
UNIVERSITY OF CRETE
DEPARTMENT OF COMPUTER SCIENCE

FACULTY OF SCIENCES AND ENGINEERING

Efficient and Accurate Feature Selection, with
Extensions for Multiple Solutions and to Big

Data

by

Giorgos Borboudakis

PhD Dissertation

Presented

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

Heraklion, February 2019

UNIVERSITY OF CRETE

DEPARTMENT OF COMPUTER SCIENCE

Efficient and Accurate Feature Selection, with Extensions for Multiple Solutions and to

Big Data

PhD Dissertation Presented

by Giorgos Borboudakis

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

APPROVED BY :

Author: Giorgos Borboudakis, PhD Candidate, University of Crete

Supervisor: Ioannis Tsamardinos, Professor, University of Crete

Committee Member: Gregory F. Cooper, Professor, University of Pittsburgh

Committee Member: Dimitris Plexousakis, Professor, University of Crete

Committee Member: Gavin Brown, Professor, University of Manchester

Committee Member: Vassilis Christophides, Professor, University of Crete

Committee Member: Isabelle Guyon, Professor, University of Paris-Saclay

Committee Member: Jan Lemeire, Professor, Vrije Universiteit Brussel

Department Chairman: Angelos Bilas, Professor, University of Crete

Heraklion, February 2019

iv

vi

This thesis is dedicated to my parents Nikos and Stamatia, and my sisters Kelly and Christina.

Acknowledgments

Firstly, I would like to thank my supervisor Prof. Ioannis Tsamardinos for his guidance,

patience and support. I owe many things and skills I learned our collaboration, and would

definitely not be where I am if it wasn’t for him.

Besides my supervisor, I would also like to thank the rest of my thesis committee, Prof.

Gregory F. Cooper, Prof. Dimitris Plexousakis, Prof. Vassilis Christophides, Prof. Gavin

Brown, Prof. Isabelle Guyon and Prof. Jan Lemeire, for all their helpful comments and

suggestions.

I thank my labmates for working with me and for all the fun we had during the last few

years. Special thanks to Sofia, Vincenzo, Paul, Michail, and Kleanthi for working closely

with me and and for helping me grow as a researcher. I also thank Prof. Froudakis and

his team, Prof. Mouchtaris and Tasos Alexandridis, as well as Prof. Christophides, Prof.

Pratikakis and Pavlos Katsogridakis for our collaborations.

I am grateful to all of my friends, for all the good and bad times we shared during the

last years. The list is in alphabetical order (and most likely non-exhaustive, apologies for

that): Alex T., Alexandros P., Alexis B., Alexis S., Amin, Anna, Andreas, Argiro, Athineou,

Christos S., Christos T., Danielle, Efi, Flavius, Florin, George P., George T., Giannis Pap., Gi-

annis Pan., Glykeria, Ioulia, Iraklis, Iulia, Jenny, Jordan, Jorge, Klio L., Klio V., Konstantina,

Kostas K., Kriton, Krystallia, Laertis, Lampis, Lisa, Maria M., Maria P., Marina, Michalis,

Mihai, Milosz, Myrto, Nasos, Olina, Paul, Popi, Quim, Roberta, Serafim, Sofia, Sorina, Stan,

Stefanos, Tasos A., Tasos T., Thodoris, Tommy, Vincenzo, Vlad, Xanthos, Zack.

Last, but definitely not least, I thank my family for always being there for me.

ix

Abstract

The problem of feature selection can be defined as identifying a minimal subset of the

input variables that is optimally predictive for an outcome variable of interest. Feature

selection is a common component in supervised machine learning pipelines, and an es-

sential tool when the goal of the analysis is knowledge discovery. The latter is especially

important in domains such as molecular biology and life sciences, where a researcher is

interested in understanding the problem under study and not necessarily in the resulting

predictive model.

Feature selection is challenging: it has been shown to be NP-hard, and thus most

approaches rely on approximations to solve it efficiently. There exist many different ap-

proaches to the feature selection problem, trading off generality (e.g., what types of data

and outcomes they can handle), computational cost, and theoretical properties of opti-

mality. Stepwise selection methods (e.g., forward-backward selection) are quite general

and optimal for a large class of distributions, but are computationally expensive. Sparsity-

based methods (e.g., LASSO) are computationally efficient for some problems (e.g., clas-

sification and regression) and slow for others (e.g., time-course data), and have strong

theoretical guarantees. Information theoretic approaches are computationally fast, but

not as general (they only handle discrete data) and with weaker theoretical guarantees.

Another challenge is to scale feature selection methods to very large datasets, which may

contain millions of samples and variables. Existing approaches are either too slow or per-

form poorly in terms of predictive performance. Finally, most methods do not deal with

the presence of multiple solutions to the feature selection problem, which often exist in

real data. For example, it has been shown molecular data often contain multiple solutions,

possibly due to the redundancy present in the underlying biological system. Therefore, al-

though identifying a single solution is adequate for predictive purposes, it is not sufficient

when the focus is on knowledge discovery. On the contrary, reporting a single solution and

claiming that there are no other solutions is misleading.

In this thesis, we focus on forward-backward selection and propose several extensions

to tackle the above challenges. Forward-backward selection was chosen because of its

theoretical properties and generality, as it is applicable to different predictive tasks and

data types. We provide a unified view of several classes of feature selection methods, such

as sparsity-based, information theoretic, statistical and causal-based methods, and show

that they are instances or approximations of stepwise selection methods. This allows one

to translate and use techniques (such as the ones proposed in this thesis) between differ-

xi

ent approaches to the feature selection problem. Then, we propose a heuristic inspired by

causal modeling to speed-up the forward-backward selection algorithm, while preserving

its theoretical properties. In experiments we show that this leads to a speed-up of 1-2 or-

ders of magnitude over the standard forward-backward selection algorithm, while retain-

ing its predictive performance. Afterwards, we extend the algorithm for Big Data settings,

enabling it to scale to data with tens of millions of samples and variables. In a comparison

with alternative methods from the same algorithmic family, we show that the proposed

method significantly outperforms all competitors in terms of running time, being the only

method that is able to terminate on all datasets, and without sacrificing predictive perfor-

mance. Furthermore, in a comparison with information theoretic methods we show that,

although computationally slower, it is able to produce significantly better predictive mod-

els. Finally, we deal with the multiple feature selection problem. We show that the existing

taxonomy of features is misleading when multiple solutions are present, and propose an

alternative taxonomy that takes multiplicity into account. Then, we consider several defi-

nitions of statistical equivalence of feature sets, as well as methods to test for equivalence

of feature sets. Afterwards, we propose a general strategy to extend forward-backward type

methods for identifying multiple, statistically equivalent solutions. We provide conditions

under which it is able to identify all equivalent solutions. In a comparison with the only

alternative method with the same theoretical guarantees, we show that it produces similar

results while being computationally faster.

Περίληψη

Το πρόβλημα της επιλογής μεταβλητών μπορεί να οριστεί ως η ανακάλυψη ενός ε-

λάχιστου υποσυνόλου των μεταβλητών εισόδου που είναι βέλτιστα προβλεπτικό για

κάποια μεταβλητή ενδιαφέροντος. Η επιλογή μεταβλητών συνηθίζεται να χρησιμο-

ποιείται σε αναλύσεις μηχανικής μάθησης και είναι βασικό εργαλείο όταν ο στόχος

της ανάλυσης είναι η ανακάλυψη γνώσης. Αυτό είναι ιδιαίτερα σημαντικό σε τομείς

όπως η μοριακή βιολογία και οι επιστήμες της ζωής, όπου ένας ερευνητής ενδιαφέρε-

ται να κατανοήσει το πρόβλημα που μελετάει και όχι απαραίτητα για το προγνωστικό

μοντέλο που προκύπτει.

Η επιλογή μεταβλητών είναι δύσκολη: έχει αποδειχθεί ότι είναι NP-σκληρή, και

για αυτό οι περισσότεροι αλγόριθμοι είναι προσεγγιστικοί για να είναι υπολογιστικά

αποδοτικοί. Υπάρχουν πολλές διαφορετικές προσεγγίσεις στο πρόβλημα επιλογής

μεταβλητών, οι οποίες διαφέρουν στο πόσο γενικές είναι (π.χ. τι τύπους δεδομένων

και μεταβλητών μπορούν να χειριστούν), στο υπολογιστικό τους κόστος, καθώς και

στις ϑεωρητικές τους ιδιότητες. Οι μέθοδοι βηματικής επιλογής (stepwise selection) εί-

ναι αρκετά γενικές και βέλτιστες για μια μεγάλη κατηγορία πιθανοτικών κατανομών,

αλλά είναι υπολογιστικά ακριβές. Οι μέθοδοι που βασίζονται σε αραιότητα (sparsity)

(π.χ. LASSO) είναι υπολογιστικά αποδοτικές για ορισμένα προβλήματα (π.χ. ταξινό-

μηση και παλινδρόμηση) και χρονοβόρες για άλλα, (π.χ. δεδομένα χρόνου) και έχουν

ισχυρές ϑεωρητικές εγγυήσεις. Οι προσεγγίσεις βασισμένες στη ϑεωρίας πληροφο-

ρίας είναι υπολογιστικά γρήγορες, αλλά όχι τόσο γενικές (χειρίζονται μόνο διακριτά

δεδομένα) και με ασθενέστερες ϑεωρητικές εγγυήσεις. Μια άλλη πρόκληση είναι

να κλιμακωθούν οι μέθοδοι επιλογής μεταβλητών για δεδομένα μεγάλου όγκου, τα

οποία μπορεί να περιέχουν εκατομμύρια δείγματα και μεταβλητές. Οι υπάρχουσες

προσεγγίσεις είτε είναι πολύ αργές, είτε έχουν κακή απόδοση ως προς την προβλε-

πτική τους ικανότητα. Τέλος, οι περισσότερες μέθοδοι δεν λαμβάνουν υπόψιν τους

την παρουσία πολλαπλών λύσεων, οι οποίες συχνά υπάρχουν σε πραγματικά δεδο-

μένα. Για παράδειγμα, είναι γνωστό πως τα μοριακά δεδομένα συχνά περιέχουν

πολλαπλές λύσεις, πιθανώς λόγω του πλεονασμού που υπάρχει στο υποκείμενο βιο-

λογικό σύστημα. Επομένως, παρόλο που ο εντοπισμός μιας λύσης είναι επαρκής

για τον σκοπό της πρόβλεψης, δεν αρκεί για την ανακάλυψη γνώσης. Αντιθέτως, η

αναφορά μίας και μόνης λύσης και ο ισχυρισμός πως δεν υπάρχουν άλλες λύσεις

είναι παραπλανητική.

Για τη διπλωματική εργασία εστιάζουμε σε άπληστες μεθόδους επιλογής με-

xiii

ταβλητών τύπου “forward-backward” και προτείνουμε διάφορες επεκτάσεις για την

αντιμετώπιση των παραπάνω προκλήσεων. Επιλέξαμε αυτή την κατηγορία μεθόδων

λόγω των ϑεωρητικών ιδιοτήτων και της γενικότητάς τους. ∆είχνουμε πως αλγόριθμοι

διαφόρων κατηγοριών, όπως αυτοί που βασίζονται στην αραιότητα, στη ϑεωρία πλη-

ροφορίας, στη στατιστική ή στη ϑεωρία αιτιότητας, είναι ειδικές περιπτώσεις ή προ-

σεγγίσεις μεθόδων βηματικής επιλογής. Αυτό επιτρέπει την μετάφραση και χρήση

τεχνικών (όπως αυτές που προτείνονται σε αυτή τη διατριβή) μεταξύ διαφορετικών

κατηγοριών αλγορίθμων. Στη συνέχεια, προτείνουμε ένα ευριστικό, εμπνευσμένο

από αιτιατή μοντελοποίηση, για να επιταχύνουμε τον αλγόριθμο επιλογής forward-

backward selection , διατηρώντας τις ϑεωρητικές ιδιότητές του. Σε υπολογιστικά

πειράματα δείχνουμε ότι αυτό οδηγεί σε επιτάχυνση 1-2 τάξεων μεγέθους, δια-

τηρώντας παράλληλα την προβλεπτική του ικανότητα. Στη συνέχεια, επεκτείνουμε

τον αλγόριθμο για τις δεδομένα μεγάλου όγκου, επιτρέποντάς του να χειριστεί δε-

δομένα με δεκάδες εκατομμύρια δείγματα και μεταβλητές. Σε μια σύγκριση με

αλγορίθμους από την ίδια αλγοριθμική οικογένεια, δείχνουμε ότι η προτεινόμενη

μέθοδος περνά σημαντικά τον ανταγωνισμό όσον αφορά το χρόνο λειτουργίας, έχει

την ίδια προβλεπτική ικανότητα, και είναι η μόνη μέθοδος που μπορεί να τερματίσει

σε όλα τα σύνολα δεδομένων. Επιπλέον, σε μια σύγκριση με μεθόδους βασισμένες

στη ϑεωρίας πληροφορίας, δείχνουμε ότι, αν και υπολογιστικά βραδύτερη, είναι σε

ϑέση να παράγει σημαντικά καλύτερα προγνωστικά μοντέλα. Τέλος, ασχολούμαστε

με το πρόβλημα ανακάλυψης πολλαπλών λύσεων. ∆είχνουμε ότι η υπάρχουσα τα-

ξινόμηση χαρακτηριστικών είναι παραπλανητική όταν υπάρχουν πολλές λύσεις και

προτείνουμε μια εναλλακτική ταξινόμηση που λαμβάνει υπόψη την ύπαρξη πολ-

λαπλών λύσεων. Στη συνέχεια, εξετάζουμε αρκετούς ορισμούς της στατιστικής ι-

σοδυναμίας συνόλων μεταβλητών, καθώς και μεθόδους ελέγχου της ισοδυναμίας

συνόλων μεταβλητών. ´Επειτα, προτείνουμε μια γενική λύση για την επέκταση

των μεθόδων τύπου forward-backward για τον εντοπισμό πολλαπλών, στατιστικά ι-

σοδύναμων λύσεων και παρέχουμε συνθήκες υπό τις οποίες είναι σε ϑέση να ανα-

καλύψει όλες τις ισοδύναμες λύσεις. Σε μια σύγκριση με τη μόνη εναλλακτική μέθοδο

με τις ίδιες ϑεωρητικές εγγυήσεις, δείχνουμε ότι παράγει παρόμοια αποτελέσματα

ενώ είναι υπολογιστικά ταχύτερη.

