
Bias Correction of the Cross-Validation Performance

Estimate and Speed Up of its Execution Time

Elissavet Greasidou

Thesis submitted in partial fulfillment of the requirements for the

Masters’ of Science degree in Computer Science

University of Crete

School of Sciences and Engineering

Computer Science Department

University Campus, Voutes, Heraklion, GR-70013, Greece

Thesis Supervisor: Associate Professor Ioannis Tsamardinos

Heraklion, February 2017

This work was partially funded by the ERC Consolidator Grant No 617393 CAUSALPATH and the Toshiba
project: “Feasibility study towards the Next Generation of statistical Text to Speech Synthesis System”

University of Crete

Computer Science Department

Bias Correction of the Cross-Validation Performance Estimate and Speed Up of its

Execution Time

Thesis submitted by

Elissavet Greasidou

in partial fulfillment of the requirements for the

Masters’ of Science degree in Computer Science

THESIS APPROVAL

Author:

Elissavet Greasidou

Committee approvals:

Ioannis Tsamardinos

Associate Professor, Thesis Supervisor

Ioannis Tollis

Professor, Committee Member

Ioannis Stylianou

Professor, Committee Member

Departmental approval:

Antonios Argyros

Professor, Director of Graduate Studies

Heraklion, February 2017

Abstract

Cross Validation (CV) is a de-facto standard in applied statistics and supervised machine

learning both for model selection and assessment. The procedure is applied on a set of candidate

configurations (i.e. a set of sequences of modelling steps with specified algorithms and their hyper-

parameter values for each step) for model production, and the one with the best performance,

according to a pre-specified criterion, is selected. However, the “best” performance achieved

during CV is known to be an optimistically biased estimation of the generalization performance

of the final model. To date, a relatively limited amount of research has been devoted to the

correction of this bias, and all proposed methods either tend to over-correct or have limitations

which can make their use impractical.

In this thesis, we propose a Bootstrap-based Bias Correction method (BBC) which works

regardless of the data analysis task (e.g. classification, regression), or the structure of the models

involved, and requires only a small computational overhead with respect to the basic CV pro-

cedure. BBC corrects the bias in a conservative way, providing an almost unbiased estimate of

performance. Its main idea is to bootstrap the whole process of selecting the best-performing

configuration on the out-of-sample predictions of each configuration, without additional training

of models. In comparison to the alternatives, namely the Nested Cross Validation (NCV) [1],

and a method by Tibshirani and Tibshirani (TT) [2], BBC is computationally more efficient,

yields performance estimates competitive to those of NCV and is applicable to any CV pro-

cedure. Subsequently, we also employ the idea of bootstrapping the out-of-sample predictions

in order to speed up the execution time of the CV procedure. Specifically, using a bootstrap-

based hypothesis test we stop training of models on new folds of statistically-significantly inferior

configurations. The Bootstrap-based Early Dropping (BED) method significantly reduces the

computational time of CV with a negligible or no effect on performance. The two methods can

be combined leading to the BED-BBC procedure that is both efficient and provides accurate

estimates of performance.

iii

Περίληψη

Η μέθοδος διασταυρωμένη επικύρωση (Cross Validation - CV) αποτελεί ένα ντεφάκτο πρότυπο

στον τομέα της εφαρμοσμένης στατιστικής και εποπτευόμενης μηχανικής μάθησης (supervised ma-

chine learning) τόσο για την επιλογή ενός μοντέλου αλλά και την αξιολόγηση του. Η διαδικασία αυτή

εφαρμόζεται σε ένα σύνολο υποψήφιων διαμορφώσεων (configurations) (δηλαδή, ένα σύνολο ακο-

λουθιών βημάτων μοντελοποίησης με καθορισμένους αλγορίθμους και τιμές για τις ύπερ-παραμέτρους

τους για κάθε βήμα) και εκείνη με την καλύτερη απόδοση, σύμφωνα με ένα προκαθορισμένο κριτήριο,

επιλέγεται. Ωστόσο, η “καλύτερη” απόδοση που επιτυγχάνεται κατά τη διαδικασία του CV είναι

γνωστό ότι είναι μία αισιόδοξα μεροληπτική (biased) εκτίμηση της γενίκευσης της απόδοσης του

τελικού μοντέλου. Μέχρι σήμερα, ένα σχετικά περιορισμένο μέρος της έρευνας έχει αφιερωθεί στη

διόρθωση αυτής της μεροληψίας (bias), και όλες οι προτεινόμενες μέθοδοι είτε έχουν την τάση να

την διορθώνουν περισσότερο από όσο χρειάζεται ή έχουν περιορισμούς που μπορούν να κάνουν τη

χρήση τους ανέφικτη.

Σε αυτή την εργασία, προτείνουμε μια μέθοδο διόρθωσης της μεροληψίας βασισμένη στην μέθοδο

του bootstrap (Bootstrap-biased Bias Correction method - BBC) η οποία λειτουργεί ανεξάρτητα

από την εργασία ανάλυσης δεδομένων (π.χ. ταξινόμηση, παλινδρόμηση), ή τη δομή των μοντέλων που

εμπλέκονται, και απαιτεί μόνο μια μικρή υπολογιστική επιβάρυνση σε σχέση με τη βασική διαδικασία

του CV. Η BBC μέθοδος διορθώνει την μεροληψία με συντηρητικό τρόπο παρέχοντας μια σχεδόν

αμερόληπτη εκτίμηση της απόδοσης. Η βασική ιδέα είναι να εφαρμοστεί η μέθοδος του bootstrap σε

όλη τη διαδικασία της επιλογής της καλύτερης μεθόδου στις εκτός εκπαιδευμένου δείγματος (out-of-

sample) προβλέψεις της κάθε διαμόρφωσης (configuration), χωρίς πρόσθετη εκπαίδευση μοντέλων.

Σε σύγκριση με τις εναλλακτικές μεθόδους, δηλαδή την εμφωλευμένη διασταυρωμένη επικύρωση

(Nested Cross Validation - NCV) [1], και την μέθοδο των Tibshirani και Tibshirani (TT) [2], η

BBC μέθοδος είναι υπολογιστικά πιο αποδοτική, είναι εφαρμόσιμη σε οποιαδήποτε διαδικασία CV,

και η εκτίμηση της απόδοσης που παρέχει είναι ανταγωνιστική σε σχέση με εκείνη του NCV. Επίσης,

χρησιμοποιούμε την ιδέα της εφαρμογής της bootstrap μεθόδου στις εκτός εκπαιδευμένου δείγματος

(out-of-sample) προβλέψεις για την επιτάχυνση του χρόνου εκτέλεσης της CV διαδικασίας. Συ-

γκεκριμένα, χρησιμοποιώντας ένα στατιστικό έλεγχο υποθέσεων (hypothesis test) βασισμένο στη

μέθοδο του bootstrap, σταματάμε την εκπαίδευση μοντέλων σε καινούργια υποσύνολα των δεδομένων

(folds) για στατιστικά-σημαντικά (statistically-signicantly) υποδεέστερες διαμορφώσεις (configura-

tions). Η μέθοδος Bootstrap-based Early Dropping (BED) μειώνει σημαντικά τον υπολογιστικό

χρόνο του CV με αμελητέα ή καμία επίδραση στην απόδοση. Οι δύο μέθοδοι μπορούν να συνδυα-

στούν οδηγώντας στην BED-BBC μέθοδο η οποία είναι αποδοτική και παρέχει ακριβείς εκτιμήσεις

της απόδοσης.

v

Acknowledgements

First and foremost I would like to thank my supervisor, Ioannis Tsamardinos. He provided

great support and advice throughout my programme.

I would also like to thank Giorgos Borboudakis, Michalis Tsagris and Pavlos Charonyktakis

for their valuable comments, discussions and cooperation.

Special thanks go to the members of my dissertation committee, Ioannis Tollis and Ioannis

Stylianou.

Most of all I would like to thank my parents Eleni and Manolis, and my sister Maria, for their

continual love and support.

vii

viii

Contents

Abstract iii

List of tables xi

List of figures xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Contribution . 3

1.3 Outline . 3

2 Literature Survey 5

2.1 Model Selection and Assessment . 5

2.2 Dropping of Under-Performing Configurations . 7

3 Background 9

3.1 Supervised Machine Learning . 9

3.2 Performance Estimation . 11

3.2.1 Hold-Out Cross-Validation . 12

3.2.2 K-Fold Cross-Validation . 14

3.3 Model Selection . 15

3.3.1 Bayes Model and Residual Error . 15

3.3.2 Selecting the best (possible) model . 16

3.3.3 Algorithm and Hyper-Parameter Optimization 17

3.4 Simultaneous Model Selection and Evaluation . 19

3.4.1 Train-Validation-Test Protocol . 20

3.4.2 K-Fold Cross-Validation . 21

3.4.3 Tibshirani and Tibshirani (TT) Bias Correction 22

3.4.4 Nested K-Fold Cross-Validation . 22

3.5 Stratification of Folds . 24

ix

4 Proposed Method for Model Selection and Evaluation 25

4.1 Limitations of Existing Methods . 25

4.2 The Bootstrap . 26

4.2.1 Primary applications of Bootstrap . 27

4.3 Bootstrap Bias Correction . 29

4.4 Computing Confidence Intervals . 31

5 Bootstrap-Based Dropping of Under-Performing Configurations 33

5.1 Dropping of Under-Performing Configurations . 33

5.2 Bootstrap-Based Dropping of Under-Performing Configurations 34

5.2.1 Discussion . 36

6 Experiments and Evaluation 39

6.1 Simulation Studies . 39

6.1.1 Bias Correction Estimation . 40

6.1.2 Model Selection Error . 41

6.1.3 Relative Performance and Number of Trained Models 47

6.2 Experiments on Real Datasets . 48

6.2.1 An Automated Pipeline for Supervised Machine Learning 48

6.2.2 Experimental Set-Up . 49

6.2.3 Bias and variance estimation . 50

6.2.4 Results and Discussion . 51

7 Conclusion 63

7.1 Contribution . 63

7.2 Future Work . 63

x

List of Tables

6.1 Datasets Used; |Dpool| refers to the portion of the datasets (30%) from which the

sub-datasets were sampled and |Dholdout| to the portion (70%) from which the true

performance is estimated. 50

6.2 Under Model selection: the percentage of the times, over the 10 sub-datasets, that

the model selected by KCV-pooling and BBC is the same as the one selected by

NCV (KCV-average over folds and TT), and BED for different thresholds t. Under

Number of trained models: the number of models trained by BED relatively to

KCV. 60

xi

List of Figures

3.1 Supervised Learning . 10

3.2 Hypothetical learning curve for a classifier on a given task: a plot of 1-Err versus

the size of the training set M. (Figure from [3]) . 13

3.3 10-Fold Cross-Validation. In each round/iteration of Cross-Validation one fold (in

colour) is used for testing and the rest of the folds are merged into the training set. 15

3.4 Nested K-Fold Cross-Validation with K � 5 for both the outer and the inner loop

of the procedure. 24

6.1 Density of the Be(a, b) distribution for the parameters used in the simulation

studies. The parameters are such that µ = a/(a + b) = (0.6, 0.7, 0.8, 0.9). 40

6.2 Average performance bias for the estimates of KCV, BBC, NCV, TT, BED, and

BED-BBC for 60% true classification accuracy. KCV and BED are clearly opti-

mistic for sample size ¤ 300. BBC is slightly conservative. TT’s bias greatly varies

for sample size ¤ 100 with the number of models and overcorrects for sample size

¥ 200. NCV and BED-BBC exhibit the smallest bias, especially for sample size

¤ 100. 42

6.3 Average performance bias for the estimates of KCV, BBC, NCV, TT, BED, and

BED-BBC for 70% true classification accuracy. KCV and BED are clearly opti-

mistic for sample size ¤ 300. BBC is slightly conservative. TT’s bias greatly varies

for sample size ¤ 100 with the number of models and overcorrects for sample size

¥ 200. NCV and BED-BBC exhibit the smallest bias, especially for sample size

¤ 100. 43

6.4 Average performance bias for the estimates of KCV, BBC, NCV, TT, BED, and

BED-BBC for 80% true classification accuracy. KCV and BED are clearly opti-

mistic for sample size ¤ 300. BBC is slightly conservative. TT’s bias varies with

the number of models and overcorrects for sample size ¥ 500. NCV and BED-BBC

exhibit the smallest bias, especially for sample size ¤ 100. 44

xiii

6.5 Average performance bias for the estimates of KCV, BBC, NCV, TT, BED, and

BED-BBC for 90% true classification accuracy. KCV and BED are clearly opti-

mistic for sample size ¤ 500. BBC is slightly conservative. TT’s bias varies with

the number of models. NCV and BED-BBC exhibit the smallest bias, especially

for sample size ¤ 100. 45

6.6 Model selection error for KCV and BED for true classification accuracy P t60, 70, 80, 90u%.

BED has the same or slightly greater (no more than 0.005 points of accuracy)

model selection error than KCV. The error decreases with higher rates of true

classification accuracy. 46

6.7 Boxplots of the relative true performance (left) and the relative number of trained

models (right) for true classification accuracy P t60, 70, 80, 90u% for all sample sizes

(t50, 100, 200, 300, 500, 1000u) and number of configurations (t50, 100, 200, 300, 500, 1000, 2000u)

for the BED and KCV methods. There is a negligible to no effect on performance

when using the BED method. However, the number of models that are trained is

greatly reduced. 47

6.8 Average performance bias for the estimates of KCV-pooling, KCV-average over

folds, BBC, NCV and TT. KCV-pooling exhibits lower bias than KCV-average

over folds. BBC and NCV, both correct the bias of the corresponding version of

KCV in a conservative way, although results vary with dataset. TT over-corrects

compared to BBC and NCV and its bias is higher for sample sizes equal to 40. . . 52

6.9 Standard deviation of bias for the estimates of KCV-pooling, KCV-average over

folds, BBC, NCV and TT. KCV has the smallest variance but it overestimates

performance. BBC, NCV and TT exhibit similar stds, although results vary with

dataset. 52

6.10 Average performance for the estimates of KCV-pooling, KCV-average over folds,

BBC, NCV and TT and the true performance of the models that they select

(Holdout). The methods of each column select the same model. KCV-pooling and

KCV-average over folds over-estimate the performance. BBC and NCV are slightly

conservative and TT mainly over-estimates for small sample sizes and over-corrects

for larger ones. 53

6.11 Standard deviation of performance for the estimates of KCV-pooling, KCV-average

over folds, BBC, NCV and TT and the true performance of the models that they

select (Holdout). The methods of each column select the same model. Holdout

and KCV have the lower stds. BBC, NCV and TT have similar stds. 54

6.12 Average performance bias for the estimates of BED and BED-BBC for B � 1000

and different values of the threshold t. They all exhibit similar results, with BED-

BBC with t � 0.99 having the lowest bias. BBC has a minor effect on the correction

of the bias of BED for the datasets. 56

xiv

6.13 Standard deviation of bias for the estimates of BED and BED-BBC for B � 1000

and different values of the threshold t. They all exhibit similar results. 57

6.14 Average performance for the estimates of BED and BED-BBC for different thresh-

olds t and the true performance of the models that they select (Holdout). The

methods of each column select the same model. BED and BED-BBC are slightly

conservative. 58

6.15 Standard deviation of performance for the estimates of BED and BED-BBC for

different thresholds t and the true performance of the models that they select

(Holdout). The methods of each column select the same model. They all have

similar stds. 59

6.16 Boxplots of the relative true performance (left column), and the relative number of

trained models (right column) for the sylvine, madeline, philippine, jasmine, and

christine datasets for all sample sizes (t20, 40, 60, 80, 100, 500u) for the BED and

KCV methods. There is a negligible to no effect on performance when using the

BED method, However, the number of models that are trained is greatly reduced. 61

xv

Chapter 1

Introduction

An important task in various areas of science (e.g. biology, finance, chemistry) and in industry is

to find a systematic way of predicting a phenomenon given a set of measurements. For instance,

financial analysts try to predict how a company’s stock will perform based on such factors as

current company performance measures, financial trends, competition and global events. A

cancer researcher will try to predict whether a patient is likely to develop cancer in the next few

years, on the basis of clinical measurements and history for that patient, and demographics. For

years, experts would rely on accumulated knowledge or they would need to derive theoretical

frameworks from first order principles in order to study such problems. However, for highly

complex problems, the cognitive abilities of humans or simple approaches are not enough.

In recent years, alongside with great advances in terms of technology, algorithms and tech-

niques have been developed within the theoretical computer science field, machine learning, and

statistics to address the limitations of previous methods. Machine learning, today, provides nu-

merous tools and algorithms for the automatic analysis of large amounts of data in order to reveal

the predictive structure of complex problems.

Machine learning is the study of algorithms that can infer predictive models from data in

regards to some task such as classification or regression. In supervised machine learning the data

comprises of pairs of input variables (i.e. the features) and an output variable (i.e. the target).

1.1 Motivation

Performance estimation is, undoubtedly, one of the most important tasks of machine learning.

Its importance is twofold; it is a measure to evaluate the generalization ability of a predictive

model (i.e. how well it will perform given new, unseen data from the same distribution) and it

is also used to compare a set of models against each other in order to choose the best one (i.e.

to perform model selection). Therefore, it is crucial to have methods that can produce reliable

and robust performance estimates that are not affected by extraneous factors such as sampling

or partitioning of the data.

