstraps to perform, and a threshold
t. First, the configurations in C' are sorted in ascending order based on their mean error on
the predictions in Preds in order to get C*) = {c(l), @, e)}. Consequently, configuration
¢M) is the currently best performing one. Next, it constructs B bootstrap samples (i.e. multiple
instances of Preds) by sampling the rows of Preds with replacement. Then, for each configuration
D eC® j=2 .. N, we calculate the probability of it being statistically different (worse) than

sy (the best one) in terms of performance. This is equal to the proportion of bootstraps for

Chapter 5. Bootstrap-Based Dropping of Under-Performing Configurations 35

Algorithm 6 K-Fold Cross-Validation with Bootstrap Dropping

Input: A training set D = (x,y) € X x Y, A finite set of learning configurations C, A positive
integer K, A positive integer B, A threshold ¢

Output: A model M, An estimation of performance P of model M, A configuration c¢*

function: BD(D,C, K, B, a)
randomly partition D into K disjoint subsets Fj,7 = 1..K of approximately equal size
for i =1to K do
for each configuration c € C do
Preds; = f(F;, D\{F}},¢)
end for
Preds = UZ:l Predsy,
Y=y € U’;g:l F,
Carop = BED(y, Preds,C, B, t)
C= C\Cdrop
: end for
: for each configuration ¢ € C do
ée =7 M L(yi, Preds(z;, c))
: end for

¢ = argmin{é.}

ceC
. P =min{ée.}
ceC
. M=f(,D,c)
: return M, P, c*

e e ol

—_
(=)

— =
co

which ¢V had better performance than the i-th configuration:

B
P(e < ec(z) Z 6 (1) <é (Z)) (5.1)

where 1(condition) is equal to 1 if condition is true, and 0 otherwise. This is performed for all

the configurations ¢() and the ones that satisfy:

Plé,m <é.m) =t (5.2)

are those that will be eliminated.

For the number of bootstraps B we suggest that 1000 is a good enough value to ensure
an almost accurate estimate of equation 5.1. t, is a threshold on the probability defined in
equation 5.1. Essentially, it determines the number of bootstraps B out of B, that ¢ needs
to perform better than another configuration ¢, in order for ¢ to be dropped. For example,
for B = 1000 and t = 0.95, B = 950. The higher the value of ¢ is, the more conservative the
dropping procedure becomes (the more unlikely it becomes to drop a configuration).

We empirically show that BED significantly speeds up the running time of the K-Fold Cross-
Validation procedure since the number of the models that are trained throughout K-Fold CV are

reduced at least by 50%. We cannot explicitly measure the performance of the method in terms

36

Algorithm 7 Bootstrap-based Early Dropping

Input: A vector of output values y, An array of predictions Preds of size M x N, A set of
configurations C' = {¢1, ca,...cy'}, A positive integer B, A threshold a
Output: A set Cyyop of under-performing configurations

1. function: BED(y, Preds,C, B,t)
2: sort the configurations in C' by their mean error in ascending order to get C*)

{0(1)7 @, .., C(N)} # ¢ has the best performance
3: construct B bootstrap samples from Preds of size M x N with replacement
(Preds™), Preds®, ..., Preds(P)) # by sampling rows of Preds
4: Cdrop = @
5: for i = 2 to N do # for each ¢ i =2, .. N
6: forb=1to B do # for each bootstrap sample Preds®
(b b
7 eﬁ(% = ﬁ 22/[:1 L(y,g), Preds®) (g, c(l))
~(b b i
8 ei(z) = % 224:1 L(y,(§), Preds® (g, el))
9: end for
10: s=%) 1(é£12) < é[(:l()z)) # 1(condition = false/true) = 0/1

11: if s >t then

12: Cdrop = Cdrop U{C(Z)}
13: end if

14: end for

15: return Cyyp

of running time, since we had to ran the experiments on a few different machines with different
characteristics.

We have not compared BED to CVST in practice, and therefore we cannot make claims that
concern the running time and model selection properties of the two methods. However, there are
some points that make our method more appealing to use than CVST. The CVST method uses
linearly increasing subsets of data as training sets. If the sample size of the original data is small,
then CVST will probably not be applicable. Our method uses the bootstrap as a statistical test
in order to detect differences in performance between configurations which is general and can
be used independently of the learning task. The CVST method employs a different statistical
test for each task (e.g. the Friedman and the Cochran’s Q tests for regression and classification
respectively). Finally, the CVST method has a total number of four parameters that need to be
set by the user in contrast to BED which only has two: the number of bootstraps B and the
threshold ¢.

5.2.1 Discussion

A few comments on BED. It is a heuristic procedure mainly with focus on computational effi-
ciency, not statistical theoretical properties. Ideally, the null hypothesis to test for each configu-
ration ¢ would be the hypothesis that ¢ will be selected as the best configuration at the end of the

KCV procedure, given a finite number of folds remain to be considered. If this null hypothesis

Chapter 5. Bootstrap-Based Dropping of Under-Performing Configurations 37

is rejected for a given ¢, it should be dropped. Each of these hypotheses for a given ¢ has to
be tested in the context of all other configurations that participate in the KCV procedure. In
contrast, the heuristic procedure we provide essentially tests each configuration ¢® in isolation.
For example, it could be the case during bootstrapping, configuration ¢ exhibits a significant
probability of a better loss than M (not dropped by our procedure), but it could be that in all of
these cases, it is always dominated by some other configuration ¢\¥). Thus, the actual probability
of being selected as best in the end maybe smaller than the percentage of times it appears better
than ¢,

In addition, our procedure does not consider the uncertainty (variance) of the selection of
the current best method (). Perhaps, a double bootstrap procedure would be more appropriate
in this case [10] but any such improvements would have to also minimize the computational
overhead to be worthwhile in practice.

The computational cost is overcome by the strong theoretical properties of the bootstrap.
Our simulation based preliminary results have showed that McNemar’s test [11] did not work
well for small sample sizes. The obvious way would be to bootstrap the McNemar’s test statistic.
The big advantage of this general bootstrap method is that it can be employed with any type of
classification and regression task without the necessity of imposing any extra (possibly unrealistic)
assumptions and inherited by the need of performing appropriate tests.

A faster, again bootstrap based, early dropping method would be via ordering of the cumu-
latively aggregated performances of the models at each fold and performing the aforementioned
bootstrap dropping at each step. The speed-up factor is considerable, nevertheless, the propor-
tion of computational time of the CV protocol spent in this procedure is rather small and makes

no difference in the overall time.

38

Chapter 6
Experiments and Evaluation

In this Chapter we evaluate the Bootstrap Bias Correction Method (BBC) and compare it against
the K-Fold Cross-Validation (KCV), the Tibshirani and Tibshirani (TT), and the Nested K-Fold
Cross-Validation (NCV) estimates of performance. We also evaluate the Bootstrap-based Early
Dropping method (BED) for eliminating under-performing configurations along the way of Cross-
Validation. In Section 6.1 the simulation studies are presented. The experimental evaluation

using real data sets is presented in Section 6.2.

6.1 Simulation Studies

In order to assess the quality and investigate the properties of our bias correction method (BBC),
and compare it to other estimates of performance, we conducted extensive simulation studies.
We also test BED, our method for eliminating under-performing configurations within Cross-
Validation.

Without loss of generality we examined the case of binary classification, where the target
variable Y takes on only two discrete values (e.g. Y € {0,1}). We studied a variety of settings
for different combinations of values for the sample size M, the number of models N, and the
true performance Pj.... For the classification task we used the percentage of correctly classified
samples (i.e. classification accuracy) as the measure of performance. M and N take values
from {50, 100, 200, 300, 500, 1000} and {50, 100, 200, 300, 500, 1000, 2000}, respectively. We assume
that the true classification accuracy, Py, follows a beta distribution Be(a,b) with the mean pu
taking values from {0.6,0.7,0.8,0.9}. For each Py, 5 pairs of parameters were used, controlling
the variance of the beta distribution, ranging from high to low. Figure 6.1 shows the Beta
distributions from which the simulated predictions were produced.

