VISUAL PROGRAMMING FOR SMART
DEVICES: Ul GENERATOR, SIMULATOR
AND RUNTIME

Dimitrios Linaritis

Thesis submitted in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science
University of Crete
School of Sciences and Engineering
Computer Science Department
Voutes, Heraklion, GR-70013, Greece

Thesis Advisor: Prof. Anthony Savidis

University of Crete
Computer Science Department

VISUAL PROGRAMMING FOR SMART DEVICES: Ul
GENERATOR, SIMULATOR AND RUNTIME

Thesis submitted by
Dimitrios Linaritis
in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science

THESIS APPROVAL

. e Digitally signed by
Dlm |tr|s Dimitris Linaritis
. - o Date: 2021.05.1020:26:04
Author: Linaritis +03°00'

Dimitrios Linaritis, Computer Science Department

. Digitally signed
Antonios ,iones
Savvidis Date:

Committee approvals: Savvidis 2021.04.27

Anthony Savidis
Professor, Computer Science Department, University of Crete,
Thesis Supervisor

DIMITRIOS-STAVROS Digjtally siened b

AMMENOS

GRAMMENOS Date: 2021.04.27 22:47:31

Dimitrios Grammenos
Principal Researcher, Institute of Computer Science, FORTH

KONSTANT|NOS Digitally signed by
KONSTANTINOS MAGOUTIS
MAGOUTIS Date: 2021.04.2809:23:40+0300

Kostantinos Magoutis
Associate Professor, Computer Science Department, University
of Crete

DigitallysignedbyPolyvios

) P '| Pr '|k k'| Pratikakis
Department approval: olyv osPratika SDate:2021.05.0612:01:36+03'OO'

Polyvios Pratikakis
Assistant Professor, Computer Science Department, University
of Crete

Heraklion, May 2021

Abstract

The Internet of Things (IoT) is the new rapidly-growing domain that is constantly
evolving in terms of infrastructures, integrated solutions, development tools and
best practices. The availability of so many devices in the environment, for various
purposes and missions, entails a critical control challenge, raising issues related not
only to security and safety but also to individualization and adaptation. In fact, the
main benefit in everyday life is expected by the wide introduction of software
automations that can control and coordinate such devices in ways matching
individual people needs, preference and requirements. But the demands for such
automations are so customized and fluid that the corresponding digital market is
currently either non-existent or very limited. Now, one potential solution to this
supply-demand gap is enabling users develop directly their own automations. In this
context, the adoption of visual programming gained increased attention as a vehicle

to enable composition of individualized automations by non-professional developers.

In this thesis, we present a custom toolset, built on top of a recently developed
visual programming IDE, which facilitates end-user development, execution and
testing of loT automations. Firstly, an automatic generator is introduced, which
produces user-interfaces for smart devices relying on their API specifications. Then,
we present a runtime environment for automations that provides advanced
monitoring and interaction tools including a device dashboard, a calendar for
scheduling automations and a history panel that records and displays device events.
Following, we discuss a custom runtime for testing purposes, which offers virtual
counterparts of all physical smart devices, so that testing is done locally, in a
protected and isolated environment, without requiring operation of the real devices.
The latter is possible through our simulator, which enables interactive manipulation
of all device properties and operational modes. Additionally, we implemented a time
controller (i.e. virtual time) to handle the flow and pace of time during testing,
enabling trigger scheduled tasks in a way not interfering with system time. Finally,

we outline a case study involving various scenarios of everyday automations.

OMNTIKOZ NPOIrPAMMATIZMOZ I' A EZYTINEZ
2YZKEYEZ: TENNHTPIA AIENA®PHZ XPHZTH,
NMPOZOMOIQTHZ KAI XPONOZ EKTEAEZHX

Mepiinym

To Awadiktuo twv mpaypdtwy (1oT) elval 0 VEOG TOXEWS AVATTTUCCOUEVOC TOUEQS
Tou €€eAlOCETAL OUVEXWG O€ OPOUG UTIOSOUWY, OAOKANPWHEVWY AUCEWVY, EPYOAELWV
avantuéng kat BEATIOTWY MpokKTIKwy. H Stabeoipudtnta 100wV MOAWY CUCKEUWV
oto mepBarlov, yla Stadopoug oKOmoUE Kal AIOOTOAEG, CUVETIAYETAL HLO Kplolun
TPOKANGN eAéyxou, BEtovtag InTripata OxL LOVo w¢ Mpog tnv acPAAeLla alAd emiong
WG TPOC TNV €€aTOUIKEUON KAl TNV TPOCAPUOYH. 2TNV TPOYHOTIKOTNTA, TO KUPLO
odehog otnv kaBnuepvr) lwn avapévetal va PogABeL amod tnv gupeia elcaywyn
TWV QUTOUATIOUWY AOYLOULKOU, OL OTIOLOL UTTOPOoUV va AEYXOUV Kal va cuvtovilouv
T OUOKEUEG JE TPOTIOUG £TOL WOTE VO QVTLOTOLXOUV OTIC HEUOVWHUEVEG QVAYKEG,
TIPOTLUNAOELG KOLL QTTALTHOELC TwV avOpwrwyv. MapoAa oUTA OL ATIALTHOELG YL TETOLOU
eldoug autopaTIoNOUG elval apKETA EATOUKEUUEVOL KOL PEVOTOL LE ATIOTEAECUA N
Pnolakn ayopd va eival ite MOAU TEPLOPLOMEVN €lte evieEAwC avumapktn. Mia
mBavry Abon oto kevd mpoodopdc-{ntnong sival va 6oBel n duvatdtnta OTOUG
XPNOTEC VO OVANTUGOOUV TOUuG SIKOUC TOUC QUTOUATIOMOUC. ITa mAaiola autd, n
ULOBETNON TOU OMTLKOU TIPOYPOUUATIONOU KEPSIZEL OAO KOl TIEPLOCOTEPN TPOCOXN
WC UECO TIOU ETUTPEMEL TNV OUVOEON EEATOUIKEUUEVWY OUTOUATIOMWY OO HN

ETAYYEALATIEG TIPOYPAUUOTIOTEG.

e autn TNV gpyacia, MapouclAloupe Eva TIPOCOPUOCEVO CUVOAO €pPYaAEiwy,
mou OnuioupynBnke mMAVwW 0O £va TPOOPOTO QAVEMTUYHEVO OAOKANPWHEVO
TIPOYPOAUHOTLOTIKO TtepLBAAAovV (IDE) yla OTIKO MPOYPAUUATIONO, TToU SLEUKOAUVEL
TNV avVAmTtuén TPOYPAUUATWY OO HN TIPOYPOUHOTIOTEG, TNV EKTEAECN KOl TOV
€heyxo opBotntag tTwv loT autopaTiopwy. ApXIKA, avamtuxOnke pia autopatn

vewntpla Stemadpwv xpnotn (Ul) ywa €€umveg ouokeuég PBaolopévn otic API

npodlaypad€G TOUG. ITN CUVEXELD, TTOPOUCLAloUpE Eva TIEPLBAAAOV EKTEAEDNG YL
OUTOMOTIOHOUG TIOU TIAPEXEL Tponypéva epyaleio mapakoAoubnong Kal
oAAnAenidpaong, ota omola cupmepAapBdavovial €vag TIVOKAG QTELKOVLONG
WOloTATWY Twv £EUTIVWV OCUOCKEUWV, £va NUEPOAOYLO YLO TIPOYPAUUATIOUEVOUC
QUTOMOTLOHOUC KOBWG Kal £vag Tivakag LoToplkoU Tou Kataypdadel Kat epdavilel Ta
EKAOTOTE OUMPAVIA TWV OUOKEUWV. EmMelta, mapéxetalr €va TMPOCAPLOCUEVO
TePLBAANOV EKTEAEONC Yl OKOTIOUG SOKLUWY TWV OQUTOUOTIOUWY TIOU TIPOOodEPEL
ELKOVIKEG QVTLOTOLXlEC TWV UOIKWY OCUCKEUWV HE OKOTIO Ol OOKLUEG va
TipaypatTonolnbouv TOTIKA O €Va TIPOOTATEUMEVO KOL QTMTOUOVWHEVO TEPLBAAAOV,
XWPLG va amalteitol N Asltoupyia TwWV MPOYHATIKWY CUCKEUWV. To TeAeutaio pmopetl
va Tpoaypotonownfel péow €VOC TIPOCOUOWWTH TOU avamtuxbnke, o omoiog
ETUTPETEL TOV SLOSPOOTIKO XELPLOUO OAWV TWV LSLOTATWVY TNG CUOKEUNG KABWE Kot
TOUC TPOMOUG Asltoupylag tnG. EmumtAéov, avantuxbnke €vag XePLoTAG Xpovou (6nA.
ELKOVIKOG XPOVOG) yLa TOV XELPLOUO TNG PONG KoL TOU puBUOU Tou XpOVoU KOTA TNV
SlapKeld TwV OOKLUWY, EMITPEMOVIAC TNV EVEPYONOLNON TIPOYPAUUATIOUEVWV
EPYAOLWV XWPIC va emnpedletal omd TOV XPOVO TOU OUOTAHATOG. TEAOG,
Teplypadoupe Hla HEAETN Tmeplmtwong mou meplhapPavel Siadopa oevapla

KOONUEPLVWY QUTOLOTIOUWV.

Acknowledgements

First of all, | would like to thank my supervisor, Professor of the University of
Crete, Anthony Savidis, first for my trust and then for his continued support. | would
also like to thank Yannis Valsamakis for his excellent cooperation, for his continued
support and valuable advice. | am also grateful to Principal Researcher Dimitrio
Grammeno and Associate Professor Konstantino Magouti for their participation in
the Supervisory Committee. | would also like to thank the Department of Computer

Science of University of Crete for offering a high level of academic education.

| would also like to thank my second family consisting of all those people whom |
love and who have supported me throughout this period. Finally, mainly, | would like
to thank my parents Giannis and Athena. | am grateful for all their love and support.

Without them, | would not be who | am today.

2TNV OLKOYEVELD LOU

Contents

VISUAL PROGRAMMING FOR SMART DEVICES: Ul GENERATOR, SIMULATOR AND
RUNTIME c.iiiiiiiiiiiiiiiiitiien it ra s e s s s sbraa s e e e e e s 1

F1Y 1Y = Lot U RPR PR RUPPRRRN 4

ONTIKOZ NMPOTPAMMATIZMOZ TIA EZYINNEX ZYZKEYEZ: TENNHTPIA AIENMAOHZ

XPH2TH, MPOZOMOIQTHZ KAI XPONOZ EKTEAEZHZccevviiiiriieiereieieieieeerereveeeeeeeneeeeenes 5
TTEDIANWIIN ottt et et e e et e e st e e e st e e e sabeeeeabee e sseeesaeesnsaeeensaeesnreeenanes 5
ACKNOWIEAGEMENTS ...t e e st e e e s e e e e naaeees 7
CONTENTS ittt e 9
LIST Of FIGUIES eeeieiieie ettt e e e e e et e e e e eaea e e e e s nae e e s e asaeeesennraeeennns 14
LISt Of TaDI@S ..o s 19
1 INEFOAUCTION...ceiiiieiiieee e 20

1.1 Smart Devices in the Internet of Thingsccccveveeiiieieiiciiiieeeee e, 20
1.2 Automatic User Interface Generationcccceevveeeiieinniieeniiecnieecseeee 21
1.3 VisUal Programming.....ceeeeeeeeeieiiiiiireeeee e e ceciirreeee e e e e eesseirraeeeeeeeeeeennsneeeeas 22
1.3.1 Blockly StUAIO IDE......oieieieieeiiieeee et e e e 22

1.4 Problem Definitionccoceeeiiiiieneeeeeeee e 23
1.5 Primary ContribULiONScceeiiii i 25
1.6 THeSiS SETUCTUIEeeeeiieeeeeeeeeeeee e e s 25

2 ReIQEEA WOTK.....eeeeeiieee et e 27

3

4

5

2.1 MiddIeWwares 0N 10Tcoceiiiieiierieeeere e
2.2 Automatic Ul GENEratorsS.....cccccviiiiiieiiieieis it e
2.3 Visual Programming for [0Tcooiiiiiieiiiieee e e

SYSTEM OVEIVIEW ..o
3.1 ArChItECIUIE .o

3.2 Commun

ICATION Wt DOVICES ettt ettt e et e e e eeees

3.2.1 Simulating SMart DeVICES.......cccceiiiieeie et
User Interface GeNEratorocueeiiiieiiieeiiee ettt
4.1 GeneriC DeVICe APL......oou e
4.2 IMICTOUIS.c.eeiiiiiiiiiie ettt e e
4.2.1 Device Properties ..
4.2.2 Methods and ACLIONSoeiiiiiiiiiiiiieeiecee e
Integration with Blockly Studio IDE.........ccveeveeiiiieiiieeeeee e e
5.1 User Interfaces on device management........ccocveeeeeeeeecciiieeeee e e e,
B5.1.1 SiNGIE DOVICE ceveieeieeeiteeeeee ettt ee et e e e e e e e satrareeeeeeeeeenanns
5.1.2 DEVICE GrOUPS .uvvvvrrrrrurerrrurernnurenueerereereemreemmrmrereererrres..
5.2 Visual blocks provided by the 1oT domain framework.........cccccccoeevuvrnnenn.
5.2.1 DBVICE .ottt
5.2.2 DEVICE GrOUP .uuuuuiuirerrererueeeeeuereemresererererererererererererererm.
5.2.3 CoNditioNalceeieeiieiiieeeeee s
5.2.4 Scheduled ...

