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Galaxy clusters are large gravitationally bound structures that consist of a wide range

of galaxies. An important objective when studying galaxy clusters is to determine their

shape and number of galaxies. In this work, we propose a numerical method to define the

boundaries of possible clusters based on a variation of the k Nearest Neighbors (kNN)

algorithm and Monte Carlo sampling methods. We obtained the data on which our

analysis was conducted, from the Heraklion Extragalactic Catalogue (HECATE), which

provides the names and coordinates of specific galaxies, as well as from the Extended

Virgo Cluster Catalogue (EVCC) which provides the coordinates of galaxies that belong

to the Virgo cluster, and were used as a validation of our method. We conclude that

our method successfully identifies the locations of clusters and determines their shape.
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Chapter 1

Introduction

1.1 Galaxy Clusters

1.1.1 Sizes and shapes

Galaxy clusters (GCs) are the largest structures in the Universe, held together by the

gravitational pull of the galaxies that belong to them. Typical GCs consist of some

hundreds to several thousands of galaxies. These are categorized as rich clusters. On the

other hand, clusters that contain a few dozen galaxies are categorized as poor clusters.

GCs are also classified, in terms of their shape, as regular or irregular depending on

their spherical symmetry [1].

1.1.2 GC boundaries

There are several methods by which GC boundaries can be determined. For example,

Rvir is defined as the radius within which the gas reaches thermal equilibrium at ap-

proximately 107K [2]. It can be detected observationally as the point beyond which the

X-ray profile of the cluster vanishes behind the background emission. Another method is

to define the point beyond which galaxies follow the cosmic expansion and are therefore

outside the gravitational well of the cluster. It can be calculated using observational

data for its members’ redshifts. Galaxies with velocities within the velocity dispersion

range, are considered as members of the cluster. Such methods however, are not au-

tomated. We therefore rely on numerical methods which detect overdensities within a

distribution of galaxies. kNN algorithm is one of these methods.

1
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Figure 1.1: The Coma cluster which is an example of a regular rich cluster
https://earthsky.org/clusters-nebulae-galaxies/the-coma-berenices-galaxy-cluster/

1.2 kNN

In machine learning classification tasks, k Nearest Neighbors (kNN) algorithm is used

to determine the class of a sample, depending on the class in which the majority of its

k closest samples in the parameter space belong to. A variation of this algorithm [3]

can be used as a clustering method to determine the existence of overdense structures

in galactic data. Assuming a distribution of galaxies in 3-dimensional space, each one

of them is considered as the center of a spherical volume, enclosed within the distance

of kth closest galaxy to the center. A 2-dimensional representation of this assumption

is shown in figure 1.2.

Subsequently, we can obtain the galactic numerical density in each point by calculating

the distance of the kth nearest galaxy to that point from equation 1.1 where index 1

refers to the galaxy in the center of the volume, and index 2 refers to the galaxy at the

edge of the volume. d is the radial distance from the observer and RA and Dec are the

right ascension and declination of the galaxy respectively.

dk =
√

d2
1 + d2

2 − 2d1d2(cos(Dec1)cos(Dec2)cos(RA1 − RA2) + sin(Dec1)sin(Dec2))

(1.1)

https://earthsky.org/clusters-nebulae-galaxies/the-coma-berenices-galaxy-cluster/
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Figure 1.2: Representation of 2d kNN density calculation where the blue points are
the k samples enclosed by the volume defined by the red circle whose radius is the kth

farthest sample. Green points represent the samples outside that radius.

We can now calculate the numerical density from equation 1.2

ρ =
k

(4/3)πd3k
(1.2)

Each galaxy represents a point in our grid, where we calculate the numerical density of

galaxies. The algorithm’s sensitivity in wide or narrow overdense regions depends on

the value of k. Larger values of k correspond to a much broader volume for each point.

Therefore, the algorithm will be able to detect overdense structures that span across a

wider area. On the other hand, smaller values of k will lead to the detection of smaller

local overdensities.



Savathrakis G. 2021 4

However, in order to determine the boundaries of a candidate cluster, we need to cal-

culate the significance of possible overdensities compared to a large number of uniform

galactic distributions.