For each setting an M x N array of predictions is constructed, with the given classification
accuracy, where the rows correspond to data instances/samples and the columns correspond to
the models inferred from different configurations (i.e. different combinations of algorithms and

hyper-parameter values for each step of the learning procedure).

40

———a=
35| T T as

—————a=
———a

ocoooo|d

wonononon
© N we

w
»
[

12

10

Figure 6.1: Density of the Be(a, b) distribution for the parameters used in the simulation studies.
The parameters are such that 4 = a/(a + b) = (0.6, 0.7, 0.8, 0.9).

The number of bootstraps for the BBC method was set to 500. The number of bootstraps
B and the threshold ¢ for the BED dropping method were set to 1000 and 0.99 respectively. In
all cases, the results were averaged over 500 repetitions.

We compared the K-Fold Cross Validation (KCV), Bootstrap Bias Correction (BBC), Nested
K-Fold Cross-Validation (NCV), Tibshirani and Tibshirani (TT), Bootstrap-based Early Drop-
ping (BED), and the BED with BBC methods in terms of bias of the estimated performance
(Section 6.1.1). Since we use classification accuracy as the measure of performance and every
fold of K-Fold Cross Validation contains the same number of data instances, the KCV, BBC,
NCV and TT protocols all select the same model. For the dropping method BED, which might
select a different model than the aforementioned methods, we also compute the model selection

error (Section 6.1.2).

6.1.1 Bias Correction Estimation

The bias of the estimation is computed as Bias = P — Piye, where P and Pirue denote the
estimated and the true performance of the selected model, respectively. The target value of Bias
is 0, indicating the absence of bias. A positive bias indicates a lower Pj,.,. than the one estimated
by the corresponding performance estimation method and implies the method is optimistic.

Figures 6.2-6.5 show the average bias, over 500 repetitions of the simulations for the different

Chapter 6. Experiments and Evaluation 41

settings, for the estimates of each of the methods examined for a true classification accuracy Piye
equal to 0.6, 0.7, 0.8, and 0.9 respectively. For each Py, only the most challenging cases are
presented. These are the cases where the simulated data are produced from a Beta distribution
with low variance (see Figure 6.1).

It is clear that the K-Fold Cross Validation (KCV) estimate of performance is optimistically
biased. The smaller the sample size, the proportionally higher the bias is. The reverse holds for
the number of models; the greater the number of models, the higher the bias is (in an almost
equal way up to a certain sample size). For higher rates of true performance the bias is lower
even for the small samples. For example, in Figure 6.2 (60% true accuracy), the bias of KCV
for sample size equal to 50 and number of models equal to 2000 is more than 8%, whereas in
Figure 6.5 (90% true accuracy) it is a little less than 6%.

The TT estimate of performance seems to be unsuitable for small sample sizes. Its bias
greatly varies with the number of models; it either corrects the bias by only a small amount or
it overestimates it. For larger sample sizes, it systematically over-corrects the bias.

BBC always provides slightly conservative estimates of performance (i.e. it slightly over-
corrects the bias of KCV). As the sample size increases, the bias tends to zero. Compared to TT,
it seems to be a lot more suitable for smaller sample sizes and produces less biased estimates.
For higher rates of true classification accuracy the bias gets even smaller.

NCV exhibits the smallest bias which slightly varies (being positive or negative) for sample
size < 200. NCV, however, is a lot more computationally expensive than BBC and T'T since the
number of models that need to be trained depends quadratically to the number of folds K.

BED exhibits similar results to those of KCV. BED with BBC (BED-BBC) produces the best
results, in terms of bias, performance and computational cost. For sample size > 100 it has the
smallest bias in absolute value (together with NCV), and it approaches zero at a much faster rate
than BBC.

All in all, NCV, BBC and BED-BBC provide the best results. NCV has the smallest bias but
is computationally expensive. BBC and BED-BBC, systematically, have negative bias (i.e. they
are more conservative in terms of performance estimation) with the latter approaching zero in a

much faster pace.

6.1.2 Model Selection Error

In order to evaluate the model selection properties of KCV and BED, we compute the following

quantity which we call model selection error PSSt — Pgclected phest

sy sy denotes the true performance

of the best model and Pgee’®? denotes the true performance of the selected model.

Figure 6.6 shows the model selection error for KCV and BED, which are the methods that, in
the case of the simulations, select different models. We notice that BED has the same or slightly
greater (no more than 0.005 points of accuracy) model selection error than KCV which means

that they select models of the same or similar performance.

42

KCV BBC
0.1 T T T T T T T T T T 0.1 T T T T T T
0.08
0.06 [
0.04
2 2 0.02
[} [}
(9] (9]
g g O T lasamSssaESSsEEssssss ol
[) k,*; =
Z -0.02 Z 002 @
0.04 0.04
0.06 0.06
0.08 0.08
01 01
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Sample Size Sample Size
NCV TT
0.1 T T T T T T T T T T 0.1 T T T T T
0.08 [1 0.08 [
0.06 [
0.04
2 0.02 2
[} [}
] L S . =i ")
e ortgmhe—— * ¢
o N o
Z 0.02 z
0.04
-0.06
0.08
01 01
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Sample Size Sample Size
BED BED-BBC
01 T T T T T T T T T 01 T T T T T T T T T T
0.08
0.06 [
0.04
2 @ 0.02
[} [}
[} [}
o o or=——— i it =1
& & e -
§ § A=
Z -0.02 Z -0.02
0.04 0.04
0.06 0.06
0.08 0.08
01 01
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Sample Size Sample Size
| —-+-— 50 models —-©-— 100 madels —-%-— 200 models 300 madele —-%-— 500 models —-A-— 1000 models —-8-— 2000 mode\s‘

Figure 6.2: Average performance bias for the estimates of KCV, BBC, NCV, TT, BED, and BED-
BBC for 60% true classification accuracy. KCV and BED are clearly optimistic for sample size
< 300. BBC is slightly conservative. TT’s bias greatly varies for sample size < 100 with the number
of models and overcorrects for sample size > 200. NCV and BED-BBC exhibit the smallest bias,
especially for sample size < 100.

Chapter 6. Experiments and Evaluation 43

KCV BBC
0.1 T T T T T T T T T T 0.1 T T T T T T
0.08
0.06 -
0.04
2 2 0.02
[} [}
(9] (9]
g g O T lasamSssaESSsEEssssss ol
[) k,*; =
Z -0.02 Z 002 @
0.04 0.04
0.06 0.06
0.08 0.08
01 01
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Sample Size Sample Size
NCV TT
0.1 T T T T T T T T T T 0.1 T T T T T
0.08 [
0.06 -
0.04
2 0.02 2
[} [}
o g a g
g ormgesEse -+ - g
o o
Z 0.02 z
0.04
-0.06
0.08 0.08
01 01
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Sample Size Sample Size
BED BED-BBC
01 T T T T T T T T T 01 T T T T T T T T T T
0.08 0.08 -
0.06 [0.06 [
0.04 0.04
@ 002 @ 0.02
[} 5 n [}
% oF~— e — = = — — = — T4 % 0% % - —h A= b= == =====maae
o o é’v =
[[
Z 002 Z 002}
0.04 0.04
0.06 0.06
0.08 0.08
01 01
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Sample Size Sample Size
| —-+-— 50 models —-©-— 100 madels —-%-— 200 models 300 madele —-%-— 500 models —-A-— 1000 models —-8-— 2000 mode\s‘

Figure 6.3: Average performance bias for the estimates of KCV, BBC, NCV, TT, BED, and BED-
BBC for 70% true classification accuracy. KCV and BED are clearly optimistic for sample size
< 300. BBC is slightly conservative. TT’s bias greatly varies for sample size < 100 with the number
of models and overcorrects for sample size > 200. NCV and BED-BBC exhibit the smallest bias,
especially for sample size < 100.