5.3 Types of automation provided by the loT domain framework................. 65

5.3.1 Automations for Scheduled Tasks.........cccceeiiiriiiiniiiiniieeie e, 65
5.3.2 Automations for Conditional Tasks........ccccceeveeriienienieeniceeeneenenn 66
5.3.3 Automations for Basic Tasksccecueeriiiiniiiiniieiiieeeeeee e 67
5.4 Runtime of AUtOMAtIONScccueeiiiriiiiieeeeeeeee e 68
5.4.1 Device Dashboardcccociiiiiiiiiiiiiiieceeeee e 70
5.4.2 Calendar ..coooiiiiiiiceee s 71
5.4.3 EVENT HISTOIY ceveiiiiiiiiiiiiiiiiieiiettetetet ettt eeeeeeeeseeeee 72
5.5 AUtomMation TESTINGuvuveiiiiiiiiiiiiiiiiiiiiiiiiteteree et eeeeeereee 73
5.5.1 Device SImUulation.......ccccueiiiiiiiiiiiiiiec e 75
5.5.2 TOOIS ettt 76
5.5.3 TeStS ciiiiiiiii e 78

6 CaSE STUAIES ..ot s 81
6.1 MoOrning AUTOMATIONSuuuiiieiiieiiiiiiiiiirrrerererrrrerrrrrrrrr ... 81
6.1.1 DEVICES .oiiiiiiiiiiiiiiii ittt 82
6.1.2 AUtOMALIONS..coiiiiiiiiiiiiii e 83
6.1.3 Execution of AUTOMAtiONS.....c.ceeeiiiiriiiiieeee e 84
6.2 Self-CariNng HOME ...ttt e e e e e 86
6.2.1 DEVICES coeiieiiiiiiiiiiee ettt 87
6.2.2 AULOMALIONS...coccuiiiiiiiiiicii 88
6.2.3 Execution of AUTOMATtIONS.....cccciiiiiiiiiiiiieieeeeee e 89

STC T S T Y o 0] (=T o o] o P 93

6.3.1 DOVICES ..ttt e e s 93
6.3.2 AULOMALIONS..ccoiiiiiiiiiiiici e 94
6.3.3 Execution of AUTOMAtIONS.....cccciiiiiiiiiiieeeieeeeee e 94
7 Conclusions and FUture Workccocceeeeieiniieiniieiniececeee e 97
21T o [To == o1 VAPPSRt 99

12

13

List of Figures

Figure 1. The macro-architecture of the system for visual programming support

O SMAMt EVICES. ..ttt e e 36
Figure 2. APl implementation for communicating with smart devices 37
Figure 3. Creation of setter and getter methods........ccceeieeeeiiiieiicccee e, 38
Figure 4. practically-RESTful API for Air Conditioning smart device..........cccueeennee 38
Figure 5. Properties of the Air Conditioning smart deviceccccccevevveeveirciieennns 39
Figure 6. Actions of the Air Conditioning smart deviceccccccveeeeeiieiccciveeeeeennn. 40
Figure 7. loTivity Simulator included Air Conditioning smart device.........ccccce..... 41
Figure 8. Converting virtual device data to Generic Device APlccccovvvveeeeeennn. 43
Figure 9. ConvertDevices of Converter library......ccoocccceeeeevecciiveeeee e, 44
Figure 10. Generic Device APl definitionocccciiiieeeiiie e, 45
Figure 11. Property of a smart device definitioncccccccoveeevrveeieeieiieiicireeeeeeee, 47
Figure 12. Method of smart device definitionccccceeeeeiecciiiiiee e, 48
Figure 13. Parameter definitioncccovveeeeiii i 49

Figure 14. Design of device properties and their automatic rendering with

IVHICTOUIS ottt s 51
Figure 15. Update method with its descriptionccccceeeevecciireeeeeiee e, 52
Figure 16. Scanning devices on the networkccceveiiiiiccii e, 55

14

Figure 17.

Generator

Air Conditioning device interface which is generated by Automatic Ul

Figure 18. Air Conditioning device group interface which is generated by

ANV a0 g g lo o (ol U B CY=1 11 4o L o) G 57

Figure 19.

Figure 20.

Figure 21.

Figure 22.

Figure 23.

Figure 24.

Figure 25.

Figure 26.

Figure 27.

Figure 28.

Figure 29.

Figure 30.

Figure 31.

Figure 32.

Figure 33.

Adding Air Condition device to an already defined group.................... 58

Update universal-IDs of the smart device and match it with an existing

.. 59
Visual programming blocks for device actionsccccoeeccvvivveeeeeieicnnns 60
Setter and Getter Blockly Blocks for Propertiesccoccvevvviveeeennnennnn. 61
Input/Output for smart device properties in the I/O Console.............. 61
Setter and Output Blockly Blocks for device groupcccoeevveeeernneennn. 62
When Conditional blocks (A), After Conditional blocks (B)................... 62
Continue/Break blocks (A), Extra conditional blocks (B).........c.cccue..... 63
Break/Continue blocks outside of When/After blockccuueu..... 64
Break/Continue blocks fOr EVErycuvueeeieeecieeeeeeeeeeeeeeee e 64
Blocks for scheduler @vents ... 65
An Automation for Scheduled Taskcccocveiriiiiniiiiniiiceeee 66
An Automation for Conditional Task........cccceecuerveerieeieenieneese e 67
An example of Automation for Basic Taskscccccceeeveeiciiiieeieeeeeeeenns 68
Overview of execution of aUtomMationsccceceevveeiienenie e 69

Figure 34. User interfaces for smart devices on runtime generated by User

INTEIFACE GENEIALONcvvvveeiee ettt eeeecerere e e e e e e s e e e e e e eesesaaraereeeeessennstseeenes 70

15

Figure 35. Calendar tool on runtime environment.........cccceevvvveeeeeeeeieiicinreeeeeeeenn, 71

Figure 36. (A) “Wait” block with given description (B) Description of block is

visualized in organizer with the starting and finishing time...........cccocveeviieeeeineen. 72

Figure 37. Event History that includes two "When" conditional events 73

Figure 38. Event History that includes a device action and a property change of

Y 1011 B L=V A (o= P 74

Figure 39. Overview of runtime for automation testing..........ccccoeeveeevieiniieennneen. 75

Figure 40. Implementation of an action for execution window for automation

L1 A 0¥ = PP PP PP PP PP PPPPPPPPPPPPPPRt 76

Figure 41. Control virtual devices that participate in execution for automation

L1 41 0¥ = PP P PP PP PP PPPPPPPPPPPPPPPPRt 77

Figure 42. (1) Controls for simulated time. (2) User interface for going to specific

Figure 43. Test Control Panel included in the execution for automation testing .78

Figure 44. Define changes of smart devices at specific timescccccevvviiveeenns 79

Figure 45. (1) Blocks for checking device state (2) Warning message generated

from value checking teSt.... .. e 80

Figure 46. Morning Automations triggered by environment events..................... 82

Figure 47. Visual programs for Morning Automations scenario using Blockly

Figure 48. (1) Event History including bubbles generated when the “Alarm Clock
rings” automation is executed. (2) Event History including bubbles which are
generated when the “water is ready for bath” automation is executed. (3) Event

History including bubbles which are generated when the “window blinds open”

16

automation is executed (4) Event History including bubbles which are generated

when the “coffee is ready” automation is executed..........ccccvvvveeeeeiieciciiieeeee e 86

Figure 49. Organizer tool for the scheduled event and the Event History including
bubbles which are generated when the "main door is locked for 5 minutes"

AULOMATION 1S @XECULEM ovvveiiiiiieieiiiie e et ee et ettt e e e et e e e tabessetbaeseseanssessanssseanans 87

Figure 50. Home care automations triggered by calendar eventsccccceeeee.... 88

Figure 51. Visual programs for Self-Caring Home scenario using Blockly blocks ..90

Figure 52. (1) Implementations for “TurnOn”, “TurboMode” and “Service” actions
of Dehumidifier for simulated execution of automations. (2) Implementations for
“Program”, “Temperature” and “Start” actions of Washing Machine for simulated
execution of automations. (3) Implementations for “Mopping” and “Sweep” actions
of Robot Vacuum Mop for simulated execution of automations. (4) Implementations
for “StartDefrost” and “ConfigureRapidMode” actions of Refrigerator for simulated

EXECUTION OF AULOMATIONS. ..iiiiieeiiiiiee ettt e et e e e taee s e etaaeseeeaneseseanaseseanans 90

Figure 53. (1) Organizer tool that includes daily events and the generated bubbles
of the Event History for dehumidifier and smart robot tasks. (2) Organizer tool that
includes daily event and the generated bubbles of the Event History for washing

machine task. (3) Organizer tool that includes daily event and the generated bubbles

of the Event History for refrigerator task.cccccveeeeei e, 91
Figure 54. Fire protection automation triggered by environment event.............. 93
Figure 55. Visual program for Fire Protection scenario using Blockly blocks 94
Figure 56. Event History of Running Automations of Fire Protection 95

Figure 57. (1) Implementations for “Open” action of doors. (2) Implementations
for “TurnOff’ action of electric devices. (3) Implementation for “Start” action of the

FIrE EXEINGUISNET . werveeeei i e e e e e et e e e e e sessabraaereeeeeeeennnnes 95

Figure 58. Test for activating Smoke SENSOrccvvveeieeiiiiccieeee e, 96

17

18

List of Tables

Table 1. Smart Devices for Morning Automations

Table 2. Smart Devices for Self-Caring Home

Table 3. Smart Devices for Fire Protection............

19

1 Introduction

1.1 Smart Devices in the Internet of Things

The Internet of Things (IoT) is a domain that, after the Internet, represents the
next most exciting technological innovation [1], [2], [3], [4]. loT would open up a
world of possibilities and influence in every corner of the globe. We can build smart
cities using loT, where parking, urban noise, traffic congestion, street lighting,
drainage, and waste can all be tracked in real time and handled more efficiently. We
can build healthy and energy-efficient smart homes. We can create smart
environments that control air and water emissions automatically and allow for early

detection of earthquakes, forest fires, and other catastrophic disasters.

Moreover, in the 10T, there is a wide variety of objects or "things," and some of
these objects are referred to as "smart devices", "mobile devices", "smart things", or
"smart objects" in the literature. From basic sensor nodes to home appliances and
smartphones, smart devices are objects capable of communication and computation

[6]. Smart devices are considered to be objects in the loT.

Cisco projected in 2011 that by 2020, 50 billion Things will be connected to the
Internet [5]. Another study, on the other hand, suggests that by 2020, 25 billion
devices will be connected to the internet, with the goal of enabling the process of
autonomous intelligent decision making. Regardless of which prediction is right, the
key point is that the number of smart things would be many times greater than the

current global population.

Additionally, devices in the Internet of Things should be able to rapidly adapt to
evolving situations and take actions based on their operating conditions; and they
should be self-configuring and interoperable, with unique identities and the ability to
communicate and exchange data with other devices and systems [7]. As a

consequence, smart devices should be context-aware and linked to the internet.

20

1.2 Automatic User Interface Generation

The design of user interfaces for different applications is becoming increasingly
difficult. Users demand high-quality user interfaces and user-friendly complex
applications. Consumers often expect the same applications to work on a variety of
devices, including tablets, PDAs, notebooks, and other computers. It is incredibly
difficult to develop an application interface that is scalable across different devices,
resulting in the development of multiple user interfaces that are based on expected
device capabilities and features. The design of such user interfaces is difficult,
resulting in an increase in application development time. As a result, a concept for

automatic user interface generation was developed.

By offering a collection of design rules and effectiveness requirements, automatic
user interface generation systems promise to make an application programmer's
design tasks simpler. To determine these parameters, you must first decide the
properties of the data to be visualized are related to user interface design and how
they are related. Data characterization is the term for this role. It is possible to build
automated presentation systems using versatile data characterization. These, on the
other hand, may not permit the development of rich user interfaces. A code
characterization is needed to build a rich user interface with the ability to perform

various operations on the characterized data.

The automatic user interface generation concept is relevant with the loT, despite
the fact that is often overlooked. Indeed, the new Internet of Things vision focuses
primarily on the technical and infrastructure aspects, as well as the management and

analysis of the massive amounts of data produced.

So far, only a small amount of research has been conducted on the front-end of
user interfaces for loT devices. However, as has been the case in other fields such as
the Web, smartphone, and wearable technology, user interfaces in the loT

ecosystem will play an increasingly important role in end user adoption.

21

1.3 Visual Programming

Spreadsheets are the industry's most common end-user programming approach
[8]. They favor both individuals and companies, and they are used in a variety of
applications such as student grading, accounting, and hotel booking. Visual
programming environments are also among the most common software tools for
end-user development (EUD) [9], leading to the popularity of learning programming
(e.g., Scratch [10], MakeCode [11], Tynker [12], Snap! [13]) and gaming (e.g., LEGO
MINDSTORMS [14], LEGO in MakeCode [15], Tynker, LearnBlock [16]) for children.

Additionally, in visual programming, there are application domains that are not
focused on learning programming. For inexperienced programmers, developing
mobile apps is one such application area. The widespread use of smart phones in
everyday life has resulted in an explosion of mobile apps. App Inventor [17] is a
Google-provided web-based visual programming integrated development
environment that allows novice programmers to build fully functional Android and

iOS apps.

Furthermore, visual programming is also affected the loT. Particularly, the use of
connected smart devices and services, as well as automations that can be created,
could benefit people's daily lives. In this context, there are a range of approaches
that concentrate on smart-home automations, using commercially available smart
devices and services. These approaches include HomeKit [27], Puzzle [28], Wia [29],
Embrio [30], and SmartThings [31]. These apps provide a simple form-based
architecture for creating simple automations among a collection of devices that

support their standard.
1.3.1 Blockly Studio IDE

Visual programming languages are based on the production of graphical
elements that correspond to high-level abstractions of source code expressions,
removing the need for text coding. Visual programming languages, on the other

hand, are insufficient for novices to build applications. They must be accompanied by

22

suitable development toolsets, such as text editors that are integrated into IDEs for
software developers. On top of the Blockly library [49], it is built a full-featured IDE,
the Blockly Studio, for visual programming languages in the context of end-user

development.

The IDE's backbone is built on a component-based architecture that allows users
to add and remove components through a centralized components registry. While
the IDE is running, components can be enabled or deactivated on the fly. Each part is
self-contained and interacts with the IDE through a specially developed extended

Blackboard pattern.

Additionally, the IDE is application domain configurable. This means that the key
components for end-user development could be modified based on the
specifications of each application domain. Furthermore, the IDE contains an
extension mechanism that allows developers to define and construct new
application domain frameworks on top of it. These application domain frameworks

are built right into the IDE and take advantage of all of its features.

1.4 Problem Definition

People's daily lives are able to benefit from smart devices based on the loT
concept. Particularly devices are able to provide an environment of automations that
contribute to everyday activities. However, the needs for each person are different
and fluid. As a result, everybody should be able to communicate with smart devices,
potentially handling, parameterizing, and even programming applications involving

them.

As mentioned in section 1.1, the Internet of Things is made up of a wide variety
of connected devices. Different types of smart devices are connected through the
network and are used to help people in their daily tasks. There is a need for end
users to manage the state of their smart devices using the appropriate tools. Also,

users want to be able to develop their personal loT automations for their daily

23

activities based on their requirements without having any programming knowledge.
In addition, the monitoring and interaction of devices during the execution of loT

automations is an area that suffers from a lack of solutions.

The purpose of this thesis is to provide a suite of tools for supporting the visual
programming of Internet of Things. The tools that were implemented on the top of
Blockly Studio IDE gives to the end users the opportunity to execute and test their
defined automations as well as to visualize their smart devices through appropriate

user interfaces.

In order to solve the visualization problem for smart devices, we have designed
and implemented an automatic user interface generator. This tool generates
appropriate interfaces for devices that use their data provided by the loT
middleware, loTivity [41], in our case. Particularly, the device data is converted to
the Generic device AP| that we have designed. In addition, the generator uses the
data from the device API and creates the final interfaces in which there are MicroUls

for the device properties and actions.

Moreover, after the development of loT automations, users want to execute
them and have a clear picture of their smart devices that are included. In order to
tackle this problem, we implement an execution window for automations. It includes
a calendar tool in which there are all scheduled tasks included in automations.
Furthermore, we add an event history tool that records every event that is triggered
during the execution of automations. Additionally, the Ul generator produces
appropriate user interfaces which visualize the state of smart devices during the

execution.

Finally, as we mentioned in the previous paragraphs, users want to be able to
test their automations. In this context, we develop another execution window on the
top of Blockly Studio IDE which is for the automations testing. Users who run their
automations for testing can find and correct their errors and control the behavior of

the virtual devices included in this particular execution.

24

1.5 Primary Contributions

Our main contribution is the creation of a set of tools that supports the visual
programming for the loT domain framework. An important component of this set is
the execution of the loT automations. In this context, we provide a complete set of
tools for monitoring smart devices and the events triggered during the execution. In
addition, the execution window includes user interfaces for smart devices for
tracking changes. Also, we provide a different execution window for automation
testing on the top of Blockly Studio. It executes the loT automations including virtual
devices that have same data as real devices. Furthermore, in this execution, the
users can control time and date for testing their scheduled tasks. Finally, in this
window there are two types of tests, the first to change the state of the devices at a

specific time and the second to check their values.

