

VISUAL PROGRAMMING FOR SMART

DEVICES: UI GENERATOR, SIMULATOR

AND RUNTIME

Dimitriοs Linaritis

Thesis submitted in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science

University of Crete
School of Sciences and Engineering

Computer Science Department
Voutes, Heraklion, GR-70013, Greece

Thesis Advisor: Prof. Anthony Savidis

1

2

University of Crete
Computer Science Department

VISUAL PROGRAMMING FOR SMART DEVICES: UI

GENERATOR , SIMULATOR AND RUNTIME

Thesis submitted by
Dimitriοs Linaritis

in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science

THESIS APPROVAL

Author:

Dimitriοs Linaritis, Computer Science Department

Committee approvals:

Anthony Savidis
Professor, Computer Science Department, University of Crete,
Thesis Supervisor

Dimitrios Grammenos
Principal Researcher, Institute of Computer Science, FORTH

Kostantinos Magoutis
Associate Professor, Computer Science Department, University
of Crete

Department approval:

Polyvios Pratikakis
Assistant Professor, Computer Science Department, University
of Crete

Heraklion, May 2021

Dimitris

Linaritis

Digitally signed by

Dimitris Linaritis

Date: 2021.05.10 20:26:04

+03'00'

Antonios

Savvidis

Digitally signed

by Antonios

Savvidis Date:

2021.04.27

21:49:04 +03'00'

Polyvios Pratikakis Pratikakis

Digitally signed by Polyvios

Date: 2021.05.06 12:01:36 +03'00'

DIMITRIOS-STAVROS Digitally signed by

DIMITRIOS- GRAMMENOS
 STAVROS GRAMMENOS

 Date: 2021.04.27 22:47:31
+03'00'

KONSTANTINOS

MAGOUTIS

Digitally signed by
KONSTANTINOS MAGOUTIS
Date: 2021.04.28 09:23:40 +03'00'

3

4

Abstract

The Internet of Things (IoT) is the new rapidly-growing domain that is constantly

evolving in terms of infrastructures, integrated solutions, development tools and

best practices. The availability of so many devices in the environment, for various

purposes and missions, entails a critical control challenge, raising issues related not

only to security and safety but also to individualization and adaptation. In fact, the

main benefit in everyday life is expected by the wide introduction of software

automations that can control and coordinate such devices in ways matching

individual people needs, preference and requirements. But the demands for such

automations are so customized and fluid that the corresponding digital market is

currently either non-existent or very limited. Now, one potential solution to this

supply-demand gap is enabling users develop directly their own automations. In this

context, the adoption of visual programming gained increased attention as a vehicle

to enable composition of individualized automations by non-professional developers.

In this thesis, we present a custom toolset, built on top of a recently developed

visual programming IDE, which facilitates end-user development, execution and

testing of IoT automations. Firstly, an automatic generator is introduced, which

produces user-interfaces for smart devices relying on their API specifications. Then,

we present a runtime environment for automations that provides advanced

monitoring and interaction tools including a device dashboard, a calendar for

scheduling automations and a history panel that records and displays device events.

Following, we discuss a custom runtime for testing purposes, which offers virtual

counterparts of all physical smart devices, so that testing is done locally, in a

protected and isolated environment, without requiring operation of the real devices.

The latter is possible through our simulator, which enables interactive manipulation

of all device properties and operational modes. Additionally, we implemented a time

controller (i.e. virtual time) to handle the flow and pace of time during testing,

enabling trigger scheduled tasks in a way not interfering with system time. Finally,

we outline a case study involving various scenarios of everyday automations.

5

ΟΠΤΙΚΟΣ ΠΡΟΓΡΑΜMΑΤΙΣΜΟΣ ΓΙΑ ΕΞΥΠΝΕΣ

ΣΥΣΚΕΥΕΣ: ΓΕΝΝΗΤΡΙΑ ΔΙΕΠΑΦΗΣ ΧΡΗΣΤΗ,
ΠΡΟΣΟΜΟΙΩΤΗΣ ΚΑΙ ΧΡΟΝΟΣ ΕΚΤΕΛΕΣΗΣ

Περίληψη

Το Διαδίκτυο των πραγμάτων (IoT) είναι ο νέος ταχέως αναπτυσσόμενος τομέας

που εξελίσσεται συνεχώς σε όρους υποδομών, ολοκληρωμένων λύσεων, εργαλείων

ανάπτυξης και βέλτιστων πρακτικών. Η διαθεσιμότητα τόσων πολλών συσκευών

στο περιβάλλον, για διάφορους σκοπούς και αποστολές, συνεπάγεται μια κρίσιμη

πρόκληση ελέγχου, θέτοντας ζητήματα όχι μόνο ως προς την ασφάλεια αλλά επίσης

ως προς την εξατομίκευση και την προσαρμογή. Στην πραγματικότητα, το κύριο

όφελος στην καθημερινή ζωή αναμένεται να προέλθει από την ευρεία εισαγωγή

των αυτοματισμών λογισμικού, οι οποίοι μπορούν να ελέγχουν και να συντονίζουν

τις συσκευές με τρόπους έτσι ώστε να αντιστοιχούν στις μεμονωμένες ανάγκες,

προτιμήσεις και απαιτήσεις των ανθρώπων. Παρόλα αυτά οι απαιτήσεις για τέτοιου

είδους αυτοματισμούς είναι αρκετά εξατομικευμένοι και ρευστοί με αποτέλεσμα η

ψηφιακή αγορά να είναι είτε πολύ περιορισμένη είτε εντελώς ανύπαρκτη. Μια

πιθανή λύση στο κενό προσφοράς-ζήτησης είναι να δοθεί η δυνατότητα στους

χρήστες να αναπτύσσουν τους δικούς τους αυτοματισμούς. Στα πλαίσια αυτά, η

υιοθέτηση του οπτικού προγραμματισμού κερδίζει όλο και περισσότερη προσοχή

ως μέσο που επιτρέπει την σύνθεση εξατομικευμένων αυτοματισμών από μη

επαγγελματίες προγραμματιστές.

Σε αυτή την εργασία, παρουσιάζουμε ένα προσαρμοσμένο σύνολο εργαλείων,

που δημιουργήθηκε πάνω σε ένα πρόσφατα ανεπτυγμένο ολοκληρωμένο

προγραμματιστικό περιβάλλον (IDE) για οπτικό προγραμματισμό, που διευκολύνει

την ανάπτυξη προγραμμάτων από μη προγραμματιστές, την εκτέλεση και τον

έλεγχο ορθότητας των IoT αυτοματισμών. Αρχικά, αναπτύχθηκε μία αυτόματη

γεννήτρια διεπαφών χρήστη (UI) για έξυπνες συσκευές βασισμένη στις API

6

προδιαγραφές τους. Στη συνέχεια, παρουσιάζουμε ένα περιβάλλον εκτέλεσης για

αυτοματισμούς που παρέχει προηγμένα εργαλεία παρακολούθησης και

αλληλεπίδρασης, στα οποία συμπεριλαμβάνονται ένας πίνακας απεικόνισης

ιδιοτήτων των έξυπνων συσκευών, ένα ημερολόγιο για προγραμματισμένους

αυτοματισμούς καθώς και ένας πίνακας ιστορικού που καταγράφει και εμφανίζει τα

εκάστοτε συμβάντα των συσκευών. Έπειτα, παρέχεται ένα προσαρμοσμένο

περιβάλλον εκτέλεσης για σκοπούς δοκιμών των αυτοματισμών που προσφέρει

εικονικές αντιστοιχίες των φυσικών συσκευών με σκοπό οι δοκιμές να

πραγματοποιηθούν τοπικά σε ένα προστατευμένο και απομονωμένο περιβάλλον,

χωρίς να απαιτείται η λειτουργία των πραγματικών συσκευών. Το τελευταίο μπορεί

να πραγματοποιηθεί μέσω ενός προσομοιωτή που αναπτύχθηκε, ο οποίος

επιτρέπει τον διαδραστικό χειρισμό όλων των ιδιοτήτων της συσκευής καθώς και

τους τρόπους λειτουργίας της. Επιπλέον, αναπτύχθηκε ένας χειριστής χρόνου (δηλ.

εικονικός χρόνος) για τον χειρισμό της ροής και του ρυθμού του χρόνου κατά την

διάρκεια των δοκιμών, επιτρέποντας την ενεργοποίηση προγραμματισμένων

εργασιών χωρίς να επηρεάζεται από τον χρόνο του συστήματος. Τέλος,

περιγράφουμε μια μελέτη περίπτωσης που περιλαμβάνει διάφορα σενάρια

καθημερινών αυτοματισμών.

7

Acknowledgements

First of all, I would like to thank my supervisor, Professor of the University of

Crete, Anthony Savidis, first for my trust and then for his continued support. I would

also like to thank Yannis Valsamakis for his excellent cooperation, for his continued

support and valuable advice. I am also grateful to Principal Researcher Dimitriο

Grammeno and Associate Professor Konstantino Magouti for their participation in

the Supervisory Committee. I would also like to thank the Department of Computer

Science of University of Crete for offering a high level of academic education.

I would also like to thank my second family consisting of all those people whom I

love and who have supported me throughout this period. Finally, mainly, I would like

to thank my parents Giannis and Athena. I am grateful for all their love and support.

Without them, I would not be who I am today.

8

Στην οικογένεια μου

9

Contents

VISUAL PROGRAMMING FOR SMART DEVICES: UI GENERATOR, SIMULATOR AND

RUNTIME .. 1

Abstract .. 4

ΟΠΤΙΚΟΣ ΠΡΟΓΡΑΜMΑΤΙΣΜΟΣ ΓΙΑ ΕΞΥΠΝΕΣ ΣΥΣΚΕΥΕΣ: ΓΕΝΝΗΤΡΙΑ ΔΙΕΠΑΦΗΣ

ΧΡΗΣΤΗ, ΠΡΟΣΟΜΟΙΩΤΗΣ ΚΑΙ ΧΡΟΝΟΣ ΕΚΤΕΛΕΣΗΣ ... 5

Περίληψη ... 5

Acknowledgements .. 7

Contents ... 9

List of Figures ... 14

List of Tables ... 19

1 Introduction... 20

1.1 Smart Devices in the Internet of Things .. 20

1.2 Automatic User Interface Generation ... 21

1.3 Visual Programming ... 22

1.3.1 Blockly Studio IDE ... 22

1.4 Problem Definition .. 23

1.5 Primary Contributions ... 25

1.6 Thesis Structure ... 25

2 Related Work ... 27

10

2.1 Middlewares on IoT ... 27

2.2 Automatic UI Generators ... 30

2.3 Visual Programming for IoT ... 32

3 System Overview ... 35

3.1 Architecture ... 35

3.2 Communication with Devices .. 36

3.2.1 Simulating Smart Devices ... 38

4 User Interface Generator .. 43

4.1 Generic Device API... 43

4.2 MicroUis ... 50

4.2.1 Device Properties ... 50

4.2.2 Methods and Actions ... 52

5 Integration with Blockly Studio IDE ... 54

5.1 User Interfaces on device management.. 54

5.1.1 Single Device .. 54

5.1.2 Device Groups .. 56

5.2 Visual blocks provided by the IoT domain framework 59

5.2.1 Device ... 59

5.2.2 Device Group .. 61

5.2.3 Conditional ... 62

5.2.4 Scheduled ... 64

11

5.3 Types of automation provided by the IoT domain framework 65

5.3.1 Automations for Scheduled Tasks .. 65

5.3.2 Automations for Conditional Tasks .. 66

5.3.3 Automations for Basic Tasks .. 67

5.4 Runtime of Automations ... 68

5.4.1 Device Dashboard .. 70

5.4.2 Calendar ... 71

5.4.3 Event History .. 72

5.5 Automation Testing ... 73

5.5.1 Device Simulation ... 75

5.5.2 Tools ... 76

5.5.3 Tests ... 78

6 Case Studies .. 81

6.1 Morning Automations ... 81

6.1.1 Devices ... 82

6.1.2 Automations ... 83

6.1.3 Execution of Automations .. 84

6.2 Self-Caring Home ... 86

6.2.1 Devices ... 87

6.2.2 Automations ... 88

6.2.3 Execution of Automations .. 89

12

6.3 Fire Protection ... 93

6.3.1 Devices ... 93

6.3.2 Automations ... 94

6.3.3 Execution of Automations .. 94

7 Conclusions and Future Work ... 97

Bibliography ... 99

13

14

List of Figures

Figure 1. The macro-architecture of the system for visual programming support

for smart devices.. 36

Figure 2. API implementation for communicating with smart devices 37

Figure 3. Creation of setter and getter methods ... 38

Figure 4. practically-RESTful API for Air Conditioning smart device 38

Figure 5. Properties of the Air Conditioning smart device 39

Figure 6. Actions of the Air Conditioning smart device ... 40

Figure 7. IoTivity Simulator included Air Conditioning smart device 41

Figure 8. Converting virtual device data to Generic Device API 43

Figure 9. ConvertDevices of Converter library ... 44

Figure 10. Generic Device API definition ... 45

Figure 11. Property of a smart device definition ... 47

Figure 12. Method of smart device definition ... 48

Figure 13. Parameter definition ... 49

Figure 14. Design of device properties and their automatic rendering with

MicroUis ... 51

Figure 15. Update method with its description ... 52

Figure 16. Scanning devices on the network ... 55

15

Figure 17. Air Conditioning device interface which is generated by Automatic UI

Generator ... 56

Figure 18. Air Conditioning device group interface which is generated by

Automatic UI Generator ... 57

Figure 19. Adding Air Condition device to an already defined group 58

Figure 20. Update universal-IDs of the smart device and match it with an existing