44

KCV BBC
T T T T T T 0.08 T T T T T T
0.06 [1
0.04 [1
g g oo 1
[} ()
(] 1)
(=} j=2
o I
g 2
< 002 <
-0.04 1 -0.04 1
-0.06 1 -0.06 b
0.08 0,08
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Sample Size Sample Size
NCV TT
0.08 T T T T T T T T T T T
0.06 [
0.04 [
g 0.02 g
[} o
(] 1)
g O EAma—E - * g
g g
< 002 <
-0.04
-0.06 1 -0.06 b
0.08 0,08
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Sample Size Sample Size
BED BED-BBC
0.08 T T T T T T T T T T 0.08 T T T T T T T T T T
006 B 0.06 1
Y
3
0.04 8 0.04 1
B\
V
0 0.02f &t\ @ 002 1
< ales ~ S 8
@ R . :
Q . @
O O~ —— e — e — — — —— — — — — O 0T R EC A e =1
<] I §m = -
[o 3
> >
< .002f < 002 1
-0.04 1 -0.04 F B
-0.06 1 -0.06 1
0,08 008
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Sample Size Sample Size
| —-+-— 50 models —-©-— 100 madels —-%-— 200 models 300 madele —-%-— 500 models —-A-— 1000 models —-8-— 2000 mode\s‘

Figure 6.4: Average performance bias for the estimates of KCV, BBC, NCV, TT, BED, and BED-
BBC for 80% true classification accuracy. KCV and BED are clearly optimistic for sample size
< 300. BBC is slightly conservative. TT’s bias varies with the number of models and overcorrects
for sample size > 500. NCV and BED-BBC exhibit the smallest bias, especially for sample size
< 100.

Chapter 6. Experiments and Evaluation

45

Average Bias

Average Bias

Average Bias

KCV

-0.02
-0.04
0.06
0 100 200 300 400 500 600 700 800 900 1000
Sample Size
NCV
0.06 T T
0.04 [
0.02
. P . bl vy
I
xX
-0.02
-0.04
0.06
0 100 200 300 400 500 600 700 800 900 1000
Sample Size
BED
0.06 T T T T T T T T T
-0.02
-0.04
-0.06

0

400 500 600 700 800 900 1000
Sample Size

100 200 300

0.06

0.04

0.02 -

Average Bias
o

-0.02

-0.04

-0.06

Average Bias

-0.04

-0.06

0.06

0.04 [

0.02 [

Average Bias
o

-0.02

-0.04

-0.06

BBC

s

el e S w
&;g,,,‘#
ol

.
0 100 200 300 400 500 600 700 800 900 1000

Sample Size

TT

.
0 100 200 300 400 500 600 700 800 900 1000
Sample Size
BED-BBC
T T T T T T T T T T
7777777777 g g— V.
f_*s—-- = s d
0 100 200 300 400 500 600 700 800 900 1000
Sample Size

| —-+-— 50 models —-S-— 100 madels —-3-— 200 models

300 madele —-%-— 500 models —-A-— 1000 models —-8-— 2000 mode\s‘

Figure 6.5: Average performance bias for the estimates of KCV, BBC, NCV, TT, BED, and BED-
BBC for 90% true classification accuracy. KCV and BED are clearly optimistic for sample size

< 500. BBC is slightly conservative.

TT’s bias varies with the number of models.

BED-BBC exhibit the smallest bias, especially for sample size < 100.

NCV and

46

KCV-60% BED-60%
0.045 T T T T : . - - T 0.045 T T T T - - - - -
0.04 [1 0.04 1
0.035 1 0.035 1
2 oo03f — 2 o003t 4
w w
c o
S 0025 F 1 2 0.025 4
o O
< o
& oo2f — & o002t 4
g g
o b 4 o b 4
g 0015 g 0015
0.01 1 1 0.01 g
0.005 1 0.005 1
0 0
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Sample Size Sample Size
KCV-70% BED-70%
0.045 T T T T : . - - T 0.045 T T T T - - - - -
0.04 [1 0.04 1
0.035 1 0.035 1
2 oo03f — 2 o003t 4
w w
c c
S 0025 F 1 2 0.025 4
o O
< °
& oo2f — & o002t 4
g g
o F < [=] . 4
g 0015 g 0015
0.01 1 1 0.01f g
0.005 1 0.005 1
0 0 - PR n P P
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Sample Size Sample Size
KCV-80% BED-80%
0.045 T T T T T T T T T T 0.045 T T T T T T T T T
0.04 [1 0.04 1
0.035 [1 0.035 1
2 o0o03f 1 2 o03f g
w w
c c
2 0025 1 200251 q
]]
& o002t 4 & o002 1
3 3
i<} F el o F -
S o015 S o015
0.01 [1 001 1
0.005 $:- 1 0.005 - % B
¥ +
° N . " — A " H 0 o PR " . A " N
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Sample Size Sample Size
KCV-90% BED-90%
0.045 T T T T T T T T T T 0.045 T T T T T T T T T
0.04 [1 0.04 1
0.035 [1 0.035
2 o0o03f 1 2 o03f
w w
c c
20025 1 200251
3 o
& o002t 4 & o002
3 2
o b 4 o .
S o015 S o015
0.01 [1 001
0.005 [1 0.005
0 0
0 100 200 300 400 500 600 700 800 900 1000 0
Sample Size Sample Size
| —-+-— 50 models —-2-— 100 models —-3-— 200 models 300 madele —-%-— 500 models —-A-— 1000 models —-8-— 2000 mode\s‘

Figure 6.6: Model selection error for KCV and BED for true classification accuracy e
{60,70,80,90}%. BED has the same or slightly greater (no more than 0.005 points of accuracy)
model selection error than KCV. The error decreases with higher rates of true classification accuracy.

Chapter 6. Experiments and Evaluation

47

1.0004 [~

1.0002 [~

-

Relative True Performance

o o

0.999 -

0.9988 -

0.9986

Figure 6.7:

BED/KCV

|
|
|
|
1

0.9998

0.9996

9994 -

9992 -

|

|

|
-

L
70%

True Classification Accuracy

L
80%

L
90%

o o o
> I
-

4
@

Relative Number of Trained Models
3
®»

o
o

o
e
T

o
IS
T

BED/KCV

70%

True Classification Accuracy

80%

Boxplots of the relative true performance (left) and the relative number of

trained models (right) for true classification accuracy € {60,70,80,90}% for all sample sizes

({50, 100, 200, 300, 500, 1000}) and number of configurations ({50, 100,200, 300,500, 1000,2000}) for
the BED and KCV methods. There is a negligible to no effect on performance when using the BED

method. However, the number of models that are trained is greatly reduced.

6.1.3 Relative Performance and Number of Trained Models

Apart from the model selection error, we also compared the KCV and BED (BED-BBC) methods
in terms of the true performance of the models that they select. We also evaluated the speed
up factor that we get with the BED method relatively to KCV in terms of the total number
of trained models. Figure 6.7 shows the boxplots of the relative average true performance of
the final selected models of the BED and KCV methods (on the left), and the relative average
number of trained models for the two methods (on the right) for true classification accuracy
Pirye € {60,70,80,90}%, for all sample sizes ({50, 100, 200, 300, 500, 1000}) and number of config-
urations ({50, 100, 200, 300, 500, 1000, 2000}). We notice that there is a negligible to no effect on
performance when using the BED method. However, the number of models that are trained is
greatly reduced. The results vary with true classification accuracy. For Pj... = 90% more models
are trained (less are dropped) and the loss in performance is lower in comparison to Py = 60%,

which is expected since in the former case the majority of models are “good” predictors.