2

The ideal (also simplest) scenario for assessing the performance of a model would be to do so

on a Hold-Out test set (a set of observations that was not included in the training of the model).

However, when a large enough dataset cannot be held-out or when it is difficult to collect new

observations, resampling methods such as Cross-Validation and the bootstrap are employed for

estimating generalization performance.

In a typical supervised machine learning analysis multiple models are often constructed

through a series of steps that include, among others, preprocessing of the data, feature (vari-

able) selection, and the application of a learning algorithm, and the one with the smallest Cross-

Validation error rate is selected and its associated performance is reported. For each of these

steps there exists a wide selection of algorithms to choose from and most of them will have hyper-

parameters1that need tuning. This leads to a large number of configurations2to be evaluated,

and to an even larger number of models that will be constructed from these configurations.

Unfortunately, as the number of configurations under evaluation is getting larger, the risk of

overfitting increases and the performance estimated by Cross-Validation is no longer an effective

estimate of generalization but it is rather optimistically biased [4–11]. This phenomenon is called

the problem of multiple comparisons in induction algorithms and has been analyzed in detail by

Jensen in [12]. In addition, with increasing number of learned models, Cross-Validation becomes

more computationally demanding which makes its use prohibitive.

A simple mathematical proof of the bias, due to the problem of multiple comparisons in induc-

tion algorithms, is as follows. Let µi be the average true performance (loss) of the models produced

by configuration i when trained on data of size |Dtrain| from the given data distribution. The sam-

ple estimate of µi on the tuning sets (if there are several as in Cross-Validation) ismi, and so we ex-

pect that µi = Etmiu for estimations that are unbiased. Returning the estimate of the configura-

tion with the smallest loss returnsmintm1, ...,mnu, where n is the number of configurations tried.

On average, the estimate on the best configuration on the tuning sets is Etmintm1, ...,mnuu while

the estimate of the true best is mintµ1, ..., µnu � mintEtm1u, ..., Etmnuu. The optimism (bias)

is Bias � mintEtm1u, ..., Etmnuu � Etmintm1, ...,mnuu ¥ 0. For metrics such as classification

accuracy and AUC, where higher is better, the min is substituted with max and the inequality

is reversed.

The problem of bias of the estimated error rate based on K-Fold Cross-Validation (CV) has

been addressed by researchers only in the last few years, even though it was pointed out as early

as in 1984 by [13]. Proposed solutions to the problem include methods that use new procedures

for performance estimation, and methods that try to assess the bias of the minimum error rate of

the K-Fold CV and subtract it from the performance estimate. However, all proposed methods

either tend to over-correct or have limitations which can make their use impractical.

1The term hyper-parameters refers to the algorithm parameters whose values are user defined.
2A sequence of modelling steps with specified algorithms and hyper-parameter values for each step (see Sec-

tion 3.4).

Chapter 1. Introduction 3

1.2 Contribution

In this thesis we propose a new, general method for correcting the bias in Cross-Validation

procedures, which works regardless of the data analysis task (e.g. classification, regression) or

the structure of the models being involved in it. It has low computational overhead with respect

to the Cross-Validation procedure and produces an almost unbiased expected error estimate even

when the number of training samples is small. Unlike other methods, it is also suitable for

correcting the bias of all Cross-Validation procedures including the Leave-One-Out CV and the

Hold-Out CV.

The bootstrap bias correction (BBC) for Cross-Validation takes advantage of the bias cor-

rection properties of the bootstrap [14]. BBC is a simple method both conceptually and to

implement, and only requires the predicted values of the models from which we want to choose

the best one and assess its performance.

We also present and evaluate a method for dropping under-performing configurations along

the way of Cross-Validation in order to speed it up. It uses the bootstrap in order to compare

the configurations in terms of their performance in each iteration of CV.

1.3 Outline

The rest of the thesis is organized as follows. Chapter 2 surveys existing work on model selec-

tion and performance estimation and on the speeding up of the Cross-Validation procedure by

specifically dropping under-performing configurations.

Chapter 3 defines terms and provides an overview of concepts from supervised machine learn-

ing. It presents and reviews some commonly used methods for performance assessment of a

predictive model, model selection, and for simultaneously performing the two tasks.

In Chapter 4 the bootstrap and some of its primary applications are introduced. Then, the

proposed bootstrap-based method for bias correction (BBC) is presented together with a method

for calculating the confidence intervals of the performance estimate.

Chapter 5 introduces a method for eliminating under-performing configurations early in the

K-Fold Cross-Validation procedure in order to speed it up.

In Chapter 6 we empirically compare the BBC method against the most popular methods

for performance estimation and present results validating our method. We also describe the

automated pipeline for supervised machine learning which we used to evaluate our proposed

algorithms.

Finally, we conclude in Chapter 7 and overview possibilities for future work.

4

Chapter 2

Literature Survey

2.1 Model Selection and Assessment

Estimating the performance of a predictive model is an important task not only to assess how

well the model generalizes to new, unseen data drawn from the same distribution, but also for

selecting the combination of algorithms (e.g. for feature selection, for learning a classifier) and

their hyper-parameter values which will induce the final, best performing model (a process also

called model selection). These are fundamental tasks of a supervised machine learning analysis

and they are usually performed simultaneously.

The Hold-Out method, where an independent test set is sequestered for assessing the perfor-

mance of the selected model, is the simplest and most straightforward protocol for performance

estimation. When the sample size is large enough, the Hold-Out estimate is a good approximation

of the true performance.

Popular empirical estimators of performance based on resampling are the bootstrap [14] and

the Cross-Validation (CV) protocol. CV was independently introduced by Stone [15], Allen [16],

and Geisser [17] as a model selection method. Stone proposed the use of The Leave-One-Out

Cross-Validation (LOO-CV) procedure as a way to choose the best algorithm hyper-parameter

values and to assess the performance of the resulting diagnostic model. He was the first to

differentiate between the use of CV for model selection and performance estimation. Allen in [16]

proposed the Prediction Sum of Squares (PRESS) statistic for model selection. PRESS is similar

to the LOO-CV where every measurement (sample) is considered in turn as a test case, for the

model trained on all but the held out measurement. Geisser, independently in [17] introduced

the Predictive Sample Reuse Method for model selection and assessment, a method equivalent

to K-fold Cross-Validation.

Kohavi in [4], studied the use of K-Fold Cross-Validation and the bootstrap as performance

estimation methods under different settings and compared them on real-world datasets. He

concluded that the K-Fold Cross-Validation method is generally preferable to the bootstrap and

has lower variance compared to the LOO-CV, and recommends the use of stratified 10-Fold

6

Cross-Validation for model selection. He also shows, through large scale experiments, that both

the K-Fold CV and the bootstrap produce biased estimates of performance.

When comparing a large number of models in order to choose the one with the best perfor-

mance, bias, towards better performance, is always present, unless the sample size is really large.

This phenomenon is called the problem of multiple comparisons in induction algorithms and has

been analyzed in detail in [12]. The problem of the optimistically biased K-Fold Cross-Validation

estimate was pointed out as early as in 1984 by Breiman et al. in [13]. A more recent publica-

tion [7] empirically validates that the risk of overfitting increases with the number of models that

are being tested and that the performance estimate of the K-Fold Cross-Validation is no longer

a good approximation of the generalization performance. To date, a relatively limited amount of

research has been devoted to the correction of this bias or to the development of new methods for

performance estimation, and all proposed methods either tend to over-correct or have limitations

which can make their use impractical.

Varma and Simon in [6] also showed in practice how optimistically biased is the K-Fold CV

estimate and suggested the Nested K-Fold Cross-Validation (NCV) as a more reliable alterantive

(see Section 3.4.4). NCV introduces an outer loop to the K-Fold CV procedure which results,

essentially, in the “cross-validatory assessment of the cross-validatory choice” as was defined by

Stone [15]. The NCV protocol, according to [6] and [10], produces an almost unbiased (but

conservative) estimate of performance; however it is computationally expensive as the number

of models that need to be trained is quadratic to the number of folds K. When the number of

models is in the order of hundreds, the computational cost increases dramatically.

Tibshirani and Tibshirani (TT) [2] proposed a simple method for approximately estimating

the bias of the K-Fold Cross-Validation protocol in order to correct it (see Section 3.4.3). The

method requires minimum computational overhead in regards to the K-Fold CV procedure and

[10] have shown (within the scope of their experiments) that it is robust and its results are

statistically equivalent to the ones of NCV. However, TT is not suitable for LOO-CV or when

the size of the test set is too small, and it was shown to over-estimate the bias in some settings [18].

Bernau et al. in [9] introduced two variants of a weighting-based method as a smooth analyti-

cal alternative to NCV; the WMC and the WMCS. The method is based on repeated subsumpling

and computes a weighted mean of the resampling error rates for different models. The WMCS

variant yields the best estimates between the two. It is competitive compared to the NCV on

real data and has lower computational cost. However, the method is quite complex and is based

on the assumption that the unconditional error rate estimates follow a multivariate normal dis-

tribution. If the number of tested models is really high, this assumption might be difficult to

hold true.

Ding et al. in [11] proposed a resampling-based inverse power law (IPL) method for bias

correction and compared its performance to those of NCV, TT, and WMC/WMCS on both

simulated and real datasets. They estimate the error rate of each classifier by fitting a learning

Chapter 2. Literature Survey 7

curve which is constructed from repeatedly resampling the original dataset for different sample

sizes and fitting an inverse power law function. The IPL method outperforms the other methods in

terms of performance estimation but, as the authors point out, it exhibits significant limitations.

Firstly, it is based on the assumption that the learning curve for each classifier can be fitted

well by inverse power law. In addition, if the sample size of the original dataset is small, the

method will provide unstable estimates. Finally, the IPL method has higher computational cost

compared to TT and the WMC/WMCS methods.

Krstajic et al. in [19] describe and suggest algorithms for Repeated K-Fold Cross-Validation

and Repeated Nested K-Fold Cross-Validation for model selection and assessment. The former

is to deal with the variability in the reported optimal parameters of the simple K-Fold Cross-

Validation which results from the arbitrary partitioning of the data in folds. The latter is to avoid

the optimistically biased error estimation reported by the K-Fold Cross-Validation. Although

both of the algorithms are shown to produce more reliable results compare to the simple K-Fold

Cross-Validation, they are very computationally expensive.

2.2 Dropping of Under-Performing Configurations

To the best of our knowledge, the only work that focuses on the speeding up of the learning

process by specifically eliminating , early in the CV procedure, under-performing configurations

is the one by Krueger et al. [20]. Their method is called Fast Cross-Validation via Sequential

Testing (CVST), and it uses nonparametric testing together with sequential analysis to choose

the best performing configuration on the basis of linearly increasing subsets of data.

The CVST algorithm uses subsets of the data of size m � s �M
S

as training sets, where s is the

current step, S is the maximum number of steps of the algorithm and M is the total number of

data points. The remaining M�m data samples, serve as the test sets. By pairing this approach

with an early stopping criterion, they aim to further speed up the model selection procedure.

The method starts with the whole set of configurations C and drops the under-performing

ones at each step s. This is performed by applying the Friedman or the Cochrans’s Q test (for

regression and classification tasks respectively) on the predictions of the models produced by the

k first configurations (ordered by their mean performance so far) on theM�m data points until a

value k̄ for k has been found so that the tests indicate a significantly different performance of the

configurations. Then, the k̄, ..., |C| configurations are further tested through sequential analysis

(see [20]) to determine which of them will be discharged. If the remaining/active configurations

have had similar performance in the last wstop iterations, the execution stops. The final best

configuration is then the one that has the best average ranking, based on performance, in the

last wstop iterations.

8

Chapter 3

Background

In this Chapter we briefly describe the supervised machine learning problem and formally de-

fine the notion of a predictive model (Section 3.1). In Section 3.2 we discuss the importance

of estimating the performance (generalization error) of a model and present some of the most

commonly used protocols for doing so. In Section 3.3, we describe the problem of model selection

and how its solution is approximated in practice. Then in 3.4, we proceed with the description of

procedures for simultaneously selecting and evaluating the (approximately) best model. Finally,

we briefly explain stratified sampling and its benefits.

3.1 Supervised Machine Learning

In machine learning, the task of supervised learning refers to the process of constructing a pre-

dictive model from a finite set of acquired data. In order for the resulting model to efficiently

predict the output variable, there needs to exist a relation between the input variables and the

output. In cancer research, for instance, the goal is to infer a decision rule (i.e. the model) using

different measurements from past cases, such as values of subsets of biomarkers, the location,

stage, and size of the tumor, as well as the age, weight, risk behavior and clinical history of the

patients (i.e. input variables), in order to predict or diagnose cancer on a new patient (i.e the

output).

To define supervised learning more formally, we will first need to introduce some notation.

Let xpjq P Xj, for j � 1, ..., N denote the value of the input variable Xj also known as feature, and

let the n-dimensional vector xi � px
p1q

i , x
p2q

i , ..., x
pNq

i q P X1 � X2, ...,�XN � X of input variables

denote the i-th sample or instance of our data (i.e. a set of measurements). Finally, let yi P Y

correspond to the value of the output variable Y for the i-th instance, also known as target. Then,

our data D comprises of a finite set of data points or training examples:

D � tpxi, yiq, i � 1, ...,Mu P X � Y,

where each training example pxi, yiq is a pair of input features and a target variable.

10

Training Data

Learning
Algorithm

fx y

Figure 3.1: Supervised Learning

In the statistical sense, the input variables X1,X1, ...,XN and the output variable Y are drawn

randomly from X � Y with respect to their joint probability distribution P pX,Y q (population),

where X is the vector of input variables. When implementing a learning algorithm, the data are

usually represented as a 2-dimensional array A P R
M�N where the columns and the rows of the

array correspond to the features and the samples accordingly.

In this context, the problem of supervised learning aims to learn a function:

f : X Ñ Y,

from a collection of M training examples D, so that its predictions f pXq are as close to being

accurate as possible (i.e. are good estimators of the corresponding values of y). f is also called

a hypothesis. Figure 3.1, simplistically, illustrates the process.

When the target variable Y that we are trying to predict is qualitative, also referred to as

categorical, (i.e. Y takes on only a small number of discrete values), then the function f : X Ñ Y,

where Y � tc1, c2, ..., cnu is called a classifier and the learning task is called classification. When

Y is quantitative or numerical then the function f : X Ñ Y, Y � R is called a regressor and the

learning problem is called regression.

Similarly to the target, we can distinguish input variables into numerical and categorical.

An input variable x is called numerical when Xi � R, and categorical when Xi is a finite set

of distinct values. Examples of the former case are age and weight, and of the latter case are

gender and ethnicity. In the special case of the categorical variable taking only two distinct values

(e.g. malignant, benign), the variable is called binary. Another type of variable is the ordered

categorical or ordinal where there exists a natural ordering between the values that the variable

takes. For example, suppose that you have a variable, that measures the economic status of a

person, and takes the values “low”, “medium” and “high”.

Chapter 3. Background 11

3.2 Performance Estimation

In every supervised machine learning problem, it is important to obtain an accurate estimation

of the performance of the inferred model; that is to assess how well the model generalizes to new,

unseen data. In order to achieve this, we employ a loss function L : Y � Y Ñ R which measures

the discrepancy between the truth Y and the predicted values f pXq.

The most commonly used loss function for classification is the zero-one loss function:

LpY, f pXqq �

$

&

%

1, if Y � f pXq

0, otherwise

which penalizes the errors in predictions in a equal way. In the case of regression, the most used

loss function is the squared error loss function:

LpY, f pXqq � pY � f pXqq2

where the larger the differences between the true values of Y , and the predicted values f pXq, the

proportionally more they will be penalized.

In this framework, we can restate the problem of supervised machine learning as finding a

model that minimizes the generalization error. We use f pDq to denote the model built from the

learning set D, and f pX,Dq to denote the output (predictions) of that model when applied on

the set of input variables X.

Definition 3.2.1 The generalization error, also known as test error, of a model f pDq is 1:

ErrD � EX,Y tLpY, f pX,Dqq|Du (3.1)

where D is the set of data points used to train f pDq, and L is the loss function for measuring

errors between Y and f pX,Dq. Here the training set D is fixed, and test error refers to the error

for this specific training set [3].

In [3] the authors point out that the estimation of conditional error cannot easily be done

effectively given only the information in the same training set. Most of the methods described

later on in this Chapter, effectively estimate a related quantity which is the expected generalization

error.

1EXfpXq denotes the expectation of fpxq, x P X with respect to the distribution of the random variable X. It
is defined as

EXtfpXqu �

¸

xPX

P pX � xqfpxq

12

Definition 3.2.2 The expected generalization error, also known as expected test error, of a model

f pDq is:

Err � EX,Y tLpY, f pX,Dqqu � EDtErrDu (3.2)

which averages over all that is random, including the randomness related to the training set D

that was used to infer the model.

Typically, as the complexity of a model increases, it adapts more to the training data. This

results in a model with lower bias but higher variance. What we are aiming for, is a useful

trade-off between bias and variance in a model so that it gives minimum expected generalization

error.