group .. 59

Figure 21. Visual programming blocks for device actions 60

Figure 22. Setter and Getter Blockly Blocks for Properties 61

Figure 23. Input/Output for smart device properties in the I/O Console 61

Figure 24. Setter and Output Blockly Blocks for device group 62

Figure 25. When Conditional blocks (A), After Conditional blocks (B) 62

Figure 26. Continue/Break blocks (A), Extra conditional blocks (B) 63

Figure 27. Break/Continue blocks outside of When/After block 64

Figure 28. Break/Continue blocks for Every ... 64

Figure 29. Blocks for scheduler events .. 65

Figure 30. An Automation for Scheduled Task .. 66

Figure 31. An Automation for Conditional Task ... 67

Figure 32. An example of Automation for Basic Tasks .. 68

Figure 33. Overview of execution of automations .. 69

Figure 34. User interfaces for smart devices on runtime generated by User

Interface Generator ... 70

16

Figure 35. Calendar tool on runtime environment .. 71

Figure 36. (A) “Wait” block with given description (B) Description of block is

visualized in organizer with the starting and finishing time .. 72

Figure 37. Event History that includes two "When" conditional events 73

Figure 38. Event History that includes a device action and a property change of

smart devices ... 74

Figure 39. Overview of runtime for automation testing.. 75

Figure 40. Implementation of an action for execution window for automation

testing .. 76

Figure 41. Control virtual devices that participate in execution for automation

testing .. 77

Figure 42. (1) Controls for simulated time. (2) User interface for going to specific

time .. 78

Figure 43. Test Control Panel included in the execution for automation testing . 78

Figure 44. Define changes of smart devices at specific times 79

Figure 45. (1) Blocks for checking device state (2) Warning message generated

from value checking test .. 80

Figure 46. Morning Automations triggered by environment events 82

Figure 47. Visual programs for Morning Automations scenario using Blockly

blocks ... 85

Figure 48. (1) Event History including bubbles generated when the “Alarm Clock

rings” automation is executed. (2) Event History including bubbles which are

generated when the “water is ready for bath” automation is executed. (3) Event

History including bubbles which are generated when the “window blinds open”

17

automation is executed (4) Event History including bubbles which are generated

when the “coffee is ready” automation is executed ... 86

Figure 49. Organizer tool for the scheduled event and the Event History including

bubbles which are generated when the "main door is locked for 5 minutes"

automation is executed ... 87

Figure 50. Home care automations triggered by calendar events 88

Figure 51. Visual programs for Self-Caring Home scenario using Blockly blocks .. 90

Figure 52. (1) Implementations for “TurnOn”, “TurboMode” and “Service” actions

of Dehumidifier for simulated execution of automations. (2) Implementations for

“Program”, “Temperature” and “Start” actions of Washing Machine for simulated

execution of automations. (3) Implementations for “Mopping” and “Sweep” actions

of Robot Vacuum Mop for simulated execution of automations. (4) Implementations

for “StartDefrost” and “ConfigureRapidMode” actions of Refrigerator for simulated

execution of automations. ... 90

Figure 53. (1) Organizer tool that includes daily events and the generated bubbles

of the Event History for dehumidifier and smart robot tasks. (2) Organizer tool that

includes daily event and the generated bubbles of the Event History for washing

machine task. (3) Organizer tool that includes daily event and the generated bubbles

of the Event History for refrigerator task. ... 91

Figure 54. Fire protection automation triggered by environment event 93

Figure 55. Visual program for Fire Protection scenario using Blockly blocks 94

Figure 56. Event History of Running Automations of Fire Protection 95

Figure 57. (1) Implementations for “Open” action of doors. (2) Implementations

for “TurnOff” action of electric devices. (3) Implementation for “Start” action of the

fire extinguisher. .. 95

Figure 58. Test for activating smoke sensor .. 96

18

19

List of Tables

Table 1. Smart Devices for Morning Automations ... 83

Table 2. Smart Devices for Self-Caring Home .. 88

Table 3. Smart Devices for Fire Protection ... 94

20

1 Introduction

1.1 Smart Devices in the Internet of Things

The Internet of Things (IoT) is a domain that, after the Internet, represents the

next most exciting technological innovation [1], [2], [3], [4]. IoT would open up a

world of possibilities and influence in every corner of the globe. We can build smart

cities using IoT, where parking, urban noise, traffic congestion, street lighting,

drainage, and waste can all be tracked in real time and handled more efficiently. We

can build healthy and energy-efficient smart homes. We can create smart

environments that control air and water emissions automatically and allow for early

detection of earthquakes, forest fires, and other catastrophic disasters.

Moreover, in the IoT, there is a wide variety of objects or "things," and some of

these objects are referred to as "smart devices", "mobile devices", "smart things", or

"smart objects" in the literature. From basic sensor nodes to home appliances and

smartphones, smart devices are objects capable of communication and computation

[6]. Smart devices are considered to be objects in the IoT.

Cisco projected in 2011 that by 2020, 50 billion Things will be connected to the

Internet [5]. Another study, on the other hand, suggests that by 2020, 25 billion

devices will be connected to the internet, with the goal of enabling the process of

autonomous intelligent decision making. Regardless of which prediction is right, the

key point is that the number of smart things would be many times greater than the

current global population.

Additionally, devices in the Internet of Things should be able to rapidly adapt to

evolving situations and take actions based on their operating conditions; and they

should be self-configuring and interoperable, with unique identities and the ability to

communicate and exchange data with other devices and systems [7]. As a

consequence, smart devices should be context-aware and linked to the internet.

21

1.2 Automatic User Interface Generation

The design of user interfaces for different applications is becoming increasingly

difficult. Users demand high-quality user interfaces and user-friendly complex

applications. Consumers often expect the same applications to work on a variety of

devices, including tablets, PDAs, notebooks, and other computers. It is incredibly

difficult to develop an application interface that is scalable across different devices,

resulting in the development of multiple user interfaces that are based on expected

device capabilities and features. The design of such user interfaces is difficult,

resulting in an increase in application development time. As a result, a concept for

automatic user interface generation was developed.

By offering a collection of design rules and effectiveness requirements, automatic

user interface generation systems promise to make an application programmer's

design tasks simpler. To determine these parameters, you must first decide the

properties of the data to be visualized are related to user interface design and how

they are related. Data characterization is the term for this role. It is possible to build

automated presentation systems using versatile data characterization. These, on the

other hand, may not permit the development of rich user interfaces. A code

characterization is needed to build a rich user interface with the ability to perform

various operations on the characterized data.

The automatic user interface generation concept is relevant with the IoT, despite

the fact that is often overlooked. Indeed, the new Internet of Things vision focuses

primarily on the technical and infrastructure aspects, as well as the management and

analysis of the massive amounts of data produced.

So far, only a small amount of research has been conducted on the front-end of

user interfaces for IoT devices. However, as has been the case in other fields such as

the Web, smartphone, and wearable technology, user interfaces in the IoT

ecosystem will play an increasingly important role in end user adoption.

22

1.3 Visual Programming

Spreadsheets are the industry's most common end-user programming approach

[8]. They favor both individuals and companies, and they are used in a variety of

applications such as student grading, accounting, and hotel booking. Visual

programming environments are also among the most common software tools for

end-user development (EUD) [9], leading to the popularity of learning programming

(e.g., Scratch [10], MakeCode [11], Tynker [12], Snap! [13]) and gaming (e.g., LEGO

MINDSTORMS [14], LEGO in MakeCode [15], Tynker, LearnBlock [16]) for children.

Additionally, in visual programming, there are application domains that are not

focused on learning programming. For inexperienced programmers, developing

mobile apps is one such application area. The widespread use of smart phones in

everyday life has resulted in an explosion of mobile apps. App Inventor [17] is a

Google-provided web-based visual programming integrated development

environment that allows novice programmers to build fully functional Android and

iOS apps.

Furthermore, visual programming is also affected the IoT. Particularly, the use of

connected smart devices and services, as well as automations that can be created,

could benefit people's daily lives. In this context, there are a range of approaches

that concentrate on smart-home automations, using commercially available smart

devices and services. These approaches include HomeKit [27], Puzzle [28], Wia [29],

Embrio [30], and SmartThings [31]. These apps provide a simple form-based

architecture for creating simple automations among a collection of devices that

support their standard.

1.3.1 Blockly Studio IDE

Visual programming languages are based on the production of graphical

elements that correspond to high-level abstractions of source code expressions,

removing the need for text coding. Visual programming languages, on the other

hand, are insufficient for novices to build applications. They must be accompanied by

23

suitable development toolsets, such as text editors that are integrated into IDEs for

software developers. On top of the Blockly library [49], it is built a full-featured IDE,

the Blockly Studio, for visual programming languages in the context of end-user

development.

The IDE's backbone is built on a component-based architecture that allows users

to add and remove components through a centralized components registry. While

the IDE is running, components can be enabled or deactivated on the fly. Each part is

self-contained and interacts with the IDE through a specially developed extended

Blackboard pattern.

Additionally, the IDE is application domain configurable. This means that the key

components for end-user development could be modified based on the

specifications of each application domain. Furthermore, the IDE contains an

extension mechanism that allows developers to define and construct new

application domain frameworks on top of it. These application domain frameworks

are built right into the IDE and take advantage of all of its features.

1.4 Problem Definition

People's daily lives are able to benefit from smart devices based on the IoT

concept. Particularly devices are able to provide an environment of automations that

contribute to everyday activities. However, the needs for each person are different

and fluid. As a result, everybody should be able to communicate with smart devices,

potentially handling, parameterizing, and even programming applications involving

them.

As mentioned in section 1.1, the Internet of Things is made up of a wide variety

of connected devices. Different types of smart devices are connected through the

network and are used to help people in their daily tasks. There is a need for end

users to manage the state of their smart devices using the appropriate tools. Also,

users want to be able to develop their personal IoT automations for their daily

24

activities based on their requirements without having any programming knowledge.

In addition, the monitoring and interaction of devices during the execution of IoT

automations is an area that suffers from a lack of solutions.

The purpose of this thesis is to provide a suite of tools for supporting the visual

programming of Internet of Things. The tools that were implemented on the top of

Blockly Studio IDE gives to the end users the opportunity to execute and test their

defined automations as well as to visualize their smart devices through appropriate

user interfaces.

In order to solve the visualization problem for smart devices, we have designed

and implemented an automatic user interface generator. This tool generates

appropriate interfaces for devices that use their data provided by the IoT

middleware, IoTivity [41], in our case. Particularly, the device data is converted to

the Generic device API that we have designed. In addition, the generator uses the

data from the device API and creates the final interfaces in which there are MicroUIs

for the device properties and actions.

Moreover, after the development of IoT automations, users want to execute

them and have a clear picture of their smart devices that are included. In order to

tackle this problem, we implement an execution window for automations. It includes

a calendar tool in which there are all scheduled tasks included in automations.

Furthermore, we add an event history tool that records every event that is triggered

during the execution of automations. Additionally, the UI generator produces

appropriate user interfaces which visualize the state of smart devices during the

execution.

Finally, as we mentioned in the previous paragraphs, users want to be able to

test their automations. In this context, we develop another execution window on the

top of Blockly Studio IDE which is for the automations testing. Users who run their

automations for testing can find and correct their errors and control the behavior of

the virtual devices included in this particular execution.

25

1.5 Primary Contributions

Our main contribution is the creation of a set of tools that supports the visual

programming for the IoT domain framework. An important component of this set is

the execution of the IoT automations. In this context, we provide a complete set of

tools for monitoring smart devices and the events triggered during the execution. In

addition, the execution window includes user interfaces for smart devices for

tracking changes. Also, we provide a different execution window for automation

testing on the top of Blockly Studio. It executes the IoT automations including virtual

devices that have same data as real devices. Furthermore, in this execution, the

users can control time and date for testing their scheduled tasks. Finally, in this

window there are two types of tests, the first to change the state of the devices at a

specific time and the second to check their values.

For the visualization of the smart devices, we develop an external library called

Automatic UI Generator. The first step in creating device interfaces is to design and

define a generic device API that is used as input to the library. The device data is

converted to the API and then the library receives the conversion data to create

specific user interfaces. The user interfaces consist of MicroUIs for each property of

the device and the actions are visualized with buttons. Finally, every user interface

provided in the Blockly Studio for devices is the result of the generator.

1.6 Thesis Structure

The rest of this work is organized as follows; In Chapter 2, we review popular

middlewares, tools for automatic UI generation and visual programming tools for IoT.

