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Abstract 
When  synaptic  plasticity  leads  to  effective  learning,  neurons  are  assigned  the  credit  that
appropriately corresponds to their specific contribution. In hierarchical neural networks (NNs),
the  difficulty  of  distinguishing  between  credit-related  and  non-credit-related  activity  render
credit assignment a non-trivial  problem. Although speculative biological solutions have been
proposed,  these  are  not  as potent as  the  optimization algorithm most  widely used in deep
learning. Gradient descent (GD) changes the synapses of an artificial NN using the gradient of
performance, a quantity that signifies the direction of most rapid improvement of performance.
GD is  successful  because  it  efficiently optimizes  performance with the least modification to
irrelevant parameters of a NN. Consequently, many have proposed that the brain may use an
algorithm that approximates GD. What the proposed biologically-plausible implementations of
GD have in common is that they all assume that the brain uses a sufficiently simple scheme
that a human scientist can readily understand and describe and thus allows for mathematical
proof that the system does GD. However, there is little reason to assume that evolution might
derive learning mechanisms that are easily interpretable by humans. Instead, we may expect
that  inhibition,  bursting  and  reward,  among  many  other  neuronal  elements,  all  jointly
contribute to efficient GD-like credit assignment. Here, we apply meta-learning, an algorithm
that can be seen as an approximation of what evolution does, on synaptic plasticity rules with
many degrees of freedom and explore how GD can best be approximated. We show how our
method  can  solve  non-trivial  problems  better  than  the  non-meta-learned  rules  with  a
performance comparable to the performance of GD. Our results provide insights into how vastly
diverse mechanisms of physiology and plasticity may enable efficient biologically-plausible credit
assignment.



ΠερίληψηΌταν η συναπτική πλαστικότητα συνεπάγεται αποτελεσματική μάθηση, στους νευρώνες ανατίθεται το εύσημο που κατάλληλα αντιστοιχεί στην συγκεκριμένη τους συνεισφορά. Στα ιεραρχικά νευρωνικά δίκτυα (ΝΔ), η δυσκολία της διάκρισης μεταξύ νευρωνικής δραστηριότητας σχετιζόμενης με το εύσημο και ασυσχέτιστης με αυτό καθιστά το πρόβλημα της ανάθεσης ευσήμου ένα μη-τετριμμένο πρόβλημα. Παρόλο που έχουν προταθεί βιολογικές λύσεις, αυτές δεν είναι τόσο αποτελεσματικές όσο ο κύριος αλγόριθμος βελτιστοποίησης που χρησιμοποιείται ευρέως στο πεδίο της βαθιάς μάθησης. Η μέθοδος της κατάβασης μέγιστης κλίσης (ΜΚ) αλλάζει τις συνάψεις ενός τεχνητού ΝΔ χρησιμοποιώντας τη κλίση (παράγωγο), μια ποσότητα που υποδηλώνει την κατεύθυνση της πιο γρήγορης βελτίωσης της απόδοσης. Η επιτυχία της ΜΚ οφείλεται στην αποτελεσματικήβελτιστοποίηση της απόδοσης με την ελάχιστη τροποποίηση των μη-χρήσιμων παραμέτρων ενός δικτύου. Κατά συνέπεια, πολλοί ερευνητές προτείνουν ότι το εγκέφαλος ενδέχεται ναχρησιμοποιεί έναν αλγόριθμο που προσεγγίζει την ΜΚ. Το κοινό στοιχείο που μοιράζονται οι προτεινόμενες βιολογικά-εφικτές υλοποιήσεις της ΜΚ είναι ότι όλες τους υποθέτουν ότι ο εγκέφαλος χρησιμοποιεί έναν επαρκώς απλό κανόνα μάθησης που ένας επιστήμονας μπορεί να κατανοήσει και να περιγράψει εύκολα, αλλά και που να επιτρέπει μια μαθηματική απόδειξη ότι το εν λόγω σύστημα μπορεί να υλοποιήσει την ΜΚ. Ωστόσο, δεν υπάρχουν σημαντικοί λόγοι για να υποθέσουμε ότι η εξέλιξη παράγει μηχανισμούς μάθησηςπου είναι εύκολα ερμηνεύσιμοι από ανθρώπους. Αντιθέτως, υποθέτουμε ότι κάποιοι νευρικοί μηχανισμοί όπως η αναστολή, η πυροδότηση κατά ριπές και η ανταμοιβή, μεταξύ πολλών άλλων, συνεισφέρουν από κοινού στην αποτελεσματική ανάθεση ευσήμου όμοια της ΜΚ. Στην παρούσα εργασία, εφαρμόζουμε μετα-μάθηση, έναν αλγόριθμο που μπορεί να θεωρηθείως μια προσέγγιση του τι κάνει η εξέλιξη στο βιολογικό εγκέφαλο, σε κανόνες συναπτικής πλαστικότητας με πολλές παραμέτρους και εξερευνούμε πως να προσεγγίσουμε την ΜΚ με τον καλύτερο δυνατό τρόπο. Δείχνουμε πως η μέθοδός μας μπορεί να λύσει μη-τετριμμένα προβλήματα καλύτερα από αντίστοιχους κανόνες πλαστικότητας που δεν έχουν υποστεί μετα-μάθηση, με απόδοση συγκρίσιμη με την απόδοση της ΜΚ. Τα αποτελέσματά μας υποδεικνύουν πως ένα ευρύ φάσμα ποικιλόμορφων μηχανισμών φυσιολογίας και πλαστικότητας μπορεί να καταστήσει δυνατή την αποδοτική βιολογικά-εφικτή ανάθεση ευσήμου.
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1. Introduction

1.1. Motivation

The brain is a remarkably efficient learning system whose vast and seemingly incomprehensible
complexity inspires the awe of the beautiful in the ambitious explorers aspiring to understand it.
Although  much  about  how  the  brain  learns  remains  to  be  discovered,  synaptic  plasticity
mechanisms have been largely thought to form the neurochemical foundations of learning and
memory (Magee & Grienenberger, 2020).

In deep learning, the backpropagation of error algorithm (backprop) has been widely
successful in training artificial neural networks (ANNs). However, its biological plausibility has
been a subject of debate. Therefore, it has become crucial to investigate learning mechanism
alternatives to backprop that are more in line with biological reality, such as synaptic plasticity.
Inspired by backprop’s success and what we already know about the neuroscience of learning,
the motivation for this work stems from the quest to better understand the brain's plasticity
apparatus and their computational implications (Lillicrap et al., 2020).

In this  context,  we  aim to explore  whether  associative  synaptic  plasticity  rules  can
approximate gradient descent (GD), the optimization method used by backprop, without relying
on the  backprop-driven  computations  of  gradients  during  the  training  process.  The  central
question we address is whether a set of Hebbian learning rules, emulating the biological process
of synaptic strengthening and weakening based on correlated neural activity, can be harnessed
to achieve GD-like performance in ANNs. We also seek to elucidate the conditions under which
unsupervised or globally supervised Hebbian learning rules can approximate GD driven by the
need to bridge the gap between the effectiveness of backprop and the brain’s more efficient
learning systems.