48

6.2 Experiments on Real Datasets

6.2.1 An Automated Pipeline for Supervised Machine Learning

In order to evaluate the performance of both the bootstrap-based bias correction (BBC) and
the bootstrap-based early dropping method (BED), we built an automated tool for supervised
machine learning. The tool will automatically perform a complete analysis of a given dataset,
offering numerous options to the user in regards to learning tasks, data preprocessing and feature
selection methods, learning algorithms, metrics to use for optimization and performance estima-
tion protocols. Its modular architecture allows for the easy incorporation of additional methods

for all the aforementioned categories.

Data Preprocessing

Data preprocessing methods are methods that change the feature values and that are always
applied whenever they can. Such methods include imputation of missing values, standardization
of numerical input variables and binarization of categorical input variables (i.e. the levels of a
categorical variable are coded as a collection of binary variables). As suggested in [12], in the
case that the training algorithm is the e-SVM, we also scale the values of the target variable, in
order to bound the effective range of the values of the hyper-parameter ¢, making it thus easier

to choose values for e.

Feature Selection

Feature selection (FS), also known as variable selection, is the process of identifying the most
salient features for learning, allowing thus the learning algorithm to focus on those aspects of the
data most useful for analysis and future prediction.

By removing as much irrelevant and redundant information (features) as possible, the dimen-
sionality of the data can be significantly reduced thus allowing the learning algorithms to operate
more effectively and faster. Feature selection can also improve the predictive performance of
learned models which will usually be simpler and more easily understood and interpreted.

The automated tool, for the time being, offers the options of using all the features for training
(no FS method applied) and performing feature selection using the SES [13] and the LASSO [11]
algorithms. Feature selection with LASSO works by fitting the LASSO to the data and choosing
features corresponding to non-zero model coefficients.

We have also implemented group-SES which is a variation of the SES algorithm to allow
predefined groups of variables to be selected into or out of a model together. This is useful in
the case that there exist categorical variables in the data. Group-SES can ensure that all the
binary variables encoding a categorical variable are either included or excluded from the training

procedure.

Chapter 6. Experiments and Evaluation 49

The aforementioned feature selection methods fall into the the category of filters. Filter type
methods select variables regardless of the learning algorithm. They are, essentially, a preprocess-
ing step to the learning procedure. These methods are particularly effective in computation time
since they do not require re-execution on a specific dataset for different learning algorithms. The

results can be cached and used repeatedly.

Model Selection and Assessment

The automated tool offers a variety of methods for model selection and assessment such as Hold-
Out Cross-Validation, K-Fold Cross-Validation (KCV), Nested K-Fold Cross-Validation, KCV
with dropping (BED), KCV with the Tibshirani and Tibshirani bias correction method, KCV
with the bootstrap-based bias correction method (BBC), BED with BBC, as well as the stratified
and repeated versions of all the aforementioned methods.

Currently, the tool provides the options of conducting either a classification or a regression
analysis. For both tasks, the learning algorithms involved in the analysis include Random Forests
as implemented in Matlab 2015b, SVMs as implemented in the libsvm library [15], LASSO,
Decision Trees and Logistic Regression as implemented in Matlab 2015b. For the classification
task the metrics of performance that can be optimized are accuracy, balanced accuracy, AUC,
precision, recall and the F1 measure. For regression the metrics include the R-squared score,

mean squared error (MSE), and mean absolute error (MAE).

6.2.2 Experimental Set-Up

The experimental set-up is similar to the one used by Tsamardinos et al. in [10].

Datasets

The datasets that were used for the experiments are from the first round of the Chal.earn AutoML
challenge [16]. The organizers of the challenge mention about the datasets that “the domains
of application are very diverse and are drawn from: biology and medicine, ecology, energy and
sustainability management, image, text, audio, speech, video and other sensor data processing,
internet social media management and advertising, market analysis and financial prediction”.
Table 6.1 summarizes the datasets’ characteristics. The ratio of the positive and negative classes
for all the datasets is 50:50.

Each dataset D was spit into two subsets, Do which consisted of 30% of the data in-
stances/points of D and Dpygour Which consisted of the remaining 70% of the data in D.
Dpoor was used to sample (without replacement) 10 subsets for each of the sample sizes in
{20, 40, 60, 80, 100, 500} leading in the creation of 5 x 10 x 6 = 300 sub-datasets in total. Dpojqout
was used to estimate the true performance of the final, selected model of each of the methods

tested.

50

Table 6.1: Datasets Used; |Dpoei| refers to the portion of the datasets (30%) from which the
sub-datasets were sampled and |Dj,g40ut| to the portion (70%) from which the true performance
is estimated.

Name #Samples #Variables |Dpoot| | Dholdout|
christine 5418 1636 1625 3793
jasmine 2984 144 895 2089
philippine 5832 308 1749 4082
madeline 3140 259 942 2198
sylvine 5124 20 1537 3587

Model Selection and Performance Assessment

The set of configurations C' (i.e. the search grid) is constructed, by the automated tool, based
on the learning task and the characteristics of the dataset to be analyzed. For the purpose of the
experiments, and for the classification task that we examined, we restricted the search grid to a
few hundreds of configurations, in order to be able to test all the different methods (especially
NCV which is computationally expensive). The preprocessing methods were used when they
could be applied. For feature selection we only included the SES algorithm and we also tested
the case of no feature selection. The learning algorithms that we examined are Random Forests,
SVMs, and LASSO.

The hyper-parameters that were tested for SES are (alpha, k) € {0.05,0.01} x {2, 3}. For Ran-
dom Forests the space of hyper-parameters was (numTrees, minLeaf Size, numVarToSample) €
{1000} x {1,3,5} x {(0.5,1,1.5,2) % sqrt(numVar)}, where numVar is the number of vari-
ables of the dataset. We tested SVMs with linear, polynomial and RBF kernels. For their
hyper-parameters we examined, wherever applicable, all the combinations of degree € {2,3},
gamma € {0.01,0.1,1, 10,100} and cost € {0.01,0.1,1,10, 100}. Finally, LASSO was tested with
all the combinations of alpha = {0.001,0.5,1.0} and 10 values for lambda which are created in-
dependently for each dataset using the glmnet library [17]. Overall, the number of configurations
in C for each dataset is equal to 610.

For the assessment of the performance of the models inferred from the configurations in C,
we used the Area Under the Receiver’s Operating Characteristic Curve (AUC) [48] which is
independent of the prior class distribution. The ROC curve is the curve that illustrates the
performance for a binary classification problem, when a threshold is varied on the predictions. It
is the curve of sensitivity, also known as recall or true positive rate, plotted against 1-specificity

which is also known as false positive rate.

6.2.3 Bias and variance estimation

We performed model selection and evaluation using KCV, NCV, TT, BBC, and BED for each of
the 300 created sub-datasets. For the KCV protocol we used K = 10 and we applied the same

Chapter 6. Experiments and Evaluation 51

split of the folds for all the other methods. It is important to note again, that when the BBC
method is used we first pool the out-of-sample predictions of KCV and then the performance of
each model is computed as the average performance of all the out-of-sample predictions. Usually,
the performance for each model is computed as the average performance for each fold and then
over all folds. In the case of some metrics, such as classification accuracy, the model that will
be selected in each case will be the same. However, in the case of using AUC as a metric of
performance , it is possible that the two methods (pooling and averaging over all folds) result in
different orderings of the models and consequently, the models that the two methods select could
be different. For that reason, we have two versions of KCV, the KCV-pooling which selects the
same model as BBC, and the KC'V-average over folds which selects the same model as NCV and
TT. BED uses the pooling of the predictions approach. For NCV, K was set to 9 for the inner
KCV loop, and 10 for the outer.

