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ABSTRACT

KEYWORDS: Colloidal Glass, Size Asymmetric Binary Glass, Rheology, Brow-

nian Dynamics simulations, Orthogonal Superposition Rheometry,

Aging, Large Amplitude Oscillatory Shear, Creep, Start-up shear,

Shear thickening

A very high concentration or volume fraction of colloidal hard spheres (φ >

0.58) dispersed in a continuous medium, characterized by the long lived en-

tropic caging of colloidal particles by its neighbours, is termed a colloidal glass.

This is a metastable state where the inherent relaxation time of the system devi-

ates to infinity and the study of such systems under flow has garnered immense

attention. In this work, we employ rheology and BD simulations to probe the

linear and non-linear viscoelastic properties at rest and under shear. We also

perform rheological experiments to probe aging as well as non-linear transient

behaviour of colloidal glasses. Orthogonal superposition rheometery is utilized

to understand the effect of inter particle potential on steady shear of hard sphere

and soft colloidal glasses. Furthermore, we verify the presence and investigate

different types of glasses existing in asymmetric binary mixtures with the help

of BD simulations.
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CHAPTER 1

INTRODUCTION

Atoms form different states of matter which flow at different timescales, in or-

der to study these states of matter colloidal particles are employed. Furthermore

colloidal particles are omnipresent, generally being lesser than fewer microns

length they might be invisible to the naked eye but they have grown to be an

essential part of day to day activities for example in paints, ink, shampoo, milk,

blood. The omnipresence of colloidal systems in nature shows the relevance

of exploring and understanding already existing states in soft condensed mat-

ter. Due to the size range of colloidal particles the quantum mechanical ef-

fects(present in atoms) can be ignored but they are small enough to sense the

thermal fluctuations in the suspending environment. Colloidal particles tend to

retain their rigidity when transfered or heated which makes them ideal candi-

dates for processing of optics and semiconductors. Hence, colloidal particles

are preferred to study different states of matter because of their size range and

time scales, very simple techniques like microscopy can be utilized to study

these systems in detail. One of the most challenging phases in condensed matter

physics is the topology of glass and super cooled liquid and the vitrification or

glass transition process (Angell, 1995; Debenedetti and Stillinger, 2001; Gotze

and Sjogren, 1992; Pusey, 1991; Stillinger, 1995).

Vitrification is a process in which a liquid is quenched or compressed into a

solid amorphous state. This process has a lot of relevance in ceramics, nuclear

waste disposal (Wang et al., 2010), and extensive research has recently been

undertaken to understand vitrification of embryos, organs for long term storage

(Fahy et al., 2009, 2004). Vitrification can also be termed as glass transition

when a liquid at temperature T is cooled below the glass transition tempera-

ture Tg. Then liquid will become a disordered, amorphous, non-equilibrium

solid termed as glass. This is a kinetically arrested metastable state which al-

ways moves towards an equilibrated state or towards lowest free energy. Hence,



Chapter 1: Introduction

timescale is extremely important in order to define glass as a solid or liquid.

An interesting example for glassy behaviour and timescales is the "Pitch Drop

Experiment". Pitch does not flow at short timescales but when transferred into a

funnel, it has dripping rate of approximately 1 drop every 110 months. This ex-

periment is currently underway since 1927 in Queensland,Australia (Edgeworth

et al., 1984). Also the fundamental understanding of these amorphous states of

matter can be extended to application level problems like traffic jams (de Wijn

et al., 2012), neural networks in computers (Mézard et al., 2007) and in bio-

logical systems (Angelini et al., 2011; Ellis and Minton, 2003; Gravish et al.,

2015).

1.1 Hard Sphere Colloids

An ideal colloidal hard sphere interaction between two particles can be defined

as follows:

V (r) =

∞ if r ≤ 2R

0 if r > 2R

(1.1)

where r is defined as the center to center distance between two spheres and

2R is the sum of the two sphere radii of radius R. This equation denotes a sharp

transition to repulsive potential when two spheres come into contact. For all

possible configurations in such a system the potential energy is zero. This also

indicates that the spheres are impenetrable which would have lead to a softer

potential. Thermodynamically,

F = U − TS = (3/2)NAkBT − TS = (const− S)T (1.2)

F is the free energy of the system, U is Internal Energy of the system, S

is the Entropy, T is Temperature, kBis the Boltzmann constant and NA is Avo-

gadro’s number. Therefore, the colloidal hard sphere systems are governed by

Ph. D. Thesis, Jacob, 2016 2



Section 1.1: Hard Sphere Colloids

entropy for a constant temperature. In a monodisperse colloidal hard sphere

suspension volume fraction φ is the only parameter that controls the entropy of

the system.

A characteristic of a colloidal particle in a suspending medium is "Brownian

motion" which occurs due to the ’random kicks’ exerted by solvent molecules on

the colloidal particle with thermal energy kBT (Einstein, 1905) and Brownian

motion tends to homogenize regions of different concentrations. The Brownian

force or the stress tensor acting in all direction can be defined as

FB(r) = −kBT
d ln g(r;φ)

dr
(1.3)

where g(r;φ) is the radial distribution function (Batchelor, 1976, 1977).

Since the kicks/collisions are random in magnitude and orientation the av-

erage displacement of the particle,〈x〉 should be equal to zero. Thus a new

variable known as mean square displacement (MSD),〈∆x2〉 in one dimension ,

is defined as

〈∆x2〉 = 〈[x(t+ ∆t)− x(t)]2〉 = 2D∆t (1.4)

where 〈〉 indicates the average over all particles and time t and lag time ∆t

and D is the diffusion coefficient. In three dimension Eq. 1.4 becomes

〈∆r2〉 = 6D∆t (1.5)

This indicates that in the dilute regime MSD is directly proportional to the

time while at high volume fraction, φ, this deviates from the simple linear re-

lationship of the colloidal suspension. Stokes-Einstein-Sutherland equation de-

fines diffusion coefficient of a single particle of radius R as

D =
kBT

6πηR
(1.6)

3 University of Crete, Greece



Chapter 1: Introduction

where η is the viscosity of the suspending medium. Finally, the diffusive

time scale of particle is the time taken to diffuse a distance comparable to its

own radius and can be derived as

τB =
R2

D
=

6πηR3

kBT
(1.7)

Thus the time scale of diffusion is affected by the the viscosity of the sus-

pending medium, η and the radius of the particle, R.

1.2 Phase Diagram

0.67

 Max. closed
   packing
  fcc & hcp

 Crystal
fcc & hcp

 10% Poly-
disperse

GlassLiquid

 Glass
Liquid & 
CrystalLiquid

0.64 0.740.540.494

Supercooled
     Liquid

0.58

 Mono- 
disperse

Figure 1.1: Phase Diagram of hard sphere colloidal suspensions for monodis-
perse and polydisperse colloids as a function of volume fraction.

An athermal colloidal hard sphere suspension phase diagram is shown in Fig.

1.1 as function of φ (Pusey and Van Megen, 1986). The suspending medium

contributes via hydrodynamic interactions which slow down the timescales of

the system. Colloidal suspensions exhibit liquid-like behaviour at very dilute

concentrations of colloidal particles. Monodisperse colloidal particles at φ >

0.494, the suspension is pushed into a crystal-liquid coexistence regime where

the fluid phase coexist with the crystal phase. Colloidal particles are kinetically

trapped for φ > 0.58 and this phase is called glass. The thermodynamically

Ph. D. Thesis, Jacob, 2016 4



Section 1.3: Hard Sphere Colloidal Glass

equilibrium state is a fcc crystal at φfcc = 0.74 where the particles have maxi-

mum closed packed. On the other hand polydispersity in the colloidal particles

modifies the phase diagram (Pusey et al., 2009; Zaccarelli et al., 2009). In fact

experiments, theory and simulations suggest that colloidal suspensions below

glass transition, with particle size polydispersity σ > 12%, does not crystallize

(Phan et al., 1998; Pusey et al., 2009) but hard sphere glasses was observed to

crystallize in microgravity (Zhu et al., 1997). Fig. 1.1 also indicates the phase

diagram for 10% polydisperse system. When φ > 0.494, particles form loose

cages indicating a supercooled liquid regime. Further increasing φ the system

reaches a disordered and amorphous phase called glass where caging of the par-

ticle by entropic constraints becomes dominant feature. The upper limit after

this phase is the random closed packing φrcp. φrcp also depends on the poly-

dispersity of the colloidal particles (Hermes and Dijkstra, 2010; Schaertl and

Sillescu, 1994).

Solvent affects the suspension by modifying the interparticle interaction be-

tween colloidal particles. For example a refractive index mismatch between the

colloidal particles and solvent can induce van der Waals attraction. Undesirable

development of interaction potential can be avoided by mixing two solvents of

different refractive indices which enables matching of the refractive index with

the colloidal particle. Additionally, this kind of index matched suspensions are

ideal candidates for performing single scattering light scattering experiments in

very high φ. Furthermore, density mismatch between the colloidal particle and

solvent changes effect of gravity on the colloidal suspension, sedimentation of

the colloidal particles occur if the suspension is left undisturbed for long time

periods. This leads to the conclusion that solvent choice should not be over-

looked.

1.3 Hard Sphere Colloidal Glass

The sterically stabilized samples were utilized to develop a phase diagram with

Light Scattering techniques as early as 1980’s (Pusey and Van Megen, 1986;

5 University of Crete, Greece



Chapter 1: Introduction

Pusey and van Megen, 1987).

 t

I(
q)

Liquid

Glass

f(
q,

)

Non Ergodicity
Parameter

Figure 1.2: (a) Density fluctuations captured by intensity variations with time
during light scattering (b) the auto correlation function compared
for a liquid and glass.

In Fig. 1.2 Intermediate Scattering Functions (ISF) f(q, τ) are shown from

Dynamic Light Scattering experiments (Berne and Pecora, 1976) which indi-

cate the decay of random density fluctuations with time for hard sphere colloidal

suspensions. (Brambilla et al., 2009; Masri et al., 2009; van Megen and Under-

wood, 1994). The length scale measured is defined as 2π/q . At low volume

fractions the density fluctuations decay completely to zero, f(q,∞) = 0, this is

thermodynamically called an ergodic state. When the colloidal suspension are

dilute, the ISF can be fitted with a single exponential decay function. As φ is

increased such that the system approaches a liquid crystalline or super-cooled

liquid the ISF exhibits two separate exponential decays functions. The first

relaxation is the β relaxation which corresponds to the rattling of the particle

within the cage. The second longer relaxation time corresponds to the α relax-

ation which corresponds to the particle escaping the cage and particles need to

cooperate with its neighbours to rearrange themselves. Hence particles exhibit

cooperative motion in the glass phase. Both the α and β relaxation are found

to be functions of φ (Brambilla et al., 2009; Lu et al., 2016; van Megen et al.,

1998). In a non-ergodic state, colloidal glass, the ISF parameter does not decay

fully for the experimental time scale due to ’structural-arrest’ observed and cor-

roborated with theory and simulations(Pusey and van Megen, 1987). It has been

Ph. D. Thesis, Jacob, 2016 6



Section 1.3: Hard Sphere Colloidal Glass

found that ISF always has a finite value f(q,∞) > 0. This finite value is termed

the ’non-ergodicity parameter’ which increases with φ as shown in Fig. 1.2. In

this regime β relaxation still exists while the α relaxation moves into extremely

long timescales a signature of almost frozen cages. Light scattering experiments

were probed for eight decades in time to extract non-ergodicity parameter (van

Megen and Underwood, 1994; van Megen et al., 1991). Above glass transition,

the effects on α relaxation time during aging, thermal variations and settling has

been studied (Masri et al., 2009). There still exists debate over the exact glass

transition φ (Brambilla et al., 2010a,b, 2009; Reinhardt et al., 2010; van Megen

et al., 1998; van Megen and Williams, 2010). But the consensus is that beyond

φ ≡ 0.59 the system exhibits solid like response due to frozen cage although dy-

namic heterogeneities related with rare events and cooperative particle motion

exist.

In colloidal glasses, where the particles are trapped by their neighbours, it

was observed that a fraction of the particles exhibit non Gaussian behaviour

(Kasper et al., 1998; Marcus et al., 1999) leading to the advent of temporal and

spatial heterogeneities in these systems. Here particles rattle within the cages

formed by its neighbours for certain amount of time. After some time cage

hopping is observed forcing the particles diffuse and undergo cage rearrange-

ments in the region around the particle that hopped its cage. This is a process

by which the particles can diffuse in a cooperative motion. It was later con-

firmed that these non-Gaussian distribution or string like motion was directly

related to spatial heterogeneities existing in colloidal glass like sample (Kegel

and van Blaaderen, 2000) which was also suggested by simulations (Donati

et al., 1998; Kob et al., 1997; Perera and Harrowell, 1999). Furthermore in con-

foca; experiments, two kinds of particles motions were observed slow and fast

below the glass transition. The fast moving particles were correlated spatially

(Weeks et al., 2000). On approaching glass transition these domains of slow

and fast moving particles grew in size but spatial correlation decreased (Weeks

and Weitz, 2002a,b). Moreover the "caging" was also quantified by confocal

microscopy experiments (Weeks and Weitz, 2002b). Surprisingly, spatially het-

erogeneous dynamics was found to be independent of the waiting time (Weeks

7 University of Crete, Greece
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and Weitz, 2002a,b). The slow moving particles were found to contribute to-

ward bulk elasticity (Conrad et al., 2006) and the the dynamic heterogeneities

were found to be a universal phenomenon in glassy materials (Chaudhuri et al.,

2007). Fast confocal microscopy was utilized to understand supercooled col-

loidal suspensions under shear. Spatial heterogeneous dynamics was observed

with particles rearranging in localized regions and these regions was isotropi-

cally present in the sample under shear (Chen et al., 2010). Molecular dynam-

ics simulations also confirmed the existence of spatial correlations in mobility

of particles in a glass former Lennard-Jones liquid (Donati et al., 1998, 1999;

Kob et al., 1997).

On the other hand, light scattering techniques did find a universal depen-

dence of slow dynamics with aging time (Cipelletti et al., 2003b). Clever modi-

fication of light scattering techniques enabled to identify dynamic heterogeneities

with parameter like multipoint susceptibility, χ4, and four point correlation

function, G4, (Berthier et al., 2005; Cipelletti et al., 2003a; Duri et al., 2009).

Employing BD simulations, a four point correlation density function was de-

fined and studied for binary mixture of Lennard-Jones fluid in order to investi-

gate dynamical heterogeneities (Glotzer et al., 2000; Lačević et al., 2003). Re-

cently a linear correlation between dynamical and spatial heterogeneities was

established for colloidal glasses (Golde et al., 2016). Free volume of hard

sphere colloidal suspensions near glass transition was calculated using Monte

Carlo simulations and the excess chemical potential was derived (Sastry et al.,

1998). Furthermore, thermodynamic parameters like free energy in colloidal

suspensions below and above glass transition have also been obtained from con-

focal microscopy. A decrease in free energy with waiting time was observed in

a colloidal glass (Dullens et al., 2006; Zargar et al., 2013).

Detailed reviews of hard sphere colloidal suspensions specifically on amor-

phous glass phase are available (Brader, 2010; Cipelletti and Ramos, 2005;

Cipelletti and Weeks, 2011; Hunter and Weeks, 2012; Joshi, 2014). Such a

large interest in these very systems is driven mainly by the simplicity and well

defined nature of nearly hard sphere interaction (Bryant et al., 2002) in between

Ph. D. Thesis, Jacob, 2016 8



Section 1.3: Hard Sphere Colloidal Glass

the particles which helps in performing intense simulations. Furthermore, the

availability, size range and time scales of the colloidal particles make them ap-

propriate candidates for investigating phase behaviour with optical microscopy,

light scattering and rheometry.

A lot of open questions remain in the fundamental aspects of flow in col-

loidal glasses which is addressed in this thesis. We try to explore the yielding

properties of colloidal glass under flow with the aid of rheology and simulations.

The bulk response of the system under flow and the microscopic dynamics of

particles in the glass under shear are extracted. Additionally, microscopic in-

sights are provided for different types of glasses present in bidisperse colloidal

systems.

9 University of Crete, Greece



CHAPTER 2

SYSTEMS AND TECHNIQUES

2.1 Sterically Stabilized PMMA spheres

Poly(methyl methacrylate)(PMMA) colloidal spheres steric stabilized with poly-

(12 hydroxystearic acid)(PHSA) hairs of ≈ 10 nm (Antl et al., 1986; Barrett,

1973, 1975; Napper, 1983) are found to be model systems that behave like hard

spheres (Bryant et al., 2002; Ottewill and Williams, 1987; Poon et al., 2012;

Royall et al., 2013; Underwood et al., 1994). Refractive index mismatch be-

tween the solvent and colloidal particle can induce van der Waals interaction or

there could be a presence of inherent electrostatic potential due to the dielec-

tric constant of the solvent which can be generally ignored for organic solvents

(Royall et al., 2013). The side effect of mixing two solvents is that PMMA

spheres tend to swell in the presence of certain solvents like Cyclohexyl Bro-

mide and Bromonapthalene which modifies the inter particle from hard sphere

to soft sphere (Poon et al., 2012). In this thesis two distinct solvents have been

used refractive index matched Octadecene and Bromonapthalene mixture and

Squalene. Both these solvents have been selected because they have minimal

van der Waals force. But there exists a density mismatch(ρcolloid > ρsolvent)

in between the solvent and colloidal particles. The density mismatch is ma-

nipulated to bring the colloidal suspension to random closed packing, φrcp, by

employing centrifugation. This helps in solvent exchange and cleaning of the

colloidal suspensions. Two distinct phases are obtained after centrifugation of

the colloidal suspension : random closed packed colloids and supernatant sol-

vent ,which is discarded. The random closed packed colloids are assumed have

a specific value for φrcp based on the polydispersity of the colloids (Schaertl and

Sillescu, 1994). The random closed packed sample is diluted to the required col-

loidal glass concentration. Although it has been estimated that determination of

φrcp is always bound to have 3% error that is unavoidable (Poon et al., 2012).



Section 2.2: Rheology Fundamentals

Volume fraction for the colloidal glasses for dilution and concentration was

based on the following equation

φ = φo

[
1 +

ms

mc

(
1 +

φo(χ− 1)

1 + αχ

)]−1

(2.1)

where φ is the volume fraction to be calculated, φo is the present volume

fraction,ms is the mass of the solvent to be added to go from φo to φ, mc is the

mass of the colloidal suspension, χ = ρc/ρs is the ratio of density of the col-

loid to the density of the solvent, α is the parameter that is introduced because

the PHSA stabilizing layer will have solvent in between them. The parame-

ters used in this thesis are ρcolloid = 1.188 g/cm3, ρoctadecene = 0.789 g/cm3,

ρbromonapthalene = 1.47 g/cm3, ρsqualene = 0.858 g/cm3 and α = 0.12 (Koumakis,

2011) .

2.2 Rheology Fundamentals

2.2.1 Simple Shear

Consider a simple flow condition as seen in Fig . 2.1 where an ideal fluid exists

in between two infinite long plates. The top plate is moving with a velocity Vx

and the bottom plate is stationary. The velocity at the top layer is such that vx =

Vx and the bottom plate has 0 velocity. This is called the "no-slip" condition.

The two plates are separated by a distance d. The velocity gradient along the

y-axis is constant in this condition and is given by

dvx
dy

= V/d = γ̇ =
dγ

dt
= constant (2.2)

where γ̇ is the shear rate and γ is the strain.

In order to move the top plate a force Fx needs to be applied on it. The

force required to move the plates with velocity V will be proportional to the

surface area of the plates. Hence we can define shear stress σxy which is the

11 University of Crete, Greece



Chapter 2: Systems and Techniques

d
y

Vx x

Figure 2.1: An ideal velocity profile for an ideal fluid flow in between two in-
finitely long plates. The top plate moving with velocity Vx and the
bottom plate is stationary. The two plates are separated by a dis-
tance d

force applied per unit area with x denoting the direction of shear stress and y

denoting the plane normal to which the force is acting. In an ideal liquid the

velocity gradient or shear rate determines the internal stresses. According to

Newton’s constitutive equation for fluids the stress is proportional to the shear

rate and the proportionality constant determines the viscosity of the fluid.

σxy = η
dvx
dy

(2.3)

If the ideal liquid is replaced by an ideal elastic solid Hooke’s law is appli-

cable. The shear stress is proportional to the strain or the deformation and the

proportionality constant is the shear modulus of the solid.

σxy = G
dx

dy
(2.4)

Eqs. 2.3 and 2.4 are valid for one dimensional case. The real world problem

is a three dimensional vector field where the velocity v(r) is defined for each

position r(x, y, z) with velocity components (vx, vy, vz). Here x is the flow

direction, y is the velocity gradient direction and z is the vorticity direction.

Ph. D. Thesis, Jacob, 2016 12
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The velocity gradient in three dimensions is thus defined as

∇v =


δvx
δx

δvx
δy

δvx
δz

δvy
δx

δvy
δy

δvy
δz

δvz
δx

δvz
δy

δvz
δz

 (2.5)

Then, the rate of strain tensor D is defined as

D = (∇v +∇v′)/2 (2.6)

D =


δvx
δx

1
2

(
δvx
δy

+ δvy
δx

)
1
2

(
δvx
δz

+ δvz
δx

)
1
2

( δvy
δx

+ δvx
δy

) δvy
δy

1
2

( δvy
δz

+ δvz
δy

)
1
2

(
δvz
δx

+ δvx
δz

)
1
2

(
δvz
δy

+ δvy
δz

)
δvz
δz

 (2.7)

From Eq. 2.3 the stress is modified to

σxy = ηγ̇xy where γ̇xy = 2Dxy (2.8)

zx

yx

y

z

x

xx

Figure 2.2: The stress components in three dimensional space
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Expanding the stress tensor we obtain

σij =


σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 (2.9)

As observed in Fig. 2.2 the first index indicates the direction of stress and

the second index depicts the normal to the plane on which the stress acts. The

diagonal stress components σij are the normal stresses and the off diagonal ele-

ments which are oriented in the plane that is considered is called shear stresses.

Generally for ordinary fluids the stress matrix is symmetric around its diagonal

elements such that σij = σji.

Finally the Newton’s constitutive equation for fluids (Eq. 2.3) in tensorial

notation can be written as

σ = −P I + 2ηD (2.10)

where I is an identity tensor, P is the pressure with negative sign indicating

the notation norm and σ + P I is termed the extra stress or deviatoric stress.

The diagonal elements in the extra stress components are zero for Newtonian

fluids. In a viscoelastic sample there exist shear stress as well as the normal

components which are defined as first and second normal stress an given by the

following equation

N1 = σxx − σyy

N2 = σyy − σzz
(2.11)

2.2.2 Oscillatory shear

Fig. 2.1 is an ideal case which is used for deriving the fundamentals of rheology

and understanding the basic concepts of rheometry. A different kind of flow

profile can be applied to the top moving plate namely oscillatory. In this profile

Ph. D. Thesis, Jacob, 2016 14
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the strain applied is as seen in Fig .2.3 (a) which is can mathematically expressed

as

γ = γo sin(ωt) (2.12)

where ω is the frequency of oscillation, t is time of oscillation and γo is the

maximum amplitude of strain. The shear rate is defined as derivative of strain

dγ

dt
= γ̇ =

d(γo sin(ωt))

dt
= γoω cos(ωt) = γ̇o cos(ωt) (2.13)

where γ̇o is maximum amplitude of shear rate within a cycle as seen in Fig.

2.3 (a).

(a)

t
 

(b)

t

 Elastic Solid
 Viscous Liquid
 Visco Elastic

Figure 2.3: (a) Strain and shear rate during oscillatory shear and (b) Stress re-
sponse for the oscillatory strain for ideal elastic solid, viscous fluid
and a visco-elastic material

In the case of an ideal elastic solid which follows Hookes law, σ = Gγ the

stress response will be

σ(t) = Gγ(t) = Gγo sin(ωt) (2.14)

On the other hand for a Newtonian fluid as mentioned earlier, σ = ηγ̇ then

oscillatory response will be

σ(t) = η ˙γ(t) = ηγ̇o cos(ωt) (2.15)
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which shows that there exists a phase difference of 90o between an ideal

elastic solid and Newtonian fluid. All soft material investigated exhibit both

elastic and viscous characteristics that can be quantified by probing the system

using oscillatory shear. So for a viscoelastic material one can write the stress

response as a function of strain as follows

σ(t) = σo sin(ωt+ δ) (2.16)

where δ is the phase angle difference between the stress and the applied

oscillating strain. Expanding Eq. 2.16

σ(t) = γo
(σo cos δ

γo
sin(ωt) +

σo sin δ

γo
cos(ωt)

)
(2.17)

Eq . 2.17 is made a function of the strain and the strain rate which aids in

extraction of the storage modulus, G′, and loss modulus, G′′ which are defined

as follows.

G′ =
σo cos δ

γo
(2.18)

G′′ =
σo sin δ

γo
(2.19)

The loss tangent is defined as the ratio of the loss modulus to the storage

modulus and given by the following equation

tan δ =
G′′

G′
(2.20)

Also the storage and loss modulus can be written as real and imaginary parts

of the complex moduli, G∗

G∗(ω) = G′(ω) + iG′′(ω) (2.21)
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Hence oscillatory shear helps in extracting the elastic viscous components

of the viscoelastic samples. It should be noted that all the above equations are

valid only if the amplitude of γo is small or in the linear regime of shear. In

case of large amplitude of γo the above definition for storage and loss moduli

will not be sufficient and other representation methods are required Ewoldt et al.

(2008); Hyun et al. (2011); Jacob et al. (2014); Poulos et al. (2013); Rogers et al.

(2011). More details on fundamentals of rheology can be found in popular and

commonly prescribed books (Barnes et al., 1989; Macosko, 1994; Morrison,

2001).

2.3 Rheometry

2.3.1 Cone and Plate

Cone and Plate is one of the most commonly used geometries in rheometry for

suspension rheology because the velocity is constant all along the geometry. In

Fig . 2.4 (a) When the angle α is small the shear rate depends on the tangential

velocity and the local distance between the plates.

γ̇ =
ω

α
where α <= 0.1rad (2.22)

here ω is the rotational speed in rad/s−1 and α is the angle of the cone in

rad. The shear stress of a cone and plate arrangement is calculated as

σ =
3τ

2πR3
(2.23)

where τ is torque experienced by the geometry and R is the radius of the

geometry. The first normal stress difference is calculated as

N1 =
FN
πR2

(2.24)
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where FN is the normal force acting on the plates.

(a)

R

(b)

w

Transducers

Servo Motor

Vertical Motor &

Rb

Figure 2.4: (a) Cone and plate geometry (b) Double wall Couette geometry
used for orthogonal superposition

2.3.2 Orthogonal Superposition Setup

Fig . 2.4 (b) shows the schematic of a double-wall Couette geometry which

was used in the orthogonal superposition measurements in this thesis (Vermant

et al., 1997). This geometry has two motors one in the horizontal direction

and the second motor in the vertical direction. The horizontal motor performs

shear experiments similar to an ordinary Couette geometry. The vertical motor

imposes only oscillation in the vertical direction. The horizontal and vertical

transducers are separate and housed in the top part of the system. The inner

cylinder of the double walled Couette acts as a reservoir for the sample removing

all instabilities arising due to the vertical oscillation. The hatched regions in Fig.