To the best of our knowledge, no one has yet used associative synaptic plasticity to train
multilayer perceptrons (MLPs) on non-trivial tasks to clearly demonstrate an approximation of
GD performance. We illustrate that a set of Hebbian learning rules with sufficient complexity
and degrees of freedom can be optimized in an online manner using a meta-learning system, akin
to what evolution does, to approximate the gradient-related weight deltas produced by a teacher
network trained with backprop. In summary, we show the conditions under which straight-
forward,  parametrized  Hebbian  rules  can  approximate  GD  performance  feedforward-only
training,  without  requiring  any  backward  passes  that  calculate  vectorized  error  signals  or
explicit neuron-specific gradients (e.g. backprop) during the training phase.

https://doi.org/10.1038/s41583-020-0277-3
https://doi.org/10.1146/annurev-neuro-090919-022842


1.2. Backpropagation of error

Although first described in the 1970s, efficient backprop was outlined explicitly and applied to
NNs in the following decade. Whereas,  around 1986, researchers popularized backprop after
using  it  to  demonstrate  the  emergence  of  useful  internal  representations  in  hidden  layers
(Linnainmaa,  1970,  1976;  Werbos,  1974;  Speelpenning,  1980;   Werbos,  1982  ;   Parker,  1985  ;
LeCun, 1985; Rumelhart et al., 1986).

Backprop is a gradient estimation method used for training NNs, such as MLPs. The
goal  of  training is  for the  network to learn complex representations from input and target
output data by encoding an approximate “in-to-out” mapping into its parameters. Essentially,
to make the network yield output data that is closest to target data when given input data not
seen during the training process.

During training, using the chain rule, backprop recursively calculates the gradient of an
error function, also commonly referred to as a loss function, that quantifies the performance of a
NN, with respect to (w.r.t) its parameters (e.g. synaptic weights), starting at the output layer
and moving backwards until the first hidden layer (Leibniz, 1673). By propagating an error
signal (that is a function of the outputs obtained from the last layer) back through the previous
layers  (i.e.  “backpropagating”),  this  process  enables  the  calculation  of  gradients.  After
calculation,  these  can  be  used  by  an  optimization  algorithm  such  as  GD  to  update  the
parameters of the network (i.e. synaptic weights) in order to minimize the loss: the differences
between prediction values and target values.

GD is an optimization algorithm that finds combinations of parameters that constitute
local minima in the landscape of a differentiable multivariate function. It is widely used for
training  ANNs,  wherein  the  goal  is  to  minimize  a  parameter-dependent  loss  function  that
quantifies performance. Using the gradient that is usually calculated through backprop, GD
iteratively updates the network’s parameters that contribute to the loss (i.e. synaptic weights)
by taking small steps in the negative direction of the gradient. In other words, GD makes the
parameters descend the gradient. Thus, changing the parameters in the direction that yields the
steepest decrease of the value of the loss at each given point (i.e. set of parameter values). In
that  regard,  GD efficiently  optimizes  performance  with  the  least  modification  to  irrelevant
parameters of a NN: a key attribute of its success.

Today, stochastic GD, a simple extension of GD, serves as the most popular algorithm
most widely used to train deep NNs. Of course, many other variants exist, such as the popular
Adam optimizer (Bisong 2019;   LeCun et al., 2015  ; Ruder, 2017).

https://arxiv.org/abs/1609.04747
https://doi.org/10.1038/nature14539
https://link.springer.com/chapter/10.1007/978-1-4842-4470-8_16
https://books.google.com/books?id=bOIGAAAAYAAJ&q=leibniz+altered+manuscripts&pg=PA90
https://www.nature.com/articles/323533a0
https://scholar.google.com/scholar?&q=Y.%20Le%20Cun%20(1985)%20A%20Learning%20Procedure%20for%20Assymetric%20Threshold%20Network.%20Proceedings%20of%20Cognitiva%20'85.%20(In%20French)%2C%20Paris.%20599%E2%80%93604.
https://scholar.google.com/scholar?&q=D.B.%20Parker%20(1985)%20Learning-Logic.%20TR-47%2C%20MIT%2C%20Center%20for%20Computational%20Research%20in%20Economics%20and%20Management%20Science.%20Cambridge%2C%20MA.
http://werbos.com/Neural/SensitivityIFIPSeptember1981.pdf
https://doi.org/10.2172/5254402
https://www.proquest.com/docview/302768593?parentSessionId=X7Hi3UICV4ZCbEC3PfGyvtcjy1%2BmOEWds6fBRNrFPTk%3D&sourcetype=Dissertations%20&%20Theses
https://doi.org/10.1007/BF01931367
https://people.idsia.ch/~juergen/linnainmaa1970thesis.pdf


1.3. Credit assignment in the brain

During learning,  the brain appropriately assigns credit  or blame to its neurons in order  to
influence or modify future decisions and actions (e.g. increase performance during learning). The
difficulty to distinguish credit-related activity from other activity that is unrelated to credit is
known  as  the  credit  assignment  problem,  a  challenge  that  is  fundamental  in  learning  in
hierarchical NNs (Richards & Lillicrap, 2018).

Several biologically-plausible learning mechanism candidates have been proposed to solve
the credit assignment problem, with reinforcement learning and error-driven learning being two
of  the  most  prominent  examples.  In  similar  vein,  various  experimental  studies  have  also
investigated the responsible neural mechanisms and brain areas associated with backprop, such
as the prefrontal cortex and medial frontal cortex (Akaishi, 2016; Stolyarova, 2018; Lamba et al,
2023).

Biological versions of backprop have also been suggested as possible candidate solutions
to credit assignment. However, despite promising proposals (e.g.  dendritic solutions) in that
direction,  limitations  remain  (e.g.  weight  symmetry)  that  make  the  algorithm  biologically
implausible. Therefore, the existence of functional equivalents of this algorithm in the brain are
still heavily debated. Recently, nevertheless, Mark Harnett's group measured somato-dendritic
signals that hinted at gradient-calculation capabilities of cortical neurons, with this evidence
culminating in the first  experimental  data from the brain that suggest  a credit  assignment
solution comparable to backprop (Lillicrap et al.  2016;  Sacramento et al.  2018;  Richards &
Lillicrap, 2018; Whittington & Bogacz, 2019; Lillicrap et al. 2020; Payeur et al., 2021; Greedy et
al., 2022; Francioni et al., 2023).

As a general rule, in any system that learns via small changes, performance improves
when these small changes correlate with the gradient of an objective function that quantifies its
performance. Although it is highly uncertain whether the brain learns using a backprop-like
solution,  a  combination  of  neurophysiological  mechanisms  such  as  Hebbian  plasticity  and
dopaminergic  neuromodulation  may  allow  it  to  approximate  gradients.  Thus,  it  is  not
unreasonable  to  hypothesize  that  the  plasticity  mechanisms  responsible  for  useful  changes
during learning may be approximating GD. And gradients may just be the perfect mathematical
abstraction for formally studying synaptic plasticity (Richards & Kording, 2023).

https://doi.org/10.1113/JP282747
https://www.biorxiv.org/content/10.1101/2023.11.03.565534v1.full
https://arxiv.org/abs/2206.11769
https://arxiv.org/abs/2206.11769
https://doi.org/10.1038/s41593-021-00857-x
https://doi.org/10.1038/s41583-020-0277-3
https://doi.org/10.1016/j.tics.2018.12.005
https://doi.org/10.1016/j.conb.2018.08.003
https://doi.org/10.1016/j.conb.2018.08.003
https://arxiv.org/abs/1810.11393
https://doi.org/10.1038/ncomms13276
https://doi.org/10.7554/eLife.84888
https://doi.org/10.7554/eLife.84888
https://www.frontiersin.org/articles/10.3389/fnins.2018.00182/full
https://doi.org/10.1523/JNEUROSCI.3159-15.2016
https://doi.org/10.1016/j.conb.2018.08.003