A naive and clearly poor estimate of the expected test error Err is the training error or

resubstitution estimate:

yErrtrain � sEpD, f pDqq �
1

M

M̧

i�1

Lpyi, f pxiqq (3.3)

which is essentially, the average loss over all training samples that we used to fit the model. As

the model becomes more complex though, the training error decreases and could even drop to

zero. In this case, the model will be overfitting the data and training error will be an overly

optimistic estimate of how well the model generalizes to new data.

From this moment on, we will be using the notation sEpD1, f pDqq to refer to the mean error/loss

of model f pDq on a specific test set D1. The datasets D and D1 could differ or be equal as in

equation 3.3.

In the following subsections we present a few of the most commonly used methods for per-

formance assessment. A fair amount of research [3–7,10,21,22] has focused on the study of their

fitness for assessment of test error and for model selection (see Section 3.3).

3.2.1 Hold-Out Cross-Validation

In an ideal scenario, we would first want to build the predictive model f pDq from a dataset D,

make it operational on its intended environment, and then apply f pDq on a newly collected set

of training examples D1

P pX � YqzD and estimate the model’s performance on D1. However,

in most real applications it is not always possible to draw additional data, thus making the

estimation of the performance on set D1 infeasible.

We could simulate this idea by randomly splitting the original dataset D into two disjoint

subsets; the training set, Dtrain, consisting of m observations and the test set, Dtest, of the

remaining M �m observations. The training set is used to fit the model and the test set, often

referred to as the hold-out set, is used to evaluate the performance. This method is known as the

Hold-Out Cross-Validation or Hold-Out CV and produces the Hold-Out estimate of the expected

test error:

yErrholdout � sEpDtest, f pDtrainqq (3.4)

Chapter 3. Background 13

Figure 3.2: Hypothetical learning curve for a classifier on a given task: a plot
of 1-Err versus the size of the training set M. (Figure from [3])

Since Dtrain and Dtest are non-overlapping, we could consider them to be independent, avoid-

ing thus the optimism of the training error estimation of equation 3.3. However, a learning curve

related bias is still introduced due to the fact that the Hold-Out CV estimate is conditioned

on less than M samples. The learning curve of a model is simply a graphical representation of

the increase of performance (or decrease of error) with experience (i.e. the number of training

examples). As seen in Figure 3.2, we typically expect the prediction error to decrease as the

sample size increases, and to gradually reach a plateau.

Ideally, the sizes of the Dtrain and Dtest sets would be such, so that the trained model operates

on the plateau of the learning curve, and yet there would be enough test samples left to get an

accurate estimation of the performance. However, if the training set is relatively small, then the

estimate of the expected test error would be biased upward. For example in Figure 3.2 we would

expect this behavior for |Dtrain| . 100. Unfortunately though, the learning curve is not known

a priori. In [23], Guyon investigates the problem and proposes a formula for efficiently splitting

the data, which will lead in large enough training sets and yet small error rates. A rule of thumb

is to have 2/3 of the data serve as the training set and the rest as the test set [4].

Another drawback of the method is that the choice ofm is arbitrary as there are SpM, 2q � 2M

possible ways to split the data, where SpM, 2q is a Stirling number of the second kind [24]. This,

could lead us to assume that there is variance in the estimate of the performance of the Hold-

Out CV method depending on the specific choice of split for the data. This variance could be

eliminated by trying all possible SpM, 2q splits of the samples or by repeatedly and randomly

splitting the data and averaging the results. This leads to the so called Repeated Hold-Out

Cross-Validation protocol, which will not be presented in detail here.

14

However, when we have large enough training and test sets, the Hold-Out CV is a generally

acceptable and robust method for providing a good approximation of the generalization error.

Its simplicity and low computational cost make it appealing in such cases.

In the case that the number of the training examples is rather small to medium, the Hold-Out

CV estimate might not be reliable and therefore other protocols are preferred.

3.2.2 K-Fold Cross-Validation

The K-Fold Cross-Validation (K-Fold CV) protocol is probably the most widely used method for

performance assessment for small and medium sample sizes. It has been proposed independently

by Stone, Allen and Geisser in [15–17] respectively.

K-Fold CV consists of randomly splitting the data into K ! M mutually exclusive subsets

F1, F2, ..., FK , also known as folds, of approximately equal size. It then uses the samples in

DzFi, i � 1, ...,K to train the model f pDzFiq and the remaining samples in Fi to estimate its

performance. The K-Fold CV estimate of the expected test error is then defined as:

yErrKCV �

1

K

Ķ

i�1

sEpFi, f pDzFiqq (3.5)

which is the average of the prediction errors of the produced models f pDzFiq, i � 1, ...,K for

their respective test sets Fi. Again here, sEpD1, f pDqq refers to the mean loss of model f pDq when

applied on D1.

Figure 3.3 illustrates the K-Fold CV procedure for K � 10. The top rectangle represents

the original dataset D which is divided into 10 folds represented by the smaller rectangles. Each

smaller rectangle/fold is considered in turn as the test set (shown in blue), for the models trained

on the rest of the rectangles/folds (shown in white).

K-Fold CV could be considered to be an extension of the Hold-Out CV repeating it K times.

One of its major advantages is that each data point px, yq serves once as a test case, thus making

the test size equal to the total number of samples in the dataset |D|.

The K-Fold CV protocol effectively estimates the expected test error [3]. Similarly to the

Hold-Out CV method, this estimate could be biased upward depending on the learning curve of

the model under assessment on the given task, leading to an overestimation of the true prediction

error. Increasing K, thus having larger training sets, would result in a less conservative estimate

of the performance. Unfortunately, this would also result in higher variance in the estimation

since the training sets would become more similar to one another, making the resulting models

more correlated. K could be as large as |D| �M . This is a special case of K-Fold CV, known as

the Leave-One-Out Cross-Validation, (LOO-CV) method.

LOO-CV is a variant of K-Fold CV, in which each data sample takes the role of the test set

in turn and the rest serve as the training set. The LOO-CV is approximately unbiased, since

almost the entire dataset is used for fitting the model each time, but can have higher variance than

Chapter 3. Background 15

Figure 3.3: 10-Fold Cross-Validation. In each round/iteration of Cross-
Validation one fold (in colour) is used for testing and the rest of the folds
are merged into the training set.

K-Fold CV as the M training sets greatly overlap each other [3]. It is also highly computationally

intensive, as it needs to fit M models (as many as the samples) in order to produce the error

estimate.

A typical value for K that has been found to produce good results, relatively balancing out

the trade-off between bias and variance, is K � 10 [4].

3.3 Model Selection

3.3.1 Bayes Model and Residual Error

Assuming that the conditional probability distribution of Y given X, P pY |Xq, is known, then

the best model for a specific task would be derived as follows. The expected test error can be

written as:

Err � EX,Y tLpY, f pX,Dqqu � EXtEY |XtLpY, f pX,Dqquu (3.6)

and the model fB which minimizes it, is a model which minimizes the inner expectation for each

point x of the input space X :

fB � argmin
yPY

EY |X�xtLpY, yqu (3.7)

16

The model fB is referred to as the Bayes model and its expected generalization error ErrpfBq is

known as the residual error in supervised machine learning. This is the minimal error that can

be achieved, due to random deviation (or noise) in the data.

3.3.2 Selecting the best (possible) model

Having defined the Bayes model, solving the problem of finding the best model, would be equal to

the problem of estimating the conditional probability distribution P pY |Xq from the set of training

examples Dtrain. However, a close estimation of P pY |Xq requires |Dtrain| to grow exponentially

with the number of input variables which renders this solution infeasible [25].

In practice, when dealing with problems of high dimensionality, one must make assumptions

on the properties of the function f . In particular, a collection of candidate models of specific

structure is assumed to contain the best one, and then, optimization is performed among these

models, based on the learning set, in order to find the one which minimizes the expected error.

This collection of models is often referred to as the Hypothesis space and is denoted by H. It is

likely that the final selected model f is not close to the Bayes model fB of the specific problem

(i.e. Errpf q " ErrpfBq), however there may exist models in H which approximate fB.

Definition 3.3.1 The approximation error, defined by:

ErrH � min
fPH

tErrpf qu �ErrpfBq (3.8)

is a measure of how well the models in H can approximate the optimal model fB.

It is intuitive that the larger the hypothesis space H, the smaller the approximation error

will be. However, when fitting multiple models on a finite training set, the estimation of the

performance of the selected one will be optimistically biased (i.e. the model will be overfitting

the data). This phenomenon is also called the problem of multiple inductions in machine learning

and is described in detail in [12]. Loosely, when the number of trained models is large, then a

more complex model with low bias and high variance (i.e. the ”luckiest” one for the particular

training set) will be consistently chosen and it will generalize poorly on new data.

When performing a machine learning analysis, this finite set of models that we wish to find the

best performing one from, typically consists of a few different learning algorithms (e.g. polynomial

regression, SVM, neural network) combined with several different combinations of values for

their hyper-parameters. The term hyper-parameters refers to the set of parameters for a certain

algorithm that are user defined and cannot be directly estimated from the training set. For

example, the degree of a polynomial regression model or the number of hidden layers of a neural

network.

Chapter 3. Background 17

3.3.3 Algorithm and Hyper-Parameter Optimization

It is important to note here that there exist conceptual differences between model selection in the

context of machine learning and in the context of statistical modelling. In the case of statistical

modelling, all the final candidate models f are produced, their performance is evaluated based

on an estimator of generalization performance (e.g. Hold-Out CV, K-Fold CV), and the best one

among them is then chosen and put to use. However, in the case of machine learning the term

model selection often refers to the problem of algorithm and hyper-parameter optimization or

tuning where only the combination of the learning algorithm and its hyper-parameter values that

produced the best performing model (again on the basis of an estimation of their performance)

are returned. The latter term is more appropriate to use in the case of retraining the selected

combination of algorithm and its hyper-parameter values on the entire dataset. Retraining on all

data returns a different model than the one employed for estimating the performance. However,

under the assumption that the loss of a learning algorithm drops monotonically, on average, with

increasing sample size, this is generally a better model to put in use.

In our practice, we employ the retraining step on the complete dataset and so we use the

terms model selection and algorithm and hyper-parameter optimization (or tuning) without any

distinction between them, to refer to the process of finding the best combination of algorithm

and its hyper-parameter values.

More formally, let A represent a learning algorithm, and A represent a set of algorithms

tAp1q, Ap2q, ..., Aplq
u. Let, also, θpiq P Θpiq represent the vector of hyper-parameter values of the

i-th algorithm Apiq. We will denote by ApD, θq � f pD, θq the model produced when applying

algorithm A with hyper-parameter values θ on data D. Each hyper-parameter space Θpiq of

a learning algorithm is a subset of the cross product of the domain spaces of each individual

hyper-parameter of the algorithm which could be continuous or discrete. Then the problem of

Algorithm and Hyper-Parameter Tuning becomes:

tA�, θ�u � argmin
Apiq

PA,θpiqPΘpiq

i�1,...,l

tErrpApD, θqqu (3.9)

Finding tA�, θ�u is usually difficult, since the generalization error of each model needs to be

computable. However, good enough θ can be found which approximate the performance of θ�.

As with performance estimation, when the size of the dataset D is relatively large, one could

use the Hold-Out Cross-Validation method (see Section 3.2.1). Instead of fitting just one model

on the training set Dtrain and testing its performance on the test or holdout set Dtest, now, a

number of different models are fit on Dtrain, and the one that minimizes the error on Dtest is

chosen:

tA�, θ�u � argmin
Apiq

PA,θpiqPΘpiq

i�1,...,l

t

sEpDtest, ApDtrain, θqqu (3.10)

18

This method exhibits the same advantages and disadvantages in terms of bias and variance

as when it is used for performance estimation (see Section 3.2.1).

The most commonly used method for small and medium datasets is the K-Fold Cross-

Validation with the appropriate adjustments to perform tuning:

tA�, θ�u � argmin
Apiq

PA,θpiqPΘpiq

i�1,...,l

t

1

K

Ķ

i�1

sEpFi, ApDzFi, θqqu (3.11)

Finding tA�, θ�u that satisfy even the last two equations is not an easy task since it still

requires optimizing over the combinations of algorithms A P A and different settings of their

respective hyper-parameter values. The set A can be restricted to a few different algorithms.

However, some of the hyper-parameters of the learning algorithms could be taking values from

continuous domains or from infinite sets. Some of the more general methods for approximating

a solution, that are also used in practice are manual search, grid search, random search and

Bayesian optimization. In manual search a human analyst, based on their knowledge on the

problem or using rules-of-thumb, will try some initial choices for A and θ and according to the

performance of the resulting model, they will tweak them and repeat the process until some

well performing values have been identified. Grid search refers to the process of exhaustively

searching through a manually specified subset of the hyper-parameter space of a learning algo-

rithm and is an automated procedure. Random search simply samples hyper-parameter settings

for a predefined number of times or until some condition has been met. It has been shown to

achieve same or better performance than grid search and is computationally more efficient in

high dimensional hyper-parameter spaces [26]. Bayesian optimization is a methodology for the

global optimization of noisy black-box functions. In general, Bayesian optimization first assumes

a statistical model that captures the dependence of a loss function on hyper-parameter values.

It then proceeds by repeatedly using this model to identify hyper-parameter settings in a way

that trades off exploration (i.e. choose hyper-parameter values that their performance is uncer-

tain) and exploitation (i.e. choose hyper-parameter values that are promising), evaluate their

performance and update the original model with the new observations. Bayesian optimization

has been well studied [27–30] and in practice, it seems to obtain better results with fewer trials

of hyper-parameter settings than grid search and random search.

In all cases, optimizing over θ must be made cautiously; the model trained with hyper-

parameter values θ should be neither too complex nor too simple. A too complex model will have

adapted to the data and will have low error on the training set but higher error on the test set

(i.e. it will generalize poorly). In this case, we say that the model is overfitting. On the contrary,

when the model is too simple, it is said to underfit the data because it is unable to capture the

true relation between the input variables X and the output Y . This kind of model will show high

error on both the training and the test set. The most appropriate choice for the values θ would

be those that balance the trade-off between variance and bias so that the model is of moderate

Chapter 3. Background 19

complexity.

3.4 Simultaneous Model Selection and Evaluation

In practice, when analyzing real problems, it is desirable that both the final model (i.e. combi-

nation of learning algorithm and its hyper-parameter setting) is selected and its performance is

evaluated. The combination of the two tasks is not trivial. However, there exist methods that

have been studied [3–7,10,21,22] for their properties and effectiveness in doing so, and are widely

used in the field of machine learning.

Typically, a supervised learning analysis will also consist of performing a few more steps

than just optimizing for the learning algorithm and its hyper-parameter values. For instance,

imputation may need to be applied if the data has missing. Binarization of categorical variables,

standardization of numerical features or completely different representations of the data could

also be tried. Feature selection could also be applied in the case that we need to restrict the input

space of the problem or when we are more interested in identifying which of the input variables

are more related to the outcome (i.e. diagnose the causes of the problem).

Most of these extra steps will also require to choose among a plethora of algorithms that

also need tuning. The correct way to proceed is to incorporate all these steps in the protocol

that is used for model selection and evaluation. As discussed in [3], if feature selection is applied

to all the data prior to using some estimator of performance and hyper-parameters (e.g. Cross-

Validation), then the assessment of the error of each model will not be performed on a completely

independent test set since those samples were already used in the process of selecting the features.

In general, every step in an analysis which involves “peeking” into the output variable, should

be incorporated in the preferred protocol.

Essentially, the modelling procedure consists of multiple steps and we need to optimize in

terms of the combinations of all the algorithms involved in each step and their respective hyper-

parameters. Let c denote a sequence of modelling steps, with specified algorithms and hyper-

parameter values for each step, also referred to in this work as configuration. For example, c could

be “standardization of numerical variables, LASSO for feature selection with hyper-parameter

lambda equal to 0.1, Random Forests with 1000 trees”. Let C � tc1, c2, ...clu denote a finite set of

candidate configurations to be tried. Then, f pD, cq is the model produced when the sequence of

modelling steps c is applied to D. It is important to note that c is completely defined (i.e. there

are no undefined hyper-parameters or other choices to be made on it). In this sense, optimizing

over c is the same as performing a grid search for all possible combinations of algorithms and

their respective hyper-parameter settings for all steps in the analysis pipeline.

All the procedures in the following Sections will be described in the context of the model

selection problem being the optimization of an entire analysis pipeline.

20

Algorithm 1 Train-Validation-Test

Input: A training set D � px, yq P X � Y , A finite set of learning configurations C
Output: A model M, An estimation of performance P of model M

1: function: TV T pD,Cq

2: randomly partition D into three disjoint subsets Dtrain,Dvalidation and Dtest

3: for each configuration c P C do

4: êc � sEpDvalidation, f pDtrain, cqq

5: end for

6: c� � argmin
cPC

têcu

7: P �

sEpDtest, f pDtrain YDvalidation, c
�

qq

8: M � f pD, c�q

9: return M, P

3.4.1 Train-Validation-Test Protocol

A simple way of assessing the performance of the selected model would be to use the test set

error estimate sEpDtest, f pDtrain, c
�

qq of the Hold-Out method (see equation 3.10). Simple yet

naive, since the model was chosen due to its performance on the test set and therefore it cannot

be considered independent from it. As a result, the reported performance estimate on the same

test set will be optimistically biased.