1.3 Approach

Our approach is to create a density map of our galactic data from HECATE [4] using the

kNN algorithm explained in section 1.2. Our null hypothesis is that there is no cluster in

our distribution. Therefore, we create N >> 1 Monte Carlo (MC) samples to calculate

the statistical significance of any overdense structures. Each sample consists of M points,

where M equals the number of galaxies in the catalogue. These points are drawn from

a uniform density distribution in the same parameter space as our data. We create a

density map for every MC sample. Since the densities are calculated in the location of

each galaxy, a point-to-point comparison between the densities of our data and the MC

samples is impossible. To overcome this we create 2-dimensional bins, where we sum

the numerical densities of the galaxies within them. For each MC sample in particular,

we first calculate the summed densities in each bin and subsequently, we calculate the

mean density and standard deviation σ of all samples in each bin. Determining whether

a region is overdense depends on the deviation in terms of σ of the numerical density

of our data, from the uniform numerical density of the MC samples in the same bins.

The density maps are generated using different values of k. We then calculate the total

statistical significance within the boundaries that surround the cluster, which consists

of multiple bins, by considering the sums of the pixel densities from our original data,

the pixel densities of the MC samples and the standard deviations. The optimal value

of k depends on the total significance of each structure. Subsequently, we evaluate the

algorithm’s performance, by calculating the number of galaxies from ground truth data,

that lie within the boundaries of the cluster for the optimal value of k. Finally, we

conduct the same analysis on mock galaxy catalogues that are created from dark matter

halo simulations.



Chapter 2

Data

2.1 HECATE

The Heraklion Extragalactic Catalogue (HECATE) [4] is an all-sky galaxy catalogue

which includes approximately 200000 galaxies within a distance of D.200Mpc. It in-

corporates galaxies from different databases namely from NED [5] and HyperLEDA [6].

The sample selection occurred from the careful identification of identical galaxies inside

Figure 2.1: Locations of HECATE galaxies within the subset parameter space

5
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these catalogues, as well as from the exclusion of objects that contain multiple galaxies

(e.g. groups, clusters), while including their members. Additionally, redshift dependent

distances have been obtained for the majority of the galaxy without available redshift

independent distances. The catalogue also includes photometric data as well as informa-

tion regarding the galaxies’ inclination, size and coordinates. In our analysis we include

a subset of 16962 galaxies. The RA of the members ranges from 165 to 210 degrees and

their declination from -5 to 25 degrees as shown in figure 2.1, covering the area around

the Virgo cluster centered at RA=187◦ 42’ 21.35” and Dec=+12◦ 23’ 28.0439”.

2.2 EVCC

As a ground truth sample we adopt the Extended Virgo Cluster Catalogue (EVCC) [7]

which is based on a spectroscopic survey by the Sloan Digital Sky Survey (SDSS) and

provides data for galaxies within a radius of 3.5Rvir from the center of the Virgo cluster.

Figure 2.2: Spatial distribution of EVCC galaxies

EVCC consists of a total 1589 galaxies making it 5.2 times larger than its previous version

the VCC. Apart from the velocity and the locations of the galaxy members, EVCC

provides information regarding each sample’s photometry, declination and morphological
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classification. As shown in figure 2.2, the region covered by the distribution, ranges from

RA=175◦ to 200◦ and from Dec = -4◦ to 25◦. We intend to use the data from EVCC

as validation for our clustering method on the galaxies from HECATE. EVCC does not

explicitly provide the distances of its galaxies but we can obtain them by dividing the

velocities with the Hubble constant. We assume its value to be Ho=70km/s/Mpc.



Chapter 3

Methods

3.1 Creation of density maps

Starting with the galaxies from HECATE, we run the kNN algorithm to calculate the

galaxy number density at the location of each galaxy in the catalogue. In figure 3.1

Figure 3.1: Density map for k=1500. The color scale depicts the density in Mpc−3

at each point

8
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we present the density map created for k=1500. We can see that there are certain

regions, located mostly in the center, where the density is larger compared to other

regions. This provides an indication that clusters may be found in these regions. The

quantitative analysis for the presence of a cluster and the determination of its outline

however, is done by comparing the calculated densities of our original data to the Monte

Carlo simulations.