Contents

Acknowledgments . ix

Abstract . xi

Περίληψη (Abstract in Greek) . xiii

Table of Contents . xv

List of Figures . xix

List of Tables . xxv

1 Introduction . 1

1.1 The Feature Selection Problem . 1

1.2 Challenges . 2

1.2.1 Hardness of Feature Selection and Approximate Approaches . . . 2

1.2.2 Feature Selection with Big Data . 3

1.2.3 Multiple Solutions to the Feature Selection Problem 3

1.3 Outline and Main Contributions . 5

1.3.1 Speeding-up Forward Selection: the Forward-Backward Selec-

tion with Early Dropping Algorithm 5

1.3.2 Extending FBEDK for Big Data: The Parallel Forward-Backward

with Pruning Algorithm . 7

1.3.3 A Strategy to Extend Forward-Backward Type Algorithms for

Identifying Multiple Solutions . 8

2 Preliminaries . 9

2.1 The Feature Selection Problem and a Taxonomy of Features 9

2.2 Markov Blankets in Probabilistic Graphical Models 10

2.2.1 Bayesian Networks . 11

2.2.2 Directed Maximal Ancestral Graphs 11

2.2.3 Markov Blankets . 11

2.3 The Semi-Graphoid Axioms . 12

2.4 Stepwise Feature Selection . 13

2.4.1 Criteria for Variable Selection . 15

2.4.2 Forward-Backward Selection with Conditional Independence Tests 18

2.5 Combining p-values Using Meta-Analysis Techniques 19

2.6 Bootstrap-based Hypothesis Testing . 20

3 Variations of Stepwise Feature Selection Methods and Their Relation to Sparsity-

Based, Information Theoretic and Causal-Based Approaches 21

xv

3.1 Variations of Forward Selection . 22

3.1.1 Orthogonal Matching Pursuit . 23

3.1.2 Forward Stagewise Regression and Least Angle Regression 23

3.1.3 The Lasso . 23

3.2 Information Theoretic Feature Selection Algorithms 24

3.3 Causal-Based Markov Blanket Discovery Algorithms 26

4 Forward-Backward Selection with Early Dropping 29

4.1 The Early Dropping Heuristic . 29

4.2 Comparing the Theoretical Properties of FBEDK to FBS 31

4.3 Limitations and Practical Considerations 33

4.4 Experimental Evaluation . 34

4.4.1 Experimental Setup . 36

4.4.2 Effect of the Number of Runs K . 38

4.4.3 FBEDK vs FBS . 40

4.4.4 Comparison of FBEDK with other Feature Selection Methods . . . 43

4.4.5 Fixing the Number of Selected Variables 47

4.4.6 Simulation Study on the Multiple Testing Problem 49

5 Extending FBED for Big Data of High Dimensionality 51

5.1 Massively Parallel Forward-Backward Algorithm 51

5.1.1 Data Partitions in Blocks and Groups and Parallelization Strategy 52

5.1.2 Approximating Global p-values by Combining Local p-values Us-

ing Meta-Analysis . 53

5.1.3 Speeding-up PFBP using Pruning Heuristics 54

5.1.4 The Parallel Forward-Backward with Pruning Algorithm 56

5.1.5 Massively-Parallel Predictive Modeling 60

5.2 Implementation of the Early Dropping, Stopping and Return Heuristics

using Bootstrap Tests on Local p-values 61

5.2.1 Bootstrap Tests for Early Probabilistic Decisions 62

5.2.2 Implementation Details of Bootstrap Testing 64

5.3 Tuning the Data Partitioning Parameters of the Algorithm 65

5.3.1 Determining the Required Sample Size s for Conditional Indepen-

dence Tests . 65

5.3.2 Setting the Number of Sample Sets C per Group 66

5.3.3 Determining the Number of Features per Data Block 67

5.4 Related Work . 67

5.4.1 Parallel Univariate Feature Selection and Parallel Forward-Backward

Selection . 67

5.4.2 Single Feature Optimization . 68

5.4.3 Information Theoretic Feature Selection for Big Data 69

5.4.4 Parallel Lasso . 70

5.4.5 Other Approaches . 70

5.5 Experimental Evaluation . 72

5.5.1 Experimental Setup . 72

5.5.2 Scalability of PFBP with Sample Size, Feature Size and Number

of Workers . 73

5.5.3 Comparative Evaluation of PFBP on Real Datasets 75

5.5.4 Proof-of-Concept Application on genetic SNP Data 81

5.5.5 Summary and Discussion of Experimental Results 85

6 Extending Greedy Feature Selection Algorithms to Multiple Solutions 87

6.1 A Taxonomy of Features in the Presence of Multiple Solutions 87

6.2 Statistically Equivalent Feature Sets . 88

6.2.1 Definitions of Statistical Equivalence of Feature Sets 89

6.2.2 Testing Statistical Equivalence of Feature Sets and its Relation to

the Model Selection Problem . 90

6.2.3 Practical Considerations and Recommendations 92

6.3 A General Template for Forward-Backward Algorithms 95

6.4 Extending TFBS for Multiple Solutions . 96

6.4.1 A Strategy to Avoid Repeating States 97

6.4.2 The TMFBS Algorithm for Multiple Solutions 99

6.4.3 Relation to the TIE* Algorithm . 102

6.5 Summarizing and Visualizing Multiple Solutions 103

6.5.1 Multiple Solution Graphs . 103

6.5.2 An Algorithm for Constructing Multiple Solutions Graphs 104

6.5.3 Compression Operations . 105

6.5.4 Algorithms for Forward and Backward Compression 107

6.5.5 Related Methods . 108

6.6 Experimental Evaluation . 110

6.6.1 Evaluation of TMFBS and Comparison with TIE* 111

6.6.2 Number of Solutions and Speed-up with Increasing Sample Size . 113

6.6.3 Multiple Solutions Graphs . 115

7 Conclusions . 117

Bibliography . 121

Appendices

A Proofs . 137

A.1 Proof of Corollary 1 . 138

A.2 Proof of Corollary 2 . 138

A.3 Proof of Theorem 1 . 138

A.4 Proof of Theorem 2 . 139

A.5 Proof of Theorem 3 . 139

A.6 Proof of Theorem 4 . 140

B Implementation Details . 141

B.1 Bootstrap Test For Comparing Algorithms 141

B.2 Practical Considerations and Implementation Details for PFBP 141

B.2.1 Accurate Combination of Local p-values Using Fisher’s method . 141

B.2.2 Implementation of the Conditional Independence Test using Lo-

gistic Regression for Binary Targets 143

B.2.3 Score Tests for the Univariate Case 144

C Dataset Generation and Preparation . 145

C.1 Simulating Data from Bayesian Networks 145

C.1.1 Generating the Bayesian network structure 145

C.1.2 Generating the Bayesian network parameters 145

C.1.3 Sampling data from the generated Bayesian network 146

C.2 SNP Data Generation . 147

C.2.1 Phenotype Simulation . 147

C.3 Dataset Collection and Preparation for the Evaluation of TMFBS 148

D Additional Results . 151

D.1 Running Times of FBEDK, FBS, MMPC and LASSO 151

D.2 Accuracy of p-value Combination using Meta-Analysis and Evaluation

of the STD Rule . 152

D.2.1 Data Generation . 153

D.2.2 Simulation Results: Combined p-values vs Global p-values 153

D.2.3 Simulation Results: STD vs EPV for Determining the Required

Sample Size . 155

E Publications . 157

List of Figures

2.1 Example of Markov blankets of T in a Bayesian network (left) and a

maximal ancestral graph (right). The vertices in the Markov blanket are

shown with solid lines, and the remaining ones with dashed lines. In

both cases, the Markov blanket contains all adjacent vertices (parents and

children) and X5 (spouse of T). In addition, in the maximal ancestral

graph X9 and X10 are also contained, as they are connected with T

through a collider path (T→ X8 ↔ X9 ← X10). 12

3.1 High level description of forward selection and similar algorithms for

the linear regression problem. 22

4.1 The figure shows how the running time (top) and the number of selected

variables (bottom) vary with an increasing number of runs K for different

values of the threshold parameter α. The vertical lines indicate the

value of K for which FBEDK has converged. Running time increases

almost linearly with K. Most progress is made in the first few runs, and

additional runs increase running time while only selecting a few more

variables. 39

4.2 The figure shows how the AUC varies with an increasing number of runs

K for different values of the threshold parameter α, using non-linear and

linear models (top) or linear models only (bottom). There is no clear

pattern for which thresholds or values of K to prefer, but the optimal

values depend on the specific dataset, as well as on the predictive models

used. In most cases only a few runs are required to achieve maximal

AUC. 41

xix

4.3 The x-axis of the figures on the top row shows the difference in AUC

between FBEDK and FBS, with positive values indicating that FBEDK

performs better than FBS. The AUC of the top left figure is computed

by optimizing over all models, while for the one of the top right figure

only linear models were considered. The relative number of selected

variables (bottom left) shows the number of variables selected by FBEDK

compared to the ones selected by FBS. The speed-up (bottom right) is

computed as the one obtained by FBEDK over FBS. For all cases, the

distribution over all thresholds and datasets is shown, as well as the

mean and median values. The y-axis on all figures is the value of K

used by FBEDK. Overall, FBEDK has a virtually identical performance

with FBS, while being on average between 1 and 2 orders of magnitude

faster. 42

4.4 The figures show how often a feature selection method dominates an-

other (that is, has a higher AUC while selecting fewer variables), using

non-linear models (left) and linear models (right). An edge from method

A to B with weight w indicates that A dominates B in w datasets. Ex-

cept for FBED≤∞ for linear models, which gets dominated by FBS in

1 dataset, methods in the FBEDK family are never dominated by FBS,

MMPC or LASSO-FS, while typically dominating them in 1-3 datasets. . 46

4.5 LASSO-FS with limit on selected variables: The x-axis shows the

distribution of the difference in AUC of FBEDK and LASSO-FS, with

positive values indicating that FBEDK performs better. The y-axis cor-

responds to value of K used by FBEDK. The mean and median values

are shown in red and blue respectively. The average difference using

non-linear models is 0.78%, and 0.23% when using only linear models.

The difference can be explained by the arcene dataset, where LASSO-FS

outperforms FBEDK even when selecting the same number of variables.

A more detailed explanation is given in the main text. 48

4.6 The figures show the relative number of false selections by each al-

gorithm on randomly generated data. The expected number of false

selections is α · p, where α is the significance level and p the number of

variables. The numbers are computed as the ratio between the average

number of selected variables to the expected false positives. FBED0 and

FBED1 typically select fewer variables than expected, and their behavior

improves with increasing α and p. FBED∞ and FBS on the other hand

select more false positive variables, getting worse with larger values of α

or on datasets with more variables. 50

5.1 Left: Data partitioning of the algorithm. In the top the initial data matrix

D is shown with 6 features and instances I1, . . . , Im. In the bottom, the 6

features are partitioned to Feature Subsets F1 = {1,2,3} and F2 = {4,5,6}.
The rows are randomly partitioned to Sample Subsets S1, . . . , Sns, and

the Sample Subsets are assigned to Group Samples. Each Block Di,j is

physically stored as a unit. Right: Example of trace of a Forward Iter-

ation of PFBP. (a) The Remaining features, Alive features, and Selected
features are initialized. (b) All Data Blocks D1,1,D1,2,D4,1,D4,2 in the

first Group are processed in parallel (by workers). (c) The resulting

local p-values are collected (reduced) in a master node for each Alive

feature and Sample Set in the first Group (as well as the likelihoods,

not shown in the Figure). (d) Bootstrap-based tests determine which

features to Early Drop or Stop based on Π, or whether to Early Return

(based on Λ, not shown in the Figure). The sets R and A are updated

accordingly. In this example, X2, X5 and X6 are Dropped, X3 is stopped,

and only X1 and X4 remain Alive. Notice that always A ⊆ R. (e) The

second Group is processed in parallel (by workers) containing Blocks

D3,1,D3,2,D2,1,D2,2. (f) New local p-values for all features still Alive are

appended to Π. If G2 was the last Group, global p-values for the Alive

features would be computed and the one with the minimum value (in

this example X1) would be selected for inclusion in S. (g) In case, X1 and

X4 are deemed almost equally predictive (based on their log-likelihoods)