Chapter 3 follows, which has the system overview. It begins with the architecture of

our system and then describes the communication with the smart devices. Chapter 4

gives a description of the automatic UI generation tool. It begins with the description

of the generic device API and then the micro-UIs that produces. Chapter 5 describes

the contribution to the Blockly IDE for IoT. It begins with the user interfaces provided

26

by automatic UI generator for device management of IoT framework. Then, it

describes the visual programming blocks that provided by IoT domain framework.

Also, describes the execution of IoT automations. Finally, it gives a description of the

environment for automation testing. Chapter 6 gives a description of the Case

Studies; we have carried out in order to test our work. Chapter 7 concludes the work

and identifies issues for further research work.

27

2 Related Work

2.1 Middlewares on IoT

Paraimpu

Paraimpu is an IoT middleware [18], [19] that allows users to register, manage,

handle and interconnect their RESTful IoT devices or services whether physical or

virtual. Things are mapped to either the abstract concept of sensors or actuators in

Paraimpu. The former characterizes anything capable of producing data of a related

type (text, numeric, JSON, XML etc.) and the latter characterizes anything that is able

to perform actions by consuming data produced by the sensors. With the Paraimpu

also users can connect their things. This allows users to compose simple IoT

applications via JavaScript. All things in Paraimpu represented as RESTful resources

and JSON is used for internal interchange of data between devices. The

implementation of Paraimpu is succeeded using a scalable architecture leveraging a

non-blocking Tornado Web server [20], a NGINX [21] load balancer, and a MongoDB

[22] which provides persistency, replication and fail-over data management support.

In other words, Paraimpu aims to provide a scalable cloud infrastructure.

Reusing and sharing the IoT resources in their social networks are the main

advantages of Paraimpu over other IoT middleware. Paraimpu provides a limited set

of configurable sensors, actuators and connections that can be reused across

applications via filtering and mapping between inputs and outputs among sensors

and actuators. Paraimpu does not support service discovery. Paraimpu does not

provide device to device communication and thus entails the usual latency problem

of a cloud-based architecture.

28

Google Fit

Google Fit [23] is a free and open IoT platform. It is a cloud-based IoT middleware

that allows users to manage their fitness data and create fitness apps all from one

location. A fitness store is included in the scheme, which is a cloud storage service

that collects data from various devices and applications. A sensor framework is a

collection of APIs that enable third-party IoT devices to link to its store. It offers APIs

for subscribing to a specific fitness data form or source (e.g., Fitbit or Smartwatch),

as well as APIs for querying historical data and continuous storage of sensor data

from a specific source (e.g., a smartwatch). There's also a permission and user

controls module that protects data privacy and security by requiring user consent

before Google Fit's apps can read or store collected data. Google Fit is an Internet of

Things middleware designed to make it simple to build a specific form of application,

in this case, self-tracking data from wearable fitness devices.

Google Fit has built-in support for IoT devices that use Bluetooth Low Energy (BLE)

(Bluetooth Low Energy). A developer must include an implementation of the Fitness

Sensor Service class as well as the supported data form if it is not accessible when

adding a new fitness sensor type that does not communicate via BLE.

Calvin

Calvin [24] is an open source IoT middleware from Ericsson that aims to provide a

single programming model for capability and energy limited IoT devices that is light-

weight and portable. It is a hybrid paradigm for composing and handling IoT

applications that combines principles from the actor-oriented model and flow-based

computing. An actor, which is a reusable software component that can represent a

computer, a computation, or a service, is the key abstraction for building IoT

applications in Calvin. The input and output ports of an actor describe its interface.

In contrast to the standard object-oriented model, which responds to method calls

by returning values, an actor responds to inputs by generating outputs. The

Asynchronous Atomic Callbacks (AAC) pattern is used in this actor model, where

29

short atomic actions are interleaved with atomic invocation of answer handlers for

high-performing real-time interaction. Calvin's actor model often hides the low-level

communication protocols of things, so actors link and interact via ports, regardless of

how physical connectivity is accomplished. Calvin comes with its own scripting

language to make it easier to program an actor. To enhance the process of creating

an IoT application, it supports a prescriptive application development process called

Describe, Connect, Deploy, and Manage. Calvin is a lightweight IoT middleware that

can run on edge devices to reduce latency while still using the full computing power

of the cloud when necessary.

Calvin's actor has the ability to switch from one runtime environment to the next,

making it a reliable distributed IoT computation platform. The platform often

includes a pre-defined set of actors who carry out common but distinct tasks. Actors

for popular communication protocols and parallel processing are included. Calvin's

developer will expand the capabilities of this middleware by using CalvinScript to

create a new actor and adding it to the library. CalvinScript can be used to create

actors in the game.

Node-RED

IBM's open source IoT middleware platform, Node-RED [25], is an open source IoT

middleware platform. It is built on node.js, a server-side JavaScript platform that

uses a distributed computing environment's event-driven, nonblocking I/O module.

It is an IoT middleware that, like Calvin, can be run at the network's edge due to its

small footprint. The most important abstraction is Node, which is a visual

representation of a block of JavaScript code that performs a specific function on an

IoT computer (e.g., reading a particular value). To put it another way, each node can

be thought of as an actor.

The main benefit of Node-RED is a visual tool that makes composing IoT devices

easier, particularly if the node for the IoT device has already been created and

published by others. Users may use Node-visual RED's tool to drag-and-drop blocks

30

that represent components of a larger system and link them to create an IoT

application. As a result, Node-RED facilitates the development of IoT applications.

The composition engine binds IoT devices that can be abstracted as nodes together.

The APIs for communicating with the system must be available as a node.js library or

a module accessible by Node-RED for a device or service to operate with Node-RED.

Password authentication provides a minimal level of protection. The Node-RED team

believes that by forming a social network of Node-RED developers, modules or

node.js libraries for heterogeneous IoT devices can be crowdsourced. Service

discovery is not available in Node-RED. It is made with Node.js [26], a modern

framework with few libraries and modules.

2.2 Automatic UI Generators

Some research works of automatic UI generation have been found for appliances,

but there is not any relevant work that emphasizes on UI generation for IoT devices.

However, some previous works are very useful to our research.

Supple

In [34] Gajos et al. presented a toolkit named Supple which can generate UIs for

ubiquitous applications. The Supple can generate a concrete UI for the target device

after the designers specify declarative UI models and target device. Beside the

generation of UIs can be customized and its distributed architecture enables devices

to show Supple UI with less overhead.

Dynamo-AID

In [35] based on the traditional models like task model, environmental model and

dialog model, Clerckx et al. extend them to provide a design process and runtime

31

architecture, DynaMo-AID, that enables designers to develop context-sensitive user

interfaces which can change during the runtime of the interactive application.

Pebbles

The most relevant work was done by Nichols et al. in Pebbles project which aims to

generate the high-quality UIs on a hand-held device working as the personal

universal controller (PUC) for various appliances [37]. They extended the PUC with a

layer named Uniform to provide the UIs which are consistent with past used UIs [38].

Moreover, the Huddle system uses a model of content flow to generate UIs for

controlling connected appliances at high-level and low-level [39]. The simplification

of UIs can increase the usability of appliances with complex functionalities.

RBUIS

Akiki et al. present a tool supported approach, Role-Based UI Simplification (RBUIS),

that simplifies enterprise application UIs by providing users with a minimal feature-

set and an optimal layout based on the context-of-use [40].

Other Approach

In [36] Roscher et al. identify the concept of ubiquitous user interfaces (UUIs)

including five properties, shapeability, distribution, multimodality, shareability and

mergability. Then they proposed an approach of combining UI runtime architecture

MASP and runtime UI models to adapt UIs based on automatic adaptation

algorithms.

32

2.3 Visual Programming for IoT

HomeKit

HomeKit [27] is product from Apple allowing control connected home accessories

when compatible with HomeKit, and supports to a certain degree user-defined

automation as combinations of accessory control actions. It is not a EUP system as

such, and focuses mostly on smart home solutions with emphasis on advanced

configurations.

Puzzle

Puzzle [28] is a visual development system for custom automations with smart

objects in IoT adopting the jigsaw metaphor. However, the visual system is primitive

and lacks the full-scale capacity of common VPLs like all algorithmic elements,

procedures and objects, as well as versioning and application management.

Wia

Wia [29] is a cloud platform that makes creating IoT apps easier by linking IoT

devices and external services. It is possible to attach IoT development boards, IoT

devices, sensors, and external services using Flow Studio. It differs from others in

that it employs complex blocks that execute complex operations such as sensor

management. It fits with Arduino MKR1000, MKR1200, Espressif, Raspberry Pi,

Particle, and other IoT creation boards. It also integrates with third-party

applications such as AWS, Twitter, and Twilio. We can use Wia's API to communicate

with it and exchange data.

33

Embrio

Embrio [30] is another interesting visual tool to develop IoT apps. It is built for

Arduino and works with a range of operating systems, including Windows, OS X, and

Linux. Embrio is a visual programming interface for Arduino that uses a drag-and-

drop approach. It is based on the Agent principle. An Agent is essentially a process

with a task to complete. Agents can run concurrently and can trigger or kill other

Agents. The data flow and logic of an IoT app are described by the relations between

Agents. The Embrio app can be translated to Arduino code and run on the platform.

XOD

XOD [32] is a microcontroller programming platform with a visual interface. It is

based on the Node model, which can represent a sensor, motors, or a piece of

functional code like comparison operations, text operations, and so on. Each node

has an input and an output, allowing us to define the IoT app logic by connecting all

of the nodes. XOD produces native code that can be uploaded to and run on Arduino

compatible boards. It primarily supports Arduino. It is an open-source project with

an interesting feature: it is extensible, meaning new nodes can be introduced to

support new components.

Zenodys

Zenodys [33] makes it easy for developers to create IoT apps. It is possible to collect

data from any sensor and easily visualize the values acquired using the Zenodys

platform without programming. Using Workflow builder makes it possible to build

complex backend solutions using visual programming tools. Finally, the UI builder

aids the developer in the development of an IoT dashboard for the visualization of

data and details. It is a robust platform that offers a range of services that can be

linked together with the aid of its software and builders. Zenodys can be used in a

34

range of scenarios, including predictive maintenance, real-time control systems,

product line automation, and so on.

35

3 System Overview

In this chapter we are going to describe the overview of the visual programming

support system that is developed for the IoT domain framework at the top of Blockly

Studio. First, we describe the macro-architecture of the system and the elements

included in it. In addition, we describe the communication between our system and

smart devices and the need to simulate them.

3.1 Architecture

Figure 1 shows a macro-architecture of components that supports the visual

programming for smart devices at the top of Blockly StudioAt the bottom of the

stack are the smart devices that export their functions. To enable communication

between smart devices and other components, we use IoT middleware.

The next component is the Automatic UI Generator (section 4). To successfully

create user interfaces for smart devices, we first implement a Converter library that

converts the device API to a specific API that is called Generic Device API. It includes

only the data needed for the visual ion and interaction with smart devices. Then,

based on the API, Automatic UI Generator generates more than one user interface

type for smart devices from device-management process to the execution of

automations.

Moreover, we implement an execution environment for the IoT automations on

the top of Blockly Studio. In this context, we provide a visual programming toolset

for monitoring and interaction with devices. Particularly, in the environment exists a

calendar tool for monitoring scheduled tasks and an event history panel that records

device actions and conditional-based event. Furthermore, a device dashboard is

provided that displays in real-time an updated view of all smart devices involved in

running application

36

Finally, an extra environment is introduced for testing the crafted automations.

In this context, we extend the toolset that exists in the aforementioned execution

with test and simulation tools. Specifically, we provide a device simulator that

emulates all properties and actions of actual smart devices by displaying them with

virtual UI implementation. In addition, we create a time simulation enabling to

control directly the flow of time, with five basic operations supported, and thus

trigger directly all related scheduled events, by communicating internally to the basic

calendar component. Lastly, a suite of tests is available for simulating the behavior of

smart devices in a specific time period and another type of test enabling the users to

check the current state of devices.

Figure 1. The macro-architecture of the system for visual programming support for smart devices

3.2 Communication with Devices

To make the communication with smart devices possible, we use the IoTivity

middleware [41]. It is an open-source software framework, reference

implementation of the Open Connectivity Foundation (OCF) standards for the IoT.

37

Furthermore, IoTivity provides the iotivity-node [42] a JavaScript API for OCF

functionality and it is implemented as a native addon using IoTivity as its backend.

Our work uses both IoTivity and iotivity-node to communicate with smart devices,

and carries out all the required functionality which is described in the following

paragraphs.

Figure 2. API implementation for communicating with smart devices

Using iotivity-node, we have managed to create our communication API. It

consists of five main methods. Firstly, a method for dynamically discovering smart

devices which are connected to the network is implemented. Also, we have

implemented methods for updating and retrieving the state of the devices.

Furthermore, we create two event-based methods, the first one uses the update

event of iotivity-node to observe any change on the state of a smart device and the

second one uses delete event to notify when the device is deleted or unregistered

from the network. Last but not least, the communication API implements two more

methods for each property of a smart device, first one is created to set a new value

to the property and the second exists for getting the current value of the property. In

38

their inner body, they are used the Update and Retrieve methods of the API

respectively. The API that we have implemented is presented in Figure 2 and Figure 3.