For the visualization of the smart devices, we develop an external library called
Automatic Ul Generator. The first step in creating device interfaces is to design and
define a generic device API that is used as input to the library. The device data is
converted to the API and then the library receives the conversion data to create
specific user interfaces. The user interfaces consist of MicroUIs for each property of
the device and the actions are visualized with buttons. Finally, every user interface

provided in the Blockly Studio for devices is the result of the generator.

1.6 Thesis Structure

The rest of this work is organized as follows; In Chapter 2, we review popular
middlewares, tools for automatic Ul generation and visual programming tools for loT.
Chapter 3 follows, which has the system overview. It begins with the architecture of
our system and then describes the communication with the smart devices. Chapter 4
gives a description of the automatic Ul generation tool. It begins with the description
of the generic device API and then the micro-Uls that produces. Chapter 5 describes

the contribution to the Blockly IDE for IoT. It begins with the user interfaces provided

25

by automatic Ul generator for device management of loT framework. Then, it
describes the visual programming blocks that provided by loT domain framework.
Also, describes the execution of loT automations. Finally, it gives a description of the
environment for automation testing. Chapter 6 gives a description of the Case
Studies; we have carried out in order to test our work. Chapter 7 concludes the work

and identifies issues for further research work.

26

2 Related Work

2.1 Middlewares on IoT

Paraimpu

Paraimpu is an loT middleware [18], [19] that allows users to register, manage,
handle and interconnect their RESTful loT devices or services whether physical or
virtual. Things are mapped to either the abstract concept of sensors or actuators in
Paraimpu. The former characterizes anything capable of producing data of a related
type (text, numeric, JSON, XML etc.) and the latter characterizes anything that is able
to perform actions by consuming data produced by the sensors. With the Paraimpu
also users can connect their things. This allows users to compose simple loT
applications via JavaScript. All things in Paraimpu represented as RESTful resources
and JSON is used for internal interchange of data between devices. The
implementation of Paraimpu is succeeded using a scalable architecture leveraging a
non-blocking Tornado Web server [20], a NGINX [21] load balancer, and a MongoDB
[22] which provides persistency, replication and fail-over data management support.

In other words, Paraimpu aims to provide a scalable cloud infrastructure.

Reusing and sharing the loT resources in their social networks are the main
advantages of Paraimpu over other loT middleware. Paraimpu provides a limited set
of configurable sensors, actuators and connections that can be reused across
applications via filtering and mapping between inputs and outputs among sensors
and actuators. Paraimpu does not support service discovery. Paraimpu does not
provide device to device communication and thus entails the usual latency problem

of a cloud-based architecture.

27

Google Fit

Google Fit [23] is a free and open loT platform. It is a cloud-based loT middleware
that allows users to manage their fitness data and create fitness apps all from one
location. A fitness store is included in the scheme, which is a cloud storage service
that collects data from various devices and applications. A sensor framework is a
collection of APIs that enable third-party loT devices to link to its store. It offers APls
for subscribing to a specific fitness data form or source (e.g., Fitbit or Smartwatch),
as well as APIs for querying historical data and continuous storage of sensor data
from a specific source (e.g., a smartwatch). There's also a permission and user
controls module that protects data privacy and security by requiring user consent
before Google Fit's apps can read or store collected data. Google Fit is an Internet of
Things middleware designed to make it simple to build a specific form of application,

in this case, self-tracking data from wearable fitness devices.

Google Fit has built-in support for loT devices that use Bluetooth Low Energy (BLE)
(Bluetooth Low Energy). A developer must include an implementation of the Fitness
Sensor Service class as well as the supported data form if it is not accessible when

adding a new fitness sensor type that does not communicate via BLE.

Calvin

Calvin [24] is an open source loT middleware from Ericsson that aims to provide a
single programming model for capability and energy limited loT devices that is light-
weight and portable. It is a hybrid paradigm for composing and handling loT
applications that combines principles from the actor-oriented model and flow-based
computing. An actor, which is a reusable software component that can represent a
computer, a computation, or a service, is the key abstraction for building loT
applications in Calvin. The input and output ports of an actor describe its interface.
In contrast to the standard object-oriented model, which responds to method calls
by returning values, an actor responds to inputs by generating outputs. The

Asynchronous Atomic Callbacks (AAC) pattern is used in this actor model, where

28

short atomic actions are interleaved with atomic invocation of answer handlers for
high-performing real-time interaction. Calvin's actor model often hides the low-level
communication protocols of things, so actors link and interact via ports, regardless of
how physical connectivity is accomplished. Calvin comes with its own scripting
language to make it easier to program an actor. To enhance the process of creating
an loT application, it supports a prescriptive application development process called
Describe, Connect, Deploy, and Manage. Calvin is a lightweight loT middleware that
can run on edge devices to reduce latency while still using the full computing power

of the cloud when necessary.

Calvin's actor has the ability to switch from one runtime environment to the next,
making it a reliable distributed loT computation platform. The platform often
includes a pre-defined set of actors who carry out common but distinct tasks. Actors
for popular communication protocols and parallel processing are included. Calvin's
developer will expand the capabilities of this middleware by using CalvinScript to
create a new actor and adding it to the library. CalvinScript can be used to create

actors in the game.

Node-RED

IBM's open source loT middleware platform, Node-RED [25], is an open source loT
middleware platform. It is built on node.js, a server-side JavaScript platform that
uses a distributed computing environment's event-driven, nonblocking I/0 module.
It is an loT middleware that, like Calvin, can be run at the network's edge due to its
small footprint. The most important abstraction is Node, which is a visual
representation of a block of JavaScript code that performs a specific function on an
loT computer (e.g., reading a particular value). To put it another way, each node can

be thought of as an actor.

The main benefit of Node-RED is a visual tool that makes composing loT devices
easier, particularly if the node for the loT device has already been created and

published by others. Users may use Node-visual RED's tool to drag-and-drop blocks

29

that represent components of a larger system and link them to create an loT
application. As a result, Node-RED facilitates the development of loT applications.

The composition engine binds loT devices that can be abstracted as nodes together.

The APIs for communicating with the system must be available as a node.js library or
a module accessible by Node-RED for a device or service to operate with Node-RED.
Password authentication provides a minimal level of protection. The Node-RED team
believes that by forming a social network of Node-RED developers, modules or
node.js libraries for heterogeneous loT devices can be crowdsourced. Service
discovery is not available in Node-RED. It is made with Node.js [26], a modern

framework with few libraries and modules.

2.2 Automatic Ul Generators

Some research works of automatic Ul generation have been found for appliances,
but there is not any relevant work that emphasizes on Ul generation for loT devices.

However, some previous works are very useful to our research.

Supple

In [34] Gajos et al. presented a toolkit named Supple which can generate Uls for
ubiquitous applications. The Supple can generate a concrete Ul for the target device
after the designers specify declarative Ul models and target device. Beside the
generation of Uls can be customized and its distributed architecture enables devices

to show Supple Ul with less overhead.

Dynamo-AID

In [35] based on the traditional models like task model, environmental model and

dialog model, Clerckx et al. extend them to provide a design process and runtime

30

architecture, DynaMo-AID, that enables designers to develop context-sensitive user

interfaces which can change during the runtime of the interactive application.

Pebbles

The most relevant work was done by Nichols et al. in Pebbles project which aims to
generate the high-quality Uls on a hand-held device working as the personal
universal controller (PUC) for various appliances [37]. They extended the PUC with a
layer named Uniform to provide the Uls which are consistent with past used Uls [38].
Moreover, the Huddle system uses a model of content flow to generate Uls for
controlling connected appliances at high-level and low-level [39]. The simplification

of Uls can increase the usability of appliances with complex functionalities.

RBUIS

Akiki et al. present a tool supported approach, Role-Based Ul Simplification (RBUIS),
that simplifies enterprise application Uls by providing users with a minimal feature-

set and an optimal layout based on the context-of-use [40].

Other Approach

In [36] Roscher et al. identify the concept of ubiquitous user interfaces (UUls)
including five properties, shapeability, distribution, multimodality, shareability and
mergability. Then they proposed an approach of combining Ul runtime architecture
MASP and runtime Ul models to adapt Uls based on automatic adaptation

algorithms.

31

2.3 Visual Programming for IoT

HomeKit

HomeKit [27] is product from Apple allowing control connected home accessories
when compatible with HomeKit, and supports to a certain degree user-defined
automation as combinations of accessory control actions. It is not a EUP system as
such, and focuses mostly on smart home solutions with emphasis on advanced

configurations.

Puzzle

Puzzle [28] is a visual development system for custom automations with smart
objects in loT adopting the jigsaw metaphor. However, the visual system is primitive
and lacks the full-scale capacity of common VPLs like all algorithmic elements,

procedures and objects, as well as versioning and application management.

Wia

Wia [29] is a cloud platform that makes creating loT apps easier by linking loT
devices and external services. It is possible to attach loT development boards, loT
devices, sensors, and external services using Flow Studio. It differs from others in
that it employs complex blocks that execute complex operations such as sensor
management. It fits with Arduino MKR1000, MKR1200, Espressif, Raspberry Pi,
Particle, and other loT creation boards. It also integrates with third-party
applications such as AWS, Twitter, and Twilio. We can use Wia's APl to communicate

with it and exchange data.

32

Embrio

Embrio [30] is another interesting visual tool to develop loT apps. It is built for
Arduino and works with a range of operating systems, including Windows, OS X, and
Linux. Embrio is a visual programming interface for Arduino that uses a drag-and-
drop approach. It is based on the Agent principle. An Agent is essentially a process
with a task to complete. Agents can run concurrently and can trigger or kill other
Agents. The data flow and logic of an 10T app are described by the relations between

Agents. The Embrio app can be translated to Arduino code and run on the platform.

X0oD

XOD [32] is a microcontroller programming platform with a visual interface. It is
based on the Node model, which can represent a sensor, motors, or a piece of
functional code like comparison operations, text operations, and so on. Each node
has an input and an output, allowing us to define the loT app logic by connecting all
of the nodes. XOD produces native code that can be uploaded to and run on Arduino
compatible boards. It primarily supports Arduino. It is an open-source project with
an interesting feature: it is extensible, meaning new nodes can be introduced to

support new components.

Zenodys

Zenodys [33] makes it easy for developers to create loT apps. It is possible to collect
data from any sensor and easily visualize the values acquired using the Zenodys
platform without programming. Using Workflow builder makes it possible to build
complex backend solutions using visual programming tools. Finally, the Ul builder
aids the developer in the development of an loT dashboard for the visualization of
data and details. It is a robust platform that offers a range of services that can be

linked together with the aid of its software and builders. Zenodys can be used in a

33

range of scenarios, including predictive maintenance, real-time control systems,

product line automation, and so on.

34

3 System Overview

In this chapter we are going to describe the overview of the visual programming
support system that is developed for the loT domain framework at the top of Blockly
Studio. First, we describe the macro-architecture of the system and the elements
included in it. In addition, we describe the communication between our system and

smart devices and the need to simulate them.

3.1 Architecture

Figure 1 shows a macro-architecture of components that supports the visual
programming for smart devices at the top of Blockly StudioAt the bottom of the
stack are the smart devices that export their functions. To enable communication

between smart devices and other components, we use loT middleware.

The next component is the Automatic Ul Generator (section 4). To successfully
create user interfaces for smart devices, we first implement a Converter library that
converts the device API to a specific API that is called Generic Device API. It includes
only the data needed for the visual ion and interaction with smart devices. Then,
based on the API, Automatic Ul Generator generates more than one user interface
type for smart devices from device-management process to the execution of

automations.

Moreover, we implement an execution environment for the loT automations on
the top of Blockly Studio. In this context, we provide a visual programming toolset
for monitoring and interaction with devices. Particularly, in the environment exists a
calendar tool for monitoring scheduled tasks and an event history panel that records
device actions and conditional-based event. Furthermore, a device dashboard is
provided that displays in real-time an updated view of all smart devices involved in

running application

35

Finally, an extra environment is introduced for testing the crafted automations.
In this context, we extend the toolset that exists in the aforementioned execution
with test and simulation tools. Specifically, we provide a device simulator that
emulates all properties and actions of actual smart devices by displaying them with
virtual Ul implementation. In addition, we create a time simulation enabling to
control directly the flow of time, with five basic operations supported, and thus
trigger directly all related scheduled events, by communicating internally to the basic
calendar component. Lastly, a suite of tests is available for simulating the behavior of
smart devices in a specific time period and another type of test enabling the users to

check the current state of devices.

Automation Testing | Automatic Ul Generator |
Environment

e e e e e e e < Generic device API

Runtime Environment
| Converter I

for Automations

Middleware

Smart Devices

Figure 1. The macro-architecture of the system for visual programming support for smart devices

3.2 Communication with Devices

To make the communication with smart devices possible, we use the loTivity
middleware [41]. It is an open-source software framework, reference

implementation of the Open Connectivity Foundation (OCF) standards for the loT.

36

Furthermore, loTivity provides the iotivity-node [42] a JavaScript APl for OCF
functionality and it is implemented as a native addon using loTivity as its backend.
Our work uses both loTivity and iotivity-node to communicate with smart devices,
and carries out all the required functionality which is described in the following

paragraphs.

client = require("iotivi

BRI SR E S { Method for dynamically discover
client.findResources(onSmartDeviceDiscovery); smart devices on the network

onSmartDeviceDiscovery = (smartDevice) {

smartDevice.Update =

t client.update(smartDevice);

smartDevice.Retrieve =

client.retrieve(smartDevice);

Initialize a smart device with
) Update, Retrieve, Observe and
Notify onDeletion methods

smartDevice.Observe (updateListener) {
smartDevice.on("uj , updateListener);

1

J)

smartDevice.onDeletion = (onDeleteListener) {

smartDevice.on(lete”, onDeletelListener);

Figure 2. APl implementation for communicating with smart devices

Using iotivity-node, we have managed to create our communication API. It
consists of five main methods. Firstly, a method for dynamically discovering smart
devices which are connected to the network is implemented. Also, we have
implemented methods for updating and retrieving the state of the devices.
Furthermore, we create two event-based methods, the first one uses the update
event of iotivity-node to observe any change on the state of a smart device and the
second one uses delete event to notify when the device is deleted or unregistered
from the network. Last but not least, the communication APl implements two more
methods for each property of a smart device, first one is created to set a new value

to the property and the second exists for getting the current value of the property. In

37

their inner body, they are used the Update and Retrieve methods of the API

respectively. The API that we have implemented is presented in Figure 2 and Figure 3.

CreateSetterAndGetterForProperties = (properties) {

I ¢ properties) {

Create a setter and getter

method for each property

Figure 3. Creation of setter and getter methods

dition Import Air Condition
functionality from JSON
schema file

ndition:

he current Air Conditioning dev

GET request whose response
is the state of Air Condition

POST request for updating
the state of Air Condition

Figure 4. practically-RESTful API for Air Conditioning smart device

3.2.1 Simulating Smart Devices

For the need to test and evaluate our work, we need to get a wide variety of

smart devices. The only way to achieve the large number of different smart devices

38

is to simulate as much as you can. The simulation of the smart device is intended to

have the same data as the real ones and the same functionality.