2.4 (b) indicates the volume occupied by the sample. The orthogonal storage and

loss moduli are calculated by the following equations

G′ =
1

A

(
Fo
zo

cosφ−K + (m+ βAρ)ω2

)
(2.25)
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G′′ =
1

A

(
Fo
zo

sinφ− ξω)

)
(2.26)

The geometric factors A and β are defined as follows:

A =
4πh

ln(Rb

Ra
)

(2.27)

β =
R2
b

2

(
(Rb

Ra
)2 − 1

2 ln(Rb

Ra
)
−
[
1 + ln

(
Rb

Ra

)])
(2.28)

where Rb is the average radius of the oscillating cylinder, Ra = Rb −w and

w is the width of the gap. Fo/zo is the force amplitude divided by the height

amplitude of the oscillating cylinder and φ is the phase difference between the

strain input and stress output in the vertical direction. Finally, m,K and ξ are

the parameters describing the vertical transducer.

2.4 Brownian Dynamics Simulations

A particle suspended in a fluid medium will exhibit Brownian motion (Einstein,

1905). Other than Brownian motion the particle also experiences viscous drag

from the suspended fluid. Additionally, deterministic external forces also acts on

the particle when the whole system flows. All these forces acting on the particle

are governed by momentum balance equation. Here, the viscous medium is as-

sumed to be a continuum but the particles are larger than the viscous molecules

such that there is a clear separation between length scales and timescales.

If the system as N inelastic particles of radius R and mass m a N-body

Langevin equation can be written as follows

m
dU

dt
= FB + FH + FP (2.29)

where Eq . 2.29 m indicates the generalized mass of the particles, FB is
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the stochastic/Brownian force vector, FH viscous drag vector and FP is the

deterministic non hydrodynamic force vector (Russel et al., 1989).

Since inertial forces are assumed to be trivial, m → 0 in colloidal disper-

sions thus Reynolds number is assumed to be much less than 1(Re << 1). Then

Left Hand Side→ 0 in Eq. 2.29. Thus,

0 = FB + FH + FP (2.30)

FB in Eq. 2.30 is the Brownian force vector that the particle experiences

which is a stochastic process. According to fluctuation-dissipation theorem

(Kubo, 1966)

〈FB(t)〉 = 0

〈FB(t)FB(∆t)〉 = 2kBT (6πηsR)Iδ(∆t)
(2.31)

where 〈〉 denote average over all fluctuations in a fluid with thermal energy

kBT , δ(t) is the Dirac delta function, I is a unit second order tensor, 6πηsR is

the drag coefficient and ∆t is the time step for the simulation. The stochastic

process should be random in direction and magnitude as two different particles

should have uncorrelated motion. Additionally, the kinetic energy of the particle

is equally divided in three directions.

In Eq . 2.30 FH is defined as Stokes Drag Force

FH = −6πηsRU (2.32)

where U is the translational velocity vector on the particle. The negative

sign indicates that it acts in opposite direction to the motion of the particle. The

Stokes drag force is a very simplified assumption of hydrodynamic interactions.

In an actual scenario a particle that moves in a viscous fluid interacts with the

viscous drag of other particles due to the wake created by the particles in mo-

tion. In BD simulations it is assumed the above case is not valid. In order to
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have all the hydrodynamic interactions it is computationally exhaustive. Thus

it is preferable to perform Stokesian dynamics simulations (Brady and Bossis,

1988).

In Eq . 2.30 FP is defined as

FP = FHS + FPe (2.33)

where FHS is the inter particle hard sphere potential and FPe is the deter-

ministic force vector on particles. In the simulations performed in this thesis a

"potential free" algorithm is employed where the overlaps between the particles

is considered as a collision (Heyes and Melrose, 1993). This potential free al-

gorithm for BD simulations has been extensively used for colloidal hard sphere

suspensions (Foss and Brady, 2000; Koumakis et al., 2013, 2012a, 2016b) and

colloidal crystals (Koumakis et al., 2016a). More complex potential can be

added into Eq. 2.33 such the Asakura-Oosawa potential (Asakura and Oosawa,

1954, 1958) which has recently been extensively used in BD simulations to

simulate model colloidal depletion gels (Koumakis et al., 2015; Moghimi et al.,

under review; Moghimi and Petekidis, in preparation). Other potential like Der-

jaguin Landau Verwey Overbeek (DLVO) (Russel et al., 1989) or Lennard Jones

potential (Allen and Tildesley, 1989) can also be applied depending on the inter-

particle potential to be simulated. FPe corresponds to simple shear flow in this

thesis.

The particle evolution equation is obtained by integrating Eq. 2.30 twice

over a time step ∆t as follows

∆x(∆t) = ∆x(t) + ∆xB(∆t) + ∆xPe(∆t) (2.34)
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where ∆xB(∆t) is defined as

〈∆xB(t)〉 = 0

〈∆xB(t)∆xB(t+ ∆t)〉 = 2DI∆t

D =
kBT

6πηsR

(2.35)

where D is the translational diffusion coefficient, ηs is the viscosity of the

suspending medium. The stochastic Brownian motion should give a displace-

ment of
√

2D∆t . The random displacements are picked from a random vector

Ψ. Each element in Ψ is selected from a uniform distribution of random num-

bers ranging from −1 to 1 with a mean value 0. This leads to an equation

∆xB(∆t) =
√

2∆tΨ
√

3 (2.36)

which produces a Gaussian distribution after a few time steps. In Eq. 2.34

∆xPe(∆t) = Pey∆t since the shear rate gradient is only in the x-direction

alone. y is the position of the particles in the y-direction. Another assumption

to obtain Eq. 2.34 is that rotational and translational motions are decoupled. X

is made non-dimensionless by the radiusR and the time in the simulation by the

Brownian time tB = R2/D and velocity U by D/R.

Thus the displacements in all three dimensions can be written as follows

∆xx =
√

2∆tΨ
√

3 + Pey∆t

∆xy =
√

2∆tΨ
√

3

∆xz =
√

2∆tΨ
√

3

(2.37)

In case of steady simple shear

∆xPe = y∆t (2.38)
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and for oscillatory shear

γ = γo sin(Peωt)

∆xPe = Peωγo cos(Peωt)y∆t

Peω =
ωR2

D
=

2πtB
T

(2.39)

where γo is the peak of the amplitude of shear and ω is the frequency of

oscillation. Simple and oscillatory shear are related such that Pe = γoPeω.

In each time step the algorithm calculates the pairwise inter particle forces

that would result in hard sphere displacements. From Eq. 2.30 equating the

interparticle force with hard sphere displacement we get in dimensional form

FP = 6πηsR
∆x

∆t
(2.40)

The total stress can be calculated by knowing the interparticle forces from

each collision. Thus the bulk stress can be defined as total stress per unit volume

for N particles (Foss and Brady, 2000).

〈σ〉 = −〈p〉fI + 2ηs(1 +
5

2
φ)〈D〉 −NkBT I−N〈xFP 〉 (2.41)

where 〈p〉f is the average fluid pressure, −NkBT I is the isotropic pressure

due to Brownian thermal motion, 2ηs(1 + 5
2
φ)〈D〉 is the hydrodynamic contri-

bution to the stress that reduces to the single particle Einstein correction, 〈D〉 is

the rate of strain tensor. The rheological contribution of the stress is obtained

from 〈xFP 〉. The contribution for all particles to the stress is calculated as

σxy =
N∑
1

−r
x
i ∆yHSi
V∆t

(2.42)

Additionally these simulations include Periodic Boundary Conditions to mimic

an infinitely large system that avoids surface and size effects. The simulation
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volume is divided into small cells with length of each cell at least the size of the

interaction. The advantage is two fold, one this system is computationally more

efficient than that picking each and every particle and checking all its neigh-

bours. The second advantage is that none of the particles will be missed out in

the simulation.

Enforce Hard Sphere Potential

Shear 

xi(t+ t) = xi(t) + xB
i( t) +  xPe

i( t) 

xPe
i( t) = uPe t

xB
i(t)  xB

i(t+ t) = 2D t
xB

i(t)  = 0
Brownian motion

 Remove particle overlaps/collisions 

In
cr

em
en

t i
n 

tim
e 

st
ep

 b
y 

t

Implement Displacments

Calculate the stress from particle collisions

Figure 2.5: Algorithm for the Brownian Dynamics simulations with hard
sphere potential employed to simulate colloidal glasses

The BD algorithm used in this thesis is represented as shown in Fig. 2.5.

Initially the N particles are placed randomly in a volume V based on the vol-

ume fraction φ required then the particle overlaps are removed. The cell list

is made and each particle is given the address of the cell list. In the first time

step increment, displacements for Brownian and shear motion are implemented

on all the particles. The each cell is stepped through systematically in order to

count the particle overlaps, calculate the stress from Eq. 2.42 and remove the

overlaps. The time step is incremented and the whole process is repeated by

implementing Brownian and shear displacements on the particles.

The pair distribution function is defined as follows

g(r, rab) =
V

4πr2NaNb

〈 Na∑
i=1

Nb∑
j=1

δ
(
r − |ri(t)− rj(t)|

)〉
t

(2.43)
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where Na and Nb are number of particles, r is the examined pair distance,

ri and rj(t) are the position vectors for the ith and jth particle respectively. The

pair distribution function is defined as the probability for finding a particle at a

distance r.

The mean square displacement is statistical measure for a particle that has

moved a specific distance in a specific time. The MSD in the x-direction is given

as follows

〈
∆x2(∆t)

〉
=

〈
1

N

N∑
i=1

[xi(t+ ∆t)− xi(t)]2
〉

∆t

(2.44)

where xi is the non affine position calculated by subtracting the affine shear

component. Moreover, xi can be substituted for yi and zi for different directions.

Finally the average MSD in the radial direction is calculate as follows

〈
∆r2(∆t)

〉
=
〈
∆x2(∆t)

〉
+
〈
∆y2(∆t)

〉
+
〈
∆z2(∆t)

〉
(2.45)

The two time particle displacement is calculated is obtained by modifying

the above equations as follows

〈
∆z2(∆t, tw)

〉
N

=
1

N

N∑
i=1

[(
yi(tw+∆t)−yi(tw)

)
− 1

N

N∑
i=1

[
(yi(tw+∆t)−yi(tw)

]]2

(2.46)

which gives the average displacement between two specific times during

shear where tw > 0, is elapsed time from the beginning of shear and t is the

absolute elapsed time and ∆t = t−tw being the time frame for the displacement.

An example of simulated colloidal glass with particles having a polydisper-

sity of 10% in this thesis is shown in Fig. 2.6. The colour code represents the

radius of the particle.
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Figure 2.6: Representative image of a colloidal glass obtained from BD simu-
lations in 3D and 2D.
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CHAPTER 3

BACKGROUND LITERATURE

3.1 Rheology of Colloidal suspensions

On laboratory scale colloidal suspension have been extensively used to study

different phases of matter. Some of the earliest experiments brought out the sim-

ilarities in colloidal and atomic systems (Hiltner and Krieger, 1969). Mixtures

of different sized colloids were found to form ’Wigner Glass’ which does not

exhibit long range order but shows finite elasticity(Lindsay and Chaikin, 1982).

Charged stabilized colloidal suspensions have been utilised as model systems to

investigate liquids and crystals (Aastuen et al., 1986; Murray and Van Winkle,

1987; Sirota et al., 1989). One of the model hard sphere system used was sil-

ica coated by a stabilizing layer of 1-octadecanol (de Kruif et al., 1985; Helden

et al., 1981; Vrij et al., 1983; Wagner and Russel, 1990). Silica sphere sus-

pended in ethylene glycol also interacts like hard sphere (Mason and Weitz,

1995; Shikata and Pearson, 1994). The advent of uncharged sterically stabilized

colloidal suspensions as model colloidal systems lead to an enhanced under-

standing in these systems (Marshall and Zukoski, 1990; Pusey and Van Megen,

1986). Fundamental flow problems in colloidal suspensions and glasses have

been addressed with the aid of techniques like confocal microscopy and the

easy availability of model hard sphere colloidal systems. Recent advances in

this hard sphere model colloidal suspensions are discussed in (Besseling et al.,

2009). Detailed information regarding colloidal suspension rheology can be

obtained from (Mewis and Wagner, 2012).

Poly-methyl methacrylate particles stabilized with poly-12- hydroxystearic

acid have been used as model uncharged colloidal suspensions in rheologi-

cal measurements as early as 1976. These particles were used to investigate

the shear thickening effects in very highly concentrated suspensions (Strivens,
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1976). Rheology of high volume fraction dispersions of PMMA spheres were

investigated and the effect of hair softness was found to vary with colloidal

size. Large particles (1µm) behaved like hard sphere while small particles

(≈ 100nm) interacted with a softer potential (Frith et al., 1987; Mewis et al.,

1989). Additionally, the expansion coefficient of the spheres where explored

with temperature (Frith et al., 1987) and for concentrated hard sphere suspen-

sions the Cox-Merz rule failed (Frith et al., 1990). A scaling equation was

proposed such that the plateau moduli, G′∞, will depend on the inter particle

distance in concentrated dispersions and this in turn will help elucidate the inter

particle potential that exists in between particles with the help of the following

equation.

G′∞ ≈
φrcpN1

5πdckBT

d2Φ

dr2

∣∣∣∣
Rm

(3.1)

where φrcp is the random close packing, N1 is the number of nearest neigh-

bours, dc is the diameter of the colloid and Φ(r) is the inter particle potential,

Rm is the distance between the nearest neighbours and G′∞ corresponds to the

plateau moduli (Mewis and Haene, 1993). Experimentally, it has been observed

that G′ near glass transition becomes a power law as function of φ and changes

slope from 30 to 50 from below to above φ = 0.60 respectively (Koumakis

et al., 2012b). Furthermore, these sterically stabilized particles were utilised to

investigate structures formed under shear during shear thickening using opto-

rheological tools (D’Haene et al., 1993) and also to understand the effect of

particle size and the solvent effect on shear thickening (Frith et al., 1996). The

effect of ionic and non-ionic stabilizing layer on the viscosity and dynamic mod-

uli have also been investigated (Raynaud et al., 1996). Shear induced ordering

was found to be more pronounced for oscillatory shear than steady shear in liq-

uids suspensions (Ackerson, 1990; Ackerson and Pusey, 1988). Monodisperse

colloidal glass was also observed to crystallize under large amplitude oscillatory

shear (Koumakis et al., 2008).

Yield stress is another important characteristic in high volume fraction nearly

hard sphere colloidal glass. The yield stress value increases as a function of
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φ (Koumakis et al., 2012b) for hard sphere colloidal glasses. Generally for

colloidal glasses the yield stress can be fitted to Herschel-Bulkley model with

a power law fit of ν = 0.5. Hard sphere colloidal glasses were classified as

thixotropic yield stress material due to the aging of colloidal glasses with help

of Brownian motion which was investigated by performing long time creep ex-

periments (Moller et al., 2009).

Smooth surfaces promote slip at low shear rates in colloidal glass (Ballesta

et al., 2008, 2012). On the other hand a weak slip was observed for liquid sus-

pensions which lead to the appearance of yield stress plateau. When roughened

plates are used at high volume fractions shear banding occurs at very flow rates

(Besseling et al., 2010). The stable and unstable region in shear banding was

mapped as function of φ and γ̇. Slip and shear bands were also observed in

colloidal crystals under oscillatory shear via confocal microscopy (Cohen et al.,

2006). Flow profile in square capillary was investigated using confocal mi-

croscopy for volume fraction near random closed packing was found to be that

close to predicted in granular media(Isa et al., 2007). Velocity profiles of con-

centrated hard sphere suspensions through microfluidic devices have also been

investigated (Isa et al., 2009).

Yielding mechanisms with start-up and oscillatory shear was compared and

contrasted with attractive colloidal glasses. In pure repulsive glass, a single

yielding process was observed and in attractive process two yielding process

was observed (Pham et al., 2008, 2006). the yielding process in pure repulsive

glass is related to the distortion of the cages while in attractive process the first

yielding occurs due to bond breaking and the second yielding is due to cage

breaking. From real time imaging of soft and hard particles and rheology it was

elucidated that soft particles show larger length scale cooperative motion than

hard spheres. In other words the dynamic susceptibilities for soft spheres is

greater than hard spheres for same volume fraction (Rahmani et al., 2012). Be-

low random closed packing it was established that ’cage elasticity’ contributes

to the viscoelasticity for both hard and soft spheres. Above random close pack-

ing for soft spheres the shell elasticity becomes prominent. The yield strain
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of hard sphere colloidal glasses obtained from creep and recovery shows a non

monotonic response with increase φ possibly due to decreasing inter particle

potential and increasing effects of the cages (Le Grand and Petekidis, 2008).

The intensity of stress peaks during startup shear was observed to be much

stronger for softer particles as a function of φ for a specific shear rate (Koumakis

et al., 2012b). Extensive studies on transient dynamics and yielding of colloidal

glasses during start-up shear with rheology, confocal microscopy and simula-

tions provide insights how the cages deform under transient shear and the depen-

dence of microstructure on bulk properties with varying volume fraction, shear

rate and aging (Koumakis et al., 2012a, 2016b; Laurati et al., 2012; Mutch et al.,

2013). The short time MSD was found to be smaller during start-up shear than

at rest. This was attributed to the cage distortion at short time scales (Koumakis

et al., 2012a). The effect of aging on the transient start-up shear was also in-

vestigated. In general, it was observed that with aging time a colloidal glass

system was driven deeper into the solid regime. Aging was found to have a

non-trivial dependence for the stress overshoot peak versus φ and γ̇ (Koumakis

et al., 2016b). The stress overshoot peak and superdiffusive regime became

more predominant with γ̇ (Koumakis et al., 2012a; Laurati et al., 2012). A non-

monotonic dependence of the stress peak was observed with φ (Koumakis et al.,

2016b). Cessation after steady shear of colloidal glasses lead to the retention of

a part of the stresses which was termed as residual stress (Ballauff et al., 2013).

The lower shear rates aided in trapping of higher residual stresses than the high

shear rates in hard sphere colloidal glass which was corroborated with MCT and

simulations.

Strain Rate Frequency Superposition was applied to hard sphere colloidal

and it was observed that the relaxation time of the system under shear for a col-

loidal glass was a linear function of shear rate (Wyss et al., 2007) but this method

proven to be wrong. Non-linear oscillatory shear was employed for this super-

position which is not the correct approach for superposition to be performed

(Erwin et al., 2010b). Experiments with confocal microscopy showed that the

alpha relaxation time had a sub-linear dependence on the shear rate (Bessel-
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ing et al., 2007) while another set of experiments showed a linear dependence

(Eisenmann et al., 2010).

Light scattering echo was utilised to understand particle rearrangements in

the yielding process under oscillatory shear in polymer stabilized colloidal glass.

Low volume fraction glasses were found to exhibit more reversible arrangement

than high volume fraction glasses. Additionally, it was was also discerned from

creep and recovery experiments that colloidal glasses could store elasticity upto

γ = 15% before yielding occurs (Petekidis et al., 2002, 2003). The softness of

the cage impacts the yielding of colloidal glasses under oscillatory shear. For

hard sphere glasses the yielding happens much earlier than softer glasses be-

cause the cage can only be distorted to small values unlike soft systems (Zhou

et al., 2014). Large amplitude oscillatory shear (LAOS) has been utilised to

understand yielding mechanisms in hard sphere glasses when oscillatory shear

is employed. A two-step process yielding was observed where the initial yield-

ing was due to Brownian motion and the second was due to shear-induced col-

lisions depending on the timescale of the system is probed (Koumakis et al.,

2013). The γcross(G′ = G′′) was found to have a non-monotonic dependence on

φ under oscillatory shear unlike softer systems like PNIPAM microgels and star

like micelles (Koumakis et al., 2012b). Sequence of Physical Processes(SPP)

(Rogers, 2012) was used to understand the yielding process in hard sphere col-

loidal suspensions and contrast with soft sphere suspensions. The inter particle

compliance between the soft spheres was found to be responsible for the delayed

yielding and smooth volume fraction dependence with φ unlike the hard sphere

colloidal suspensions (van der Vaart et al., 2013).

Extensive creep and recovery experiments were performed to characterize

colloidal glasses near and above glass transition. Creep is used to study the

strain accumulation in colloidal glasses. The presence of high elastic recovery

after creep even after flow of samples was attributed to cage elasticity. Ad-

ditionally, creep below yield stress of hard sphere glasses exhibited very slow

accumulation which was speculated to be due to dynamic heterogeneities (Pe-

tekidis et al., 2004). Recently the effect of aging hard sphere colloidal glasses
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was investigated with creep flow (Ballesta and Petekidis, 2016). The hard sphere

colloidal glass was found to exhibit a more solid like response with increasing

aging time. Localised events was also found to decrease with increasing ag-

ing time. Microscopically creep was observed to activate localized regions in

the colloidal glass. These regions grew in size with time of stress application

until all the regions merged to start flow. The steady state flow was observed

to be similar to that of steady shear rate flow of hard sphere colloidal glasses

(Sentjabrskaja et al., 2015). The transient dynamics of highly concentrated hard

sphere suspensions under time dependent flow are reviewed in (Brader, 2010;

Mutch et al., 2013).

Large size asymmetric binary mixtures of hard sphere are also of inter-

est in order to understand biological systems (Angelini et al., 2011; Ellis and

Minton, 2003; Gravish et al., 2015). Sterically stabilized PMMA hard spheres

are chosen as model systems to study these binary mixtures. Similar to pure

colloidal glasses various techniques like rheology, light scattering and confocal

microscopy are utilised to understand the dynamics and mechanical properties

of binary colloidal hard spheres at quiescent state and under flow (Sentjabrskaja

et al., 2013a, 2015, 2014, 2016). Highly anisotropic size mixtures of binary col-

loidal glass was observed to pass through a liquid phase at intermediate mixing

ratios of the binary particles. This was attributed to neither species dominating

to form cages in the binary glass mixture. This in turn affected the yielding

behaviour of the particles under oscillatory (Sentjabrskaja et al., 2013a) and

transient shear (Sentjabrskaja et al., 2014). Anomalous diffusion was observed

in small particles in colloidal particles based on the matrix that drives caging. If

the size ratio between the small to big particles are large the small particles tend

to move in localized voids of the big particles (Sentjabrskaja et al., 2016).

The timescale probed in a colloidal suspension can be quantified with the

help of Peclet number. Peclet number is a dimensionless number in transport

phenomena which is defined as the ratio of advection transport rate to diffusive

transport rate. In colloidal suspensions, Peclet number is defined as the product
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of rate of shear and the time scale of Brownian diffusion.

Pe = γ̇tB (3.2)

where tB is given by

tB = R2/D = 6πηsR
3/kBT (3.3)

where D is the diffusivity and ηs is the viscosity of the solvent. Thus when

Pe < 1 Brownian diffusion dominates and when Pe > 1 shear-induced motion

of colloidal particles becomes predominate leading to structural changes. For

oscillatory shear Eq. 3.2 is modified as follows

Peω = ωtB (3.4)

where ω is the frequency of oscillation. The above equation is valid, pro-

vided the oscillatory shear is in the linear regime of the material. In a concen-

trated hard sphere suspension the Brownian time for self diffusion of the particle

is much slower than in dilute suspensions due to hydrodynamic effects (Sierou

and Brady, 2001). So there exists two definitions for Peclet number. Bare Peclet

number which is the Peclet number associated with the corresponding tB in the

dilute suspension regime. Dressed Peclet number which is derived from tB con-

sidering the hydrodynamic interactions. In this thesis we define all Peclet based

on bare Peclet number unless otherwise specified. Additionally, in this thesis

the volume fraction of colloidal glass φ mentioned is obtained by scaling the

storage modulus G′ at Peω = 0.5 from the already available normalized elas-

tic moduli versus volume fraction master curve for hard sphere colloidal glass

(Koumakis et al., 2012b).

Theories are essential to predict and design materials that have time depen-

dent response for efficient design of materials and processing parameters. Mode

coupling theory (MCT) is extensively used to model hard sphere colloidal sus-
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pensions near and above glass transition (Gotze and Sjogren, 1992). It is based

on the principle that the colloid is trapped by its neighbours The neighbouring

particle does not allow the caged particle to escape which delay the α relaxation

which as the neighbouring particles are themselves trapped. For hard sphere

particles the glass transition has been found to be at φ = 0.525 for MCT theory

while experiments the transition to be around φ = 0.58. A modified model

based on MCT was found to capture the rheological behaviour of colloidal

suspensions (Mason and Weitz, 1995; Siebenbürger et al., 2009). The Green

Kubo based description in theory helped in unified understanding of linear vis-

coelastic behaviour and diffusion in colloidal glass (Nägele and Bergenholtz,

1998). MCT has also been extended to account for a deformation field (Fuchs

and Cates, 2002, 2003a,b). A generalised Green Kubo relation was dervied to

describe time dependent flow with arbitrary shear history (Brader et al., 2007).

MCT was further modified to account for any arbitrary deformation field the

Trouton ratio for uniaxial as well as planar extensions were compared to that of

simple shear flow (Brader et al., 2008). A schematic MCT with full tensorial

structure of the theory was implemented (Brader et al., 2009). The schematic

MCT was extensively utilised to predict the response of colloidal glasses under

Large Amplitude Oscillatory Shear, it was found to compliment both experi-

ments and BD simulations (Brader et al., 2010). Yield stress of colloidal glass

was found to play influence the response during LAOS. Later a full review com-

paring the theoretical approaches with the experiments of colloidal suspension

was conducted to reveal only the partial success of the theories in capturing the

behaviour of real world systems (Brader, 2010). MCT was modified not only

to include shear thinning but also to account for shear thickening. The modi-

fied model was also able to account for jamming transitions (Cates et al., 2003).

Residual stresses have been predicted by the MCT and these stresses was found

to be dependent on the perturbation history of the colloidal glasses (Ballauff

et al., 2013; Fritschi et al., 2014). The existence of these stress was attributed to

the non-linear response of the colloidal glass system which deviates from On-

sager hypothesis in statistical mechanics which does not predict rate indepen-

dent response of a material. MCT could also predict the rheological properties
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for a liquid and glass which was experimentally verified with core shell particles

(Siebenbürger et al., 2009). Creep was studied using MCT which predicted the

colloidal glass behaviour based on various parameters like sample age and mag-

nitude of the stress applied (Siebenbürger et al., 2012). Recently the structure

factor of colloidal glass during steady shear was found to undergo a transition

from quadrupolar to hexadecupolar symmetry which was related to the plastic

events occurring during shear (Amann et al., 2015). Here the quadrupolar sym-

metry in the structure factor is defined as the non vanishing spherical harmonic

Y22 in the qx and qz plane. This also relates to the normal stress coefficient N1.

The next important contributions in the same plane is due to Y42 and Y44 which

leads to hexadecupolar symmetry in the structure factor. In the elastic regime of

start-up shear quadrupolar symmetry dominates. When plastic events dominate

hexadecupolar symmetry becomes prominent in colloidal glasses. MCT has

also predicted the existence of different types of glasses in highly size asym-

metric binary hard sphere glasses which has lead a surge in interest to explore

and understand these glasses experimentally (Voigtmann, 2011).

Soft Glassy rheology is another mean field theory approach based on a trap

model (Bouchaud, 1992). A volume is defined as small mesoscopic domains

that evolve independently as a function of time under deformation. Under shear

these domains have a possibility to explore new minima in the energy wells in

the time domain (Sollich, 1998). Aging has been extensively studied using SGM

(Fielding et al., 2000).

Another theory that is a hybrid between MCT and SGR is the activated cage

hopping process. Extensive details about this approach and the advantages over

MCT can be obtained from (Schweizer, 2007) and its references. More details

regarding phenomenological models and their rheological predictions can be

obtained from (Mewis and Wagner, 2009, 2012). The current theoretical models

that describe a homogeneous liquid to an amorphous solid have been reviewed

(Voigtmann, 2014).