To produce a reliable estimation of the performance of the model, we need to evaluate it on

a separate, independent test set. To do so, we can modify the Hold-Out protocol as shown in

Algorithm 1. First, the dataset is split into three disjoint sets Dtrain,Dvalidation and Dtest. Then,

model selection (i.e. chose the best configuration c P C) is performed on Dtrain Y Dvalidation

using test sample estimates (Lines 3-6). After the best configuration c� is identified, the unbiased

expected generalization error of the model trained on Dtrain Y Dvalidation is estimated on Dtest

in Line 7. Finally, the returned model is learned on the entire set of learning examples (Line 8).

As with the simpler cases of Hold-Out for performing model selection (see Section 3.3.3) or

performance estimation (see Section 3.2.1), one major drawback is that it “wastes” data. Again,

a learning curve related bias is introduced as the Hold-Out CV estimates are always conditioned

on less than |D| samples. If the training set is relatively small, then the estimate of the expected

test error would be biased upward (see Figure 3.2). Also, the arbitrary choice of splitting of the

data will introduce some variance to the estimate. Ideally, we want a large enough training set so

that the fitted model operates on the plateau of the learning curve, and yet there would be enough

samples to ensure accurate estimates of the performance. A rule-of-thumb for splitting the data

is 60% of the data instances for the training set |Dtrain| and 20% for each of the validation and

test sets |Dvalidation| and |Dtest|.

Chapter 3. Background 21

Algorithm 2 K-Fold Cross-Validation

Input: A training set D � px, yq P X � Y , A finite set of learning configurations C, A positive
integer K

Output: A model M, An estimation of performance P of model M

1: function: KCV pD,C,Kq

2: randomly partition D into K disjoint subsets F i, i � 1..K of approximately equal size
3: for i = 1 to K do

4: for each configuration c P C do

5: êc
piq
�

sEpFi, f pDzFi, cqq

6: end for

7: end for

8: êc �
1

K

°K
i�1

êc
piq

9: c� � argmin
cPC

têcu

10: P � min
cPC

têcu

11: M � f pD, c�q

12: return M, P

3.4.2 K-Fold Cross-Validation

The K-Fold Cross-Validation method could also be used to simultaneously perform model selec-

tion and model assessment. The procedure is detailed in Algorithm 2. First, the data instances

are randomly split into K !M mutually exclusive subsets F1, F2, ..., FK , also known as folds, of

approximately equal size. Then, model selection is performed using K-Fold estimates in Lines 3-9

(i.e. find the configuration c� which minimizes the mean error over the K test folds Fi). êc
piq

is the average loss in fold Fi of the model trained on DzFi with configuration c. The model

returned is the one learned from the entire dataset using the best configuration c� (Line 11) and

its performance P is evaluated as the mean performance of the K different models that were

constructed on different subsets of the data with configuration c�, f pDzFi, c
�

q.

Similarly to the case of the simple Hold-Out CV method, where we only had one test set for

both selecting and evaluating the model, the K-Fold CV will not provide an accurate estimate of

the expected generalization error since this same quantity was used to guide the model selection

procedure. Indeed, as it has been shown in [4, 6, 8, 10, 13, 22] the K-Fold CV estimate of the

performance will be biased, especially when the number of data samples is relatively small.

To guarantee an unbiased estimate, the test sets (folds) on which the expected test error is

evaluated should be kept out of the entire process of model selection and only be used once the

best configuration c� is selected. A protocol that follows this procedure is the Nested K-Fold

Cross-Validation described in detail in 3.4.4.

22

Algorithm 3 Tibshirani and Tibshirani

Input: A training set D � px, yq P X � Y , A finite set of learning configurations C, A positive
integer K

Output: A model M, An estimation of performance P of model M

1: function: TT pD,C,Kq

2: M, PKCV , c
�, c�i � KCV pD,C,Kq

3: zBias � 1

K

°K
i�1

pê
piq

c� � ê
piq

c�
i

q

4: P � PKCV �

zBias

5: return M, P

3.4.3 Tibshirani and Tibshirani (TT) Bias Correction

The Tibshirani and Tibshirani (TT) protocol applies the idea of approximately estimating the

bias of the minimum K-Fold CV error rate in K-Fold Cross-Validation [2]. The method is outlined

in Algorithm 3. Apart from the best overall configuration c�, the TT protocol also needs the

configurations c�i , which minimize the expected error for each of the folds Fi, i � 1, ...,K (Line 2).

Then, the bias due to model selection is estimated for each fold as the average loss of the model

trained with the overall best found configuration c�, minus the average loss of the model trained

with the best configuration c�i for that particular fold. The overall bias zBias then, is the mean

bias over the K folds (Line 3). The adjusted estimate of performance of the TT protocol is then:

yErrTT �

yErrKCV �

1

K

Ķ

i�1

pê
piq

c� � ê
piq

c�
i

q (3.12)

where ê
piq

c� is the average loss in fold i of the model trained with configuration c� and ê
piq

c�
i

is

the average loss in fold i of the model trained with configuration c�i . Assuming that the data

partitioning is the same, then K-Fold CV and TT return the same model.

The TT has minimum computational overhead as it does not require the training of any addi-

tional models other than the ones already trained by the K-Fold Cross-Validation. Tsamardinos

et al. in [10], show that the method is robust providing conservative performance estimates

which are statistically equivalent to those of the Nested K-Fold Cross-Validation protocol (see

Section 3.4.4). They suggest the use of TT over the Nested K-Fold Cross-Validation mailny due

to its lower computational complexity. However, TT is not suitable for LOO-CV or when the

size of the test set is too small, and it was shown to over-estimate the bias in some settings [18].

3.4.4 Nested K-Fold Cross-Validation

Varma and Simon in [6], report a bias in error estimation when using K-Fold Cross-Validation,

and suggest the use of the Nested K-Fold Cross-Validation (NCV) protocol as an almost unbiased

estimate of the true performance. NCV introduces an outer loop to the K-Fold CV procedure

which results, essentially, in the “cross-validatory assessment of the cross-validatory choice” as

Chapter 3. Background 23

Algorithm 4 Nested K-Fold Cross-Validation

Input: A training set D � px, yq P X � Y , A finite set of learning configurations C, A positive
integer K

Output: A model M, An estimation of performance P of model M

1: function: NCV pD,C,Kq

2: randomly partition D into K disjoint subsets F i, i � 1..K of approximately equal size
3: for i = 1 to K do

4: c�i � KCV pDzFi, C,Kq

5: êi � sEpFi, f pDzFi, c
�

i qq

6: end for

7: P �

1

K

°K
i�1

êi
8: c� � KCV pD,C,Kq

9: M � f pD, c�q

10: return M, P

was defined by Stone [15]. Algorithm 4 details the method. First, the data samples are randomly

split into K !M mutually exclusive subsets F1, F2, ..., FK , also known as folds, of approximately

equal size. Then, model selection (i.e. find the best configuration c�) is performed using K-Fold

Cross-Validation on DzFi and the expected generalization error êi of f pDzFi, c
�

q (i.e. the model

trained using configuration c� on all the data but fold Fi) is evaluated on Fi, for i � 1, ...,K

(Lines 3-6). The (unbiased) expected generalization error of the final selected model is evaluated

as the average generalization error of the models f pDzFi, c
�

q over the folds (Line 7). Finally,

the best configuration c� is determined by performing model selection on the entire dataset D

using K-Fold Cross-Validation (Line 8), and the final model is learned on D using the chosen

configuration c�.

It is important to note that the final returned model is the same as the one returned by the

K-Fold Cross-Validation protocol (assuming same splitting of the data into folds). The main

drawback of the method is that it is computationally expensive since the number of models that

need to be trained are ¡ K2
� |C|, where C is the configurations set.

Although Varma and Simon [6] are (probably) the first to explicitly study the effectiveness

of the Nested Cross-Validation protocol, the method (or similar ones) has been used as early as

2003 and 2005 [31–33] and has gained popularity since then due to its almost unbiased (slightly

conservative [10]) error estimate.

Figure 3.4 illustrates the Nested K-Fold Cross-Validation protocol where K � 5 for both the

outer and the inner loop of the procedure. Each of the folds of the outer loop serves in turn as

a test set (shown in blue) for estimating the performance of the configuration returned by the

5-Fold Cross-Validation (the inner loop).

24

Figure 3.4: Nested K-Fold Cross-Validation with K � 5 for both the outer
and the inner loop of the procedure.

3.5 Stratification of Folds

Most of the methods described in this Chapter, require that the dataset is split into two or more

subsets. The Train-Validation-Test and the K-Fold CV protocols partition the data into three

and K disjointed subsets respectively. When the dataset is large enough, randomly splitting

the data will (usually) guarantee that the distribution of the output classes will be the same in

each subset. However, with small sample sizes or with unbalanced class distributions it could

be the case that some of the subsets’ distributions are different from the distribution of the

original dataset. In extreme cases, some of the subsets will contain no samples from one or more

of the classes. Then, the estimation of performance for that subset will exclude some classes.

Stratified partitioning of the dataset ensures that the resulting subsets will maintain the original

distribution. Kohavi in [4] and Tsamardinos et al. in [10] recommend the use of stratification as

a better option compared to random splitting, both for bias and variance.

Chapter 4

Proposed Method for Model

Selection and Evaluation

In this Chapter we briefly outline the limitations of existing methods for model selection and

assessment (Section 4.1). We then describe the bootstrap procedure and some of its primary

applications in Section 4.2. In Section 4.3, we present our proposed method for model selection

and evaluation of its performance and discuss its properties and advantages compared to the

existing ones. We conclude with a method (still under evaluation) for calculating the confidence

intervals of the estimated performance (Section 4.4).

4.1 Limitations of Existing Methods

In a real supervised machine learning analysis, it is important not only to find the best model, but

also to evaluate its performance (i.e. how the model generalizes to unseen data). A few of the most

commonly used methods for simultaneously performing the two tasks are the Train-Validation-

Test protocol, the Tibshirani & Tibshirani protocol and the Nested K-Fold Cross-Validation

protocol which are described in detail in Sections 3.4.1, 3.4.3, and 3.4.4 respectively. However,

all these protocols, appear to have limitations under some circumstances which can make them

impractical.

The Train-Validation-Test protocol simulates the ideal, data-rich scenario where each task

(i.e. training, selection, assessment) will be carried out using different, independent and large

enough (virtually infinite) sets of data samples drawn from the same distribution P pX,Y q. In

practice, it is often not possible to draw additional data, and the set of learning instances D

constitutes the only available data. When the training set is relatively small, then a learning

curve bias is introduced in the estimate. On the other hand, the arbitrary choice of splitting of

the data samples will introduce variance to the estimate (see Sections 3.2.1, 3.4.1).

The Tibshirani & Tibshirani (TT) [2] and the Nested K-Fold Cross-Validation protocols [6],

both provide a conservative performance estimate [10]. TT tries to approximately estimate

26

the bias in the Cross-Validation error estimate without any significant computational overhead,

however it is not suitable for the LOO-CV or when the size of the test set is too small. The

Nested K-Fold Cross-Validation protocol provides an almost unbiased error estimate [6] but the

use of it can be prohibitive due to its computational cost since the number of models that need

to be trained are quadratic to the number of folds.

The WMC/WMCS method [9] is quite complex and is based on a parametric assumption

which in some cases might be difficult to hold true.

The IPL method [11] outperforms the aforementioned ones in terms of performance esti-

mation but it exhibits significant limitations; it has higher computational cost than TT and

WMC/WMCS, collapses when the size of the original dataset is small and it makes the assump-

tion that the learning curve for each classifier can be fitted well by inverse power law.

We propose a new, general method for correcting the bias in Cross-Validation procedures,

which works regardless of the data analysis task (e.g. classification, regression) or the structure

of the models being involved in it. It has low computational overhead with respect to the Cross-

Validation procedure and it was proven, through experiments (see Chapter 6), to produce an

almost unbiased expected performance estimate even when the number of training samples is

small. Unlike the TT, it is also suitable for correcting the bias of both the LOO-CV and the

Hold-Out CV.

4.2 The Bootstrap

The bootstrap was formally introduced by Efron in [34] and it is a very general resampling

procedure for making statistical inferences when the usual parametric assumptions of a population

are questionable or violated. The term “bootstrap” refers to the notion of “pulling oneself up

by one’s bootstrap” which is a metaphor for “a self-sustaining process that proceeds without

external help”.

To better understand bootstrapping, one must first understand the concept of a sampling dis-

tribution. The term sampling distribution refers to the probability distribution that would result

from the computed values of a statistic (e.g. sample mean, sample median, sample standard devi-

ation) on all possible samples of a given size M of a population of interest. A statistic is assumed

to be fixed in the population, but its estimate would vary for different samples of the population.

The bootstrap simulates this procedure in order to approximate the sampling distribution by

treating the available data as the population. It repeatedly draws observations from the data

to create a large number of samples known as the bootstrap samples. Each bootstrap sample is

drawn randomly with replacement and has the same sample size as the original. The statistic of

interest is then computed on each of the bootstrap samples and the resulting distribution is the

estimate of the population distribution of that statistic, also known as the bootstrap distribution

of the statistic. When resampling a dataset of size M with replacement, on average only 0.632 of

the original observations will end up being included since the probability of any given observation

Chapter 4. Proposed Method for Model Selection and Evaluation 27

not being selected after M samples is p1 � 1{Mq

M
� e�1

� 0.368. Consequently, each of the

bootstrap samples will randomly depart from the original. And since the observations in the

samples vary randomly, the values of the statistic calculated for each one will be different. For

more details on the bootstrap see [14].

4.2.1 Primary applications of Bootstrap

The bootstrap has many applications in statistics and machine learning. For example, one could

use the bootstrap to approximate the standard error of a sample estimate of a population parame-

ter θ, to correct its bias, or to compute the confidence intervals of θ. For all these applications the

same philosophy of bootstrap is followed: replace the population with the empirical population.

Standard Error Approximation

Let us first introduce some notation. Suppose θ is a population parameter that we need to

examine and let θ̂ be an estimator of θ on the basis of a random sample of size M from a

population. The empirical standard deviation of a series of bootstrap replications of θ̂ can be

used to approximate the standard error SEpθ̂q:

SEpθ̂q �

g

f

f

e

1

B � 1

B̧

b�1

pθ̂�b � θ̂�q
2

(4.1)

where

θ̂� �
1

B

B̧

b�1

θ̂�b

and θ̂�b is the parameter estimation for the b-th bootstrap sample, and B is the number of total

bootstrap samples.

Another resampling technique used for approximating the standard error is the Jackknife

[35–37], with the bootstrap being a more general method and applicable in the case when the

population parameter is the sample median where the Jackknife fails.

Bias Correction

For most sample statistics, the sampling distribution of θ̂ (i.e. a sample statistic) for large

sample size M is normal with mean θ (i.e. the corresponding population parameter). However,

the mean of the sampling distribution of θ̂ will often be different from θ with a bias equal to

Biaspθ̂q � Epθ̂q � θ. A bootstrap based approximation of this bias is:

zBiasbootpθ̂q �
1

B

B̧

b�1

pθ�b � θ̂q (4.2)

28

where θ�b is the estimate of the b-th bootstrap sample. The corrected estimator is then

θ̂c � θ̂ �zBiasbootpθ̂q

Confidence Intervals

When computing a sample statistic, it is desirable to know how well it estimates the underlying

population value. Confidence intervals, for a given population parameter θ, address this issue by

providing a sample based range of values that contain θ with a high probability. This probability

is known as confidence level p1 � aq and is usually specified to be 95% or 99%. One of the

most popular and simple methods for constructing confidence intervals using bootstrap is the

percentile method. First, B independent bootstrap samples of size M (the size of the original

sample) are drawn. Then, the parameter θ is estimated for each of the bootstrap samples to

get pθ�1 , θ
�

2 , ..., θ
�

Bq. Next, the bootstrap replications of θ̂ are ranked in ascending order so that

pθ�
p1q

¤ θ�
p2q

¤ ... ¤ θ�
pBq

q. The lower and upper confidence bounds are the B � a{2-th and

B � p1� a{2q-th ordered elements respectively. For example, for B � 1000, which is the smallest

number of replications that is usually recommended, and a � 0.05, the resulting bootstrap

percentile confidence interval would be rθ�
p25q

, θ�
p975q

s. A confidence stated at a 1� a level can be

thought of as the inverse of a significance level, a. For more theoretical details on the bootstrap

confidence intervals and differents methods for constructing them, as well as a comparison of

them, see [38].