For the simulation of smarts devices, we use the loTivity Simulator [43]. It is a
plugin tool over the Eclipse IDE [44]. Using this tool, we can simulate smart devices
as OIC (Open Interconnect Consortium) resources. Open Interconnect Consortium
(OIC) [45] is a standard and open-source project that delivers “just-works”
interconnectivity for developers, manufacturers and end users. The loTivity
Simulator comes with a Service Provider that manages creation, deletion, request
handling and notifications of simulated resources. Furthermore, it handles the

requests received and sending appropriate responses to clients.

turn property which its value is
type of string

device-temperature property
which its value is type of integer

Figure 5. Properties of the Air Conditioning smart device

To successfully simulate a smart device through Simulator, we have to build its
REST (Representational State Transfer) APl with the help of the RAML (RESTful API

Modeling Language). It is a way of describing practically-RESTful APIs in a way that’s

39

highly readable by both humans and computers. A REST API (also known as RESTful
API) [46] is an application programming interface (APl or web API) that conforms to
the constraints of REST architectural style and allows for interaction with RESTful
web services. Figure 4 shows the practically-RESTful APl of OIC resource that we
import to Service Provider for simulating a smart Air Conditioning device. We have
modeled the GET request for retrieving current state of the device. Also, it has been

modeled the POST request for updating the Air Condition with the updated state.

"actions": {
“TurnO

Modeling TurnOn action for the
Air Conditioning device

"description”:
s

"TurnOff":

"description”:

1
i

"Configure"”: {

vice-temperature"”: r* 3}, { "swing": Modeling Configure action Wlth
S eeciiptisame mAction o ConEiguring 1 itioning two parameters for the Air
SR : : A Conditioning device

3.

"description”: "Act

Figure 6. Actions of the Air Conditioning smart device

In order to create functionality for the smart devices we use JSON Schema [47]
and more specific the draft 2017-07. It is a vocabulary that describes an existing data
format. It also provides clear human- and machine- readable documentation. Every
smart device consists of properties and actions. The first category includes all that
items of the device that they can take a single value. The value types of properties

are the following:

e String: This type is used for strings of text and it may contain Unicode
characters

e Boolean: This type matches only two special values true and false.

40

e Numeric: There are two numeric types integer and number.
The first is used for integral numbers and the latter is used for any

numeric type, either integers or floating-point numbers.

¢ Resource Manager 2 = 0 * Attribute Manager 22 = 0
Attributes
Create Delete
Mame Value
. == paramet
= — swing auto
device-temperature 25
Configure parameters: [{"device-temperature®: "number~}, {"swing": "string"}]
AutoMode parameters: []
kurn off
environment-temperature 23
TurnOff parameters: []

Figure 7. loTivity Simulator included Air Conditioning smart device

For the properties which take string as value, it can be defined the possible
values by the keyword enum as we can see for the first two properties turn and
swing of Air Conditioning device in Figure 5. Also, we can make a range numeric type
using minimum and maximum keywords such as the device and environment
temperature properties of the Air Conditioning device. Furthermore, we can define a
property as read-only which means that user cannot change its value, it can only be
changed from the Service Provider. Lastly, using default keyword, we can initialize

the value of property.

For the purpose of simulation of a smart device, except properties, we define and
its actions. They are all these operations that a smart device can perform (e.g., Turn
on a Television). We use JSON Schema for modeling actions for a smart device, each
action consists of parameters and a function body. The first is an array from items
that they have name and type, and the second is added in the communication phase
as JSON schema doesn’t not support function type. In Figure 6 we show the Air

Conditioning device actions. We can see that the action Configure that it has two

41

items as parameters for setting device-temperature and swing properties
respectively. After completing the modeling of a smart device, we import it to the
Service Provider to finish the simulation. In Figure 7 we can see the Air Conditioning

device from the view of the Simulator tool.

42

4 User Interface Generator

In this chapter we are going to describe the Automatic User Interface Generator
that produces Uls for the smart devices. To generate user interfaces, we have
designed and built a generic device APl used from the Automatic Ul Generator.
Furthermore, we are going to present the MicroUis for each property type generated
automatically. Finally, we describe the user interfaces for actions and methods of

device and how they are executed with or without parameters.

4.1 Generic Device API

With the aim of generating User Interfaces for smart devices, we define a Generic
Device API. For converting smart device data to the API, we implement a new library
which is called Converter as we can see in Figure 8. The main function of the
Converter is the ConvertDevices which is called when we want to convert devices

data to the Generic API (Figure 9)

Category, ID,
Name,
Properties,
Methods,
Actions,
Options

Figure 8. Converting virtual device data to Generic Device API

43

ConvertDevices =

devices) |

Figure 9. ConvertDevices of Converter library

In order to validate that the data of each device are successfully converted to the

Generic Device API, we use JSON Schema. In Figure 10 we present the schema for

the APl and according to this a device has the following attributes:

1.

category

The category attribute declares that the object is a smart device and its default
value is “Device”

id

The id attribute is an identifier for each method and action. Its value is unique for
every device

name

The name attribute contains name of the device that should be presented to user
in user interface.

option

An option attribute for the devices which contain an image

A device also contains three more attributes: properties, methods and actions.

In reference to properties, the data description is presented in Figure 11 through

a JSON Schema and they carry five basic attributes:

44

"$schema”:
"title":
"description”:
"type":
"required”: [
"properties”:
"category":
“"default”:
}J
"id": {
"type":
"description”:

"description”:
}J
"properties”: {
"type":
"description”:
"items": {
"$ref"”:
};
"uniqueltems”:
}J
"actions": {
“"type": y
"description”:
"items": {
"$ref”: "#
}J
"uniqueltems”:

"description”:

"items": {
"$ref"”:

‘l}

"uniqueltems"”:

))

"options": {
"type":
"properties": {

"image": {
"type":

"description”:

¥
3
3
"additionalProperties”:
}
)
J>
"additionalProperties”:
"definitions": {

3
J

Figure 10. Generic Device API definition

45

category

An identifier attribute for properties which has “Property” as default value.

name

The name attribute contains name of the property that should be presented to
user in user interface. It is unique for each property.

value

It is the value of the property and It can be one of the following:

e Number

e Boolean

e String
type

The type attribute contains type of the property. Converter gives a type to
property of a smart device based on its value type. There are five different types:
e number: Property value is number without minimum or maximum value.
e intRange: Property value is integer with minimum and/or maximum value.
e boolean: Property value is boolean and the possible values are true or false
e string: Property value is a string of text and it does not have possible values.
e enumerated: Property value is as sting of text such as string, but its value is
selected by a set of strings.
read_only
The read_only attribute is for the property which its value cannot be modified
but only be accessed. For the read-only properties a specific Micro Ul is
presented to the user.
option
An option attribute is for the properties which their type is either enumerated or
intRange. It includes the followings attributes:
e possible values: An array that contains all possible values for an
enumerated type property.
e minimum_value: The minimum value for an intRange type property.

e maximum_value: The maximum value for an intRange type property.

46

"property
"title"

Ty
“default™: °

“enum ["nu
"description®: "

"additionalProperties":
}
1
N
"additionalPropertie

¥

Figure 11. Property of a smart device definition

In respect of actions and methods, we define the same JSON Schema which is

presented in Figure 12 and it consists of five attributes.

1. category
An identifier attribute for properties which has “Action” and “Method” as default

value for the action and method respectively.

47

Id
The id attribute is an identifier for each method and action. Its value is unique for

every method or action

"method™:

"description™:
"enum" :

}]
"additionalPropertie
].
1
i
"additionalProperties":

}_‘

Figure 12. Method of smart device definition

48

3. name
The name attribute contains name of the method or action that should be

presented to user in user interface.

"description™: "
1
I
" UT: {

"propertie

"descrip

"type”
"description™:

JL »

"relation”: {
"type"
"description ‘The name of prop

JL
1
I
"additionalProperties™:
1
J
1
I

"additionalProperties”:

Figure 13. Parameter definition

4. parameters
The parameters attribute describes the parameters of the method or action. The
JSON Schema for the parameters is presented in Figure 13 and it consists of three
attributes:
e name
The name attribute contains name of the parameter.
e type
The type attribute contains type of the parameter and can be one of the
followings:

i. string

49

ii. number

iii. boolean

o Ul
The _Ul attribute includes all the information about the User Interface. It
consists of the followings:

i. description: The description attribute describes parameter.

ii. relation: The relation attribute is important for the parameters
because it describes relation between parameter and a property
of smart device

5 _uUl
The _Ul attribute includes all the information about the User Interface. It consists
of the followings:

e description: Description describes method or action and acts like a tip for
the user.

e color: It corresponds to the color that the method or action will be
colored.

e display: It describes the display area that the method will be displayed. It
takes as value a property name for displaying in property area, or
“generic” to be displayed in generic area of smart device.

e dependence: The dependence attribute expresses conditions which have
to be satisfied to allow execution of selected method or action.
Dependence is very important because without proper dependence

checking, user can have access to unavailable methods.

4.2 MicroUis

4.2.1 Device Properties

The first issue that arises, which is also the most apparent and easily confused as

the only issue in automatic interface generation, is that of displaying values of data.

50

The approach that is taken in our work for displaying the values of properties of a
device is inspired from the Properties and MicroUis architecture which is introduced

by [48].

As we mentioned in 4.1 (Generic Device API) during the conversion of smart
device to Device API, a property is taken type based on its value type. For instance,
the type of environment-temperature property of Air Conditioning device should be

intRange because its value type is integer with minimum and maximum value.

The responsibility for displaying properties is then passed to hard-coded,
embeddable micro-interfaces. The matching of properties to MicroUis is done simply
by type matching: properties of a certain type can only be used by certain MicroUi-

rendering methods (Figure 14).

Property types
| number |
|__intRange |
| boolean | Specific Generated
Renderer Interface
| string |
| enumerated |
Hard-coded, per-property-type

Figure 14. Design of device properties and their automatic rendering with MicroUis

In the following list is presented the MicroUis which are generated based on the
property types. However, a read-only property is mapped to a unique MicroUi

regardless of the type:

Edit Box

1. number -

51

Range Slider

value:20
2. intRange - o
Switch Button
3. boolean - e
Edit Box
4. string -
Select Box
Classic v
5. enumerated -
Read-only Box
true
6. read-only -

4.2.2 Methods and Actions

Another issue that arises during the automatic generation is that of displaying a

method or an action of a device.

Update value for the property swing

Figure 15. Update method with its description

52

The approach that we decide to take here is to render every action or method as
buttons. Also, to help users to understand which is the use of every method, we

create tooltips which include their descriptions (Figure 15)

To successfully complete the interface generation of actions and methods, we
have to generate User Interfaces for their parameters. We have managed to re-use
some of the MicroUis which are mentioned in 4.2 (MicroUis). So, a parameter of
number type is mapped to MicroUi for number type, a boolean type parameter is

mapped to MicroUi for boolean and so forth.

53

5 Integration with Blockly Studio
IDE

In this chapter we discuss the components for supporting the visual

programming for Internet of Things on the top of Blockly Studio IDE.

In detail, we present the user interfaces produced by Automatic Ul Generator (4)
for both single devices and device groups. Moreover, the visual programming blocks
and elements provided by loT domain framework of Blockly Studio for the
development of automations are described. In addition, the runtime environment

for automations and the environment for automation testing are presented.

5.1 User Interfaces on device management

Blockly Studio provides a device management process for defining and managing
smart devices for end-user development. For this process we provide user interfaces

for smart devices and device groups by Automatic Ul Generator (4).
5.1.1 Single Device

Through the communication API described in section 3.2, users scan the network
for available smart devices. Then, a list of smart devices is provided including
information for their identity and their properties as depicted in Figure 16. The
visualization of smart device is based on the automatic user-interface generation
process (4) which gets JSON data response from scan’s request to the /loTivity as
input. The end-user developers are able to choose which of the smart devices from
the list will be registered for the development process by clicking the “Register”

button.

54

MNashingMachineResURI

FAirConditionResURI Reqgister
W
MName: fAirConditionResURI
1D: _air-condition
Properties:
device-ternperature 20
environment-tem perature 23
swing bottom
turn on

JAlarmClockResURI

[CoffeeMachineResURI Register

Figure 16. Scanning devices on the network

Registered smart devices are then available to operate during the development
process. The generator generates user interfaces for operating devices based on
their functionality (see Figure 17). First, it provides a read-only MicroUl for each
device property that includes the name, universal-id, value of property and a button
that enables the property for the development process. In addition, the Ul provides
a visualization for each action that includes its name and a button to activate it in the
development process. In addition, in the action MicroUl there is a button to

implement the action body that is ran in the execution for automation testing.

55

Environment Home ¥

Properties (4)
duelv:ce-tgmp‘e.rature 20 @
universal-id: device-temperature
en.wronr_'nent-_temperature 23 &
universal-ic: environment-temperct...
su-.frmg)) bottom @
universal-id: swing
- on @
universal-ic: turn
Actions (4)
AutoMode Implemented for debug ... @ .:
Configure Implemented for debug ... @ t}
TumOff Implemented for debug ... @ h
TumOn Implemented for debug ... @ h
Smart Groups

Air Condition Group ©

Figure 17. Air Conditioning device interface which is generated by Automatic Ul Generator

At the bottom of the device user interface is the smart group area that includes
all the device groups in which the device participates. The interface of each smart

group includes each name and a button for removing the device from this group.

5.1.2 Device Groups

In addition, device management of IoT domain framework attempts to identify

which of the registered devices of the smart automation have common functionality

56

and organize them in groups (e.g., more than one air-conditioning and smart lamps
could be registered in a smart group). These groups give the ability to develop-
handle the smart devices in groups instead of requiring to handle each one of the

common devices (e.g., turn on/off all air conditioning devices in the house).

Properties (4)

device-temperature 0
universal-id: device-temperature
environment-temperature (.!J
universal-id: environment-temperature
swing 0
universal-id: swing
turn (D
universal-id: turn

‘ Reset ‘

Smart Devices

Bedroom Air Condition @ Air Condition ©

Figure 18. Air Conditioning device group interface which is generated by Automatic Ul Generator

The users are able to create new groups with common functionality via the
devices by exporting their properties (i.e., click the “Create Group” button presented
in Figure 17). The user interface of groups (see Figure 18) includes the common
functionality of devices (i.e., same device properties). Particularly, the automatic Ul
generator provides a read-only MicroUl for each group property. In addition, for
each property is provided a button for enabling it in the development process. This is
useful in case they would not like to include a specific common functionality in the
group and this functionality is not supported by one device that they would like to be
included in the group. At the bottom of user interface there is the “Smart Devices”

area that includes all devices that belong to this group. In detail, for each device is

57

visualized its name and a button to remove it from the list in case of the users would

like to handle it separately.

Select Group(s) for Air Condition X

+ Smart Device Properties

1
| Property Universal ID 1
! 1
| device-temperature device-temperature \
. . Smart Device
: environment-temperature environment-temperature <:I . :
1 Properties — Universal IDs
I swing swing 1
1 1
1 turn turn 1
b e e e e = 1

Groups that match with your device Match group property to
device Universal ID

There are no groups which are matched with the smart object

Groups that do not match with your device

Alarm Clocks

Alarm Clocks Air Condition

| ']

| Property Universal ID : : Universal ID (select group
: ring ring [} : Pro-r.veﬂy property)

1| ringtene ringtane : . device-temperature select s

: time time : : environment- select =

temperature
[}

| swing select #

[}

1

|

Figure 19. Adding Air Condition device to an already defined group

Moreover, in the process of the matching common functionality of smart devices,
the end-user developer is able to give for each one of the properties a universal-id.
This is useful in the case that devices support common functionality but export
different APIs. The matching mechanism attempts to match the original property
name and then in the case of failure tries to match with the given universal-id. The
matching mechanism to add a smart device in at least one existing group is
presented in Figure 19. The Ul generator mentioned in section 4 provides interface
for the device and group on the top of matching mechanism. For matching a device
with a group, a user has to update properties’ universal-IDs to match with group
properties’ either name or universal-IDs. For instance, in Figure 20 we update
universal-ids for an air conditioning device to match with an alarm clock group.
Finally, when the device is matching with the group the end-user selects at least one

group to add the device.