Although a lot of investigations have been performed in colloidal glasses

there are few fundamental questions that need to be still addressed. Do hard
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sphere colloidal glasses shows signatures of aging during rheology? Can we

quantify such aging effects? Is the relaxation of hard sphere colloidal glasses

similar to that of soft glasses? Does colloidal glasses and colloidal suspensions

show different non-linear behaviour during transient oscillatory shear? Can we

obtain the alpha relaxation for colloidal glass under shear and is it possible to

perform a shear rate superposition of moduli? Does a softer potential glass affect

the dependence of alpha relaxation on shear rate? Is it possible to extract the

dynamics of different types of colloidal glasses formed by asymmetric binary

hard sphere mixtures? In this thesis we try to address the above questions with

the help of rheology and BD simulations.

In Chapter 4, we address the thixotropic effects of colloidal glasses after re-

juvenation. Linear and non-linear shear test are performed to identify signatures

of aging in hard sphere colloidal glasses

In Chapter 5, we investigate the structure and dynamics during relaxation

of colloidal glass during shear interruption and after steady shear. Non-linear

oscillatory measurements are employed on colloidal glass suspension below

and above glass transition to elucidate the different mechanisms existing dur-

ing LAOS. Edge effects during shear thickening are also visually inspected for

colloidal glasses

In Chapter 6, we perform orthogonal superposition measurements to extract

the alpha relaxation time of a colloidal glass under shear. We also employ for

the first time a shear rate orthogonal superposition for a colloidal glass. Star like

micelles are employed to understand the effect of shear on the relaxation time

when there is softer potential.

In Chapter 7, BD simulations are employed in order to investigate the dy-

namics of asymmetric binary glasses at rest and under start-up shear. Different

types of glasses are investigated and compared with that already existing in lit-

erature
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CHAPTER 4

TIME EFFECTS OF NEARLY HARD SPHERE

COLLOIDAL GLASSES

Out of equilibrium systems are always driven to a lower free energy state with

waiting time (Zargar et al., 2013) and intrinsic properties like relaxation time

change with time. This system is said to undergo aging with waiting time, tw.

Aging is generally defined as time elapsed after suddenly quenching an equilib-

rium liquid to an out of equilibrium state. In terms of the energy landscape, the

system immediately after quenching will have a narrow distribution of shallow

energy wells which with time changes to a broader distribution with deep en-

ergy wells (Joshi, 2014). The concept of physical aging has been investigated for

glass formers (Struik, 1978) as well as molecular glasses (Angell et al., 2000)

and polymer glasses (McKenna et al., 2009; O’Connell and McKenna, 1997).

There has been a surge of interest in aging in colloidal systems with different

attractive or repulsive interactions such as laponite gels (Bellour et al., 2003;

Kaushal and Joshi, 2014) and glasses(Angelini et al., 2014; Koumakis et al.,

2008), colloidal depletion gels (Fluerasu et al., 2007; Koumakis et al., 2015) .

Aging phenomena in purely repulsive hard sphere glasses were reported in

light scattering experiments (van Megen et al., 1998). The drawback in these

experiments were that the experimental time scales were too short to properly

characterize aging, although the data does show that aged sample dynamics

slow down . However recently, aging dynamics was studied using intermedi-

ate scattering functions (Martinez et al., 2008, 2010). The intermediate scat-

tering functions depicted a crossover from fast decay to the slower decay. The

coupling between these two decays was found to decrease algebraically with

waiting time. The alpha relaxation time of colloidal hard sphere glasses was

accessed using dynamic light scattering experiments and correlation function
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was reported for seven decades in time (Brambilla et al., 2009). The alpha re-

laxation time was found to slow down with waiting time and finally saturate

(Masri et al., 2009). Direct visualization of aging using confocal microscopy

was performed on hard sphere colloids in order to obtain the particle displace-

ments during aging (Courtland and Weeks, 2003; Simeonova and Kegel, 2004).

In general, amorphous glasses exhibit a slowing down of MSD with age of the

sample. However, gravity was also believed to affect the aging phenomena in

colloidal hard sphere glasses (Simeonova and Kegel, 2004) although gravity

might not be the only reason driving aging. If a sample is very polydisperse

there exists regions with varying levels of mobility in the system. This leads to

dynamic heterogeneities in the system which drives aging in a colloidal glass.

There exists a very close association between structural heterogeneities and dy-

namic heterogeneities during the temporal evolution of the sample (Golde et al.,

2016). Moreover, simulations have also shown that subtle changes in the struc-

tural rearrangement are the reason behind aging (Kob et al., 2000a,b; Utz et al.,

2000).

An attempt towards identifying the rheological signatures of aging model

nearly hard sphere glasses have already been attempted experimentally (Ballesta

and Petekidis, 2016; Koumakis et al., 2016b) as well as via theory (Joshi, 2015;

Siebenbürger et al., 2012). In this work we present rheological experiments with

well defined history in order to elucidate some of the rheological signatures of

an aging hard sphere colloidal glass system.

We have performed a detailed study of the effects of aging for nearly hard

sphere glasses using poly-methy methacrylate (PMMA) sterically stabilized by

poly hydroxystearic acid (PHSA). These colloidal particles are dispersed in two

different solvents (i) octadecene/bromonapthalene mixture (η = 0.0045 Pas,

nD = 1.48) and (ii) squalene (η = 0.015 Pas, nD = 1.494). Both solvents have

a high boiling point which hinders evaporation and they are closely refractive

index matched to the colloidal particles so that van der Waals attractions are also

suppressed. The colloidal particles used for the following set of experiments

have a radius R = 106 nm, 137 nm, 196 nm, 350 nm with the polydispersity
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of the particles greater than 12%. Hence none of these systems crystallize.

Anton Paar MCR 501 rheometer has been used for all the measurements

except for the fast step rate measurements which was performed using ARES

Rheometrics strain controlled rheometer. Additionally, a DSR Rheometer was

also used to perform the long time creep experiments.

4.1 Aging effects of Linear Viscoelastic properties

Different types of shear rejuvenation protocols were employed depending on

the volume fraction φ in order to avoid complex flow patterns and edge frac-

ture in highly concentrated especially glassy colloidal suspensions. Supercooled

liquids (φ < 0.58) was rejuvenated with constant γ̇ = 30 s−1 first in the re-

verse direction and immediately in the forward direction with the total time of

the rejuvenation in each direction such that γ > 100%. Colloidal glass with

0.58 ≤ φ ≤ 0.60 was rejuvenated with large amplitude oscillatory shear with

frequency of 1rad/s. Above φ = 0.60 the system was rejuvenated with a fre-

quency of 0.1 rad/s. Empirically we have found that higher the volume fraction

lower the shear rate employed for rejuvenation in order to avoid edge fracture.

Aging is monitored after rejuvenation either setting zero shear rate or zero stress.

This is done in order to allow the sample to relax after the rejuvenation.

In the linear regime the system was initially rejuvenated with 1000% strain

and 0.1 rad/s frequency of oscillatory shear. Then the system was allowed to

rest at 0 Pa stress for 100 s before the initial dynamic frequency sweep was per-

formed. The system was probed in the linear regime with alternating frequency

sweep and time sweep in the linear regime for more than 16 hours to probe

aging.

Fig. 4.1 depicts a typical linear viscoelastic frequency sweep of a colloidal

glass. Here two different sizes of colloidal particles are compared at the φ =

0.61. The trivial size effects are removed by scaling the moduli by kBT/R
3

and the frequency is scaled by the Brownian time tB. Since Brownian forces
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Figure 4.1: The frequency dependence of the storage and loss moduli for a
nearly hard sphere colloidal glass with φ = 0.61 for two differ-
ent size particles scaled by thermal energy and relaxation time re-
spectively in order to remove the trivial size dependence in oc-
tadecene/bromonapthalene mixture

are the sole contributor to the elasticity this scaling should be possible. G′ data

superimposes quite well for both particles while forG′′ there seems to be a larger

mismatch in the regime near the minimum of G′′. The small mismatch between

the curves for small and large particles could be due to the difference in the

aging time between glass comprising of two different particle sizes, as the aging

time after rejuvenation was kept at ≈ 100 s in both cases. In this scenario the

small particles age more than the big particles for the same experimental time by

a factor of : tB small = R3
small/R

3
big × tB big. The large particles exhibit the high

frequency crossover where G′′ > G′. This indicates the in-cage motion of the

particles within the cage. The small particles on the other hand exhibit a very

typical minimum in G′′ which shows the transition from in-cage to out-of-cage

motion in colloidal glasses.

Fig. 4.2 indicates the evolution of the linear viscoelasticity of a hard sphere

colloidal glass. As it can be inferred from Fig. 4.2 (a) and (b) the loss moduli

(G′′) are more affected than the elastic moduli (G′), especially at low frequen-

cies. Although a very clear trend does not seem to emerge, a general feature is

the decrease of the low frequency viscous moduli G′′ with aging time similar

to what has been seen before (Ballesta and Petekidis, 2016). This could also

Ph. D. Thesis, Jacob, 2016 40



Section 4.1: Aging effects of Linear Viscoelastic properties

(a)
10-2 10-1 100 101

100

101
 

 

G
',G

'' 
R

3 /K
B
T

Pe

 Initial
 After 3 hours
 After 10 hours
 After 16 hours

(b)
10-2 10-1 100

101

102

103

 

 

G
',G

'' 
R

3 /K
B
T

Pe

  Initial
  After 7 hours
  After 19 hours

(c)
0 500 1000 1500 2000 2500 3000 3500

100

101

 G'
 G''  

 

G
',G

''R
3 /K

B
T

time (s)

 Initial
 After 6 hours
 After 16 hours

Pe =0.08

(d)
0 1000 2000 3000 4000

101

102
Pe  = 0.08

 

 

 time (s)

G
',G

'' 
R

3 /K
B
T

 

 

 Initial
 After 7 hours
 After 19 hours

Figure 4.2: Linear viscoelasticity of a glass with (a) φ = 0.58 and (b) φ = 0.62
after various aging time. Time sweep data for a period of one hour
for the (c) φ = 0.58 and (d) φ = 0.62 with colloidal particles of
R = 106 nm dispersed in squalene
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mean that the α relaxation time decreases with waiting time. At the same time

Dynamic Time Sweep at Peω = 0.08 show no deviations in the storage moduli

while fluctuations can be observed in G′′ (Fig. 4.2 (c) and (d)). Unlike poly-

mer glasses which are well known to age and have been investigated and can be

predicted (McKenna et al., 2009; O’Connell and McKenna, 2002) the mecha-

nism driving aging in colloidal hard spheres is not yet well understood, although

drawing similarities with polymer glasses one could speculate that change in

free volume available for a colloidal particle affect the structural properties. On

the other hand, it is very interesting to contrast such hard sphere systems with

repulsive interactions such as glasses and systems having attractive interactions

like depletion gels (Koumakis et al., 2015), charged Laponite gels (Joshi, 2015;

Joshi and Reddy, 2008; Kaushal and Joshi, 2014) that show extensive aging of

their linear viscoelastic properties. Extensive structural reorganization seems to

be a necessary condition for a system to exhibit a sensitive linear viscoelasticity

during aging. Thus, hard sphere colloidal glasses exhibit very subtle changes in

the viscous moduli due to aging in the linear viscoelastic moduli.

4.2 Non-Linear Rheology : Aging effects on Start-

up shear

A representative flow curve for a system near and above glass transition is repre-

sented in Fig. 4.3. A colloidal system in the glass state generally tends to show

a yield stress behaviour at low Pe(< 10−2). As expected, the deeper a system is

in the glass phase the higher is the yield stress. Slip and shear banding appear at

very high volume fraction glasses and at very low Pe. These effects disappear

below glass transition φ ≤ 0.58 (Ballesta et al., 2008; Besseling et al., 2010).

Typical start-up tests of a hard sphere colloidal glass at φ = 0.61 are shown

in Fig. 4.4 with aging time of 100s. At this φ, the system initially deforms

elastically and then tends to flow plastically above yield strain (Koumakis et al.,

2012a, 2016b). The elastic regime where the stress increases with strain during

start-up flow of colloidal glass is related to the anisotropic deformation of the
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Figure 4.3: Steady state flow curves for colloidal particles R = 106 nm in
squalene.
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mixture of octadecene/bromonapthalene at φ = 0.60 with tw =
100 s
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cages. After the elastic regime the system yields plastically leading to flow im-

mediately after the deformation of the cages as a consequence the stress reaches

a steady state. This kind of plastic deformation was also observed during os-

cillatory shear (Petekidis et al., 2002). At lower φ (φ < 0.59) which is not

shown here a larger cage anisotropy is possible due to availability of free vol-

ume leading to a peak in stress during start-up shear. The transition from elas-

tic to plastic flow is generally associated with quadrupolar and hexadecupolar

structure respectively (Chikkadi, 2011). Here the quadrupolar symmetry in the

structure factor is defined as the non vanishing spherical harmonic Y22 in the

qx and qz plane. This also relates to the normal stress coefficient N1. The next

important contributions in the same plane is due to Y42 and Y44 which leads to

hexadecupolar symmetry in the structure factor. In the elastic regime of start-up

shear quadrupolar symmetry dominates. When plastic events dominate hexade-

cupolar symmetry becomes prominent in colloidal glasses. Additionally in Fig.

4.4 (a) γpk is found to increase with Pe. This is due to the fact that higher Pe

can elongate the cage to larger extent before exhibiting cage breaking and flow.

γpk was also found to be nearly independent of φ (Koumakis et al., 2016b). The

extensive dynamics of yielding under start-up flow has been discussed before

and will not be repeated here.

Before each measurement, a rejuvenation protocol was followed consisting

of a series of tests starting with a high shear rate (10 s−1) for 50 s, a small

waiting time (30 s), the same shear rate but in the opposite direction for another

50 s and, usually, a waiting time depending on the aging time required.

Fig. 4.4 shows the start-up response for a young colloidal glass. The waiting

time dependence of the stress overshoot is shown in Fig. 4.5 which depicts the

stress overshoot becoming stronger with waiting time, mainly at low Pe (Fig.

4.5(a)), until it reaches a steady state after long time, often larger than 5000 s.

At high Pe however, Fig. 4.5 (c), the stress overshoot is independent of the

waiting time. In general, Fig. 4.5(d) reveals a non-monotonic dependence of

the stress overshoot as function of the Pe. This type of dependence of stress

overshoot with waiting time has also been observed in experiments of core shell
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PS-PNIPAM particles in the glassy state and subsequently predicted by MCT

(Siebenbürger et al., 2012).
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Figure 4.5: Start-up curves for (a) Pe = 6 × 10−4, (b) Pe = 2 × 10−3, (c)
Pe = 0.2. (d) The intensity of stress overshoot peak with respect
to aging time for all Pe. The colloidal glass represented here is at
φ = 0.582 with colloidal particles having a radius R = 196 nm in
octadecene bromonapthalene solvent mixture

Hence the magnitude of the stress overshoot exhibits a maximum at some

characteristic Pe in Fig. 4.5 (d). This response is more pronounced at shorter

waiting times, while at longer ones the increase at low rates tends to level-

off. The characteristic Pe beyond which the stress overshoot starts to become

weaker is also slightly φ-dependent. The same non-monotonic trend of the

height of the overshoot as a function of Pe is seen for binary mixtures (Sen-

tjabrskaja et al., 2014). Hence at high Pe rejuvenation seems to be dominating

rather than aging (Viasnoff et al., 2003).

Fig. 4.6 shows a colloidal suspension at φ = 0.565, the stress peak overshoot

sustains the non-monotonic response. This is expected as in the previous case

because there is dominance of aging at low Pe and shear induced rejuvenation
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Figure 4.6: Start-up curves for (a) Pe = 2 × 10−4, (b) Pe = 2 × 10−2, (c)
Pe = 0.1. (d)The intensity of stress overshoot peak with respect to
aging time at for all Pe. The colloidal glass represented here is at
φ = 0.565 with colloidal particles having a radius R = 196 nm in
octadecene bromonapthalene solvent mixture

Ph. D. Thesis, Jacob, 2016 46



Section 4.2: Non-Linear Rheology : Aging effects on Start-up shear

that eliminates aging at high Pe. As we increase φ, the stress peak decreases

which makes it very difficult to extract the stress peaks without considerable

error. Ideally we would expect this peak in the non-monotonic transition to

occur at Pe = 1 which depicts a competition between Brownian motion and

advection. Surprisingly, this transition occurs at 100 times lower than Pe =

1. This might happen because here we have calculated Pebare with tB for a

colloidal particle in the dilute regime. It has been clearly established that the

actual tB is much slower (approx 10 to 100 times lower) than estimated due to

hydrodynamic interactions (Brady, 2001; Foss and Brady, 2000).

The same set of experiments for the start-up shear versus aging time indi-

cates how the aging time influences the stress overshoot peak. Comparing linear

and non-linear responses it is obvious that the non-linear response is more sensi-

tive to aging rather than the linear viscoelastic quantities (G′ andG′′). Moreover

the non-linear start-up also helps to identify a general trend. Upon increasing ag-

ing time the stress overshoot in start-up shear increases. Core-shell PS-PNIPAM

systems in glass state which exhibits hard sphere interactions show similar re-

sponse, moreover this was also captured by MCT (Siebenbürger et al., 2012).

As we increase Pe the effect of the aging on the stress overshoot peaks decreases

until a critical value of Pe where it vanishes as rejuvenation of the microstruc-

ture is complete.
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Figure 4.7: Comparison of the stress overshoot peak at different ages with re-
spect to φ
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In Fig. 4.7 the magnitude of the stress overshoot is shown as a function of

volume fraction for different Pe. For an intermediate Pe(= 0.009) data are

shown both for short and long waiting times for comparison. Aging causes a

change in the response at low rates. At short times (tw ≈ 100 s ) the stress

overshoot drops continuously with volume fraction both below and above the

glass transition volume fraction. At longer times approaching steady state a

non-monotonic behavior is detected with a strengthening of the overshoot at

low rates and a weakening at higher ones. While this behavior is typically ob-

served at low rates, at high ones (here Pe > 0.1) the magnitude of the overshoot

decreases monotonically as φ is increased at all regimes both in the liquid and

glassy state as found earlier and attributed to the decrease in free volume avail-

able for a particle as the volume fraction is increased towards close packing

(Koumakis et al., 2012a, 2016b).
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Figure 4.8: The stress overshoot peaks is shown as a function of the waiting
time at (a) φ = 0.565 and (b) φ = 0.575 for R = 196 nm in
octadecene/bromonapthalene solvent mixture

Fig. 4.8 shows a non-trivial and complicated response of the colloidal glass

with respect to the aging time. Fig. 4.8 (a) suggests that low Pe there is a

consistent increase in the stress overshoot peak with aging time. The dip in the

overshoot peak (last point) could be due to slip at the top surface where particles

detach due to gravity from the geometry after such long waiting time. At higher

Pe, the overshoot of the peak appears to be fluctuating around an average value.

Similar observations can be deduced from the Fig. 4.8 (b). Thus aging exhibits

a very strong dependence at low Pe while at high Pe rejuvenation sets in.

A non-trivial dependence is found for the stress overshoot peaks as a func-
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tion of waiting time as well as the volume fraction. Additionally, start-up shear

appears to be more sensitive to aging effects in colloidal glass than the linear

viscoelastic quantities. Since in the dynamic frequency sweep a very limited

amount of frequencies are probed the effects of aging is possibly seen in the lin-

ear viscoelastic regime at very low frequencies below the experimental window.

The hints of aging in linear viscoelastic regime are seen as subtle variations of

loss moduli with time.

4.3 Non-Linear Rheology : Aging effects on Stress

Relaxation

Cessation of shear in colloidal systems aids in understanding the relevance

and dynamics of internal stresses in hard sphere glasses (Ballauff et al., 2013;

Fritschi et al., 2014), anisotropic particle glasses (Negi and Osuji, 2010), soft

glasses (Mohan et al., 2013, 2015) and also depletion gels (Chung et al., 2006)

also used extensively in studying aging phenomena(Bandyopadhyay et al., 2010;

Kaushal and Joshi, 2014).
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Figure 4.9: Representative stress relaxation for colloidal glass at various Pe
for (a) R = 350 nm and (b) R = 137 nm at φ = 0.61 oc-
tadecene/bromonapthalene solvent mixture for tw = 100 s

Here we show the typical evolution of the internal stresses after the steady

shear cessation in Fig. 4.9 for colloidal glass at φ = 0.61 for two different par-

ticle sizes. The stress in the ordinate axis is scaled with the value of steady state

stress just before cessation of shear. Irrespective of the particle size it is evident
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Chapter 4: Time effects after rejuvenation

that lower Pe tends to stores more stress in the material. In general there are

two protocols to perform stress relaxation experiments i) Stress relaxation dur-

ing start-up shear (where the γ̇ = 0 is imposed) and ii) Stress relaxation after the

step-strain experiment. Below we present measurements with both the protocols

separately below and discuss the effects of aging in these measurements.

4.3.1 Stress Relaxation during start-up shear
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Figure 4.10: (a) Start-up shear and (b) interruption of start-up shear at various
strains for tw = 100 s and tw = 5000 s for φ = 0.58 and for
Pe = 8.33 × 10−4. The colloidal systems represented here have
R = 106 nm suspended in squalene. The vertical lines in (a)
indicate the strain at which flow is interrupted

In Fig. 4.10 (a), start-up experiment is shown at two different waiting times

on φ = 0.58 at Pe = 8.38 × 10−4 and interrupted at different points along the

start-up experiment. The stress after cessation of shear is followed with time.

From Fig. 4.10 (a) it can be clearly inferred that belowγ ≤ 100% aging is

important in start-up tests. The peak of the stress overshoot, indicating the yield

point occurs around 10% ( also seen in Fig. 4.5), where one can observe the

difference in the stress relaxation due to the age of the sample up to 10%. When

stopping the shear above 10%, where the sample starts to flow stress relaxation

seems be unaffected by the aging time. Another clear finding is that during

start-up shear the difference in the stress values for the two different ages varies

non-monotonically along the start-up curve (Fig. 4.10 (a)). Fig. 4.10(b) depicts

interrupting the start-up shear at different strains and following the stress scaled

by the stress at flow interruption as a function of time for two different sample
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ages. During stress relaxation it can be clearly observed that the older samples

retains more stress before rejuvenation sets-in, erasing the memory of the age

in the sample. With increasing age of a colloidal glass, the availability of free

volume for a particle trapped in cage increases. This indicates that the cage

expands with waiting time leading to a more anisotropic cage during shear for

an older colloidal glass and thus storing more stress during stress relaxation. It

should also be noted that some kinks in the stress relaxation can be seen in Fig.

4.10 (b) which will be discussed later.
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Figure 4.11: Long time stress relaxation of colloidal glass with φ = 0.63, R =
106 nm after Pe = 2.5 × 10−4 in octadecene/bromonapthalene
mixture.

The long term effects during stress relaxation of colloidal glass at φ = 0.63

is followed for 14 hours continuously. This is done by applying γ̇ = 0 after

steady shear stress is attained at Pe = 2.5 × 10−4 as represented in Fig. 4.11.

In contrast to soft jammed particles (Mohan et al., 2013, 2015), we do not see a

two-step relaxation in colloidal hard spheres glasses. The non-linear rheological

tests provide us ample evidence that the relaxation time increase with waiting

time. Recently, a SGM model was proposed where the aging was made a de-

creasing function of free energy and an increase in free energy was associated

to rejuvenation (Joshi, 2015). This model predicted the existence of residual

stresses when the relaxation time had a stronger than linear dependence with

waiting time. Above glass transition a stronger than linear dependence of the
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Chapter 4: Time effects after rejuvenation

alpha relaxation time on the waiting time has been observed in light scattering

experiments for hard sphere glasses (Masri et al., 2009). Hence our rheologi-

cal experiments combined with light scattering data published earlier seems to

support the modfied SGM model predictions. Moreover, the long time stress

relaxation at φ ≥ 0.62 is filled with sudden drops in the stress as observed in

Fig. 4.11. Colloidal glasses are known to exhibit cooperative motion (Zhang

et al., 2011) and very recently avalanches in hard sphere colloidal glasses has

been predicted by simulation due to the heterogeneous dynamics present in the

system (Rosales-Pelaez et al., 2016). This indicates that a particle trapped by its

neighbors, during cage escape tends to reorganize a local region in its surround-

ings leading to avalanches of particles. At this point, it is not clear what drives

these phenomenon which we have observed during numerous occasions.

4.3.2 Stress Relaxation after step-strain

The system was rejuvenated with 1000% strain and 1 rad/s frequency of oscil-

latory shear. Then the system was allowed to rest at 0 Pa stress for the required

waiting time before the step-strain is applied.
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Figure 4.12: Stress relaxation data for colloidal glass (R = 196 nm )in oc-
tadecene/bromonapthalene solvent mixture with a volume fraction
φ = 0.6 at step-strain of (a) γ = 1% and (b) γ = 50% for different
waiting time after rejuvenation

Stress relaxation as function of aging time for linear and non-linear step-

strain is shown in Fig. 4.12. Samples immediately after rejuvenation bear the

characteristics of a viscoelastic fluid as the system releases the stress quickly.
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With increasing age of the sample the stress is retained much more, as clearly

observed in Fig. 4.12 (a). For the step-strain in the non-linear regime, the

stress relaxation curves become independent of the aging time as seen in Fig.

4.12 (b). This is clear indication that rejuvenation in the colloidal glass sample

has occurred. In the linear step-strain experiments, the young samples have a

fresh memory of the rejuvenation protocol applied before, hence the colloidal

glass releases the stresses in the sample. For aged samples, the system has little

memory of the rejuvenation protocol hence show characteristics of viscoelastic

solid by retaining the stress.
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Figure 4.13: Stress relaxation data for colloidal glass (R = 106 nm) in oc-
tadecene/bromonapthalene mixture with a volume fraction φ =
0.63 at step-strain of (a) γ = 1% (b) γ = 50% for different wait-
ing time after rejuvenation

The stress relaxation during step-strain of a colloidal glass at φ = 0.63 is

shown in Fig. 4.13. At short time we observe that aged samples retain more

stress than young samples. The stress relaxation at long time takes place with

kinks appearing in the data. These are avalanches occurring during stress relax-

ation as observed earlier in Fig. 4.11 due to large scale cooperative rearrange-

ments. Simulations have earlier observed that subtle changes in configuration

space occurs during aging (Kob et al., 2000a,b). This phenomenon could lead

to sudden drops in the stress for aged samples during stress relaxation. We also

observe that these kinks disappear when the step-strain beyond the yield strain

is applied Fig. 4.13. In the linear regime, the colloidal particles are pushed

into deeper energy wells with sample age. Thus, subtle fluctuations in parti-

cle position could lead to drastic local rearrangements of the colloidal particles
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Chapter 4: Time effects after rejuvenation

leading to sudden drops in stress. On the other hand when step-strain beyond

the yield strain is applied, all particles are pushed to shallow wells which aids

in rearrangements on larger length scales spanning the whole available space.

In general the aging effects during stress relaxation indicate how much mem-

ory of the rejuvenation is retained by colloidal glasses and this determines its

viscoelastic behaviour. Moreover, aged samples exhibit very drastic drops in

stress during stress relaxation which could be related to local avalanches taking

place in a colloidal glass.