1.4. Associative learning

At the end of the 19th century, William James first alluded to a synaptic learning principle by
proposing a “law of neural habit” as a physiological basis for earlier versions of a proposed law
of mental association by continuity, described by others a century earlier. Later, Cajal, Tanzi,
Freud, Pavlov and, most-evidently, McDougall, presented their own ideas and theories of how
we learn and remember, all very reminiscent to the associative models of synaptic plasticity we
nowadays refer to as Hebbian. Later on, in 1949, Donald Hebb, largely influenced by the work of
his doctoral advisor, Karl Lashley, proposed his own, now-renown, neuropsychological theory,
seeking to explain synaptic plasticity: “When an axon of cell A is near enough to excite a cell B
and repeatedly or persistently takes part in firing it, some growth process or metabolic change
takes  place  in  one  or  both  cells  such that  A’s  efficiency,  as  one  of  the  cells  firing  B,  is
increased.” (Brown et al., 2021; Hebb, 1949).

A historically prevalent and foundational learning model, Hebbian theory postulates that
the  repeated,  persistent  and simultaneous  pre-  and  post-synaptic  activities  of  two or  more
neurons increases the efficacy (strength) of their synapses.  Serving as the biological basis of
unsupervised  learning,  it  is  considered  a  fundamental  principle  in  the  study  of  NNs  and
cognitive function (Hebbian_theory (Wikipedia);  McClelland, 2006). Furthermore, to account
for  learning  phenomena  that  occur  across  seconds,  as  opposed  to  millisecond  time  scales,
researchers  have  also  proposed  three-factor  learning  frameworks,  as  extensions  to  classic
associative  learning  models,  in  an  attempt  to  reconcile  them  with  widely-observed
neuromodulatory (e.g. dopaminergic) signaling mechanisms. For a mathematical formulation of
Hebbian learning, see the Methods section (chapter 2.1) (Lisman et al., 2011; Kusmierz et al.,
2017; Gerstner et al., 2018).
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1.5. Meta-learning

1.5.1. Overview

In  the  past,  artificial  intelligence researchers  used  to  design  algorithms  that  solve  specific
problems by hand. However, being too inflexible and unscalable of an approach, such hand-
crafting has been largely superseded by ANNs that learn to solve problems without explicit
instruction,  using  backprop.  These  surpass  hand-coded  solutions,  and  often  humans,  in
performance. Yet, contrary to human-like learning, deep-learning-based methods remain largely
inefficient and do not generalize, requiring manual tuning of hyperparameters and re-training
across different tasks (e.g. due to catastrophic forgetting). One way to overcome such limitations
is to  automatically optimize the  learning process  through meta-learning (Kirkpatrick et al.,
2017; Lansdel & Kording, 2019).

Meta-learning means learning to learn. A setup that learns to learn usually consists of
two optimization systems: a learner and a meta-learner. The learner trains a model to perform a
task (learns, e.g. an inner loop that optimizes a model). The meta-learner modifies the learner
(meta-learns, e.g. an outer loop that optimizes the parameters of the learner). The goal of meta-
learning is to change the learner itself so that the modified version becomes better (e.g. more
efficient) than the original one. See Figure 1. (Schmidhuber 1987, 1992; Thrun & Pratt, 1998;
Schaul & Schmidhuber, 2010; J.X. Wang et al., 2016; Hospedales et al., 2022). 

Over the years, meta-learning approaches have ranged from learning a network’s initial
weights to continual, scalable and generalized learning, as well as frameworks for discovering or
improving  biologically-plausible  plasticity  models  (Schmidhuber,  1992;  Finn  et  al.,  2015;
Lansdell & Kording, 2019; Javed & White, 2019, Lindsey & Litwin-Kumar, 2019, Miconi et al.
2018, 2020  )  . Our work falls into the latter category: that of hyperparameter optimization. In the
following  sections,  we  compare  and  contrast  our  work  to  similar  work,  highlighting  our
contributions, before presenting our methods and results.
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Fig. 1. Comparison of types of learning and meta-learning. In supervised learning (upper), an 
optimizer  changes  a  model.  In  “general”  meta-learning  (middle),  a  meta-optimizer  
changes the optimizer itself. In meta-learning that improves a plasticity model ( lower), a
meta-optimizer  changes  the  parameters  of  the  plasticity  model  (e.g.  “Neuron  with  
plasticity mechanisms”). : input data, : output data,  :  output  value,  :  target  
value, : loss (error) value, : meta-loss (error) value.



1.5.2. Related work
Within  the  research  direction  of  meta-learning synaptic  plasticity rules,  relevant  work  falls
within two broad categories:

1. learning the feedforward pathway’s plasticity rule parameters
2. learning a combination of feedforward and feedback pathway rule parameters

In the earliest known work from the first category, Bengio et al., 1995 sum the loss of
multiple  networks  trained  on  different  tasks  (e.g.  boolean,  2D  classification)  and  learn  a
parametric learning rule that learns those tasks successfully. More recently, Andrychowicz et al.,
2016 meta-learned the weights of a Recurrent NN (RNN) that parametrizes a learning rule,
demonstrating how dynamic rules can be trained. Also using RNNs, Miconi et al.,  2018,  2020
made  their  network  plastic  by  incorporating  a  Hebbian  component  into  the  weights  and
optimized the coefficients using backprop. Confavreux et al.,  2020, 2023 used meta-learning in
rate-based  and  recurrent  spiking  models  and  -instead  of  optimizing  or  discovering-  they
recovered known plasticity rules that satisfy predefined biological constraints. In the context of
reinforcement learning, a team from Copenhagen (Najarro & Risi, 2020; Pedersen & Risi, 2023)
evolved Hebbian rules  through meta-learning,  allowing  for  a  continuous  self-organization  of
weights. In practice, this enables their agents to adaptively learn two control tasks.

Within  the  second  category,  Gu  et  al.,  2019 meta-learned  rules  that  update  error-
propagating  feedback  connections,  whereas  Lindsey  et  al.,  2020 meta-learned  modulatory
feedback pathways and initial weight values. On the other hand,  Metz et al., 2019, optimized
plasticity rules that update weights of feedforward and feedback connections that project into
hidden states.  Similarly,  Sandler  et  al.,  2021 defined  parameterized  update  rules  and  then
learned the meta-parameters that control both forward and backward passes in the respective
connections.  Last  but  not  least,  Shervani-Tabar  &  Rosenbaum,  2023 meta-learned  a
parameterized learning rule that depends on a term based on Oja’s rule combined with pseudo-
gradient and error-based Hebbian terms, for training networks with fixed feedback connections,
using both feedforward and backward passes.
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1.5.3. Contributions
Compared to the most similar work:

• we  demonstrated  an  approximation  to  GD through  a  clear  and  direct  comparison.
Lindsey et al., 2020 and Shervani-Tabar & Rosenbaum, 2023 for example do not,

• we showed that there are coefficient configuration for one of our meta-learned Hebbian
rules that can generalize across models with different initial  weights on a non-linear
regression task, without requiring explicit training on random weights beforehand, nor a
repeat of the meta-learning process. Whereas, the results of  Lindsey et al., 2020, for
example, depend on initial weights and do not demonstrate any example to the contrary.