Bootstrap Performance Estimation

In machine learning, a bootstrap based variation of the Repeated Hold-Out Cross-Validation (see

Section 3.2.1) protocol can be used to perform model assessment. Instead of repeatedly splitting

the data D (with |D| �M) into two disjoint subsets Dtrain and Dtest and averaging the results,

where |Dtrain|, |Dtest| M , the bootstrap method will create multiple training sets Din of size

M by sampling D with replacement. These training sets, as mentioned before, will consist, on

average, of the 0.632 of the original samples. The bootstrap estimate of the expected test error

for B bootstrap samples is:

yErrboot �
1

B

B̧

b�1

1

M

M̧

i�1

Lpyi, f
pbq
pxi,Dinqq (4.3)

where f pbqpxi,Dinq is the predictions for the vector of input values xi of the model trained on

the training set Din of the b-th bootstrap sample. Unfortunately, this is not a good estimator

of the expected error since the models f pbq that are used to predict the outcome of a vector of

input variable values xi, might have been trained using the data point pyi, xiq (i.e. the test data

and the train data overlap). When pyi, xiq R Din, then
1

M

°M
i�1

Lpyi, f
pbq
pxi,Dinqq is similar to

the K-Fold Cross-Validation error of equation 3.5, otherwise it is similar to the training error of

Chapter 4. Proposed Method for Model Selection and Evaluation 29

equation 3.3. This will lead to the overfitting of the models f pbq and yErrboot being considerably

biased downward.

An improvement on that is the Leave-One-Out bootstrap error estimate, which mimics the

K-Fold Cross-Validation one:

yErrLOOboot �
1

M

M̧

i�1

1

|B�i|

¸

bPB�i

Lpyi, f
pbq
pxi,Dinqq (4.4)

where B�i is the set of bootstrap samples that do not contain the pair pyi, xiq. This solves

the problem of overfitting, however yErrLOOboot is conditioned on less than M observations (see

learning curve bias in Section 3.2.1) and will be upward biased (i.e. overestimated).

To solve the bias problem, Efron [21] proposed the 0.632 bootstrap estimator :

yErr0.632boot � 0.368yErrtrain � 0.632yErrLOOboot (4.5)

where yErrtrain is the training error or resubstitution estimate of equation 3.3. Intuitively, the

idea is to reduce the bias of the LOO-bootstrap estimate by pulling it toward the training error.

However, when yErrtrain is close to zero (i.e. in highly overfitted situations), the estimator will

be downward biased [21].

In our knowledge, the bootstrap estimator for selecting a model or assessing its performance

is not widely used in the field of machine learning. Kohavi in [4], compares the estimate of K-Fold

Cross-Validation and that of the 0.632 bootstrap on a variety of real-world data with different

characteristics and finds that “the bootstrap has low variance, but extremely large bias on some

problems”. He concludes his research by recommending using stratified 10-Fold Cross-Validation.

It is also important to note here that the bootstrap method is highly computationally expensive

due to the large number of models that need to be trained.

4.3 Bootstrap Bias Correction

In this Section, we present a new, general method for correcting the bias in Cross-Validation

procedures, which works regardless of the data analysis task (e.g. classification, regression) or

the structure of the models being involved in it. The method takes advantage of the bias correction

properties of the bootstrap [14], briefly described in Section 4.2.1. It shares some common ground

with the 0.632 bootstrap and with the Nested K-Fold CV but is less expensive than both of them.

It has low computational overhead with respect to the Cross-Validation procedure which results

from repeatedly sampling the different models’ predictions.

The bootstrap bias correction (BBC) for Cross-Validation is a simple method for correcting

the bias of all Cross-Validation procedures (e.g. K-Fold CV, LOO-CV). It only requires that

the predicted values of the models from which we want to choose the best one and assess its

performance are known. The method is outlined in Algorithm 5 and is paired with a CV procedure

30

Algorithm 5 Bootstrap Bias Correction for CV

Input: A training set D � px, yq P X � Y , A finite set of learning configurations C, A positive
integer K, A positive integer B

Output: A model M, An estimation of performance Pboot of model M, The bias zBias of the
CV procedure estimate

1: function: BBCpD,C,K,Bq

2: M, P, Preds � CV pD,C,Kq

3: draw B bootstrap samples from D of size |D| with replacement: pD
p1q

in ,D
p2q

in , ...,D
pBq

in q

4: for b = 1 to B do

5: c�b � argmin
cPC

t

sEpy
pbq
in , P redspx

pbq
in , cqqu # where sEpy, xq � 1

M

°M
i�1

Lpyi, xiq

6: êb � sEpy
pbq
out, P redspx

pbq
out, cqq

7: end for

8: Pboot �
1

B

°B
b�1

êb

9: zBias � P � Pboot

10: return M, Pboot,zBias

for model selection whose performance corrects. Essentially, Algorithm 5 outlines a complete

method for model selection and evaluation of its performance.

The algorithm begins by calling the K-Fold Cross-Validation procedure of Algorithm 2 (Line 2)

which returns the final selected model M, its (biased) performance P as estimated by the pro-

cedure, and an array of predictions Preds. We assume that Preds is a 2-dimensional array of

size |D| � |C|, whose columns correspond to the models that were produced using the set of

configurations C (see Section 3.4) in the CV procedure and its rows correspond to the predicted

values of these models for each sample xi. In order for the K-Fold CV procedure to agree with our

bias correction method, we use a slightly different way to compute the CV performance estimate;

instead of performance P being calculated as the average performance of the models that were

trained with the best found configuration c� over the K folds (see Algorithm 2), now, we pool

together all the predictions for each configuration and the performance Ppool is just the average

performance over all predictions for the best configuration c�. When the number of samples in

each fold is the same, and for some metrics (e.g. accuracy), P � Ppool. However, when the folds

are of different size, or the AUC metric is optimized, Ppool � P .

Next, B bootstrap samples of size |D| (i.e. the number of data points) are drawn with

replacement (Line 3). We use D
pbq
in to denote the data points that are contained in the b-th

bootstrap sample (around 0.632 of the original samples) and D
pbq
out to denote the set of the ones

that are not. Subsequently, we use x
pbq
in and y

pbq
in to denote the set of input variable values and

the set of their respective output values of the samples that are included in the b-th bootstrap.

Then, for each bootstrap sample D
pbq
in we find the configuration c�b that minimizes the loss

function L and we estimate its performance on D
pbq
out (Lines 4-7). Predspx

pbq
in , cq represents the

predictions of the model(-s) trained with configuration c for the set of samples x
pbq
in . Essentially,

Chapter 4. Proposed Method for Model Selection and Evaluation 31

c and x
pbq
in act as indices to the predictions matrix Preds. We use this notation to point out

that there is no need for another model to be trained or even for predictions to be produced.

The BBC method only needs the array of predictions already produced by the respective Cross-

Validation procedure. The estimated performance of the best model is then the average of the

performances of the best selected models for each bootstrap sample (Line 8). The model returned

by the method is the one that has the best performance averaged over all pooled predictions. In

the case of having accuracy as the metric of performance and assuming same split of the data

in folds, it is the same as the ones returned by K-Fold Cross-Validation (averaging over folds),

TT and the Nested K-Fold Cross-Validation, but with different estimation of the performance

(Line 10).

In conclusion, the BBC method provides an almost unbiased estimate of the performance of

the final selected model. It is faster than the Nested K-Fold Cross-Validation protocol and it is

designed to work with all kinds of CV procedures and also with small sample size (where TT

fails).

4.4 Computing Confidence Intervals

When assessing the performance of a model, it is desirable to know how well the estimate reflects

the true performance. Confidence intervals provides us with a sample based range of values

that contain the true performance with high probability. One of the most popular and simple

methods for constructing confidence intervals using bootstrap is the percentile method explained

in Section 4.2.1.

In the BBC procedure B bootstrap samples are independently drawn from the predictions’

array (essentially), and for each of them the best configuration is found and its performance is

estimated. In order to use the percentile method for the construction of confidence intervals, the

only extra work that needs to be done is to rank the bootstrap replications of performance of the

BBC method in ascending order. Then, the lower and upper confidence bounds are the B �a{2-th

and B � p1� a{2q-th ordered elements respectively, where p1� aq is the confidence level.

We are still evaluating how well fit this method is for this purpose, but it seems to provide

good results in our experiments. We also plan to test other, more reliable methods for calculating

confidence intervals such as the BCa method [39].

32

Chapter 5

Bootstrap-Based Dropping of

Under-Performing Configurations

In this Chapter we introduce a method, based on the bootstrap, for eliminating under-performing

configurations early in the K-Fold Cross-Validation procedure in order to speed it up. Section 5.2

presents the way the method is incorporated within K-Fold Cross Validation and describes the

approach to identifying under-performing configurations.

5.1 Dropping of Under-Performing Configurations

K-Fold Cross Validation has become a de-facto standard in machine learning for model selection

and evaluation and it is commonly paired with grid search. When the space of hyper-parameter

values is large, K-Fold Cross Validation can become computationally expensive and thus pro-

hibitive to be applied in full.

We present a procedure, based on bootstrap testing, for dropping under-performing configu-

rations early within a Cross-Validation procedure in order to speed up its execution time. We call

our method Bootstrap-based Early Dropping (hereafter BED), and we have studied its behaviour

through extensive experimentation both on simulated and real data (see Chapter 6).

To the best of our knowledge, the only work that focuses on the speeding up of the learning

process by specifically eliminating, early in the CV procedure, under-performing configurations

is the one by Krueger et al. [20]. Their method is called Fast Cross-Validation via Sequential

Testing (CVST), and it uses nonparametric testing together with sequential analysis to choose

the best performing configuration on the basis of linearly increasing subsets of data.

34

5.2 Bootstrap-Based Dropping of Under-Performing Configura-

tions

BED is incorporated within the K-Fold Cross Validation procedure and it is outlined in Algo-

rithm 6. We use f p�,Dtrain, cq to denote the model trained on dataset Dtrain with configuration

c, and f pDtest,Dtrain, cq to denote the output (i.e. the predictions) of that model when applied

on Dtest.

The K-Fold CV with BED procedure starts with every configuration c P C being active, and

discards (removes from C) under-performing configurations at each iteration i of the procedure,

based on their performance on the last i iterations. More specifically, at each iteration i, the

following steps are executed. First, for each configuration c P C a model is trained on DztFiu,

and their predictions for the test fold Fi are stored in a 2-dimensional array Predsi (Lines 4-6).

Consequently, each column of Predsi corresponds to a configuration in C and each of its rows

corresponds to a data sample in Fi. Then, the union of the arrays Predsk for k � 1, ..., i is stored

in Preds; that is all the produced predictions up to iteration i (Line 7). Again, the columns

of Preds correspond to the configurations in C, but its rows contain the predictions for all the

test folds Fk for k � 1, ..., i. Next, the array of predictions Preds, along with the corresponding

true output (labels) y, the set C, the desirable number of bootstraps B, and a threshold t are

passed to the BED procedure that determines which of the configurations in C will be eliminated

before the next iteration. Finally, the configurations that were found to be under-performing are

removed from the set of configurations C in Line 10.

After all K iterations of the K-Fold CV procedure have been executed, the final, best con-

figuration is chosen among the ones that are left in the set C, and its performance is estimated

(Lines 12-17). In Algorithm 6 this is performed by finding the configuration c� which minimizes

the mean loss over all predictions. This way, the BBC procedure for bias correction (see Sec-

tion 4.3) can be directly applied. One could also calculate the mean loss over the predictions

of each fold Fi independently, and then average the results, as is usually the case for K-Fold CV

(see Section 3.4.2).

The BED procedure is detailed in Algorithm 7. It takes as input a 2-dimensional array of

predictions Preds of size M �N and the corresponding true labels y (a vector of M values), a

set of configurations C � tc1, c2, ..., cN u, the number B of bootstraps to perform, and a threshold

t. First, the configurations in C are sorted in ascending order based on their mean error on

the predictions in Preds in order to get Cp�q

� tcp1q, cp2q, ..., cpNq

u. Consequently, configuration

cp1q is the currently best performing one. Next, it constructs B bootstrap samples (i.e. multiple

instances of Preds) by sampling the rows of Preds with replacement. Then, for each configuration

cpiq P Cp�q, i � 2, ..., N , we calculate the probability of it being statistically different (worse) than

cp1q (the best one) in terms of performance. This is equal to the proportion of bootstraps for

Chapter 5. Bootstrap-Based Dropping of Under-Performing Configurations 35

Algorithm 6 K-Fold Cross-Validation with Bootstrap Dropping

Input: A training set D � px, yq P X � Y , A finite set of learning configurations C, A positive
integer K, A positive integer B, A threshold t

Output: A model M, An estimation of performance P of model M, A configuration c�

1: function: BDpD,C,K,B, aq

2: randomly partition D into K disjoint subsets F i, i � 1..K of approximately equal size
3: for i = 1 to K do

4: for each configuration c P C do

5: Predsi � f pFi,DztFiu, cq

6: end for

7: Preds �
�i

k�1
Predsk

8: y � yi P
�i

k�1
Fk

9: Cdrop � BEDpy, Preds,C,B, tq

10: C � CzCdrop

11: end for

12: for each configuration c P C do

13: êc �
1

M

°M
i�1

Lpyi, P redspxi, cqq

14: end for

15: c� � argmin
cPC

têcu

16: P � min
cPC

têcu

17: M � f p�,D, c�q

18: return M, P, c�

which cp1q had better performance than the i-th configuration:

P pêcp1q êcpiqq �
1

B

B̧

b�1

1pê
pbq

cp1q
 ê

pbq

cpiq
q (5.1)

where 1(condition) is equal to 1 if condition is true, and 0 otherwise. This is performed for all

the configurations cpiq and the ones that satisfy:

P pêcp1q êcpiqq ¥ t (5.2)

are those that will be eliminated.

For the number of bootstraps B we suggest that 1000 is a good enough value to ensure

an almost accurate estimate of equation 5.1. t, is a threshold on the probability defined in

equation 5.1. Essentially, it determines the number of bootstraps pB out of B, that cp1q needs

to perform better than another configuration cpiq, in order for cpiq to be dropped. For example,

for B = 1000 and t = 0.95, pB = 950. The higher the value of t is, the more conservative the

dropping procedure becomes (the more unlikely it becomes to drop a configuration).

We empirically show that BED significantly speeds up the running time of the K-Fold Cross-

Validation procedure since the number of the models that are trained throughout K-Fold CV are

reduced at least by 50%. We cannot explicitly measure the performance of the method in terms

36

Algorithm 7 Bootstrap-based Early Dropping

Input: A vector of output values y, An array of predictions Preds of size M � N , A set of
configurations C � tc1, c2, ...cN u, A positive integer B, A threshold a

Output: A set Cdrop of under-performing configurations

1: function: BEDpy, Preds,C,B, tq

2: sort the configurations in C by their mean error in ascending order to get Cp�q

�

tcp1q, cp2q, ..., cpNq

u # cp1q has the best performance
3: construct B bootstrap samples from Preds of size M � N with replacement
pPredsp1q, P redsp2q, ..., P redspBq

q # by sampling rows of Preds

4: Cdrop � H

5: for i = 2 to N do # for each cpiq, i � 2, ..., N
6: for b = 1 to B do # for each bootstrap sample Predspbq

7: ê
pbq

cp1q
�

1

M

°M
k�1

Lpy
pbq

k , P redspbqpxk, c
p1q
q

8: ê
pbq

cpiq
�

1

M

°M
k�1

Lpy
pbq

k , P redspbqpxk, c
piq
q

9: end for

10: s � 1

B

°B
b�1

1pê
pbq

cp1q
 ê

pbq

cpiq
q # 1(condition = false/true) = 0/1

11: if s ¥ t then

12: Cdrop � Cdrop

�

tcpiqu

13: end if

14: end for

15: return Cdrop

of running time, since we had to ran the experiments on a few different machines with different

characteristics.

We have not compared BED to CVST in practice, and therefore we cannot make claims that

concern the running time and model selection properties of the two methods. However, there are

some points that make our method more appealing to use than CVST. The CVST method uses

linearly increasing subsets of data as training sets. If the sample size of the original data is small,

then CVST will probably not be applicable. Our method uses the bootstrap as a statistical test

in order to detect differences in performance between configurations which is general and can

be used independently of the learning task. The CVST method employs a different statistical

test for each task (e.g. the Friedman and the Cochran’s Q tests for regression and classification

respectively). Finally, the CVST method has a total number of four parameters that need to be

set by the user in contrast to BED which only has two: the number of bootstraps B and the

threshold t.

5.2.1 Discussion

A few comments on BED. It is a heuristic procedure mainly with focus on computational effi-

ciency, not statistical theoretical properties. Ideally, the null hypothesis to test for each configu-

ration c would be the hypothesis that c will be selected as the best configuration at the end of the

KCV procedure, given a finite number of folds remain to be considered. If this null hypothesis

Chapter 5. Bootstrap-Based Dropping of Under-Performing Configurations 37

is rejected for a given c, it should be dropped. Each of these hypotheses for a given c has to

be tested in the context of all other configurations that participate in the KCV procedure. In

contrast, the heuristic procedure we provide essentially tests each configuration cpiq in isolation.

For example, it could be the case during bootstrapping, configuration cpiq exhibits a significant

probability of a better loss than cp1q (not dropped by our procedure), but it could be that in all of

these cases, it is always dominated by some other configuration cpjq. Thus, the actual probability

of being selected as best in the end maybe smaller than the percentage of times it appears better

than cp1q.

In addition, our procedure does not consider the uncertainty (variance) of the selection of

the current best method cp1q. Perhaps, a double bootstrap procedure would be more appropriate

in this case [40] but any such improvements would have to also minimize the computational

overhead to be worthwhile in practice.

The computational cost is overcome by the strong theoretical properties of the bootstrap.

Our simulation based preliminary results have showed that McNemar’s test [41] did not work

well for small sample sizes. The obvious way would be to bootstrap the McNemar’s test statistic.