the current best is Early Returned. 52

5.2 Scalability of PFBP with increasing sample size (top left), feature size

(top right) and number of machines (bottom). Time and speed-up were

computed relatively to the first point on the x-axis, for the same number

of Runs. PFBP improves super-linearly with sample size, linearly with

feature size and running time is reduced linearly with increasing number

of machines. The results are similar for PFBP with 1 run and 2 runs. . 74

5.3 The effects of the early pruning heuristics is shown for the first 10 for-

ward iterations on the SNP data. The y-axis shows the number of vari-

ables on a logarithmic scale. The width of each iteration is proportional

to the number of groups processed. The early dropping heuristic is able

to quickly discard many features, reducing them by about an order of

magnitude. Early stopping filters out most variables after processing the

first group, and early return is applied two times. 83

5.4 The figure shows how the accuracy of PFBP on the SNP data increases

as it selects more features. The models are produced by PFBP at each

iteration with minimal computational overhead. In the first few itera-

tion, accuracy increases sharply, while in the later iterations a plateau is

reached, reaching a value of 77.59% with 70 features, with the maximum

being 77.62% with 84 features. This could be used as a criterion to stop

feature selection early. 84

6.1 An example showing that naive backtracking can explore the same state

twice. The set of currently selected variables is denoted as S′, and

C denotes the set of candidate variables returned by OV

using S′. For simplicity, we consider only 4 variables, assume that

OV does not remove any variables, and only show part of

the search space. We can see that there are two states (highlighted in

red) with the exact same set of selected variables. 97

6.2 An example showing how the proposed strategy can avoid repeating

states on the example considered in Figure 6.1. Note that the set of can-

didate variables C of any state does not contain the selected variables of

any of its siblings that come before that (i.e., are above it). For example,

variable F1 is selected only once (top state in the middle column), and

variable sets containing it are explored only in its children states, but not

on any of its siblings. However, variable F2 which is selected in the top

right state is also considered for selection in the bottom state, as they are

neither children nor siblings of each other. 98

6.3 An example of a multiple solution graph. 103

6.4 Examples of the forward merging (left) and OR merging (right) opera-

tions. 105

6.5 The figures show the average number of solutions over 20 runs with

increasing sample size for TMFBS (left) and TIE* (right). In both cases,

we can see that the number of solutions tends to decrease with increasing

sample size. 114

6.6 The figure shows the speed-up of TMFBS over TIE* with increasing

sample size. We can see that TMFBS is typically 1-2 orders of magnitude

faster than TMFBS on average. 114

6.7 Multiple solutions graphs for the solutions on the CnC violent (left) and

CT slice (right) datasets. The graphs contain 3 and 20 solutions, and

require only 5 and 15 nodes respectively to represent them (excluding s

and t). The first node contains 5 and 212 variables respectively, which

correspond to variables that are contained in all solutions, i.e., variables

that are indispensable. 115

D.1 The percentage of agreement is shown, which corresponds to how of-

ten combining local p-values and computing the p-value on all samples

leads to the same decision. The y-axis shows how the sample size per

sample set affects the agreement percentage. Both methods tend to agree

asymptotically for various class distributions and conditioning set sizes. . 154

List of Tables

4.1 Binary classification datasets used in the experimental evaluation. n is

the number of samples, p is the number of predictors and P(T = 1) is

the proportion of instances where T = 1. 35

4.2 Area under the ROC curve and number of selected variables for all

feature selection algorithms using linear and non-linear models. The

results are obtained after optimizing the hyper-parameters of the feature

selection and modeling algorithms. Bold and italic entries denote that

the method is significantly better or worse than all other feature selection

methods (excluding NO-FS) respectively. The score is the average rank

of each method over all datasets and the final rank is computed using

those scores. Methods that select more variables tend to also perform

better (Spearman correlation between AUC and variable rankings is -

0.976). 44

4.3 Area under the ROC curve and number of selected variables for all fea-

ture selection algorithms using linear models. The results are obtained

after optimizing the hyper-parameters of the feature selection and mod-

eling algorithms. Bold and italic entries denote that the method is

significantly better or worse than all other feature selection methods

(excluding NO-FS) respectively. The score is the average rank of each

method over all datasets and the final rank is computed using those

scores. Methods that select more variables tend to also perform better

(Spearman correlation between AUC and variable rankings is -0.595),

but the effect is not as strong as the one of the previous results (Table 4.2). 45

5.1 Binary classification datasets used in the comparative evaluation 75

xxv

5.2 The table shows the total running time for each algorithm and dataset.

The fastest algorithms are shown in bold, while algorithms that timed

out are indicated with an asterisk. PFBP significantly outperforms all

competitors in terms of running time, and is the only algorithm that is

able to terminate for all datasets within the given time limit of 12 hours.

Furthermore, except for 2 cases (FBS on the epsilon dataset and SFO on

the rcv1 dataset; see Table 5.3), none of the competing algorithms were

able to select a single variable within 12 hours. 77

5.3 The table shows the number of selected variables and the classification

accuracy of forward-selection based algorithms on all datasets. Classi-

fication accuracy is obtained by combining models CombLR (see Sec-

tion 5.1.5) as well as using the default MLlib logistic regression imple-

mentation, SparkLR. Bold numbers show the best performing method

for a given classifier, while numbers highlighted in red indicate that there

is a significant difference (> 1%) between the predictive performance ob-

tained using the classifiers, or that the classifier performs worse than the

trivial classifier. Overall, all feature selection methods perform similarly,

with PFBP and SFO typically having the best predictive performance.

PFBP achieves the better or on par performance by selecting fewer vari-

ables than its competitors. Furthermore, in most cases, combining mod-

els CombLR works as well or better than the logistic regression of MLlib,

SparkLR. 78

5.4 The table shows the total running time of each algorithm on all dis-

cretized datasets. The fastest algorithm for each dataset is shown in

bold. ITFS methods significantly outperform PFBP in terms of running

time, being almost 23 times faster than PFBP (for the avazu-app dataset). 79

5.5 The table shows the classification accuracy % for each algorithm and

dataset. Classification accuracy is obtained by combining models (see

Section 5.1.5) as well as using the default MLlib logistic regression im-

plementation. Bold numbers show the best performing method for a

given classifier, while numbers highlighted in red indicate that the clas-

sifier performs worse than the trivial classifier. In most cases, PFBP

produces better methods, often significantly so, having a higher accu-

racy of up to 5-9% on the rcv1, news20 and webspam datasets. As

before, in most cases, combining models works as good or better than

the implementation in MLlib. 79

5.6 Difference in classification accuracy between models obtained using CombLR

and SparkLR across all experiments. Positive values indicate that CombLR

performs better. In the continuous data from the comparison between

PFBP, SFO, UFS and FBS, N/A values correspond to cases where the

algorithm did not terminate. For the discretized data, N/A values corre-

spond to cases where the experiment was not performed. In all cases,

PFBP using CombLR produces models with similar or better perfor-

mance than SparkLR. 80

6.1 Summary of the datasets used for the experimental evaluation. We used

6 regression datasets and 5 binary classification datasets, with number

of variables ranging from 46 to 970, and samples sizes between 1994

and 60021. 110

6.2 The table shows the summary of the comparison. It shows the speed-up

of TMFBS over TIE*, the performance of the reference solution as well

as the range of performances over all returned solutions, the number

of additional solutions returned by each algorithm (#Sol.) (i.e., without

counting the reference) and how many of them are statistically equiva-

lent with the reference on the test set (#Eq.). Both algorithms produce

very similar results in terms of the number of solutions and equivalent

solutions identified, and all identified solutions have similar predictive

performance. In terms of number of statistical tests performed, TMFBS

performs around 2 times fewer tests than TIE*. 112

C.1 Binary classification and regression datasets used in the experimental

evaluation. n is the number of samples, p the number of variables, type

is the type of variables . 148

D.1 Running times in seconds on the full datasets. 152

D.2 Median value of c to obtain an agreement percentage between 85% and

95%. pmax corresponds to the proportion of the most frequent class,

while df is the degrees of freedom in the largest model. The relative

differences for the STD rule are smaller (less than 2 against over 2.5

for the EPV rule), suggesting it is more appropriate. A minimum value

of c = 10 with the proposed rule is recommended and used in the

experiments. 155

Chapter 1

Introduction

1.1 The Feature Selection Problem

In supervised machine learning tasks the goal is to construct a predictive model for

a quantity of interest T (also called target or outcome), using a set of predictors (also

called features, variables or attributes) F. The process of model construction typically

consists of several steps, such as feature extraction and construction (e.g., using dimen-

sionality reduction techniques), data pre-processing (e.g., missing value imputation

and standardization), feature selection and model training. Feature selection (also

called variable selection) is applied to select a subset of the input features F for use

in model training. The objective of the feature selection problem can be defined as

identifying a minimal-size subset of the features that is multivariately optimally predictive for

an outcome of interest T [145]. An introduction to the topic can be found in [63], while

a recent survey on feature selection methods is given in [94].

By selecting a subset of the features and removing the remaining ones from considera-

tion, it is often the case that a better model can be learned, especially in high-dimensional

settings. This may seem counterintuitive, as an ideal learning algorithm should in

principle be able to perform at least as well without applying feature selection, as

the information provided by the selected features is already contained in the input

data. Indeed, asymptotically (i.e, as sample size tends to infinity) and given a per-

fect learning algorithm, there is no reason to perform feature selection for predictive

purposes. In practice however, by removing irrelevant and redundant features the

task of the learning algorithm becomes easier, and thus often leads to better models.

This is because a good-quality selection of features facilitates modeling, particularly for

algorithms susceptible to the curse of dimensionality.

Another use of feature selection is to reduce the cost of measuring the features to make

operational a predictive model. For example, it can reduce the monetary cost and time of

measuring the features, or inconvenience to a patient of applying a diagnostic model

by reducing the number of medical tests and measurements required to perform on a

subject for providing a diagnosis.

1

2 Chapter 1. Introduction

In computer science and related fields, the main purpose of feature selection is to

aid in the creation of better predictive models, and to reduce the cost of measuring

features. We argue however, that often feature selection is the main objective of an analysis,

and not the learned model. This is particularly true in domains such as molecular

biology or life sciences, where the primary goal is to gain understanding and intuition

about the problem under study, and feature selection is used as a tool for knowledge

discovery. This is no accident, as the solution to the feature selection problem has been

shown to be directly related to the data-generating causal mechanism [4,86,145]. For

example, a medical researcher analyzing their molecular data of cancerous and healthy

tissues is not necessarily interested in building a model to classify tissues, as they can

already diagnose them on the microscope. Instead, the goal is to identify the features

(e.g., gene expressions) that are important for the diagnosis. These gene expressions

may improve understanding of the mechanism of the disease, and can lead to the

formulation of hypotheses and to further experiments. Similarly, a business executive

analyzing subscribers’ data, may care more about the features that predict attrition

than the actual predictive model. The predictive features may provide understanding

into what affects the subscribers’ behavior and how they can be influenced through

advertisement or promotions.

1.2 Challenges

1.2.1 Hardness of Feature Selection and Approximate Approaches

The feature selection problem is NP-hard1 [157]. Recently, there have been several

approaches to solve the problem exactly (also called the best subset selection problem)

for linear models, by formulating it as a mixed integer linear program and solving it

using existing off-the-shelf solvers [10, 110, 130]. Although the results are promising,

exact approaches are only able to handle a few hundred or thousand variables at most.

In order to efficiently tackle the problem, most approaches rely on some kind of ap-

proximation. The majority of approximate approaches can be roughly categorized into

stepwise methods [88,156], sparsity-based methods such as LASSO [139], information-

theoretic methods [22] and causal-based methods [4]. Even though they do not solve

the exact problem, it can be shown that they still are optimal for a large class of

distributions or under certain conditions. For instance, causal-based methods identify

the optimal solution (called the Markov blanket of T [86]) in distributions that can be

faithfully represented by causal networks (such as Bayesian networks [114, 136] and

maximal ancestral graphs [126]). Assuming faithfulness of the data distribution has led

1The proof is for the decision version of linear regression, and thus the general problem is trivially also
NP-hard.

1.2. Challenges 3

to algorithms that have been proven competitive in practice [4,5,89–91,101,117,146,147].

Furthermore, in a recent comparison between best subset selection, the standard for-

ward selection algorithm (an instance of stepwise methods) and the LASSO, it has

been shown that forward selection and best subset selection have almost identical per-

formance, and are competitive with the LASSO [70]. The theoretical properties and

empirical evidence encourage further research into approximate methods.

1.2.2 Feature Selection with Big Data

An important problem which has not received much attention, is to devise scalable

feature selection methods for Big Data. When applied to Big Data settings, feature

selection algorithms need to scale not only to millions of training samples but also

millions of variables. Specifically, in the context of Big Data featuring both high di-

mensionality and/or high sample volume, computations become CPU-intensive as well

as data-intensive and cannot be handled by a single machine; see [13, 14, 163, 166] for

the evolution of Big Data dimensionality in various ML datasets. The main challenges

arising in this context are (a) how can data be partitioned both horizontally (over sam-

ples) and vertically (over features), called hybrid-partitioning, so that computations can

be performed locally in each block and combined globally with a minimal communication

overhead; (b) what heuristics can quickly (e.g., without the need to go through all sam-

ples) and safely (providing theoretical guarantees of correctness) eliminate irrelevant

and redundant features.

Hybrid partitioning over both data samples and variables [92, 160] is an open

research issue in Big ML algorithms, while safe feature selection heuristics has been

proposed only for sparse Big Data [121, 135], i.e., for data where a large percentage

of values are the same (typically zeros). Most existing feature selection approaches

for Big Data mainly focus on high sample volume data, often assume sparsity, and

do not handle high dimensionality [163]. Existing parallel feature selection methods

fall into three categories: (a) methods that can deal only with large sample sizes and

low dimensional data [135], (b) methods that require shared-memory systems, thus

limiting the size of data they can handle [19,95,167], and (c) methods that can handle

all of the above but are overly simplistic or restrictive [104,121].

1.2.3 Multiple Solutions to the Feature Selection Problem

Another shortcoming of existing feature selection methods is that they arbitrarily seek

to identify only one solution to the feature selection problem. In practice, it is often

the case that multiple equivalent solutions exist [42, 81, 127, 137, 138]. For instance,

in domains such as molecular biology there often exist multiple solutions, possibly

because of the inherent redundancy present in the underlying biological system [42,

4 Chapter 1. Introduction

137]. We argue that, while a single solution may be acceptable for building a predictive

model, it is not sufficient when feature selection is employed for knowledge discovery. On the

contrary, it may be misleading. For example, if several sets of risk factors in a medical

study are collectively equally predictive of an event, then it is misleading to return

only one of them and claim that the rest are superfluous. Indeed, they are given the

selected ones, but it should be noted that there are other solutions that should also be

considered. Ideally, a feature selection algorithm should identify all solutions that are

“equivalent” in predicting the target (for some reasonable definition of equivalence).