• we interpreted the similarity of meta-learned Hebbian rule across synaptic connections
per layer by providing a variability analysis of the evolution of coefficients during meta-
training and as well as of distributions of the coefficient values after meta-training. We
also discussed the biological interpretation of our findings. On the other hand, Miconi et
al., 2018, 2019 and Najarro et al., 2020, who also meta-learn different plasticity rules
per connection,  do not  analyze  or  discuss  biological  plausibility,  which renders  their
results difficult to interpret.

• we relied on a simple feedforward MLP architecture.  Metz et al., 2019,  Sandler et al.,
2021,  Shervani-Tabar  & Rosenbaum,  2023 and  Confavreux et  al.,  2023 employ  less
simple architectures with feedback connections.

• we meta-learned Hebbian learning rules that depend on pre- and postsynaptic activity
terms, with only one of our rules having global error modulation.  Shervani-Tabar &
Rosenbaum,  2023 meta-learned composite  parametrized rules  that  contain  a pseudo-
gradient  and error  terms,  both depending  on feedback  pathways  and neuron-specific
error signals.

• we  achieved  GD-like  performance  only  through  forward  passes  without  requiring
backward error-propagating passes during training. Miconi et al.,  2018,  2020 optimize
rule coefficients and learn using backprop. Whereas in  Shervani-Tabar & Rosenbaum,
2023, weight updates depend on vectorized error signals derived from backward passes.
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2. Methods

2.1. Mathematical formulation of Hebbian learning

To mathematically describe Hebb’s postulate and Hebbian learning rules that build upon it, we
must first clarify the following constituents:

• , the efficacy of the synapse transmitting signals from a presynaptic neuron  j to a
postsynaptic neuron i, or the simply the weight

• , the presynaptic neuron activity
• , the postsynaptic neuron activity

Since our work deals only with rate-based models, we make the assumption that  and  refer
to time-independent average firing rates. 

Two  properties  characterize  Hebb’s  postulate  and  act  as  criteria  for  characterizing
learning rules as Hebbian:

1. locality, meaning the change of synaptic efficacy must only depend on information such
as ,  and , available locally at the synapse, and not on activity of other neurons or
synapses

2. cooperativity, implying that any weight change depends of the joint activity of the pre-
and postsynaptic neurons, activating simultaneously

The first property suffices for defining the general Hebbian formula for weight change:

Using the second property, we can make  more specific, by expanding it into a Taylor series
(about , if it is sufficiently well-behaved):

So that any term that includes the joint pre- and postsynaptic activity term  
(e.g. ) satisfies the cooperativity condition. Without such a term, the learning rule
is called  non-Hebbian.  Generally speaking, all  Hebbian learning rules derive from this Taylor
series, with many combinations of terms being possible (Gestner & Kistler, 2014; Gerstner et al.,
2014).
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2.2. Plasticity Rules

2.2.1. Original rule

The simplest Hebbian plasticity rule formulation is the prototype, Hebb's rule:

Although coefficients may depend on  (e.g. c( ), e.g. to limit weight growth), they can also
be plain constants ( ), as is the case for .

2.2.2. Including synaptic depression
Since Hebb’s rule only accounts for weight increase but not for weight decrease, we can use our
general formulation to derive a rule that combines synaptic potentiation in addition to synaptic
depression:

Note that in the absence of any stimulation,  and thus . In that case,

the  synaptic  weights  decay  to  zero  over  time. And  to  represent  some  constant  neuronal
background input or baseline level of neurotransmitter release, we can introduce a constant bias
coefficient term to  that influences synaptic change independently of the weights and neural
activities:

2.2.3. Quadratic Hebbian rule
Given the freedom to formulate a wide variety of complex rules, one can increase the flexibility
of parameterization. One example of doing so involves taking the Taylor series expansion and
defining a quadratic Hebbian rule with six constant coefficient terms:



2.2.4. Accounting for neuromodulation
Although not yet fully understood,  neuromodulation signaling in the brain, such as reward,
novelty and prediction errors are known to improve or steer learning, but also to influence
metaplasticity factors (Doya, 2002; Yu & Dayan, 2005; Schultz, 2016; Iigaya, 2016; Farashahi,
2017; Roelfsema & Holtmaat, 2018).

To incorporate neuromodulation into a Hebbian learning context, we can extend a rate-
based rule such as   by including a global third factor that represents a signal broadcasted
among all  neurons during the learning process.  This performance-related signal   (e.g.  the
error) can have a multiplicative influence on the weight change:

2.3. Tasks

In our meta-learning experiments, we used backprop and Hebbian learning rules 
(see 2.2.) to train a noisy sinusoidal wave regression task (wavereg): , where

 is a vector of 2048 evenly-spaced values within  and  is a vector where

 and  are vectors and .
Although most of our results (3.1 through 3.4, see chapter 3) come from the  wavereg

task, to show proof of concept in a different context, we also gathered preliminary loss and
accuracy data for the first result (3.1) by also learning and meta-learning a binary MNIST
classification task (bmnist, digits: 0 or 1).

2.4. Models

For the wavereg task experiments, we employed a shallow 1-512-1 MLP. Whereas for the bmnist
experiments,  we  used  a  shallow  784-512-2  MLP.  The  initial  weights  of  both  models  were
initialized using the Kaiming uniform initialization and we chose the tanh as each neuron’s non-
linear activation function (He et al., 2015).

2.5. Optimization

Our meta-training relied on the condition of initially giving the same rule to each synapse but
allowing the rule coefficients to change per synapse. Therefore, after meta-training, each synapse
ended up with unique sets of rules (coefficients) per synapse. For specific training and meta-
training details (e.g. learning rates), see Appendix A - Implementation details.
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2.6. Meta-learning

    
     
     
    
    

Starting with two identical MLP networks, within an outer meta-learning loop, we iterate over a
number of meta-learning epochs (meps). During each  mep, within an inner learning loop, we
train for 1 epoch the first network using backprop and the second network using a parametrized
Hebbian learning rule   { } (see 2.2.), both in an online manner. After training
them both for 1 training epoch, we calculate the corresponding weight delta tensors,  and

 and pass them to a loss function and obtain a differentiable loss : the meta-loss.
Then, we automatically calculate the gradient of the meta-loss w.r.t. the coefficient parameters 
( ) of the Hebbian rule ( ), using an automatic differentiation tool (e.g. torch.a  utograd  ).
At the end of the mep iteration, using this gradient ( ) and a meta-optimizer (e.g. GD-
based), we calculate a   tensor (e.g.  ) and update  . This process repeats for a
chosen number of meps.