The big advantage of this general bootstrap method is that it can be employed with any type of

classification and regression task without the necessity of imposing any extra (possibly unrealistic)

assumptions and inherited by the need of performing appropriate tests.

A faster, again bootstrap based, early dropping method would be via ordering of the cumu-

latively aggregated performances of the models at each fold and performing the aforementioned

bootstrap dropping at each step. The speed-up factor is considerable, nevertheless, the propor-

tion of computational time of the CV protocol spent in this procedure is rather small and makes

no difference in the overall time.

38

Chapter 6

Experiments and Evaluation

In this Chapter we evaluate the Bootstrap Bias Correction Method (BBC) and compare it against

the K-Fold Cross-Validation (KCV), the Tibshirani and Tibshirani (TT), and the Nested K-Fold

Cross-Validation (NCV) estimates of performance. We also evaluate the Bootstrap-based Early

Dropping method (BED) for eliminating under-performing configurations along the way of Cross-

Validation. In Section 6.1 the simulation studies are presented. The experimental evaluation

using real data sets is presented in Section 6.2.

6.1 Simulation Studies

In order to assess the quality and investigate the properties of our bias correction method (BBC),

and compare it to other estimates of performance, we conducted extensive simulation studies.

We also test BED, our method for eliminating under-performing configurations within Cross-

Validation.

Without loss of generality we examined the case of binary classification, where the target

variable Y takes on only two discrete values (e.g. Y P t0, 1u). We studied a variety of settings

for different combinations of values for the sample size M , the number of models N , and the

true performance Ptrue. For the classification task we used the percentage of correctly classified

samples (i.e. classification accuracy) as the measure of performance. M and N take values

from t50, 100, 200, 300, 500, 1000u and t50, 100, 200, 300, 500, 1000, 2000u, respectively. We assume

that the true classification accuracy, Ptrue, follows a beta distribution Bepa, bq with the mean µ

taking values from t0.6, 0.7, 0.8, 0.9u. For each Ptrue, 5 pairs of parameters were used, controlling

the variance of the beta distribution, ranging from high to low. Figure 6.1 shows the Beta

distributions from which the simulated predictions were produced.

For each setting an M � N array of predictions is constructed, with the given classification

accuracy, where the rows correspond to data instances/samples and the columns correspond to

the models inferred from different configurations (i.e. different combinations of algorithms and

hyper-parameter values for each step of the learning procedure).

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

a = b = 1
a = b = 3
a = b = 5
a = b = 7
a = b = 9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

a = b = 1
a = b = 3
a = b = 5
a = b = 7
a = b = 9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

a = b = 1
a = b = 3
a = b = 5
a = b = 7
a = b = 9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

a = b = 1
a = b = 3
a = b = 5
a = b = 7
a = b = 9

Figure 6.1: Density of the Be(a, b) distribution for the parameters used in the simulation studies.
The parameters are such that µ = a/(a + b) = (0.6, 0.7, 0.8, 0.9).

The number of bootstraps for the BBC method was set to 500. The number of bootstraps

B and the threshold t for the BED dropping method were set to 1000 and 0.99 respectively. In

all cases, the results were averaged over 500 repetitions.

We compared the K-Fold Cross Validation (KCV), Bootstrap Bias Correction (BBC), Nested

K-Fold Cross-Validation (NCV), Tibshirani and Tibshirani (TT), Bootstrap-based Early Drop-

ping (BED), and the BED with BBC methods in terms of bias of the estimated performance

(Section 6.1.1). Since we use classification accuracy as the measure of performance and every

fold of K-Fold Cross Validation contains the same number of data instances, the KCV, BBC,

NCV and TT protocols all select the same model. For the dropping method BED, which might

select a different model than the aforementioned methods, we also compute the model selection

error (Section 6.1.2).

6.1.1 Bias Correction Estimation

The bias of the estimation is computed as ˆBias � P̂ � Ptrue, where P̂ and Ptrue denote the

estimated and the true performance of the selected model, respectively. The target value of ˆBias

is 0, indicating the absence of bias. A positive bias indicates a lower Ptrue than the one estimated

by the corresponding performance estimation method and implies the method is optimistic.

Figures 6.2-6.5 show the average bias, over 500 repetitions of the simulations for the different

Chapter 6. Experiments and Evaluation 41

settings, for the estimates of each of the methods examined for a true classification accuracy Ptrue

equal to 0.6, 0.7, 0.8, and 0.9 respectively. For each Ptrue, only the most challenging cases are

presented. These are the cases where the simulated data are produced from a Beta distribution

with low variance (see Figure 6.1).

It is clear that the K-Fold Cross Validation (KCV) estimate of performance is optimistically

biased. The smaller the sample size, the proportionally higher the bias is. The reverse holds for

the number of models; the greater the number of models, the higher the bias is (in an almost

equal way up to a certain sample size). For higher rates of true performance the bias is lower

even for the small samples. For example, in Figure 6.2 (60% true accuracy), the bias of KCV

for sample size equal to 50 and number of models equal to 2000 is more than 8%, whereas in

Figure 6.5 (90% true accuracy) it is a little less than 6%.

The TT estimate of performance seems to be unsuitable for small sample sizes. Its bias

greatly varies with the number of models; it either corrects the bias by only a small amount or

it overestimates it. For larger sample sizes, it systematically over-corrects the bias.

BBC always provides slightly conservative estimates of performance (i.e. it slightly over-

corrects the bias of KCV). As the sample size increases, the bias tends to zero. Compared to TT,

it seems to be a lot more suitable for smaller sample sizes and produces less biased estimates.

For higher rates of true classification accuracy the bias gets even smaller.

NCV exhibits the smallest bias which slightly varies (being positive or negative) for sample

size ¤ 200. NCV, however, is a lot more computationally expensive than BBC and TT since the

number of models that need to be trained depends quadratically to the number of folds K.

BED exhibits similar results to those of KCV. BED with BBC (BED-BBC) produces the best

results, in terms of bias, performance and computational cost. For sample size ¥ 100 it has the

smallest bias in absolute value (together with NCV), and it approaches zero at a much faster rate

than BBC.

All in all, NCV, BBC and BED-BBC provide the best results. NCV has the smallest bias but

is computationally expensive. BBC and BED-BBC, systematically, have negative bias (i.e. they

are more conservative in terms of performance estimation) with the latter approaching zero in a

much faster pace.

6.1.2 Model Selection Error

In order to evaluate the model selection properties of KCV and BED, we compute the following

quantity which we call model selection error P best
true�P selected

true . P best
true denotes the true performance

of the best model and P selected
true denotes the true performance of the selected model.

Figure 6.6 shows the model selection error for KCV and BED, which are the methods that, in

the case of the simulations, select different models. We notice that BED has the same or slightly

greater (no more than 0.005 points of accuracy) model selection error than KCV which means

that they select models of the same or similar performance.

42

Sample Size
0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 B
ia

s

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1
KCV

Sample Size
0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 B
ia

s

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1
BBC

Sample Size
0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 B
ia

s

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1
NCV

Sample Size
0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 B
ia

s

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1
TT

Sample Size
0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 B
ia

s

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1
BED

Sample Size
0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 B
ia

s

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1
BED-BBC

Figure 6.2: Average performance bias for the estimates of KCV, BBC, NCV, TT, BED, and BED-
BBC for 60% true classification accuracy. KCV and BED are clearly optimistic for sample size
¤ 300. BBC is slightly conservative. TT’s bias greatly varies for sample size ¤ 100 with the number
of models and overcorrects for sample size ¥ 200. NCV and BED-BBC exhibit the smallest bias,
especially for sample size ¤ 100.

Chapter 6. Experiments and Evaluation 43

Sample Size
0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 B
ia

s

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1
KCV

Sample Size
0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 B
ia

s

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1
BBC

Sample Size
0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 B
ia

s

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1
NCV

Sample Size
0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 B
ia

s

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1
TT

Sample Size
0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 B
ia

s

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1
BED

Sample Size
0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 B
ia

s

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1
BED-BBC

Figure 6.3: Average performance bias for the estimates of KCV, BBC, NCV, TT, BED, and BED-
BBC for 70% true classification accuracy. KCV and BED are clearly optimistic for sample size
¤ 300. BBC is slightly conservative. TT’s bias greatly varies for sample size ¤ 100 with the number
of models and overcorrects for sample size ¥ 200. NCV and BED-BBC exhibit the smallest bias,
especially for sample size ¤ 100.

44

Sample Size
0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 B
ia

s

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08
KCV

Sample Size
0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 B
ia

s

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08
BBC

Sample Size
0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 B
ia

s

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08
NCV

Sample Size
0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 B
ia

s

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08
TT

Sample Size
0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 B
ia

s

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08
BED

Sample Size
0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 B
ia

s

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08
BED-BBC

Figure 6.4: Average performance bias for the estimates of KCV, BBC, NCV, TT, BED, and BED-
BBC for 80% true classification accuracy. KCV and BED are clearly optimistic for sample size
¤ 300. BBC is slightly conservative. TT’s bias varies with the number of models and overcorrects
for sample size ¥ 500. NCV and BED-BBC exhibit the smallest bias, especially for sample size
¤ 100.

Chapter 6. Experiments and Evaluation 45

Sample Size
0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 B
ia

s

-0.06

-0.04

-0.02

0

0.02

0.04

0.06
KCV

Sample Size
0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 B
ia

s

-0.06

-0.04

-0.02

0

0.02

0.04

0.06
BBC

Sample Size
0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 B
ia

s

-0.06

-0.04

-0.02

0

0.02

0.04

0.06
NCV

Sample Size
0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 B
ia

s

-0.06

-0.04

-0.02

0

0.02

0.04

0.06
TT

Sample Size
0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 B
ia

s

-0.06

-0.04

-0.02

0

0.02

0.04

0.06
BED

Sample Size
0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 B
ia

s

-0.06

-0.04

-0.02

0

0.02

0.04

0.06
BED-BBC

Figure 6.5: Average performance bias for the estimates of KCV, BBC, NCV, TT, BED, and BED-
BBC for 90% true classification accuracy. KCV and BED are clearly optimistic for sample size
¤ 500. BBC is slightly conservative. TT’s bias varies with the number of models. NCV and
BED-BBC exhibit the smallest bias, especially for sample size ¤ 100.

46

Sample Size
0 100 200 300 400 500 600 700 800 900 1000

M
od

el
 S

el
ec

tio
n

E
rr

or

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
KCV-60%

Sample Size
0 100 200 300 400 500 600 700 800 900 1000

M
od

el
 S

el
ec

tio
n

E
rr

or

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
BED-60%

Sample Size
0 100 200 300 400 500 600 700 800 900 1000

M
od

el
 S

el
ec

tio
n

E
rr

or

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
KCV-70%

Sample Size
0 100 200 300 400 500 600 700 800 900 1000

M
od

el
 S

el
ec

tio
n

E
rr

or

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
BED-70%

Sample Size
0 100 200 300 400 500 600 700 800 900 1000

M
od

el
 S

el
ec

tio
n

E
rr

or

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
KCV-80%

Sample Size
0 100 200 300 400 500 600 700 800 900 1000

M
od

el
 S

el
ec

tio
n

E
rr

or

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
BED-80%

Sample Size
0 100 200 300 400 500 600 700 800 900 1000

M
od

el
 S

el
ec

tio
n

E
rr

or

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
KCV-90%

Sample Size
0 100 200 300 400 500 600 700 800 900 1000

M
od

el
 S

el
ec

tio
n

E
rr

or

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
BED-90%

Figure 6.6: Model selection error for KCV and BED for true classification accuracy P

t60, 70, 80, 90u%. BED has the same or slightly greater (no more than 0.005 points of accuracy)
model selection error than KCV. The error decreases with higher rates of true classification accuracy.

Chapter 6. Experiments and Evaluation 47

True Classification Accuracy
60% 70% 80% 90%

R
el

at
iv

e
T

ru
e

P
er

fo
rm

an
ce

0.9986

0.9988

0.999

0.9992

0.9994

0.9996

0.9998

1

1.0002

1.0004

BED/KCV

True Classification Accuracy
60% 70% 80% 90%

R
el

at
iv

e
N

um
be

r
of

 T
ra

in
ed

 M
od

el
s

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

BED/KCV

Figure 6.7: Boxplots of the relative true performance (left) and the relative number of
trained models (right) for true classification accuracy P t60, 70, 80, 90u% for all sample sizes
(t50, 100, 200, 300, 500, 1000u) and number of configurations (t50, 100, 200, 300, 500, 1000, 2000u) for
the BED and KCV methods. There is a negligible to no effect on performance when using the BED
method. However, the number of models that are trained is greatly reduced.

6.1.3 Relative Performance and Number of Trained Models

Apart from the model selection error, we also compared the KCV and BED (BED-BBC) methods

in terms of the true performance of the models that they select. We also evaluated the speed

up factor that we get with the BED method relatively to KCV in terms of the total number

of trained models. Figure 6.7 shows the boxplots of the relative average true performance of

the final selected models of the BED and KCV methods (on the left), and the relative average

number of trained models for the two methods (on the right) for true classification accuracy

Ptrue P t60, 70, 80, 90u%, for all sample sizes (t50, 100, 200, 300, 500, 1000u) and number of config-

urations (t50, 100, 200, 300, 500, 1000, 2000u). We notice that there is a negligible to no effect on

performance when using the BED method. However, the number of models that are trained is

greatly reduced. The results vary with true classification accuracy. For Ptrue � 90% more models

are trained (less are dropped) and the loss in performance is lower in comparison to Ptrue � 60%,

which is expected since in the former case the majority of models are “good” predictors.

48

6.2 Experiments on Real Datasets

6.2.1 An Automated Pipeline for Supervised Machine Learning

In order to evaluate the performance of both the bootstrap-based bias correction (BBC) and

the bootstrap-based early dropping method (BED), we built an automated tool for supervised

machine learning. The tool will automatically perform a complete analysis of a given dataset,

offering numerous options to the user in regards to learning tasks, data preprocessing and feature

selection methods, learning algorithms, metrics to use for optimization and performance estima-

tion protocols. Its modular architecture allows for the easy incorporation of additional methods

for all the aforementioned categories.

Data Preprocessing

Data preprocessing methods are methods that change the feature values and that are always

applied whenever they can. Such methods include imputation of missing values, standardization

of numerical input variables and binarization of categorical input variables (i.e. the levels of a

categorical variable are coded as a collection of binary variables). As suggested in [42], in the

case that the training algorithm is the ǫ-SVM, we also scale the values of the target variable, in

order to bound the effective range of the values of the hyper-parameter ǫ, making it thus easier

to choose values for ǫ.

Feature Selection

Feature selection (FS), also known as variable selection, is the process of identifying the most

salient features for learning, allowing thus the learning algorithm to focus on those aspects of the

data most useful for analysis and future prediction.

By removing as much irrelevant and redundant information (features) as possible, the dimen-

sionality of the data can be significantly reduced thus allowing the learning algorithms to operate

more effectively and faster. Feature selection can also improve the predictive performance of

learned models which will usually be simpler and more easily understood and interpreted.

The automated tool, for the time being, offers the options of using all the features for training

(no FS method applied) and performing feature selection using the SES [43] and the LASSO [44]

algorithms. Feature selection with LASSO works by fitting the LASSO to the data and choosing

features corresponding to non-zero model coefficients.

We have also implemented group-SES which is a variation of the SES algorithm to allow

predefined groups of variables to be selected into or out of a model together. This is useful in

the case that there exist categorical variables in the data. Group-SES can ensure that all the

binary variables encoding a categorical variable are either included or excluded from the training

procedure.

Chapter 6. Experiments and Evaluation 49

The aforementioned feature selection methods fall into the the category of filters. Filter type

methods select variables regardless of the learning algorithm. They are, essentially, a preprocess-

ing step to the learning procedure. These methods are particularly effective in computation time

since they do not require re-execution on a specific dataset for different learning algorithms. The

results can be cached and used repeatedly.

Model Selection and Assessment

The automated tool offers a variety of methods for model selection and assessment such as Hold-

Out Cross-Validation, K-Fold Cross-Validation (KCV), Nested K-Fold Cross-Validation, KCV

with dropping (BED), KCV with the Tibshirani and Tibshirani bias correction method, KCV

with the bootstrap-based bias correction method (BBC), BED with BBC, as well as the stratified

and repeated versions of all the aforementioned methods.

Currently, the tool provides the options of conducting either a classification or a regression

analysis. For both tasks, the learning algorithms involved in the analysis include Random Forests

as implemented in Matlab 2015b, SVMs as implemented in the libsvm library [45], LASSO,

Decision Trees and Logistic Regression as implemented in Matlab 2015b. For the classification

task the metrics of performance that can be optimized are accuracy, balanced accuracy, AUC,

precision, recall and the F1 measure. For regression the metrics include the R-squared score,

mean squared error (MSE), and mean absolute error (MAE).

6.2.2 Experimental Set-Up

The experimental set-up is similar to the one used by Tsamardinos et al. in [10].

Datasets

The datasets that were used for the experiments are from the first round of the ChaLearn AutoML

challenge [46]. The organizers of the challenge mention about the datasets that “the domains

of application are very diverse and are drawn from: biology and medicine, ecology, energy and

sustainability management, image, text, audio, speech, video and other sensor data processing,

internet social media management and advertising, market analysis and financial prediction”.