Another advantage of outputting multiple solutions is that one could use any of them

for building a predictive model. This is especially important if it is very expensive to

measure certain variables, and each variable is associated with a cost. The problem

where each feature is associated with a cost is called cost-sensitive feature selection [71].

Methods returning multiple solutions could solve the cost-sensitive feature selection

problem by selecting the lowest-cost feature set among all equivalent solutions, while

retaining its predictive ability [138]. Finally, it is important to note that the problem

of multiple feature selection is also directly tied to the stability of feature selection methods.

The stability of a feature selection algorithm is measured by how sensitive its solutions

are to different datasets sampled from the same distribution; see [80] for a study of

stability of feature selection algorithms, and [112] for methods of measuring stability.

We argue that stability has to be defined in the context of multiple solutions instead of a

single solution as, by definition, any optimal feature selection algorithm will arbitrarily

select one out of all equivalent solutions, rendering measures of stability defined on

single solutions meaningless.

There exists only little work on the problem of identifying multiple solutions, and

most existing algorithms are based on heuristic approaches with little to no theoretical

guarantees. Examples include methods that repeatedly apply a feature selection algo-

rithm with some element of randomness (e.g., by resampling the data) [105, 117], or

methods that perform clustering to identify groups of highly correlated features (i.e.,

trying to identify groups of features that give similar predictive information) [75,84,96];

a more detailed review can be found in [138]. Another class of algorithms includes

causal-based methods that try to identify features that give the same information about

the target in the context of other variables [89, 138, 144]. Finally, the only algorithm

that is able to provably identify all equivalent solutions (under certain conditions) is

TIE* [138]. Its drawbacks are that it is computationally demanding, and quite complex

to understand and implement efficiently.

1.3. Outline and Main Contributions 5

1.3 Outline and Main Contributions

For this work, we chose to work on and extend the forward-backward selection (FBS)

algorithm, an instance of stepwise methods [88, 156]. These methods are some of the

oldest, simplest and most commonly employed feature selection methods. Forward

selection and variations of it has re-appeared under different names in the fields of

computer science, statistics and signal processing. It has been shown that they are

optimal for distributions that can be faithfully represented by causal graphs [101]2.

An attractive property is that it is a general algorithm that can be adapted to han-

dle (a) different learning tasks (e.g., classification, regression, survival analysis), (b)

mixed variable types (e.g., continuous and categorical), (c) different data types (e.g.,

cross-sectional and time-course data), (d) data with linear or non-linear relations, and

(e) heteroscedastic data. The only requirement is to use an appropriate conditional

independence test for the specific data and analysis task; many of the aforementioned

tests, along with others have been implemented in the MXM R package [89].

In Chapter 2 we provide an overview of the notation and terminology used through-

out the thesis, and proceed with an introduction to the necessary background knowl-

edge required for the remainder of the thesis. Then, in Chapter 3 we describe the main

principles of different approaches to the feature selection problem (stepwise methods,

sparsity-based, information-theoretic and causal-based), and show that they can all

be seen as stepwise methods or approximations thereof. This further encourages the

choice of extending the FBS algorithm, as the techniques introduced can be translated

and applied by other classes of feature selection methods. In Chapter 4 we propose the

early dropping heuristic to speed-up the forward selection algorithm, in Chapter 5 we

extend it to Big Data settings, and in Chapter 6 we show how a large class of greedy

forward-backward type algorithms can be extended to return multiple solutions; a

more detailed description of our contributions are given below. Finally, Chapter 7

contains several possible future research directions.

A list of publications produced during the course of my studies is given in Ap-

pendix E.

1.3.1 Speeding-up Forward Selection: the Forward-Backward Selection with

Early Dropping Algorithm

The main drawback of forward selection is its computational cost. In order to select k

variables, it performs O(p · k) tests for variable inclusion, where p is the total number

of variables in the input data. This is acceptable for low-dimensional datasets, but

2It can be shown that it is optimal under weaker assumptions. The only requirement is that the distri-
bution satisfies the local composition property with respect to T [138], which is one of the consequences of
faithfulness.

6 Chapter 1. Introduction

quickly becomes unmanageable with increasing dimensionality. Another issue is that

forward selection suffers from the multiple testing problem, resulting in p-values that

are too small, and hence the selection of a large number of irrelevant variables [56].

In Chapter 4 we extend the forward selection algorithm to deal with the problems

above. We propose a heuristic to reduce its computational cost without sacrificing

quality, while also selecting fewer variables and reducing multiple testing issues. The

idea is, in each iteration of the forward search, to filter out variables that are deemed

conditionally independent of the target given the current set of selected variables. Af-

ter termination the algorithm is allowed to run up to K additional times, each time

initializing the set of selected variables to the ones selected in the previous run. Finally,

backward selection is applied on the result of the forward phase. We call this algo-

rithm Forward-Backward selection with Early Dropping (FBEDK). This heuristic is

inspired by the theory of Bayesian networks and maximal ancestral graphs [126,136],

and similar ideas have been successfully applied by other feature selection methods [4].

We show that FBEDK retains the theoretical properties of FBS. Specifically, we show

that members of the FBEDK algorithmic family identify the optimal solution in dis-

tributions that are faithful to Bayesian networks or maximal ancestral graphs. In the

experimental evaluation we show that the proposed algorithm is 1-2 orders of magni-

tude faster than FBS, while selecting fewer or the same number variables and having

similar predictive performance. In a comparison between different members of the

FBEDK family and FBS we show that FBED0 and FBED1 also reduce the number

of false variable selections, when the data consist of irrelevant variables only. We also

investigated the behavior of FBEDK with increasing number of runs K, showing that

a relatively small K is sufficient in most cases to reach optimal predictive performance.

Afterwards, we compare FBEDK to FBS, feature selection with LASSO [139] and to the

Max-Min Parents and Children algorithm (MMPC) [146] and show that it often has

comparable predictive performance while selecting the fewest variables overall. Finally,

we compare FBEDK to feature selection with LASSO [139] when both algorithms are

limited to select the same number of variables, showing that both algorithms perform

similarly. This, along with the generality of FBEDK makes it an interesting alternative

to LASSO, especially for problems where LASSO requires specialized algorithms (like

the group LASSO algorithm for logistic regression [102], LASSO for mixed-effects lin-

ear models [131], and the LASSO and group LASSO methods for functional Poisson

regression [77]), which may be non-convex (as is the case for mixed-effects linear mod-

els [131] or for temporal-longitudinal data [60,143]) and computationally demanding

(taking several days to terminate on datasets with just 1000 predictors using Cox’s

proportional hazards model [47]).

1.3. Outline and Main Contributions 7

1.3.2 Extending FBEDK for Big Data: The Parallel Forward-Backward with Prun-

ing Algorithm

To address the challenges of Big Data described previously, in Chapter 5 we intro-

duce the Parallel, Forward-Backward with Pruning (PFBP) algorithm, an extension

of FBEDK for Big Data. PFBP does not rely on data sparsity and is generally ap-

plicable to both dense and sparse datasets; in the future, it could be extended to

include optimizations specifically designed for sparse datasets. To tackle paralleliza-

tion with hybrid partitioning (challenge (a) in Section 1.2.2), PFBP’s decisions rely

on p-values and log-likelihoods returned by the independence tests computed locally

on each data partition; these values are then combined together using statistical meta-

analysis techniques to produce global approximate p-values3 and log-likelihoods. This

technique essentially minimizes PFBP’s communication cost, as only local p-values and

log-likelihoods need to be communicated from workers to the master node in a cluster

of machines at each iteration of the algorithm. The idea of combining local statistics

to global statistics can also be applied to combining local predictive models trained

on the currently selected features, to provide global predictive models. To reduce the

number and workload of iterations required to compute a feature selection solution

(challenge (b) in Section 1.2.2), PFBP relies on several heuristics. The Early Drop-

ping heuristic allows the algorithm to scale-up with the number of variables. PFBP is

also equipped with two new heuristics for Early Stopping of consideration of features

within the same iteration, and Early Returning the current best feature for addition

or removal. The three heuristics are implemented using bootstrap-based statistical tests.

They are applied on the set of currently available local p-values and log-likelihoods to

determine whether the algorithm has seen enough samples to make safely (i.e., with

high probability of correctness) early decisions.

PFBP is first evaluated on a range of simulated data to assess its scalability proper-

ties. The data are simulated from randomly generated Bayesian networks in order to

incorporate a complex dependency structure among the variables and include not only

irrelevant features, but also redundant features. PFBP is found to scale super-linearly

with the available sample size as its heuristics allow it to make early decisions before

examining all available samples. It scales linearly with the number of features and

available cores. PFBP is compared on a set of real datasets spanning a range of fea-

ture and sample sizes against the main forward-selection algorithms in the literature

devised for Big Data architectures. PFBP is found more computationally efficient and

scalable than the state-of-the-art, selecting fewer features, without sacrificing predictive

performance. The algorithm is also evaluated against several variants of information-

3Alternatively, one can combine the test statistics that produce the p-values. This is conceptually equiva-
lent, although there may be differences in practice.

8 Chapter 1. Introduction

theoretic feature selection algorithms. The latter are specialized for discrete and sparse

data. PFBP is less computational efficient in this case, as it is not customized for dis-

crete data, but exhibits a higher predictive performance. In all tasks in the evaluation,

the predictive performance is assessed with models constructed with the standard lo-

gistic regression model in MLlib of the Spark distribution (hereafter SparkLR), as well

as the combined predictive model constructed from the local logistic regressions ones,

as proposed above (hereafter, CombLR). The experiments suggest that in several cases

SparkLR fails to converge and one obtains a model that is significantly worse than ran-

dom guessing (e.g., 45% accuracy of SparkLR vs. 85% accuracy for random guessing).

In contrast, CombLR is never worse than the trivial model more than 0.02%. While

the focus is on feature selection, these results indicate that methods for combining local

statistics and models may serve a more general purpose in Big Data analytics.

1.3.3 A Strategy to Extend Forward-Backward Type Algorithms for Identifying

Multiple Solutions

In Chapter 6 we deal with the problem of multiple feature selection. First, we consider

the taxonomy of features proposed by John et al. [78], which assigns features into

three categories: (a) strongly relevant features (provide unique information for the

outcome and are necessary for optimal prediction), (b) weakly relevant features (pro-

vide information for the outcome, but are not necessary for optimal prediction), and

(c) irrelevant features (do not provide any information for the outcome). We show that

this taxonomy is counter-intuitive in the presence of multiple solutions, and propose

an alternative which takes multiple solutions into account. Then, we state three defi-

nitions of statistical equivalence of solutions, show how they are related and how they

can be tested, and make connections to the problem of model selection. Afterwards,

we propose a general template for feature selection algorithms that consist of a greedy

forward phase and an optional backward phase, and then introduce a simple and com-

putationally efficient strategy to extend algorithms that fit into the above template for

identifying multiple solutions. The main idea is to view the problem as a state space

search problem over feature sets, and to use backtracking to explore multiple potential

solutions. We prove that, under certain conditions, the proposed strategy identifies all

equivalent solutions. We also propose a method to compactly represent and visualize

equivalent solutions, improving the interpretability of the results, which is especially

useful if the number of equivalent solutions is high. Finally, in experiments we com-

pare the proposed strategy to TIE* [138], the only alternative method with similar

theoretical guarantees, and show that both methods produce similar results in terms

of predictive performance and number of solutions, with the proposed algorithm being

faster.

Chapter 2

Preliminaries

We start by introducing the notation and terminology used throughout the thesis;

additional notation specific to a chapter will be presented afterwards. We use upper-

case letters to denote single variables (e.g., X), and bold upper-case letters to denote

sets of variables (e.g., Z). The number of elements in a set Z will be referred to

as |Z|. The terms variable, feature or predictor will be used interchangeably. The

target variable (also called outcome) will be referred to as T. The input dataset will

be denoted as D, and the number of variables and samples in it will be denoted as p

and n respectively. We use F to refer to the set of features in D, excluding the target

variable T. Conditional independence and dependence of sets of variables X and Y
given Z is denoted as X⊥Y | Z and X6⊥Y | Z respectively.

2.1 The Feature Selection Problem and a Taxonomy of Features

The solution S to the feature selection problem can be defined as identifying a minimal-

size subset of the variables that is optimally predictive for an outcome variable T of interest

[145], and is also called the Markov blanket of T [86]. More formally:

Definition 1 (Markov Blanket). A Markov blanket S of T is defined as S = argmin
|S′|

{S′ ⊆ F :

T⊥F \ S′ | S′}, that is, S is a minimal-size subset of F that renders T conditionally indepen-

dent of all variables not in S.

John et al. [78] classify features into three categories: strongly relevant (also called

indispensable), weakly relevant and irrelevant features; we will refer to this as the

JKP taxonomy hereafter.

Definition 2 (Strongly Relevant Feature). A feature X is strongly relevant for T if T6⊥X | F \
{X}.

Definition 3 (Weakly Relevant Feature). A feature X is weakly relevant for T if T⊥X | F \
{X} ∧ ∃Z ⊆ F \ {X},T6⊥X | Z.

9

10 Chapter 2. Preliminaries

Definition 4 (Irrelevant Feature). A feature X is irrelevant for T if ∀Z ⊆ F \ {X},T⊥X |Z.

Intuitively, a feature X is strongly relevant if it still provides additional predictive

information for T given (conditioned on) all other features, weakly relevant if it is not

strongly relevant but still provides information for T that is redundant given other

features (X is informative for T given some subset Z), and irrelevant if it does not

provide any information for T (X is uninformative for T given any subset Z). One

would expect that an optimal feature selection would only return the strongly relevant

features and filter out both the weakly relevant and the irrelevant features, as they

do not provide additional information in the presence of all strongly relevant features.