Upon completion, we derive a modified, meta-learned Hebbian rule that is theoretically
better for training the same model on a specific task than the one we started with. Meaning, a
rule that yields weight change vectors  more closely aligned with . After meta-
learning, we produce coefficients that constitute a Hebbian learning rule that can approximate
GD performance using only feedforward passes,  without  backward,  error-propagating passes
required during the training phase. For an intuitive schematic of the meta-learning process, see
Fig. 2.
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Fig. 2. Meta-learning algorithm. Schematic of the meta-training iteration: two identical 
networks are trained for one training epoch, one with a Hebbian learning rule and the 
other with GD (using backprop). After training, a loss we call the  meta-loss  is  
calculated using the  and  weight delta vectors. Using , the vector
of the coefficient parameters of the Hebbian learning rule   is optimized (e.g. using  
GD). Repeating this process optimizes the Hebbian learning rule. : Hebbian learning 
rule function,  : presynaptic neuron index,  : postsynaptic neuron index,  : synaptic 
weight between neuron  and neuron , : coefficient parameters of Hebbian learning rule
function, : activity of presynaptic neuron , : activity of postsynaptic neuron 
: learning rate used during GD training, : learning rate used during GD 

meta-training.



3. Results

3.1. Meta-learned Hebbian plasticity approximates GD

Fig. 3. Meta-learned rule  approximates GD on the wavereg task. A. Smoothed meta-loss in 
log  scale  (epochs  imply  meta-training epochs). B.  Training  (solid)  and  validation  
(dotted) loss (epochs imply training epochs). C. Prediction curves.



Fig. 4. Meta-learned rule   approximates GD on the  wavereg task. A. Smoothed meta-loss  
(epochs imply  meta-training epochs). B. Training (solid) and validation (dotted) loss  
(epochs imply training epochs). C. Prediction curves.



Fig. 5. Meta-learned rule  approximates GD on the wavereg task. A. Smoothed meta-loss in 
log  scale  (epochs  imply meta-training  epochs).  B.  Training  (solid)  and  validation  
(dotted) loss (epochs imply training epochs). C. Prediction curves.



Fig. 6. Meta-learned rule   approximates GD on the  bmnist task. A. Meta-loss in log scale  
(epochs imply meta-training  epochs). B. Training (solid) and validation (dotted) loss  
(epochs imply training epochs). C. Training (solid) and validation (dotted) accuracy.



Fig. 7. Meta-learned rule   approximates GD on the  bmnist task. A. Meta-loss in log scale  
(epochs imply meta-training  epochs). B. Training (solid) and validation (dotted) loss  
(epochs imply training epochs). C. Training (solid) and validation (dotted) accuracy.



To learn the wavereg task using Hebbian plasticity, we first meta-trained the learning rules ,
 and   for 1500 epochs each (see sections 2.2 and 2.6). In subfigures 3A, 4A and 5A, the

small drop in the meta-loss curve signifies that the error between Hebbian and GD weight delta
vectors  becomes approximately smaller as meta-training progresses.  After meta-learning,  the
optimized rules  ,   and   effectively approximate GD during training compared to the
respective ineffective performance of their non-meta-learned counterparts (see loss subfigures 3B,
4B, 5B and output subfigures 3C, 4C, 5C). Both rules  and  were trained for 200 training
epochs with learning rate decay enabled. Whereas,  was early-stopped after being trained for
600 epochs. Although we carried out experiments on rule  as well (see Sup. Fig. 1, Appendix
C), including the global error third factor (as in ) turned out to be noticeably more effective
in terms of loss convergence.

For the bmnist task, we meta-learned rules  and  for 100 epochs each and produced
meta-loss curves that were very unstable, in the one case, and surprisingly smooth in the other
case (see subfigures 6A, 7A). Despite this discrepancy, the loss curve of meta-learned rule  
converges close to GD’s at around 20 training epochs, whereas the loss curve of the optimized
rule   still  continues  to  slowly  decrease  even  at  training  epoch  35,  without  having  fully
converged  (see  subfigures  6B,  7B).  Nevertheless,  for  both  meta-learned  rules,  practical
approximation of GD is achieved if one judges by the indistinguishable high-accuracy values
that the post-meta-learning accuracy curves reach, which almost approach GD’s.



3.2. Meta-learned Hebbian coefficients vary slightly across synapses

Fig. 8. Evolution of the mean value of rule  coefficients ,  across synapses during
meta-training  on  the  wavereg task.  Variability  around  the  mean  plotted  as  
standard deviation ( ) shade around the mean and quantified using the percentage of 

: the coefficient of variation, also known as the relative standard deviation (inset plots 
are zoomed regions).



Fig. 9. Evolution of the mean value of rule  coefficients , , b across synapses during meta-
training  on  the  wavereg task.  Variability  around  the  mean  plotted  as  standard  
deviation ( ) shade around the mean and quantified using the percentage of  : the  
coefficient of variation, also known as the relative standard deviation (inset plots are  
zoomed regions).



Fig. 10. Evolution of the mean value of rule  coefficients , , , , ,  across synapses 
 during meta-training on the  wavereg task. Variability around the mean plotted as  
 standard deviation ( ) shade around the mean and quantified using the percentage of 
 : the coefficient of variation, also known as the relative standard deviation (inset plots
 are zoomed regions).



Figures 8-10 depict the evolution during meta-learning of the mean values of coefficients of
Hebbian learning rules , ,  (see sections 2.2.2 and 2.2.4), as well as the standard deviation
as a shaded area around those means (std), across all synapses per layer. From these plots, two
are the most important takeaways.

First,  close  to  the  end of  meta-training,  we notice  the  very  small  shaded std areas
around the mean, as seen through the zoomed inset plots for selected coefficients. We quantified
these using a percentage of the coefficient of variation,   (also known as the relative std).
These values, calculated after meta-training, represent a standardized measure of the variability
around the mean. Such tiny  values, with a maximum of 3.72% (for  in layer 2 of Fig. 10),
clearly illustrate very minute variabilities for each coefficient across synapses of the same layer.
This  means  that  although  each  learning  rule  term multiplier  is  free  to  fluctuate  for  each
synaptic connection, the optimization process settles on solutions with coefficient values that
vary only slightly among the mean of all synapses in the same layer.

The other key observation is that all meta-learned Hebbian learning rules ,  and 
are  characterized  by  prevailing  Hebbian  and  Anti-Hebbian  terms  whose  interplay  during
learning facilitates the desired outcome of GD approximation. Such a phenomenon is intriguing,
perhaps alluding to the emergence of learning components of different neuron groups (e.g. slow-
and fast-firing) that are responsible for long-term potentiation (LTP, strengthening of synapses)
and long-term depression (LTD, weakening of synapses), respectively. Further analysis could
reveal which synapses in particular are responsible for either form of plasticity.



3.3. Distributions of optimized coefficients depend on initial model weights

Fig. 11. Overlayed distributions of  coefficients ,  across synapses per layer, meta-learned 
 on the wavereg task (10 random runs of same model with different initial weights). Each
 set of overlayed coefficient distributions is marked by a statistical significance that  
 marks the statistical difference between runs.



Fig. 12. Overlayed distributions of   coefficients  ,  , b across synapses per layer, meta-
  learned on the  wavereg task (10 random runs of same model with different initial  
  weights). Each set of 10 overlayed coefficient distributions is marked by a statistical 
   significance that marks the statistical difference between runs.



Fig. 13. Overlayed distributions of  coefficients , , , , ,  across synapses per layer, 
 meta-learned on the wavereg task (10 random runs of same model with different initial 
 weights).  Each set  of  overlayed coefficients  is  marked by a statistical  significance  
 that represents the statistical difference between runs.