4.4 Non-Linear Rheology : Aging effects on Creep

A creep experiment is defined when an instantaneous step-stress is applied on a

sample. In yield stress materials like colloidal glass, we can generally observe 3

regimes. When the stress applied is lesser than yield stress (σ < σy) the system

does not accumulate strain as γ̇ = 0. When the stress applied approximately

close to the yield stress (σ ∼ σy) a delayed yield process takes place in colloidal

glass, the strain is accumulated by the glass slowly. After certain amount of

strain is accumulated by the system it yields suddenly leading to flow. Above

the yield stress (σ > σy) the system flows continuously (Siebenbürger et al.,

2012). Aging effects have been investigated with creep in colloidal hard sphere

glass (Ballesta and Petekidis, 2016). It was clearly established that there is a

slowing down of the intrinsic relaxation time of the colloidal glasses after re-

juvenation under creep. Using confocal microscopy application of stress below

the yield stress was found to have localized domains having non-affine motion

and sub-diffusive behaviour (Sentjabrskaja et al., 2015). Above the yield stress

localized domains start to swell and connecting to each other leading to the flow

of colloidal glasses.

The system was rejuvenated with 1000% strain and 0.1 rad/s frequency of

oscillatory shear. Then the system was allowed to rest at 0 Pa stress for the

required waiting time before either step-stress or step shear rate is applied.
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Figure 4.14: Representative creep curves for colloidal glass at various step-
stresses for (a) R = 350 nm with σyR

3/kBT = 1.06 and (b)
R = 137 nm with σyR

3/kBT = 2.70 at φ = 0.61 in oc-
tadecene/bromonapthalene solvent mixture for tw = 100 s.

Fig. 4.14 shows representative creep data for colloidal glass of two differ-

ent sizes of colloidal particles. Creep tests in glass comprising of big particles

are always above the σy but for the small particle colloidal glass we probe the

whole range of stresses from below to above σy. An evident feature of the

measurements is the ringing that is visible at early times. This happens due to

the coupling of the motor inertia with viscoelastic properties of the sample. Ir-

respective of the particle size, creep ringing appears to be prominent at small

stresses in both the glasses. When σ < σy in Fig. 4.14 (b) strain shows a

sub-linear dependence with time. Strain is not accumulated by the glass and

γ̇ << 10−5 . For σ ≥ σy the rate of strain accumulation is small at early times

which increases drastically at long time which is defined as delayed yielding.

This type of yielding is seen for glasses of both sizes but it is more apparent

in the glass comprising of small particles as shown in Fig. 4.14 (b). When

σ >> σy the strain tends to have a slope of 1 with respect to time independent

of particles size in this regime undergoes flow with constant γ̇ (Ballesta and

Petekidis, 2016; Siebenbürger et al., 2012).

Fig. 4.15 indicates creep measurements on colloidal glass of φ = 0.58

after rejuvenation where a constant stress σ ∼ σy is applied. It can be clearly

observed that the sample creeps more slowly as the tw is increased. For the

longest waiting time the transition from creep to flow is slow as seen in Fig.

4.15 (a). In order to clearly understand the transitions taking place in strain
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Figure 4.15: (a) The strain data at different sample ages for σ = 1.86 Pa and
(b) λ calculated for the creep data. The unfilled star indicate the
point t1 where λ = 1 and the unfilled diamond indicate where λ
has maximum value for tmax for aging colloidal hard sphere glass
with φ = 0.58 in squalene

with respect to time, a logarithmic derivative of the strain with respect to time is

calculated according to the following equation

λ =
d log(γ)

d log(t)
(4.1)

For t ≤ 10 s where ringing of the creep is seen in Fig. 4.15 (a) the data

appears very scattered and hence we do not show them in Fig. 4.15 (b). However

in Fig. 4.15 (a) ringing seem to have very subtle effects due to aging. The young

sample shows a smaller overshoot during ringing than the aged samples. Fig.

4.15 (b) depicts an increase in λ with respect to time immediately after ringing.

When the sample reaches λ = 1 (shown by the stars), the sample transitions

from the creeping regime and begins to flow. This is followed by a maximum in

λ just before dropping and attaining the steady state at λ = 1. The logarithmic

derivative reaches the value of 1 at different times depending on the age of the

sample. As the age of the sample increases it takes a longer time to attain λ = 1.

This indicates that the samples creeps for a longer period as the relaxation time

of the sample has increased with time. The circle symbols indicate the transition

time t1 where the rate of strain accumulation increases from sub-linear to super-

linear regime. The maximum in λ also depends on the age of sample. After

the peak in λ it can be seen that the younger sample reaches the yielding point

earlier i.e. simple flow with constant η is reached. The diamonds indicate the
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time at which the maximum of λ attained above which steady state flow occurs.

4.4.1 Stress versus strain controlled shear

In Fig. 4.16 we show comparative plots of strain controlled flow measurements

and stress controlled flow measurements. All applied stress values for stress

controlled measurements are greater than σy. Stress and strain controlled mea-

surements are performed at different waiting time after rejuvenation. The start-

up shear and the creep experiments for each measurement are chosen such that

superimposition of these curves under steady state flow is possible. The start-

up shear data for all the rates clearly show the peak in stress, as is expected in

concentrated colloidal suspensions. The overshoot of the stress peak is seen to

be affected by aging which has been already discussed above. After yielding,

the systems begin to flow reaching a constant steady state value irrespective of

the aging time. It is difficult to discern the time to reach steady state flow in

start-up shear. In the case of constant stress the aging effect is clearly evident in

the transition of flow unlike the constant shear rate experiment. As the sample

age increases the colloidal glass creeps for a longer time than young samples.

The time to reach steady state flow in constant stress conditions increases with

sample aging time as seen in Fig 4.16. Furthermore, the arrows in Fig. 4.16

indicate where the system reaches steady state flow. The black arrows represent

the shear rate controlled experiments where the system tends to yield at a spe-

cific time irrespectively of sample age. While in creep tests the colored arrows

depict a clear dependence of yielding time, before steady state flow is reached,

with age of the sample. In shear rate controlled experiments, activation of cage

breakage occurs at once all throughout the sample, while in creep test, activated

domains are know to exist in the sample that grows with time until flow sets

in. From the above results one can speculate that activating and growing these

heterogeneous sites during creep is a function of the waiting time / aging.

In Fig. 4.17 different time scales are defined based on step rate and creep

shown above. tpeak is the time where the σ reaches the σpeak for strain rate

controlled experiments, while t1 and tmax are the time where λ = 1 and λ
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Figure 4.16: Comparison of the creep and shear rate data for φ = 0.58 at
(a) γ̇ = 0.01 s−1 and σ = 1.86 Pa and (b) γ̇ = 0.1 s−1 and
σ = 3.2 Pa. The arrows indicate the time when stress and strain
controlled experiments reach steady state flow
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Figure 4.17: t1 and tmax obtained from Fig. 4.15 for step-stress data and tpeak
obtained from the step rate data for aging colloidal hard sphere
glass with φ = 0.58

reaches maximum value for stress controlled experiments. Interestingly, tpeak in

the strain rate controlled experiment does not seem to change with aging time

irrespectively the shear rate applied. Only the strength of the stress overshoot

peak is affected by the aging. t1 and tmax increase with aging time for σ =

1.85 Pa, although for σ = 3 Pa only tmax shows a positive slope while t1

appears to be constant.
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Figure 4.18: The energy per unit volume as a function the waiting time after
rejuvenation for colloidal hard sphere glass with φ = 0.58 for two
different shear rates

Fig. 4.18 indicates the energy required to induce flow in colloidal glass for

σ = 1.85 Pa and σ = 3 Pa. This energy per unit volume is calculated by the

59 University of Crete, Greece



Chapter 4: Time effects after rejuvenation

following equation

Energy/volume =

∫ tn

to

σγ̇dt (4.2)

to is the time for the start of the experiment and tn indicates the t1, tmax

for stress controlled experiments and tpeak for the strain controlled experiments.

The energy determined in this way is the area under the curve in Fig. 4.16

with limits the time as described above. For start-up experiments the energy

seems to slightly increase with aging time. This is obvious because the stress

during the start-up test increases with aging time of the sample with the stress

overshoot becoming stronger. In the stress controlled experiments the energy

per unit volume calculated upto t1 shows decreasing trend irrespective of the

magnitude of the stress. In Fig. 4.16 we can observe that the aged samples

creeps for a longer time than the young samples leading to a decreasing energy

magnitude with age. This suggests that colloidal glasses seem to require more

energy during the first stage of creep rather than a young sample. Interestingly,

the energy required for the upper limit tmax to be reached is approximately 2

times that required in start-up experiment and creep up to the limit t1. A positive

slope in energy can be observed in Fig. 4.18 for the upper limit of tmax which

also suggests that more energy is required to make an aged colloidal glass to

flow. It is only after the tmax that the colloidal glass begins to flow as is evident

form Fig. 4.15. Hence, it can be inferred that a strain controlled experiment

is more energy efficient in inducing flow in the sample than a stress controlled

experiment. Additionally, the energy required in start-up experiments at tpeak

and creep test at tmax have similar values as they represent similar regimes in

the shear process. In the case of start-up shear and creep test this is the energy

per unit volume required for the transition to steady state flow.

4.4.2 Long creep test

Simulations indicated appearance of dynamic noise in the stress during steady

shear. These fluctuations where directly correlated to the cascading quadrap-
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Figure 4.19: Long time creep experiments performed at two different waiting
times after rejuvenation for σ = 0.25 Pa for a colloidal glass of
φ = 0.59 with R = 106 nm in squalene and σy = 2 Pa

olar events or avalanches during steady state flow (Bailey et al., 2007; Bar-

rat and Lemaître, 2011; Chikkadi, 2011; Lemaître and Caroli, 2009; Maloney

and Lemaître, 2006). An entire three dimensional mapping of the dislocation

avalanches was conducted for a constant load (stress) during plastic flow of ice

crystals (Weiss and Marsan, 2003). These dislocation avalanches were related to

plastic flow. In yield stress fluid avalanche type of behaviour was also observed

during flow (Coussot et al., 2002). An avalanche process in such a fluid was de-

fined as process where the fluid starts flowing abruptly and the flow accelerates.

Microstructurally, this kind of process was speculated to be the unjamming of

the jammed system.

Here, we study the long time effects on colloidal glasses under constant

stress. In Fig. 4.19 the long time effects of a colloidal glass under constant stress

are investigated. Initially the sample is rejuvenated and then allowed to wait

for two different waiting time 100 and 7200s. A positive σ = 0.25 is applied

which is below the yield stress, σy for 3 × 104 s. In Fig. 4.19 we observe the

effect of waiting time on the creep test as shown earlier (Ballesta and Petekidis,

2016). An interesting finding is that, we observe sudden jumps in the strain.

This could be due to avalanches occurring in the microstructure of colloidal

glass leading to strain jumps. The values of strain jumps are quantitatively less
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than 1% . Since we have an amorphous colloidal glass under constant stress

(σ < σy), the strain distribution may be heterogeneous in nature. There will be

localized regions were more cages will be strained than others. This could lead

to localized avalanches in the colloidal samples very similar to local fracture in

metals. These strain jumps can be seen as rheological fingerprints to avalanches

occurring in colloidal hard sphere glasses under constant stress.
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Figure 4.20: Long time creep with σ = 2 Pa for φ = 0.62 and colloidal parti-

cle radiusR = 106 nm in squalene performed on a DSR Rheome-
ter. The temperature fluctuations due to the surroundings are also
noted.

Finally, we tried to isolate the rheometer by using a homemade isolation box

out of thermocol in attempt to understand if external temperature fluctuations

activates such avalanches, although such an attempt was not successful as seen

in Fig. 4.20. Here the temperature inside the isolation box as well as inside the

oven is collected using a Pico log thermocouple. There was large fluctuations

in temperature due to the external factors in the room that was not perfectly

isolated using the isolation box. This is reflected in the change in temperature

about 1oC in the oven over the time of the experiment. When σ < σy we

observe frequent strain jumps in the colloidal glass under constant stress (under

such conditions). Although it cannot be directly correlated to the temperature

fluctuations/jumps with the strain jumps these temperature fluctuations could be

the one of the reasons for strain jumps. From long time stress relaxation seen

in Fig. 4.11 and the creep data in Fig. 4.20 it can be speculated that avalanche
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mechanisms are the long time effects of colloidal glasses.

In this chapter, we identified the rheological signatures for aging of nearly

hard sphere colloidal glass. In the linear viscoelastic regime subtle changes in

the viscous modulus were observed. During non-linear shear experiments like

start-up, creep and stress relaxation, discernible differences were observed due

to aging. In general, a clear transition form the viscoelastic liquid to viscoelastic

solid was found when the colloidal glass ages with time. The intensity of the

stress overshoot peak shows a non-trivial dependence with waiting time and

volume fraction. Colloidal volume fractions close to the glass transition show

more aging due to the availability of space to access more configurations, hence

move into deeper energy wells while above the glass transition the system is

kinetically more trapped. Stress relaxation helps in discerning shear protocols

for rejuvenation and aging. Creep and stress relaxation shows extensive hints

of avalanche type processes which leads to drastic stress jumps occurring in a

colloidal glass. Finally, comparing stress controlled and shear rate controlled

experiments the later was found to be energy efficient to make colloidal glasses

flow.
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CHAPTER 5

TRANSIENT SHEAR EFFECTS IN NEARLY

HARD SPHERE COLLOIDAL GLASSES

Out of equilibrium colloidal glasses have been extensively studied under tran-

sient shear. These studies are driven by the need to understand the relation of

yielding with microstructural changes and dynamics during steady shear flow

of colloidal glasses. Start-up shear of colloidal glasses showed the development

of cage anisotropy before yielding in a colloidal glass(Koumakis et al., 2012a,

2016b). The in-cage dynamics was suppressed due to the cage anisotropy in-

ducing constriction of particles. Moreover, aging dynamics was also studied

during transient start-up shear as discussed in previous chapter (Koumakis et al.,

2016b). Shear banding was related to the instabilities due to shear-concentration

coupling in colloidal glass which creates stress localisation during low Pe and

high φ (Besseling et al., 2010). The microscopic dynamics during shear band-

ing was also investigated (Chikkadi et al., 2014), while the micro structure un-

der shear was elucidated with the help of X-ray scattering and MCT, where the

structure factor changed from quadrupolar elastic deformation to hexadecupolar

distortion during flow (Amann et al., 2015). After shear cessation stresses were

retained in colloidal glasses. These residual stresses were found to be a function

of shear rate prior to shear cessation (Ballauff et al., 2013; Fritschi et al., 2014).

Creep has also been extensively used to understand aging effects in hard sphere

colloidal glasses (Ballesta and Petekidis, 2016; Siebenbürger et al., 2012). The

creep flow was understood macroscopically and linked with microscopic dy-

namics. Dynamic heterogeneous regions arising under creep experiments con-

tinue to grow in size until the steady flow condition is met where the full system

begins to flow (Sentjabrskaja et al., 2016).

Alternatively, large amplitude oscillatory shear is often employed to study

the transient dynamics of colloidal glasses as well as the yielding response.



While hard spheres exhibited a non-monotonic dependence of oscillatory yield-

ing point (γcross) with volume fraction approaching random closed packing (Pe-

tekidis et al., 2002), a monotonic response was observed for softer particles

when RCP was exceeded as the particles may interpenetrate and deform, thus

transition to a jammed state (Koumakis et al., 2012b). The non-monotonic re-

sponse for hard sphere, an increase followed by a decrease in γcross, in col-

loidal glasses was attributed to the appearance and caging at low volume frac-

tion. At high volume fractions, the disappearance of the cage distortion just

before random closed packing is reached. Two kinds of yielding processes were

identified the Brownian assisted yielding and shear induced yielding (Koumakis

et al., 2013) : Brownian-assisted yielding was observed to occur at low Pe

while shear-induced yielding was observed at high Pe. High speed confocal

microscopy was utilized to capture in-situ pair correlation functions of colloidal

suspensions under LAOS (Lin et al., 2013). Additionally, transient measure-

ments like shear reversal were employed to identify the role of frictional and

hydrodynamic forces(Lin et al., 2015)

In this chapter, we present transient shear effects for nearly hard sphere

glasses during steady and oscillatory shear using poly-methymethacrylate (PMMA)

with poly-hydroxystearic acid (PHSA) hairs about 10nm to provide steric stabi-

lization. The colloidal particles used for the following set of experiments have a

radiusR = 106 nm, 137 nmwith the polydispersity of the particles greater than

12% dispersed in two different solvent squalene and octadecene/bromonapthalene

mixture. Anton Paar MCR 501 rheometer has been used for all the stress relax-

ation, shear reversal and creep measurements. LAOS measurements were per-

formed in a stress-controlled Anton Paar 501 and ARES TA strain-controlled

rheometer .

We also conducted stress relaxation employing BD simulations (Foss and

Brady, 2000) using 50000 particles with 10% polydispersity and periodic bound-

ary conditions for φ = 0.62, 0.60 and 0.58 for Pe = 0.01, 0.1 and 1).
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5.1 Stress Relaxation

5.1.1 Stress relaxation after steady state

(a)
10-4 10-3 10-2 10-1 100

10-1

100

101

 

 

R
3 /k

B
T

 (b)
10-3 10-2 10-1 100 101

10-2

10-1

100

101

 

 

R
3 /k

B
T

t/tB

Figure 5.1: (a) Start-up shear at φ = 0.60 and Pe = 10 and (b) stress relaxation
for 10 tB after steady state is achieved for BD simulations. The col-
ored points in (a) and (b) indicate the points where g(r) are shown
in Figs. 5.2 and 5.3

Fig. 5.1 (a) is a representative start-up shear at Pe = 10 for a colloidal

glass with φ = 0.60 from BD simulations. Extensive information regarding the

dynamics and structure have already been discussed in (Koumakis et al., 2012a,

2016b). The colored points indicate the time within a start-up shear where the

pair distribution function, g(r), was exported as will be shown below. The start-

up curve typically constitutes of an elastic regime where the cage distortion

dominates. This is considered to be an elastic regime because if the stress on

the system is released the cage will come back to its initial isotropic state. This

elastic phase is followed by peak in the start-up stress at low volume fractions

0.54 < φ < 0.60 while it is generally weakening at high volume fractions as

φrcp is approached (Koumakis et al., 2016b). The last stage is the steady state

flow where the system yields with simultaneous plastic events as well as cage

breakage and reformations. Experiments assisted by MCT model suggests that

the cages under shear in the elastic phase exhibit a transition from quadrapular

symmetry to the hexadecupolar symmetry in the structure factor during steady

state shear (Amann et al., 2015).

A representative stress relaxation curve is shown in Fig. 5.1 (b) after ces-
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sation of shear. The stress drops off to negligible values after 10tB. The de-

pendence of residual stress after cessation of steady shear has already been in-

vestigated for hard sphere colloids (Ballauff et al., 2013; Fritschi et al., 2014)

and soft jammed systems (Mohan et al., 2013, 2015). In soft jammed systems

a two-step relaxation was evident which is not the case in hard sphere colloidal

glasses although sudden drops in the stress curve were detected as shown in the

previous chapter. The colored points in the stress relaxation are related to the

colored frames for which the pair distribution function is extracted during stress

relaxation. In hard spheres residual stress was found to be a function of the

Pe imposed on the colloidal glass. The higher Pe imposed on the the system,

the faster the system releases internal stress (Ballauff et al., 2013), although in

absolute values larger residual stresses remain after large Pe shear.

Ex
ten
sio
n

1% 10%

33% 100%

y

0
Min
(-)

 Max
(+)

x

Compression

Figure 5.2: gxy(r) under shear subtracted from the gxy(r) rest for start-up shear
at the colored points indicated in Fig. 5.1(a)

The pair distribution function in the velocity gradient plane is shown in Fig.

5.2 from the start-up test shown in Fig. 5.1 (a). At 1% strain the system is

isotropic but as the strain is increased to 10% a clear deviation of g(r) in exten-

sion and compression axis develops. This indicates that there is higher proba-

bility in finding the particle in the compression axis than in the extension axis

and therefore the cage becomes anisotropic. As the strain is further increased
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reaching 33%, at the peak of the shear stress, the g(r) intensity in the extension

axis becomes smeared out. Along the compression axis we observe develop-

ment of clear lobes. As the system reaches steady state 100% the compression

lobes becomes intensified along the flow direction as seen in Fig. 5.2 100%.

The intensity of g(r) in the extension axis is now lower than 33% because the

system starts to yield, i.e., some cages will be breaking with particles escaping

under shear and some other cages are being reformed.

10 tB1 tB

0.0008 tB 0.16 tB

Figure 5.3: gxy(r) subtracted from rest for stress relaxation at the points indi-
cated in Fig. 5.1(b)

The pair distribution function for the stress relaxation subtracted by the pair

distribution function at rest shown in Fig. 5.3. In general, a gradual decrease

in the intensity of the peaks in the compression and extension direction can be

observed with waiting time. Compression and extension axis also disappears

within 1 tB. There appears to be a temporary crystallization or ordering appear-

ing during the relaxation at in Fig. 5.3 at 1 tB. At 10 tB this seems to disappear

in gxy(r). The origin behind the appearance of temporary crystallization is not

well understood here. Crystallization is not expected to occur in these simula-

tion as 10% polydispersity was introduced to suppress it. Ordering of particles

during shear is a possibility for suspensions in Brownian Dynamics simulations

into hexagonal shear strings (Heyes and Melrose, 1993).
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Figure 5.4: Stress Relaxation obtained from BD simulations after steady shear
for various Pe at (a) φ = 0.62,(b) φ = 0.60 and (c) φ = 0.58
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Fig. 5.4 show the stress relaxation data versus time for different φ and Pe.

The stress in the y-axis is scaled with the steady state value before flow ces-

sation at the specific Pe. During steady state shear, the α relaxation of the

non-equilibrium colloidal glass becomes accessible by experiments (Besseling

et al., 2007). As soon as the shear is stopped the α relaxation time increases

with waiting time. If the relaxation time increases faster than the experimental

waiting time, the system tends to exhibit residual stresses which has been pre-

dicted by a modified SGM model recently (Joshi, 2015). In Fig. 5.4 (a) for the

highest φ and lowest Pe, BD simulations indicates the existence of 10% residual

stress. On the other hand, at the highest Pe the stress relaxes faster than at low

Pe. The system is driven further away from equilibrium under high Pe creating

large structural deformation which upon shear cessation drives the system to re-

lax faster. This happens for all volume fractions shown in Fig. 5.4. Moreover,

there is essentially no evidence of the existence of residual stress for φ = 0.58 in

Fig. 5.4 (c). Due to the availability of larger free volume at φ = 0.58 the stresses

in the system can relax much faster and fully through local particle rearrange-

ments. On the other hand, cage rearrangements becomes extremely difficult at

very high φ and stress relaxation is only possible through cooperative motions

(Weeks et al., 2000). The number of correlated cooperative zones in the glassy

state are however found to be very small compared to that in super cooled liquid

(Weeks et al., 2000). This can to lead to avalanche type stress relaxation where

a particle hopping the cage leads to displacing a large region of particles for a

short time scale as seen in Fig. 4.11. However this kind of behaviour is not

captured in the BD simulations, possibly due to absence of hydrodynamic inter-

actions, size of the simulation of box and periodic boundary conditions. Finally,

the BD simulations in Fig. 5.4 corroborate the experimental stress relaxation

data shown in Fig. 4.9 (Ballauff et al., 2013).

It has already been established during start-up shear that the anisotropic de-

formation of the cage is responsible for the stress peak over shoot (Koumakis

et al., 2012a). In Fig. 5.5 the maximum of gxy in the compression and extension

axis are plotted as function of tB during stress relaxation. The intensity in the

extension axis (unfilled symbols) decreases with increasing Pe for all φ. The
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Figure 5.5: The maximum intensity in gxy(r) near the first neighbour peak
in the extension and compression axis during stress relaxation of
100 tB for (a) φ = 0.58 and (b) φ = 0.62 from BD simulations

maximum along the compression axis is independent of Pe. When a compari-

son for different φ is made it can be easily seen that the extension axis is more

elongated for lower φ. This can be attributed to the availability of more free

volume at lower φ (Koumakis et al., 2016b; Petekidis et al., 2002) which leads

to a more anisotropic cage. After shear cessation it can be observed that the

gxy maximum at extension axis decreases faster than the gxy maximum along

the compression axis. There is only very small observable difference along the

compression axis indicating that extension axis plays more dominant role dur-

ing stress relaxation than the compression axis. Although gxy becomes isotropic

by 100 tB there is evidence of residual stresses in the colloidal glass from Fig.

5.4 (a) at Pe = 0.1. A possible explanation is that the colloidal glass is het-

erogeneous in nature but the gxy(r) is obtained by averaging structure over all

particles. Assuming that the contribution to residual stress is due the anisotropic

cages in colloidal glass it cannot be captured here due to averaging performed

in the simulations.

Fig. 5.6 shows the transient mean square displacement obtained from BD

simulation during stress relaxation. MSD is extracted for different waiting times

after cessation of shear. Fig. 5.6 (a) depicts the MSD extracted for φ = 0.58

immediately after shear and waiting 1 tB after shear cessation. From this data it

is evident that the system irrespective of the shear rate applied appears to have

some microscopic mobility as a long time plateau in the MSD is not present.

With increasing waiting time, however the system slows down more. After a
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Figure 5.6: Mean Square Displacement for different waiting times after cessa-
tion of shear in BD simulations at (a) φ = 0.58 and (b) φ = 0.62

larger Pe shear, particle mobility is larger for all waiting times as seen in Fig.

5.6 (b). This gives a general insight in order to understand why the colloidal

glass sheared at a higher Pe relaxes stress faster than at lower Pe. The fluidity

arises possibly from the residual plastic deformations taking place in the col-

loidal glass after shear cessation. This occurs because colloidal particles are so

closely packed that an out of equilibrium driving motion in one of the particles

and its cages leads to an avalanche type of response in the whole system that

dies out slowly with time.

5.1.2 Stress relaxation after interruption of flow

Below, we present experiments where we switch off the shear at different points

along the start-up curve and follow the stress relaxation. As there are elastic and

plastic regimes during start-up shear, we expect that the stress relaxation will

show clear indications to differentiate between these regimes, i.e., relaxation

of slightly deformed state yet unyielded cage and fully flowing system. Such

a rheological protocol have been also performed in simulations for colloidal

glasses (Zausch and Horbach, 2009).

Fig. 5.7 (a) represents an experimental start-up curve for φ = 0.63. As

expected the start-up stress overshoot peak is not pronounced at high volume

fractions and the colloidal glass yields immediately after the elastic regime

(Koumakis et al., 2016b; Petekidis et al., 2002). Fig. 5.7 (b) indicates the
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Figure 5.7: Colloidal particles with R = 137 nm in φ = 0.63 undergoes (a)
start-up at γ̇ = 0.01, Pe = 5.265× 10−4 (b) Stress Relaxation after
interruption of the start-up shear at different strains

stress relaxation after stopping start-up at various strains. It is clearly seen that

switching of shear in the elastic regime before the steady state flow is reached

leads to a weaker stress relaxation, i.e., the system retains more internal stresses.

The ordinate axis in Fig. 5.7 (b) is scaled with stress just before cessation

of shear. Switching-off shear in the elastic regime which is extending to less

than 10% strain, leads to retaining more stress than in switching off the plas-

tic/viscous dominated regime which lies above 10%. In very simple terms, the

elastic regime tends to store the stress in the anisotropic cage deformation of the

colloidal glass which is only partially released, on the other hand in the plastic

dominated regime there is more dissipation of the stress due to the shear convec-

tion or the rearrangements of the cages (Amann et al., 2015; Jacob et al., 2015).