The bias of the estimations is computed as Bias = P — Piyrye, where P and P, denote the
estimated and the true performance of the selected model, respectively. The target value of Bias
is 0, indicating the absence of bias. A positive bias indicates a lower Pj.,. than the one estimated
by the corresponding performance estimation method and implies the method is optimistic. For
each protocol, original dataset, and sample size, we compute the average bias and its standard

deviation over the 10 sub-samplings.

6.2.4 Results and Discussion
Bootstrap Bias Correction

Figures 6.8 and 6.9, present the average performance bias and the standard deviation of the
performance bias, respectively, for KCV-pooling, BBC, KCV-average over folds, NCV and TT.
KCV-pooling and KCV-average over folds, overestimate performance especially for small sample
sizes (< 100). BBC and NCV, both correct the bias of the corresponding KCV variation in a
mostly conservative way. T'T is optimistic for sample size equal to 20 and over-corrects the bias
for sample size = 60 for most of the datasets compared to BBC and NCV. The two variants of
KCV have the smallest stds. BBC, NCV and TT have similar stds, although results vary with
dataset.

Figure 6.10 presents the average performance of the different protocols as well as the true
performance of the models they select (performance evaluated on the holdout set). The protocols
of each column select the same model. Figure 6.11 shows the corresponding std of performance
for all methods.

The second column of Table 6.2 shows the percentage of times, over all sub-datasets, for all
sample sizes that KCV-pooling and BBC select the same model as KCV-average over folds, NCV
and TT. Although the two variants of KCV mainly select different models, the true performances
of the models they select (see Figure 6.10) show minor difference in points of AUC and also

similar stds of performance (see Figure 6.11).

52

Average Bias

Average Bias

KCV-pooling

0.4

0.3

ook, 02 —+-—zylving
9
& madeling
®
S 0.1 L .
5 o
g 3¥-— philippine
< —-=-—jasming

—-3-—chrigtine
-0.1 -0.1
0.2 -0.2
20 40 60 80 100 500 20 40 60 80 100 500
Sample Size Sample Size
KCV-average over folds NCV TT
0.4 T T 0.4 04
03 0.3 03
0.2 0.2

8 8
o o
%01 2
g g
2 g
< <

0.1

60 80
Sample Size

500

0.2
20

40

60 80 100 500
Ssample Size

Sample Size

Figure 6.8: Average performance bias for the estimates of KCV-pooling, KCV-average over folds,
BBC, NCV and TT. KCV-pooling exhibits lower bias than KCV-average over folds. BBC and
NCV, both correct the bias of the corresponding version of KCV in a conservative way, although
results vary with dataset. TT over-corrects compared to BBC and NCV and its bias is higher

for sample sizes equal to 40.

STD Bias

STD Bias

KCV-pooling

03

0.25

0.2

0.15

STD Bias

0.15

60 80
Sample Size

KCV-average over folds

40

60 80 100 500
Sample Size

NCV

—-+-—sylvine
madeling
—-%-— philippine

—-=-—jasming
—-3-—chrigtine

TT

03

0.25

0.2

0.15F

STD Bias

STD Bias

Sample Size

Ssample Size

sample Size

Figure 6.9: Standard deviation of bias for the estimates of KCV-pooling, KCV-average over folds,
BBC, NCV and TT. KCV has the smallest variance but it overestimates performance. BBC, NCV

and T'T exhibit similar stds, although results vary with dataset.

Chapter 6. Experiments and Evaluation 53

Holdout (KCV-average over folds)

Holdout (KCV-pooling)

1 1
_________ B ety S
09 1 09
08 o mmmm P 08k e 7T
o ———— _ o e 3
=) : =) -
< i < -
&o7 ke — ke vt =R &o7 Homme kK
§ L o g - -
S % s T > P
< =T < T T
06 -~ 06T 7
osfF T 1 osf T
0.4 0.4
20 40 60 80 100 500 20 40 60 80 100 500
Sample Size Sample Size
. KCV-average over folds KCV-pooling
T T 1 T T T T
______ T S [S
+ ————— + -+
09
. E T T T
0.8% =
- ¥~ He -k
8 KB X R g g Lo Tl _ ,’)(----- ¥ TS
E < Rz TR T
@ —_— @
?N 307 o
o o
2 2
0.6 06
05 1 05
04 04
20 40 60 80 100 500 20 40 60 80 100 500
Sample Size Sample Size
NCV BBC
1 T T 1 T T
P s = e .
,,,,,,,,, e - e I
b -+ e R T T T -
09 1 09
0.8 08
] I 8] "
=] 3 -
< <
o7 So7
o o
g - E
z s z /’/,,
06% " 069 T — T
05f P 1 05
0.4 0.4
20 40 60 80 100 500 20 40 60 80 100 500
Sample Size Sample Size
TT
1P T T T T
Iy el B 4
e
09
o8 T e e —-+-—syhine
Q ~. T/ T * i
2 S e —-@-— madeline
207 N\ ‘* PR *
= N 8 * e . S i H
& . ~ e -
g . ~ - e philippine
. ~ - . , . .
< N Sy . R —
06 N * //,)e,,,,,g/ . jasming
S X T T / H H
oo —-#-—chrigtine
05 . @
04 . .) .
20 40 60 80 100 500
Sample Size

Figure 6.10: Average performance for the estimates of KCV-pooling, KCV-average over folds,
BBC, NCV and TT and the true performance of the models that they select (Holdout). The
methods of each column select the same model. KCV-pooling and KCV-average over folds
over-estimate the performance. BBC and NCV are slightly conservative and T'T mainly over-
estimates for small sample sizes and over-corrects for larger ones.

54

Holdout (KCV-average over folds) Holdout (KCV-pooling)

035 035
03f 1 03f
025 f 1 025

(8] L (6] L

5 02 Q 02

2 2

g o

5 015 5 015

e . oo
60 80 100 500
Sample Size Sample Size
KCV-average over folds KCV-pooling
0.35 T T 0.35 T T T T
03r 1 03
0.25 1 0.25
8] L) L
8 o2 g o2
< <
e o
5 0154 5 o1st

Sample Size Sample Size
035 NCV ‘ ‘ 035 ‘ ‘ BBC
03F 1 03t
025 1 025

021

STD AUC
STD AUC

01sF ~

Sample Size Sample Size
TT
0.35 T T T T
03fF
025 _
—-+-—syline
8 —-&-— madeling
< o .
e —-#%-— philippine
—-=-—jasmine
—-2-—christine

Sample Size

Figure 6.11: Standard deviation of performance for the estimates of KCV-pooling, KCV-average
over folds, BBC, NCV and TT and the true performance of the models that they select (Holdout).
The methods of each column select the same model. Holdout and KCV have the lower stds. BBC,
NCV and TT have similar stds.

Chapter 6. Experiments and Evaluation 55

We could conclude that the two variants of KCV exhibit similar results and that BBC and
NCV are the most promising methods for performance estimation. However, BBC is a lot less
computationally expensive than NCV with the latter having to train about K times the number of
models that BBC does. If computational time is an issue, BBC is clearly the optimal choice. T'T
also has low computational overhead with respect to KCV, however it appears to be unsuitable

for small sample sizes and over-corrects for larger sample sizes.

Dropping of Under-Performing Configurations

Figures 6.12 and 6.13 show the bias and std of performance, respectively, of BED and BED-BBC
for B = 1000 and t € {0.90,0.95,0.99}. Both methods exhibit lower bias than KCV. BED-BBC
corrects the bias of BED by only a small amount. It is mainly conservative with the exception of
the madeline and christine datasets for small sample sizes (< 40). The aforementioned datasets
have similar behaviour with BBC and NCV (positive bias). However, BED and BED-BBC have
mainly higher stds than KCV, BBC and NCV.