58

Air Condition

Universal ID (select group

Property property)
device-temperature ring a
environment- I'ingtone -
temperature
swing time =
Groups that match with your device ESelect all

@ Alarm Clocks

Figure 20. Update universal-IDs of the smart device and match it with an existing group

5.2 Visual blocks provided by the IoT domain

framework

The visual programming blocks are provided by the Blockly Studio and they have
been designed using the Blockly Developer Tools [50]. It is a web-based developer
tool that automates parts of the Blockly library configuration process, including
creating custom blocks, building your toolbox, and configuring your web Blockly

workspace.

In the following paragraphs we describe the blocks provided by Blockly Studio for

end-user development.
5.2.1 Device

The set of Blockly blocks for devices consists of three categories. In the first
category of blocks belongs the actions of a smart device. As we have mentioned in

3.2.1 (Simulating Smart Devices), in the device functionality belongs and its actions.

59

So, we have implemented constructors which dynamically generate blocks for each
action based on the type and number of their parameters. To make the dynamically
generation process of blocks clearer, we present the actions blocks of two smart

devices in Figure 21.

== Air Condition

® Alam Clock CELAMITES with (time: ‘)

== Ajr Condition [BI k@ with (device-temperature: ‘ , swing:)

Figure 21. Visual programming blocks for device actions

The second category consists of blocks for setting and getting value for each
property. As we have described in previous paragraphs there are five types of
properties. Depending on the type of property, there are different blocks. So, the
block which sets a value to enumerated property, it takes as value a string block, a
block which sets a value to a number property type, it takes as value a number block
and so forth. In Figure 22 we present setter and getter blocks for different types of

properties.

Lastly, the third category consists of blocks that can take input or print the values
of properties using the console tool of Blockly Studio IDE. These blocks make more
powerful the development process for the end-user as he can change the state of a
smart device during the execution of an application. The first block in Figure 23 is for
giving input for the device-temperature property and the second block is for printing

the value in the console.

60

VTR Y cevice temperature ~ L 25)

== Ajr Condition: set ETIS to

@® Alarm Clock: set (TIFIED to ¢ ¢ EDEOIm »

== Ajr Condition. get value from EXTL RS

Is @ Alarm Clock [fiFES

Figure 22. Setter and Getter Blockly Blocks for Properties

EELRE TR (o i Y [00s 1 (s [i [+ B device-temperature -

print value for == Air Condition gV RGNl 1T -0

Figure 23. Input/Output for smart device properties in the 1/0 Console

5.2.2 Device Group

In the case of smart device group, the IDE provides constructors that create only
these blocks which are important to help the end-user in the handling of smart
devices. However, some blocks that it has been created in smart devices does not
have any worth in device group, these are both getter and action blocks. In addition,
since there is not getter block for group, there is no reason to exist an output block.
However, the setter and input (see Figure 24) are the most important blocks for
groups since the end-user has the flexibility to change the state for one or more

devices that belongs in a group at the same time.

61

% Air Condition Group set to .

— Air Condition Group: set ET00ES to ENGRS

Figure 24. Setter and Output Blockly Blocks for device group

5.2.3 Conditional

Another set of blocks provided by Blockly Studio is the conditional blocks that
exist to enable end users to define conditions based on the state of the properties of
the smart device. There are two types of blocks and some extra that are defined to

help the users for creating flexible loT automations.

(7} For [E] times(s): When ‘ then (z) For [§] times(s): When ‘ then

.;";:I' Forever: When ‘ then ':E:' Forever: When ‘ then

(7) Atter (] times(s) that ' then (=) After (] times(s) that |. then

Figure 25. When Conditional blocks (A), After Conditional blocks (B)

The first type is When conditional blocks (see Tag A of Figure 25). The left list can
only be used as parents in contrast with the right one that can be executed as
statement. In detail, in Blocky Studio there is a simple When conditional that when it
is evaluated to true, its inner blocks (i.e., children) are executed. Furthermore, there
are two more complex blocks, the first one defines how many times their children
are executed when the evaluation has result of true and in the second the children

are executed every time the condition is evaluated to true.

62

Moreover, one more type of block exists this is the After (see Tag B of Figure 25)
scheduled block. The children (i.e., statements) of this block are executed only when
the condition has been evaluated to true so many times as the end-user has given in

the input field.

Furthermore, as we said at the start of the paragraph, the need for more blocks
(see Figure 26) arises for giving flexibility for the end-users to build any conditional

scenario with smart devices.

Some of extra blocks are the break and continue (see Tag A of Figure 26). The first
one terminates the execution of parent and the program control resumes at the next
statement following parent block. The latter works somewhat like the break. Instead
of forcing termination, it forces the next execution of parent block, skipping any child
that is under of it. Parent can be only When or After, otherwise blocks are inactive

as we can present in Figure 27.

+_ (EINIES of When / After

~y [EEEED of When / After @

A=
G

Figure 26. Continue/Break blocks (A), Extra conditional blocks (B)

Finally, there are some other blocks for evaluating conditions (see Tag B of Figure
26). The first one is for the logical operators (and, or, not). Also, for the evaluation of
properties of smart devices a block with relational operators has been defined. The
last block gets as its input inner block a getter of a smart device property, to check if

this property’s value changed. This block is executed repeatedly. The first time it

63

initializes the value and for every next time it is executed, it retrieves the smart

device’s value and checks if something changed.

Warning: The block has to be a child of when block Warning: The block has to be a child of when block

A T break - A ¢ continue -

Figure 27. Break/Continue blocks outside of When/After block

5.2.4 Scheduled

The next category of blocks that are provided is focused to the calendar and time
events. Particularly, using this category, the end-users are able to define events
which will be triggered based on time or date in repeatable basis or once. We have

identified three blocks for calendar and time events (see Figure 29).

~ C=T% of Every N (HNTTCRS of Every

Figure 28. Break/Continue blocks for Every

The first is the “At” block which is executed once at a specific time or date. The
second is the block Every which is executed repeatedly every specific time or date.
The last is the block Wait which is executed once after a specific time. Also, blocks on
the right list can be used as children on body for either conditional or calendar
events. The blocks which are remaining (see Tag B in Figure 29), are used as inputs

for the blocks that we described.

Except from the blocks that we described in the previous paragraph; there are
the break/continue blocks for the “Every” (see Figure 28) block which are used in the

same way as for the conditional blocks.

64

5.3 Types of automation provided by the IoT

domain framework

In this section we present the types of automation that end users can develop
using the visual programming blocks provided by the Blockly Studio loT domain

framework.

o Wait ‘ then

o

month(s) _[ED day(s)
hour({s) _ D minute(s) |

second(s)

hour : minute : second ‘ 0

Figure 29. Blocks for scheduler events

5.3.1 Automations for Scheduled Tasks

In the category of “Automations for Scheduled Tasks” users are able to create
automations that are focused to the calendar and time events. Also, when the users

create their own automations, a new category is created in the Blockly toolbox which

65

includes all three types of Automations (i.e., Scheduled Tasks, Conditional Tasks and

Basic Tasks).

I I Lock doors at night

P Built-in
II- Automations)
Doors:
I Scheduler Doors:
I Conditional - :
I Time/ate () When Is ¥ Main Door [EE=EE
Ih- Smart Devices + Lights: set [k to CTED

Il- Smart Device Groups

Figure 30. An Automation for Scheduled Task

Moreover, the toolbox for the automations for scheduled tasks includes all blocks
of Scheduled category which are described in 5.2.4. Also, user is able to use and the
Conditional blocks which can be used as statements (5.2.3). Finally, it includes all

blocks that are corresponded to functionality of smart devices and device groups.

In Figure 30, we present an example of an automation for scheduled task. In
detail, it is used the “At” block to determine that in 22:00 o’clock doors will be
locked. Also, we used the conditional block “When” as statement to turn of the

devices of group Lights when the door main-door will be locked.

5.3.2 Automations for Conditional Tasks

The next type of automations is the “Automations for Conditional Tasks”, the
user is able to create automations that are related to the current state of smart
devices or devices groups. The generated blocks for starting manually this type of
automations which are mentioned in 5.2.3, are included in the sub-category

“Conditional Tasks”.

The end-user is able to create automations that control and inspect the
properties of smart devices or devices groups. Also, the Blockly toolbox of these

automations includes the Conditional blocks which are mentioned in 5.2.3.

66

Furthermore, it includes blocks that are focused to calendar and time events (5.2.4)
but only these which are used as statements. Lastly, toolbox includes blocks for

devices and groups functionality.

I When water is ready for bath

P Built-in
(7) When Is [Water Heater (TECRcerld | then
Ib- Automations

| & Air Condition

I Conditional . Start Automation: © Tum on Lights

| Scheduler R e PrepareCoff
% Coffee Machine (FEEIZC RS
I Time/Date :

Ib Smart Devices
IP Smart Device Groups

Figure 31. An Automation for Conditional Task

In Figure 31, we present an automation for conditional task. Four blocks are used.
The first one is the “When” conditional block which checks when the water is ready
for bath. When the water is ready, the Air Conditioning device turns on. Also, the
automation for basic task “Turn on Lights” starts to turn the devices of group Lights.
Finally, the last statement of the conditional automation is the execution of action

“PrepareCoffee” of Coffee Machine.

5.3.3 Automations for Basic Tasks

The last type of automations is the simplest one. It includes “Smart Devices” and

“Smart Device Groups” categories which are described previously.

Finally, using this type of automation the end-users can create automations that
consists of blocks with the functionality of a smart device or a smart device group. In
Figure 32 we present an example of automation that consists of four blocks. The first
two blocks are for turning on Water Heater and Coffee Machine devices. Also, a
block for starting prepare coffee for the Coffee Machine is used. Moreover, the last
block is used for starting manually a defined automation for basic task which is used
for turning on all the Light devices. As we can see from the example there is not the

categories for conditional or scheduled blocks.

67

P Built-in

Ib Automations 1 Water Heater

I' Smart Devices &t Coffee Machine: set [[TLIES to (KD
Air Condition Tt Coffee Machine
Bedroom Air Gondition Start Automation: €@ Turn on Lights
Alarm Clock

Main Light
Bedroom Light
Coffee Machine
Main Door
Bedroom Door
Water Heater
Refrigerator
IT Smart Device Groups
Air Conditions
Lights
Doors

Figure 32. An example of Automation for Basic Tasks

5.4 Runtime of Automations

Using the elements that we described in the previous sections, the end-users can
develop and execute their automations. In this section we describe the runtime of
loT automations. Moreover, we describe the execution process and the tools used

during it, as well as the interaction between tools and smart devices (see Figure 33).

Firstly, the Blockly Studio collects and provides the required data of project
elements. This data consists of all the project elements that the users have defined
during the development process. Particularly, the data for smart devices that
participate in the development and the source code of the automations. The source

code is generated from visual programming blocks included in automations.

68

In addition, after we take the data of EUD (End-User Development) process, we
have to initialize the communication with the smart devices that have been used in
the automations. Using the API of the middleware (i.e., loTivity) we retrieve the state
of the devices. From that point on, the execution window communicates with

devices for possible changes in their state.

Event History

Calendar

Blockly Studio
loT domain framework

Device Dashboard

-

- B B A 4
Domain Configuration

Init Environment

Device Management ﬁ Eval Source Code
Devices and
Visual Programming for Automations
Automations source

v

Converter for API
Specification

Smart Devices
(hardware &

services)

Figure 33. Overview of execution of automations

After successfully communicating with the devices, we need to initialize the tools
used during the execution. First, we use the automatic Ul generator to display smart
devices. We also create the calendar that is useful for keeping track of scheduled
tasks, and then initialize the event history that records all the events that were
triggered during execution. All aforementioned tools are described in the following

sections.

Lastly, to successfully execute the automations, we have to execute the source
code generated from them. The source code of automations generated from the

visual programming blocks used in automations. Every type of blocks generates

69

specific source code that interacts with the existing tools (i.e., calendar, event history)

and smart devices.

5.4.1 Device Dashboard

As we mentioned in the previous paragraphs at the start of execution process,
we initialize the communication with devices. Particularly, this communication is
established through the middleware and in our case loTivity. In the initialization
phase we ask the state of each device. In addition, using loTivity we bind observers
to the devices for tracking changes on their state. After a change on the value of

property, the MicroUl of this property is highlighted (see Figure 34).

The visual programming blocks that change the state of devices (i.e., setter and
action blocks, section 5.2.1) generate code that, when executed, sends requests to
the devices. Additionally, during execution, the getter blocks source code requests

and receives the value of the device property.

J Alarm Clock 2l Coffee Machine

ring true coffee-read true
ringtone Classic cups 10
time 00:00 prepare-coffee start
turn off turn on

Figure 34. User interfaces for smart devices on runtime generated by User Interface Generator

For the visualization of the smart devices (see Figure 34), we use the User
Interface Generator presented in chapter 4 . In detail, the properties of smart
devices are rendered with read-only MicroUls (section 4.2.1). Smart devices are
visualized in read-only mode, because users are not allowed to change their state
directly, the state of devices changes only by executing the automations.
Additionally, the user interfaces that are created include the name and image

selected by the end user when defining it in Blockly Studio.

70

5.4.2 Calendar

A key tool that was created and used in the automation execution window is the
calendar. It is used for tracking the scheduled tasks defined in automations. The
blocks that are used for scheduled tasks (section 5.2.4) generate code that interact
with the calendar tool. Specifically, we use the JavaScript "setTimeout" function to
specify the specific time that tasks must wait for their execution. Every task that is

created from scheduled block is recorded to a day of calendar (see Figure 35).

For the creation of calendar, we use the Javascript Calendar & Organizer library
[51]. It is a library for normal calendar use and events scheduling. It fits with our
need for displaying scheduled tasks. A user is able to view the calendar and time
events that have been used in automations through the blocks that we mentioned in

5.2.4.

MON TUE WED THU FRI SAT SUN

1 2 3 4 5 6 7
8 9 0 " 12 13 14
15 16 17 18 9 20 2
22 23 24 25 26 27 28

Figure 35. Calendar tool on runtime environment

Moreover, the end-users using the calendar are able to detect when the
Scheduled Tasks will be executed (statements blocks) and their finishing time (see
Tag A in Figure 36). Finally, with the timings of the tasks, we provide a default
message to the user for understanding which of the scheduled blocks is executed.
However, users are able to change the default message and write a description

which is visualized in organizer (see Tag B in Figure 36).

71

Wait 5 minutes and
then lock the main-
door

#1 Main Door: set [F738 to (%D
LN

B) Wait @ minute(s) | then

FEBURARY 25, 2021

01:42:54 - Wait 5 minutes and then lock the

Figure 36. (A) “Wait” block with given description (B) Description of block is visualized in organizer with the
starting and finishing time

5.4.3 Event History

The last tool created and used during the execution of automations is the event
history. This tool logs any automation-triggered events other than the calendar-
based events included in the calendar. There are two types of events in the event
history: the events from conditional tasks and events from device actions. The
events of the first type are generated from the execution of source code of the
conditional blocks mentioned in section 5.2.3. The other events are generated from
the execution of source code of device blocks that change its state. In addition, to
check if the condition contained in the conditional blocks is satisfied, we use the

"setInterval" JavaScript function every 200 milliseconds.