Table 6.1 summarizes the datasets’ characteristics. The ratio of the positive and negative classes

for all the datasets is 50:50.

Each dataset D was spit into two subsets, Dpool which consisted of 30% of the data in-

stances/points of D and Dholdout which consisted of the remaining 70% of the data in D.

Dpool was used to sample (without replacement) 10 subsets for each of the sample sizes in

t20, 40, 60, 80, 100, 500u leading in the creation of 5� 10� 6 � 300 sub-datasets in total. Dholdout

was used to estimate the true performance of the final, selected model of each of the methods

tested.

50

Table 6.1: Datasets Used; |Dpool| refers to the portion of the datasets (30%) from which the
sub-datasets were sampled and |Dholdout| to the portion (70%) from which the true performance
is estimated.

Name #Samples #Variables |Dpool| |Dholdout|

christine 5418 1636 1625 3793
jasmine 2984 144 895 2089
philippine 5832 308 1749 4082
madeline 3140 259 942 2198
sylvine 5124 20 1537 3587

Model Selection and Performance Assessment

The set of configurations C (i.e. the search grid) is constructed, by the automated tool, based

on the learning task and the characteristics of the dataset to be analyzed. For the purpose of the

experiments, and for the classification task that we examined, we restricted the search grid to a

few hundreds of configurations, in order to be able to test all the different methods (especially

NCV which is computationally expensive). The preprocessing methods were used when they

could be applied. For feature selection we only included the SES algorithm and we also tested

the case of no feature selection. The learning algorithms that we examined are Random Forests,

SVMs, and LASSO.

The hyper-parameters that were tested for SES are palpha, kq P t0.05, 0.01u�t2, 3u. For Ran-

dom Forests the space of hyper-parameters was pnumTrees,minLeafSize, numV arToSampleq P

t1000u � t1, 3, 5u � tp0.5, 1, 1.5, 2q � sqrtpnumV arqu, where numV ar is the number of vari-

ables of the dataset. We tested SVMs with linear, polynomial and RBF kernels. For their

hyper-parameters we examined, wherever applicable, all the combinations of degree P t2, 3u,

gamma P t0.01, 0.1, 1, 10, 100u and cost P t0.01, 0.1, 1, 10, 100u. Finally, LASSO was tested with

all the combinations of alpha � t0.001, 0.5, 1.0u and 10 values for lambda which are created in-

dependently for each dataset using the glmnet library [47]. Overall, the number of configurations

in C for each dataset is equal to 610.

For the assessment of the performance of the models inferred from the configurations in C,

we used the Area Under the Receiver’s Operating Characteristic Curve (AUC) [48] which is

independent of the prior class distribution. The ROC curve is the curve that illustrates the

performance for a binary classification problem, when a threshold is varied on the predictions. It

is the curve of sensitivity, also known as recall or true positive rate, plotted against 1-specificity

which is also known as false positive rate.

6.2.3 Bias and variance estimation

We performed model selection and evaluation using KCV, NCV, TT, BBC, and BED for each of

the 300 created sub-datasets. For the KCV protocol we used K = 10 and we applied the same

Chapter 6. Experiments and Evaluation 51

split of the folds for all the other methods. It is important to note again, that when the BBC

method is used we first pool the out-of-sample predictions of KCV and then the performance of

each model is computed as the average performance of all the out-of-sample predictions. Usually,

the performance for each model is computed as the average performance for each fold and then

over all folds. In the case of some metrics, such as classification accuracy, the model that will

be selected in each case will be the same. However, in the case of using AUC as a metric of

performance , it is possible that the two methods (pooling and averaging over all folds) result in

different orderings of the models and consequently, the models that the two methods select could

be different. For that reason, we have two versions of KCV, the KCV-pooling which selects the

same model as BBC, and the KCV-average over folds which selects the same model as NCV and

TT. BED uses the pooling of the predictions approach. For NCV, K was set to 9 for the inner

KCV loop, and 10 for the outer.

The bias of the estimations is computed as ˆBias � P̂ � Ptrue, where P̂ and Ptrue denote the

estimated and the true performance of the selected model, respectively. The target value of ˆBias

is 0, indicating the absence of bias. A positive bias indicates a lower Ptrue than the one estimated

by the corresponding performance estimation method and implies the method is optimistic. For

each protocol, original dataset, and sample size, we compute the average bias and its standard

deviation over the 10 sub-samplings.

6.2.4 Results and Discussion

Bootstrap Bias Correction

Figures 6.8 and 6.9, present the average performance bias and the standard deviation of the

performance bias, respectively, for KCV-pooling, BBC, KCV-average over folds, NCV and TT.

KCV-pooling and KCV-average over folds, overestimate performance especially for small sample

sizes (¤ 100). BBC and NCV, both correct the bias of the corresponding KCV variation in a

mostly conservative way. TT is optimistic for sample size equal to 20 and over-corrects the bias

for sample size ¥ 60 for most of the datasets compared to BBC and NCV. The two variants of

KCV have the smallest stds. BBC, NCV and TT have similar stds, although results vary with

dataset.

Figure 6.10 presents the average performance of the different protocols as well as the true

performance of the models they select (performance evaluated on the holdout set). The protocols

of each column select the same model. Figure 6.11 shows the corresponding std of performance

for all methods.

The second column of Table 6.2 shows the percentage of times, over all sub-datasets, for all

sample sizes that KCV-pooling and BBC select the same model as KCV-average over folds, NCV

and TT. Although the two variants of KCV mainly select different models, the true performances

of the models they select (see Figure 6.10) show minor difference in points of AUC and also

similar stds of performance (see Figure 6.11).

52

Sample Size
20 40 60 80 100 500

A
ve

ra
ge

 B
ia

s

-0.2

-0.1

0

0.1

0.2

0.3

0.4
KCV-pooling

Sample Size
20 40 60 80 100 500

A
ve

ra
ge

 B
ia

s

-0.2

-0.1

0

0.1

0.2

0.3

0.4
BBC

Sample Size
20 40 60 80 100 500

A
ve

ra
ge

 B
ia

s

-0.2

-0.1

0

0.1

0.2

0.3

0.4
KCV-average over folds

Sample Size
20 40 60 80 100 500

A
ve

ra
ge

 B
ia

s

-0.2

-0.1

0

0.1

0.2

0.3

0.4
NCV

Sample Size
20 40 60 80 100 500

A
ve

ra
ge

 B
ia

s

-0.2

-0.1

0

0.1

0.2

0.3

0.4
TT

Figure 6.8: Average performance bias for the estimates of KCV-pooling, KCV-average over folds,
BBC, NCV and TT. KCV-pooling exhibits lower bias than KCV-average over folds. BBC and
NCV, both correct the bias of the corresponding version of KCV in a conservative way, although
results vary with dataset. TT over-corrects compared to BBC and NCV and its bias is higher
for sample sizes equal to 40.

Sample Size
20 40 60 80 100 500

S
T

D
 B

ia
s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
KCV-pooling

Sample Size
20 40 60 80 100 500

S
T

D
 B

ia
s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
BBC

Sample Size
20 40 60 80 100 500

S
T

D
 B

ia
s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
KCV-average over folds

Sample Size
20 40 60 80 100 500

S
T

D
 B

ia
s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
NCV

Sample Size
20 40 60 80 100 500

S
T

D
 B

ia
s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
TT

Figure 6.9: Standard deviation of bias for the estimates of KCV-pooling, KCV-average over folds,
BBC, NCV and TT. KCV has the smallest variance but it overestimates performance. BBC, NCV
and TT exhibit similar stds, although results vary with dataset.

Chapter 6. Experiments and Evaluation 53

Sample Size
20 40 60 80 100 500

A
ve

ra
ge

 A
U

C

0.4

0.5

0.6

0.7

0.8

0.9

1
Holdout (KCV-average over folds)

Sample Size
20 40 60 80 100 500

A
ve

ra
ge

 A
U

C

0.4

0.5

0.6

0.7

0.8

0.9

1
Holdout (KCV-pooling)

Sample Size
20 40 60 80 100 500

A
ve

ra
ge

 A
U

C

0.4

0.5

0.6

0.7

0.8

0.9

1
KCV-average over folds

Sample Size
20 40 60 80 100 500

A
ve

ra
ge

 A
U

C

0.4

0.5

0.6

0.7

0.8

0.9

1
KCV-pooling

Sample Size
20 40 60 80 100 500

A
ve

ra
ge

 A
U

C

0.4

0.5

0.6

0.7

0.8

0.9

1
NCV

Sample Size
20 40 60 80 100 500

A
ve

ra
ge

 A
U

C

0.4

0.5

0.6

0.7

0.8

0.9

1
BBC

Sample Size
20 40 60 80 100 500

A
ve

ra
ge

 A
U

C

0.4

0.5

0.6

0.7

0.8

0.9

1
TT

Figure 6.10: Average performance for the estimates of KCV-pooling, KCV-average over folds,
BBC, NCV and TT and the true performance of the models that they select (Holdout). The
methods of each column select the same model. KCV-pooling and KCV-average over folds
over-estimate the performance. BBC and NCV are slightly conservative and TT mainly over-
estimates for small sample sizes and over-corrects for larger ones.

54

Sample Size
20 40 60 80 100 500

S
T

D
 A

U
C

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Holdout (KCV-average over folds)

Sample Size
20 40 60 80 100 500

S
T

D
 A

U
C

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Holdout (KCV-pooling)

Sample Size
20 40 60 80 100 500

S
T

D
 A

U
C

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
KCV-average over folds

Sample Size
20 40 60 80 100 500

S
T

D
 A

U
C

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
KCV-pooling

Sample Size
20 40 60 80 100 500

S
T

D
 A

U
C

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
NCV

Sample Size
20 40 60 80 100 500

S
T

D
 A

U
C

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
BBC

Sample Size
20 40 60 80 100 500

S
T

D
 A

U
C

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
TT

Figure 6.11: Standard deviation of performance for the estimates of KCV-pooling, KCV-average
over folds, BBC, NCV and TT and the true performance of the models that they select (Holdout).
The methods of each column select the same model. Holdout and KCV have the lower stds. BBC,
NCV and TT have similar stds.

Chapter 6. Experiments and Evaluation 55

We could conclude that the two variants of KCV exhibit similar results and that BBC and

NCV are the most promising methods for performance estimation. However, BBC is a lot less

computationally expensive than NCV with the latter having to train aboutK times the number of

models that BBC does. If computational time is an issue, BBC is clearly the optimal choice. TT

also has low computational overhead with respect to KCV, however it appears to be unsuitable

for small sample sizes and over-corrects for larger sample sizes.

Dropping of Under-Performing Configurations

Figures 6.12 and 6.13 show the bias and std of performance, respectively, of BED and BED-BBC

for B � 1000 and t P t0.90, 0.95, 0.99u. Both methods exhibit lower bias than KCV. BED-BBC

corrects the bias of BED by only a small amount. It is mainly conservative with the exception of

the madeline and christine datasets for small sample sizes (¤ 40). The aforementioned datasets

have similar behaviour with BBC and NCV (positive bias). However, BED and BED-BBC have

mainly higher stds than KCV, BBC and NCV.

In terms of the true performance of the models that are selected, BED shows insignificant

loses compared to KCV. Figure 6.16 shows the boxplots of the relative true performance of the

final models selected by the BED and KCV methods (on the left column), and the relative average

number of trained models for the two methods (on the right column), for the sylvine, madeline,

philippine, jasmine, and christine datasets and all sample sizes (t20, 40, 60, 80, 100, 500u). Indeed,

we see that the maximum loss of performance is 6%. For the madeline, philippine, and jasmine

datasets we also notice an increase in performance. However, for the jasmine and christine

datasets there exist outliers that have greater loss in performance. This raises the need for the

experiments to be replicated on a larger number of sub-datasets (¥ 50). The number of models

that are being trained during BED varies with the value of the threshold t. The lower t is, the

lower the number of trained models. For t � 0.90, at most 22% of the 6100 models that are

trained throughout KCV, are actually trained. For t � 0.99, this percentage is at most 51%

(shown also in Table 6.2).

It is clear that there is a huge gain in computational time, even with the strictest value for

the threshold t. The loss in performance is negligible especially for larger values of sample size

which is when the dropping method will be the most useful.

Columns 5-7 of Table 6.2 show in detail the relative average number of trained models for the

BED and KCV methods for all datasets, sample sizes and values of threshold t.

BED and BED-BBC seem to be suitable for the computationally costly larger values of

sample size, since there is no or insignificant loss in performance and the number of models that

are trained are greatly reduced, resulting in a much faster method than KCV.

56

Sample Size
20 40 60 80 100 500

A
ve

ra
ge

 B
ia

s

-0.15

-0.1

-0.05

0

0.05

0.1

BED, t=0.90

Sample Size
20 40 60 80 100 500

A
ve

ra
ge

 B
ia

s

-0.15

-0.1

-0.05

0

0.05

0.1

BED-BBC, t=0.90

Sample Size
20 40 60 80 100 500

A
ve

ra
ge

 B
ia

s

-0.15

-0.1

-0.05

0

0.05

0.1

BED, t=0.95

Sample Size
20 40 60 80 100 500

A
ve

ra
ge

 B
ia

s

-0.15

-0.1

-0.05

0

0.05

0.1

BED-BBC, t=0.95

Sample Size
20 40 60 80 100 500

A
ve

ra
ge

 B
ia

s

-0.15

-0.1

-0.05

0

0.05

0.1

BED, t=0.99

Sample Size
20 40 60 80 100 500

A
ve

ra
ge

 B
ia

s

-0.15

-0.1

-0.05

0

0.05

0.1

BED-BBC, t=0.99

Figure 6.12: Average performance bias for the estimates of BED and BED-BBC for B � 1000
and different values of the threshold t. They all exhibit similar results, with BED-BBC with
t � 0.99 having the lowest bias. BBC has a minor effect on the correction of the bias of BED
for the datasets.

Chapter 6. Experiments and Evaluation 57

Sample Size
20 40 60 80 100 500

S
T

D
 B

ia
s

0

0.05

0.1

0.15

0.2

0.25

0.3
BED, t=0.90

Sample Size
20 40 60 80 100 500

S
T

D
 B

ia
s

0

0.05

0.1

0.15

0.2

0.25

0.3
BED-BBC, t=0.90

Sample Size
20 40 60 80 100 500

S
T

D
 B

ia
s

0

0.05

0.1

0.15

0.2

0.25

0.3
BED, t=0.95

Sample Size
20 40 60 80 100 500

S
T

D
 B

ia
s

0

0.05

0.1

0.15

0.2

0.25

0.3
BED-BBC, t=0.95

Sample Size
20 40 60 80 100 500

S
T

D
 B

ia
s

0

0.05

0.1

0.15

0.2

0.25

0.3
BED, t=0.99

Sample Size
20 40 60 80 100 500

S
T

D
 B

ia
s

0

0.05

0.1

0.15

0.2

0.25

0.3
BED-BBC, t=0.99

Figure 6.13: Standard deviation of bias for the estimates of BED and BED-BBC for B � 1000
and different values of the threshold t. They all exhibit similar results.

58

Sample Size
20 40 60 80 100 500

A
ve

ra
ge

 A
U

C

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Holdout (BED, t=0.90)

Sample Size
20 40 60 80 100 500

A
ve

ra
ge

 A
U

C

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Holdout (BED, t=0.95)

Sample Size
20 40 60 80 100 500

A
ve

ra
ge

 A
U

C

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Holdout (BED, t=0.99)

Sample Size
20 40 60 80 100 500

A
ve

ra
ge

 A
U

C

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
BED, t=0.90

Sample Size
20 40 60 80 100 500

A
ve

ra
ge

 A
U

C

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
BED, t=0.95

Sample Size
20 40 60 80 100 500

A
ve

ra
ge

 A
U

C

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
BED, t=0.99

Sample Size
20 40 60 80 100 500

A
ve

ra
ge

 A
U

C

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
BED-BBC, t=0.90

Sample Size
20 40 60 80 100 500

A
ve

ra
ge

 A
U

C

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
BED-BBC, t=0.90

Sample Size
20 40 60 80 100 500

A
ve

ra
ge

 A
U

C

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
BED-BBC, t=0.90

Figure 6.14: Average performance for the estimates of BED and BED-BBC for different thresh-
olds t and the true performance of the models that they select (Holdout). The methods of each
column select the same model. BED and BED-BBC are slightly conservative.