In terms of the true performance of the models that are selected, BED shows insignificant
loses compared to KCV. Figure 6.16 shows the boxplots of the relative true performance of the
final models selected by the BED and KCV methods (on the left column), and the relative average
number of trained models for the two methods (on the right column), for the sylvine, madeline,
philippine, jasmine, and christine datasets and all sample sizes ({20, 40, 60, 80,100, 500}). Indeed,
we see that the maximum loss of performance is 6%. For the madeline, philippine, and jasmine
datasets we also notice an increase in performance. However, for the jasmine and christine
datasets there exist outliers that have greater loss in performance. This raises the need for the
experiments to be replicated on a larger number of sub-datasets (= 50). The number of models
that are being trained during BED varies with the value of the threshold ¢. The lower t is, the
lower the number of trained models. For ¢t = 0.90, at most 22% of the 6100 models that are
trained throughout KCV, are actually trained. For ¢ = 0.99, this percentage is at most 51%
(shown also in Table 6.2).

It is clear that there is a huge gain in computational time, even with the strictest value for
the threshold ¢. The loss in performance is negligible especially for larger values of sample size
which is when the dropping method will be the most useful.

Columns 5-7 of Table 6.2 show in detail the relative average number of trained models for the
BED and KCV methods for all datasets, sample sizes and values of threshold .

BED and BED-BBC seem to be suitable for the computationally costly larger values of
sample size, since there is no or insignificant loss in performance and the number of models that

are trained are greatly reduced, resulting in a much faster method than KCV.

56

Average Bias

Average Bias

Average Bias

-0.15

0.1rF

BED, t=0.90

011

20

40

60 80 100 500
Sample Size

Average Bias

Average Bias

Average Bias

-0.15

BED-BBC, t=0.90

01F 01F
-0.15 - - - - -0.15 - - - -
20 40 60 80 100 500 20 40 60 80 100 500
Sample Size Sample Size
BED, t=0.95 BED-BBC, t=0.95
01r 0.1

011

01F 01F
-0.15 - - - - -0.15 - - - -
20 40 60 80 100 500 20 40 60 80 100 500
Sample Size Sample Size
BED, t=0.99 BED-BBC, t=0.99
0.1 0.1

20

40

60 80 100 500
Sample Size

| —-+-—syline —9-— madeline —-%-— philippine —--=-— jasmine —-3-— chrigtine |

Figure 6.12: Average performance bias for the estimates of BED and BED-BBC for B = 1000
and different values of the threshold ¢. They all exhibit similar results, with BED-BBC with
t = 0.99 having the lowest bias. BBC has a minor effect on the correction of the bias of BED
for the datasets.

Chapter 6. Experiments and Evaluation

57

BED-BBC, t=0.90

Sample Size

BED-BBC, t=0.95

Sample Size

BED-BBC, t=0.99

BED, t=0.90
0.3 T T T T 0.3
0.25 1 0.25
0.2 q 0.2
0 0
o] o]
[[
o 015 a
= =
%) %)
0.1}
0.05
0
20
Sample Size
BED, t=0.95
0.3 T T T T 0.3
0.25 1 0.25
0.2 q 0.2
0 0
o] o]
[[
o 015 a
= =
%) %)
0.1f
0.05
0
20
Sample Size
BED, t=0.99
0.3 T T T T 0.3
0.25 - q 0.25
0.2 q 0.2
0 0
o] o]
[3] ['3]
Qo 015 a
= =
%) %)
0.1
0.05

Sample Size

Sample Size

| —-+-—syline —9-— madeline —-%-— philippine —--=-— jasmine —-3-— chrigtine |

Figure 6.13: Standard deviation of bias for the estimates of BED and BED-BBC for B = 1000

and different values of the threshold ¢. They all exhibit similar results.

58

Holdout (BED, t=0.90)

Holdout (BED, t=0.95)

Holdout (BED, t=0.99)

Average AUC

Average AUC

0.9

085F _.—-
09
085
08

0.75

Average AUC

0.7

q o ©
05 0.5
20 40 60 80 100 50C 20 40 60 80 100 500
sample Size sample Size Sample Size
BED, t=0.90 BED, t=0.95 BED, t=0.99
1 1 1
0.95 -
— R JE -
P + —+
0.9 1

Average AUC

Average AUC

Average AUC

Sample Size

BED-BBC, t=0.90

100

500

60 80
Sample Size

500

BED-BBC, t=0.90

40

60 80
Sample Size

100

BED-BBC, t=0.90

Average AUC

Average AUC

Average AUC

20 40 60 80
Sample Size

100

60 80
Sample Size

100
Sample Size

| —-+-—syline —9-— madeline —-%-— philippine —--=-— jasmine —-3-— chrigtine |

Figure 6.14: Average performance for the estimates of BED and BED-BBC for different thresh-
olds ¢ and the true performance of the models that they select (Holdout). The methods of each
column select the same model. BED and BED-BBC are slightly conservative.

Chapter 6. Experiments and Evaluation 59

Holdout (BED, t=0.90)

Holdout (BED, t=0.95)

Holdout (BED, t=0.99)

03 03 T T 03 T T
025 1 0.25 1 0.25
0.2 b 0.2 b 02
Q Q Q
2 2 2
5015 1 Qo1 1 5015
= = =
0 0 1
P -
0
20 40 60 80 100 500
Sample Size Sample Size Sample Size
BED, t=0.90 BED, t=0.95 BED, t=0.99
03 03 03
025 b 025 b 025
0.2 b 0.2 b 02
o o 18]
2 2 2
;0 5 015 1 a
= = e
» » 12
0.1 b
005 b
¥
0 0
20 40 60 80 100 500 20 40 60 80 100 500
Sample Size Sample Size Sample Size
BED-BBC, t=0.90 BED-BBC, t=0.90 BED-BBC, t=0.90
03 03 03
025 b 025 b 025
0.2 b 0.2 b 02
o o 18]
2 2 2
;0 5 015 a
= = e
» » 12
0.1
005
0
20 40 60 80 100 500 20 40 60 80 100 500
Sample Size Sample Size Sample Size

| —-+-—syline —9-— madeline —-%-— philippine —--=-— jasmine —-3-— chrigtine |

Figure 6.15: Standard deviation of performance for the estimates of BED and BED-BBC for
different thresholds ¢ and the true performance of the models that they select (Holdout). The
methods of each column select the same model. They all have similar stds.

Table 6.2: Under Model selection: the percentage of the times, over the 10 sub-datasets, that the
model selected by KCV-pooling and BBC is the same as the one selected by NCV (KCV-average
over folds and TT), and BED for different thresholds ¢. Under Number of trained models: the
number of models trained by BED relatively to KCV.