Conditional events that are visible in the event history (see Figure 37) are colored
the same color as the conditional blocks from which they are created (l.e., When,
Forever blocks). Additionally, conditional event bubbles include the time and date
they were activated. Also, in the bubble there is a status with values: "Starts" or
"Ends", the first indicates when the event starts and the last when it ends. Finally,
users are able to write a description in conditional blocks, such as programmed

blocks, and included in the bubble in the history table.

72

HISTORY

Figure 37. Event History that includes two "When" conditional events

In addition, any change in the state of smart devices from device blocks (section
5.2.1) is recorded in the event history. In detail, the actions performed and the
properties changes of the smart devices are displayed with bubbles in the history,
such as conditional events (see Figure 38). Each bubble takes on the color of the
user-defined smart device during the development process. The bubble also includes
the image of the smart device and the time and date of the event. In the case of
device actions, the bubbles include the values of the arguments, and for changing

device state the old and current values are displayed.

Finally, users can browse the automation that creates an event in the event
history. The corresponding bubble for the event can be clicked and using the
communication with the IDE data (see Figure 33) the Blockly Studio IDE minimizes
the execution window and maximizes the automation workspace by marking the

specific block for the created event.

5.5 Automation Testing

As mentioned in section 1.4 there is a need for end-users to test their
automations to check if they are running correctly. So, we run the automations in
another execution window for automation testing to introduce new automation

control tools. An overview of the new execution window is shown in Figure 39.

73

Figure 38. Event History that includes a device action and a property change of smart devices

First, like the previous chapter, the IDE provides data consisting of smart devices
and automations source code. Communication with the other components of Blockly

Studio is also established.

Second, there is a different approach to smart devices compared to the previous
execution. In particular, to help users test their automation, we need to provide
them with a set of virtual devices with the current state of their devices. This is very
important because when execute automations for testing purposes we do not want

to affect the condition of the actual devices.

In addition, we initialize and use an extension of the tools we create in previous
execution. Moreover, we initialize a calendar tool to deal with scheduled tasks and
an event history that records each event triggered during execution. Also, using the
interface generator we provide device visualization during the execution. As we use
a set of virtual devices, the generator uses the data of these devices. Furthermore,
we create a time simulation, which the end user can control with the provided time
controls. Lastly, we initialize a set of device tests to check and change the condition

of the device.

Finally, the automations source code is generated by the visual programming
blocks involved as in automations. The main difference is that the source code

affects the virtual devices and not the actual end-user devices. Executing code for

74

scheduled tasks again interacts with the calendar tool, but in this execution the tasks

can be activated by time simulation.

[Time Controller]

Blockly Studio >
loT domain framework i

[Event History]

[Calendar]

[Device Dashboard]

Domain Configuration

[Device Management]

Y

Init Environment

' Eval Source Code

Devices and y
Automations

source

Visual Programming for
Automations

Visual Programming for
emulating device actions

Simulating the smart
devices

Smart Devices

4

Converter for API
Specification

Virtual Devices

Figure 39. Overview of runtime for automation testing

5.5.1 Device Simulation

For the testing purposes of automations, the end-users want to immediately
change the state and test their devices. Therefore, running loT automations that
affect real devices is not practical because assuming a user wants to find an error in a
particular automation that uses smart light, he has to turn the light on and off every
second for testing. Moreover, an end-user maybe wants to test a smoke sensor
device, it is impossible to test it unless he lights a fire. All these gave birth to the
need to make virtual devices which have the same functionality with devices used in
automations. Thus, in the initialization of this execution of automations we create a

set of virtual devices with the current state of the real devices.

A main problem of copying the functionality of the real devices for creating
virtual is the execution of their actions. As the user does not know what operations
are executed on call of every action, we have to provide a tool to simulate the

actions of the virtual devices. Figure 17 shows that we provide a simulate button (in

75

the third list) for each device action in which end users can simulate them. Blockly
Studio provides us a workspace when the button is pressed and the user has the
opportunity to implement the action body that will execute (see Figure 40). Finally,
for each action parameter a block is created that takes the value of the parameter at

runtime.

W Built-in
Logic
Loops
Math
Text
Lists

i
i
i
i
i
I Colour @) () to e ——
1
i
i
i

Variables = : -~
Functions © Alarm Clock: set (I8 to |

Conditional
Scheduler
Time/Date

Alarm Clock

Figure 40. Implementation of an action for execution window for automation testing

Another tool that we provide on this context is the direct control of virtual smart
devices. When the automations are running, the end-users are able to control the
device properties (see Figure 41). The user interfaces that we provide for controlling
devices are generated by Automatic Ul Generator that we mentioned in chapter 4 .
Particularly, it generates a MicroUl for each device property based on its type.
Additionally, it produces MicroUl for each device action which is represented with

buttons that execute the corresponding action.
5.5.2 Tools

As mentioned in section 5.5, for automation testing we expand the set of existing

tools used in the normal execution. The calendar also exists in this execution window

76

the difference is the scheduled events now can be triggered from the simulated time.
Furthermore, the event history is provided and has the same usage as the normal

execution of automations.

T3 Alarm Clock : % Air Condition :
; value:20
nng true
device-temperature ®
ringtone Classic A
environment-temperat. .. 23
time 00:00
swing bottom v
turn off ~
turn on v

sonamme

Figure 41. Control virtual devices that participate in execution for automation testing

One of the main tools we provide to users during execution is the control of
simulated time. For controlling the time, we use Day.js [52]. It is a minimalist
JavaScript library that parses, validates, manipulates, and displays dates and times
for modern browsers. We provide a set of functionalities to the end-users to control
simulated time to test their scheduled tasks (see tag 1 in Figure 42). In detail, the
end-users can pause and continue the time. Also, they are able to make time pass
slower or faster. Finally, a user can go to a specific time using the corresponding user
interface (see tag 2 in Figure 42). The important thing of the latter is that when we
go to the specific time in the future, all the events that need to be activated are
executed sequentially as in normal execution. Also, events that were to be created

by another execution of events are created and executed as in normal execution.

Last but not least, we provide an additional control panel in execution for
automation testing which is the test control panel (see Figure 43). This panel records

every device test created by the end-user during the execution. The device test can

77

be either to change the device state at a specific time or to check its state and when
it is activated a message is previewed. Both types of tests are described in section
5.5.3.

21:37:23

\ 12,
Ny ~

9 3
- ~
/ 6 \

6

Speed: x1

gooan
o

Day = 02/27/2021 0O

Time 09:42:52PM O

o]

Figure 42. (1) Controls for simulated time. (2) User interface for going to specific time

TEST CONTROL PANEL

v

o

Figure 43. Test Control Panel included in the execution for automation testing

5.5.3 Tests

As mentioned in the previous section, we provide a set of tests. We create two

types of test, the first one is for defining changes in the device state and the other

for checking the state of devices. Every test is executed after its creation or at the

start of execution.

For the first type, we provide a user interface through which the user can define
after how many seconds a change on the device state will be executed (see Figure
44). In detail, users can create more than one time that a change will be executed.
Also, in each time slot the user is able to define more than one operation (i.e.,
property change or action execution) of one or more virtual devices. With this test
we give to end users the opportunity to test the read-only device properties by
changing their values and therefore to test their automations. Finally, end users can
browse to the implementation of action that we mentioned in section 5.5.1 since the

execution window communicates with Blockly Studio IDE.

Edit test: Alarm Clock Test

Title Alarm Clock Test Color [N
Time Slots Changes
B @ Device Air Condition v Change device-temperature ~ m
Time (seconds): 0
L o w Alarm Clock
Description: Default Description

Properties

ring Lo
Actions
v SetAlarmTime
Arguments: time 00:00

Figure 44. Define changes of smart devices at specific times

In addition, the next type of test is to check the values of the device properties.
For creating this type of test, we provide a specific Blockly workspace through the
Blockly Stuido IDE. In addition, we extend the constructors of blocks of Blockly Studio
IDE to generate two more blocks (see tag 1 in Figure 45). The first is to check the
value of the property and notify the user during the execution. The latter is to notify
the end user and also stops the simulated time. Both of the blocks receive a warning
message that appears in the notification area during the execution of loT

automations (see tag 2 in Figure 45).

79

Warn me in case of

warning message: [EEE00

Pause running automations in case of

warning message: [CEE00

Alarm Clock rings

Figure 45. (1) Blocks for checking device state (2) Warning message generated from value checking test

80

6 Case Studies

Using the visual programming tools, we have carried out three case studies in
order to validate and better present our work. Initially, we designed three scenarios
of automations: Morning Automations, Self-Caring Home and Fire Protection. For
each one we simulate smart devices using the loTivity library. Afterwards, we

developed the automations for every scenario and we execute them.

6.1 Morning Automations

One of the most difficult times of the day for people is waking up and their
morning habitual tasks. There are several things that people have to do when they
wake up such as, have a bath, prepare their breakfast, be informed about the news
and their messages, prepare for their work, leave home for work etc. Using the
existing smart devices, several processes could be automated and users would gain
some more minutes of sleep, find the temperature of their home regulated, not
forget to be informed about the news, leave home without worrying if they forgot to
lock the windows or turn off lights, electric devices etc. All these automations can be

accomplished when related events are triggered as depicted on the Figure 46.

The first event of application is based on the time that the alarm clock rings.
When the event is fired, the alarm clock is switched off, then the air conditioning
system regulates the home temperature, while water heater starts preparing water
for a morning bath and the coffee machine prepares the first coffee of the day. Then,
when water for the bath is ready, the window blinds open and the air conditioning
turns off. Also, the bathroom door opens and the light turns on. In addition, when
the windows blinds are open, Hi-Fi turns on and the "Getting Better" track starts
playing. Furthermore, when coffee is prepared, Hi-Fi stops playing music and TV
starts playing News. Finally, when leaving the home for work, smart devices take on

the safety of the home by locking all doors and lights.

81

When Alarm

Clock rings

Air Conditioning Water Heater Coffee Machine
starts regulating starts preparing starts preparing
home temperature water for bath coffee

Alarm Clock turns
off

When water is
ready

When Window
Blinds are open

When coffee is
ready

When Main
Door is locked
after 5 minutes

6.1.1 Devices

Window Blinds Air Conditioning Bathroom Door Bathroom Light
open turns off opens turns on

HiFi changes track HiFi starts playing

HiFi t
iFi turns on to “Getting Better” the song

TV changes TV sets volume to
music channel to “News” 25

HiFi stops playing TV turns on

Lock all Doors Turn off all Lights

Figure 46. Morning Automations triggered by environment events

The smart devices included in Morning Automations are presented in Table 1.

Smart Device

Functionality

Alarm Clock

Air Condition

Water Heater

Coffee Machine

Window Blinds

Bathroom Door

Turns on/off

Start/Stop rings

Set alarm time

Change ringtone

Turns on/off

Sets/Gets Temperature
Environment Temperature
Swing (auto, top, bottom)
Turns on/off

Is water ready

Turns on/off

Starts/Stops preparing coffee
Rest coffee cups

Is coffee ready

Opens/Closes

Opens/Closes
Locks/Unlocks
Is locked

82

Opens/Closes
Main Door Locks/Unlocks
Is locked
Opens/Closes
Bedroom Door Locks/Unlocks
Is locked
Turns on/off
TV Sets Channel
Sets volume
Turns on/off
Hi-Fi Starts/Stops music
Sets track
Sets volume
Turns on/off
Main Light Changes scene
Sets color
Turns on/off
Bedroom Light Changes scene
Sets color
Turns on/off
Bathroom Light Changes scene
Sets color

Table 1. Smart Devices for Morning Automations

6.1.2 Automations

After we defined the required devices for the Morning Automations, we have to
implement the automations for the scenario using visual programming blocks. In

Figure 47 we present each visual program for each Morning Automations event.

Firstly, for the event that the alarm clock rings we use a conditional “When” block
(see tag 1 in Figure 47). Then we fill its body with the statements that will happen in
case of triggering, the action “TunOff” of alarm clock will be executed. Moreover, we
define a basic automation that turns on the air condition and sets the temperature
to 25, the Regulate Temperature automation. In addition, for the preparation of
water for bath is called the action "TurnOn" and for the preparation of coffee we use

the action block "PrepareCoffee" of the coffee machine.

83

For the second event of Morning Automations, we define a conditional
automation (see tag 2 in Figure 47). In detail, we use the “When” block to observe
when the water is prepared for bath. After the event will be triggered the “Open”
action of window blinds will be executed. Then we call the “TurnOff” of air condition
using the Blockly block. Finally, we use the visual programming block to change the

property “state” to open for bathroom door and the action “TurnOn” is called.

Next, we have defined an automation for the event that is triggered when the
windows blinds open (see tag 3 in Figure 47). We define a basic automation thought

which the hi-fi turns on and starts playing the “Getting Better” track.

Moreover, we define another conditional automation for the preparation of
coffee (see tag 4 in Figure 47). Using the “When” block we observe the “coffee-ready”
property of coffee machine. Then when the coffee is ready, the action “Stop” of Hi-Fi
is executed and we use the start automation block for turning on and play the News

channel on TV.

Finally, a last automation for locking the main door is defined (see tag 5 in Figure
47). We use a combination of the “When” and “Wait” blocks for observing the state
of main door and execute inner blocks after 5 minutes. We use blocks that change
the value of the "lock" of the bathroom and bedroom door. Then, for turning off all
lights of home, we call the corresponding actions using the visual programing blocks

of actions.

6.1.3 Execution of Automations

After the definition of devices and automations for the Morning Automations, we
have to run the project and present the tools of runtime environment. As the
scenario based on conditional events the main tool that we are interested in is the
Event History (5.4.3). However, there is an event which is based on calendar, so we

will present and the calendar-organizer tool as well.

For the first automation (see tag 1 in Figure 47) we have added a description on

the block that detects when the alarm clock rings. This description is displayed in the

84

generated bubble in the Event History. Next, all internal blocks of the program are
executed and the corresponding bubbles are generated in Event History (see tag 1 in

Figure 48).

(7) When Is ‘@ Alam Clocklﬂzg'ﬂ' then 2) When Is [Water MY water-ready + | -1
© Alarm Clock [T O Mnéow LS Open + |
Start Automation: @ Regulate Temperature ' & Air Condition [T KD
| [Water Heater i1 Bathroom Door: set (] open - |
;E Coffee Machine T T TumOn - |

L=

() When B Window Blinds: get value from EETCED EEB(& =0 »

Start Automation: == HiFi tums on and play

(z) When Is [VEN Y ock-status - L0

(2) Wait [minute(s) = then
i Bedrroom Door: sel [E2%8 to %D
' Bathroom Door: set [to (=50
Main Light
® Bedroom Light
Bathroom Light e

Figure 47. Visual programs for Morning Automations scenario using Blockly blocks

In addition, in the second box of Figure 48 we present the history of the events
from the second automation of the project. There is a description in the "When"
block as well as in the previous automation. Once the water is ready for bathing, the
blocks for opening the door, opening the blinds, closing the air conditioning and the

bathroom light are included in the Event History.

Moreover, when the window blinds are opened, the internal automation blocks
create the corresponding bubbles in the Event History tool (see tag 3 in Figure 48).
The inner block (i.e. the basic automation for Hi-Fi) creates three bubbles that

correspond to the actions of the device that is turned on, changes track and starts

playing.