One of the main questions that arose after achieving favorable results (i.e. GD approximation)
was  whether  the  resulting  optimized  coefficients  originated  from  distributions  that  are
independent of initial model weights. To test this hypothesis, we meta-learned each rule , ,
and  (see sections 2.2 and 2.6) 10 different times, with a unique seed and thus a unique model
with different initial weights per run (Figures 11-13). Then, we:

1. overlayed the distributions (violin plots) of the meta-learned coefficients
2. ran, for each set of 10 coefficient distributions, the Kruskal-Wallis test and calculated a

statistical significance (p-value) that determines whether the coefficient samples originate
from the same underlying distribution (Kruskal & Wallis, 1952)

For   (Fig.  11)  and   (Fig.  12),  although  the  overlayed  coefficient  distributions
intuitively look quite similar, the corresponding high statistical significance indicates that at
least one of them stochastically dominates over another one among the 10 (with the exception of

’s  b  coefficient). Whereas, for   (Fig. 13),  the results are mixed, with around half of the
coefficient  distributions  satisfying  the  null  hypothesis  and  the  rest  containing  at  least  one
distribution that is significantly different. Under the assumption that the chosen statistical test
is  appropriate  for  addressing  our  question,  these  results  sufficiently  falsify  our  hypothesis,
demonstrating  that  for  the  wavereg  task  the  distributions  of  meta-learned  rule  coefficients
depend on the initial weights of the underlying model used for training and meta-training.

https://doi.org/10.1080/01621459.1952.10483441


3.4. Meta-learned rules can generalize to models with different initial 
weights

Fig. 14. Mean training (solid) and validation (dotted) loss using pre-optimized rule   
 coefficients to learn the wavereg task on 10 unseen models with different initial weights.



Fig. 15. Mean training (solid) and validation (dotted) loss using pre-optimized rule   
 coefficients to train the wavereg task on 10 unseen models with different initial weights.



Next, we addressed the question: can meta-learned rules (optimized coefficients) trained on one
model A successfully train on the same task using other models B, C, D, etc. that have different
initial weights, without the need to repeat the meta-training process? Despite a clear indication
from results 3.3 that our meta-learning algorithm yields coefficient distributions that depend on
initial model parameters, the results of 3.4 affirm this question.

Here we meta-learned rules ,  and  (see sections 2.2 and 2.6) and used them to
train the  wavereg  task on 10 new, unseen models, all initialized with different initial weight
values.  We  then  plotted  the  mean  of  the  GD,  pre-  and  post-meta-learning  training  and
validation loss curves for each rule.  After discarding inadequate   results (not shown), we
produced Figures 14 and 15 for rules  and , respectively.

 and, more profoundly,  suggest that our meta-learning algorithm can in fact yield
sets of optimized rules capable of training models with different initial weights on the same task
without requiring further meta-training on those unseen models, effectively yielding a form of
generalized learning independent of initial model weights.



4. Discussion

4.1. Summary

The exact mechanisms that allow biological NNs to assign credit to their neurons and to learn
efficiently are still unknown. Yet, the method that enables ANNs to learn effectively is known as
backprop and its success can be attributed to the ability to increase performance by minimizing
a clearly-defined loss function via GD optimization. Naturally, the wide adoption of GD for
training ANNs through backprop has led to speculations about the existence of corresponding
neurophysiological mechanisms that either approximate or surpass GD and as a result facilitate
successful learning behaviors in brains.

Recently, researchers have suggested that gradients may be a surprisingly appropriate
mathematical  paradigm  for  studying  synaptic  plasticity  and  that  the  brain’s  learning
functionalities may support gradient calculation (Richards & Kording, 2023). However, since
learning in the brain most likely relies on the interplay of a vast array of complex mechanisms
such as Hebbian plasticity, inhibition, high-frequency spike bursting and reward modulation,
biologically-plausible learning rules that can train NNs as effectively as GD (if at all) are not
guaranteed to be easily discoverable, formulatable or interpretable by human researchers.  In
fact,  the  perplexing  variability  found in complex  natural  systems (e.g.  mammalian  nervous
systems) makes it intuitively unlikely that even neighboring synapses strengthen or weaken in
exactly the same way (e.g. one shared plasticity rule). In that sense, although a human can
indeed  design  mathematical  plasticity  models  and  tune  their  coefficients  by  hand,  their
neurophysiological plasticity correlates in brains are immensely more complex and thus most
likely arise and are dynamically tuned by evolutionary processes or by compensatory processes
acting within the lifespan of the organism (e.g. during development or learning).

Over the course of millennia, mutations to neurophysiological mechanisms lead to more
adaptable  learning capabilities  in  animals.  Wanting  to computationally  investigate  how the
brain may be efficiently assigning credit, we set forth to mimic such overarching evolutionary
processes by exploring whether associative plasticity models can approximate GD and under
which conditions. To these ends, we implemented a meta-learning system that optimizes a set of
Hebbian learning rules with many degrees of freedom. We then demonstrated the condition
under  which  these  rules  can  approximate  GD-like  performance  on  two  non-trivial  tasks.
Additionally, in order to achieve the normative goal of approaching gradient-based learning, we
used meta-learning in an online manner to automatically find optimal  rule coefficients that
minimize the error between Hebbian and GD weight delta quantities.

Our results indicate that the key condition for Hebbian learning to approximate GD is
assigning per synapse a unique set of coefficients of the same rule that slightly vary across all
synapses of the same layer. This condition arose out of attempts to learn the wavereg task with
layer-specific plasticity rules (that share rule coefficients per layer) in which mode, we tried both
to optimize the per-layer coefficients but also to set their values  to the mean of all optimized
coefficient values from our synapse-specific condition. However, approximating GD performance
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in “layer mode” proved unsuccessful (see Sup. Fig. 2, Appendix C). Furthermore, however, we
found that the distributions of optimized coefficients depend on initial model weights, but also
that  meta-learned Hebbian rule   can be used to learn the  wavereg task on models  with
different initial weights: a form of generalization.

4.2. Interpretation

In our work, the  condition  for approximating GD-like performance is meta-learning  synapse-
specific Hebbian plasticity  rules  for  training shallow MLPs.  When discussing  the  biological
implications of our findings under this condition, the matter of synaptic heterogeneity becomes
central.  What does it  mean for a synapse  to change its efficacy according to a rule whose
coefficient parameters are unique to that synapse and not shared among others? And what does
it mean for the values of such coefficients and the rules that they constitute to slightly differ
between synapses of the same layer?

The brain's intricate assembly of circuits made up of diverse neurons, each with their
unique dendritic structures, varying membrane and spine properties and distinct ionic channel
distributions, densities and conductances, casts doubt on a hypothetical singular learning rule
that  changes  all  synapses  of  one  or  more  of  its  networks  in  the  same  manner.  Although
plasticity rules can undoubtedly be modeled as unambiguous functions based on underlying
blueprints  containing  associativity  and  other  activity-related  terms,  strict  mathematical
formulations may just be a convenience for modelers. If one considers the immense complexity of
neurons, quite apparent even at the synaptic level, one-size-fits-all learning rules may just only
be able to encapsulate extremely crude approximations of useful effects of plasticity processes,
especially  in  networks  that  lack  realistic  biophysical  structures  or  error-carrying  feedback
mechanisms,  such as  sparse  burst  multiplexing:  a theoretical  framework that uses  dendrite-
dependent  bursting  combined with  short-term plasticity  to  support  multipleing  of  feedback
signals from higher-order areas and feedforward signals, wherein the former can steer synaptic
plasticity without affecting the communication of the latter (Payeur et al., 2021).