This is also what is suggested by the terminology of “strongly” and “weakly”. In

other words, one would expect that the strongly relevant features to correspond to

the Markov Blanket features. Indeed, this is correct but only when there is a single,

unique solution. However, as we describe in Section 6.1 when the solution to the

problem is not unique, then there is not a single Markov Blanket and correspondence

of strongly relevant features with the Markov Blanket breaks down.

2.2 Markov Blankets in Probabilistic Graphical Models

For distributions that can be represented by causal or probabilistic graphical models

such as Bayesian networks and maximal ancestral graphs, the Markov blanket can be

characterized based on their graphical structure. We proceed with a brief introduction

to Bayesian networks and maximal ancestral graphs; for a comprehensive introduction

to those models and their relation to causal modeling we refer the reader to [4, 114,

115,126,136].

A directed acyclic graph (DAG) is a graph that only contains directed edges (→)

and has no directed cycles. A directed mixed graph is a graph that, in addition to

directed edges also contains bi-directed edges (↔). The graphs contain no self-loops,

and vertices can be connected only by a single edge. Two vertices are called adjacent
if they are connected by an edge. An edge between X and Y is called into Y if X→ Y

or X ↔ Y. A path in a graph is a sequence of unique vertices 〈X1, . . . ,Xk〉 such that

each consecutive pair of vertices is adjacent. The first and last vertices in a path are

called endpoints. A path is called directed if ∀1 ≤ i < k, Xi → Xi+1. If X → Y is in a

graph, then X is a parent of Y and Y a child of X. A vertex W is a spouse of X, if

both share a common child. A vertex X is an ancestor of Y, and Y is a descendant
of X, if X = Y or there is a directed path from X to Y. A triplet 〈X,Y,Z〉 is called a

collider if Y is adjacent to X and Z, and both, X and Z are into Y. A triplet 〈X,Y,Z〉
is called unshielded if Y is adjacent to X and Z, but X and Z are not adjacent. A path

p is called a collider path if every non-endpoint vertex is a collider on p.

2.2. Markov Blankets in Probabilistic Graphical Models 11

2.2.1 Bayesian Networks

Bayesian networks (BNs) consist of a DAG G and a probability distribution P over

a set of random variables V. Each such variable is represented by a vertex in G,
and thus, the terms variable and vertex will be used interchangeably. The DAG

represents dependency relations between variables in V and is linked with P through

the Markov condition, which states that each variable is conditionally independent of

its non-descendants given its parents. Those are not the only independencies encoded

in the DAG; the Markov condition entails additional independencies, which can be

read from the DAG using a graphical criterion called d-separation [114,152]. In order

to present the d-separation criterion we first introduce the notion of blocked paths. A

(not necessarily directed) path p between two vertices X and Y is called blocked by

a set of vertices Z if there is a vertex X on p that is a collider and, neither X nor

any of its descendants are in Z, or if X is not a collider and it is in Z. If all paths

between X and Y are blocked by Z, then X and Y are d-separated given Z; otherwise

X and Y are d-connected given Z. The faithfulness condition states that all and only

those conditional independencies in P are entailed by the Markov condition applied to

G. In other words, the faithfulness condition requires that two variables X and Y are

d-separated given a set of variables Z if and only if they are conditionally independent

given Z.

2.2.2 Directed Maximal Ancestral Graphs

Bayesian networks are not closed under marginalization: a marginalized DAG, con-

taining only a subset of the variables of the original DAG, may not be able to exactly

represent the conditional independencies of the marginal distribution [126]. Directed
maximal ancestral graphs (DMAGs) [126] are an extension of BNs, which are able

to represent such marginal distributions, that is, they admit the presence of latent

confounders. The graphical structure of a DMAG is a directed mixed graph with

the following restrictions: (i) it contains no directed cycles, (ii) it contains no almost

directed cycles, that is, if X ↔ Y then neither X nor Y is an ancestor of the other,

and (iii) there is no primitive inducing path between any two non-adjacent vertices,

that is, there is no path p such that each non-endpoint on p is a collider and every

collider is an ancestor of an endpoint vertex of p. The d-separation criterion analogue

for DMAGs is called the m-separation criterion, and follows the same definition.

2.2.3 Markov Blankets

In BNs, the Markov blanket of T consists of its parents, children and spouses. For

DMAGs it is slightly more complicated: the Markov blanket of T consists of its parents,

12 Chapter 2. Preliminaries

Figure 2.1: Example of Markov blankets of T in a Bayesian network (left) and a maximal

ancestral graph (right). The vertices in the Markov blanket are shown with solid lines, and

the remaining ones with dashed lines. In both cases, the Markov blanket contains all ad-

jacent vertices (parents and children) and X5 (spouse of T). In addition, in the maximal

ancestral graph X9 and X10 are also contained, as they are connected with T through a

collider path (T→ X8 ↔ X9 ← X10).

children and spouses, as well as its district (all vertices that are reachable by bi-directed

edges), the districts of its children and the parents of vertices in all districts [125]. An

example of the Markov blanket of T in a Bayesian network and a maximal ancestral

graph are shown in Figure 2.1. An alternative definition is given next.

Definition 5 (Markov Blankets in Bayesian Networks and Directed Maximal Ancestral Graphs).

The Markov blanket of T in a BN or DMAG consists of all vertices adjacent to T, as well as

all vertices that are reachable from T through a collider path.

A proof sketch follows. Recall that a collider path of length k − 1 is of the form

X1∗ → X2 . . .Xk−1 ← ∗Xk, where the path between X2 and Xk−1 contains only bi-

directed edges. Given this, it is easy to see that Definition 5 includes vertices directly

adjacent to T, its spouses (collider path of length 2), and in the case of DMAGs,

vertices D in the district of T (T↔ · · · ↔ D), vertices D in the district of any children

C of T (T → C ↔ · · · ↔ D), and all parents P of any vertex D in some district

(T∗ → · · · ↔ D← P). As the previous cases capture exactly all possibilities of vertices

reachable from T through a collider path, Definition 5 does not include any additional

variables that are not in the Markov blanket of T.

2.3 The Semi-Graphoid Axioms

The semi-graphoid axioms [115] are general axioms about conditional independence

that hold in any probability distribution P. Other axioms also exist, but only apply for

2.4. Stepwise Feature Selection 13

special distributions P.

Symmetry X⊥Y | Z⇒ Y⊥X | Z
Decomposition X⊥Y ∪W | Z⇒ X⊥Y | Z ∧X⊥W | Z
Weak Union X⊥Y ∪W | Z⇒ X⊥Y | Z ∪W
Contraction X⊥Y | Z ∧X⊥W | Y ∪ Z⇒ X⊥Y ∪W | Z
Intersection X⊥Y | W ∪ Z ∧X⊥W | Y ∪Z⇒ X⊥Y ∪W | Z

(If P is strictly positive)

Composition X⊥Y | Z ∧X⊥W | Z⇒ X⊥Y ∪W | Z
(If P is faithful to a BN/DMAG G)

In case faithfulness is violated, the intersection and composition properties do not

hold. The above axioms are useful tools for proving properties of algorithms, and will

be used later on to prove correctness of the presented algorithms.

2.4 Stepwise Feature Selection

Stepwise methods [88,156] start with some set of selected variables and try to improve

it in a greedy fashion, by either including or excluding a single variable at each step.

There are various ways to combine those operations, leading to different members of

the stepwise algorithmic family. Two popular members of the stepwise family are

the forward selection and backward selection (also known as backward elimination)

algorithms. Forward selection starts with a (usually empty) set of variables and adds

variables to it, until some stopping condition is met (e.g., no variable provides addi-

tional information for T, or if a pre-specified number of variables have been selected).

Similarly, backward selection starts with a (usually complete) set of variables and then

excludes variables from that set, again, until some stopping criterion is met. Typically,

both methods try to include or exclude the variable that offers the highest performance

increase (i.e., resulting in a set of variables with higher predictive performance). We

will call each step of selecting (removing) a variable a forward (backward) iteration.
Executing forward (backward) iterations until termination will be called a forward

(backward) phase respectively.

Algorithm 1 shows a general version of stepwise selection. To evaluate the per-

formance of a set of variables, it uses the function P. Examples for P are the

log-likelihood for logistic regression, the partial log-likelihood for Cox regression and

the F-score for linear regression, or their AIC [2] or BIC [132] penalized variants. We

note that P is not limited to any of the above; the only requirement is that it can be

used to evaluate and compare sets of variables. The selection criterion C compares the

performance of two sets of variables as computed by P; we will describe different

selection criteria in the next section. Naturally, different stopping criteria can be em-

14 Chapter 2. Preliminaries

Algorithm 1 Stepwise Selection

Input: DatasetD, Target T
Output: Selected Variables S

1: S← ∅ //Set of selected variables

2: R← F //Set of remaining candidate variables

3: while S changes do

4: N← {S} //Candidate sets of selected variables for next iteration

5: if Forward Step Enabled then

6: //Consider adding variables from R that improve S
7: for all Fi ∈ {F ∈ R : PERF(S ∪ {F}) >

C

PERF(S)} do

8: N←N ∪ {S ∪ {Fi}}
9: end for

10: end if

11: if Backward Step Enabled then

12: //Consider removing variables from S that do not worsen S
13: for all Fi ∈ {F ∈ S : PERF(S \ {F}) ≥

C
PERF(S)} do

14: N←N ∪ {S \ {Fi}}
15: end for

16: end if

17: //Identify best set of selected variables from N
18: S← argmax

S′∈N
PERF(S′)

19: //Update set of remaining variables

20: R← UPDATEREMAININGVARIABLES(R,S)
21: end while

22: return S

bedded into the selection criterion (e.g., to stop once a maximum number of variables

has been selected), and thus there is no need to explicitly use a stopping criterion in

the presentation of the algorithm. We will use the predicates >
C
, ≥

C
and =

C
to compare

two sets of variables; they are true if the left-hand-side value is greater, greater or

equal, or equal than the right-hand-side value respectively, according to the criterion

C.

We proceed with the description of the stepwise selection algorithm. It starts with

an empty set of selected variables S, and initially considers all variables F as candidates

for selection. At each iteration it considers all sets of selected variables N that can be

obtained by selecting a variable from R, or by removing one of the already selected

variables from S. When including variables, only the ones that strictly improve S
are considered, while variables can be removed as long as they don’t decrease the

performance. Afterwards, the best set S ∈ N is chosen, and the set of remaining

variables is updated (URV function). How R is updated depends

2.4. Stepwise Feature Selection 15

on the specific instantiation of the algorithm. Typically, one can just set R ← F \
S. Now, depending on when forward and/or backward steps are enabled, one can

obtain different versions of the stepwise algorithmic family. For instance, forward or

backward selection are trivially obtained by disabling the backward and forward steps

respectively, while forward-backward selection can be obtained by disabling backward

selection as long as variables can be selected, and switching to backward selection

only afterwards. The implementation details of enabling or disabling forward and

backward steps are omitted for brevity.

2.4.1 Criteria for Variable Selection

Next we will describe some performance functions and selection criteria that are em-

ployed in practice; for additional details see [88, 156]. The most common choices

are statistical tests, information criteria and cross-validation. We will focus on sta-

tistical tests, as we use them in the remainder of the thesis. We will also describe

information criteria and contrast them to statistical tests, but will not further consider

cross-validation, mainly because of its high computational cost.

Statistical Tests and Conditional Independence

Since the variable sets tested at each iteration are nested (i.e., one of the sets is a subset

of the other), one can employ a nested likelihood-ratio test (LRT) (or asymptotically

equivalent approximations thereof such as score tests and Wald tests [46]) for nested

models as a selection criterion. This is done by using an appropriate statistical model

M for the data and outcome (e.g., logistic regression for categorical outcomes), and

testing whether there is a significant difference of how well the variable sets fit the

data. Let T be the outcome and X, X∪Y be two sets of variables, with the latter being

a superset of the former, and let M(T|Z) denote the predictive model obtained for T

using statistical modelM and variables Z. The LRT fits two models: (i) modelM(T|X)

using only variables X (the null model), and (ii) model M(T|X∪Y) using all variables

X∪Y (the alternative model). Let LL(T|X) and LL(T|X∪Y) denote the log-likelihood

of models M(T|X) and M(T|X ∪Y) respectively. The test statistic is computed as

Statistic ≡ −2 · (LL(T|X) − LL(T|X ∪Y))

(hence the name likelihood-ratio test). Under the null hypothesis that both models

fit the data equally well, the test statistic follows asymptotically a χ2 distribution with

P(T|X∪Y)−P(T|X) degrees of freedom [159] 1, where P denotes the number of

1This result assumes that the larger hypothesis is correctly specified. In case of model misspecification, the
statistic follows a different distribution [57]. Methods to handle model misspecification have been proposed

16 Chapter 2. Preliminaries

parameters (degrees of freedom) of a model. For continuous features in Y, only one

parameter is used so the difference in degrees of freedom increases by 1. Categorical

predictors can be used by simply encoding them as K − 1 dummy binary features,

where K is the number of possible values of the original feature. In this case, the

difference in degrees of freedom increases by K− 1. In the formulation of Algorithm 1,

the performance P of a LRT is computed using the log-likelihood of the model, and

the criterion C tests the hypothesis that both variable sets are equivalent for T with

respect to some prespecified significance level α.

Alternatively, one can view the LRT as testing whether the coefficients of Y in

model M(T|X ∪Y) are zero, or equivalently that Y is conditionally independent of the

target T given X relative to the statistical model used. Thus, LRT for nested models

are essentially conditional independence tests, relative to some statistical model, and

assuming that the model is correctly specified. Conditional independence of Y with T

given X implies that P(T|X ∪Y) = P(T|X), whenever P(X > 0) (X is allowed to be the

empty set). Thus, when conditional independence holds, Y is not predictive of T when

X (and only X) is known. The null hypothesis is that features Y are probabilistically

independent of T (i.e., redundant or irrelevant) given a set of variables X. The test

returns a p-value, which corresponds to the probability that one obtains deviations

from what is expected under the null hypothesis as extreme or more extreme than the

deviation actually observed with the given data, and will be denoted as T(T,Y|X).