Furthermore, the fourth box of Figure 48 shows the history of events that occur
when coffee is ready by a coffee machine. After the coffee is over, Hi-Fi stops playing

music and the TV starts playing News channel.

85

The last automation (see tag 5 in Figure 47) includes a scheduled task (i.e. the
"Wait" block) to lock all the doors and turn off all the lights after 5 minutes of locking
the main door. Figure 49 shows the Organizer tool, including the event based on the
5-minute log. When 5 minutes have passed, the doors of the house are locked and
the lights go out as we can see from the corresponding blocks which are generated

in Event History.

o
=

{

I

Figure 48. (1) Event History including bubbles generated when the “Alarm Clock rings” automation is executed.
(2) Event History including bubbles which are generated when the “water is ready for bath” automation is
executed. (3) Event History including bubbles which are generated when the “window blinds open”
automation is executed (4) Event History including bubbles which are generated when the “coffee is ready”
automation is executed

6.2 Self-Caring Home

Continuing the previous scenario of Morning Automations, end-users could

design automations for tasks required for their home such as cleaning using

86

appropriate smart devices. However, these mainly based on calendar tasks of the
home that are executed repeatedly either with the specific frequency or not. The
events defined for the application of home self-care automations are presented in
Figure 50.

< MARCH 03, 2021 >

18:01:54 - 18:01:54 ‘AMSmhm;ofdoorhm

(<]

HISTORY

[}] Bathroom Door 18.01:54, 03/03
Set property lock: old value = unlock, current value = lock

. Bedroom Light 18:01:56, 03/03
Execute Action: TurnOff

. Main Light 180156, 03/03
Execute Action: TurnOff

Figure 49. Organizer tool for the scheduled event and the Event History including bubbles which are generated
when the "main door is locked for 5 minutes" automation is executed

The first task is programmed to be executed every day, the dehumidifier turns on
in the Turbo mode and starts absorbing humidity. Then, the second task is executed
every 4 days (when there are enough clothes to wash), the washing machine is set to
program 2 and its temperature at 70 Celsius and then it starts washing the clothes. In
addition, the smart robot starts vacuuming and mopping the house every day. Finally,

there is a defrost task for the refrigerator that is executed one time per month.

6.2.1 Devices

The smart devices included in Self-Caring Home are presented in Table 2.

Smart Device Functionality

87

Turns on/off
Dehumidifier Sets silent/turbo mode
Sets the service to normal/dry
Humidity level
Turns on/off
Refrigerator Starts/Stops defrost
Filter life percent
Sets rapid-cool
Sets rapid-freeze
Turns on/off
Vacuum-Mop Robot Starts/Stops sweeping
Starts/Stops mopping
Sets clean program
Turns on/off
Washing Machine Starts/Stops washing
Sets temperature
Sets time period
Sets washing speed

Table 2. Smart Devices for Self-Caring Home

o Every day at Dehumidifier turns Dehumidifier sets Dehumidifier sets
18:00 on Turbo mode Dry service

o Washing Machine Washing machine Washing Machine Washing Machine

Every 4 days sets washing sets temperature starts washing
program to 2 to 70 clothes

e Evervd Robot starts Robot starts
very cay vacuuming mopping

turns on

Refrigerator starts Refrl.gerator =
Every month configured to

defrost Rapid mode

Figure 50. Home care automations triggered by calendar events

6.2.2 Automations

Using the existing device, we define and implement the automations for the Self-
Caring Home scenario. In Figure 51 we present the visual programs for each event of

Self-Caring Home scenario.

Firstly, we define and implement an automation for scheduled task for
implementing the operations of dehumidifier (see tag 1 in Figure 51). Using the

“Every” and “At” blocks, we create a scheduled task for every day at 6 o’clock. The

88

inner block is a basic automation that turns on and sets the dehumidifier to turbo

mode. Also, the dehumidifier service is set to dry mode.

The next scheduled task that we implement with the visual programming blocks
is the washing clothes event (see tag 2 in Figure 51). We use the “Every” block again
to create a scheduled task for washing the clothes every 4 days. Also, we create a
basic automation “Washing Clothes” that consists of turning of washing machine,
setting the program 2 and the temperature to 70 Celsius. In addition, it starts the

washing machine to wash the clothes.

For the next event of Self-Caring Home (see tag 3 in Figure 51), we use again the
“Every” block to create a scheduled task for sweeping and mopping using the smart
robot. So, every day the automation executes a basic automation that is called
“Sweeping and mopping”. The executed automation consists of the visual

programming blocks of the actions “Sweep” and “Mopping” of the robot.

Finally, for the last event of scenario we define another one scheduled
automation. It consists of refrigerator blocks and they are used for defrosting task
every month (see tag 4 in Figure 51). In detail, we use a “Every” block for the
calendar task and the inner blocks is to start the defrost program and turn on both

the rapid freeze and rapid cool of refrigerator.

6.2.3 Execution of Automations

After defining the smart devices of the Self-Caring Home scenario and
implementing the required automations, we run the project and present the events
which will be activated during the execution. Because the scenario is based on
scheduled tasks, we use the execute the automations on the window for testing

purposes to control the time.

As mentioned in section 5.5 the virtual devices are needed for the execution of
the automations in this execution. Thus, each action of the devices used for the Self-
Caring Home scenario is simulated to perform the corresponding functions of the

actual action of the actual smart devices.

89

2) Every | [} day(s) do

7) At EE) hour - 1) minute - [0) second | do

Start Automation: [i] Dehumidifier tums on

) Every | £} day(s) do

Start Automation: [§ Washing clothes
L.

Every | ([day(s) do
Start Automation: _ Sweeping and mopping

-

[

2) Every | [} month(s)
@ Refrigerator

B Refrigerator [T GE Rl L0 with (rapid-freeze:
—

X3 . rapid-cool:

Figure 51. Visual programs for Self-Caring Home scenario using Blockly blocks

6] TurnOn | <) (7) to [EEREND with: washing-program_arg
Dehumidifier: set (LIS to KD Washing Machine: set [[EReoeeciind to EED

to <) (z) to MENEE =) with: temperature_arg

to [EEN53) with: service_arg
Dehumidifier: set 1Y dry - |

Robot Vacuum Mop: set {1 mop |

B Refrigerator: set [ELE =2 to nid-freez q
[BGE e (AT rapid-cool + RCH rapid-cool_arg - |

—

Robot Vacuum Mop: set [sweep - |

Figure 52. (1) Implementations for “TurnOn”, “TurboMode” and “Service” actions of Dehumidifier for
simulated execution of automations. (2) Implementations for “Program”, “Temperature” and “Start” actions of
Washing Machine for simulated execution of automations. (3) Implementations for “Mopping” and “Sweep”
actions of Robot Vacuum Mop for simulated execution of automations. (4) Implementations for “StartDefrost”
and “ConfigureRapidMode” actions of Refrigerator for simulated execution of automations.

90

Moreover, Figure 52 shows the implementation of each action which is used in
Self-Caring Home project. In detail, the actions that we simulate for the first event
(see tag 1 in Figure 51) of the scenario are the “TurnOn”, “TurboMode” and “Service”
of the dehumidifier (see tag 1 in Figure 52). Furthermore, for the second scheduled
task of the scenario we simulate three actions of washing machine (see tag 2 in
Figure 52). The first action is “Program” that sets the washing machine in the second
program. Also, the “Temperature” action is simulated to regulate the temperature to
70 Celsius. The last action applied to the washing machine is the “Start” which is
responsible for starting the washing machine. Additionally, we simulate the
“Mopping” and “Sweep” actions of robot for mopping and sweeping respectively
(see tag 3 in Figure 52). Lastly, the actions that need to be implemented is the
“StartDefrost” and “ConfigureRapidMode” of refrigerator (see tag 4 in Figure 52).
The first adjusts the defrost mode in the refrigerator and the second activates the

quick freeze and cooling function.

MARCH 08, 2021

Figure 53. (1) Organizer tool that includes daily events and the generated bubbles of the Event History for
dehumidifier and smart robot tasks. (2) Organizer tool that includes daily event and the generated bubbles of
the Event History for washing machine task. (3) Organizer tool that includes daily event and the generated
bubbles of the Event History for refrigerator task.

As shown in Figure 51, all automations of scenario consist of scheduled blocks.

Therefore, we use the time simulation to advance the date and time to control the

91

execution of the project. The execution of the Self-Caring Home starts on Sunday
07/03 of 2021 and the time is 14:35. Using the Go-To function of the simulation tool
that mentioned in section 5.5.2, we set the project day to Thursday 08/04 and the
time to 14:38. We are going to present the calendar events which are executed as

well as the event history.

First, there are two automations (see Labels 1.3 in Figure 51), the scheduled tasks
for the dehumidifier and the smart robot for mopping and sweeping are both
activated daily. Every day from the beginning of the project until the date we set, the
robot first sweeping and then mopping the house. Furthermore, the dehumidifier is
set to turn on every day at 18:00. The device is then set to turbo mode and the
service is set to dry to start absorbing moisture. The execution of aforementioned

events is presented in the first tag of Figure 53

Moreover, a scheduled task which is activated every four days has been defined.
The aforementioned task is implemented by the second automation of Figure 51 and
activate the washing machine for washing the clothes. As mentioned in the previous
paragraph, this event is also activated from the beginning of the run until the day we
set with the simulation tool. In detail, we detect via the Organizer tool when the
event is completed and the bubbles which are created in the Event History (see tag 2
in Figure 53). The automation sets the washing machine to the second program, then
adjusts the temperature to 70 Celsius and finally starts the device to wash the

clothes.

Last but not least, another scheduled task has been set for the completion of the
Self-Caring Home scenario. This scheduled task is activated once a month. As we
started the execution of the project on 07/03, the event will be activated on
Wednesday 07/04. In detail, the automation for this task puts the refrigerator in
defrost mode and then executes the action for activating “rapid-cool” and “rapid-
freeze”, as we can see from the bubbles created in the Event History (see tag 3 in

Figure 53).

92

6.3 Fire Protection

The last scenario is for the home protection by fire. The end-users using the
existing devices can design automation through which the house can put out the fire

by itself. The event defined for the fire protection is presented in Figure 54.

There is a task in this automation that is performed when the smoke sensor
senses smoke in the house. Then all the doors of the house open, the electrical

appliances go out and the fire extinguisher starts to put out the fire in the house.

When the Fire Extinguisher

All electric devices N —————
turn off & :

Smoke Sensor All doors open
senses smoke the fire

Figure 54. Fire protection automation triggered by environment event

6.3.1 Devices

The smart devices included in Fire Protection are presented in Table 3.

Smart Device Functionality

Is sensed smoke
Smoke Sensor Measurement level

Starts/Stops
Fire Extinguisher

Opens/Closes
Main Door Locks/Unlocks
Is locked
Opens/Closes
Bedroom Door Locks/Unlocks
Is locked
Opens/Closes
Bathroom Door Locks/Unlocks
Is locked
Turns on/off
Main Light Changes scene
Sets color

93

Turns on/off

Bedroom Light Changes scene
Sets color
Turns on/off

Bathroom Light Changes scene
Sets color

Turns on/off
Coffee Machine Starts/Stops preparing coffee
Rest coffee cups
Is coffee ready
Turns on/off
v Sets Channel
Sets Volume

Table 3. Smart Devices for Fire Protection

6.3.2 Automations

After defining the required devices for Fire Protection, we create and apply two
automations for basic tasks and one for conditional tasks. Figure 55 shows the
conditional task defined for the implementation of the scenario. We use a "When"
block to observe the state of the smoke sensor. Then, when the smoke sensor
detects smoke, the internal blocks will be executed. We call two basic tasks, the first
is to open all the doors of the house (i.e., the main door, the bathroom door and the
bedroom door). The next automation is applied to turn off all electric devices in the
house. Finally, we call the action "Start" using the corresponding block of the fire

extinguisher to extinguish the fire.

: ————
Smoke Sensor: get value from (ENEED EEB(”

Start Automation: All doors open

Start Automation: Tum off electric devices
E Fire Extinguisher

Figure 55. Visual program for Fire Protection scenario using Blockly blocks

6.3.3 Execution of Automations

The last phase of the Fire Protection is the execution of the created automations.

The execution of the automations that we described in the previous section is based

94

on the smoke sensor “value” property. It is a read-only property whose value
affected by changes in the environment. For this reason, we execute the
automations on the window for testing purposes and we create a test to activate the

smoke sensor event.

o] TurnOff

Main Door: set {1 open - | @ Main Light set (TS to KD
L.
? o) () o
Bathroom Door: set (] open - | © Bedroom Light set [[TIIED to EIED

N

) (2) fo
@ Bathroom Light: set [[TKS to KD

L.

1
1
1
1
1
I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 DROR TumOff]
1
1 &t Coffee Machine: set ([TTIEN to (KD
| L —
|
|
|
|
|
I
|
|
I
|
|

Bedroom Door: set (¢4 open - |

@ TV set (MOED to CikD

LN

3 Fire Extinguisher. set to
L -

Figure 57. (1) Implementations for “Open” action of doors. (2) Implementations for “TurnOff’ action of electric
devices. (3) Implementation for “Start” action of the fire extinguisher.

95

As mentioned in the Self-Caring Home scenario (see 6.2), we have to simulate all
device actions which are used in the automations. First, we implement for all doors
of the home the “Open” action for opening them (see tag 1 in Figure 57). Then, for
turning off all the electric devices of the house, we implement the “TurnOff” action
(see tag 2 in Figure 57). Finally, the “Start” action of fire extinguisher is simulated to

extinguish the fire (see tag 3 in Figure 57).

New Simulate Behavior Test

Title Activate smoke sensor Color

Time Slots Changes
& =
Time (seconds): 0 w» Smoke Sensor
Description: Activating smoke
sensor Properties
value sensed e

Figure 58. Test for activating smoke sensor

For activating the smoke sensor and consequently run the automation of the Fire
Protection we create a Simulate Behavior Test. We define a new test to change the
value of the read-only property of smoke sensor (see Figure 58). In detail, we create
a time slot and set its time to 0 seconds. This means that the test will run at the start
of the project. In the unique time slot, we define a change in the smoke sensor that

changes the property “value” to sensed.

After activating the smoke sensor event, the automation starts executing all the
actions of the devices (see Figure 56). First, all the doors of the house open (i.e., the
main door, the bathroom door and the bedroom door). Then all the electric devices

go out and finally the fire extinguisher starts to put out the fire.

96

7 Conclusions and Future Work

Currently, The Internet of Things (loT) is a domain that, after the Internet,
represents the next most exciting technological innovation. The smart devices
introduced through the loT will help people's lives in everyday tasks. However, for
devices to truly contribute to people's lives to facilitate them, they need to be
included in loT automations. The creation and execution of automations are not easy
tasks as they required a minimum programming knowledge. Furthermore, the
market does not provide the appropriate tools for aforementioned tasks as well as

there is a lack of tools for helping them during the execution of loT automations.

In this thesis we propose a system that consists of three components for
supporting the visual programming for smart devices. First, we provide an automatic
Ul generator that visualizes smart devices using a generic device APl that we have
designed. Particularly, we have created a library that converts the device data to this
API. The generator uses the device API specifications and produces interfaces for the
smart devices. Secondly, a runtime environment for automations is presented that
includes monitoring and interaction tools included calendar and event history to
help the end-users to track changes for their smart devices. Thirdly, we provide a
custom runtime environment for automation testing purposes. It includes a
simulator tool that simulates real smart devices and emulates all their properties and
operations. We also provide a time simulation (virtual time) for users to activate
scheduled tasks. Finally, we present a suite of tests to simulate the behavior of

virtual devices and check the expected values of device properties.