However, no evidence is seen in BD simulations in Fig. 5.5 for the persistence

of the anisotropic cages over long times, t > 10 tB, possibly due to averaging

over all particles in the BD simulations that may remove the heterogeneities in

the g(r). Additionally, once the colloidal glass reaches the steady state flow, the

relaxation curves lay one on top of each other within error. This indicates that

once steady state is reached the magnitude of strain imposed does not influence

the system.

Fig. 5.8 (a) depicts another scenario in a start-up curve, where a clear stress

overshoot is detected. There exists same values of stress at two different strains

related with two different microstructural processes. The red and blue dotted

lines in Fig. 5.8 (a) are drawn to guide the eye in order to understand how
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Figure 5.8: Colloidal particles with R = 137 nm in φ = 0.56 undergoes (a)
start-up at γ̇ = 0.01, Pe = 5.265× 10−4 (b) Stress Relaxation after
interruption of the start-up at different strains

two identical values of stress indicates two different sequential processes taking

place during start-up flow. Fig. 5.8 (b) shows the stress relaxation curves after

stopping after reaching different strain values. As seen previously in Fig. 5.7,

in the elastic regime most of the stress is retained where as in the flow regime,

past the stress overshoot, switching off shear, leads to a much stronger, if not

full relaxation. Additionally, the lower volume fraction of φ = 0.56 below glass

transition regime seen in Fig. 5.8 indicates that irrespectively of the volume

fraction, the elastic regime in a start-up curve always holds more stress than

plastic regime.
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Figure 5.9: Long time stress relaxation after interruption of the start-up at dif-
ferent strains for R = 137 nm in φ = 0.56
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However in Fig. 5.9, longer time relaxation of the stress is followed, till

2000 s. The long time relaxation exhibits a lot of fluctuations that is more diffi-

cult to interpret similar to (Mohan et al., 2015). This is reminiscent of the long

time relaxation and creep measurements discussed in the previous chapter (Fig.

4.11). Cooperative rearrangements of particles may be the microstructural ori-

gin of sudden release of stresses in the glassy regime. However, here a sample

with φ = 0.56 is in the super cooled liquid state (no crystallisation is seen due

to polydispersity) thus the slow α relaxation is responsible for homogenising

structural anisotropy and relaxing of internal stresses.
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Figure 5.10: BD simulations (a) start-up at Pe = 1 (b) Stress Relaxation after
interruption of the start-up at different strains for φ = 0.60

In order to understand the microstructural characteristics during interruption

of start-up flow, BD simulations were performed as shown in Fig. 5.10. It is

evident that stopping within shear for BD simulations corroborates with exper-

imental data shown in Fig. 5.7 and 5.8. In the elastic regime of start-up test,

shear cessation leads to retaining more stress during relaxation than in the flow

regime, past the stress overshoot. As the colloidal glass reaches steady state, the

relaxation curve is independent of the magnitude of deformation similar to that

observed in the experiments. Stress relaxation below 10% was not attempted in

BD simulations as the noise was too large, not allowing depiction of the stress

with good statistics.

In Fig. 5.11 we show structural information, by plotting the velocity -

gradient 2D g(r) for all the relaxation tests performed after cessation of shear

at different points in the start-up from Fig. 5.10 at Pe = 1. 10% strain is in the
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Figure 5.11: gxy(r), subtracted from rest, after cessation of shear at various
time after different strain values are achieved during start-up with
Pe = 1 seen in Fig. 5.10
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elastic regime and 22% strain corresponds to the peak of the stress overshoot.

After the system yields (30% and 60%) it can be noticed that the g(r)xy shows a

temporary crystalline effect. This effect seems to fade away with time. This ef-

fect is pronounced for 60% strain. It should be noted that the g(r)xy is obtained

after subtracting the g(r)xy at rest. Although the stress retention is higher for

cessation at 10% strain the g(r)xy at 60% strain for which the relaxation occurs

quicker has more anisotropy in the structure of the cage than 10% at 10 tB as

seen in Fig. 5.10. This leads to the conclusion that the structure of the cage

alone does not contribute to the residual stresses unlike jammed soft glasses

(Mohan et al., 2013, 2015) where the structural anisotropy was the contributor

to the residual stresses. Probably, it is the dynamical heterogeneities assisted

with hydrodynamic interactions in colloidal glass that retain the stress and an

indirect evidence to such a possibility is seen in Fig. 4.11 where the sudden

drops in stress is possible due to avalanches in the colloidal sample.

5.2 Shear Rate and Stress Reversal

Thixotropy is defined as a reversible, time dependent and flow-induced change

in the viscosity (Mewis and Wagner, 2012). Complicated rheological proto-

cols were utilized to study thixotropy in different colloidal suspensions such as

carbon black suspensions (Dullaert and Mewis, 2005, 2006). This mainly in-

cluded stress jumps and shear reversal protocols in rheometry, and constitutive

models were developed to capture this behaviour. Shear reversal protocols were

also recently performed to understand the role of hydrodynamics and friction in

shear thickening (Lin et al., 2015). Stress relaxation was also performed within

LAOS to identify signatures in the physical processes within large amplitude os-

cillatory shear (Koumakis, 2011). Another interesting technique is the so called

mechanical hole burning spectroscopy performed on polymer solutions to iden-

tify the heterogenous effects (Shamim and McKenna, 2014). A large amplitude

oscillatory pump is imposed on the sample to burn a mechanical hole in the

system which was then probed with a linear step-strain experiment after a spe-

cific waiting time. Although, colloidal glasses fall into a very specific category
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such that the thixotropic effects are not visible in linear regime, as shown in

the previous chapter, these effects can be seen in non-linear experiments. Hence

complex rheological protocols such as shear reversal is employed to capture this

behavior of colloidal glass under shear.
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Figure 5.12: Shear Reversal of colloidal glass with φ = 0.63,R = 196 nm for
varoius shear rates

Here in Fig. 5.12, we present the relative viscosity versus the strain for shear

reversal experiment. Initially, a shear rate of a specific magnitude is applied in

the forward direction on the sample until steady state flow is reached after which

the flow is immediately reversed by application of same magnitude shear rate in

the reverse direction. The relative viscosity is

ηrel =
η(t)

ηsol
=

σ(t)

γ̇(t)ηsol
(5.1)

The strain values in Fig. 5.12 indicates the strain achieved after switching

the direction of shear. At low values of strain, or short time, the system has the

memory of the the previous flow condition hence the relative viscosity is neg-

ative. The sign of the viscosity here indicates the direction of flow. Once the

strain is reversed, the viscosity gradually changes from negative values to pos-

itive values and finally reaching a steady state as seen in Fig. 5.12. The steady

state value of relative viscosity decreases with increasing rate as the relative vis-

cosity is inversely proportional to the rate. All relative viscosity curves seem
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to crossover at a particular strain from the negative value of relative viscosity

to positive value, this is misleading as the strain axis is plotted in log-scale if

plotted in linear scale the differences become evident as seen in Fig. 5.14.
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Figure 5.13: Shear reversal performed at forward rate of (a)γ̇ = 0.003 s−1 (b)
γ̇ = 0.01 s−1 for varying rates in the reverse direction for a col-
loidal glass φ = 0.63 and R = 196 nm

In Fig. 5.13 (a) we employ a fixed shear rate (γ̇for = 0.003 s−1) in the

forward direction until steady state flow is reached and immediately the flow is

reversed at different rates. The magnitude of rate reversal is chosen such a way

that rates slower and faster than the forward rate is achieved. Similar to Fig.

5.13 (a), Fig. 5.13 (b) indicates the different reversal rates for a forward rate of

γ̇for = 0.01 s−1. This is performed in the same spirit as Fig. 5.12 in order to

understand how the dynamics change if shear reversal is introduced from differ-

ent steady states. Similarly to Fig. 5.12, the steady state viscosity values after

shear reversal decrease with increasing rate. Additionally, although the starting

steady state viscosity is same, the relative viscosity values are different in Fig.

5.13 at short times because the relative viscosity value is inversely proportional

to the shear rate of reversal.

Fig. 5.14 is obtained by extracting the value of the strain, γcross, at crossover

for the relative viscosity from negative to positive values in Figs. 5.12 and 5.13.

When the forward and backward rates are the same, γ̇for = γ̇rev, γcross increases

with shear rate. This is reminiscent of the increase of γpk monotonically during

start-up shear with increasing shear rate (Koumakis et al., 2016b). The cages

under shear become anisotropic in the forward direction and after shear reversal

they should change orientation and move in the opposite direction in order to
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Figure 5.14: The γcross when the relative viscosity changes from negative to
positive value. The dot indicates where γ̇for = γ̇rev

reach steady state flow. This happens because the anisotropic cages are oriented

in the opposite direction upon shear reversal the cages become isotropic and

then start to deform and flow in the opposite direction. Therefore, γcross value

indicated here should be related to change in orientation of the cage. Addition-

ally, at high rates γcross seem to reach a plateau (see Fig. 5.14) although there is

a bigger error at high rates because data collection is not fast enough to capture

γcross accurately. When γ̇for 6= γ̇rev a non-monotonic dependence is observed

for γ̇for measured. This indicates that γcross depends only on the initial and fi-

nal metastable states. The larger the difference between the γfor and γrev the

smaller is the value of γcross.

We now discuss a similar experiment where a step-stress is applied for

1000 s in the forward direction immediately after which the step-stress direc-

tion is reversed and applied for 1000 s. Fig. 5.15 (a) is creep reversal performed

for a colloidal glass of φ = 0.63 at various step-stresses. The dashed lines indi-

cate the forward direction of step-stress and the solid line indicate the reversed

direction. It is observed from Fig. 5.15 (a) that the colloidal glass in the for-

ward direction is always more solid than in the reversal during the transients

near the creep ringing. This suggests that the colloidal glass has been pushed

into a metastable state in the forward direction which upon stress reversal facil-

itates easier flow (or creep) although it catches up in the long run. Additionally,
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Figure 5.15: (a) Creep Reversal of colloidal glass with φ = 0.63 and R =
196 nm for varying σ (b) λ for σ = 10 Pa in forward and reverse
direction
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with the increase in the step-stress values the difference between reversal strain

and forward strain for time t < 1 s becomes larger. For strep stresses the final

strain in the forward and reversed creep reach the same values except for the

lowest stress σ = 0.1. A representative of the slope in the creep data shown by

λ = dlog(γ)/dlog(t) in forward and reverse direction for σ = 10 Pa is shown

in Fig. 5.15(b). The slope of forward direction is found to be always higher

than the reverse direction. This suggests that two different process happens in

the forward and reverse direction. The colloidal glass undergoes yielding in the

forward direction and then upon reversal the systems attains metastable state at

reversal very easily.

Recently, employing confocal microscopy te single particle dynamics under

creep of colloidal glasses were investigated (Sentjabrskaja et al., 2016). Het-

erogeneous domains were observed to appear and then grow in colloidal glasses

until these regions merge and the flow under creep occurs. From Fig. 5.15 (a)

it can be speculated that such heterogeneous domains developed during creep

in the forward direction assist in the glass to creep much more easily during

reversal. Thus, more strain is achieved during creep reversal.

5.3 Large Amplitude Oscillatory Shear

5.3.1 Fourier Transform rheology

In this section we show that frequency variation even over a relatively small

range of one order of magnitude can profoundly affect the LAOS response.

Moreover, we conclusively show that an increase in frequency has opposing

effects depending on whether the colloidal dispersion is in a liquid or glassy

state; it leads to increasing anharmonic behavior below the glass transition,

but decreasing anharmonic response above the glass transition. We explain the

observed variation of non-linearity with frequency above and below the glass

transition using recent insights that relate the LAOS response with the SAOS

response and the flow curve of the material.
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Figure 5.16: Dynamic Frequency Sweep of a colloidal suspension with (a) φ =
0.60, (b) φ = 0.54, (c) φ = 0.53 and (d) φ = 0.49

A universal behavior in colloidal glasses and concentrated suspensions sys-

tems during LAOS irrespectively of the interaction potential was validated with

the help of PMMA hard spheres and soft star-like diblock copolymer micelles

(Poulos et al., 2015). In this case the LAOS frequency dependence of four

HS samples at φ = 0.49, 0.53, 0.54, 0.60 is probed. The dynamic frequency

sweeps for φ = 0.49, 0.53, 0.54, 0.60 samples can be seen in Fig. 5.16(a-d).

It is clear that the φ = 0.60 sample is in the glassy state, the intermediate

concentration,(φ = 0.52, 0.53) is a viscoelastic liquid and shows a crossover

of G′ and G′′, and the φ = 0.49 sample shows terminal liquid-like behavior (G′,

G′′) in a wide frequency range.

Dynamic strain sweeps are performed at different frequencies on all samples

as shown in Fig. 5.17. These show a typical stress response of an either yield

stress solid (at φ = 0.60 in Fig. 5.17 (a)) or a shear thinning liquid (at φ =

0.49 Fig. 5.17 (d)). Intermediate volume fractions (φ = 0.54, 0.53) show both

sets of behaviour depending on the frequency of strain sweeps since a large
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Figure 5.17: Dynamic strain sweep attempted in order to perform LAOS exper-
iments for (a) φ = 0.60 and (b) φ = 0.54, (c) φ = 0.53 and (d)
φ = 0.49

Ph. D. Thesis, Jacob, 2016 84



Section 5.3: Large Amplitude Oscillatory Shear

dependence of the linear viscoelastic data on frequency is observed. This arises

since the linear viscoelasticity moving from a glass to liquid phase starts to

exhibit a frequency dependence as seen in Fig. 5.16.

The stress signal was further analyzed at each strain amplitude by FT rheol-

ogy, and the non-linearity was quantified by the amplitude of the 3rd stress har-

monic normalized by the 1st harmonic I3/I1 (Wilhelm et al., 1998). It should be

noted that in general higher harmonics are also important (Poulos et al., 2013),

and that there are other methods of analysis used to quantify non-linearity (Hyun

et al., 2011), but for the purposes of this study we follow I3/I1 as an indicator

of the level of anharmonic stress response in the nonlinear oscillatory shear. In

Fig. 5.18, I3/I1 is plotted as a function of γo for the φ = 0.49, 0.53 and 0.60

samples respectively. It is similar to star-like micelles (Poulos et al., 2015), with

I3/I1 increasing at yielding and developing to a plateau at high γo. One major

difference is that for the highest concentration glassy sample (φ = 0.60), a peak

in I3/I1 appears at intermediate amplitudes (γ ≈ 10 − 30%) for the two high-

est frequencies Fig.5.18(a); this has been attributed before to a second yielding

process and will be discussed below (Koumakis et al., 2013).

In Fig. 5.19 I3/I1 is plotted as a function of ω at a fixed amplitude of 100%

strain, for all volume fractions. Similarly to star-like micelles (Poulos et al.,

2015), the highest concentration glassy sample (φ = 0.60) shows a decrease of

I3/I1 with frequency, and the lowest concentration liquid sample (φ = 0.49),

shows an increase of I3/I1 in the frequency regime measured. Additionally, the

intermediate φ = 0.53, 0.54 samples show non-monotonic behavior with I3/I1

increasing at low frequencies and decreasing at high frequencies.

For HS glasses a decrease of I3/I1 with increasing frequency has been seen

before (Koumakis et al., 2013). Combining experiments and BD simulations, it

was attributed to the transition from a plastic-like response to a simpler liquid-

like response, while also a second yielding process emerged at even higher fre-

quencies. Lower frequencies were associated with Brownian activated yielding,

while higher frequencies to shear-induced non-Brownian yielding. The peak of

I3/I1 found for increasing strain at higher frequencies was attributed to the ap-
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Figure 5.18: 3rd harmonic parameter obtained from Fourier Transform rheol-
ogy versus γ at (a) φ = 0.60, (b) φ = 0.54, (c) φ = 0.53 and (d)
φ = 0.49
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Figure 5.19: 3rd harmonic parameter versus ω for all the volume fraction in Fig.
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pearance of this second yielding process. For intermediate HS volume fractions,

the frequency dependence of I3/I1 shows a broad peak in Fig. 5.19. In contrast

to the case of star-like micelles, where the chosen frequencies were taken far

from the crossover of G′ and G′′, the hard sphere data show the transitional

behavior expected near that point (Poulos et al., 2015). Therefore, it show an

increasing I3/I1 versus ω, when the linear response is liquid-like and decreasing

I3/I1 when the linear response becomes solid-like. The similarities in the be-

havior of I3/I1 between hard spheres and star-like micelles suggest a possibility

of an independence from specific particle interactions (Poulos et al., 2015). In

the case of hard spheres, I3/I1 versus ω eventually reached a maximum and then

started to decrease at higher ω.

In summary, LAOS experiments were performed at a range of frequencies

on four colloidal hard sphere samples above and below the glass transition. It

is observed that an increase in frequency from 0.5 rad/s to 5 rad/s leads to an

increase of anharmonicity for the liquid-like samples, but to a decrease of anhar-

monicity for the solid-like samples. This difference can be explained by looking

at the contribution to non-linearity at the maximum shear rate inside the period

of oscillation. As the frequency is increased, the maximum shear rate is also

increased. Thus, for the liquid-like samples, higher shear rates leads to shear

thinning over a larger fraction of the period thereby increasing anharmonicity.

On the other hand, the solid-like samples at low shear rates are trapped in the

yield stress plateau and do not flow but deform plastically. Higher shear rates

lead to viscous flow over a larger fraction of the period thereby decreasing anhar-

monicity. The transition and change in slope of I3/I1 from solid- to liquid-like

samples is broader at the intermediate volume fraction HS samples where the

storage and loss moduli have not reached the terminal regime.

5.3.2 Onset of non-linearity during LAOS

Here we present the onset of non-linearity by evaluating, the anharmonic stress

response, of a hard sphere colloidal glass at φ = 0.60 and suspension at φ =

0.49. The anharmonicity in the stress response is expressed as I3/I1 the same
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quantity as defined in the previous section. Fig. 5.20 indicates the linear vis-

coelastic response of colloidal glass and colloidal suspension. In Fig. 5.20 (a)

where G′ is greater than G′′ for all the ω probed which is a representation of a

colloidal glass. The minimum in G′′ is also seen in Fig. 5.20 (a) which is re-

lated to the transition from α to β relaxation in the colloidal glass. Fig. 5.20 (b)

shows a colloidal suspension much below the colloidal glass transition. For all

frequencies probed G′′ > G′ which is indicative of a system with a liquid-like

response.
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Figure 5.20: Dynamic frequency sweep at (a) φ = 0.60 and (b) φ = 0.49
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Figure 5.21: The third harmonic parameter for medium amplitude oscillatory
measurements in order to capture the onset of non-linearity for (a)
φ = 0.60 and (b) φ = 0.49

Data in Fig. 5.21 are produced by sweeping γo for a fixed frequency with

linear spacing of 0.5% from 0.1% to 10%. This is done in order to capture

the transition from linear to non-linear regime by following the amount of non-

linearities in the LAOS response. Finally, Fourier transform analysis of the

stress oscillation is performed and the non-linearity in the stress for a colloidal
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glass and concentrated colloidal suspensions are probed. The data in Fig. 5.21

correspond to the sample shown in Fig. 5.20. Fig. 5.21 (a) shows that the

non-linearity in colloidal glass arises always around γo ≈ 1%. Additionally,

there is a slight variation at the γo at which I3/I1 arises with frequency. The

non-linearity becomes prominent at lower γo with increasing frequency for the

colloidal glass shown in Fig. 5.21 (a) and Fig. 5.21 (b) shows the non-linearity

in colloidal suspension. For φ = 0.49 the data below γo = 8% are extremely

noisy. In Fig. 5.21(b) we observe a clear dependence of the onset of non-

linearity with the frequency. This kind of frequency dependence in colloidal

glass and colloidal suspension is reminiscent of the linear data shown in Fig.

5.20 where the colloidal glass exhibits the expected weak linear dependence

whereas the colloidal suspension has a strong dependence on the frequency.

The dip in I3/I1 seen at 5 rad/s in a colloidal glass has already been observed

and reported for colloidal glasses in Fig. 5.21 (Koumakis et al., 2013). This

indicates the systems transitioning from linear oscillatory response to plastic

flow at large amplitude strains.
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Figure 5.22: Onset of non-linearity, γcr versus ω for φ = 0.60 and φ = 0.49

In Fig. 5.22 we compare the γcr at a fixed value for I3/I1. As discussed

earlier, colloidal glass exhibits a transition to non-linear regime at lower values

of γo which is also evident from Fig. 5.17. The cages in the colloidal glass

providing elasticity in the system can be pushed into a non-linear regime with a

small amount of deformation. On the other hand, for concentrated colloidal sus-
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pensions a decreasing γcr is detected with increasing ω. Colloidal suspensions

(φ = 0.49) due to their Brownian motion can compete with shear to maintain

their equilibrium microstructure even at strains close to 10% . As the frequency

of oscillation is increased, the system is pushed out of equilibrium for much

lower strain because the Brownian motion cannot compensate for the frequency

applied. Recently, the effect of caging in colloidal glass has been investigated

with third harmonic elastic and viscous moduli and very similar observations

were reported (Kumar et al., 2016).

5.4 Shear thickening colloidal glasses

In this section we present rheological experiments for colloidal suspensions with

radius R = 689 nm, 405 nm, 137 nm in dense suspensions and glasses aiming

to study some aspects of shear thickening. Rheology experiments were per-

formed on colloidal glass with sterically stabilized PMMA particles in squa-

lene. The largest colloidal particle (R = 689 nm) was investigated in the glass

(φ = 0.60) and in supercooled liquid regime (φ = 0.56) while the smaller

size particles where investigated only in the glass regime (φ = 0.60). All par-

ticles have greater than 6% polydispersity in the radius. The Brownian time

tB are calculated to be22.87s, 4.645 s and 0.0179 s for particle radius of R =

689 nm, 405 nm and 137 nm respectively.

A glass cone and plate geometry attached to Anton Paar MCR 501 rheome-

ter was utilized for the shear experiments. The specifications of the glass cone

are as follows - diameter = 40mm, angle = 1.967 ◦ and gap = 176 µm . A high

speed Basler camera was used to capture the edge effects during shear thicken-

ing and images were recorded every 100 ms for a specific amount time depend-

ing on the length of the shear experiment. Each transient start-up measurement

was performed after a waiting of 200 s.

Fig. 5.23 (a) represents the scaled linear viscoelastic rheological data for the

colloidal glass systems that were investigated for shear thickening properties.

The colloidal glass of large particles in Fig. 5.23 (b) shows discontinuous shear
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Figure 5.23: (a) Dynamic Frequency Sweep in the linear regime of the sam-
ples tested for shear thickening. (b) Flowcurve of the correspond-
ing samples indicating shear thinning and thickening behaviour at
high rates.
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thickening with a sudden jump in η at a specific γ̇. The colloidal glass consisting

of radius 137 nm only shows the shear thinning behaviour that is prevalent of

among colloidal glasses. The critical shear rate above which the shear thicken-

ing is seen to be a function of size of the particle as well as the volume fraction.

The larger size particles shear thicken at lower γ̇ as the Pe experienced by the

larger particles for the same shear rate is much larger than the small particles.

This drives the larger size particles into shear-induced collisions and jamming

leading to a shear thickened state. The larger volume fractions shear thicken at

lower shear rates because of the reduction in free volume as well as increase in

the Brownian time.
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Figure 5.24: Start-up of colloidal glass with particles ofR = 689 nmwhere the
dashed lines indicates the shear thickening response for (a) φ =
0.60. (b) The corresponding N1 data for the shear rates performed
during start-up with φ = 0.60

Fig. 5.24 (a) shows the start-up stress data at rates below and above crit-
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ical rate for shear thickening. Below the critical rate, the glass sample shows

a typical response to start-up shear consisting of elastic regime and the steady

state flow regime. At start-up for rates larger than the critical rates a very sud-

den increase in the stress as well as oscillations in the stress can be observed

which have earlier be identified with the help of dichroism studies (D’Haene

et al., 1993). The oscillations during shear thickening are attributed to jam-

ming and unjamming transitions under flow. In this study, since the shear rate is

maintained as at a particular value the jammed clusters will be ripped apart or

unjammed and then again jammed into other jammed clusters.

N1 is the first normal stress difference which is defined as explained σxx −

σyy as in Chapter 2. N1 data for the corresponding start-up curves are repre-

sented in Fig. 5.24 (b). Below the critical shear rate N1 values do not show any

fluctuations and are slightly negative. But above the critical shear rate the large

fluctuations in N1 are observed. In general, the normal stress data should be

taken cautiously because instabilities, granulation and edge fracture are preva-

lent in these highly concentrated suspensions (Brown and Jaeger, 2014; Cates

et al., 2005) as will be discussed. Additionally, the stress fluctuations are cor-

related to the N1 fluctuations. At 3 s−1 the N1 rises to positive values which

indicates the forces being exerted to separate the plates apart. After a particular

time N1 moves to negative values which indicates the plates are pulled together

due to the expelling of the sample through the edges.
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Figure 5.25: N1 comparison for different particles radius.
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Fig. 5.25 compares N1 for all the colloidal systems investigated in Fig. 5.23

(a). The large particles that show strong shear thickening behaviour in Fig. 5.23

(a) in turn showing large variation in N1. N1 values for shear thickening sys-

tems here are represented for short times before large fluctuations in N1 sets in.

This is done to avoid any kind of artifacts from edge fracture or slip becom-

ing predominant. Interestingly, colloidal glasses exhibits change of N1 towards

positive values while the samples at lower φ that are below the glass transition

show predominantly negative N1. This is in line with the observations for con-

centrated colloidal suspensions for φ ≤ 0.52 that indicated negative values for

N1 (Cwalina and Wagner, 2014). Frictional contacts was discovered to con-

tribute to shear thickening near jamming transitions (Lootens et al., 2003) and

discontinuous shear thickening was modeled successfully with the help of fric-

tion contacts (Seto et al., 2013). Here, at φ = 0.60 the positive values could

be due to the prominence of dilatation effect. At large φ, particles have very

small free volume hence this leads to much easier contacts between them at

large Pe. On the other hand at φ = 0.56 due to larger free volume the system

shear thickens due to hydrodynamic effects leading to negative values of N1 as

already predicted (Foss and Brady, 2000). It can also been seen that the glassy

state shear thicken at much smaller Pe than the super cooled liquids and for the

small particles even for γ̇(Pe < 1) is small to induce shear thickening.

In order to capture the edge effects that becomes important during shear

thickening, a camera is attached to the side of geometry in Fig. 5.26 the start-up

shear stress, σ, and normal stress, N1, of a colloidal glass at φ = 0.60 with par-

ticles of radius 689 nm sheared at γ̇ = 3 s−1 is shown where edge instabilities

are visually observed. In Fig. 5.26 at point C dilation was visually observable,

the sample at the edges increased in volume. After point C (corresponding to

γ = 280%) clear edge instabilities are visible which subsequently continue to

grow at the edge of the sample. During dilation, N1 values remain positive un-

til instabilities become prominent leading to negative N1 values. Moreover, the

sample becomes opaque at the edges indicating that the sample surface becomes

rougher due to microscopic instabilities. As shear thickening occurs the opac-

ity and edge instabilities starts increasing thus reflecting more light of the edge.
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Figure 5.26: start-up of colloidal glass of φ = 0.60, R = 689 nm and
γ̇ = 3 s−1shown in Fig. 5.24 (a) with images indicating the edge
effects, slip and dilation

This is due to the presence of particle clusters jammed together in the sample

as already observed from the dichroism measurements (D’Haene et al., 1993).