In practice, decisions are made using a threshold α (significance level) on the p-values;

the null hypothesis is rejected if the p-value is below α. Examples of LRT-based

conditional independence tests are the G-test [1] for multinomial data, while the partial

correlation test [54] is a conditional independence test for multivariate Gaussian data,

which is asymptotically equivalent to a LRT using linear regression [31]. In general,

LRT can be constructed for any type of data for which an algorithm for maximizing the

data likelihood exists, such as binary, multinomial or ordinal logistic regression, linear

regression and Cox regression to name a few, enabling them to handle different types

of outcome T, as well as mixed continuous and categorical variables in X and Y (see

above). Finally, we note that one is not limited to LRT conditional independence tests,

but can use any appropriate conditional independence test, such as a kernel-based

test [164] which also handle non-linear dependencies.

A problem when using statistical tests for feature selection is that, due to multiple

testing, the test statistics do not have the claimed distribution [69] and the resulting

p-values are too small [56, 67], leading to a high false discovery rate. Approaches

to deal with problem include methods that dynamically adjusting significance levels

[76], or methods that directly deal with the problem of sequential testing of stepwise

by [158] and [154]. A method for dealing with model misspecification in model selection with information
criterion is presented in [98]. As this problem is out of this thesis’s scope, we did not further consider it.

2.4. Stepwise Feature Selection 17

procedures [61, 140]. In order to perform tests on the model returned by stepwise

selection, one can use resampling-based procedures to correct the p-values [52]. In

addition to the above problems, we note that the model returned by stepwise selection

is sub-optimal, as it will have inflated coefficients [56], reducing its predictive ability.

If the main focus is to obtain a predictive model, methods performing regularization

(like L1, L2 or elastic net) are more appropriate. In any case, procedures like cross-

validation should be used to estimate out-of-sample predictive performance of the final

model. We will not consider the above hereafter; we note however that the proposed

algorithms are orthogonal to those methods and could be used in conjunction with

them.

Information Criteria

Another way to compare two (or more) competing models is to use information criteria,

such as the Akaike information criterion (AIC) [2] or the Bayesian information criterion

(BIC) [132]. Information criteria are based on the fit of a model but additionally

penalize the model by its complexity (that is, the number of parameters). The AIC

and BIC scores of a model M(T|X) for T based on X are defined as follows:

AIC(T|X) ≡ −2 · LL(T|X) + 2 · P(T|X)

BIC(T|X) ≡ −2 · LL(T|X) + log(n) · P(T|X)

where n is the number of samples. In the framework described above, information

criteria can be applied by using the information criterion value as the performance

function P, and a selection criterion C that simply compares the performance of

two models, giving preference to the one with the lowest value. Alternatively, one

could check that the difference in scores is larger than some threshold.

Neither AIC nor BIC are designed for cases where the number of predictors p is

larger than the number of samples n [29], and thus also suffer from a high false dis-

covery rate, similar to statistical tests. There have been several extensions to handle

this problem, like the extended Bayesian information criterion (EBIC) [29], the gener-

alized information criterion (GIC) [49,83], and the corrected risk information criterion

(RICc) [165], to name a few.

Compared to statistical tests, information criteria are somewhat limited as they can

only be computed for models where the model complexity is known (like generalized

linear models). An example where information criteria are not applicable are kernel-

based tests [164]. Thus, statistical tests are inherently more general than information

criteria. We will show next how, in case of nested models, using BIC directly cor-

responds to a likelihood-ratio test for some significance level α; the same reasoning

18 Chapter 2. Preliminaries

Algorithm 2 Forward-Backward Selection with Conditional Independence Tests

Input: DatasetD, Target T, Significance Level α

Output: Selected Features S
S← ∅ //Set of selected variables

R← F //Set of remaining candidate variables

//Forward Phase: Iterate until no more features can be selected

while S changes do

//Identify F∗ with minimum p-value conditional on S
F∗← argmin

F∈R
TEST(T,F|S)

//Select F∗ if conditionally dependent with T given S
if TEST(T,F∗ |S) ≤ α then

S← S ∪ {F∗}
R← R \ {F∗}

end if

end while

//Backward Phase: Iterate until no more features can be removed from S
while S changes do

//Identify F∗ with maximum p-value conditional on S \ {F∗}
F∗← argmax

F∈S
TEST(T,F|S \ {F})

//Remove F∗ if conditionally independent with T given S \ {F∗}
if TEST(T,F∗ |S \ {F∗}) > α then

S← S \ {F∗}
end if

end while

return S

can be applied to AIC and all information criteria that are computed based on the

model likelihood and a penalty term. Let X and X∪Y be two candidate variables sets.

X∪Y is selected (that is, the null hypothesis is rejected) if BIC(T|X) > BIC(T|X∪Y), or
equivalently if 2 · LL(T|X ∪Y) − 2 · LL(T|X) > log(n) · (P(T|X ∪Y) − P(T|X)). Note

that the left-hand side term equals the statistic of a likelihood-ratio test, whereas the

right-hand size corresponds to the critical value. The statistic follows a χ2 distribution

with k = P(T|X ∪ Y) − P(T|X) degrees of freedom, and thus, the significance level

equals α = 1 − F(log(n) · k; k), where F(v; k) is the χ2 cdf with k degrees of freedom at

value v.

2.4.2 Forward-Backward Selection with Conditional Independence Tests

The Forward-Backward Selection algorithm (FBS) is an instance of the stepwise feature

selection algorithm family [88, 156]. It is also one of the first and most popular

algorithms for causal feature selection [100, 101, 147], and has been shown to identify

2.5. Combining p-values Using Meta-Analysis Techniques 19

the Markov blanket in distributions that can be faithfully represented by Bayesian

networks and maximal ancestral graphs [138]. It can be shown to be optimal even

under weaker assumptions. As shown by Statnikov et al. [138], the only requirement

is that the local composition property with respect to T holds, which is a consequence

of faithfulness (see semi-graphoid axioms in Section 2.3), i.e., that the composition

property holds with X = {T}. Algorithm 2 shows an instantiation of FBS using

conditional independence tests.

We chose to present it using conditional independence tests for several reasons.

First of all, as shown in the previous section, likelihood-ratio tests, F-tests (which are

Wald tests, and asymptotically equivalent to LRT) and information criteria, all of which

are usually used in the statistical literature, can be viewed as conditional independence

tests. Formulating it using conditional independence tests allows one to also use

tests not based on LRT (e.g., kernel tests [164]). Furthermore, it has the important

advantage that it allows one to adapt and apply the algorithm to any type of outcome for

which an appropriate statistical test of conditional independence exists. This way, the

same feature selection algorithm can deal with different data types2. Finally, in the

context of feature selection, the p-values returned by statistical hypotheses tests of

conditional independence can be employed not only to reject or accept hypotheses, but

also to rank the features according to the predictive information they provide for T given S.
Intuitively, this can be justified by the fact that everything else being equal (i.e., sample

size, type of test) the p-values of such tests in case of dependence have (on average)

the reverse ordering with the conditional association of the variables with T given S.
So, the basic variant of the algorithm selects to add (remove) the feature with the lower

(higher) p-value in each Forward (Backward) Iteration.

2.5 Combining p-values Using Meta-Analysis Techniques

A set of p-values stemming from testing the same null hypothesis (e.g. testing the

conditional independence of X and Y given Z) can be combined using statistical

meta-analysis techniques into a single p-value. Multiple such methods exist in the

literature [97]. Fisher’s combined probability test [53] is one such method that has

been shown to work well across many cases [97]. It assumes that the p-values are

independent and combines them into a single statistic using the formula

Statistic ≡ −2 ·
K
∑

i=1

log(pi)

2For example, the R-package MXM [89] includes asymptotic, permutation-based, and robust tests for nom-
inal, ordinal, continuous, time-course, percentage, count, and censored time-to-event targets.

20 Chapter 2. Preliminaries

where K is the number of p-values, pi is the i-th p-value, and log is the natural

logarithm. The statistic is then distributed as a χ2 random variable with 2 ·K degrees

of freedom, from which a combined p-value is computed.

2.6 Bootstrap-based Hypothesis Testing

The bootstrap procedure [45] can be used to compute the distribution of a statistic of

interest. Bootstrapping is a general-purpose non-parametric resampling-based proce-

dure which works as follows: (a) resample with replacement from the input values a

sample of equal size, (b) compute the statistic of interest on the bootstrap sample, (c)

repeat steps (a) and (b) many times to get an estimate of the bootstrap distribution

of the statistic. The bootstrap distribution can then be used to compute properties

of the distribution such as confidence intervals, or to compute some condition of the

statistic. A simple example application on the latter follows; more examples can be

found in [45].

Let μX denote the mean of random variable X and let μX denote the estimate of the

mean of X given a sample of X. Assume we are given a sample of size n of random

variable X and we want to compute the probability that the mean of X is larger than

10, P(μX > 10). That probability is a Bernoulli random variable, and the statistic in

this case is a binary valued variable (i.e., taking a value of 0 or 1 with probability

P(μX > 10)). Using bootstrapping, P(μX > 10) can be estimated as follows: (a) sample

with replacement n values of X and create the b-th bootstrap sample Xb, (b) estimate

the mean of Xb, denoted as μb
X, and compute I(μb

X > 10), where I is the indicator

function returning 1 if the inequality holds and 0 otherwise, and (c) repeat (a) and (b)

B times (e.g. B= 1000). P(μX > 10) is then computed as

P(μX > 10) =
I(μX > 10) +

∑B
i=1 I(μ

b
X > 10)

B+ 1

Note that, we also compute the statistic on the original sample (which is sample from

the bootstrap distribution), and thus divide by B+ 13.

3Often, the original sample is not considered and thus the estimate is computed by using only the boot-
strap samples and dividing by B. However, it has been noted (in the context of bootstrap-based hypothesis
testing) that one should also consider the original sample statistic (see Section 4.2 in [40]), which is why we
chose to do so too.

Chapter 3

Variations of Stepwise Feature Selection

Methods and Their Relation to Sparsity-

Based, Information Theoretic and Causal-

Based Approaches

In this chapter we will briefly review and compare some common and popular classes

of feature selection algorithms that have appeared in the fields of statistics, computer

science and signal processing. These include members of the stepwise selection fam-

ily [88, 156], sparsity-based methods [139], information-theoretic methods [22], and

causal-based methods [4]. We will show that many prominent methods from different

fields are simple variations or approximations of forward selection or the more gen-

eral stepwise selection, and that the same algorithms have reappeared multiple times

across fields. Based on this view and connections between the algorithms, we argue that any

extension to stepwise methods, such as the ones proposed in this thesis, can be translated and

directly be applied with any those feature selection algorithms.

The forward selection algorithm has often reappeared under different names. In

the statistical literature, it appears as forward stepwise regression, forward stepwise selection,

or simply forward selection [44,68,70,88,156]. In the signal processing community for-

ward selection is known as orthogonal least squares [30]. In computer science, variations

of the forward-backward selection has reappeared in the context of Markov blanket

discovery and Bayesian network learning, such as the Grow-Shrink (GS) [100,101] and

the Incremental Association Markov Blanket (IAMB) algorithms [147]. A high level de-

scription of forward selection is given in Figure 3.1. This view will allow an easier

comparison between forward selection and other similar algorithms.

21

22

Chapter 3. Variations of Stepwise Feature Selection Methods and Their Relation to

Sparsity-Based, Information Theoretic and Causal-Based Approaches

Forward Selection

1) Initialize the set of selected variables to S = ∅.
2) Fit a modelM(T|S) for T using all variables S.

3) Find Fi ∈ F \S that, when selected, produces the best fitting modelM(T|S∪{Fi}), and

add it to S.

4) Repeat steps 2 and 3 until the stopping condition is met.

Orthogonal Matching Pursuit

1) Initialize the set of selected variables to S = ∅.
2) Fit a modelM(T|S) for T using all variables S.

3) Find Fi ∈ F \ S that has the largest correlation with the residuals of the current model

M(T|S), and add it to S.

4) Repeat steps 2 and 3 until the stopping condition is met.

Forward Stagewise Regression

1) Initialize a modelM(T|F), where each coefficient is initially set to zero (i.e., S = ∅).

2) Find Fi ∈ F that has the largest correlation ci with the residuals of the current model

M(T|F).
3) Update the modelM(T|F), by updating the coefficient bi of Fi as bi ← bi + ε · sign[ci],
where ε is a prespecified step size hyper-parameter.

4) Repeat steps 2 and 3 until the stopping condition is met. Return the set of variables

with non-zero coefficients inM(T|F).

Least Angle Regression

1) Initialize a modelM(T|F), where each coefficient is initially set to zero (i.e., S = ∅).

2) Find Fi ∈ F that has the largest correlation ci with the residuals of the current model

M(T|F).
3) Change the coefficient of bi and of all non-zero coefficients inM(T|F) in the direction

defined by their joint least-squares fit, until some other variable has as much correlation

with the residual.

4) Repeat steps 2 and 3 until the stopping condition is met. Return the set of variables

with non-zero coefficients inM(T|F).

Figure 3.1: High level description of forward selection and similar algorithms for the linear

regression problem.

3.1 Variations of Forward Selection

Next, we describe several methods that can be viewed as variations of the standard

forward selection algorithm. For simplicity, we will describe them for the linear re-

gression problem, although some of them have been also extended for other problems

(e.g., for generalized linear models). Furthermore, we assume that all variables have

been standardized to have zero mean and unit variance, and that the outcome variable

3.1. Variations of Forward Selection 23

T has been centered (i.e., it has zero mean).