Figure 3. Creation of setter and getter methods

Figure 4. practically-RESTful API for Air Conditioning smart device

3.2.1 Simulating Smart Devices

For the need to test and evaluate our work, we need to get a wide variety of

smart devices. The only way to achieve the large number of different smart devices

39

is to simulate as much as you can. The simulation of the smart device is intended to

have the same data as the real ones and the same functionality.

For the simulation of smarts devices, we use the IoTivity Simulator [43]. It is a

plugin tool over the Eclipse IDE [44]. Using this tool, we can simulate smart devices

as OIC (Open Interconnect Consortium) resources. Open Interconnect Consortium

(OIC) [45] is a standard and open-source project that delivers “just-works”

interconnectivity for developers, manufacturers and end users. The IoTivity

Simulator comes with a Service Provider that manages creation, deletion, request

handling and notifications of simulated resources. Furthermore, it handles the

requests received and sending appropriate responses to clients.

Figure 5. Properties of the Air Conditioning smart device

To successfully simulate a smart device through Simulator, we have to build its

REST (Representational State Transfer) API with the help of the RAML (RESTful API

Modeling Language). It is a way of describing practically-RESTful APIs in a way that’s

40

highly readable by both humans and computers. A REST API (also known as RESTful

API) [46] is an application programming interface (API or web API) that conforms to

the constraints of REST architectural style and allows for interaction with RESTful

web services. Figure 4 shows the practically-RESTful API of OIC resource that we

import to Service Provider for simulating a smart Air Conditioning device. We have

modeled the GET request for retrieving current state of the device. Also, it has been

modeled the POST request for updating the Air Condition with the updated state.

Figure 6. Actions of the Air Conditioning smart device

In order to create functionality for the smart devices we use JSON Schema [47]

and more specific the draft 2017-07. It is a vocabulary that describes an existing data

format. It also provides clear human- and machine- readable documentation. Every

smart device consists of properties and actions. The first category includes all that

items of the device that they can take a single value. The value types of properties

are the following:

• String: This type is used for strings of text and it may contain Unicode

characters

• Boolean: This type matches only two special values true and false.

41

• Numeric: There are two numeric types integer and number.

The first is used for integral numbers and the latter is used for any

numeric type, either integers or floating-point numbers.

Figure 7. IoTivity Simulator included Air Conditioning smart device

For the properties which take string as value, it can be defined the possible

values by the keyword enum as we can see for the first two properties turn and

swing of Air Conditioning device in Figure 5. Also, we can make a range numeric type

using minimum and maximum keywords such as the device and environment

temperature properties of the Air Conditioning device. Furthermore, we can define a

property as read-only which means that user cannot change its value, it can only be

changed from the Service Provider. Lastly, using default keyword, we can initialize

the value of property.

For the purpose of simulation of a smart device, except properties, we define and

its actions. They are all these operations that a smart device can perform (e.g., Turn

on a Television). We use JSON Schema for modeling actions for a smart device, each

action consists of parameters and a function body. The first is an array from items

that they have name and type, and the second is added in the communication phase

as JSON schema doesn’t not support function type. In Figure 6 we show the Air

Conditioning device actions. We can see that the action Configure that it has two

42

items as parameters for setting device-temperature and swing properties

respectively. After completing the modeling of a smart device, we import it to the

Service Provider to finish the simulation. In Figure 7 we can see the Air Conditioning

device from the view of the Simulator tool.

43

4 User Interface Generator

In this chapter we are going to describe the Automatic User Interface Generator

that produces UIs for the smart devices. To generate user interfaces, we have

designed and built a generic device API used from the Automatic UI Generator.

Furthermore, we are going to present the MicroUis for each property type generated

automatically. Finally, we describe the user interfaces for actions and methods of

device and how they are executed with or without parameters.

4.1 Generic Device API

With the aim of generating User Interfaces for smart devices, we define a Generic

Device API. For converting smart device data to the API, we implement a new library

which is called Converter as we can see in Figure 8. The main function of the

Converter is the ConvertDevices which is called when we want to convert devices

data to the Generic API (Figure 9)

Figure 8. Converting virtual device data to Generic Device API

44

Figure 9. ConvertDevices of Converter library

In order to validate that the data of each device are successfully converted to the

Generic Device API, we use JSON Schema. In Figure 10 we present the schema for

the API and according to this a device has the following attributes:

1. category

The category attribute declares that the object is a smart device and its default

value is “Device”

2. id

The id attribute is an identifier for each method and action. Its value is unique for

every device

3. name

The name attribute contains name of the device that should be presented to user

in user interface.

4. option

An option attribute for the devices which contain an image

A device also contains three more attributes: properties, methods and actions.

In reference to properties, the data description is presented in Figure 11 through

a JSON Schema and they carry five basic attributes:

45

Figure 10. Generic Device API definition

46

1. category

An identifier attribute for properties which has “Property” as default value.

2. name

The name attribute contains name of the property that should be presented to

user in user interface. It is unique for each property.

3. value

It is the value of the property and It can be one of the following:

• Number

• Boolean

• String

4. type

The type attribute contains type of the property. Converter gives a type to

property of a smart device based on its value type. There are five different types:

• number: Property value is number without minimum or maximum value.

• intRange: Property value is integer with minimum and/or maximum value.

• boolean: Property value is boolean and the possible values are true or false

• string: Property value is a string of text and it does not have possible values.

• enumerated: Property value is as sting of text such as string, but its value is

selected by a set of strings.

5. read_only

The read_only attribute is for the property which its value cannot be modified

but only be accessed. For the read-only properties a specific Micro UI is

presented to the user.

6. option

An option attribute is for the properties which their type is either enumerated or

intRange. It includes the followings attributes:

• possible_values: An array that contains all possible values for an

enumerated type property.

• minimum_value: The minimum value for an intRange type property.

• maximum_value: The maximum value for an intRange type property.

47

Figure 11. Property of a smart device definition

In respect of actions and methods, we define the same JSON Schema which is

presented in Figure 12 and it consists of five attributes.

1. category

An identifier attribute for properties which has “Action” and “Method” as default

value for the action and method respectively.

48

2. Id

The id attribute is an identifier for each method and action. Its value is unique for

every method or action

Figure 12. Method of smart device definition

49

3. name

The name attribute contains name of the method or action that should be

presented to user in user interface.

Figure 13. Parameter definition

4. parameters

The parameters attribute describes the parameters of the method or action. The

JSON Schema for the parameters is presented in Figure 13 and it consists of three

attributes:

• name

The name attribute contains name of the parameter.

• type

The type attribute contains type of the parameter and can be one of the

followings:

i. string

50

ii. number

iii. boolean

• _UI

The _UI attribute includes all the information about the User Interface. It

consists of the followings:

i. description: The description attribute describes parameter.

ii. relation: The relation attribute is important for the parameters

because it describes relation between parameter and a property

of smart device

5. _UI

The _UI attribute includes all the information about the User Interface. It consists

of the followings:

• description: Description describes method or action and acts like a tip for

the user.

• color: It corresponds to the color that the method or action will be

colored.

• display: It describes the display area that the method will be displayed. It

takes as value a property name for displaying in property area, or

“generic” to be displayed in generic area of smart device.

• dependence: The dependence attribute expresses conditions which have

to be satisfied to allow execution of selected method or action.

Dependence is very important because without proper dependence

checking, user can have access to unavailable methods.

4.2 MicroUis

4.2.1 Device Properties

The first issue that arises, which is also the most apparent and easily confused as

the only issue in automatic interface generation, is that of displaying values of data.

51

The approach that is taken in our work for displaying the values of properties of a

device is inspired from the Properties and MicroUis architecture which is introduced

by [48].

As we mentioned in 4.1 (Generic Device API) during the conversion of smart

device to Device API, a property is taken type based on its value type. For instance,

the type of environment-temperature property of Air Conditioning device should be

intRange because its value type is integer with minimum and maximum value.

The responsibility for displaying properties is then passed to hard-coded,

embeddable micro-interfaces. The matching of properties to MicroUis is done simply

by type matching: properties of a certain type can only be used by certain MicroUi-

rendering methods (Figure 14).

Figure 14. Design of device properties and their automatic rendering with MicroUis

In the following list is presented the MicroUis which are generated based on the

property types. However, a read-only property is mapped to a unique MicroUi

regardless of the type:

1. number →

52

2. intRange →

3. boolean →

4. string →

5. enumerated →

6. read-only →

4.2.2 Methods and Actions

Another issue that arises during the automatic generation is that of displaying a

method or an action of a device.

Figure 15. Update method with its description

53

The approach that we decide to take here is to render every action or method as

buttons. Also, to help users to understand which is the use of every method, we

create tooltips which include their descriptions (Figure 15)

To successfully complete the interface generation of actions and methods, we

have to generate User Interfaces for their parameters. We have managed to re-use

some of the MicroUis which are mentioned in 4.2 (MicroUis). So, a parameter of

number type is mapped to MicroUi for number type, a boolean type parameter is

mapped to MicroUi for boolean and so forth.

54

5 Integration with Blockly Studio

IDE

In this chapter we discuss the components for supporting the visual

programming for Internet of Things on the top of Blockly Studio IDE.

In detail, we present the user interfaces produced by Automatic UI Generator (4)

for both single devices and device groups. Moreover, the visual programming blocks

and elements provided by IoT domain framework of Blockly Studio for the

development of automations are described. In addition, the runtime environment

for automations and the environment for automation testing are presented.

5.1 User Interfaces on device management

Blockly Studio provides a device management process for defining and managing

smart devices for end-user development. For this process we provide user interfaces

for smart devices and device groups by Automatic UI Generator (4).

5.1.1 Single Device

Through the communication API described in section 3.2, users scan the network

for available smart devices. Then, a list of smart devices is provided including

information for their identity and their properties as depicted in Figure 16. The

visualization of smart device is based on the automatic user-interface generation

process (4) which gets JSON data response from scan’s request to the IoTivity as

input. The end-user developers are able to choose which of the smart devices from

the list will be registered for the development process by clicking the “Register”

button.

55

Figure 16. Scanning devices on the network

Registered smart devices are then available to operate during the development

process. The generator generates user interfaces for operating devices based on

their functionality (see Figure 17). First, it provides a read-only MicroUI for each

device property that includes the name, universal-id, value of property and a button

that enables the property for the development process. In addition, the UI provides

a visualization for each action that includes its name and a button to activate it in the

development process. In addition, in the action MicroUI there is a button to

implement the action body that is ran in the execution for automation testing.

56

Figure 17. Air Conditioning device interface which is generated by Automatic UI Generator

At the bottom of the device user interface is the smart group area that includes

all the device groups in which the device participates. The interface of each smart

group includes each name and a button for removing the device from this group.

5.1.2 Device Groups

In addition, device management of IoT domain framework attempts to identify

which of the registered devices of the smart automation have common functionality

57

and organize them in groups (e.g., more than one air-conditioning and smart lamps

could be registered in a smart group). These groups give the ability to develop-

handle the smart devices in groups instead of requiring to handle each one of the

common devices (e.g., turn on/off all air conditioning devices in the house).

Figure 18. Air Conditioning device group interface which is generated by Automatic UI Generator

The users are able to create new groups with common functionality via the

devices by exporting their properties (i.e., click the “Create Group” button presented

in Figure 17). The user interface of groups (see Figure 18) includes the common

functionality of devices (i.e., same device properties). Particularly, the automatic UI

generator provides a read-only MicroUI for each group property. In addition, for

each property is provided a button for enabling it in the development process. This is

useful in case they would not like to include a specific common functionality in the

group and this functionality is not supported by one device that they would like to be

included in the group. At the bottom of user interface there is the “Smart Devices”

area that includes all devices that belong to this group. In detail, for each device is

58

visualized its name and a button to remove it from the list in case of the users would

like to handle it separately.

Figure 19. Adding Air Condition device to an already defined group

Moreover, in the process of the matching common functionality of smart devices,

the end-user developer is able to give for each one of the properties a universal-id.

This is useful in the case that devices support common functionality but export

different APIs. The matching mechanism attempts to match the original property

name and then in the case of failure tries to match with the given universal-id. The

matching mechanism to add a smart device in at least one existing group is

presented in Figure 19. The UI generator mentioned in section 4 provides interface

for the device and group on the top of matching mechanism. For matching a device

with a group, a user has to update properties’ universal-IDs to match with group

properties’ either name or universal-IDs. For instance, in Figure 20 we update

universal-ids for an air conditioning device to match with an alarm clock group.

Finally, when the device is matching with the group the end-user selects at least one

group to add the device.

59

Figure 20. Update universal-IDs of the smart device and match it with an existing group

5.2 Visual blocks provided by the IoT domain

framework

The visual programming blocks are provided by the Blockly Studio and they have

been designed using the Blockly Developer Tools [50]. It is a web-based developer

tool that automates parts of the Blockly library configuration process, including

creating custom blocks, building your toolbox, and configuring your web Blockly

workspace.