Microstructurally, the particles form aggregates during shear thickening creat-

ing large voids in the sample that drives the suspending medium into the these

voids. Additionally, air bubbles were also seen to get trapped in the sample due

to the instabilities created in the sample, as observed before (Cates et al., 2005).

The edge effects are shown in pictures incorporated in Fig. 5.26. The instability

disappears from the edge within one second of flow cessation. The sample is

also seen to have uneven sample distribution at the edges after shear thickening.

Fig. 5.27 in comparison shows, a hard sphere glass of smaller particles

where no shear thickening is observed at γ̇ = 1 s−1. In Fig. 5.27 there are

no edge effects detectable and the fluctuations of N1 and σ are much smaller

compared to the shear thickening samples. Moreover, N1 has a negative value

through the shear experiment. Since the particles are small in size (Pe < 1),

the Brownian motion is prominent than shear-induced collisions aiding in shear

thinning as observed in Fig. 5.25.

In Fig. 5.28 shows the stress relaxation after steady shear for the samples

discussed before, for rates below and above the critical shear rate from the onset

95 University of Crete, Greece



Chapter 5: Transient Shear Effects

100 101 102 103

100

101

102

 

 (P
a)

 (%)

-60

-40

-20

0

DCBA

DCB
A N

1  (Pa)

1 s-1

Figure 5.27: start-up of colloidal glass of φ = 0.60,R = 137 nm and γ̇ = 1 s−1

with images indicating no edge effects, slip and dilation
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Figure 5.28: Stress relaxation for a shear thickening colloidal glass with φ =
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of shear thickening. Below the critical rate the stress in the sample relaxes

completely with time but above the critical shear rate a qualitatively differ-

ent response is observed. More specifically for γ̇ = 5 s−1 the system tends

to retain the internal stress for much longer time than for rates below critical

rate. After a certain amount of time (time = 10 s) a sudden release in stress

is observed which is reminiscent of a liquid response. This temporary residual

stresses was observed earlier (D’Haene et al., 1993) and was attributed to the

temporary presence of clusters which then dissipate after short time. The stress

in retained for approximately 2 tB while in the previous chapters the residual

stresses was retained for more than 100 tB. It was observed that the edge effects

dissipates within 1 s of shear cessation but the residual stresses are maintained

much longer. This indicates that the relaxation process starts from the edge

and travels inwards until the system is completely relaxed after shear thicken-

ing. Non-Brownian concentrated corn starch suspensions could not support a

localised static weight for long time and this was attributed to unjamming due

to particle migration (von Kann et al., 2011). Recently, it was predicted that

if a modest threshold in stress was crossed over the whole sample it would be

possible to support a weight for an infinitely long time (Hermes et al., 2016) and

possibly retain stress for infinitely long time.

In this chapter we probed the transient shear response of a colloidal glass

sample under various shear protocols. BD simulations was employed to identify

the cage anisotropy retention and correlate it with the residual stresses. It has

been demonstrated that cage anisotropy may not be the only reason for the exis-

tence of residual stresses in hard sphere glasses. Flow interruptions performed

with experiments and BD simulations helped in extracting rheological signa-

tures for sequence of physical processes occurring during start-up shear. After

cessation of shear in the elastic regime, more stress was retained rather than

in steady state flow regime. Complex experimental rheological protocols like

shear reversal help us understand that initial and final metastable states drive the

dynamics of the systems and during creep reversal higher strain is accumulated,

this can be attributed to activated heterogeneous domains. Additionally, LAOS

was performed with experiments on colloidal glasses and suspensions where
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unique non-linear signatures emerged. Anharmonic response increased with

frequency for concentrated suspensions and decreased with colloidal glasses.

These are related to shear thinning occurring in suspensions and viscous dis-

sipation happening in colloidal glasses. Finally, shear thickening studies were

performed and dilation and edge effects were visually inspected. It was observed

for the same volume fraction, bigger size particles exhibit shear thickening while

small size particles exhibit shear thinning.
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CHAPTER 6

ORTHOGONAL SUPERPOSITION

RHEOMETRY OF COLLOIDAL GLASSES

UNDER FLOW

While the mechanisms of yielding and flow of HS glasses have been extensively

investigated, several aspects of steady (Besseling et al., 2010; Chikkadi et al.,

2011; Koumakis et al., 2012a; Petekidis et al., 2004; Schall et al., 2007; Sieben-

bürger et al., 2012) and oscillatory shear flow (Brader et al., 2010; Koumakis

et al., 2013; Miyazaki et al., 2006; Petekidis et al., 2002) are still unresolved.

For example the scaling of shear-induced diffusivity with the applied shear rate

has been the subject of controversy (Besseling et al., 2007; Eisenmann et al.,

2010).

Orthogonal Superposition Rheometry (OSR) combines two deformation modes,

steady shear and small amplitude oscillatory shear applied simultaneously and

orthogonally to each other. In this way small amplitude orthogonal frequency

sweeps orthogonally interrogates the sample and retrieve its viscoelastic spectra

under steady shear (Kim et al., 2013; Mewis and Schoukens, 1978; Simmons,

1966; Tanner, 1968; Vermant et al., 1997, 1998; Zeegers et al., 1995). Our

approach is fundamentally different from SRFS (Wyss et al., 2007) as superpo-

sition rheometry is based on the linear measurements of a perturbation spectrum

characterizing a strongly non-linear state. This technique, that only recently be-

came sensitive enough, enables us to probe model colloidal glasses under steady

shear without resorting to non-linear oscillatory measurements with compli-

cated intracycle kinematics such as varying shear rates and higher harmonics

in the stress response.

There has been a great inclination to construct database of rheological con-

tour maps for polymers and colloidal suspensions in order to reduce domi-
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nant relaxation times into a single plot. In order to achieve this, superpo-

sition of rheological curves is performed. Generally, oscillatory rheological

measurements are done in the linear regime to achieve superposition curves.

Time temperature superposition for polymer solutions (Baumgärtel and Willen-

bacher, 1996; Ferry, 1980; Fox and Flory, 1948; Rubinstein and Colby, 2003)

has been very relevant and of great significance to the polymer processing indus-

try. Time-concentration superposition was also attempted for the polymer sus-

pension where the concentration was varied instead of temperature (Baumgär-

tel and Willenbacher, 1996; Ferry, 1980; Schausberger and Ahrer, 1995). The

advantage of time-concentration superposition is the reduction of both concen-

tration effects on entanglement density and relaxation time onto a master curve.

This concept was extended to bulk colloidal suspensions (Trappe and Weitz,

2000; Wen et al., 2015), monolayer colloidal suspensions (Cicuta et al., 2003),

polymer-colloid mixtures (Daga and Wagner, 2006) and emulsions (Lorenzo

et al., 2011). An extension to these superposition procedures are the time-

stress/creep superposition, time-strain superposition and time shear rate super-

position. All of these methods utilize dominant relaxation times under flow. The

time step-strain superposition method is specifically used to study aging time

and in turn predict how the sample ages with time. This method has been ap-

plied on amorphous polymers (O’Connell and McKenna, 2002, 1997; Struik,

1978) and recently in aging lapointe suspensions (Gupta et al., 2012; Joshi

and Reddy, 2008). Time-stress superposition and their convolution to an ar-

bitrary time domain was extensively studied on Laponite suspensions(Baldewa

and Joshi, 2012; Kaushal and Joshi, 2014). Attempts using scaling of non-linear

oscillatory frequency sweeps to obtain a strain rate-frequency superposition or

time strain rate superposition (SRFS) have been proposed (Wyss et al., 2007),

but so far they have been proven problematic (Erwin et al., 2010b). Here, we use

a more direct approach to explore a wide range of time scales under shear which

bears similarities to Time Temperature Superposition (TTS) used in polymeric

systems, but with shear used to control the effective temperature in the glass.
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6.1 Convective Cage Release in near Hard Sphere

Colloidal Glasses

We measure the full viscoelastic spectrum of sheared colloidal glasses through

OSR and determine the characteristic crossover frequency, ωc, which provides a

direct measure of the shear-induced structural relaxation. The latter is attributed

to the microscopic yielding mechanism of convectively induced cage breaking

and is found to scale linearly with shear rate, γ̇. Moreover, viscoelastic spectra

at different γ̇ can be shifted to produce a strain rate-orthogonal frequency su-

perposition (SROFS). Therefore, in analogy with the convective constraint re-

lease (Marrucci, 1996) and time-temperature superposition (TTS) in entangled

polymers, convective cage release (CCR) in colloidal glasses can be probed by

SROFS. In addition to the dominant CCR mechanism, a rich response is de-

tected both at high and low frequencies. Brownian Dynamics (BD) simulations

in combination with experiments allow us to attribute the high frequency mis-

match of the viscous modulus, G′′, to shear-induced in-cage slowing down in

agreement with (Koumakis et al., 2012a) and the low frequency deviations at

high shear rates to hydrodynamic interactions.

We used sterically stabilized poly(methyl methacrylate) (PMMA) nearly

hard-sphere particles of 196 nm radius with polydispersity σ ' 20%, dispersed

in an octadecene/ bromonaphthalene solvent nD = 1.485) to minimize resid-

ual van der Waal’s attractions and evaporation. Volume fractions, initially esti-

mated from random closed packing (φrcp = 0.67), were precisely determined by

matchingG′ to the master curve provided by (Koumakis et al., 2012b). OSR was

performed using an ARES-G2 (TA) rheometer with a home modified normal

force control loop, equipped with a custom built open bottom double wall Cou-

ette geometry (Kim et al., 2013; Vermant et al., 1997). Steady shear flow was

imposed in the tangential direction and oscillatory motion vertically. We investi-

gated tangential shear rates, γ̇, from 10−4 to 1 s−1 (≈ 10−5 to 10−1 Pe), reported

below by the dimensionless Peclet number, Pe = γ̇tB, where tB = R2/D0

(= 0.158 s) the free Brownian time and D0 the bare diffusion coefficient. Or-
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thogonal frequency sweeps at a low strain amplitude (∼ 0.7%), in the linear

regime Fig. 6.1 (b), were performed once steady state shear with γ̇ was reached.

To prevent slip at low Pe < 1 tools were roughened by coating of similar

PMMA particles (Ballesta et al., 2008). Moreover, we largely avoided mea-

surements in the shear banding regime (at very low Pe) (Besseling et al., 2007)

except for the highest φ = 0.64 and for Pe < 10−4. Complementary, we con-

ducted BD simulations (Foss and Brady, 2000) using 50000 particles with 10%

polydispersity and periodic boundary conditions for φ = 0.62 at rest, Pe = 0.01

and 0.1 ).
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Figure 6.1: (a) Orthogonal frequency sweep and tangential frequency sweep
at rest. The frequency sweep is representative of a colloidal glass
for all frequencies. Moreover at rest both the orthogonal and tan-
gential frequency sweep matches indicating a homogeneous sample
(b) Orthogonal dynamic strain sweep, under no flow conditions,
used to determine the linear regime. A strain amplitude well inside
this regime (∼ 0.7%) was also used for OSR measurements under
steady shear.

OSR experiments were performed at various Pe and three volume frac-

tions, 0.60, 0.61, and 0.64. Fig. 6.2 (a) shows orthogonal frequency sweeps

at φ = 0.61, performed at different Pe. At low Pe the OSR reveals a response

similar to the quiescent glass Fig. 6.1 with G′ > G′′ for all ω ’s measured.

As Pe is increased flow induces microstructural changes and speeds up internal

dynamics as manifested by a crossover frequency, ωc (at G′ = G′′), entering the

experimental window. SROFS was produced through shift of the data in the x-

and y-axes by a factor, a, and b, respectively, in a way that ωc, for all Pe coin-

cide. In the regime where ωc is not measurable the shift is performed in order to

match better the full viscoelastic spectra. Fig. 6.2 (b), (c) and (d) show SROFS
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results for HS glasses at φ = 0.60, 0.61, and 0.64. In all measurements two dis-

tinct frequency regimes are separated by ωc. For ω > ωc (short timescales) the

elastic moduli G′ superimpose for all Pe whereas G′′ data exhibit an increase

with Pe (see arrow in Fig. 6.2). For ω < ωc (long timescales) the trend varies

with volume fraction. In Fig. 6.2 (b), for φ = 0.60, G′ and G′′ superimpose well

with slopes of 1.1 and 0.8, respectively. At φ = 0.61, G′ and G′′ are closer to

each other and exhibit slopes of 0.9 and 0.7 respectively (Fig. 6.2 (c)), while at

φ = 0.64 (Fig. 6.2 (d)) G′ and G′′ are almost identical with a slope of about 0.6.
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Figure 6.2: (a) The orthogonal frequency sweeps at φ = 0.61 for Pe = 2×10−1,
2×10−2, 2×10−3 and 2×10−4 . SROFS data at φ = 0.60 (b), φ =
0.61 (c) and φ = 0.64 (d). The colormap in (a), (b), (c) and (d) from
blue to red indicates steady shear from low to high Pe. Solid black
lines indicate G′ (filled/half filled symbols) and G′′ (open symbols)
fits for G′′ > G′.

In addition, for high Pe and low OSR ω the response is rather rich and

unexpected. This is better seen in conjuction with Fig. 6.3 (a) and (b) where we

show for φ = 0.61 the orthogonal stress amplitude, σortho as a function of Pe

and OSR ω, respectively and indicate liquid (open symbols) and solid-like (filled

symbols) regimes. While for low Pe we mainly probe solid-like response, as
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the terminal flow regime in OSR is outside of the experimental window, as Pe is

increased the relaxation due to convective cage release (or shear-induced out-of

cage diffusion) dominates the response, and liquid-like behavior is manifested

at low OSR ω. Interestingly, at high steady shear Pe and low OSR ω we detect

(beyond experimental error) a reentrant solid-like response and an increase of

σortho with Pe (Fig. 6.3 (a), (b)). This response, barely detectable at φ = 0.6

(Fig. 6.2 (b)), is clearly seen at φ = 0.61 (Figs. 6.2 (c) and 6.3 (a), (b)) and

becomes more pronounced at the highest φ = 0.64 (Fig. 6.2 (d)).
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Figure 6.3: (a) σortho vs. Pe at ω = 0.1, 1 and 10 rad/s. (b) σortho vs ω at Pe = 1,
0.02, 2×10−4 and 0 for φ = 0.61. Filled symbols indicate solid-like
response (G′ > G′′) and open liquid-like response (G′ < G′′).

Fig. 6.4 (a) displays the flow curves at different volume fractions (lines) to-

gether with the steady state stress reached before the OSR was performed (filled

symbols). The crossover frequency, ωc, is plotted for all φ as a function of Pe

in Fig. 6.4 (b). As seen here, ωc exhibits a clear linear dependence with Pe over

three decades for all φ. Interestingly, the crossover frequency is also φ indepen-

dent suggesting that the in-cage to out-of-cage transition time is not changing

within the glassy region (φ = 0.6 to 0.64) and for Pe < 1 studied here. The

horizontal and vertical scaling factors used in SROFS (Fig. 6.2) are depicted in

Fig. 6.4 (c) and (d). In agreement with ωc, the horizontal shift factor, a, rescaling

time, also varies linearly with Pe (Fig. 6.4 (c)). In analogy with TTS in poly-

mers where the horizontal shifting factor relates to the temperature dependent

diffusion coefficient (Rubinstein and Colby, 2003), here a reflects the shear rate

dependence of the transition from in-cage to out-of cage motion. Our findings

are in agreement with the linear scaling predicted by MCT (Fuchs and Cates,
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2002, 2003b) for HS glasses, although confocal microscopy experiments with

similar PMMA particles under low Pe shear have shown a power-law exponent

for the long time diffusion that ranges from 0.8 (Besseling et al., 2007) to 1

(Eisenmann et al., 2010).

Since b is essentially used to shift the plateau modulus it reflects the effect of

shear on the in-cage free volume, similarly with the TTS where it represents the

temperature dependence of the density (Rubinstein and Colby, 2003). Hence b,

which follows the flow curve dependence (Fig. 6.4 (d)), is linked to the max-

imum limit of in-cage particle displacements prior to yielding and convective

cage release. For the highest φ(= 0.64), b ' 1 indicating the lower deforma-

bility under shear before cage release due to the smaller in-cage free volume.

These observations are in line with reports of microscopic particle rearrange-

ments in similar HS glasses by LS-Echo (Petekidis et al., 2002) where, upon

increasing φ, irreversible rearrangements grow much sharper beyond a critical

yield strain, suggesting that cages break more abruptly and the system exhibits

at the microscopic level a more brittle yielding.

To further clarify the experimental results, we resorted to BD simulations to

examine shear-induced dynamics at φ = 0.62. In Fig. 6.5 (a) we plot the average

mean square displacement, 〈∆r2〉, from BD simulations at rest and for different

Pe as a function of t/tB. At short times we detect a drop of 〈∆r2〉 with increas-

ing Pe (arrow in 6.5 (a)) due to a shear-induced suppression of in-cage diffu-

sivity first reported in (Koumakis et al., 2012a). When converted to viscoelastic

moduli, using the Generalized Stokes-Einstein (GSE) relation (Mason, 2000),

|G∗(ω)| ≈ kBT/πa(∆r2(1/ω))Γ[1 +α(ω)] (where α(ω) ≡ d ln(∆r2(t))/d lnt

at ω = 1/t), such decrease of short-time in-cage motion is manifested as an

increase of G′′ with Pe at high OSR ω (arrow in Fig. 6.5 (b)). This is in agree-

ment with SROFS experiments (Fig. 6.2) and hence verify that the high fre-

quency deviations inG′′ are linked to such shear-induced slowing down at short-

time scales, while Hydrodynamic Interactions (HI) are not important. The phe-

nomenon is microscopically attributed to the build up of structural anisotropy

under shear (Koumakis et al., 2012a), as shown in the 2D projection of the
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Figure 6.4: (a) Flow curves superimposed with the orthogonal steady state
stress at different Pe (φ = 0.64, φ = 0.61, φ = 0.60 ). The solid
line (−) indicates the flow curve at φ = 0.635 with the sudden up-
turn indicative of shear thickening. (b) Crossover frequency ωc vs.
Pe. (c)The horizontal shifting factor, a and (d) the vertical shift-
ing factor, b used in SROFS (Fig. 6.2). The vertical dashed lines
indicate the frequency regime where ωc is accessible. The symbols
represent φ = 0.64, φ = 0.61 and φ = 0.60 .
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difference of the pair correlation function, g(r) under shear from that at rest

(Fig. 6.5 (c)) in the velocity-gradient (xy) plane. Similarly, temperature induced

structural changes in supramolecular polymers were considered to be the origin

of G” deviations at high frequencies in TTS (Seiffert and Sprakel, 2012).
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Figure 6.5: (a) Mean Square Displacement from BD simulations for φ = 0.62
when Pe = 0, 0.01 and 0.1 during steady flow. (b) Shear rate
orthogonal frequency superposition data deduced from BD. G′ and
G′′ obtained by converting MSD data of (a) for Pe = 0, 0.01 and
0.1 (Mason, 2000). (c) g(r) in the velocity-gradient plane for Pe =
0.1 in steady state flow. (d) flow curve from BD simulations

Whereas BD simulations capture experimental findings at high ω they clearly

deviate for ω < ωc and high steady shear Pe (the vertical dash lines in Fig. 6.5

(a) and (b) separate the two regimes). At long times, 〈∆r2〉 increases linearly

with time, leading to Maxwell type terminal flow with G′′ and G′ following

power-law slopes of 1 and 2 with ω, respectively (Fig. 6.5 (b)). Such simple flow

response is markedly different from OSR experiments where G′ and G′′ never

acquire these terminal slopes. The discrepancy is becoming more pronounced at

higher φ’s where the low ω regime with G′′ > G′ is essentially absent (Fig. 6.2

(d)) and the slopes of G′ and G′′ merge and decrease towards ∼ 0.5. This in-
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dicates a power-law dependence of the relaxation spectrum, possibly due to the

presence of various sizes of particle clusters not present in BD due to the absence

of HI. In experiments however, at high Pe where HI become important, hydro-

clusters (Mewis and Wagner, 2012) i.e. large length-scale transient structures

are formed, increasing the suspension viscoelasticity and eventually leading to

shear thickening. Although absent in BD simulations, as seen in the flow curve

( Fig. 6.5 (d)), shear thickening was indeed detected in experiments (Fig. 6.4

(a), for φ = 0.635) at Pe, higher but close to those studied in OSR. Hence, it is

reasonable to assume that few of these hydroclusters could be present as precur-

sors, giving rise to the unexpected deviation from simple terminal flow and the

existence of a reentrant solid-like response at low OSR ω.
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Figure 6.6: tc/tB calculated from ω for experiments φ = 0.64, φ = 0.61 and
φ = 0.60 is extracted from BD simulations for φ = 0.62. tα/tB and
t2/tB respectively for φ = 0.62 calculated from (Besseling et al.,
2007)

In analogy with entangled polymers where convective constraint release

modifies the tube relaxation time under shear into 1/τ = 1/to + βγ̇ (Ianniru-

berto and Marrucci, 2014; Marrucci, 1996) (to the internal relaxation time at

rest and β a constant) similar dependence has been proposed for the structural

relaxation in concentrated colloidal suspensions and glasses (Fuchs and Cates,

2003b; Miyazaki et al., 2006). For a system with very long (or infinite) alpha re-

laxation, such as colloidal glasses, shear-induced flow governs the microscopic

dynamics as a consequence of convective cage release of particles. Then ωc
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provides a measure of 1/τ corresponding to the transition time from in-cage

to out-of-cage motion (as indicated by the GSE conversion), that scales lin-

early with Pe with lim
Pe→0

ωc = 0 congruent with an infinite α relaxation time

(to = tα → ∞) in a quiescent glass. Fig. 6.6 shows the relaxation times un-

der shear deduced from ωc both from OSR experiments and BD simulations;

the two having the same linear decrease but different in absolute values due to

HI. For comparison Fig. 6.6 includes the data from (Besseling et al., 2007)

corresponding to structural relaxation time, tα and the transition to out-of-cage

diffusion, t2; both however exhibiting clearly a weaker power-law dependences.

The relaxation time τ which we obtain here should be smaller than the long time

diffusion time and comparable to t2 from ref (Besseling et al., 2007), hence the

proximity of τ to t2 Fig. 6.6 is reasonable, although it is still unclear why a

lower power-law exponent(< 1) was detected in those experiments (Besseling

et al., 2007).

In summary, utilizing orthogonal superposition rheometry we are able to

measure for the first time the full viscoelastic spectra of a sheared colloidal

glass and obtain a scaled map of the dynamics of the system through a Strain

Rate Orthogonal Frequency Superposition. Through the scaling of the crossover

frequency, ωc, and the shift factor, b, this method revealed unambiguously a lin-

ear dependence of the terminal relaxation time on shear rate due to a convective

cage release. Moreover, SROFS spectra at high frequencies provided an in-

dependent verification of the constriction of short-time in-cage motion under

steady shear (Koumakis et al., 2012a) while comparison with BD simulations

suggest that deviations from a Maxwell type flow at the low frequency regime

of the SROFS spectra, maybe linked to the existence of shear thickening precur-

sors. Our findings provide valuable input to theoretical models and insights for

the understanding of other soft matter or even metallic glasses under flow.
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6.2 Orthogonal Superposition Rheometry of Star-

like micellar systems under steady shear 1

Here we use orthogonal superposition rheometry (OSR) to study the effect of

steady shear on the viscoelastic behaviour of a soft sphere colloidal glass. As

discussed above OSR combines two deformation modes, rotational steady shear

and orthogonal small amplitude oscillatory shear applied at the same time. In

this way, the orthogonal frequency sweeps measure the viscoelastic spectra of

the sample under shear (Kim et al., 2013; Mewis and Schoukens, 1978; Sim-

mons, 1966; Tanner, 1968; Vermant et al., 1997, 1998; Zeegers et al., 1995) and

recently also to control shear thickening (Lin et al., 2016). We have demon-

strated in the previous section the potential of orthogonal superposition rheom-

etry (OSR) in elucidating the mechanism of flow in model hard sphere col-

loidal glasses (Jacob et al., 2015). More specifically, we have shown that for

a range of volume fractions above the glass transition the shear-induced relax-

ation timescale scales linearly with applied rotational shear rate. We termed

this "convective cage release" in analogy with the convective constraint release

mechanism put forward for the relaxation of entangled polymer melts under flow

(Ianniruberto and Marrucci, 2014; Marrucci, 1996). Here, we expand on the

above study by presenting orthogonal superposition rheometry measurements

of a colloidal suspension that consists of star-like micelles, a well-characterized

system analogous to multi-arm star polymers (Loppinet et al., 2001; Roovers

et al., 1993; Willner et al., 1994). The linear and non-linear rheology of star-

like micelles has been extensively studied as a function of concentration both

above and below the glass transition and hence it can be used as a model system

for a colloidal suspension with soft interactions (Koumakis et al., 2012b; Poulos

et al., 2015, 2013; Renou et al., 2010).

For this study poly(ethylene-alt-propylene)-poly(ethylene oxide) block copoly-

mers were prepared by a two-step anionic polymerization (Allgaier et al., 1997).

The number-average molar mass (Mn) was 1300g/mol for the PEP block and

1This part is in collaboration with Dr. A. S. Poulos who supplied the star-like micelles and
helped with the experiments, write-up and discussion in this section
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20300g/mol for the PEO block corresponding to an overallMn = 21600g/mol

for the block copolymer. PEP-PEO block copolymers with this block ratio form

micelles in D2O with an aggregation number of 120 and a pair interaction po-

tential similar to regular star polymers (Laurati et al., 2005). Previous work

has demonstrated that no kinetic exchange of arms between micelles is possible

(Lund et al., 2006; Stellbrink et al., 2004). The absence of kinetic exchange en-

sures that the aggregation number remains constant with varying concentration

and temperature. The micelles can thus be considered as stable colloidal entities

with star-like pair interactions. Transparent solutions were obtained by dissolv-

ing the PEP-PEO polymer in deuterium oxide (D2O 99.8% atom D purchased

from Armar Chemicals). The solutions were left to equilibrate at room temper-

ature for at least one week before measurement. The effective volume fraction

φeff estimated as the ratio of the concentration, c, to the overlap concentra-

tion, c∗(= 3M/4πNAR
3
h), is calculated by using the polymer concentration and

the measured by dynamic light scattering hydrodynamic radius of the micelles

Rh = 36 nm (in dilute solutions). As the micelles can interpenetrate, φeff take

the value above one.
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Figure 6.7: Orthogonal Strain Sweep performed at different shear rates to iden-
tify the linear regime for φeff = 2.65.