3.2 Binning of the parameter space

As explained in section 1.3, we separate our parameter space into bins. This is done

in order to effectively calculate the statistical significance of possible overdensities. We

set the size of these bins to be 0.2deg×0.2 deg which provides enough resolution, while

containing enough objects for the assessment of the uncertainties. The density of each

bin is the sum of the densities calculated in every point within the bin. In figure 3.2 we

present the binned parameter space in 2 dimensions for the galaxies in HECATE as well

as the density of each bin in logarithmic scale. We see that the overdense regions are

more apparent, which is expected due to the summation of the densities. Specifically,

apart from the central region where we know that the Virgo cluster is located, we see

another apparent overdensity in the upper left part of the map at RA'176 degrees and

Dec'20 degrees. These coordinates are close to the center of the Leo cluster. This

means that the algorithm is sensitive to clusters of varying sizes and shapes which may

render it suitable for the detection of multiple clusters simultaneously.

3.3 Monte Carlo samples

In order to assess the features identified by the kNN method we perform a set of simu-

lations where we draw the locations of each object from a uniform distribution. This is

equivalent to assuming that all objects in the area are uniformly distributed and there

are no overdensities. We then run the kNN analysis for each set of draws. We create

100 MC samples for the calculation of the statistical significance of overdensities in the

HECATE catalogue, each consisting of 16962 members. The kNN algorithm is then run

to create the density map of every sample. Given the large number of objects, 100 Monte

Carlo draws are adequate in order to obtain a picture of the statistical fluctuations of

the kNN analysis.
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Figure 3.2: Density map for the 2-dimensional binned parameter space of HECATE.
The colorbar represents the log10 of the bins’ densities

3.4 Calculation of statistical significance

Having created the density maps for each sample (both HECATE and dark matter

halos), as well as the spatial grid in which our data are distributed, we can calculate

the statistical significance of each bin by comparing its density with the distribution of

densities estimated by the MC samples. The significance of the overdensity of each pixel

is measured as the deviation in terms of σ of the density measured from the actual data

from the average density in that bin estimated from the MC simulations [8]. In order

to determine the boundaries of the clusters for each k, we identify the pixels (bins) that

exceed a given significance level. The total significance of a given cluster is calculated

by combining the significance of the pixels within its boundary from equation 3.1

αtot =

∑
i Ni −

∑
i Bi√∑

i σ
2
i

(3.1)

where∑
i Ni: the sum of the densities within the cluster for our original data
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∑
i Bi: the sum of the densities within the cluster for the Monte Carlo samples. It is

important to note that the boundaries have been created from the actual data and not

the MC draws∑
i σ

2
i : the sum of the squared standard deviations within the cluster from the MC draws

αtot: the total statistical significance of the prevalent cluster

The optimal k is the one that maximizes the total significance. We create density

maps with k=[100,200,500,1000,1500,2000] for the HECATE galaxies.

3.5 Halo simulations

As a final validation of our model’s efficiency at identifying and delineating possible

clusters, we include data provided by dark matter halo simulations. These simulations

are provided by the IllustrisTNG project [9] [10] [11] [12] [13] which creates simulated

galaxies considering a variety of processes that lead to galaxy formation. The data

Figure 3.3: Spatial distributions of galaxies in selected dark matter halo simulations

releases cover 3 sets of side lengths each, 50, 100 and 300 Mpc. For our analysis, we use

the last set because, due to its size, it is the most appropriate for cluster detection. The

masses of the halo members M200, range from 1010 to 1015 M� and their distribution
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reaches a radius of 2R200. The locations of the dark matter halo members are given in

cartesian coordinates, at a reference frame in which the center is assumed to be at the

center of the halo. By assuming a random location in the sky for each halo center, we can

transform the cartesian coordinates from the center of the halo, to equatorial coordinates.