3.1.1 Orthogonal Matching Pursuit

The orthogonal matching pursuit (OMP) algorithm [39, 113] has appeared in the signal

processing community, and can be seen as an approximation to forward selection.

A high-level description of OMP is shown in Figure 3.1. The main difference with

forward selection is that it first identifies the next variable Fi to select based on its

correlation with the residuals of the current model, and then includes Fi in the model.

In contrast, forward selection selects the variable that, when included, leads to the

best model. Thus, OMP can be seen as approximating the variable ranking of forward

selection using the correlation of features with the residuals of the current model. This

approximation makes OMP more computationally efficient than forward selection, as

OMP fits a single model at each iteration, while forward selection fits a model for

each non-selected variable. A comparison between OMP and forward selection (called

orthogonal least squares) can be found in [11].

3.1.2 Forward Stagewise Regression and Least Angle Regression

Another class of algorithms are Forward Stagewise Regression (FSR) and Least Angle

Regression (LARS) [44]. In contrast to forward selection and OMP they do not fit a full

model at any stage, but gradually modify the coefficients of the variables in the current

model. A description of both algorithms, based on [68], is shown in Figure 3.1. At

each step, FSR updates the coefficient of the best variable Fi by a factor (step size) of ε

in the direction of the correlation of Fi with the residuals (the sign of the correlation).

Thus, it may require many steps before including another variable in the model. LARS

is an extension of FSR that updates the coefficient of the best variable Fi “as much as

possible”, and thus will “fully include” a variable at each step. Both algorithms have

the same computational advantage over forward selection as OMP, as they rank the

variables based on the correlation with the residuals. A detailed description of the

relationship between FSR and LARS can be found in Section 3.2 in [44], while a

comparison of LARS and OMP is given in [66].

3.1.3 The Lasso

The LASSO [139] is perhaps one of the most widely used approaches to the fea-

ture selection problem. The feature selection problem is expressed as a global opti-

mization problem using an L1 penalty on the feature coefficients. Let D(M(T|S)) ≡
−2 · LL(M(T|S)) be the deviance of a (generalized linear) model using m variables S,
and β be the vector of coefficients of S in M(T|S). For linear regression, the deviance

24

Chapter 3. Variations of Stepwise Feature Selection Methods and Their Relation to

Sparsity-Based, Information Theoretic and Causal-Based Approaches

is the mean squared error. The optimization problem LASSO solves can be expressed

as

min
β∈Rm

D(M(T|S)) + λ
∥

∥

∥β
∥

∥

∥

1

where
∥

∥

∥β
∥

∥

∥

1
is the L1 norm and λ ≥ 0 is a regularization parameter. The solutions

LASSO returns are sparse, meaning that most coefficients are set to zero, thus implicitly

performing feature selection. The regularization parameter λ controls the number of

non-zero coefficients in the solution, with larger values leading to sparser solutions.

This problem formulation is a convex approximation of the more general best subset

selection (BSS) problem [106], defined as follows to match the LASSO optimization

formulation

min
β∈Rm

D(M(T|S)) + λ
∥

∥

∥β
∥

∥

∥

0

where
∥

∥

∥β
∥

∥

∥

0
is the 0-norm (i.e., the total number of variables with non-zero coefficients).

Conditions for optimal feature selection with LASSO are given in [103].

While LASSO is defined as a global optimization problem, it has been proven that it

can be solved efficiently with a modified version of LARS for many tasks (e.g., for linear

regression [44]). Intuitively, the only change required in LARS is that, once a non-zero

coefficient becomes zero during an update, to set it to 0 and re-compute the update

step. Thus, in contrast to forward selection, LARS and FSR, LASSO may also remove

variables, and can be seen as a variation of the general stepwise selection instead. A

detailed comparison of LASSO, LARS and FSR is given in [44].

3.2 Information Theoretic Feature Selection Algorithms

Information theoretic feature selection (ITFS) methods rely on the estimations of the

mutual information (MI) and the conditional mutual information (CMI) to rank and

select features, and many variations have appeared in the literature, such as the

Minimum-Redundancy Maximum-Relevance (MRMR) [118], the Joint Mutual Information

(JMI) [161] and the Conditional Mutual Information Maximization (CMIM) [55] algo-

rithms; an overview of prominent ITFS methods and their relation is presented in [22].

ITFS methods assume discrete features and outcomes; thus, we will hereafter assume

that non-discrete data have been discretized. A more detailed description follows.

The criterion J of several ITFS methods1 for evaluating feature Xk can be expressed

as

J(Xk) = I(T;Xk) − β
∑

Xj∈S
I(Xj;Xk) + γ

∑

Xj∈S
I(Xj;Xk|T)

1There are methods that do not fall into this framework, but we will not go into more detail; see [22] for
more details.

3.2. Information Theoretic Feature Selection Algorithms 25

where β and γ are parameters taking values in [0, 1], and I denotes the mutual or

conditional mutual information. The intuition for J(Xk) above is that J increases with

the information Xk directly provides for the target T (the first term), decreases with

the information the other selected features already provide for Xk (second group of

terms), and increases when Xk interacts with the selected features, i.e., one provides

information for the other conditioned on T (third group of terms). ITFS methods also

perform a greedy type of forward selection, adding a feature at a time, albeit with a different

selection criterion. The next best feature is chosen as the one maximizing J with respect

to the current set of selected variables S.

Brown et al. [22] describe some similarities of ITFS methods and forward selection.

When selecting features, both approaches try to identify the feature X maximizing the

conditional information with T given the currently selected set of features S:

S← S ∪ argmax
X∈F\S

I(T;X|S)

Assuming discrete variables, the quantity I(T;X|S) requires an exponential number

of samples with respect to the variables participating in it and the domain of the

variables (i.e., the number of unique values they can take). For instance, if all variables

are binary, then there are 2|S|+2 value combinations, thus requiring an exponential

sample size to accurately estimate I(T;X|S). ITFS methods deal with this by using low-

order approximations, conditioning up to one variable (see criterion J). Methods like

forward selection (as well as OMP, LARS and LASSO) typically approximate I(T;X|S)
using linear statistical models, such as linear or logistic regression, which only require

estimation of a linear number of parameters. Recall however that forward selection is

not limited to linear models, but can also use non-linear tests, such as the G-test for

multinomial data [1] or kernel-based tests for continuous data [164].

Apart from the similarity of ITFS and statistical methods described above, we

want to point out that, information theoretic methods and statistical methods are intricately

theoretically connected, and are not two completely different approaches. Estimations of

MI and CMI directly correspond to performing statistical hypotheses tests. First, notice that

I(X;Y|Z) = 0⇔ X⊥Y | Z

(Z can be empty), i.e., the (conditional) mutual information is zero if and only if the

(conditional) independence holds. To estimate the MI one is forced to assume a specific

probabilistic model for their data, which directly relates to an equivalent statistical test.

For example, assuming a multinomial joint distribution of discrete features X, Y and

26

Chapter 3. Variations of Stepwise Feature Selection Methods and Their Relation to

Sparsity-Based, Information Theoretic and Causal-Based Approaches

Z, the CMI is related to the statistic of the G-test of conditional independence [1] as

Statistic ≡ 2 · n · I(X;Y|Z)

where n is the sample size and I denotes the estimated quantity. Therefore, there is

a direct correspondence between thresholding on the CMI and accepting as zero the

ones below the threshold, to thresholding on a statistical p-value on a G-test above and

accepting dependence.

The main advantage of ITFS over forward selection and other multivariable meth-

ods is that estimating the (low order) CMI is easier and computationally faster than

fitting a model. On the other hand, ITFS methods are not as general as forward

selection, which can be applied to different data types using appropriate conditional

independence tests. For example, it is not clear if and how ITFS can be applied

to time-to-event outcome variables or time-course data. Furthermore, ITFS variants

are only applicable to discrete data, and thus require the use of discretization meth-

ods for continuous data, possibly losing information [43,82]. This not only increases

computational time but also may require extra tuning to find a good discretization

of features. Last but not least, ITFS methods do not have the same theoretical prop-

erties as multivariable methods. For instance, forward-backward selection has been

shown to be optimal for distributions that can be faithfully represented by causal

networks [100, 101, 138, 147], while ITFS methods may select false positive variables

(they won’t remove variables that are conditionally independent with T given 2 or

more variables), and may also miss variables (they won’t select variables which are

conditionally dependent with T given 2 or more variables).

3.3 Causal-Based Markov Blanket Discovery Algorithms

Apart from GS [100, 101] and IAMB [147], which are variants of forward selection in-

spired by causal models, another class of causal algorithms are methods like HITON [5],

MMPC [146], and more recently SES [89] for multiple solutions. These algorithms are

also based on conditional independence tests, and thus are general and applicable to

different data types. The main difference with forward selection is that they condition

on subsets of the selected features S, not the full set. They do not guarantee to identify

the full Markov blanket, but only a superset of the neighbors of T in causal graphs.

These algorithms remove from consideration any features that become independent of

T conditioned on some subset of the selected features S.

Similar to forward-backward selection, HITON, MMPC and SES have a forward

and a backward phase, including and removing one variable at a time; we focus on

the forward phase and MMPC hereafter. For MMPC, the next variable to include is

3.3. Causal-Based Markov Blanket Discovery Algorithms 27

selected as follows:

S← S ∪ argmax
X∈F\S

min
Z⊆S∧|Z|≤k

A(T;X|Z)

where k is a parameter specifying the maximum size of Z. In words, for each vari-

able X, MMPC computes the minimum association (e.g., CMI or negative p-value of

a conditional independence test) given any subset Z of S with maximum size k, and

selects the variable having the maximum such value. The association is measured

using p-values of conditional independence tests, and a threshold is used to decide

when to stop selecting variables, as well as when to remove variables from considera-

tion. MMPC and similar methods can be seen as being in between forward selection

(which conditions on all selected variables) and ITFS methods (which condition on

subsets of size 1 at most), trading-off the types of dependencies it can identify (due to

the maximum conditioning size) with increased sample efficiency (fewer samples are

required to estimate the association with small conditioning sets). Furthermore, some

instances of ITFS such as CMIM [55] can be shown to specific instances of MMPC

(CMIM is MMPC with k = 1 and significance level α = 1).

28

Chapter 4

Forward-Backward Selection with Early

Dropping

The standard Forward-Backward Selection (FBS) algorithm has two main issues. The

first is that it is slow: at each forward iteration, all remaining variables are reconsidered

to find the best next candidate. To select k variables, it performs O(k · p) independence
tests, where p is the number of variables in the input dataset D. Although relatively

low-dimensional datasets are manageable, it can be very slow for modern datasets

which often contain thousands of variables. The second problem is that it suffers

from multiple testing issues, resulting in overfitting and a high false discovery rate.

This happens because it reconsiders all remaining variables at each iteration; variables

will often happen to seem important simply by chance, if they are given enough

opportunities to be selected. As a result, it will often select a significant number of

false positive variables [56]. This behavior is further magnified in high-dimensional

settings and with larger significance levels α. Next, we describe a simple modification

of FBS, improving its running time while reducing the problem of multiple testing.

4.1 The Early Dropping Heuristic

We propose the following modification: after each forward iteration, remove all vari-

ables that do not satisfy the criterion C for the current set of selected variables S
from the remaining variables R. In our case, those variables are the ones that are

conditionally independent of T given S. The idea is to quickly reduce the number

of candidate variables R, while keeping many (possibly) relevant variables in it. The

forward phase terminates if no more variables can be selected, either because there is

no informative variable or because R is empty; to distinguish between forward and

backward phases, we will call a forward phase with early dropping a run. Extra runs

can be performed to reconsider variables dropped previously. This is done by retain-

ing the previously selected variables S and initializing the set of remaining variables to

29

30 Chapter 4. Forward-Backward Selection with Early Dropping

Algorithm 3 Forward-Backward Selection with Early Dropping (FBEDK)

Input: DatasetD, Target T, Significance Level α, Maximum Number of Runs K
Output: Selected Variables S

1: S← ∅ //Set of selected variables

2: Kcur ← 0 //Initializing current number of runs to 0

3: //Forward phase: iterate until (a) run limit reached, or (b) S does not change
4: while Kcur ≤ K∧ S changes do

5: S← ONERUN(D,T,S, α)
6: Kcur ← Kcur + 1
7: end while

8: //Perform backward selection and return result

9: return BACKWARDSELECTION(D,T,S, α)

10: function ONERUN(D, T, S, α)

11: R← F \ S //Set of remaining candidate variables

12: //Forward phase: iterate until R is empty
13: while |R| > 0 do

14: //Identify best variable F∗ out of R (with minimum p-value)

15: F∗← argmin
F∈R

TEST(T,F|S)

16: //Select F∗ if it is conditionally dependent with T given S
17: if TEST(T,F∗ |S) ≤ α then

18: S← S ∪ {F∗}
19: end if

20: //Drop all variables from R that are conditionally independent given S
21: R← {F : F ∈ R ∧F , F∗ ∧ TEST(T,F|S) > α}
22: end while

23: return S
24: end function

25: function BACKWARDSELECTION(D, T, S, α)

26: //Iterate until no more features can be removed from S
27: while S changes do

28: //Identify F∗ with maximum p-value conditional on S \ {F∗}
29: F∗← argmax

F∈S
TEST(T,F|S \ {F})

30: //Remove F∗ if conditionally independent with T given S \ {F∗}
31: if TEST(T,F∗ |S \ {F∗}) > α then

32: S← S \ {F∗}
33: end if

34: end while

35: return S
36: end function

4.2. Comparing the Theoretical Properties of FBEDK to FBS 31

all variables which have not been selected yet, that is R = F \ S. The backward phase

employed afterwards is identical to the standard backward-selection algorithm (see

function BS in Algorithm 3). Depending on the number of additional

runs K, this defines a family of algorithms, which we call Forward Backward Selec-
tion with Early Dropping (FBEDK), shown in Algorithm 3. The function OR

shown in the bottom of Algorithm 3, performs one run until no variables remain in

R. Three interesting members of this family are the FBED0, FBED1 and FBED∞

algorithms. FBED0 performs the first run until termination, FBED1 performs one

additional run and FBED∞ performs runs until no more variables can be selected. We

will focus on those three algorithms hereafter.