Model selection Number of trained models
NCV BED BED

t=090 t=095 t=0.99 t=090 t=095 t=0.99
20
sylvine 20% 20% 20% 20% 10% 10% 10%
madeline 20% 10% 10% 10% 10% 10% 10%
philippine 20% 0% 0% 0% 10% 10% 10%
jasmine 10% 0% 0% 0% 10% 10% 10%
christine 20% 0% 0% 0% 10% 10% 10%
40
sylvine 30% 0% 0% 0% 10% 10% 10%
madeline 20% 0% 0% 0% 10% 10% 10%
philippine 30% 0% 0% 0% 10% 10% 10%
jasmine 20% 0% 0% 0% 10% 10% 10%
christine 30% 20% 20% 30% 16% 18% 20%
60
sylvine 0% 0% 0% 0% 10% 10% 10%
madeline 30% 20% 20% 30% 12% 17% 29%
philippine 0% 0% 0% 0% 11% 13% 12%
jasmine 30% 20% 30% 30% 15% 21% 31%
christine 20% 0% 0% 20% 11% 15% 20%
80
sylvine 30% 0% 0% 0% 10% 10% 10%
madeline 40% 20% 80% 80% 15% 23% 51%
philippine 30% 10% 30% 30% 1% 12% 14%
jasmine 10% 60% 60% 70% 18% 26% 43%
christine 10% 30% 40% 50% 17% 21% 29%
100
sylvine 40% 20% 20% 20% 13% 13% 15%
madeline 20% 10% 10% 20% 14% 16% 24%
philippine 40% 50% 60% 90% 18% 23% 39%
jasmine 20% 20% 30% 40% 16% 20% 32%
christine 30% 50% 50% 60% 13% 15% 25%
500
sylvine 40% 40% 70% 80% 19% 25% 35%
madeline 90% 90% 100% 100% 13% 15% 23%
philippine 40% 90% 100% 100% 20% 26% 36%
jasmine 30% 40% 60% 90% 19% 29% 51%

christine 60% 90% 100% 100% 22% 29% 40%

Chapter 6. Experiments and Evaluation

61

(BED, t=0.90)/KCV-pooling

T T
102 J—
B e S -
:] -
% 0.98
£ [
S 096
5]
e 0.94 - !
g : 1
=
© 092
=
k]
= +
o} L
& 0.9
0.88 [
0.86 [
. . +
sylvine madeline philippine jasmine christine
Datasets
(BED, t=0.95)/KCV-pooling
T T T T T
1.02f . -
1 1 —_ [:|
g E i:‘
S 098 |
[
E
S 096
@ 1
a
© 0.94F
=
=
© 092
=
k]
= +
T L
& 0.9
0.88 [
0.86 [*
sylvine madeline philippine jasmine christine
Datasets
(BED, t=0.99)/KCV-pooling
T T T T T
102 —_ N
=
= L
S 098 e
[
E
S 096
T 1
a
© 0.94
=
=
© 092
=
k]
= +
T L
& 0.9
0.88 [
+
0.86 [
sylvine madeline philippine jasmine christine

Datasets

Relative Number of Trained Models Relative Number of Trained Models

Relative Number of Trained Models

IS
IS
a

o
i

o
w
a

o
w

o
N
a

o
)

o
s
@

o
s

3
=}
&

o

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.05

Figure 6.16: Boxplots of the relative true performance

trained is greatly reduced.

(BED, t=0.90)/KCV-pooling

+ g E E
sylvine madeline philippine jasmine christine
Datasets
(BED, t=0.95)/KCV-pooling
T T T T T

T —
+ T |
e
i g
i_i| ‘
] .
sylvine madeline philippine jasmine christine
Datasets
(BED, t=0.99)/KCV-pooling
T T T T T
T T
| |
|
|
I - N
| |
+ I I
| — |
|
|
] ‘
[1
sylvine madeline philippine jasmine christine
Datasets

(left column), and

the relative number of
trained models (right column) for the sylvine, madeline, philippine, jasmine, and christine datasets
for all sample sizes ({20,40,60,80,100,500}) for the BED and KCV methods. There is a negligible
to no effect on performance when using the BED method, However, the number of models that are

62

Chapter 7

Conclusion

7.1 Contribution

We have presented a bootstrap-based bias correction (BBC) method for correcting the bias of
the Cross-Validation estimate of performance. It is a general method which works regardless
of the data analysis task (e.g. classification, regression) or the structure of the models being
involved in it. It has low computational overhead with respect to the Cross-Validation procedure
and produces almost unbiased expected performance estimates even when the number of training
samples is small. Compared to other methods for performance assessment, BBC was proven to
overcome their limitations, thus making it the most appealing method for use.

We also presented a method for eliminating under-performing configurations within the Cross-
Validation procedure (BED) in order to speed it up with a negligible to no effect on performance.
The method also uses the bootstrap as a hypothesis test for the hypothesis that a configuration
exhibits equal performance as the currently best one. The test is employed in every new iteration
of Cross-Validation. When the hypothesis can be rejected based on the predictions in only a
few available folds, the configuration is dropped (eliminated) from further consideration and no
additional models are trained on remaining folds.

The combination of the the two methods yield the BED-BBC procedure which produces

reliable estimates of performance with low computational cost.

7.2 Future Work

The BBC and BED methods need to be thoroughly examined for other data analysis tasks
(e.g. multiclass classification, regression) and for different number of configurations. The main
drawback of the experimental set-up is the low number (10) of sub-datasets that we create for
each dataset and sample size. Although the results consort with the simulations and results from
other publications, we still need to repeat the experiments with a greater number of sub-datasets

(= 50).

64

We, also, plan to evaluate the use of bootstrap for constructing confidence intervals using the
percentile method and the more sophisticated BC, method. In addition, we will be investigating
the effects of repeats on the BBC and BED-BBC methods in terms of performance estimation
bias and model selection properties (i.e. test BBC and BED with Repeated Cross-Validation).

Finally, we need to empirically compare BED to the CVST method [20] and also explore

different approaches for dropping under-performing configurations within Cross Validation.

Bibliography

1]

V. Vapnik, The Nature of Statistical Learning Theory. Springer-Verlag New York, Inc.,
1995.

R. Tibshirani and R. Tibshirani, “A bias correction for the minimum error rate in cross-
validation,” The Annals of Applied Statistics, vol. 3, pp. 822-829, 2009.

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data
Mining, Inference and Prediction. Springer, 2009.

R. Kohavi, “A study of cross-validation and bootstrap for accuracy estimation and model
selection.” Morgan Kaufmann, 1995, pp. 1137-1143.

Y. Bengio and Y. Grandvalet, “No unbiased estimator of the variance of k-fold cross-
validation,” The Journal of Machine Learning Research, vol. 5, pp. 1089-1105, 2004.

S. Varma and R. Simon, “Bias in error estimation when using cross-validation for model
selection,” BMC' bioinformatics, vol. 7, 2006.

R. B. Rao and G. Fung, “On the dangers of cross-validation. an experimental evaluation,”
International Conference on Data Mining, pp. 588-596, 2008.

G. Cawley and N. Talbot, “On over-fitting in model selection and subsequent selection bias
in performance evaluation,” The Journal of Machine Learning Research, vol. 11, pp. 2079—
2107, 2010.

C. Bernau, T. Augustin, and A. Boulesteix, “Correcting the optimal resampling-based error
rate by estimating the error rate of wrapper algorithms,” Biometrics, vol. 69, no. 3, pp.
693-702, 2013.

I. Tsamardinos, A. Rakhshani, and V. Lagani, “Performance-estimation properties of cross-
validation-based protocols with simultaneous hyper-parameter optimization,” in Artificial
Intelligence: Methods and Applications. Springer, 2014, pp. 1-14.

Y. Ding, S. Tang, S. Liao, J. Jia, S. Oesterreich, Y. Lin, and G. Tseng, “Bias correction for
selecting the minimal-error classifier from many machine learning models,” Bioinformatics,
vol. 30, no. 22, pp. 3152-3158, 2014.

D. Jensen and P. Cohen, “Multiple comparisons in induction algorithms,” Machine Learning,
vol. 38, pp. 309-338, 2000.

L. Breiman, J. Friedman, C. Stone, and R. Olshen, Classification and Regression Trees.
Taylor & Francis, 1984.

B. Efron and R. Tibshirani, An introduction to the bootstrap. Chapman & Hall, 1993.

M. Stone, “Cross-validatory choice and assessment of statistical predictions,” Journal of the
Royal Statistical Society. Series B (Methodological), vol. 36, no. 2, pp. 111-147, 1974.