Orthogonal superposition rheometry (OSR) was performed using an ARES-

G2 (TA) rheometer with a modified normal force control loop, equipped with

a custom built open bottom double wall Couette geometry (Kim et al., 2013;
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Vermant et al., 1997) in Soft matter rheology lab in Leuven. Steady shear flow

was imposed in the horizontal direction and a small strain amplitude oscillatory

motion was applied in the vertical direction. The range of rotational shear rates

that we investigated was from 0.0005 to 10 s−1. For each shear rate, a start-up

experiment was run and rotational shear stress was then measured as a function

of time. Orthogonal frequency sweeps in the linear regime were performed once

the rotational shear stress reached steady state, typically after 300 s for the high-

est to 800 s for the lowest shear rates. This waiting period corresponds to a total

strain of γ > 1 except at the two lowest shear rates of 0.0005 s−1 and 0.001 s−1

were the OFDS experiment was started after a total strain γ = 0.4 and γ = 0.75

respectively. The linear regime in ODFS was determined at three different ro-

tational shear rates by running orthogonal dynamic strain sweep experiments at

a fixed frequency of 1 rad/s (see Fig. 6.7). The linear regime at rest extends to

approximately γo = 1%, while under shear it increases to γo = 1% at 0.1 s−1

and 2% at 1 s−1. In the actual experiments we chose γo = 0.8% for shear rates

below 1 s−1. This was increased to γo = 1.2% for shear rates of 1 s−1 and above

to increase the maximum stress and hence the accuracy of the measurement. At

each rotational shear rate, orthogonal frequencies sweeps between 0.063 rad/s

and 15.7 rad/s were performed covering approximately two-and-a-half orders

of magnitude. Orthogonal shear strain sinusoidal oscillations were produced

at each specified frequency using a frequency response generator and analyser

(FRA1250, Solartron Instruments Schlumberger). The amplitude and phase of

the stress response were measured by integrating one oscillatory period, and the

results transformed to G′, G′′. At the lowest orthogonal frequencies, we waited

at least two full periods before starting the integration; this was progressively

increased as the frequency of the experiment was increased. The measurement

of a complete ODFS at each shear rate typically took between 20 and 40 min.

The dynamic frequency sweep (DFS) and flow curve of the star-like mi-

celles solution at φeff = 2.65 are shown in Fig. 6.8. In order to test the or-

thogonal superposition setup the DFS was obtained both in rotational and or-

thogonal oscillation. In Fig. 6.8 we show that the orthogonal DFS (triangles) is

identical to the rotational DFS (lines) validating the accuracy of the orthogonal
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Figure 6.8: (a) DFS of a concentrated star-like micelle solution at φeff = 2.65.
The solid (G′) and dashed (G′′) lines show the DFS obtained with
the small-amplitude oscillation in the horizontal plane while the
points (open and solid circles) were obtained with the oscillation
in the vertical (orthogonal) direction under the same conditions. (b)
Flow curve of the same sample. The line indicates the flow curve
obtained by continuously varying the shear rate, while the circles
indicate the stress obtained at steady state after a step rate experi-
ment.

measurements. The measured DFS is characteristic of a concentrated colloidal

suspension which approaches the glass transition and therefore exhibits a soft

glassy response with a crossover at a low frequency, i.e. slowly flowing at long

time scales and with elastic behaviour dominating at all frequencies above the

crossover frequency which here was ωc = 0.01 rad/s. However, below ωc,

G′ and G′′ present power-law behaviour with exponents 1 and 0.5 respectively

rather than the typical exponents of 2 and 1 seen in Maxwell type viscoelastic

fluids. This is most likely due to the small frequency range that is accessible to

experiment below ωc. It is conceivable that if we were able to measure up to

one order of magnitude lower in frequency we would obtain the expected ter-

minal behaviour. Similarly, the flow curve shows a plateau in stress σ = 20 Pa

and shear thinning behaviour at large shear rates in line with previous measure-

ments on the same system (Koumakis et al., 2012b). Of course, both the low

frequency crossover in the DFS and the reduction in stress at shear rates be-

low γ̇ < 0.025 s−1 provide evidence of an additional slow relaxation with a

timescale of 100 s. This has been observed in a variety of soft colloidal glasses

especially of ultrasoft polymeric micelles and multi-arm stars (Christopoulou

et al., 2009; Erwin et al., 2010a; Koumakis et al., 2012b; Poulos et al., 2013)

and is commonly attributed to out-of-cage activated mechanisms assisted by lo-
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cal polymeric fluctuation at the outer blob level or, in the case of colloids with

harder interparticle potential by dynamic heterogeneities (Cipelletti and Ramos,

2005; Helgeson et al., 2007; Pham et al., 2008; Siebenbürger et al., 2009). The

slow non-diffusive relaxation might also be related to the unusual power-law ex-

ponents of 1 and 0.5 below ωc, as normal terminal behaviour assumes diffusive

exponential type relaxations.

In Fig. 6.9 we show the orthogonal dynamic frequency sweeps (ODFS) for

a range of rotational shear rates in the range 0.001 s−1 to 1 s−1. Even at the low-

est shear rate shown here (γ̇ = 0.001 s−1) the ODFS show a little change from

the DFS at rest, with the elastic modulus G′ decreasing and the viscous modu-

lus G′′ slightly increasing over the whole frequency range. At γ̇ = 0.0025 s−1

(Fig. 6.9(c)) the lower crossover frequency ωc moves inside the experimental

frequency window. The crossover frequency can be used to estimate a structural

relaxation time-scale τ = 1/ωc . As the steady shear rate is further increased,

ωc moves to higher frequencies indicating a decreasing structural relaxation

timescale. Above a critical shear rate, γ̇cr = 0.025 s−1, ωc is still increasing

with shear rate, but the whole shape of the ODFS also changes rather markedly

as seen in Fig. 6.9 (d). At frequencies below ωc, G′ and G′′ become parallel

and equal to each other with the same power-law exponent, ν ≈ 0.5. We also

observe a second crossover frequency. Hence, the overall effect of shear flow

on the ODFS is twofold. Firstly, it speeds up continuously the structural relax-

ation. Secondly, above a critical shear rate of approximately γ̇cr = 0.025 s−1 it

changes the power-law behaviour of G′ and G′′ in the terminal regime.

Since the shape of the ODFS changes at γ̇cr we attempt to create two master

curves by shifting the curves in the x and y axes for shear rates below and above

γ̇cr. Below this critical shear rate we can superimpose the ODFS by shifting the

curves along the frequency and moduli axes. In Fig. 6.10 (a), eight rotational

shear rates in the range 0 0.025 s−1 are shifted in such a way that the crossover

point coincides. In this low shear rate regime the superposition works well. The

G′ curves are identical to within experimental accuracy. On the other hand, there

is a consistent increase in the peak value ofG′′ as the shear rate is increased, and
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Figure 6.9: Orthogonal Frequency Sweep at performed at different γ̇ (a)
0.0001 s−1 (b) 0.001 s−1 (c) 0.025 s−1 and (d) 0.1 s−1 and com-
pared with Orthogonal DFS at rest (red line). The straight lines
indicate G′ and the dashed lines indicate G′′
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Figure 6.10: Superposition of the orthogonal Storage and Loss modulii ob-
tained for shearates (a) below 0.025 s−1 and (b) above 0.025 s−1

also a slight decrease at higher frequencies. In Fig. 6.10 (b), the same superpo-

sition is attempted for shear rates above the critical shear rate γ̇cr . In this high

shear rate regime, the superposition is less satisfactory, especially for frequen-

cies below the crossover frequency. It is clear that G′ develops a shoulder as the

shear rate is increased. This shoulder leads to the second crossover frequency

with G′′ that is evident in Fig. 6.9 (d).
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Figure 6.11: (a) The frequency scaling factor, a, and (b) the modulli scaling
factor, b, for star-like micelles and nearly hard sphere glasses.

As we have seen before the crossover frequency (or equivalently the fre-

quency shift factors) can be used to estimate the rate or timescale of the struc-

tural relaxation under shear. In Fig. 6.11, the horizontal shift factor a is plotted

as a function of shear rate and compared to previously obtained data on PMMA

hard spheres (Jacob et al., 2015). It can be seen that for the star-like micelles,

the shift factor a increases sub-linearly with rotational shear rate. A least squares

non-linear fitting of the data suggests that a ∝ γ̇ν with ν = 0.8±0.04. By com-
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parison, the horizontal shift factor for hard spheres exhibits a linear increase

i.e. it yields ν = 1, which is consistent both with some previous experiments

(Eisenmann et al., 2010) and with mode coupling theory (MCT) predictions

(Fuchs and Cates, 2002, 2003b), although an exponent of 0.8 was also found ex-

perimentally in model hard-sphere glasses by confocal microscopy under shear

(Besseling et al., 2007).

Hence, the weaker power-law dependence of the crossover frequency (or

equivalently the shift factor a) for the soft interpenetrable star-like micelles com-

pared to hard sphere particles indicates that in the former shear is less effective

in fluidizing the glassy suspension or speed up the structural relaxation time.

Similarly, a sub-linear power-law dependence with an exponent of 0.9 has been

found for suspensions of soft hydrogel microspheres by strain-rate frequency

superposition (Wyss et al., 2007) although such an approach is questionable as

it has been shown not to be applicable for multi-arm star polymers (Erwin et al.,

2010b). Nevertheless, as hydrogel microspheres are intermediate in softness be-

tween PMMA hard spheres and star-like micelles, it is tempting to suggest that

the structural relaxation in sheared hard sphere systems exhibit a simple linear

dependence on shear rate which then decreases to a weaker power-law depen-

dence for softer particles. Still, the specific details of the soft potential may be

important, introducing different effects when chain interpenetration in grafted

colloids are present in comparison with the case of microgels where shape de-

formability is important instead. On the theory side, it should be noted that such

potential dependent response is not supported by MCT which predicts a linear

dependence irrespective of the form of the potential (Fuchs and Cates, 2002,

2003b). Therefore it is possible that the observed behaviour does not stem from

the ultra-soft potential but from the polymeric nature of the star-like micelle

corona. It is certain that the arms of adjacent micelles are interpenetrated at such

high effective volume fractions. It is also possible that the polymeric arms act as

an additional constraint on shear-induced cage breaking. Thus qualitatively the

effect of interpretation would be to reduce the effectiveness of shear in fluidiz-

ing the sample, exactly as we observe. This of course is not taken into account

by MCT. On the other hand, the non-linear Langevin equation theory utilized
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to model glassy suspensions predicts an exponent of 0.8 both for hard spheres

(Saltzman et al., 2008) and multiarm star polymers (Yang and Schweizer, 2011)

as shear thinning exponent.

In Fig. 6.11 (b) we show that for star-like micelles the vertical shift factor

b does not depend on shear rate and is always close to one. This is also evi-

dent from the ODFS in Fig. 6.9. The crossover frequency is always at around

G′ = G′′ = 300 Pa for all shear rates. For hard spheres, b is volume fraction

dependent. At φ = 0.6, b substantially increases with shear rate whereas at a

higher volume fraction of φ = 0.64 it is close to one over the whole range (Fig.

6.11 (b). As b shifts the plateau modulus it reflects the effect of shear on the free

volume inside the cage. We previously argued that for hard spheres, a loosely

packed cage at lower φ will deform more under shear before breaking with a

much greater effect on the in-cage free volume compared to tightly packed cage

at higher φ. A similar effect might be true for the star-like micelles. The strong

interpenetration of adjacent micelles creates a tightly packed cage which can-

not deform much before breaking and hence the effect on the free volume is

minimal. Alternatively, one can argue that for star-like micelles (and similarly

multiarm star polymers) deformation of the cage due to shear flow will not af-

fect the high frequency part of the viscoelastic spectrum which is related to the

polymeric nature of the particles and more specifically the local blob fluctua-

tions. This is congruent with the much weaker concentration dependence of

the plateau modulus above the glass transition seen in a variety of ultrasoft col-

loidal particles such as multiarm star polymers (Erwin et al., 2010a; Koumakis

et al., 2012b; Yang and Schweizer, 2010), and in contrast with the nearly hard

sphere PMMA particles or the core-shell microgels (Koumakis et al., 2012b;

Siebenbürger et al., 2009)

The viscoelasticity of the glassy suspension at low shear rates γ̇ = 0.025 s−1

is relatively straightforward to comprehend. An ODFS that does not change

shape but is shifted only along the frequency axis implies that the physical mech-

anism of the relaxation remains the same. The major effect of shear is to speed

up the internal relaxation by introducing an additional timescale τshear ∝ 1/γ̇0.8.
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Figure 6.12: (a) The frequency scaling factor, a, and (b) the modulli scaling
factor, b, for star like micelles and nearly hard sphere glasses.

However, above γ̇ = 0.025 s−1, the terminal behaviour of G′ and G′′ changes

substantially. Both G′ and G′′ present power-law exponents of 0.5 and they

become progressively of equal value over an extended frequency range of ap-

proximately one-and-a-half orders of magnitude. It is clear that in this high

shear rate regime the physical mechanism of the relaxation has also been modi-

fied and it is not anymore the same as in the quiescent glass with just a change

of timescales. The specific shape of the viscoelastic spectrum suggests that the

relaxation modulus G(t) has a power-law decay instead of an exponential decay.

To clarify this statement, we show in Fig. 6.12 (a) numerical simulation of two

functional dependences of the relaxation modulus, a stretched exponential with

stretching exponent β and a power-law with exponent µ :

G(t) = Goexp(−t/τ)β β = 0.4 (6.1)

G(t) = Go/(1 + (tτ))µ µ = 0.6 (6.2)

In Fig. 6.12 (a) the above relaxation moduli are plotted and compared to

a single exponential relaxation which corresponds to the Maxwell model. As

expected both the stretched exponential form (especially with such a small ex-

ponent β = 0.4) and the power-law form produce relaxations that are much

broader than the Maxwell model. In Fig. 6.12 (b) the relaxation moduli are

transformed by numerical integration to G′ and G′′ (Brader et al., 2010; Ferry,
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1980). The difference in the terminal behaviour between the two models is clear.

The stretched exponential model shows normal terminal behaviour whereas for

the power-law model G′ ≈ G′′ ∝ ω0.5. The similarity of the terminal behaviour

of these toy models with the measured ODFS strongly suggests that as the shear

rate is increased the relaxation takes the form of a power-law. The observation

of a second crossover frequency above γ̇ = 0.3 s−1 suggests that the power-law

behaviour eventually ends and the structure fully relaxes. power-law relaxations

are normally associated with critical gels (Winter and Chambon 1986) and have

been monitored accordingly in order to determine the gelation point in a variety

of soft matter systems. Moreover, multi-step relaxations, such as the ones ob-

served here with alternating exponential and power-law time dependence, have

been reported in computational studies of colloidal glasses with the addition of

attractive interactions and are associated with sub-diffusive behaviour of single

particle displacements (Chaudhuri et al., 2010; Khalil et al., 2014). However,

in our system there are strictly no attractions between micelles so a connection

is not immediately obvious. Another possibility is that shear produces transient

structures of particles with highly correlated dynamics, called shear transforma-

tion zones (Chikkadi et al., 2011; Falk and Langer, 1998). These structures have

a range of different sizes and hence will relax with a range of different timescales

giving rise to power-law relaxations. It is also noteworthy that the critical shear

rate γ̇ = 0.025 s−1 where the relaxation changes from multi-exponential to

power-law corresponds to the inflexion point in the flow curve (Fig. 6.9 (c)).

Below this critical shear rate the flow curve shows increasing stress with rate,

whereas at higher rates the stress is almost independent of shear rate exhibiting

a pseudo-yield stress plateau. It is conceivable that the power-law relaxation of

the ODFS above γ̇cr is related to the stress plateau where flow is thought to occur

through local plastic rearrangements of the particles (Bocquet et al., 2009). On

the other hand, below γ̇cr the slow relaxation of the soft colloidal glass which

is also present at rest, is fast enough to homogenize the flowing colloidal glass,

dominating over the externally shear imposed structural relaxation

In summary, we have used orthogonal superposition rheometry (OSR) to di-

rectly measure the viscoelastic properties under shear of a concentrated solution

Ph. D. Thesis, Jacob, 2016 120



Section 6.2: OSP star-like micelles

of star-like micelles above the colloidal glass transition, and hence elucidate its

mechanism of flow. The star-like micelle solution at rest has all the characteris-

tics of a weak colloidal glass, with a crossover frequency ωc ∼ 0.01 rad/s and

elastic behaviour (G′ > G′′) in a wide frequency range above ωc, as well as an

apparent yield stress. In OSR a small-amplitude oscillatory shear deformation

is simultaneously applied to a sample under steady shear but in an orthogonal

direction. OSR is sensitive enough to obtain orthogonal dynamic frequency

sweeps (ODFS) in a wide rotational shear rate range between 5 × 10−4 s−1 to

10 s−1. As expected, the progressive increase of shear rate fluidized the col-

loidal glass and has a twofold effect on the ODFS obtained at steady state af-

ter the initial transient behaviour. Firstly, G′ decreases and G′′ increases over

the whole range of frequencies measured. Secondly, the crossover frequency

ωc steadily moves to higher values reflecting a reduced structural relaxation

timescale. We show that the dependence of ωc on the shear rate is sub-linear

and follows a power-law with exponent 0.8 by comparison for hard spheres ωc

varies linearly with shear rate as we have shown in the previous chapter(Jacob

et al., 2015). The shape of the ODFS changes at a critical shear rate of approx-

imately γ̇cr = 0.025 s−1 which corresponds to the inflexion point in the flow

curve. At low shear rates the ODFS shape is nearly identical to the one at rest

but shifted along the frequency axis. On the other hand, above γ̇cr the ODFS ter-

minal behaviour changes, withG′ andG′′ becoming equal and both proportional

to ω0.5. ODFS at different shear rates can be superimposed by shifting along the

frequency and moduli axes producing two ODFS master curves above and be-

low γ̇cr. The changing shape of the ODFS at γ̇cr is indicative of a structural

relaxation that changes from multi-exponential to power-law. This is discussed

in terms of localized plastic rearrangements or shear transformation zones that

are thought to govern the flow of colloidal glasses.
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6.3 Orthogonal Superposition Rheometry of col-

loidal glasses during transient shear

6.3.1 Orthogonal superposition during start-up shear

In this section the transient start-up shear and oscillatory shear response is in-

vestigated by orthogonal superposition shear. A specific γ̇ is applied in the

horizontal direction and then a small amplitude perturbation is superimposed

in the orthogonal direction in order to extract an orthogonal elastic and viscous

moduli during start-up shear. The horizontal transient start-up measurements

were performed with varying rates from 0.0001 s−1 to 0.5 s−1. For all mea-

surements with orthogonal probing, oscillatory shear is performed at γo = 1%

and ω = 10 rad/s. The colloidal glasses investigated have a particle radius

R = 196 nm dispersed in a mixture of Octadecene and Bromonapthalene

(nD = 1.48). The solvent mixture was chosen to closely match the refractive

index of the colloidal particles and minimise van der Waal forces. Two vol-

ume fractions φ = 0.60, 0.61 are probed during transient flows with orthogonal

superposition.

An oscillatory signal is generated by high-accuracy multifunction data ac-

quisition board, interfaced with LabVIEW (NI PCI-6281 and LabVIEW 8.5,

National Instruments) for orthogonal superposition of LAOS in hard sphere col-

loidal glasses and the orthogonal superposition of transient shear for colloidal

glasses. The input signal and the output stress signal is collected and analyzed

externally using a homemade MATLAB code to extract G′orth and G′′orth.

Fig. 6.13 depicts the start-up transients for a hard sphere glass with φ = 0.61

for all Pe < 1. At low Pe, in Fig. 6.13 (a), (b) and (c) one can observe that

there is very small increase in the orthogonal moduli. This is congruent to the

findings at high frequency data and low horizontal Pe in Fig. 6.2 (a) where the

G′′ on orthogonal superposition of steady shear was found to deviate to higher

values with increasing the shear rate. But as the Pe is increased as seen in Fig.

6.13 (d) G′orth and G′′orth change with time during transient test. Additionally,
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Figure 6.13: Orthogonal time sweep performed during start-up shear tests with
(a) γ̇ = 7.9×10−5 Pe (b) γ̇ = 1.6×10−3 Pe (c) γ̇ = 1.6×10−2 Pe
and (d) γ̇ = 7.9×10−2 Pe for hard sphere particleR = 196 nm at
φ = 0.61. The red lines indicate the horizontal steady state stress
and the filled symbols indicate G′ while unfilled symbol G′′. The
orthogonal frequency was set at 10 rad/s

123 University of Crete, Greece



Chapter 6: Orthogonal Superposition Rheometry

we also observe the relaxation after steady shear flow, however with quite slow

relaxation. TheG′orth andG′′orth tend to go back to its initial values after the flow

cessations.

As the horizontal shear rate is extended towards Pe = 1 to approaches the

scenario of a liquid-like response with G′′orth > G′orth captured in Fig. 6.13 (d).

The transient relaxation of stress is observed in all cases after shear cessation.

During this relaxation, as expected the the G′orth and G′′orth tend to go back to

its initial values at rest. The most interesting aspect here is that it seems to take

more than ∼ 350 tB for a system to reach equilibrium values in the orthogonal

moduli. This indicates that orthogonal moduli could be sensitive to bulk flow

transitions during start-up shear.

6.3.2 Orthogonal superposition during LAOS

In this section, we probe the transients during large amplitude oscillatory shear

by superimposing a small amplitude perturbation in the orthogonal direction.

This was done in order to extract the instantaneous viscoelastic moduli dur-

ing oscillatory shear. The horizontal oscillatory shear was kept at a constant

frequency of 0.1 rad/s and the strain amplitudes where changed such that it

reaches non-linear regime of the colloidal glass. It was empirically observed

that instantaneous G′orth and G′′orth can be achieved only if the orthogonal fre-

quency is 100 times the frequency of the horizontal oscillation hence frequency

was fixed at ω = 10 rad/s and the strain at γo = 1%. In Fig. 6.14, the left axis is

plotted with the orthogonal viscoelastic moduli and the right axis is the horizon-

tal stress with respect to time. During SAOS, the orthognal viscoelastic moduli

does not show any fluctuations as seen in Fig. 6.14 (a). As the strain amplitude

(γo = 500%) of the horizontal oscillation progress into the non-linear regime

the instantaneous G′orth and G′′orth start revealing damped oscillatory behaviour

(see Fig. 6.14 (b)).

In an attempt to relate the instantaneous horizontal strain, strain rate and

stress with respect to the orthogonal viscoelastic moduli we present them in

Ph. D. Thesis, Jacob, 2016 124



Section 6.3: OSP transient shear

(a)
0 50 100

20

40

60

80

100

 

G
' or

th
,G

'' or
th

 (P
a)

time (s)

 G'
 G''

(b)
0 50 100

100

120

140

 

G
' or

th
,G

'' or
th

 (P
a)

time (s)

 G'
 G''

Figure 6.14: Orthogonal time sweep performed at different γo (a) 5% (b) 500%
for R = 196 nm and φ = 0.61
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Figure 6.15: Orthogonal time sweep performed at γo = 500% shown as a func-
tion of (a) horizontal strain and (b) horizontal stress for R =
196 nm and φ = 0.61
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Fig. 6.15. From Fig. 6.15 (a) it can be seen that soon after γhor → γo and

γ̇hor → 0 there seems to be a maximum separation between G′orth and G′′orth

such that G′orth > G′′orth. Immediately after γhor → 0 and γ̇hor → γ̇o it can

be seen that G′ ∼ G′′. In order to attempt a quantitative comparison we define

a phenomenological non-dimensionless parameter relative elasticity, R, which

has found to be robust quantity to follow state transitions (McKenzie and Vlas-

sopoulos, 2016).
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Figure 6.16: Orthogonal time sweep at performed at 500%γo with (a) Relative
Elasticity, R (b) rate of relative elasticity, dR/dt for R = 196nm
and φ = 0.61

The Relative Elasticity is defined as

R =
1

(tan2 δ + 1)
(6.3)

where

tan δ =
G′′

G′
(6.4)

In Fig. 6.16 (a) Relative elasticity, R, displays a dampened oscillating be-

haviour. As observed in Fig. 6.15 one can see changing of slope at γ → 0 and

γ → γmax. In order to display the change of slope the derivative of relative elas-

ticity is represented with respect to time. It can be clearly observed that the tran-

sitions during change in direction of horizontal strain in LAOS is very abrupt.

On the other hand, transition at maximum shear rate is much smoother. Al-

though, as noted before the intensity of these transitions seem to be decreasing
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with time for the experimental window observed long time measurements are

essential to identify the equilibrium state of orthogonal moduli during LAOS.

Thus different state transitions, abrupt and smooth transitions, can be observed

within a cycle of large amplitude oscillatory shear.

In this chapter we investigated the viscoelastic behaviour of colloidal glasses

with the aid of orthogonal superposition rheometry. Colloidal glasses were

sheared in the horizontal direction and the a linear oscillatory perturbation was

superimposed in the orthogonal direction . Hard sphere colloidal glasses ex-

hibited a crossover transition from liquid to solid-like repose at high rates. The

crossover frequency was found to be a linear function of the shear rate. Or-

thogonal frequency superposition was performed from the linear viscoelastic

spectra obtained. Deviations were observed at short and long times. The short

time deviations were attributed to cage anisotropy corroborated with BD simu-

lations. On the other hand long time deviations were speculated arise from the

presence of hydrodynamics. Soft star-like micelles were also investigated using

this technique to understand the effect of interparticle interaction in steady shear

flow and the crossover frequency was found have a sub linear dependence to the

shear rate. This is speculated to be due the interpenetrable soft nature of the

star-like micelles. Finally, linear viscoelasticity under transient start-up shear

and large amplitude oscillatory shear is also extracted. Abrupt state transition

at maximum of horizontal strain amplitude and smooth state transition at zero

strain was observed during a large amplitude oscillatory shear.
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CHAPTER 7

BROWNIAN DYNAMICS SIMULATIONS OF

BINARY COLLOIDAL GLASSES

Glass formation by a single species has been studied extensively. This has led to

exploration of different types of glasses formed. Binary mixtures are much less

explored although there are relevant applications like transport through disor-

dered media like cells and glass ion conductors (Angelini et al., 2011; Ellis and

Minton, 2003; Höfling et al., 2006; Horbach et al., 2002; Sentjabrskaja et al.,

2016). In highly asymmetric size hard sphere mixtures, new types of glass were

found to exist (Imhof and Dhont, 1995). Additionally, in these highly asym-

metric size ratios attractive potential developed between the big particles due to

depletion effects induced by the small particles (Crocker et al., 1999). Another

type of glass that emerged was formed by the small soft particles that developed

asymmetric cages to trap the big soft particles (Mayer et al., 2008). Recently,

new phases in glass was observed to emerge when small nearly hard sphere

colloids were mixed with large multiarm stars (Truzzolillo et al., 2013). MCT

predicts the existence four types of glasses for highly size anisotropic binary

mixtures of hard spheres; glass partially frozen by caging, glass partially frozen

by depletion, torroncino glass driven by small particle caging and double glass

(Voigtmann, 2011).

Such glasses predicted by MCT have started to recently be explored by

experiments employing rheology and optical microscopy. The quiescent state

dynamics of these asymmetric hard sphere mixtures was probed using confo-

cal microscopy (Sentjabrskaja et al., 2013b) while their mechanical properties

and yielding behaviour by rheology (linear and non-linear) (Sentjabrskaja et al.,

2013b) and the transient dynamics (Sentjabrskaja et al., 2014) during start-up

shear were probed using confocal microscopy and rheology. The addition of a
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second species to an already caged system was found to increase the free vol-

ume of the system hence softening the cages (Sentjabrskaja et al., 2013a). Hints

of double step yielding were also found too exist. The super-diffusive dynamics

and the strength of the overshoot during transient start-up shear was linked to

the cage compression effects while the yield strain was also found to depend on

the caging species (Sentjabrskaja et al., 2014).