When neuron-specific instructive signals that correlate with the gradient of an objective
function that quantifies performance are not calculated or utilized during learning,  Hebbian
plasticity rules lack the appropriate data to accurately assign credit at the fine-grained neuronal
level.  In such unsupervised or globally supervised contexts, optimizing a rule that is shared
among all synapses of a network or layer may not be as effective a method as the optimization
of  distinct rules that are uniquely assigned to each synapse.  Within this latter setting, the
inherent advantage of using a supervised teacher method such as backprop to meta-learn a
student  network’s  learning  rules  is  that  the  many  synapse-specific  coefficients  parameters
cumulatively become adequate encoders (e.g. through meta-plasticity or genomically through
evolution) that can capture context-related information for one or more tasks (e.g. combination
of  input  and target  data).  In  other  words,  our  meta-learning method under  this  condition
provides  a  way  to  encode  the  dynamics  of  a  teacher  network  doing  GD (e.g.  direction  of
gradients) into many synaptic plasticity parameters: the Hebbian rule coefficients. Moreover,
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effective  meta-learning  under  this  condition may  also  be  a  compensation  for  useful
neurophysiological mechanism diversity that is usually found in real neurons and circuits but
that is absent from our simplistic perceptron networks.

4.3. Neuronal heterogeneity & learning

There is no guarantee that learning in the brain obeys a simple set of principles. If no two
synapses are exactly the same, then, by necessity, no two neurons are the same. Each synapse
and, as a consequence, each neuron behaves and responds, at least minutely, uniquely to the
same stimuli. This means that since the inherent structural differences of real synapses translate
to a necessary behavioral heterogeneity of post-synaptic responses, it only makes sense that,
however slight those deviations (e.g. among neighboring synapses of same-type neurons), this
diversity is reflected in synapse-specific learning rules that govern plasticity. More simply put, if
each synapse and by extension each neuron is physically dissimilar, each one must yield slightly
unique responses. Then, by necessity, every synapse must also learn distinctly, with plasticity
learning rules that are at least marginally different. 

Computational  neuroscience research has only just begun to skim the surface of  the
benefits of heterogeneous elements in learning with ANNs (Doty et al., 2021). A recent study
supports the idea that neural heterogeneity may extend beyond being a mere byproduct of noisy
processes to potentially serving a fundamental role in allowing animals to learn flexibly under
uncertainty. It  may also contribute to metabolically efficient strategies that allow brains to
represent richer sets of functions (Perez-Nieves et al., 2021). Along adjacent research directions,
Choudhary et al., 2023 showed that meta-learning different activation functions can enhance
conventional NNs by making them more expressive and accurate. As it turns out, discovering
heterogeneous  arrangements  of  activations  outperforms  homogeneous  counterparts  and
facilitates adaptability through efficient function approximation. Similarly, in our work we meta-
learned heterogeneity in the form of slight coefficient variability of synaptic learning rules which
facilitates  the  approximation  of  GD  performance.  Our  emerging  useful  diversity  perhaps
compensates for the lack of  feedback pathways and other realistic  elements within the rich
diversity of neuronal circuitry not considered in our experiments, such as dendritic processing
and spiking dynamics.

Despite work highlighting the learning benefits of neuronal heterogeneity in ANNs, there
has  also  been  experimental  support  for  the  explicit  statement  that  neuronal  correlates  of
Hebbian learning rule coefficients might vary across synapses.  Basal dendrites of neocortical
pyramidal  neurons  for  instance,  contain  two  compartments  with  distinct  plasticity  rules,
potentially  supporting  different  learning  functions  (Gordon  et  al.,  2006).  Whereas,  in  spike
timing-dependent  synaptic  plasticity,  learning  rules  depend  on  synapse  location  within  the
dendritic tree, with synapses undergoing plasticity according to local rather than global learning
rules  (Letzkus  et  al.,  2006).  Another  study  on  locally  dynamic  synaptic  learning  rules  in
pyramidal neuron dendrites found that LTP at individual synapses reduces the threshold for
LTP at nearby synapses, indicating that synapses within distinct dendritic neighborhoods may
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undergo plasticity differently (Harvey & Svoboda, 2007). Further empirical findings and control-
theoretic  considerations  suggest  that  compensatory  meta-plasticity  processes  capable  of
counteracting the effects of Hebbian plasticity must act on similar or even faster timescales,
hinting at the variability of branch- or even synapse-specific plasticity (Zenke & Gerstner, 2017;
Zenke  et  al.,  2017).  More  recently,  one  study  showed  that  sequence  learning  with  narrow
learning windows requires overlapping firing fields, which suggests that neighboring synapses
may undergo plasticity using slightly different learning rules (Reifenstein et al., 2021). Whereas,
Yaeger et al. 2022 highlighted that cortical neurons possess dendrite-specific integration and
plasticity rules that may enable robust yet flexible cortical computation in adults. Together,
these studies suggest that Hebbian learning rules may vary across synapses,  supporting the
argument that neighboring synapses learn via slightly distinct learning rules.

Moreover, the work of Eve Marder and her collaborators raises many arguments in favor
of heterogeneity’s central role in adaptive behavior. Based on their findings of two- to sixfold
variation  of  synaptic  parameters  (e.g.  conductance  densities)  in  same-type  cells,  they
emphasized that inherent variability may favor multiple beneficial solutions (sets of parameters)
for neurons to produce similar circuit performance, allowing organisms to respond flexibly in
altered environments and maintain resilience. They also presented evidence that variation in
neuronal excitability across neurons of same populations potentially serves to increase a circuit’s
information transfer capabilities (Marder & Goaillard, 2006; Marder & Taylor, 2011; Marder,
2011). In later work, they mentioned that diversity may enhance a network’s ability to respond
to a broader range of inputs. One that would otherwise be narrower if for example neurons were
more similar to one another. Adding that, rather than hindering network function, the high
variability  of  ion  channel  properties  from neuron to  neuron  increases  biophysical  diversity,
which  can  in  turn  improve  network  information  storage  and  robustness  in  response  to
perturbations  (Goaillard  &  Marder,  2021).  Their  work  highlights  the  idea  that  evolution
diversifies neurons, leading to a variability of multiple solutions that plays a key role in flexible,
resilient  behavior.  Along  similar  lines,  through a computational  meta-learning example,  our
work shows that variability at the synaptic level of coefficients that could theoretically correlate
with metaplasticity parameters, favors efficient learning (e.g. approximation of GD), broadening
the aforementioned argument of the significance of neuronal variability in flexible behavior to
encompass the domains of synaptic plasticity and learning.

4.4. Limitations & future directions

Despite possible biological explanations, one major limitation of our work is our  condition  of
assigning a distinct learning rule (unique set of coefficients) per synapse. This presents problems
of scalability, overfitting, generalization and interpretability (e.g. increasing numbers of synapses
requires re-meta-training). Although we presented the surprising results of very slight variability
of coefficients and generalization of a specific meta-learned rule across models with the different
initial  weights,  we  have  only  demonstrated  these  phenomena  on  only  one  task  (wavereg).
Additionally,  the  simplicity  of  our  tasks  and  models  render  our  results  inconclusive  as  to
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whether  our  method  successfully  scales  to  deeper  or  different  networks  and  more  complex
problems. Investigating whether results 3.2, 3.3. and 3.4 can also be produced for the  bmnist
task would be a  reasonable  next  first  step  towards  demonstrating aspects  of  our method’s
robustness. In the future, we could also address whether our method works for an MNIST task
with more  difficult  digits  or  perhaps  three,  four  or  more  classes  and perhaps describe  new
limitations before moving onto more challenging architectures and tasks (e.g. CIFAR-10).