In the following paragraphs we describe the blocks provided by Blockly Studio for

end-user development.

5.2.1 Device

The set of Blockly blocks for devices consists of three categories. In the first

category of blocks belongs the actions of a smart device. As we have mentioned in

3.2.1 (Simulating Smart Devices), in the device functionality belongs and its actions.

60

So, we have implemented constructors which dynamically generate blocks for each

action based on the type and number of their parameters. To make the dynamically

generation process of blocks clearer, we present the actions blocks of two smart

devices in Figure 21.

Figure 21. Visual programming blocks for device actions

The second category consists of blocks for setting and getting value for each

property. Αs we have described in previous paragraphs there are five types of

properties. Depending on the type of property, there are different blocks. So, the

block which sets a value to enumerated property, it takes as value a string block, a

block which sets a value to a number property type, it takes as value a number block

and so forth. In Figure 22 we present setter and getter blocks for different types of

properties.

Lastly, the third category consists of blocks that can take input or print the values

of properties using the console tool of Blockly Studio IDE. These blocks make more

powerful the development process for the end-user as he can change the state of a

smart device during the execution of an application. The first block in Figure 23 is for

giving input for the device-temperature property and the second block is for printing

the value in the console.

61

Figure 22. Setter and Getter Blockly Blocks for Properties

Figure 23. Input/Output for smart device properties in the I/O Console

5.2.2 Device Group

In the case of smart device group, the IDE provides constructors that create only

these blocks which are important to help the end-user in the handling of smart

devices. However, some blocks that it has been created in smart devices does not

have any worth in device group, these are both getter and action blocks. In addition,

since there is not getter block for group, there is no reason to exist an output block.

However, the setter and input (see Figure 24) are the most important blocks for

groups since the end-user has the flexibility to change the state for one or more

devices that belongs in a group at the same time.

62

Figure 24. Setter and Output Blockly Blocks for device group

5.2.3 Conditional

Another set of blocks provided by Blockly Studio is the conditional blocks that

exist to enable end users to define conditions based on the state of the properties of

the smart device. There are two types of blocks and some extra that are defined to

help the users for creating flexible IoT automations.

Figure 25. When Conditional blocks (A), After Conditional blocks (B)

The first type is When conditional blocks (see Tag A of Figure 25). The left list can

only be used as parents in contrast with the right one that can be executed as

statement. In detail, in Blocky Studio there is a simple When conditional that when it

is evaluated to true, its inner blocks (i.e., children) are executed. Furthermore, there

are two more complex blocks, the first one defines how many times their children

are executed when the evaluation has result of true and in the second the children

are executed every time the condition is evaluated to true.

63

Moreover, one more type of block exists this is the After (see Tag B of Figure 25)

scheduled block. The children (i.e., statements) of this block are executed only when

the condition has been evaluated to true so many times as the end-user has given in

the input field.

Furthermore, as we said at the start of the paragraph, the need for more blocks

(see Figure 26) arises for giving flexibility for the end-users to build any conditional

scenario with smart devices.

Some of extra blocks are the break and continue (see Tag A of Figure 26). The first

one terminates the execution of parent and the program control resumes at the next

statement following parent block. The latter works somewhat like the break. Instead

of forcing termination, it forces the next execution of parent block, skipping any child

that is under of it. Parent can be only When or After, otherwise blocks are inactive

as we can present in Figure 27.

Figure 26. Continue/Break blocks (A), Extra conditional blocks (B)

Finally, there are some other blocks for evaluating conditions (see Tag B of Figure

26). The first one is for the logical operators (and, or, not). Also, for the evaluation of

properties of smart devices a block with relational operators has been defined. The

last block gets as its input inner block a getter of a smart device property, to check if

this property’s value changed. This block is executed repeatedly. The first time it

64

initializes the value and for every next time it is executed, it retrieves the smart

device’s value and checks if something changed.

Figure 27. Break/Continue blocks outside of When/After block

5.2.4 Scheduled

The next category of blocks that are provided is focused to the calendar and time

events. Particularly, using this category, the end-users are able to define events

which will be triggered based on time or date in repeatable basis or once. We have

identified three blocks for calendar and time events (see Figure 29).

Figure 28. Break/Continue blocks for Every

The first is the “At” block which is executed once at a specific time or date. The

second is the block Every which is executed repeatedly every specific time or date.

The last is the block Wait which is executed once after a specific time. Also, blocks on

the right list can be used as children on body for either conditional or calendar

events. The blocks which are remaining (see Tag B in Figure 29), are used as inputs

for the blocks that we described.

Except from the blocks that we described in the previous paragraph; there are

the break/continue blocks for the “Every” (see Figure 28) block which are used in the

same way as for the conditional blocks.

65

5.3 Types of automation provided by the IoT

domain framework

In this section we present the types of automation that end users can develop

using the visual programming blocks provided by the Blockly Studio IoT domain

framework.

Figure 29. Blocks for scheduler events

5.3.1 Automations for Scheduled Tasks

In the category of “Automations for Scheduled Tasks” users are able to create

automations that are focused to the calendar and time events. Also, when the users

create their own automations, a new category is created in the Blockly toolbox which

66

includes all three types of Automations (i.e., Scheduled Tasks, Conditional Tasks and

Basic Tasks).

Figure 30. An Automation for Scheduled Task

Moreover, the toolbox for the automations for scheduled tasks includes all blocks

of Scheduled category which are described in 5.2.4. Also, user is able to use and the

Conditional blocks which can be used as statements (5.2.3). Finally, it includes all

blocks that are corresponded to functionality of smart devices and device groups.

In Figure 30, we present an example of an automation for scheduled task. In

detail, it is used the “At” block to determine that in 22:00 o’clock doors will be

locked. Also, we used the conditional block “When” as statement to turn of the

devices of group Lights when the door main-door will be locked.

5.3.2 Automations for Conditional Tasks

The next type of automations is the “Automations for Conditional Tasks”, the

user is able to create automations that are related to the current state of smart

devices or devices groups. The generated blocks for starting manually this type of

automations which are mentioned in 5.2.3, are included in the sub-category

“Conditional Tasks”.

The end-user is able to create automations that control and inspect the

properties of smart devices or devices groups. Also, the Blockly toolbox of these

automations includes the Conditional blocks which are mentioned in 5.2.3.

67

Furthermore, it includes blocks that are focused to calendar and time events (5.2.4)

but only these which are used as statements. Lastly, toolbox includes blocks for

devices and groups functionality.

Figure 31. An Automation for Conditional Task

In Figure 31, we present an automation for conditional task. Four blocks are used.

The first one is the “When” conditional block which checks when the water is ready

for bath. When the water is ready, the Air Conditioning device turns on. Also, the

automation for basic task “Turn on Lights” starts to turn the devices of group Lights.

Finally, the last statement of the conditional automation is the execution of action

“PrepareCoffee” of Coffee Machine.

5.3.3 Automations for Basic Tasks

The last type of automations is the simplest one. It includes “Smart Devices” and

“Smart Device Groups” categories which are described previously.

Finally, using this type of automation the end-users can create automations that

consists of blocks with the functionality of a smart device or a smart device group. In

Figure 32 we present an example of automation that consists of four blocks. The first

two blocks are for turning on Water Heater and Coffee Machine devices. Also, a

block for starting prepare coffee for the Coffee Machine is used. Moreover, the last

block is used for starting manually a defined automation for basic task which is used

for turning on all the Light devices. As we can see from the example there is not the

categories for conditional or scheduled blocks.

68

Figure 32. An example of Automation for Basic Tasks

5.4 Runtime of Automations

Using the elements that we described in the previous sections, the end-users can

develop and execute their automations. In this section we describe the runtime of

IoT automations. Moreover, we describe the execution process and the tools used

during it, as well as the interaction between tools and smart devices (see Figure 33).

Firstly, the Blockly Studio collects and provides the required data of project

elements. This data consists of all the project elements that the users have defined

during the development process. Particularly, the data for smart devices that

participate in the development and the source code of the automations. The source

code is generated from visual programming blocks included in automations.

69

In addition, after we take the data of EUD (End-User Development) process, we

have to initialize the communication with the smart devices that have been used in

the automations. Using the API of the middleware (i.e., IoTivity) we retrieve the state

of the devices. From that point on, the execution window communicates with

devices for possible changes in their state.

Figure 33. Overview of execution of automations

After successfully communicating with the devices, we need to initialize the tools

used during the execution. First, we use the automatic UI generator to display smart

devices. We also create the calendar that is useful for keeping track of scheduled

tasks, and then initialize the event history that records all the events that were

triggered during execution. All aforementioned tools are described in the following

sections.

Lastly, to successfully execute the automations, we have to execute the source

code generated from them. The source code of automations generated from the

visual programming blocks used in automations. Every type of blocks generates

70

specific source code that interacts with the existing tools (i.e., calendar, event history)

and smart devices.

5.4.1 Device Dashboard

As we mentioned in the previous paragraphs at the start of execution process,

we initialize the communication with devices. Particularly, this communication is

established through the middleware and in our case IoTivity. In the initialization

phase we ask the state of each device. In addition, using IoTivity we bind observers

to the devices for tracking changes on their state. After a change on the value of

property, the MicroUI of this property is highlighted (see Figure 34).

The visual programming blocks that change the state of devices (i.e., setter and

action blocks, section 5.2.1) generate code that, when executed, sends requests to

the devices. Additionally, during execution, the getter blocks source code requests

and receives the value of the device property.

Figure 34. User interfaces for smart devices on runtime generated by User Interface Generator

For the visualization of the smart devices (see Figure 34), we use the User

Interface Generator presented in chapter 4 . In detail, the properties of smart

devices are rendered with read-only MicroUIs (section 4.2.1). Smart devices are

visualized in read-only mode, because users are not allowed to change their state

directly, the state of devices changes only by executing the automations.

Additionally, the user interfaces that are created include the name and image

selected by the end user when defining it in Blockly Studio.

71

5.4.2 Calendar

A key tool that was created and used in the automation execution window is the

calendar. It is used for tracking the scheduled tasks defined in automations. The

blocks that are used for scheduled tasks (section 5.2.4) generate code that interact

with the calendar tool. Specifically, we use the JavaScript "setTimeout" function to

specify the specific time that tasks must wait for their execution. Every task that is

created from scheduled block is recorded to a day of calendar (see Figure 35).

For the creation of calendar, we use the Javascript Calendar & Organizer library

[51]. It is a library for normal calendar use and events scheduling. It fits with our

need for displaying scheduled tasks. A user is able to view the calendar and time

events that have been used in automations through the blocks that we mentioned in

5.2.4.

Figure 35. Calendar tool on runtime environment

Moreover, the end-users using the calendar are able to detect when the

Scheduled Tasks will be executed (statements blocks) and their finishing time (see

Tag A in Figure 36). Finally, with the timings of the tasks, we provide a default

message to the user for understanding which of the scheduled blocks is executed.

However, users are able to change the default message and write a description

which is visualized in organizer (see Tag B in Figure 36).

72

Figure 36. (A) “Wait” block with given description (B) Description of block is visualized in organizer with the
starting and finishing time

5.4.3 Event History

The last tool created and used during the execution of automations is the event

history. This tool logs any automation-triggered events other than the calendar-

based events included in the calendar. There are two types of events in the event

history: the events from conditional tasks and events from device actions. The

events of the first type are generated from the execution of source code of the

conditional blocks mentioned in section 5.2.3. The other events are generated from

the execution of source code of device blocks that change its state. In addition, to

check if the condition contained in the conditional blocks is satisfied, we use the

"setInterval" JavaScript function every 200 milliseconds.

Conditional events that are visible in the event history (see Figure 37) are colored

the same color as the conditional blocks from which they are created (I.e., When,

Forever blocks). Additionally, conditional event bubbles include the time and date

they were activated. Also, in the bubble there is a status with values: "Starts" or

"Ends", the first indicates when the event starts and the last when it ends. Finally,

users are able to write a description in conditional blocks, such as programmed

blocks, and included in the bubble in the history table.

73

Figure 37. Event History that includes two "When" conditional events

In addition, any change in the state of smart devices from device blocks (section

5.2.1) is recorded in the event history. In detail, the actions performed and the

properties changes of the smart devices are displayed with bubbles in the history,

such as conditional events (see Figure 38). Each bubble takes on the color of the

user-defined smart device during the development process. The bubble also includes

the image of the smart device and the time and date of the event. In the case of

device actions, the bubbles include the values of the arguments, and for changing

device state the old and current values are displayed.

Finally, users can browse the automation that creates an event in the event

history. The corresponding bubble for the event can be clicked and using the

communication with the IDE data (see Figure 33) the Blockly Studio IDE minimizes

the execution window and maximizes the automation workspace by marking the

specific block for the created event.

5.5 Automation Testing

As mentioned in section 1.4 there is a need for end-users to test their

automations to check if they are running correctly. So, we run the automations in

another execution window for automation testing to introduce new automation

control tools. An overview of the new execution window is shown in Figure 39.