In total we have 14 dark matter halo simulations. The number of objects in each halo

ranges from 70 to 2000 and we present the spatial distribution of 4 representational

halos in figure 3.3. When conducting the kNN analysis for the dark matter halos we

create 10000 MC samples because the number of objects in each halo is much smaller

than the galaxies in HECATE. The values for k that we use for the dark matter halos

are k=[10,20,50,100,200,500].

3.6 Dark matter halos’ coordinates transformation

The transformation of the dark matter halo coordinates, mentioned in paragraph 3.5,

is done by firstly assuming an arbitrary location of the halo center on the sky. For

simplicity we choose the RA and Dec of the center to be (0,0) and the radial distance D

can range between 15 and 200 Mpc in order to be consistent with the parameter space

of HECATE. The cartesian coordinates of the halo center in a reference frame centered

at the observer, can be calculated as:

xcen = Dcos(Dec)cos(RA) = D

ycen = Dcos(Dec)sin(RA) = 0

zcen = Dsin(Dec) = 0

Therefore, the halo members’ coordinates in the observer’s reference frame are:

xi = xcen + x′i

yi = ycen + y′i

zi = zcen + z′i

where the ′ represents the coordinates in the halo frame and i is the index of each

halo member. Transforming the cartesian to equatorial coordinates in the observer’s

reference frame is done as follows:

RAi = arctan(yixi )

Deci = arcsin( yi√
x2i +y2i +z2i

)

Di =
√

x2
i + y2

i + z2i



Chapter 4

Results

In this chapter we present the results obtained from the kNN clustering algorithm,

implemented on both the HECATE catalogue and dark matter halo simulations.

4.1 HECATE density map for k=1500

Starting with HECATE, we first create the density map for k=1500 and then we over-

plot the data from EVCC to estimate the number of galaxies that lie in the bins with

the highest statistical significance. This is done as a preliminary evaluation of the algo-

rithm’s performance. In figure 4.1 we present the binned density map for the galaxies

in HECATE and for k=1500. The bins are categorized according to their statistical

significance. Regions with large statistical significance have a higher probability of be-

longing into overdense structures like galaxy clusters. If the statistical significance of

a region is considerably small (i.e. α < σ), then the region is underdense. The scaling

of the levels of statistical significance ranges from regions where α < 0 up to regions

where the statistical significance reaches its maximum value. The intermediate levels

have been selected in order to better visualize the resulting density map according to

our own estimate of the significance levels required to determine an overdensity. We see

that in the middle of the map there is such an extensive overdense region centered at

RA ' 187deg and Dec ' 12deg. This region corresponds to the actual location of the

Virgo cluster. There are several more overdense regions, one near the upper left and

another near the

lower left corner of the map. Specifically, for the region corresponding to the Virgo

cluster, we can compare the locations of the densest bins in that region, to the locations

of the galaxies in the EVCC.

13
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Figure 4.1: Density map for galaxies in HECATE for k=1500. The color scale repre-
sents the statistical significance of each bin. Dark green bins are overdense regions and

dark blue bins are underdense regions.

4.2 Comparison with EVCC data

The equatorial coordinates of the galaxies in EVCC can be overplotted on the density

map of figure 4.1 to examine if the bins on which they lie are statistically significant

enough to be parts of a cluster. The result is shown in figure 4.2, where we see that

the majority of the EVCC galaxies are in the bins corresponing to the highest levels of

statistical significance. It is noticeable that the two largest subclumps that characterize

the Virgo cluster are also detected by the algorithm. These are the positions where the

two main groups of the EVCC galaxies are located, both of which have large statistical

significance.

4.3 Cluster boundaries for HECATE

Subsequently, we create contour plots for the different values of k and for different

confidence thresholds. In each case we calculate the statistical significance within the

cluster boundaries that are spatially correlated with the Virgo cluster and depending on

the configuration that maximizes the statistical significance, we determine the optimal
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Figure 4.2: Overplot of HECATE density map for k=1500 and EVCC galaxies. The
objects in red correspond to the galaxies in EVCC

value of k and σthres. The same analysis is then done on the dark matter halos for

the values of k considered most likely to yield reliable results. Now that we have seen

that the density maps, created with the kNN algorithm, yield reliable results, we can

determine the clusters’ boundaries. To achieve this, we create density maps for a set

of k values that we consider likely to yield stable solutions for the cluster boundaries,

and we draw contours surrounding the regions that exceed a certain level of statistical

significance α. Due to the large number of bins, and the close proximity of bins with

large and small statistical significance in some regions, we smooth the contour using a

gaussian filter. A common significance threshold for determining whether a result refutes

the null hypothesis is 3 standard deviations. We define the contour levels to be at this

value of α and we create the density maps for the values of k mentioned in paragraph