With regard to the architectures we experimented with, one important discussion to
have involves a type of connectivity that we have not yet implemented: feedback pathways.
Although  rule   (see  2.2.4.) supports  a  modulatory  third  factor  mechanism that  globally
broadcasts  an  error  on  all  synapses  during  learning,  it  does  not  support  vectorized  error
signaling capabilities. Consequently, our system has to rely on vectorized synaptic learning rules
with numerous, unique coefficients parameters assigned to each synaptic connection in order to
encode  task-specific  information  and  the  intricate  supervised  learning  dynamics  of  gradient
calculation and descent (i.e. carried out by an identical teacher network) in order to successfully
learn. Even though we found that the variability of coefficients across synapses is tiny and such
a  configuration  may  hold  biological  significance,  the  wide  prevalence  of  feedback-informed
networks in the  cortical  hierarchy presents  a more promising alternative  for  efficient  credit
assignment (Markov et  al.,  2014;  Harris  & Shepherd,  2015)  Therefore,  our  next  goal  is  to
introduce an architecture with feedback pathways through which target information can flow
and  inform  the  change  of  synapses  at  upstream  layers.  Then,  by  meta-learning  Hebbian
plasticity rules in this context, we can evaluate how well they perform compared to bio-inspired
alternatives like Equilibrium Propagation (Scellier & Bengio, 2017). 

Towards making evolutionary optimization more realistic, an interesting extension would
also be to add an option for performing stochastic, instead of GD-based, coefficient parameter
updates,  using  an  algorithm  such  as  the  covariance  matrix  adaptation  evolution  strategy
(Hansen,  2023).  Whereas,  for  loosening the per-synapse  condition,  perhaps  adding dendritic
functionality to the point-neuron perceptron layers could also help remove some of the burden of
useful heterogeneity from the rule coefficients by introducing an element of sparsity and stability
to the network (Grewal et al., 2021; Wilmes & Clopath, 2023; Yaeger et al., 2024).

4.5. Conclusion

Using  meta-learning  we  explored  the  idea  of  dynamically  modifying  model  plasticity  rules
themselves in order to explore how GD performance can be reached.  Inspired by evolution
giving rise to the immense complexity of neurophysiological plasticity mechanisms responsible
for  efficient  learning  in  the  brain,  this  work  contributes  to  the  ongoing  dialogue  between
neuroscience  and  AI,  highlighting  meta-learning  as  a  fruitful  tool  for  addressing  problems
inherent  in  the  remarkable  biochemical  machinery  that  makes  biological  credit  assignment
possible. To quote Richard Sutton:
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“... the actual contents of minds are tremendously, irredeemably complex; we should stop trying
to find simple ways to think about the contents of minds, such as simple ways to think about
space, objects, multiple agents, or symmetries. All these are part of the arbitrary, intrinsically-
complex, outside world. They are not what should be built in, as their complexity is endless;
instead we should  build in only the meta-methods  that  can find and capture this  arbitrary
complexity. Essential to these methods is that they can find good approximations, but the search
for them should be by our methods, not by us. We want AI agents that can discover like we can,
not which contain what we have discovered. Building in our discoveries only makes it harder to
see how the discovering process can be done.”
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Appendix A – Implementation details

Tables 1, 2 list the parameter values chosen for producing the results (see chapter 3.). Table 1
contains the learning and meta-learning optimizers, learning rates and number of epochs chosen
for meta-training and training with each Hebbian learning rule. Table 2 contains the initial
coefficient parameter values for each Hebbian learning rule set prior to meta-learning. Note that
in Table 2,  corresponds to the bmnist task.

For backprop training, we used the SGD and Adam optimizers. For Hebbian training,
we used Hebbian learning rules  ,  ,  ,   (see 2.2.). During meta-optimization, the rule
coefficients were auto-tuned using the Adam and SGD optimizers. For rule , in particular, we
chose the modulatory third factor M to be the loss of the network. For the wavereg experiments
we used the mean squared error (MSE) as a loss function and for the  bmnist task the cross
entropy loss was chosen.

Our  experiments  were  implemented using  pytorch  2.1.0+cu121  and ran on a  6-core
Intel(R) Core(TM) i7-8700K @ 3.70GHz CPU and on a NVIDIA GeForce GTX 1080 Ti GPU.

Table 1: Training and meta-training optimizers (optimizer type, lr, epochs)

wavereg bmnist

RULE TRAINING META-TRAINING TRAINING META-TRAINING

Adam, 4e-3, 200 Adam, 5e-6, 1500 - -

Adam, 4e-3, 200 Adam, 5e-6, 1500 - -

- - Adam, 4e-3, 35 Adam, 3e-9, 100

SGD, 4e-3, 600 SGD, 5e-2, 1500 SGD, 4e-3, 35 SGD, 5e-1, 100

Table 2: Learning rule coefficients

RULE TERM COEFF. NAME

(1 – ) 1e-8 1e-8 - -

1e-3 1e-3 - -

1 b - 0 - -

1 - - 1e-8 1e-8

- - 1e-8 1e-7/1e-8

- - 1e-8 1e-7/1e-8

- - 1e-8 1e-8

- - 1e-8 1e-8

- - 1e-8 1e-8



Appendix B – Abbreviations

Abbreviation Full form Description
Adam Adaptive Moment Estimation a GD-based stochastic  optimization method

based on adaptive learning rates
ANN Artificial neural network a  machine  learning  model  made  up  of

artificial  neurons,  which  loosely  model  the
neurons in a biological brain

Backprop Backpropagation (of error) a gradient estimation method used to train
neural network models

GD Gradient descent an  iterative  algorithm  for  finding  a  local
minimum  of  a  differentiable  multivariate
function

LTP Long-term potentiation an activity-dependent increase in the efficacy
of neuronal synapses lasting hours or longer
following a long patterned stimulus

LTD Long-term depression an  activity-dependent  reduction in  the
efficacy of neuronal synapses lasting hours or
longer following a long patterned stimulus

MLP Multilayer perceptron a  modern  feedforward  artificial  neural
network,  consisting  of  fully  connected
neurons with a non-linear kind of activation
function, organized in at least three layers

NN Neural network an  interconnected  population  of either
biological or artificial neurons

SGD Stochastic gradient descent a  stochastic  approximation  of  gradient
descent optimization that replaces the actual
gradient (calculated from the entire data set)
by  an  estimate  thereof  (calculated  from  a
randomly selected subset of the data)



Appendix C – Supplementary figures

Sup. Fig. 1. Meta-learned rule  on wavereg task, training (solid) and validation (dotted) loss.



Sup. Fig. 2. Training (solid) and validation (dotted) loss of meta-learned rules  (A),   (B), 
        (C) on wavereg task in “layer mode”. In this mode, each layer of the network is 
       trained using a rule whose coefficients values were set to the mean value of 
       coefficients across synapses of the corresponding “synapse mode” rules in
       Fig. 3, 4, 5.