74

Figure 38. Event History that includes a device action and a property change of smart devices

First, like the previous chapter, the IDE provides data consisting of smart devices

and automations source code. Communication with the other components of Blockly

Studio is also established.

Second, there is a different approach to smart devices compared to the previous

execution. In particular, to help users test their automation, we need to provide

them with a set of virtual devices with the current state of their devices. This is very

important because when execute automations for testing purposes we do not want

to affect the condition of the actual devices.

In addition, we initialize and use an extension of the tools we create in previous

execution. Moreover, we initialize a calendar tool to deal with scheduled tasks and

an event history that records each event triggered during execution. Also, using the

interface generator we provide device visualization during the execution. As we use

a set of virtual devices, the generator uses the data of these devices. Furthermore,

we create a time simulation, which the end user can control with the provided time

controls. Lastly, we initialize a set of device tests to check and change the condition

of the device.

Finally, the automations source code is generated by the visual programming

blocks involved as in automations. The main difference is that the source code

affects the virtual devices and not the actual end-user devices. Executing code for

75

scheduled tasks again interacts with the calendar tool, but in this execution the tasks

can be activated by time simulation.

Figure 39. Overview of runtime for automation testing

5.5.1 Device Simulation

For the testing purposes of automations, the end-users want to immediately

change the state and test their devices. Therefore, running IoT automations that

affect real devices is not practical because assuming a user wants to find an error in a

particular automation that uses smart light, he has to turn the light on and off every

second for testing. Moreover, an end-user maybe wants to test a smoke sensor

device, it is impossible to test it unless he lights a fire. All these gave birth to the

need to make virtual devices which have the same functionality with devices used in

automations. Thus, in the initialization of this execution of automations we create a

set of virtual devices with the current state of the real devices.

A main problem of copying the functionality of the real devices for creating

virtual is the execution of their actions. As the user does not know what operations

are executed on call of every action, we have to provide a tool to simulate the

actions of the virtual devices. Figure 17 shows that we provide a simulate button (in

76

the third list) for each device action in which end users can simulate them. Blockly

Studio provides us a workspace when the button is pressed and the user has the

opportunity to implement the action body that will execute (see Figure 40). Finally,

for each action parameter a block is created that takes the value of the parameter at

runtime.

Figure 40. Implementation of an action for execution window for automation testing

Another tool that we provide on this context is the direct control of virtual smart

devices. When the automations are running, the end-users are able to control the

device properties (see Figure 41). The user interfaces that we provide for controlling

devices are generated by Automatic UI Generator that we mentioned in chapter 4 .

Particularly, it generates a MicroUI for each device property based on its type.

Additionally, it produces MicroUI for each device action which is represented with

buttons that execute the corresponding action.

5.5.2 Tools

As mentioned in section 5.5, for automation testing we expand the set of existing

tools used in the normal execution. The calendar also exists in this execution window

77

the difference is the scheduled events now can be triggered from the simulated time.

Furthermore, the event history is provided and has the same usage as the normal

execution of automations.

Figure 41. Control virtual devices that participate in execution for automation testing

One of the main tools we provide to users during execution is the control of

simulated time. For controlling the time, we use Day.js [52]. It is a minimalist

JavaScript library that parses, validates, manipulates, and displays dates and times

for modern browsers. We provide a set of functionalities to the end-users to control

simulated time to test their scheduled tasks (see tag 1 in Figure 42). In detail, the

end-users can pause and continue the time. Also, they are able to make time pass

slower or faster. Finally, a user can go to a specific time using the corresponding user

interface (see tag 2 in Figure 42). The important thing of the latter is that when we

go to the specific time in the future, all the events that need to be activated are

executed sequentially as in normal execution. Also, events that were to be created

by another execution of events are created and executed as in normal execution.

Last but not least, we provide an additional control panel in execution for

automation testing which is the test control panel (see Figure 43). This panel records

every device test created by the end-user during the execution. The device test can

78

be either to change the device state at a specific time or to check its state and when

it is activated a message is previewed. Both types of tests are described in section

5.5.3.

Figure 42. (1) Controls for simulated time. (2) User interface for going to specific time

Figure 43. Test Control Panel included in the execution for automation testing

5.5.3 Tests

As mentioned in the previous section, we provide a set of tests. We create two

types of test, the first one is for defining changes in the device state and the other

79

for checking the state of devices. Every test is executed after its creation or at the

start of execution.

For the first type, we provide a user interface through which the user can define

after how many seconds a change on the device state will be executed (see Figure

44). In detail, users can create more than one time that a change will be executed.

Also, in each time slot the user is able to define more than one operation (i.e.,

property change or action execution) of one or more virtual devices. With this test

we give to end users the opportunity to test the read-only device properties by

changing their values and therefore to test their automations. Finally, end users can

browse to the implementation of action that we mentioned in section 5.5.1 since the

execution window communicates with Blockly Studio IDE.

Figure 44. Define changes of smart devices at specific times

In addition, the next type of test is to check the values of the device properties.

For creating this type of test, we provide a specific Blockly workspace through the

Blockly Stuido IDE. In addition, we extend the constructors of blocks of Blockly Studio

IDE to generate two more blocks (see tag 1 in Figure 45). The first is to check the

value of the property and notify the user during the execution. The latter is to notify

the end user and also stops the simulated time. Both of the blocks receive a warning

message that appears in the notification area during the execution of IoT

automations (see tag 2 in Figure 45).

80

Figure 45. (1) Blocks for checking device state (2) Warning message generated from value checking test

81

6 Case Studies

Using the visual programming tools, we have carried out three case studies in

order to validate and better present our work. Initially, we designed three scenarios

of automations: Morning Automations, Self-Caring Home and Fire Protection. For

each one we simulate smart devices using the IoTivity library. Afterwards, we

developed the automations for every scenario and we execute them.

6.1 Morning Automations

One of the most difficult times of the day for people is waking up and their

morning habitual tasks. There are several things that people have to do when they

wake up such as, have a bath, prepare their breakfast, be informed about the news

and their messages, prepare for their work, leave home for work etc. Using the

existing smart devices, several processes could be automated and users would gain

some more minutes of sleep, find the temperature of their home regulated, not

forget to be informed about the news, leave home without worrying if they forgot to

lock the windows or turn off lights, electric devices etc. All these automations can be

accomplished when related events are triggered as depicted on the Figure 46.

The first event of application is based on the time that the alarm clock rings.

When the event is fired, the alarm clock is switched off, then the air conditioning

system regulates the home temperature, while water heater starts preparing water

for a morning bath and the coffee machine prepares the first coffee of the day. Then,

when water for the bath is ready, the window blinds open and the air conditioning

turns off. Also, the bathroom door opens and the light turns on. In addition, when

the windows blinds are open, Hi-Fi turns on and the "Getting Better" track starts

playing. Furthermore, when coffee is prepared, Hi-Fi stops playing music and TV

starts playing News. Finally, when leaving the home for work, smart devices take on

the safety of the home by locking all doors and lights.

82

Figure 46. Morning Automations triggered by environment events

6.1.1 Devices

The smart devices included in Morning Automations are presented in Table 1.

Smart Device Functionality

Alarm Clock
Turns on/off
Start/Stop rings
Set alarm time
Change ringtone

Air Condition
Turns on/off
Sets/Gets Temperature
Environment Temperature
Swing (auto, top, bottom)

Water Heater
Turns on/off
Is water ready

Coffee Machine
Turns on/off
Starts/Stops preparing coffee
Rest coffee cups
Is coffee ready

Window Blinds Opens/Closes

Bathroom Door
Opens/Closes
Locks/Unlocks
Is locked

83

Main Door
Opens/Closes
Locks/Unlocks
Is locked

Bedroom Door
Opens/Closes
Locks/Unlocks
Is locked

TV
Turns on/off
Sets Channel
Sets volume

Hi-Fi
Turns on/off
Starts/Stops music
Sets track
Sets volume

Main Light
Turns on/off
Changes scene
Sets color

Bedroom Light
Turns on/off
Changes scene
Sets color

Bathroom Light
Turns on/off
Changes scene
Sets color

Table 1. Smart Devices for Morning Automations

6.1.2 Automations

After we defined the required devices for the Morning Automations, we have to

implement the automations for the scenario using visual programming blocks. In

Figure 47 we present each visual program for each Morning Automations event.

Firstly, for the event that the alarm clock rings we use a conditional “When” block

(see tag 1 in Figure 47). Then we fill its body with the statements that will happen in

case of triggering, the action “TunOff” of alarm clock will be executed. Moreover, we

define a basic automation that turns on the air condition and sets the temperature

to 25, the Regulate Temperature automation. In addition, for the preparation of

water for bath is called the action "TurnOn" and for the preparation of coffee we use

the action block "PrepareCoffee" of the coffee machine.

84

For the second event of Morning Automations, we define a conditional

automation (see tag 2 in Figure 47). In detail, we use the “When” block to observe

when the water is prepared for bath. After the event will be triggered the “Open”

action of window blinds will be executed. Then we call the “TurnOff” of air condition

using the Blockly block. Finally, we use the visual programming block to change the

property “state” to open for bathroom door and the action “TurnOn” is called.

Next, we have defined an automation for the event that is triggered when the

windows blinds open (see tag 3 in Figure 47). We define a basic automation thought

which the hi-fi turns on and starts playing the “Getting Better” track.

Moreover, we define another conditional automation for the preparation of

coffee (see tag 4 in Figure 47). Using the “When” block we observe the “coffee-ready”

property of coffee machine. Then when the coffee is ready, the action “Stop” of Hi-Fi

is executed and we use the start automation block for turning on and play the News

channel on TV.

Finally, a last automation for locking the main door is defined (see tag 5 in Figure

47). We use a combination of the “When” and “Wait” blocks for observing the state

of main door and execute inner blocks after 5 minutes. We use blocks that change

the value of the "lock" of the bathroom and bedroom door. Then, for turning off all

lights of home, we call the corresponding actions using the visual programing blocks

of actions.

6.1.3 Execution of Automations

After the definition of devices and automations for the Morning Automations, we

have to run the project and present the tools of runtime environment. As the

scenario based on conditional events the main tool that we are interested in is the

Event History (5.4.3). However, there is an event which is based on calendar, so we

will present and the calendar-organizer tool as well.

For the first automation (see tag 1 in Figure 47) we have added a description on

the block that detects when the alarm clock rings. This description is displayed in the

85

generated bubble in the Event History. Next, all internal blocks of the program are

executed and the corresponding bubbles are generated in Event History (see tag 1 in

Figure 48).

Figure 47. Visual programs for Morning Automations scenario using Blockly blocks

In addition, in the second box of Figure 48 we present the history of the events

from the second automation of the project. There is a description in the "When"

block as well as in the previous automation. Once the water is ready for bathing, the

blocks for opening the door, opening the blinds, closing the air conditioning and the

bathroom light are included in the Event History.

Moreover, when the window blinds are opened, the internal automation blocks

create the corresponding bubbles in the Event History tool (see tag 3 in Figure 48).

The inner block (i.e. the basic automation for Hi-Fi) creates three bubbles that

correspond to the actions of the device that is turned on, changes track and starts

playing.

Furthermore, the fourth box of Figure 48 shows the history of events that occur

when coffee is ready by a coffee machine. After the coffee is over, Hi-Fi stops playing

music and the TV starts playing News channel.

86

The last automation (see tag 5 in Figure 47) includes a scheduled task (i.e. the

"Wait" block) to lock all the doors and turn off all the lights after 5 minutes of locking

the main door. Figure 49 shows the Organizer tool, including the event based on the

5-minute log. When 5 minutes have passed, the doors of the house are locked and

the lights go out as we can see from the corresponding blocks which are generated

in Event History.

Figure 48. (1) Event History including bubbles generated when the “Alarm Clock rings” automation is executed.
(2) Event History including bubbles which are generated when the “water is ready for bath” automation is
executed. (3) Event History including bubbles which are generated when the “window blinds open”
automation is executed (4) Event History including bubbles which are generated when the “coffee is ready”
automation is executed

6.2 Self-Caring Home

Continuing the previous scenario of Morning Automations, end-users could

design automations for tasks required for their home such as cleaning using

87

appropriate smart devices. However, these mainly based on calendar tasks of the

home that are executed repeatedly either with the specific frequency or not. The

events defined for the application of home self-care automations are presented in

Figure 50.

Figure 49. Organizer tool for the scheduled event and the Event History including bubbles which are generated
when the "main door is locked for 5 minutes" automation is executed

The first task is programmed to be executed every day, the dehumidifier turns on

in the Turbo mode and starts absorbing humidity. Then, the second task is executed

every 4 days (when there are enough clothes to wash), the washing machine is set to

program 2 and its temperature at 70 Celsius and then it starts washing the clothes. In

addition, the smart robot starts vacuuming and mopping the house every day. Finally,

there is a defrost task for the refrigerator that is executed one time per month.

6.2.1 Devices

The smart devices included in Self-Caring Home are presented in Table 2.