3.4 for the galaxies in HECATE.
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Figure 4.3: Density maps with significance threshold 3σ. Top: k=100, middle: k=200,
bottom: k=500. The black lines are the boundaries that surround the overdense regions



Savathrakis G. 2021 17

Figure 4.4: Density maps with significance threshold 3σ. Top: k=1000, middle:
k=1500, bottom: k=2000. The black lines are the boundaries that surround the over-

dense regions
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In figures 4.3 and 4.4 we see that for the smaller values of k, the resulting boundaries

surrounding the Virgo cluster are quite stable. However, when k becomes larger (i.e.

k=2000) the Virgo boundary begins to shrink. This happens because for regions that

are further away from the center of the cluster, the kNN algorithm will have to calculate

the density around each point for a much larger radius that will have to include galaxies

in much larger distances and therefore the density calculated will become smaller.

Apart from the Virgo cluster, we can see that there are additional overdense regions

detected by the algorithm and we know that one of these is the Leo cluster centered at

the coordinates mentioned in paragraph 3.2. This proves that the algorithm is sensitive

enough to identify multiple clusters at the same time, as well as defining their boundaries

to a very good similarity with the real shape of the respective clusters.

4.4 Total significance of Virgo region

We calculate the total significance α of the region inside the contour corresponding to

the Virgo cluster, from equation 3.1. This calculation is done for each k, to find the k

that maximizes the total significance α. In figure 4.5 we plot the total significance as a

Figure 4.5: Statistical significance α vs k for the Virgo region



Savathrakis G. 2021 19

function of k, for the contour enclosing the region of the Virgo cluster. We see that the

maximum statistical significance is αmax=1763.76 and it is achieved for k=500. In order

to obtain a more quantitative evaluation of the algorithm’s performance in calculating

the Virgo boundaries, we count the number of EVCC galaxies enclosed by the contour

for the optimal k=500. The results are shown in figure 4.6. The EVCC galaxies included

Figure 4.6: EVCC galaxies inside the contour enclosing the Virgo region in HECATE
for k=500

in the cluster are 60% of the total catalogue. The reason for this is that the other

overdense structures, namely the ones immediately below the Virgo cluster in figure 4.6,

also contain a significant number of galaxies from EVCC. These regions could actually

be parts of the Virgo but due to the 2-dimensional binning and contour creation they

appear as seperate regions. However in general, the Virgo boundaries, defined based on

our method, have a striking resemblance to the actual shape of the Virgo cluster. In

table 4.1 we present the total statistical significance within the predicted Virgo cluster

region for different significance thresholds for the pixels in the outskirts of the cluster,

and which are used to define its boundary. The trend remains the same, since by setting

the boundaries at larger confidence intervals, the area of the cluster shrinks, containing

the regions with the highest possible statistical significance.
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Table 4.1: Total statistical significance in Virgo region for different values of k and
different confidence intervals

αtot in Virgo region

k=100 k=200 k=500 k=1000 k=1500 k=2000

α ≥ 2σ 1001.06 808.79 1695.22 1149.35 503.50 259.26

α ≥ 3σ 1020.80 840.42 1772.65 1181.39 494.52 240.64

α ≥ 5σ 1083.06 867.13 1828.75 1167.23 500.28 210.24

α ≥ 10σ 1156.47 896.82 1902.91 1203.79 371.57 166.36

α ≥ 20σ 1324.01 923.22 1995.95 1151.43 372.00 148.54

4.5 Density maps for dark matter halos

The second test of the algorithm is done on dark matter halo simulations. Since, for

the observational data from HECATE the algorithm’s performance is very promising,

we consider it eligible for evaluation on mock observations. As in the previous part,

the first step is the creation of the density maps. We do this for each of the 14 halos

included in the subset for the same values of k mentioned in paragraph 3.5. In figures