66

[16]
[17]

18]

[19]

D. Allen, “The relationship between variable selection and data agumentation and a method
for prediction,” Technometrics, vol. 16, no. 1, pp. 125-127, 1974.

S. Geisser, “The predictive sample reuse method with applications,” Journal of the American
Statistical Association, vol. 70, no. 350, pp. 320-328, 1975.

C. Bernau, T. Augustin, and A.-L. Boulesteix, “Correcting the optimally selected
resampling-based error rate: A smooth analytical alternative to nested cross-validation,”
2011.

D. Krstajic, L. Buturovic, D. Leahy, and S. Thomas, “Cross-validation pitfalls when selecting
and assessing regression and classification models,” Journal of Cheminformatics, vol. 6, no. 1,
2014.

T. Krueger, D. Panknin, and M. Braun, “Fast cross-validation via sequential testing,” Jour-
nal of Machine Learning Research, vol. 16, pp. 1103-1155, 2015.

B. Efron, “Estimating the error rate of a prediction rule: Improvement on cross-validation,”
Journal of the American Statistical Association, vol. 78, no. 382, pp. 316-331, 1983.

S. Arlot and A. Celisse, “A survey of cross-validation procedures for model selection,” Statis-
tics Surveys, vol. 4, pp. 40-79, 2010.

I. Guyon, “A scaling law for the validation-set training-set size ratio,” AT & T Bell Labora-
tories, pp. 1-11, 1997.

R. Graham, D. Knuth, and O. Patashnik, Concrete Mathematics: A Foundation for Com-
puter Science, 2nd ed. Addison-Wesley Longman Publishing Co., Inc., 1994.

P. Geurts, “Contributions to decision tree induction: bias/variance tradeoff and time series
classification,” Ph.D. dissertation, University of Liege, Belgium, 2002.

J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization,” The Journal
of Machine Learning Research, vol. 13, pp. 281-305, 2012.

J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-parameter op-
timization,” in 25th Annual Conference on Neural Information Processing Systems (NIPS
2011), vol. 24. Neural Information Processing Systems Foundation, 2011.

F. Hutter, H. Hoos, and K. Leyton-Brown, “Sequential model-based optimization for gen-
eral algorithm configuration,” in Learning and Intelligent Optimization. Springer Berlin
Heidelberg, 2011, pp. 507-523.

C. Thornton, F. Hutter, H. Hoos, and K. Leyton-Brown, “Auto-weka: Automated selection
and hyper-parameter optimization of classification algorithms,” CoRR, 2012.

J. Snoek, H. Larochelle, and R. Adams, “Practical bayesian optimization of machine learning
algorithms,” Advances in neural information processing systems, pp. 2951-2959, 2012.

N. Iizuka, M. Oka, H. Yamada-Okabe, M. Nishida, Y. Maeda, N. Mori, T. Takao,
T. Tamesa, A. Tangoku, H. Tabuchi, K. Hamada, H. Nakayama, H. Ishitsuka, T. Miyamoto,
A. Hirabayashi, S. Uchimura, and Y. Hamamoto, “Oligonucleotide microarray for prediction
of early intrahepatic recurrence of hepatocellular carcinoma after curative resection,” The
Lancet, vol. 361, pp. 923-929, 2003.

A. Statnikov, C. Aliferis, I. Tsamardinos, D. Hardin, and S. Levy, “A comprehensive evalua-
tion of multicategory classification methods for microarray gene expression cancer diagnosis,”
Bioinformatics, vol. 21, no. 5, pp. 631-643, 2005.

A. Statnikov, I. Tsamardinos, C. Aliferis, and Y. Dosbayev, “Gems: A system for auto-
mated cancer diagnosis and biomarker discovery from microarray gene expression data,”
International Journal of Medical Informatics, vol. 74, no. 5, pp. 491-503, 2005.

BIBLIOGRAPHY 67

[34]

[35]

[44]
[45]

[46]

B. Efron, “Bootstrap methods: Another look at the jackknife,” The Annals of Statistics,
vol. 7, no. 1, pp. 1-26, 1978.

M. Quenouille, “Problems in plane sampling,” The Annals of Mathematical Statistics, vol. 20,
no. 3, pp. 355-375, 1949.

——, “Notes on bias in estimation,” Biometrika, vol. 43, no. 3/4, pp. 353-360, 1956.

J. Tukey, “Bias and confidence in not-quite large samples,” The Annals of Mathematical
Statistics, vol. 29, no. 2, pp. 614-623, 1958.

P. Hall, “Theoretical comparison of bootstrap confidence intervals,” The Annals of Statistics,
vol. 16, no. 3, pp. 927-953, 1988.

B. Efron, “Better bootstrap confidence intervals,” Journal of the American statistical Asso-
ctation, vol. 82, no. 397, pp. 171-185, 1987.

J. C. Nankervis, “Computational algorithms for double bootstrap confidence intervals,”
Computational statistics & data analysis, vol. 49, no. 2, pp. 461-475, 2005.

Q. McNemar, “Note on the sampling error of the difference between correlated proportions
or percentages,” Psychometrika, vol. 12, no. 2, pp. 1563-157, 1947.

C.-C. Chang and C.-J. Lin, “Training nu-support vector regression: theory and algorithms,”
Neural Computation, vol. 14, no. 8, pp. 1959-1978, 2002.

I. Tsamardinos, V. Lagani, and D. Pappas, “Discovering multiple, equivalent biomarker
signatures,” in 7th Conference of the Hellenic Society for Computational Biology and Bioin-
formatics (HSCBB12). Heraklion, 2012.

R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal Sta-
tistical Society. Series B (Methodological), pp. 267-288, 1996.

C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” ACM Trans-
actions on Intelligent Systems and Technology, vol. 2, pp. 27:1-27:27, 2011.

I. Guyon, K. Bennett, G. Cawley, H. J. Escalante, S. Escalera, T. K. Ho, N. Macia, B. Ray,
M. Saeed, A. Statnikov, and E. Viegas, “Design of the 2015 chalearn automl challenge,” in
Proc. of IJCNN, 2015.

J. Friedman, T. Hastie, and R. Tibshirani, “Regularization paths for generalized linear
models via coordinate descent,” Journal of Statistical Software, vol. 33, no. 1, pp. 1-22,
2010.

T. Fawcett, “An introduction to roc analysis,” Pattern recognition letters, vol. 27, no. 8, pp.
861-874, 2006.

	Abstract
	List of tables
	List of figures
	Introduction
	Motivation
	Contribution
	Outline

	Literature Survey
	Model Selection and Assessment
	Dropping of Under-Performing Configurations

	Background
	Supervised Machine Learning
	Performance Estimation
	Hold-Out Cross-Validation
	K-Fold Cross-Validation

	Model Selection
	Bayes Model and Residual Error
	Selecting the best (possible) model
	Algorithm and Hyper-Parameter Optimization

	Simultaneous Model Selection and Evaluation
	Train-Validation-Test Protocol
	K-Fold Cross-Validation
	Tibshirani and Tibshirani (TT) Bias Correction
	Nested K-Fold Cross-Validation

	Stratification of Folds

	Proposed Method for Model Selection and Evaluation
	Limitations of Existing Methods
	The Bootstrap
	Primary applications of Bootstrap

	Bootstrap Bias Correction
	Computing Confidence Intervals

	Bootstrap-Based Dropping of Under-Performing Configurations
	Dropping of Under-Performing Configurations
	Bootstrap-Based Dropping of Under-Performing Configurations
	Discussion

	Experiments and Evaluation
	Simulation Studies
	Bias Correction Estimation
	Model Selection Error
	Relative Performance and Number of Trained Models

	Experiments on Real Datasets
	An Automated Pipeline for Supervised Machine Learning
	Experimental Set-Up
	Bias and variance estimation
	Results and Discussion

	Conclusion
	Contribution
	Future Work