Smart Device Functionality

88

Dehumidifier
Turns on/off
Sets silent/turbo mode
Sets the service to normal/dry
Humidity level

Refrigerator
Turns on/off
Starts/Stops defrost
Filter life percent
Sets rapid-cool
Sets rapid-freeze

Vacuum-Mop Robot
Turns on/off
Starts/Stops sweeping
Starts/Stops mopping
Sets clean program

Washing Machine
Turns on/off
Starts/Stops washing
Sets temperature
Sets time period
Sets washing speed

Table 2. Smart Devices for Self-Caring Home

Figure 50. Home care automations triggered by calendar events

6.2.2 Automations

Using the existing device, we define and implement the automations for the Self-

Caring Home scenario. In Figure 51 we present the visual programs for each event of

Self-Caring Home scenario.

Firstly, we define and implement an automation for scheduled task for

implementing the operations of dehumidifier (see tag 1 in Figure 51). Using the

“Every” and “At” blocks, we create a scheduled task for every day at 6 o’clock. The

89

inner block is a basic automation that turns on and sets the dehumidifier to turbo

mode. Also, the dehumidifier service is set to dry mode.

The next scheduled task that we implement with the visual programming blocks

is the washing clothes event (see tag 2 in Figure 51). We use the “Every” block again

to create a scheduled task for washing the clothes every 4 days. Also, we create a

basic automation “Washing Clothes” that consists of turning of washing machine,

setting the program 2 and the temperature to 70 Celsius. In addition, it starts the

washing machine to wash the clothes.

For the next event of Self-Caring Home (see tag 3 in Figure 51), we use again the

“Every” block to create a scheduled task for sweeping and mopping using the smart

robot. So, every day the automation executes a basic automation that is called

“Sweeping and mopping”. The executed automation consists of the visual

programming blocks of the actions “Sweep” and “Mopping” of the robot.

Finally, for the last event of scenario we define another one scheduled

automation. It consists of refrigerator blocks and they are used for defrosting task

every month (see tag 4 in Figure 51). In detail, we use a “Every” block for the

calendar task and the inner blocks is to start the defrost program and turn on both

the rapid freeze and rapid cool of refrigerator.

6.2.3 Execution of Automations

After defining the smart devices of the Self-Caring Home scenario and

implementing the required automations, we run the project and present the events

which will be activated during the execution. Because the scenario is based on

scheduled tasks, we use the execute the automations on the window for testing

purposes to control the time.

As mentioned in section 5.5 the virtual devices are needed for the execution of

the automations in this execution. Thus, each action of the devices used for the Self-

Caring Home scenario is simulated to perform the corresponding functions of the

actual action of the actual smart devices.

90

Figure 51. Visual programs for Self-Caring Home scenario using Blockly blocks

Figure 52. (1) Implementations for “TurnOn”, “TurboMode” and “Service” actions of Dehumidifier for
simulated execution of automations. (2) Implementations for “Program”, “Temperature” and “Start” actions of
Washing Machine for simulated execution of automations. (3) Implementations for “Mopping” and “Sweep”
actions of Robot Vacuum Mop for simulated execution of automations. (4) Implementations for “StartDefrost”
and “ConfigureRapidMode” actions of Refrigerator for simulated execution of automations.

91

Moreover, Figure 52 shows the implementation of each action which is used in

Self-Caring Home project. In detail, the actions that we simulate for the first event

(see tag 1 in Figure 51) of the scenario are the “TurnOn”, “TurboMode” and “Service”

of the dehumidifier (see tag 1 in Figure 52). Furthermore, for the second scheduled

task of the scenario we simulate three actions of washing machine (see tag 2 in

Figure 52). The first action is “Program” that sets the washing machine in the second

program. Also, the “Temperature” action is simulated to regulate the temperature to

70 Celsius. The last action applied to the washing machine is the “Start” which is

responsible for starting the washing machine. Additionally, we simulate the

“Mopping” and “Sweep” actions of robot for mopping and sweeping respectively

(see tag 3 in Figure 52). Lastly, the actions that need to be implemented is the

“StartDefrost” and “ConfigureRapidMode” of refrigerator (see tag 4 in Figure 52).

The first adjusts the defrost mode in the refrigerator and the second activates the

quick freeze and cooling function.

Figure 53. (1) Organizer tool that includes daily events and the generated bubbles of the Event History for
dehumidifier and smart robot tasks. (2) Organizer tool that includes daily event and the generated bubbles of
the Event History for washing machine task. (3) Organizer tool that includes daily event and the generated
bubbles of the Event History for refrigerator task.

As shown in Figure 51, all automations of scenario consist of scheduled blocks.

Therefore, we use the time simulation to advance the date and time to control the

92

execution of the project. The execution of the Self-Caring Home starts on Sunday

07/03 of 2021 and the time is 14:35. Using the Go-To function of the simulation tool

that mentioned in section 5.5.2, we set the project day to Thursday 08/04 and the

time to 14:38. We are going to present the calendar events which are executed as

well as the event history.

First, there are two automations (see Labels 1.3 in Figure 51), the scheduled tasks

for the dehumidifier and the smart robot for mopping and sweeping are both

activated daily. Every day from the beginning of the project until the date we set, the

robot first sweeping and then mopping the house. Furthermore, the dehumidifier is

set to turn on every day at 18:00. The device is then set to turbo mode and the

service is set to dry to start absorbing moisture. The execution of aforementioned

events is presented in the first tag of Figure 53

Moreover, a scheduled task which is activated every four days has been defined.

The aforementioned task is implemented by the second automation of Figure 51 and

activate the washing machine for washing the clothes. As mentioned in the previous

paragraph, this event is also activated from the beginning of the run until the day we

set with the simulation tool. In detail, we detect via the Organizer tool when the

event is completed and the bubbles which are created in the Event History (see tag 2

in Figure 53). The automation sets the washing machine to the second program, then

adjusts the temperature to 70 Celsius and finally starts the device to wash the

clothes.

Last but not least, another scheduled task has been set for the completion of the

Self-Caring Home scenario. This scheduled task is activated once a month. As we

started the execution of the project on 07/03, the event will be activated on

Wednesday 07/04. In detail, the automation for this task puts the refrigerator in

defrost mode and then executes the action for activating “rapid-cool” and “rapid-

freeze”, as we can see from the bubbles created in the Event History (see tag 3 in

Figure 53).

93

6.3 Fire Protection

The last scenario is for the home protection by fire. The end-users using the

existing devices can design automation through which the house can put out the fire

by itself. The event defined for the fire protection is presented in Figure 54.

There is a task in this automation that is performed when the smoke sensor

senses smoke in the house. Then all the doors of the house open, the electrical

appliances go out and the fire extinguisher starts to put out the fire in the house.

Figure 54. Fire protection automation triggered by environment event

6.3.1 Devices

The smart devices included in Fire Protection are presented in Table 3.

Smart Device Functionality

Smoke Sensor
Is sensed smoke
Measurement level

Fire Extinguisher
Starts/Stops

Main Door
Opens/Closes
Locks/Unlocks
Is locked

Bedroom Door
Opens/Closes
Locks/Unlocks
Is locked

Bathroom Door
Opens/Closes
Locks/Unlocks
Is locked

Main Light
Turns on/off
Changes scene
Sets color

94

Bedroom Light
Turns on/off
Changes scene
Sets color

Bathroom Light
Turns on/off
Changes scene
Sets color

Coffee Machine
Turns on/off
Starts/Stops preparing coffee
Rest coffee cups
Is coffee ready

TV
Turns on/off
Sets Channel
Sets Volume

Table 3. Smart Devices for Fire Protection

6.3.2 Automations

After defining the required devices for Fire Protection, we create and apply two

automations for basic tasks and one for conditional tasks. Figure 55 shows the

conditional task defined for the implementation of the scenario. We use a "When"

block to observe the state of the smoke sensor. Then, when the smoke sensor

detects smoke, the internal blocks will be executed. We call two basic tasks, the first

is to open all the doors of the house (i.e., the main door, the bathroom door and the

bedroom door). The next automation is applied to turn off all electric devices in the

house. Finally, we call the action "Start" using the corresponding block of the fire

extinguisher to extinguish the fire.

Figure 55. Visual program for Fire Protection scenario using Blockly blocks

6.3.3 Execution of Automations

The last phase of the Fire Protection is the execution of the created automations.

The execution of the automations that we described in the previous section is based

95

on the smoke sensor “value” property. It is a read-only property whose value

affected by changes in the environment. For this reason, we execute the

automations on the window for testing purposes and we create a test to activate the

smoke sensor event.

Figure 56. Event History of Running Automations of Fire Protection

Figure 57. (1) Implementations for “Open” action of doors. (2) Implementations for “TurnOff” action of electric
devices. (3) Implementation for “Start” action of the fire extinguisher.

96

As mentioned in the Self-Caring Home scenario (see 6.2), we have to simulate all

device actions which are used in the automations. First, we implement for all doors

of the home the “Open” action for opening them (see tag 1 in Figure 57). Then, for

turning off all the electric devices of the house, we implement the “TurnOff” action

(see tag 2 in Figure 57). Finally, the “Start” action of fire extinguisher is simulated to

extinguish the fire (see tag 3 in Figure 57).

Figure 58. Test for activating smoke sensor

For activating the smoke sensor and consequently run the automation of the Fire

Protection we create a Simulate Behavior Test. We define a new test to change the

value of the read-only property of smoke sensor (see Figure 58). In detail, we create

a time slot and set its time to 0 seconds. This means that the test will run at the start

of the project. In the unique time slot, we define a change in the smoke sensor that

changes the property “value” to sensed.

After activating the smoke sensor event, the automation starts executing all the

actions of the devices (see Figure 56). First, all the doors of the house open (i.e., the

main door, the bathroom door and the bedroom door). Then all the electric devices

go out and finally the fire extinguisher starts to put out the fire.

97

7 Conclusions and Future Work

Currently, The Internet of Things (IoT) is a domain that, after the Internet,

represents the next most exciting technological innovation. The smart devices

introduced through the IoT will help people's lives in everyday tasks. However, for

devices to truly contribute to people's lives to facilitate them, they need to be

included in IoT automations. The creation and execution of automations are not easy

tasks as they required a minimum programming knowledge. Furthermore, the

market does not provide the appropriate tools for aforementioned tasks as well as

there is a lack of tools for helping them during the execution of IoT automations.

In this thesis we propose a system that consists of three components for

supporting the visual programming for smart devices. First, we provide an automatic

UI generator that visualizes smart devices using a generic device API that we have

designed. Particularly, we have created a library that converts the device data to this

API. The generator uses the device API specifications and produces interfaces for the

smart devices. Secondly, a runtime environment for automations is presented that

includes monitoring and interaction tools included calendar and event history to

help the end-users to track changes for their smart devices. Thirdly, we provide a

custom runtime environment for automation testing purposes. It includes a

simulator tool that simulates real smart devices and emulates all their properties and

operations. We also provide a time simulation (virtual time) for users to activate

scheduled tasks. Finally, we present a suite of tests to simulate the behavior of

virtual devices and check the expected values of device properties.

We have conducted three case studies to test and evaluate our system. Each case

study has been created to present the capabilities of the system. We are really

impressed with the use of our tools as they really help in the user experience for

visualization, execution and testing of IoT automations.

In conclusion, working to build the tool for the UI generation, we realized that

there is an extension that could be added to this approach. First, we can add

98

annotations to the API specifications for easier configuration by the developer who

uses it. Through annotations, the user interfaces produced can be made more

personalized. Furthermore, as future work we want to introduce a form-based

mechanism used by end-users. In particular, with this mechanism users should

choose in real time the appropriate Micro-UI from a set of Micro-UIs for the

properties of devices. We want to give the opportunity to developers to add their

Micro-UIs in the set to be used by users. Additionally, during the design and

development of thesis, we needed to use our toolset in real smart devices. Finally,

while using the tools included in the runtime environment for automation, we want

to be able to hide either the calendar or the history table at a specific time. For the

above, we want to add more functionality to our tools to allow users to hide or show

the user interface information they want during runtime. We also want to introduce

the aforementioned functionality into the custom runtime environment for

automation testing purposes.

99

Bibliography

[1] D. Raggett, "The Web of Things: Challenges and Opportunities," in Computer, vol.

48, no. 5, pp. 26-32, May 2015, doi: 10.1109/MC.2015.149.

[2] R. Want, B. N. Schilit and S. Jenson, "Enabling the Internet of Things," in

Computer, vol. 48, no. 1, pp. 28-35, Jan. 2015, doi: 10.1109/MC.2015.12.

[3] L. Baresi, L. Mottola and S. Dustdar, "Building Software for the Internet of Things"

in IEEE Internet Computing, vol. 19, no. 02, pp. 6-8, 2015.doi:

10.1109/MIC.2015.31

[4] Atzori, Luigi & Iera, Antonio & Morabito, Giacomo. (2010). The Internet of Things:

A Survey. Computer Networks. 2787-2805. 10.1016/j.comnet.2010.05.010.

[5] Evans, D. (2011). The internet of things: How the next evolution of the internet is

changing everything. CISCO white paper, 1(2011), 1-11.

[6] Stojkoska, BLR, & Trivodaliev, KV. (2017). A review of internet of things for smart

home: Challenges and solutions. Journal of Cleaner Production, 140, 1454–1464.