4.7, 4.8 and 4.9 we present the density maps for the first 3 halos in the subset, along

with the boundaries of the detected clusters.
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Figure 4.7: Density maps for halo 1 showing the regions with α > 3σ for each k.
Upper left:k=10, Upper right:k=20, Middle left:k=50, Middle right:k=100, Bottom

left:k=200, Bottom right:k=500
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Figure 4.8: Density maps for halo 2 showing the regions with α > 3σ for each k.
Upper left:k=10, Upper right:k=20, Middle left:k=50, Middle right:k=100, Bottom

left:k=200, Bottom right:k=500
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Figure 4.9: Density maps for halo 3 showing the regions with α > 3σ for each k.
Upper left:k=10, Upper right:k=20, Middle left:k=50, Middle right:k=100, Bottom

left:k=200, Bottom right:k=500
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4.6 Radius covered by cluster boundaries

In the case of the mock halo samples, we can test the algorithm with regard to its

efficiency at including objects within a radius of R200. This will give us a picture of the

algorithm’s behavior in terms of defining the outline of the clusters.

Figure 4.10: Map depicting the cluster boundary of halo 1 and the bins colored
according to their distance from the center of the halo for each k. Upper left:k=10,
Upper right:k=20, Middle left:k=50, Middle right:k=100, Bottom left:k=200, Bottom

right:k=500
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Figure 4.11: Map depicting the cluster boundary of halo 2 and the bins colored
according to their distance from the center of the halo for each k. Upper left:k=10,
Upper right:k=20, Middle left:k=50, Middle right:k=100, Bottom left:k=200, Bottom

right:k=500
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Figure 4.12: Map depicting the cluster boundary of halo 3 and the bins colored
according to their distance from the center of the halo for each k. Upper left:k=10,
Upper right:k=20, Middle left:k=50, Middle right:k=100, Bottom left:k=200, Bottom

right:k=500
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We can see that for each of the 3 halos presented, the majority of the objects that are

located at a distance smaller than R200 lie within the contours we defined. However,

there are some galaxies for each halo that are found inside the boundary, but whose

distance is larger than R200. Their number is not very large though and most of the

objects inside the contour are indeed within a distance of R200 from the center. The

results presented, refer to the first 3 halos that are the most populous (Nobj:1900-2000)

and the algorithm provides stable results for them. For most of the remaining halos,

whose number of objects is between 70 and 200, the algorithm’s result is unstable and

does not provide a certain cluster detection.
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Conclusions

We have implemented a variation of the kNN algorithm for the numerical detection of

clusters in galaxy data in both observational (HECATE) and mock catalogues (TNG

project). The resulting density maps, combined with a comparison to a uniform back-

ground using Monte Carlo samples, led to the detection of clusters, with boundaries

that were determined in order to cover the regions with a statistical significance greater

that 3 standard deviations. For the HECATE galaxies, the algorithm exhibited a very

good performance at detecting overdensities since, for different values of k, clusters in

the same parameter space with different shapes and sizes, were detected simultaneously,

namely the Virgo and Leo clusters. Furthermore, the boundaries of the overdensities

were similar to the true shape of the corresponding clusters. For example, the Leo cluster

has regular shape and in figures 4.3 and 4.4 we see that in these coordinates, the over-

density has a near circular shape in 2-dimensions. On the other hand, the Virgo cluster

is less regular with two subclumps, which the algorithm successfully detects as parts of

a single cluster. For the dark matter halos our goal was to evaluate the performance of

the algorithm at correctly defining the boundaries of the clusters. In order to do that

we counted how many objects within a distance of R200 are included in the detected

cluster. We found that for the first 3 most populous halos, most of the objects are inside

the boundary which means that the algorithm is effective at identifying a region close to

the R200 radius of the cluster. For smaller halos though, due to their small population,

the algorithm is not effective at providing a stable result for cluster boundaries.
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