We have conducted three case studies to test and evaluate our system. Each case
study has been created to present the capabilities of the system. We are really
impressed with the use of our tools as they really help in the user experience for

visualization, execution and testing of loT automations.

In conclusion, working to build the tool for the Ul generation, we realized that

there is an extension that could be added to this approach. First, we can add

97

annotations to the API specifications for easier configuration by the developer who
uses it. Through annotations, the user interfaces produced can be made more
personalized. Furthermore, as future work we want to introduce a form-based
mechanism used by end-users. In particular, with this mechanism users should
choose in real time the appropriate Micro-Ul from a set of Micro-Uls for the
properties of devices. We want to give the opportunity to developers to add their
Micro-Uls in the set to be used by users. Additionally, during the design and
development of thesis, we needed to use our toolset in real smart devices. Finally,
while using the tools included in the runtime environment for automation, we want
to be able to hide either the calendar or the history table at a specific time. For the
above, we want to add more functionality to our tools to allow users to hide or show
the user interface information they want during runtime. We also want to introduce
the aforementioned functionality into the custom runtime environment for

automation testing purposes.

98

[1]

[2]

3]

[4]

[5]

[6]

[7]

[8]

Bibliography

D. Raggett, "The Web of Things: Challenges and Opportunities," in Computer, vol.
48, no. 5, pp. 26-32, May 2015, doi: 10.1109/MC.2015.149.

R. Want, B. N. Schilit and S. Jenson, "Enabling the Internet of Things," in
Computer, vol. 48, no. 1, pp. 28-35, Jan. 2015, doi: 10.1109/MC.2015.12.

L. Baresi, L. Mottola and S. Dustdar, "Building Software for the Internet of Things"
in IEEE Internet Computing, vol. 19, no. 02, pp. 6-8, 2015.doi:
10.1109/MIC.2015.31

Atzori, Luigi & lera, Antonio & Morabito, Giacomo. (2010). The Internet of Things:
A Survey. Computer Networks. 2787-2805. 10.1016/j.comnet.2010.05.010.

Evans, D. (2011). The internet of things: How the next evolution of the internet is

changing everything. CISCO white paper, 1(2011), 1-11.

Stojkoska, BLR, & Trivodaliev, KV. (2017). A review of internet of things for smart

home: Challenges and solutions. Journal of Cleaner Production, 140, 1454-1464.

Ray, PP. (2016). A survey on internet of things architectures. Journal of King Saud

University-Computer and Information Sciences.

Abraham, R., Burnett, M. and Erwig, M. (2009). Spreadsheet Programming. In
Wiley Encyclopedia of Computer Science and Engineering, B.W. Wah (Ed.).
doi:10.1002/9780470050118.ecse415.

99

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Fabio Paterno, "End User Development: Survey of an Emerging Field for
Empowering People", International Scholarly Research Notices, vol. 2013, Article

ID 532659, 11 pages, 2013. https://doi.org/10.1155/2013/532659.

Mitchel Resnick, John Maloney, Andr'es Monroy-Hern’andez, Natalie Rusk,
Evelyn Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver,
Brian Silverman, and Yasmin Kafai. Scratch: programming for all.

Communications of the ACM, 52(11):60-67, November 2009.

James Devine, Joe Finney, Peli de Halleux, Michat Moskal, Thomas Ball, Steve
Hodges, MakeCode and CODAL: Intuitive and efficient embedded systems
programming for education, Journal of Systems Architecture, Volume 98, 2019,
Pages 468-483, ISSN 1383-7621, DOl:
https://doi.org/10.1016/j.sysarc.2019.05.005.

Tynker web IDE: Educational programming platform aimed at teaching children
how to make games and programs. Released on: 01/2012. Official website:

https://www.tynker.com/ Accessed online: 03/2021

Kahn, K., Rani Megasari, E. Piantari and E. Junaeti. “Al Programming by Children

using Snap! Block Programming in a Developing Country.” EC-TEL (2018).

Seung Han Kim and Jae Wook Jeon, "Programming LEGO mindstorms NXT with
visual programming," 2007 International Conference on Control, Automation and

Systems, Seoul, 2007, pp. 2468-2472.

P. Vostinar, "Programming LEGO EV3 in Microsoft MakeCode," 2020 IEEE Global
Engineering Education Conference (EDUCON), Porto, Portugal, 2020, pp. 1868-
1872, doi: 10.1109/EDUCON45650.2020.9125170.

P. Bachiller-Burgos, |. Barbecho, L. V. Calderita, P. Bustos and L. J. Manso,
"LearnBlock: A Robot-Agnostic Educational Programming Tool," in IEEE Access,

vol. 8, pp. 30012-30026, 2020.

100

https://doi.org/10.1155/2013/532659
https://doi.org/10.1016/j.sysarc.2019.05.005
https://www.tynker.com/

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

MIT App Inventor: A web application integrated development environment
provided by Google, Development Team: MIT. Released on: 12/2010. Official

website: https://appinventor.mit.edu/ Accessed online 03/2021.

Antonio Pintus, Davide Carboni, and Andrea Piras. 2012. Paraimpu: a platform for
a social web of things. In Proceedings of the 21st International Conference on
World Wide Web (WWW '12 Companion). Association for Computing Machinery,
New York, NY, USA, 401-404. DOI:https://doi.org/10.1145/2187980.2188059

Paraimpu: An loT middleware that allows users to register, manage, handle and
interconnect their RESTful loT devices or services whether physical or virtual.
Released on: 01/2014. Development Team: Paraimpu. Official Website:
https://web.archive.org/web/20201201043939/http://paraimpu.com/ Accessed

online: 03/2021.

Tornado is a Python web framework and asynchronous networking library.
Released on: 07/2010. Development Team: Facebook. Official Website:

https://www.tornadoweb.org/en/stable/ Accessed online: 03/2021.

Nginx: A web server that can also be used as a reverse proxy, load balancer, mail
proxy and HTTP cache. Released on: 04/2010. Development Team: Nginx, Inc.

Official Website: https://www.nginx.com/ Accessed online: 03/2021.

MongoDB: A source-available cross-platform document-oriented database
program. Released on: 11/2009. Development Team: MongoDB Inc. Official

Website: https://www.mongodb.com/ Accessed online: 03/2021.

Google Fit: A health-tracking platform developed by Google for the Android
operating system. Released on: 10/2014. Development Team: Google. Official

Website: https://developers.google.com/fit/ Accessed online: 03/2021.

Persson, Per & Angelsmark, Ola. (2015). Calvin — Merging Cloud and loT. Procedia
Computer Science. 52. 10.1016/j.procs.2015.05.059.

101

https://appinventor.mit.edu/
https://web.archive.org/web/20201201043939/http:/paraimpu.com/
https://www.tornadoweb.org/en/stable/
https://www.nginx.com/
https://www.mongodb.com/
https://developers.google.com/fit/

[25]

[26]

[27]

[28]

[29]

(30]

[31]

(32]

Node-RED: A programming tool for wiring together hardware devices, APIs and
online services in new and interesting ways. Released on 10/2015. Development

Team: IBM Emerging Technology. Official Website: https://nodered.org/

Accessed online: 03/2021.

Node.js: A JavaScript runtime built on Chrome's V8 JavaScript engine. Released
on: 05/2009. Development Team: OpenlS Foundation. Official Website:
https://nodejs.org/en/ Accessed online: 03/2021.

HomeKit: A software framework by Apple, made available in iOS/iPad OS that
lets users configure, communicate with, and control smart-home appliances
using Apple devices. Released on: 09/2014. Development Team: Apple Inc.

Official Website: https://www.apple.com/shop/accessories/all/homekit

Accessed online: 03/2021.

Danado, José & Paternd, Fabio. (2015). A Mobile End-User Development
Environment for loT Applications Exploiting the Puzzle Metaphor. ERCIM News.
26.

Wia: A cloud platform that makes creating loT apps easier by linking loT devices
and external services. Released on 01/2016. Development Team: Wia Inc. Official

Website: https://www.wia.io/ Accessed online: 03/2021.

Embrio: Visual, real-time, agent-based programming for Arduino. Released on
01/2010. Development Team: Embrio.io. Official Website:

https://www.embrio.io/ Accessed online: 03/2021.

SmartThings: An loT platform for developing home automations. Released on
01/2012. Development Team: Samsung Electronics. Official Website:

https://www.smartthings.com/ Accessed online: 03/2021.

XOD: An open-source visual programming language for microcontrollers.

Released on: 01/2016. Development Team: XOD. Official Website: https://xod.io/

Accessed online: 03/2021.

102

https://nodered.org/
https://nodejs.org/en/
https://www.apple.com/shop/accessories/all/homekit
https://www.wia.io/
https://www.embrio.io/
https://www.smartthings.com/
https://xod.io/

(33]

(34]

[35]

[36]

[37]

(38]

(39]

Zenodys: A fully visual 10T platform for Industry 4.0. Released on: 01/2015.

Development Team: Zenodys. Official Website: https://www.zenodys.com/

Accessed online: 03/2021.

Krzysztof Gajos, David Christianson, Raphael Hoffmann, Tal Shaked, Kiera
Henning, Jing Jing Long, and Daniel S. Weld. 2005. Fast and robust interface
generation for ubiquitous applications. In Proceedings of the 7th international
conference on Ubiquitous Computing (UbiComp'05). Springer-Verlag, Berlin,

Heidelberg, 37-55. DOI:https://doi.org/10.1007/11551201_3

Clerckx, Tim & Luyten, Kris & Coninx, Karin. (2004). DynaMo-AID: A Design
Process and a Runtime Architecture for Dynamic Model-Based User Interface

Development. 77-95. 10.1007/11431879 5.

Roscher, D., Lehmann, G., Schwartze, V., Blumendorf, M., & Albayrak, S. (2011).
Dynamic Distribution and Layouting of Model-Based User Interfaces in Smart

Environments. Model-Driven Development of Advanced User Interfaces.

Nichols, Jeffrey & Myers, Brad & Higgins, Michael & Hughes, Joseph & Harris,
Thomas & Rosenfeld, Roni & Pignol, Mathilde. (2002). Generating remote control
interfaces for complex appliances. UIST (User Interface Software and Technology):

Proceedings of the ACM Symposium. 161-170. 10.1145/571985.572008.

Nichols, Jeffrey & Myers, Brad & Rothrock, Brandon. (2006). UNIFORM:
Automatically generating consistent remote control user interfaces. Conference
on Human Factors in Computing Systems - Proceedings. 1. 611-620.

10.1145/1124772.1124865.

Jeffrey Nichols, Brandon Rothrock, Duen Horng Chau, and Brad A. Myers. 2006.
Huddle: automatically generating interfaces for systems of multiple connected
appliances. In Proceedings of the 19th annual ACM symposium on User interface
software and technology (UIST '06). Association for Computing Machinery, New

York, NY, USA, 279-288. DOI:https://doi.org/10.1145/1166253.1166298

103

https://www.zenodys.com/

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Akiki, Pierre & Bandara, Arosha & Yu, Yijun. (2013). RBUIS: Simplifying Enterprise
Application User Interfaces through Engineering Role-Based Adaptive Behavior.
EICS 2013 - Proceedings of the ACM SIGCHI Symposium on Engineering
Interactive Computing Systems. 3-12. 10.1145/2494603.2480297.

loTivity: An open-source software framework enabling seamless device-to-device
connectivity to address the emerging needs of the Internet of Things. Released
on 10/2015. Development Team: Open Connectivity Foundation. Official Website:
https://iotivity.org/ Accessed online: 02/2021.

iotivity-node: A JavaScript APl for OCF functionality. Released on 10/2015.
Development Team: Intel Corporation. Official Website:

https://github.com/intel/iotivity-node Accessed online: 02/2021.

loTivity Simulator: Simulating devices which communicate with loTivity
middleware. Released on 12/2015. Development Team: Open Connectivity
Foundation. Official Website:
https://web.archive.org/web/20160603180432/https://wiki.iotivity.org/iotivity

tool guide Accessed online: 02/2021.

Eclipse IDE: An integrated development environment (IDE) used in computer
programming. Released on 11/2001. Developer Team Eclipse Foundation. Official

Website https://www.eclipse.org/ide Accessed online: 02/2021.

Open Interconnect Consortium (OIC): Delivers standards for the development of
the Internet of Things. Released on 02/2016. Developer Team: Open Connectivity

Foundation. Official Website: https://openconnectivity.org/open-interconnect-

consortium-helps-developers-tackle-internet-of-things-with-new-developer-

toolkit-2/ Accessed online 02/2021.

Roy Thomas Fielding and Richard N. Taylor. 2000. Architectural styles and the
design of network-based software architectures. Ph.D. Dissertation. University of

California, Irvine. Order Number: AAI9980887.

104

https://iotivity.org/
https://github.com/intel/iotivity-node
https://web.archive.org/web/20160603180432/https:/wiki.iotivity.org/iotivity_tool_guide
https://web.archive.org/web/20160603180432/https:/wiki.iotivity.org/iotivity_tool_guide
https://www.eclipse.org/ideAccessed%20online%2002/2021
https://openconnectivity.org/open-interconnect-consortium-helps-developers-tackle-internet-of-things-with-new-developer-toolkit-2/
https://openconnectivity.org/open-interconnect-consortium-helps-developers-tackle-internet-of-things-with-new-developer-toolkit-2/
https://openconnectivity.org/open-interconnect-consortium-helps-developers-tackle-internet-of-things-with-new-developer-toolkit-2/

[47]

[48]

[49]

[50]

[51]

(52]

JSON Schema: A vocabulary that allows you to annotate and validate JSON
documents. Released on 12/2009. Developer Team: JSON Schema. Official

Website: https://json-schema.org/ Accessed online 02/2021.

A. Savidis, “Interactive Configuration Tools and Scripts.” [Online]. Official Website:

http://www.csd.uoc.gr/~hy454 Accessed online 02/2021.

Blockly: a client-side library for the programming language JavaScript for creating
block-based visual programming languages (VPLs) and editors. Developer Team:

Google, MIT. Official Website: https://developers.google.com/blockly Accessed

online 02/2021.

Blockly Developer Tools: Tools for Blockly app developers to help build custom
blocks. Released on 05/2012. Developer Team: Google, MIT. Official Website:

https://developers.google.com/blockly/guides/create-custom-blocks/blockly-

developer-tools Accessed online 02/2021. Accessed online 02/2021.

JavaScript Calendar & Organizer: Library for calendar in JavaScript. Released on
07/2016. Developer: nizarmah. Official Website:

https://github.com/nizarmah/calendar-javascript-lib Accessed online 02/2021.

Day.js: A minimalist open-source library for dates and times. Released on

04/2018. Developer: iamkun. Official Website: https://day.js.org/ Accessed

online 02/2021.

105

https://json-schema.org/
http://www.csd.uoc.gr/~hy454
https://developers.google.com/blockly
https://developers.google.com/blockly/guides/create-custom-blocks/blockly-developer-tools%20Accessed%20online%2002/2021
https://developers.google.com/blockly/guides/create-custom-blocks/blockly-developer-tools%20Accessed%20online%2002/2021
https://github.com/nizarmah/calendar-javascript-lib
https://day.js.org/