Chapter 6. Experiments and Evaluation 59

Sample Size
20 40 60 80 100 500

S
T

D
 A

U
C

0

0.05

0.1

0.15

0.2

0.25

0.3
Holdout (BED, t=0.90)

Sample Size
20 40 60 80 100 500

S
T

D
 A

U
C

0

0.05

0.1

0.15

0.2

0.25

0.3
Holdout (BED, t=0.95)

Sample Size
20 40 60 80 100 500

S
T

D
 A

U
C

0

0.05

0.1

0.15

0.2

0.25

0.3
Holdout (BED, t=0.99)

Sample Size
20 40 60 80 100 500

S
T

D
 A

U
C

0

0.05

0.1

0.15

0.2

0.25

0.3
BED, t=0.90

Sample Size
20 40 60 80 100 500

S
T

D
 A

U
C

0

0.05

0.1

0.15

0.2

0.25

0.3
BED, t=0.95

Sample Size
20 40 60 80 100 500

S
T

D
 A

U
C

0

0.05

0.1

0.15

0.2

0.25

0.3
BED, t=0.99

Sample Size
20 40 60 80 100 500

S
T

D
 A

U
C

0

0.05

0.1

0.15

0.2

0.25

0.3
BED-BBC, t=0.90

Sample Size
20 40 60 80 100 500

S
T

D
 A

U
C

0

0.05

0.1

0.15

0.2

0.25

0.3
BED-BBC, t=0.90

Sample Size
20 40 60 80 100 500

S
T

D
 A

U
C

0

0.05

0.1

0.15

0.2

0.25

0.3
BED-BBC, t=0.90

Figure 6.15: Standard deviation of performance for the estimates of BED and BED-BBC for
different thresholds t and the true performance of the models that they select (Holdout). The
methods of each column select the same model. They all have similar stds.

60

Table 6.2: Under Model selection: the percentage of the times, over the 10 sub-datasets, that the
model selected by KCV-pooling and BBC is the same as the one selected by NCV (KCV-average
over folds and TT), and BED for different thresholds t. Under Number of trained models: the
number of models trained by BED relatively to KCV.

Model selection Number of trained models

NCV
BED BED

t � 0.90 t � 0.95 t � 0.99 t � 0.90 t � 0.95 t � 0.99

20

sylvine 20% 20% 20% 20% 10% 10% 10%

madeline 20% 10% 10% 10% 10% 10% 10%

philippine 20% 0% 0% 0% 10% 10% 10%

jasmine 10% 0% 0% 0% 10% 10% 10%

christine 20% 0% 0% 0% 10% 10% 10%

40

sylvine 30% 0% 0% 0% 10% 10% 10%

madeline 20% 0% 0% 0% 10% 10% 10%

philippine 30% 0% 0% 0% 10% 10% 10%

jasmine 20% 0% 0% 0% 10% 10% 10%

christine 30% 20% 20% 30% 16% 18% 20%

60

sylvine 0% 0% 0% 0% 10% 10% 10%

madeline 30% 20% 20% 30% 12% 17% 29%

philippine 0% 0% 0% 0% 11% 13% 12%

jasmine 30% 20% 30% 30% 15% 21% 31%

christine 20% 0% 0% 20% 11% 15% 20%

80

sylvine 30% 0% 0% 0% 10% 10% 10%

madeline 40% 20% 80% 80% 15% 23% 51%

philippine 30% 10% 30% 30% 11% 12% 14%

jasmine 10% 60% 60% 70% 18% 26% 43%

christine 10% 30% 40% 50% 17% 21% 29%

100

sylvine 40% 20% 20% 20% 13% 13% 15%

madeline 20% 10% 10% 20% 14% 16% 24%

philippine 40% 50% 60% 90% 18% 23% 39%

jasmine 20% 20% 30% 40% 16% 20% 32%

christine 30% 50% 50% 60% 13% 15% 25%

500

sylvine 40% 40% 70% 80% 19% 25% 35%

madeline 90% 90% 100% 100% 13% 15% 23%

philippine 40% 90% 100% 100% 20% 26% 36%

jasmine 30% 40% 60% 90% 19% 29% 51%

christine 60% 90% 100% 100% 22% 29% 40%

Chapter 6. Experiments and Evaluation 61

Datasets
sylvine madeline philippine jasmine christine

R
el

at
iv

e
T

ru
e

P
er

fo
rm

an
ce

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

(BED, t=0.90)/KCV-pooling

Datasets
sylvine madeline philippine jasmine christine

R
el

at
iv

e
N

um
be

r
of

 T
ra

in
ed

 M
od

el
s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(BED, t=0.90)/KCV-pooling

Datasets
sylvine madeline philippine jasmine christine

R
el

at
iv

e
T

ru
e

P
er

fo
rm

an
ce

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

(BED, t=0.95)/KCV-pooling

Datasets
sylvine madeline philippine jasmine christine

R
el

at
iv

e
N

um
be

r
of

 T
ra

in
ed

 M
od

el
s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(BED, t=0.95)/KCV-pooling

Datasets
sylvine madeline philippine jasmine christine

R
el

at
iv

e
T

ru
e

P
er

fo
rm

an
ce

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

(BED, t=0.99)/KCV-pooling

Datasets
sylvine madeline philippine jasmine christine

R
el

at
iv

e
N

um
be

r
of

 T
ra

in
ed

 M
od

el
s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(BED, t=0.99)/KCV-pooling

Figure 6.16: Boxplots of the relative true performance (left column), and the relative number of
trained models (right column) for the sylvine, madeline, philippine, jasmine, and christine datasets
for all sample sizes (t20, 40, 60, 80, 100, 500u) for the BED and KCV methods. There is a negligible
to no effect on performance when using the BED method, However, the number of models that are
trained is greatly reduced.

62

Chapter 7

Conclusion

7.1 Contribution

We have presented a bootstrap-based bias correction (BBC) method for correcting the bias of

the Cross-Validation estimate of performance. It is a general method which works regardless

of the data analysis task (e.g. classification, regression) or the structure of the models being

involved in it. It has low computational overhead with respect to the Cross-Validation procedure

and produces almost unbiased expected performance estimates even when the number of training

samples is small. Compared to other methods for performance assessment, BBC was proven to

overcome their limitations, thus making it the most appealing method for use.

We also presented a method for eliminating under-performing configurations within the Cross-

Validation procedure (BED) in order to speed it up with a negligible to no effect on performance.

The method also uses the bootstrap as a hypothesis test for the hypothesis that a configuration

exhibits equal performance as the currently best one. The test is employed in every new iteration

of Cross-Validation. When the hypothesis can be rejected based on the predictions in only a

few available folds, the configuration is dropped (eliminated) from further consideration and no

additional models are trained on remaining folds.

The combination of the the two methods yield the BED-BBC procedure which produces

reliable estimates of performance with low computational cost.

7.2 Future Work

The BBC and BED methods need to be thoroughly examined for other data analysis tasks

(e.g. multiclass classification, regression) and for different number of configurations. The main

drawback of the experimental set-up is the low number (10) of sub-datasets that we create for

each dataset and sample size. Although the results consort with the simulations and results from

other publications, we still need to repeat the experiments with a greater number of sub-datasets

(¥ 50).

64

We, also, plan to evaluate the use of bootstrap for constructing confidence intervals using the

percentile method and the more sophisticated BCα method. In addition, we will be investigating

the effects of repeats on the BBC and BED-BBC methods in terms of performance estimation

bias and model selection properties (i.e. test BBC and BED with Repeated Cross-Validation).

Finally, we need to empirically compare BED to the CVST method [20] and also explore

different approaches for dropping under-performing configurations within Cross Validation.

Bibliography

[1] V. Vapnik, The Nature of Statistical Learning Theory. Springer-Verlag New York, Inc.,
1995.

[2] R. Tibshirani and R. Tibshirani, “A bias correction for the minimum error rate in cross-
validation,” The Annals of Applied Statistics, vol. 3, pp. 822–829, 2009.

[3] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data
Mining, Inference and Prediction. Springer, 2009.

[4] R. Kohavi, “A study of cross-validation and bootstrap for accuracy estimation and model
selection.” Morgan Kaufmann, 1995, pp. 1137–1143.

[5] Y. Bengio and Y. Grandvalet, “No unbiased estimator of the variance of k-fold cross-
validation,” The Journal of Machine Learning Research, vol. 5, pp. 1089–1105, 2004.

[6] S. Varma and R. Simon, “Bias in error estimation when using cross-validation for model
selection,” BMC bioinformatics, vol. 7, 2006.

[7] R. B. Rao and G. Fung, “On the dangers of cross-validation. an experimental evaluation,”
International Conference on Data Mining, pp. 588–596, 2008.

[8] G. Cawley and N. Talbot, “On over-fitting in model selection and subsequent selection bias
in performance evaluation,” The Journal of Machine Learning Research, vol. 11, pp. 2079–
2107, 2010.

[9] C. Bernau, T. Augustin, and A. Boulesteix, “Correcting the optimal resampling-based error
rate by estimating the error rate of wrapper algorithms,” Biometrics, vol. 69, no. 3, pp.
693–702, 2013.

[10] I. Tsamardinos, A. Rakhshani, and V. Lagani, “Performance-estimation properties of cross-
validation-based protocols with simultaneous hyper-parameter optimization,” in Artificial
Intelligence: Methods and Applications. Springer, 2014, pp. 1–14.

[11] Y. Ding, S. Tang, S. Liao, J. Jia, S. Oesterreich, Y. Lin, and G. Tseng, “Bias correction for
selecting the minimal-error classifier from many machine learning models,” Bioinformatics,
vol. 30, no. 22, pp. 3152–3158, 2014.

[12] D. Jensen and P. Cohen, “Multiple comparisons in induction algorithms,” Machine Learning,
vol. 38, pp. 309–338, 2000.

[13] L. Breiman, J. Friedman, C. Stone, and R. Olshen, Classification and Regression Trees.
Taylor & Francis, 1984.

[14] B. Efron and R. Tibshirani, An introduction to the bootstrap. Chapman & Hall, 1993.

[15] M. Stone, “Cross-validatory choice and assessment of statistical predictions,” Journal of the
Royal Statistical Society. Series B (Methodological), vol. 36, no. 2, pp. 111–147, 1974.

66

[16] D. Allen, “The relationship between variable selection and data agumentation and a method
for prediction,” Technometrics, vol. 16, no. 1, pp. 125–127, 1974.

[17] S. Geisser, “The predictive sample reuse method with applications,” Journal of the American
Statistical Association, vol. 70, no. 350, pp. 320–328, 1975.

[18] C. Bernau, T. Augustin, and A.-L. Boulesteix, “Correcting the optimally selected
resampling-based error rate: A smooth analytical alternative to nested cross-validation,”
2011.

[19] D. Krstajic, L. Buturovic, D. Leahy, and S. Thomas, “Cross-validation pitfalls when selecting
and assessing regression and classification models,” Journal of Cheminformatics, vol. 6, no. 1,
2014.

[20] T. Krueger, D. Panknin, and M. Braun, “Fast cross-validation via sequential testing,” Jour-
nal of Machine Learning Research, vol. 16, pp. 1103–1155, 2015.

[21] B. Efron, “Estimating the error rate of a prediction rule: Improvement on cross-validation,”
Journal of the American Statistical Association, vol. 78, no. 382, pp. 316–331, 1983.

[22] S. Arlot and A. Celisse, “A survey of cross-validation procedures for model selection,” Statis-
tics Surveys, vol. 4, pp. 40–79, 2010.

[23] I. Guyon, “A scaling law for the validation-set training-set size ratio,” AT & T Bell Labora-
tories, pp. 1–11, 1997.

[24] R. Graham, D. Knuth, and O. Patashnik, Concrete Mathematics: A Foundation for Com-
puter Science, 2nd ed. Addison-Wesley Longman Publishing Co., Inc., 1994.

[25] P. Geurts, “Contributions to decision tree induction: bias/variance tradeoff and time series
classification,” Ph.D. dissertation, University of Liège, Belgium, 2002.

[26] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization,” The Journal
of Machine Learning Research, vol. 13, pp. 281–305, 2012.

[27] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-parameter op-
timization,” in 25th Annual Conference on Neural Information Processing Systems (NIPS
2011), vol. 24. Neural Information Processing Systems Foundation, 2011.

[28] F. Hutter, H. Hoos, and K. Leyton-Brown, “Sequential model-based optimization for gen-
eral algorithm configuration,” in Learning and Intelligent Optimization. Springer Berlin
Heidelberg, 2011, pp. 507–523.

[29] C. Thornton, F. Hutter, H. Hoos, and K. Leyton-Brown, “Auto-weka: Automated selection
and hyper-parameter optimization of classification algorithms,” CoRR, 2012.

[30] J. Snoek, H. Larochelle, and R. Adams, “Practical bayesian optimization of machine learning
algorithms,” Advances in neural information processing systems, pp. 2951–2959, 2012.

[31] N. Iizuka, M. Oka, H. Yamada-Okabe, M. Nishida, Y. Maeda, N. Mori, T. Takao,
T. Tamesa, A. Tangoku, H. Tabuchi, K. Hamada, H. Nakayama, H. Ishitsuka, T. Miyamoto,
A. Hirabayashi, S. Uchimura, and Y. Hamamoto, “Oligonucleotide microarray for prediction
of early intrahepatic recurrence of hepatocellular carcinoma after curative resection,” The
Lancet, vol. 361, pp. 923–929, 2003.

[32] A. Statnikov, C. Aliferis, I. Tsamardinos, D. Hardin, and S. Levy, “A comprehensive evalua-
tion of multicategory classification methods for microarray gene expression cancer diagnosis,”
Bioinformatics, vol. 21, no. 5, pp. 631–643, 2005.

[33] A. Statnikov, I. Tsamardinos, C. Aliferis, and Y. Dosbayev, “Gems: A system for auto-
mated cancer diagnosis and biomarker discovery from microarray gene expression data,”
International Journal of Medical Informatics, vol. 74, no. 5, pp. 491–503, 2005.

BIBLIOGRAPHY 67

[34] B. Efron, “Bootstrap methods: Another look at the jackknife,” The Annals of Statistics,
vol. 7, no. 1, pp. 1–26, 1978.

[35] M. Quenouille, “Problems in plane sampling,” The Annals of Mathematical Statistics, vol. 20,
no. 3, pp. 355–375, 1949.

[36] ——, “Notes on bias in estimation,” Biometrika, vol. 43, no. 3/4, pp. 353–360, 1956.

[37] J. Tukey, “Bias and confidence in not-quite large samples,” The Annals of Mathematical
Statistics, vol. 29, no. 2, pp. 614–623, 1958.

[38] P. Hall, “Theoretical comparison of bootstrap confidence intervals,” The Annals of Statistics,
vol. 16, no. 3, pp. 927–953, 1988.

[39] B. Efron, “Better bootstrap confidence intervals,” Journal of the American statistical Asso-
ciation, vol. 82, no. 397, pp. 171–185, 1987.

[40] J. C. Nankervis, “Computational algorithms for double bootstrap confidence intervals,”
Computational statistics & data analysis, vol. 49, no. 2, pp. 461–475, 2005.

[41] Q. McNemar, “Note on the sampling error of the difference between correlated proportions
or percentages,” Psychometrika, vol. 12, no. 2, pp. 153–157, 1947.

[42] C.-C. Chang and C.-J. Lin, “Training nu-support vector regression: theory and algorithms,”
Neural Computation, vol. 14, no. 8, pp. 1959–1978, 2002.

[43] I. Tsamardinos, V. Lagani, and D. Pappas, “Discovering multiple, equivalent biomarker
signatures,” in 7th Conference of the Hellenic Society for Computational Biology and Bioin-
formatics (HSCBB12). Heraklion, 2012.

[44] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal Sta-
tistical Society. Series B (Methodological), pp. 267–288, 1996.

[45] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” ACM Trans-
actions on Intelligent Systems and Technology, vol. 2, pp. 27:1–27:27, 2011.

[46] I. Guyon, K. Bennett, G. Cawley, H. J. Escalante, S. Escalera, T. K. Ho, N. Macià, B. Ray,
M. Saeed, A. Statnikov, and E. Viegas, “Design of the 2015 chalearn automl challenge,” in
Proc. of IJCNN, 2015.

[47] J. Friedman, T. Hastie, and R. Tibshirani, “Regularization paths for generalized linear
models via coordinate descent,” Journal of Statistical Software, vol. 33, no. 1, pp. 1–22,
2010.

[48] T. Fawcett, “An introduction to roc analysis,” Pattern recognition letters, vol. 27, no. 8, pp.
861–874, 2006.

	Abstract
	List of tables
	List of figures
	Introduction
	Motivation
	Contribution
	Outline

	Literature Survey
	Model Selection and Assessment
	Dropping of Under-Performing Configurations

	Background
	Supervised Machine Learning
	Performance Estimation
	Hold-Out Cross-Validation
	K-Fold Cross-Validation

	Model Selection
	Bayes Model and Residual Error
	Selecting the best (possible) model
	Algorithm and Hyper-Parameter Optimization

	Simultaneous Model Selection and Evaluation
	Train-Validation-Test Protocol
	K-Fold Cross-Validation
	Tibshirani and Tibshirani (TT) Bias Correction
	Nested K-Fold Cross-Validation

	Stratification of Folds

	Proposed Method for Model Selection and Evaluation
	Limitations of Existing Methods
	The Bootstrap
	Primary applications of Bootstrap

	Bootstrap Bias Correction
	Computing Confidence Intervals

	Bootstrap-Based Dropping of Under-Performing Configurations
	Dropping of Under-Performing Configurations
	Bootstrap-Based Dropping of Under-Performing Configurations
	Discussion

	Experiments and Evaluation
	Simulation Studies
	Bias Correction Estimation
	Model Selection Error
	Relative Performance and Number of Trained Models

	Experiments on Real Datasets
	An Automated Pipeline for Supervised Machine Learning
	Experimental Set-Up
	Bias and variance estimation
	Results and Discussion

	Conclusion
	Contribution
	Future Work