[7] Ray, PP. (2016). A survey on internet of things architectures. Journal of King Saud

University-Computer and Information Sciences.

[8] Abraham, R., Burnett, M. and Erwig, M. (2009). Spreadsheet Programming. In

Wiley Encyclopedia of Computer Science and Engineering, B.W. Wah (Ed.).

doi:10.1002/9780470050118.ecse415.

100

[9] Fabio Paternò, "End User Development: Survey of an Emerging Field for

Empowering People", International Scholarly Research Notices, vol. 2013, Article

ID 532659, 11 pages, 2013. https://doi.org/10.1155/2013/532659.

[10] Mitchel Resnick, John Maloney, Andr´es Monroy-Hern´andez, Natalie Rusk,

Evelyn Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver,

Brian Silverman, and Yasmin Kafai. Scratch: programming for all.

Communications of the ACM, 52(11):60–67, November 2009.

[11] James Devine, Joe Finney, Peli de Halleux, Michał Moskal, Thomas Ball, Steve

Hodges, MakeCode and CODAL: Intuitive and efficient embedded systems

programming for education, Journal of Systems Architecture, Volume 98, 2019,

Pages 468-483, ISSN 1383-7621, DOI:

https://doi.org/10.1016/j.sysarc.2019.05.005.

[12] Tynker web IDE: Educational programming platform aimed at teaching children

how to make games and programs. Released on: 01/2012. Official website:

https://www.tynker.com/ Accessed online: 03/2021

[13] Kahn, K., Rani Megasari, E. Piantari and E. Junaeti. “AI Programming by Children

using Snap! Block Programming in a Developing Country.” EC-TEL (2018).

[14] Seung Han Kim and Jae Wook Jeon, "Programming LEGO mindstorms NXT with

visual programming," 2007 International Conference on Control, Automation and

Systems, Seoul, 2007, pp. 2468-2472.

[15] P. Voštinár, "Programming LEGO EV3 in Microsoft MakeCode," 2020 IEEE Global

Engineering Education Conference (EDUCON), Porto, Portugal, 2020, pp. 1868-

1872, doi: 10.1109/EDUCON45650.2020.9125170.

[16] P. Bachiller-Burgos, I. Barbecho, L. V. Calderita, P. Bustos and L. J. Manso,

"LearnBlock: A Robot-Agnostic Educational Programming Tool," in IEEE Access,

vol. 8, pp. 30012-30026, 2020.

https://doi.org/10.1155/2013/532659
https://doi.org/10.1016/j.sysarc.2019.05.005
https://www.tynker.com/

101

[17] MIT App Inventor: A web application integrated development environment

provided by Google, Development Team: MIT. Released on: 12/2010. Official

website: https://appinventor.mit.edu/ Accessed online 03/2021.

[18] Antonio Pintus, Davide Carboni, and Andrea Piras. 2012. Paraimpu: a platform for

a social web of things. In Proceedings of the 21st International Conference on

World Wide Web (WWW '12 Companion). Association for Computing Machinery,

New York, NY, USA, 401–404. DOI:https://doi.org/10.1145/2187980.2188059

[19] Paraimpu: An IoT middleware that allows users to register, manage, handle and

interconnect their RESTful IoT devices or services whether physical or virtual.

Released on: 01/2014. Development Team: Paraimpu. Official Website:

https://web.archive.org/web/20201201043939/http://paraimpu.com/ Accessed

online: 03/2021.

[20] Tornado is a Python web framework and asynchronous networking library.

Released on: 07/2010. Development Team: Facebook. Official Website:

https://www.tornadoweb.org/en/stable/ Accessed online: 03/2021.

[21] Nginx: A web server that can also be used as a reverse proxy, load balancer, mail

proxy and HTTP cache. Released on: 04/2010. Development Team: Nginx, Inc.

Official Website: https://www.nginx.com/ Accessed online: 03/2021.

[22] MongoDB: A source-available cross-platform document-oriented database

program. Released on: 11/2009. Development Team: MongoDB Inc. Official

Website: https://www.mongodb.com/ Accessed online: 03/2021.

[23] Google Fit: A health-tracking platform developed by Google for the Android

operating system. Released on: 10/2014. Development Team: Google. Official

Website: https://developers.google.com/fit/ Accessed online: 03/2021.

[24] Persson, Per & Angelsmark, Ola. (2015). Calvin – Merging Cloud and IoT. Procedia

Computer Science. 52. 10.1016/j.procs.2015.05.059.

https://appinventor.mit.edu/
https://web.archive.org/web/20201201043939/http:/paraimpu.com/
https://www.tornadoweb.org/en/stable/
https://www.nginx.com/
https://www.mongodb.com/
https://developers.google.com/fit/

102

[25] Node-RED: A programming tool for wiring together hardware devices, APIs and

online services in new and interesting ways. Released on 10/2015. Development

Team: IBM Emerging Technology. Official Website: https://nodered.org/

Accessed online: 03/2021.

[26] Node.js: A JavaScript runtime built on Chrome's V8 JavaScript engine. Released

on: 05/2009. Development Team: OpenJS Foundation. Official Website:

https://nodejs.org/en/ Accessed online: 03/2021.

[27] HomeKit: A software framework by Apple, made available in iOS/iPad OS that

lets users configure, communicate with, and control smart-home appliances

using Apple devices. Released on: 09/2014. Development Team: Apple Inc.

Official Website: https://www.apple.com/shop/accessories/all/homekit

Accessed online: 03/2021.

[28] Danado, José & Paternò, Fabio. (2015). A Mobile End-User Development

Environment for IoT Applications Exploiting the Puzzle Metaphor. ERCIM News.

26.

[29] Wia: A cloud platform that makes creating IoT apps easier by linking IoT devices

and external services. Released on 01/2016. Development Team: Wia Inc. Official

Website: https://www.wia.io/ Accessed online: 03/2021.

[30] Embrio: Visual, real-time, agent-based programming for Arduino. Released on

01/2010. Development Team: Embrio.io. Official Website:

https://www.embrio.io/ Accessed online: 03/2021.

[31] SmartThings: An IoT platform for developing home automations. Released on

01/2012. Development Team: Samsung Electronics. Official Website:

https://www.smartthings.com/ Accessed online: 03/2021.

[32] XOD: An open-source visual programming language for microcontrollers.

Released on: 01/2016. Development Team: XOD. Official Website: https://xod.io/

Accessed online: 03/2021.

https://nodered.org/
https://nodejs.org/en/
https://www.apple.com/shop/accessories/all/homekit
https://www.wia.io/
https://www.embrio.io/
https://www.smartthings.com/
https://xod.io/

103

[33] Zenodys: A fully visual IoT platform for Industry 4.0. Released on: 01/2015.

Development Team: Zenodys. Official Website: https://www.zenodys.com/

Accessed online: 03/2021.

[34] Krzysztof Gajos, David Christianson, Raphael Hoffmann, Tal Shaked, Kiera

Henning, Jing Jing Long, and Daniel S. Weld. 2005. Fast and robust interface

generation for ubiquitous applications. In Proceedings of the 7th international

conference on Ubiquitous Computing (UbiComp'05). Springer-Verlag, Berlin,

Heidelberg, 37–55. DOI:https://doi.org/10.1007/11551201_3

[35] Clerckx, Tim & Luyten, Kris & Coninx, Karin. (2004). DynaMo-AID: A Design

Process and a Runtime Architecture for Dynamic Model-Based User Interface

Development. 77-95. 10.1007/11431879_5.

[36] Roscher, D., Lehmann, G., Schwartze, V., Blumendorf, M., & Albayrak, S. (2011).

Dynamic Distribution and Layouting of Model-Based User Interfaces in Smart

Environments. Model-Driven Development of Advanced User Interfaces.

[37] Nichols, Jeffrey & Myers, Brad & Higgins, Michael & Hughes, Joseph & Harris,

Thomas & Rosenfeld, Roni & Pignol, Mathilde. (2002). Generating remote control

interfaces for complex appliances. UIST (User Interface Software and Technology):

Proceedings of the ACM Symposium. 161-170. 10.1145/571985.572008.

[38] Nichols, Jeffrey & Myers, Brad & Rothrock, Brandon. (2006). UNIFORM:

Automatically generating consistent remote control user interfaces. Conference

on Human Factors in Computing Systems - Proceedings. 1. 611-620.

10.1145/1124772.1124865.

[39] Jeffrey Nichols, Brandon Rothrock, Duen Horng Chau, and Brad A. Myers. 2006.

Huddle: automatically generating interfaces for systems of multiple connected

appliances. In Proceedings of the 19th annual ACM symposium on User interface

software and technology (UIST '06). Association for Computing Machinery, New

York, NY, USA, 279–288. DOI:https://doi.org/10.1145/1166253.1166298

https://www.zenodys.com/

104

[40] Akiki, Pierre & Bandara, Arosha & Yu, Yijun. (2013). RBUIS: Simplifying Enterprise

Application User Interfaces through Engineering Role-Based Adaptive Behavior.

EICS 2013 - Proceedings of the ACM SIGCHI Symposium on Engineering

Interactive Computing Systems. 3-12. 10.1145/2494603.2480297.

[41] IoTivity: An open-source software framework enabling seamless device-to-device

connectivity to address the emerging needs of the Internet of Things. Released

on 10/2015. Development Team: Open Connectivity Foundation. Official Website:

https://iotivity.org/ Accessed online: 02/2021.

[42] iotivity-node: A JavaScript API for OCF functionality. Released on 10/2015.

Development Team: Intel Corporation. Official Website:

https://github.com/intel/iotivity-node Accessed online: 02/2021.

[43] IoTivity Simulator: Simulating devices which communicate with IoTivity

middleware. Released on 12/2015. Development Team: Open Connectivity

Foundation. Official Website:

https://web.archive.org/web/20160603180432/https://wiki.iotivity.org/iotivity_

tool_guide Accessed online: 02/2021.

[44] Eclipse IDE: An integrated development environment (IDE) used in computer

programming. Released on 11/2001. Developer Team Eclipse Foundation. Official

Website https://www.eclipse.org/ide Accessed online: 02/2021.

[45] Open Interconnect Consortium (OIC): Delivers standards for the development of

the Internet of Things. Released on 02/2016. Developer Team: Open Connectivity

Foundation. Official Website: https://openconnectivity.org/open-interconnect-

consortium-helps-developers-tackle-internet-of-things-with-new-developer-

toolkit-2/ Accessed online 02/2021.

[46] Roy Thomas Fielding and Richard N. Taylor. 2000. Architectural styles and the

design of network-based software architectures. Ph.D. Dissertation. University of

California, Irvine. Order Number: AAI9980887.

https://iotivity.org/
https://github.com/intel/iotivity-node
https://web.archive.org/web/20160603180432/https:/wiki.iotivity.org/iotivity_tool_guide
https://web.archive.org/web/20160603180432/https:/wiki.iotivity.org/iotivity_tool_guide
https://www.eclipse.org/ideAccessed%20online%2002/2021
https://openconnectivity.org/open-interconnect-consortium-helps-developers-tackle-internet-of-things-with-new-developer-toolkit-2/
https://openconnectivity.org/open-interconnect-consortium-helps-developers-tackle-internet-of-things-with-new-developer-toolkit-2/
https://openconnectivity.org/open-interconnect-consortium-helps-developers-tackle-internet-of-things-with-new-developer-toolkit-2/

105

[47] JSON Schema: A vocabulary that allows you to annotate and validate JSON

documents. Released on 12/2009. Developer Team: JSON Schema. Official

Website: https://json-schema.org/ Accessed online 02/2021.

[48] A. Savidis, “Interactive Configuration Tools and Scripts.” [Online]. Official Website:

http://www.csd.uoc.gr/~hy454 Accessed online 02/2021.

[49] Blockly: a client-side library for the programming language JavaScript for creating

block-based visual programming languages (VPLs) and editors. Developer Team:

Google, MIT. Official Website: https://developers.google.com/blockly Accessed

online 02/2021.

[50] Blockly Developer Tools: Tools for Blockly app developers to help build custom

blocks. Released on 05/2012. Developer Team: Google, MIT. Official Website:

https://developers.google.com/blockly/guides/create-custom-blocks/blockly-

developer-tools Accessed online 02/2021. Accessed online 02/2021.

[51] JavaScript Calendar & Organizer: Library for calendar in JavaScript. Released on

07/2016. Developer: nizarmah. Official Website:

https://github.com/nizarmah/calendar-javascript-lib Accessed online 02/2021.

[52] Day.js: A minimalist open-source library for dates and times. Released on

04/2018. Developer: iamkun. Official Website: https://day.js.org/ Accessed

online 02/2021.

https://json-schema.org/
http://www.csd.uoc.gr/~hy454
https://developers.google.com/blockly
https://developers.google.com/blockly/guides/create-custom-blocks/blockly-developer-tools%20Accessed%20online%2002/2021
https://developers.google.com/blockly/guides/create-custom-blocks/blockly-developer-tools%20Accessed%20online%2002/2021
https://github.com/nizarmah/calendar-javascript-lib
https://day.js.org/