Calculation of the mixing ratio by volume for small particles, χs, was based

on the following equation

χs =
NsR

3
s

NsR3
s +NbR3

b

(7.1)

where the N is the number of particles and R is the radius of the particles and

the subscripts s and b indicates the small and big particles respectively. This

indicates the ratio of volume of small particles to the total volume of the bi-

nary mixture. Another parameter that is used in this chapter is the size ratio,

δ, which is defined as the ratio of the small particle radius to the big particle

radius. Furthermore, the Peclet for shear is defined based on the small particles

as Pes = γ̇tBs. This means that the big particles for a size ratio of 0.2 flow

(Peb) at 125 times higher Pes since tBb = 125tBs The total volume fraction of

the binary mixture is always kept constant although the mixing ratios varied.

Here, we employ BD simulations (Foss and Brady, 2000) with periodic

boundary conditions for a fixed size ratio of δ = 0.2 for hard sphere parti-

cles. 50000 particle simulation where performed for χs = 0.1 to χs = 0.9 for

a total φ = 0.58 and 0.61. Moreover, smaller sizes with 15000 particle simula-

tions where performed for the χs = 0.01 and 0.05 and the pure species for both

volume fractions in order to reduce the physical simulation time. The determin-

ing species in the simulations are the small particles as the time steps and shear

were performed based on the small particle time step.
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Figure 7.1: Configurations of the Binary glasses obtained by varying χs, at φ =
0.58 and δ = 0.2

7.1 Binary mixture at rest

In Fig. 7.1 the structure at rest for the binary mixture glasses at φ = 0.58 are

shown. The red colour indicates big particles and small particles are indicated

by the blue colour. The size anisotropy can be easily visualized from the Fig.

7.1 and is fixed at a value δ = 0.2 throughout this chapter. From the box defined

for the simulation, a slice of thickness 3 Rb is selected for all the χs is chosen

for visual inspection in Fig. 7.1. The big and small species are represented by

red and blue colour, respectively. Visually one can observe that at χs = 0.01

the cages are formed by the big particles. There are also some hints of depletion

induced structure for the big species at χs = 0.01 compared to other χs. The

white space observed at χs = 0.01 is not due to the absence of particles but

the due to big particles present in front and behind the observation slice. At

χs = 0.3, we observed that the neither small nor big particles are prominent

and it is very difficult to discern which of the two species are forming the cages.

For χs > 0.7, it is easily observed that the small particles start predominately to

form cages. Thus, it can be discerned that the small particles contribute to the

overall dynamics of the system. At χs = 0.9 the small particles dominate the

cage formation and in turn trapping the big particles which is evident from the

Fig. 7.1. Based on the different types of glass predicted by MCT (Voigtmann,
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2011), we visually observe partially frozen glass and torroncino glass driven by

small particles.
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Figure 7.2: Mean Square Displacement of (a) small particles and (b) big parti-
cles for different mixing ratios of small particles with total φ = 0.58

In Fig. 7.2 (a) we observe the MSD of the small particles at rest by varying

the χs for the configurations seen at φ = 0.58 in Fig. 7.2. For χs = 0.01

where the big particles predominantly form the cages, the small particles are

seen to be extremely mobile. The small particles at this χs can be visualized

as intruders in a matrix of large particles (Sentjabrskaja et al., 2016). The short

time MSD exhibits the slope of 1 due to diffusion of the small particles while

at long time a sub-diffusive behaviour is observed. This is because the small

particles sense the crowded matrix of the big particles. Small particles being

extremely mobile access the space formed by the voids of the big particles.

Moreover for the same χs = 0.01, the MSD of big particles suggests caging

at long times following the MSD of the pure system in Fig. 7.2 (b). As the

amount of small particles are increased at 0.05 ≤ χs ≤ 0.5 the big particles

(Fig. 7.2 (b)) become more mobile than the pure species at long time. χs = 0.9

indicates an extensive slowing down of the big particles from Fig. 7.2 (b). In

the mean time, a plateau in the MSD of the small particles is observed which is

a characteristic of caging effect of the neighbouring particles as seen in Fig. 7.2

(a). Here, the big particles are trapped by the cages of small particles making it

literally immobile. The long time behaviour of the big particles in Fig. 7.2(b)

are misleading as the statistics is extremely poor owing to the small number of

big particles. The absolute MSD values for both big particles and small particles

decrease with increasing χs which indicates a slowing down of both particles in
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general.

In order to understand the effect of polydispersity on the system, a pure sys-

tem with 5% dispersity is evaluated. It is observed that the MSD for 5% poly-

dispersity is smaller than 10% polydisperse system. This is happens because

the more the polydispersity the larger the amount of mobile particles leading to

a higher MSD values. Polydispersity was added to binary systems which were

found to crystallize under equilibrium conditions. The MSD in general corrob-

orates the idea that the caging at low χs is dominated by the big particles which

then moves to a transition liquid phase and finally an arrested phase where the

system is caged by the small particles (Sentjabrskaja et al., 2013a, 2014).
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Figure 7.3: Mean Square Displacement of (a) small particles and (b) big par-
ticles at for different mixing ratios of small particles with total
φ = 0.61

Fig. 7.3 shows the MSD of both small and big particles at φ = 0.61 and

is similar to that shown in Fig. 7.2 but a more prominent effect of caging is

observed due to increase in the overall φ. The fluid regime is more clearly ob-

served in Fig. 7.3 (b) to occur at 0.05 ≤ χs ≤ 0.5. The MSD gives a clear

indication of the existence of three phases in our investigation regime of size

ratio δ = 0.2. The partially frozen glass driven by caging of big particles and

extremely mobile small particles at small mixing ratio of small particles. The

existence of a liquid regime at intermediate mixing ratio is due to the transi-

tioning of the caging from big species to small species. Finally, at large mixing

ratio the existence of "torroncino" glass where the big particles are localised

to specific regions due to the caging of the small particles. These simulations

corroborates some of the phases predicted by MCT (Voigtmann, 2011).
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Figure 7.4: Diffusivities of (a) small particles and (b) big particles at for differ-
ent mixing ratios of small particles with total φ = 0.58

Fig. 7.4 depicts the diffusivity of the particles as function of the mixing

ratio, χs. In Fig. 7.4 (a), small particles diffusivity for long times (> 1tBs) at

χs = 0.01 is smaller than the diffusivity of the pure species at φ = 0.1. This

shows that the mobility of the small particles are hindered by the matrix of the

big particles at long time and hence shows a decrease in the diffusivity. It can

be inferred from MSD and the diffusivity that the small particles are mobile and

travel through the interstitial voids formed by the cages of big particles. On the

other hand, a big particle is caged by neighboring big particles. The big particles

at mixing ratio χs = 0.3 become extremely mobile at long time as seen from

MSD and diffusivities of big particles in Figs. 7.2 (b), 7.3 (b) and 7.4(b). At

large mixing ratios the diffusivities of big and small species drop even further

suggesting a large hindrance to mobility for both species.
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Figure 7.5: (a) g(r) for small particles for different mixing ratios of small par-
ticles (b) g(r)peak for small particles as a function for mixing ratio
of small particles with total φ = 0.58
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In Fig. 7.5 (a), the probability of finding a neighbour for the small parti-

cles is shown for different mixing ratios at φ = 0.58. For some φ the g(r) rises

much before 2Rs is reached, due to polydispersity induced in the binary systems.

While for others the g(r) rises exactly at 2Rs as no polydispersity was incorpo-

rated in these system. As the mixing ratio, χs, is increased the appearance of a

second shell becomes prominent at 4Rs. Also the peak position of the second

neighbour shell moves to smaller r. The intensity of the first g(r)peak is plotted

as a function of the mixing ratio χs (Fig. 7.5 (b)). A non-monotonic behaviour is

observed with the g(r)peak initially increasing with mixing ratio χs and steeply

dropping at χs = 0.9. In experiments, it was observed that the g(r)peak for

big particles continuously decreases g(r)peak with increasing χs (Sentjabrskaja

et al., 2013b). This non-monotonic drop in intensity in BD simulations can be

attributed to the polydispersity introduced in the sample. Polydispersity cannot

be avoided for χs = 0.9 as crystallization during equilibration procedure was

observed. The g(r) for big particles are not shown here due to the poor statistics

of the data. In general, this suggests that caging of the small becomes prominent

at χs > 0.3
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Figure 7.6: S(q) for small particles for different mixing ratios with total φ =
0.58

Fig. 7.6 represents S(q) for small particles in a binary mixture for vary-

ing χs and the data for χs < 0.1 is not presented due to poor statistics. For

χs = 0.1, it is clear that the system does not have any long range order similar
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to a liquid. As the mixing ratio for the small particles increases the the position

of the initial peak moves to higher values of q and a long range order becomes

prominent. The appearance of second and third peaks indicates that caging be-

comes prominent at mixing ratios, χs > 0.3, by small particles which is also

observed in Fig. 7.1. Figs. 7.5 and 7.6 depict the small species to small species

structure information, thus it does not reveal any kind of cage transition from

the big species to small species.
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Figure 7.7: (a) Linear viscoelastic response of a binary colloidal mixture with
a total φ = 0.58 (b) G′ scaled with average radius, 〈R〉, plotted as a
function of mixing ratio of small particles, χs

Linear viscoelastic response of the binary colloidal mixtures at φ = 0.58

for different mixing ratios are shown in Fig. 7.7. It should be noted that G′

and G′′ are scaled by the small particle radius Rs (Fig. 7.7 (a)). For a pure

system when χs = 1, G′ > G′′, a solid-like response is observed for most of

the frequencies. At 0.3 ≤ χs ≤ 0.5 the viscous moduli, G′′, becomes more

predominant than the elastic moduli, G′ for the frequencies probed which indi-

cates a liquid-like response of the system. This indicates that the caging effect

by neither species dominates at these intermediate mixing ratios promoting mo-

bility of both species. At χs = 0.01, the storage moduli is greater than the loss

moduli thus indicating a glass-like response in this regime. When storage mod-

ulus is scaled as function of the average radius, 〈R〉, of the binary mixture and

represented as a function of χs we observe drop in the scaled G′ as already seen

experimentally (Sentjabrskaja et al., 2013b). Here the average radius, 〈R〉, is
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defined as

〈R3〉 =
R3
b[

1− χs
(

1− 1
δ3

)] (7.2)

This shows softening effect occurring in the binary colloidal mixtures for

φ = 0.58 and at intermediate mixing ratio of small particles.
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Figure 7.8: Linear viscoelastic response of a binary colloidal mixture with total
φ = 0.58 obtained from Generalised Stokes Einstein equation for
(a) small particles (b) big particles from the MSD in Fig. 7.2

Fig. 7.8 indicates the linear viscoelastic data for φ = 0.58 extracted for

pure small and big species individually by Generalised Stokes Einstein equation

using the MSD shown in Fig. 7.2. For small particles in Fig. 7.8 (a), the storage

moduli is less than loss moduli for χs = 0.01 at all Peωs. While in the case

of high χs (χs = 0.9), the storage modulus is greater than the loss modulus for

1 < Peωs < 100. Additionally, we also observe high Peωs > 100 regime from

the simulations where the G′′ is greater than G′. The absolute values G′ and G′′

show an increasing trend with mixing ratio for small particles species because

the absolute values of the MSD for small species decreases.

The pure species at mixing ratio of χs = 0 in Fig. 7.8 (b) indicates the Peωb

regime where a glass-like behaviour is observed. In the case of big particles, G′

andG′′ are extracted for very high Peωb (Peωb > 10) regime since tB for the big

particles is 125 times larger than the small species. In general, the fluctuations

in the G′ and G′′ arise from poor fitting of the MSD data with a second order

polynomial in order to extract the moduli.
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Figure 7.9: (a) Linear viscoelastic response of a pure colloidal glass at φ = 0.58
(b) Linear viscoelastic response of a binary colloidal mixture with
total φ = 0.58 at χs = 0.01 obtained from Generalised Stokes
Einstein relation and oscillatory shear from simulations

In Fig. 7.9 (a) we compare the linear viscoelastic data from oscillatory shear

as well and individual species linear viscoelastic response from the MSD. There

is a good match between both the elastic and viscous moduli obtained from

both the techniques in the case of pure species (Fig. 7.9 (a)). In Fig. 7.9 (b)

linear viscoelastic response of the binary glass with viscoelastic response for

individual species at χs = 0.01 is also compared. The data from oscillatory

measurements seem to coincide more with data obtained from the individual big

spheres. This indicates that the caging mechanism in this case is driven by big

particles and thus contribute to the overall response of the sample. Meanwhile,

the small particles exhibit a purely liquid-like response in linear data since the

small particles are mobile and travel through the voids formed by the cages of

big particles.

Fig. 7.10 (a) at mixing ratio of χs = 0.5 depict the individual species and

binary mixture show a consistent behaviour where G′′ > G′. This indicates

that the binary colloidal mixture shows as a liquid-like response at this mixing

ratio. Here, both species contribute equally to the binary mixture response. In

Fig. 7.10 (b) for mixing ratio of χs = 0.9, the binary mixture behaves as a

glass which is dominated by the caging species of the small particles. Thus,

the average response of the binary mixture is very similar to that indicated by

the pure small particle glass. While the big species are also caged by the small

species the linear response of the individual big species is not clear due to poor
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Figure 7.10: Linear viscoelastic response, of a binary colloidal mixture with
total φ = 0.58, for individual species from Generalised Stokes
Einstein equation and binary mixture oscillatory shear from simu-
lations at (a) χs = 0.5 and (b) χs = 0.9

statistics at low Peω. In general, the most prominent species drives the linear

viscoelastic response and dynamics at rest for the binary mixture.

7.2 Start-up shear
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Figure 7.11: Start-up shear for binary colloidal mixture at φ = 0.61 at varying
mixing rations of small particles for (a) Pes = 0.1 and (b) Pes =
1

In Fig. 7.11 the start-up shear of a binary mixture with volume fraction

φ = 0.61 is shown for Pes = 0.1 and Pes = 1. The shear stress is scaled

as a function of the average radius as defined by Eq. 7.2. For intermediate

mixing ratios of small particles a reduction in the steady state stress values can

be observed. This is an indication of the softening of the binary mixture. For

the lowest (χs = 0.01) and highest (χs = 0.9) mixing ratios stress overshoot
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becomes prominent which disappears for the intermediate mixing ratios. In the

intermediate mixing ratios where the stress peak disappears there is a direct

transition from elastic to the flow regime.
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Figure 7.12: The strain at peak of stress overshoot for start-up shear

A non-monotonic response is observed for strain at stress overshoot peak

for binary mixtures in Fig. 7.12. The drop of γpk at intermediate mixing ratios

is clear indication for the softening of the binary mixtures. For φ = 0.61 γpk

exhibits a minimum at χs = 0.3 although at φ = 0.58 the minimum tends to be

a function of the Pes. A similar response where the γpk depicts a minimum at

intermediate mixing ratios has also been observed experimentally (Sentjabrskaja

et al., 2014). It should be noted that the Pes is defined with reference to the

small particle thus for all the Pes investigated here the big particles experience

Pe > 1. At χs ≥ 0.7 and Pes ≤ 1, the Brownian assisted yielding of small

particles aids in cage breaks and at Pes > 1 shear-induced cage breaking by the

small species dominates. At χs < 0.3, since the cages are dominated by the big

particles the cages can deform to a much larger strain before flow occurs leading

to an increase in the γpk.

The intensity of stress overshoot in colloidal glasses indicates the storage of

elasticity in the cages (Koumakis et al., 2012a, 2016b). Thus the intensity of the

stress overshoot could lead to the understanding of yielding during start-up shear

in binary mixtures as shown in Fig. 7.13. The intensity of the stress overshoot

drops to a minimum for the intermediate χs values which shows that the stress
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Figure 7.13: Intensity of the stress overshoot comparison for start-up shear

storage efficiency decrease due to cage transition from one species to another.

The binary mixtures dominated by small particle cages tends to store more stress

than the big particles unlike that seen in the experiments (Sentjabrskaja et al.,

2014). The stress intensity peaks in experiments was inversely related to the

cage compression. This does not seem valid in these simulations probably due

to some depletion effects contributing to the stress intensity overshoot. In ex-

periments it was shown that binary mixtures at low Pes exhibit a larger stress

overshoot and this is also observed in Fig. 7.13 (Sentjabrskaja et al., 2014).
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Figure 7.14: Two time mean square displacement for binary colloidal mixture
in the vorticity direction at φ = 0.61 for different Pes at (a) χs =
0.01 and (b) χs = 0.9

In Fig. 7.14, the two time MSD of both the small and big particles are fol-

lowed in the vorticity direction for φ = 0.61 during start-up shear, the dynamics

at rest for both small and big species at rest are superimposed. Fig. 7.14 (a) and
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(b) compares two extreme cases of caging where the cages are dominated by big

species and small species respectively. Fig. 7.14 (a) shows that at χs = 0.01 the

big particles move into the super-diffusive regime earlier in time than the small

particles. At χs = 0.01, the big species cages dominate and are first pushed into

the super-diffusive regime due to shear. At Pes = 0.1 the small species does not

exhibit super-diffusive regime. As the Pes increases, the super-diffusive regime

becomes more prominent for the small species. The extent of the super-diffusive

regime for the small species depends on Pes.

Fig. 7.14 (b) shows the scenario where the caging species is dominated by

the small particles. The statistics of the big particles are poor and hence the

fluctuating data. Here the caging species of the small particles are pushed into

the super-diffusive regime at the same time that the big particles are pushed into

this regime at Pes = 0.1. Thus it can be speculated that caging species drives the

dynamics during start-up shear of the binary mixtures. The time delay between

the big and small particles for the MSD to deviate from rest existing at χs = 0.01

can be attributed to the mobility of the small particles.
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Figure 7.15: Two time mean square displacement for binary colloidal mixture
at φ = 0.61 for different Pes at χs = 0.3

Fig. 7.15 represents the scenario where neither of the species dominates

caging. This binary mixture shows different behaviour to binary mixtures in

Fig. 7.14. The rest state shows liquid-like dynamics for both the big and small

particles. The absence of super-diffusive regime during start-up shear specifi-
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cally for the small species, below Pes ≤ 10, is an interesting feature. On the

other hand big particles exhibit the super-diffusive response at extremely high

Pe. In general, this shows that the super-diffusive dynamics that is present in

glasses is absent for transient dynamics of liquid-like systems during start-up

shear.

In this chapter, BD simulations was utilized to identify and investigate the

phases existing in binary mixtures with size ratio of 0.2 at high volume fractions.

The existence two types of glasses are verified. A partially frozen glass where

the big particles are frozen and the presence of mobile small particles. The

second type of glass in the ’torroncino’ glass where the small particles trap the

big particles in its matrix. A systematic study by changing the mixing ratio of

small particles was performed and the equilibrium properties as well as transient

shear characteristics studied. A softening of the high volume fraction glass is

observed at intermediate mixing ratios of the small particles. This is attributed

to the cage transition from the big to the small particles. Finally the start-up

shear dynamics reveal that the caging species present at the specific mixing ratio

drives the dynamics in a binary colloidal glass.
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CHAPTER 8

CONCLUSION AND PERSPECTIVES

Chapter 4 : Time effects of nearly hard sphere colloidal glasses

Aging effects in nearly hard sphere colloidal glasses manifest in the linear vis-

coelastic measurements as a weak change in the loss moduli. The colloidal glass

shows aging effects, i.e., a rejuvenated colloidal glass with waiting time fall into

deeper energy wells. This leads to subtle changes in the loss moduli, G′′ in the

linear viscoelastic regime. On the other hand transient start-up, stress relax-

ation and creep experiments show clear manifestations of the aging occurring

in the colloidal glass. Since very limited frequencies are probed in the linear

viscoelastic regime and aging process affects the long time behaviour of the

colloidal glasses it is not being captured.

Comparing non-linear start-up shear and creep during aging we observe that

start-up shear is much more energy efficient in fluidizing a colloidal glass than

creep. In a start-up shear, a colloidal glass system is fluidized after the elastic

regime while during creep at low stresses heterogeneous regions are activated

which grow all through the sample until the colloidal glass flows.

Finally, long time creep of high volume fraction colloidal glass shows sud-

den fluctuations in strain relating to avalanche response, similar to stress drops

in the long time stress relaxation. During avalanche processes, colloidal glass

exhibit sudden inflection in viscosity with time under stress. Microstructurally,

this occurs when the colloidal particles which was jammed suddenly starts to

flow.

Based on the above findings one can propose future studies to elucidate open

problems. An extension of aging studies could include confocal microscopy

and velocimetric studies of colloidal glass to understand the avalanche response
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during creep. Moreover efforts in modeling and Stokesian dynamics simula-

tions are required to understand the fundamental driving force for aging in such

systems.

Chapter 5 : Transient shear effects of nearly hard sphere colloidal glasses

The transient effects in colloidal glass during shear and after cessation of shear is

probed in this chapter. The origin of residual stresses is investigated experimen-

tally and with help of BD simulations. The cage anisotropy in these colloidal

glasses does not seem to be the only reason for the retention of the residual

stress unlike in soft glasses. Interruption of the flow along the start-up shear

curve and following the stress relaxation provides clear indications of sequence

of physical processes, an elastic regime followed by a plastic flow regime, oc-

curring during start-up shear. The elastic regime is dominated by the appearance

of cage anisotropy in colloidal glass. In the flow regime the cages start to flow

with the applied shear rate. Colloidal glass constituting of big particles are prone

to shear thickening during steady shear flow. Shear thickening possibly occurs

due to jamming of colloidal aggregates which in turn leads to edge effects and

instabilities during flow.

Large amplitude oscillatory shear is utilized to understand the non-linear

response in concentrated colloidal suspensions and colloidal glasses. Both the

suspensions and glasses shows unique features irrespective of particle interac-

tion when examined for both hard sphere and star-like micelles. Below the glass

transition, suspensions dissipate stress due to shear thinning, leading to the rise

in anharmonicity in the stress with increasing frequency. On the other hand, in

colloidal glasses the system dissipates energy by transitioning from viscoelastic

solid to a plastic response thus leading to decreasing stress anharmonicity with

increasing frequency.

Future studies in direction can be undertaken with the help of Stokesian

dynamics to understand how hydrodynamics contribute towards the relaxation

of residual stresses. Confocal microscopy complemented by rheology should

also help understanding the microscopic dynamics under oscillatory shear for
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colloidal suspensions and glasses.

Chapter 6 : Orthogonal Superposition Rheometry of Colloidal glasses un-

der flow

Colloidal glasses are investigated with the help of mechanical superposition of

oscillatory flow during steady shear. The activation of relaxation time during

shear in hard sphere colloidal glass follows a linear dependence with external

shear rate. Moreover, orthogonal frequency superposition of the orthogonal dy-

namic frequency sweeps was successfully performed. Deviations in superposi-

tion at short time was attribute the cage anisotropy. While long time deviations

were compared with BD simulations and speculated to be due to the presence

of hydrodynamically induced transient clusters. On the other hand, star-like mi-

celles which have a softer potential exhibited a crossover frequency and shear

rate relationship with a power law exponent of 0.8. We believe that star-like

micelles interpenetrates, also contributing to the relaxation process under shear

unlike hard sphere glasses.

Some suggestions for the future studies include, Stokesian dynamics simu-

lations which could be an appropriate tool to understand colloidal glasses under

shear and check the validity of orthogonal frequency superposition specifically

at long times. MCT or other theoretical framework could also aid in predicting

the difference between hard and soft sphere interactions and the dependence of

the crossover frequency under shear.

Chapter 7 : Brownian Dynamics simulations of size asymmetric Binary

colloidal glasses

Brownian dynamics simulations were employed to investigate the binary glass

phases predicted by MCT in large asymmetric mixtures. Two different types of

glasses were found to exist in simulations for the asymmetric size ratio investi-

gated, that is a partially frozen glass and a torroncino glass. A partially frozen

glass is formed by the caging of big particles with mobile small particles moving
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through the interstitial spaces of the trapped big particles. A torroncino glass on

the other hand, is related to the caging of the big particles by the large amount of

small particles. The microscopic dynamics reveal that the phase transitions oc-

cur due to changing mixing ratio of small particles. The caging species is seen

to drive the microscopic dynamics under transient start-up shear. Moreover,

the simulations tend to corroborate the experimental rheological measurements

already existing in literature.

Following the above work we suggest that BD simulation of binary colloidal

glasses with higher asymmetry needs to be performed to understand the effects

of depletion on the big species. Additionally, binary systems with attractions

exhibit immense potential to access a lot of new phases in the phase diagram.
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APPENDIX A

Appendix

A.1 Moduli within an oscillatory cycle

Here we try to extract the moduli from theoretical models and experiments dur-

ing LAOS with an oscillatory cycle. In Fig. A.1 (a) we show a 3D mapping of

the instantaneous G′ and G′′ (Koumakis, 2011) for the Giesekus model at Deb-

orah = 1. During LAOS, the moduli indicates the system shows viscous flow

all throughout the cycle. While R′ and R′′ (Rogers, 2012) does show an elastic

type response within the cycle of LAOS for the same parameters.

(a) (b)

Figure A.1: (a) Instantaneous G′ and G′′ and (b) R′ and R′′ calculated within a
LAOS cycle for Giesekus model at Deborah number 1



A.2 Differential Dynamic Microscopy

Differential dynamic microscopy (DDM) (Cerbino and Trappe, 2008) was per-

formed on hard sphere suspensions and glasses on an already existing optical

tweezer set-up. A homemade MATLAB code was developed for post process-

ing the data. The image structure factor for a suspension is shown in Fig. A.2

(a). Interestingly, the colloidal glass (Fig. A.2 (b)) shows a peak for all lag times

investigated.
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Figure A.2: The image structure function for a colloidal suspension of R =
350 nm in squalene at (a) φ = 0.20 and (b) φ = 0.60 obtained
from DDM
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A.3 Non-Linear Response in Rheometers

The non linear stress and strain response of stress controlled rheometers were

mapped as function of frequency and strain amplitude for a very viscoelastic

colloidal glass sample. This gives information on the contribution of elasticity

to the non linear effects on the rheometer.

Stress

MCR 302MCR 501

Strain

Figure A.3: The stress and strain non linearity mapped during oscillatory mea-
surements mapped for a colloidal suspensionR = 106 nm in squa-
lene at φ = 0.61 in stress controlled rheometer
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A.4 Fast time data collection in Rheometer

The fast time data collection capabilities of strain and stress controlled rheome-

ters were tested. This was done by taking out the raw data from the rheometer

and processing it. Although data can be collected in the order of 10 ms for both

the rheometers, the data from the software can be trusted only above 0.1s (Fig.

A.4).
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Figure A.4: Fast time data collection for (a) strain controlled at shear reversal of
5 s−1 for silicone oil η = 1 Pas and (b) stress controlled rheometer
at transient start-up shear of 50 s−1 for a colloidal suspension at
φ = 0.40
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A.5 Very asymmetric size Binary BD simulations

BD simulations was modified and tested to account for extremely low size ratios.

The simulations were run in the High processing computer center in University

of Crete. A partially frozen glass of big species due to depletion effects becomes

prominent at the size ratio δ = 0.1 for binary mixtures shown in Fig. A.5.

This will lead to understanding the dynamics of polymers in colloid-polymer

mixtures if we assume the polymer to be smallest particles.
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s    = 0.1 

     = 0.1

     = 0.58

s    = 0.1 

     = 0.1

Figure A.5: Images of highly asymmetric binary glasses equilibrated using BD
simulations

A.6 Attractive size asymmetric Binary BD simula-

tions

BD simulations were further modified and tested to include Asakura Osawa

potential. Fig. A.6 depicts fascinating structures, like the big species acting as

anchor points for the small species. Additionally, switching on the attractive

potential for a single species is also possible.
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Figure A.6: Images of size asymmetric binary glasses with AO potential attrac-
tion from BD simulations
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