The heuristic is inspired by the theory of Bayesian networks and maximal ancestral

graphs [126, 136]. Similar heuristics have been applied by Markov blanket based

algorithms such as the Max-Min Parents and Children (MMPC) algorithm [146] and

HITON [5] successfully in practice and in extensive comparative evaluations [4]. These

algorithms also remove variables from consideration, and specifically the ones that are

conditionally independent given some subset of the selected variables. In contrast,

FBEDK reconsiders variables dropped during previous runs, while existing methods

do not. The connections of FBEDK to graphical models and Markov blankets are

presented next.

4.2 Comparing the Theoretical Properties of FBEDK to FBS

Due to early dropping of variables, the distributions under which FBEDK and FBS

perform optimally are not the same. For all versions of FBEDK, with the exception

of FBED∞, it is relatively straightforward to construct examples where FBS is able to

identify variables that can not be identified by FBEDK. We give an example for FBED0.

FBED0 may remove variables that seem uninformative at first, but become relevant if

considered in conjunction with other variables. For example, let X = T+Y, with T and

Y being independent Gaussian random variables, and assume that T is the outcome

for which variable selection is performed. When no variables have been selected (first

iteration), X will be dependent with T, while Y will be independent of T as it does

not give any information about T by itself, and thus will be dropped. However, after

selecting X, Y becomes conditionally dependent again (as T = X − Y), but FBED0 will

not select it as it was dropped in the first iteration. Surprisingly, in practice this does

not seem to significantly affect the quality of FBED0. In contrast, FBED0 often gives

better results, while also selecting fewer variables than FBS (see Section 4.4.4).

As mentioned above, it is not clear how FBS and FBED∞ are related in the general

case. What can be shown is that both identify a minimal set of variables, although the

identified solutions may not necessarily be the same.

32 Chapter 4. Forward-Backward Selection with Early Dropping

Definition 6 (Minimal Variable Set). Let F be the set of all variables and S a set of selected

variables. We call a set of variables S minimal with respect to some outcome T, if:

1. No variable can be removed from S given the rest of the selected variables, that is, ∀Fi ∈
S,T6⊥Fi | S \ Fi holds.

2. Let R = F \ S. No variable from R can be included in S, that is, ∀Fi ∈ R,T⊥Fi | S holds.

Corollary 1. Any set of variables S selected by FBS is minimal.

Proof. See Appendix A.1. �

Corollary 2. Any set of variables S selected by FBED∞ is minimal.

Proof. See Appendix A.2. �

In words, a minimal set is a set such that no single variable can be included to or

removed from using forward and backward iterations respectively, that is, it is a local

optimum for stepwise algorithms. Note that, although no single variable is informative

for T if looked at separately, there may be sets of variables that are informative if

considered jointly. A simple example is if all variables are binary and T = X⊕Y, where

⊕ is the logical XOR operator. In this case S = ∅ is minimal, as neither X nor Y are

dependent with T, even though the set {X,Y} fully determines T. Thus, none of the

algorithms gives a globally optimal solution in all distributions.

We next consider the special case in which distributions can be represented by

Bayesian networks (BNs) or maximal ancestral graphs (DMAGs). We show that

FBED1 and FBED∞ identify the Markov blanket of a BN and DMAG respectively, as-

suming (a) that the distribution can be faithfully represented by the respective graph,

and (b) that the algorithms have access to an independence oracle1, which correctly

determines whether a given conditional (in)dependence holds. This also holds for

FBS but will not be shown here; proofs for similar algorithms exist [101,147] and can

be easily adapted to FBS. For FBED0 it can be shown that it selects a superset of the

variables that are adjacent to T in the graph; this can be shown using the fact that,

under the Markov and faithfulness assumptions, adjacent variables are dependent with

T given any subset of the remaining variables.

1Assuming access to an independence oracle allows one to analyze whether the strategy used by FBEDK for
identifying a Markov blanket is correct; thus, in practice, any errors in the output are due to statistical errors
of the tests and not due to the heuristics or strategy used by FBEDK. Furthermore, it allows one to analyze the
asymptotic behavior of algorithms without parametric distributional assumptions (e.g., multivariate normal-
ity), but structural assumptions (e.g., faithfulness). Assuming a conditional independence oracle is a standard
assumption for the theoretical analysis of Markov blanket and causal discovery algorithms (e.g., see [4, 136]).
In practice, FBEDK will not have access to an oracle, but will perform conditional independence tests to decide
(in)dependence. There exist tests that, in the sample limit, will correctly identify (in)dependence. Examples
include the partial correlation test for multivariate Gaussian data, and the G-test [1] for multinomial data.

4.3. Limitations and Practical Considerations 33

Theorem 1. If the distribution can be faithfully represented by a Bayesian network, then

FBED1 identifies the Markov blanket of the target T.

Proof. See Appendix A.3. �

Theorem 2. If the distribution can be faithfully represented by a directed maximal ancestral

graph, then FBED∞ identifies the Markov blanket of the target T.

Proof. See Appendix A.4. �

4.3 Limitations and Practical Considerations

We have shown that FBEDK is able to solve the feature selection problem (that is,

identify the Markov blanket of T) for distributions that are faithful to causal graphs. In

practice, FBEDK may fail to identify the Markov blanket for several reasons. Naturally,

in case the distribution can’t be faithfully modeled with causal graphs, there is no

guarantee of how close the solution will be to the optimal solution. However, previous

comparisons show that forward selection performs as well as best subset selection,

and is competitive with lasso [70], indicating that its solutions are reasonably good

approximations to the best subset solution, which we also confirm in the experimental

section. Another, more subtle issue is if the conditional independence tests used are not

appropriate to capture the dependencies present in the distribution. For instance, if all

relations are non-linear and linear tests are used, there is no guarantee that any of the

important variables will be selected. However, this is an issue with all feature selection

algorithms (and predictive algorithms in general) and is not specific to FBEDK. Finally,

if sample size is too low, or if the significance level is not set appropriately, dependencies

may be incorrectly labeled as independencies and vice versa. Again, this is a general

problem with all algorithms and can be handled by increasing sample size (if possible)

and by appropriately setting or tuning the significance level. For example, for the task

of learning Bayesian networks from Gaussian data using the PC algorithm [136], [79]

have shown that (under mild conditions) the significance level can be set in a way to

ensure consistency asymptotically (see Theorem 1 in [79]). The problem of learning

Bayesian networks and Markov blanket discovery are closely related, and such results

can possibly be translated and used by algorithms such as FBEDK, but it is out of the

scope of the current work.

We proceed with additional considerations regarding the sample size required to

use FBEDK. FBEDK identifies the next variable to select conditional on all currently

selected variables. Because of this, it can in principle take complex multivariate de-

pendencies into consideration when selecting a variable. The complexity depends on

the conditional independence test used (for example, non-linear tests can model more

34 Chapter 4. Forward-Backward Selection with Early Dropping

complex relations than linear tests). However, there is a clear trade-off between the

complexity of dependencies that can be identified, and the sample size required to do

so. For instance, if all variables are binary, the G-test of conditional independence [1]

can be used, which can identify any type of interaction between variables. In this case,

the number of parameters increases exponentially with the number of selected vari-

ables: for k selected variables, the number of parameters is in the order of O(2k), and

consequently, the number of samples required to have sufficient power also increases

exponentially. Using linear models (for example, linear, logistic or Cox regression for

continuous, categorical or time-to-event outcomes respectively), simpler, linear depen-

dencies can be identified, and the number of samples required increases only linearly

with the number of parameters. Rules of thumb for setting the minimum sample

size for linear models are given in [67, 116, 153]. For binary logistic regression, one

recommendation is to use at least s = c/ min(p0, p1) · k samples [116], where p0 and p1
are the proportion of negative and positive classes of T respectively, k is the number of

parameters in the model and c is a user-set parameter, which is usually recommended

to be between 5 and 20, with larger values leading to more accurate results. Another

rule, called the STD rule, is presented in Section 5.3.1. Thus, multivariable methods

like FBEDK should only be used when sufficient sample size is available; alternatively,

one can use rules of thumb as stopping criteria (that is, to determine when to stop

selecting variables).

Next, we make a few recommendations based on the above considerations; exact

rules are hard to devise, as they depend on the specific problem at hand. In case

sample size is very low (a few tens or hundreds of samples), sample-efficient methods

like the max-min parents and children algorithm [146] (which condition only on small

subsets of variables), information-theoretic feature selection methods [22] (which only

condition on up to 1 variable), or univariate feature selection methods are more prefer-

able than methods like FBEDK. Otherwise, we recommend using linear multivariable

methods like OMP [39, 113], LASSO [139] or FBEDK with linear tests, and if sample

size allows to also consider FBEDK using non-linear tests. Finally, we believe it is also

worth considering robust tests [89] for FBEDK, as outliers often exist in practice and

may negatively impact tests which do not take them into account.

4.4 Experimental Evaluation

In this section we evaluate FBEDK, and compare it to the standard FBS algorithm,

feature selection with LASSO (called LASSO-FS hereafter) [139], the Max-Min Parents

and Children algorithm (MMPC) [146], and no feature selection (NO-FS), which was

used as the baseline method. We note that MMPC is designed specifically for low-

sample size and high-dimensional settings, and thus may not perform optimally in the

4.4. Experimental Evaluation 35

Table 4.1: Binary classification datasets used in the experimental evaluation. n is the num-

ber of samples, p is the number of predictors and P(T = 1) is the proportion of instances

where T = 1.

Dataset n p P(T = 1) Type Domain Source

musk (v2) 6598 166 0.15 Real Musk Activity Prediction
UCI ML Repository

[41]

sylva 14394 216 0.94 Mixed Forest Cover Types
WCCI 2006 Challenge

[62]

madelon 2600 500 0.5 Integer Artificial
NIPS 2003 Challenge

[64]

secom 1567 590 0.93 Real Semi-Conductor Manufacturing
UCI ML Repository

M. McCann, A. Johnston

gina 3568 970 0.51 Real Handwritten Digit Recognition
WCCI 2006 Challenge

[62]

hiva 4229 1617 0.96 Binary Drug discovery
WCCI 2006 Challenge

[62]

gisette 7000 5000 0.5 Integer Handwritten Digit Recognition
NIPS 2003 Challenge

[64]

p53 Mutants 16772 5408 0.01 Real Protein Transcriptional Activity
UCI ML Repository

[37]

arcene 200 10000 0.56 Binary Mass Spectrometry
NIPS 2003 Challenge

[64]

nova 1929 16969 0.72 Binary Text classification
WCCI 2006 Challenge

[62]

dexter 600 20000 0.5 Integer Text classification
NIPS 2003 Challenge

[64]

dorothea 1150 100000 0.9 Binary Drug discovery
NIPS 2003 Challenge

[64]

datasets considered here. The reason we compare against it is because, it belongs in

the same category of algorithms as FBEDK (that is, is also inspired by causal graphs).

We implemented all algorithms in Matlab except for LASSO, for which we used

the glmnet implementation [120]. We used 12 binary classification datasets, with

sample sizes ranging from 200 to 16772 and number of variables between 166 and

100000. The datasets were selected from various competitions [62, 64] and the UCI

repository [41], and were selected to cover a wide range of variable and sample sizes.

A summary of the datasets is shown in Table 4.1. All experiments were performed in

Matlab, running on a desktop computer with an Intel i7-7700K processor and 32GB

of RAM.

The remainder of this section is organized as follows. First, we describe in detail

the experimental setup, that is, all algorithms used, their hyper-parameters, and how

we performed model selection and performance estimation. We proceed by evaluating

36 Chapter 4. Forward-Backward Selection with Early Dropping

how the running time, number of selected variables and predictive performance of

FBEDK is affected by the number of runs K. Afterwards, we compare FBEDK to

FBS, to show the effects of the early dropping heuristic. Next, we evaluate FBEDK in

a realistic scenario with other feature selection methods, where hyper-parameters of

the feature selection and classification algorithms are optimized. Then, we compare

FBEDK and LASSO in terms of predictive ability when the number of variables to

select is fixed so that all algorithms produce solutions of equal size. This is done for

two reasons: (a) because LASSO tends to select many variables otherwise, giving it

an advantage over FBEDK in terms of predictive performance, and (b) because this

allows us to evaluate how well FBEDK orders the variables in comparison to LASSO.

Finally, we compare FBED0, FBED1, FBED∞ and FBS on simulated data containing

only irrelevant variables, investigating how is each algorithm is affected by multiple

testing in terms of the falsely selected variables.

4.4.1 Experimental Setup

We present an overview of the experimental setup next. Additional details for each

specific experiment are described in the respective section.

Feature selection algorithms

As selection criteria for FBEDK, FBS and MMPC we used a nested likelihood-ratio

independence test based on logistic regression. For FBEDK and MMPC, the significance

level α of the conditional independence test was set to {0.001,0.005,0.01,0.05,0.1},
covering a range of commonly used values, while for FBS we explored a total of

100 values, uniformly spaced in [0.001,0.01]. For the K value of FBEDK we used

{0, 1, . . . ,∞}, while the maximum conditioning size maxK of MMPC was set to {1,2,3,4}.
For LASSO-FS we set all parameters to their default values and set the maximum

number of λ values, λmax, to 100. Thus, we used 5 hyper-parameter combinations for

each value K of FBEDK, 100 for FBS and LASSO-FS, and 20 for MMPC.

Unfortunately, for MMPC there were 2 datasets where not all hyper-parameter

combinations were executed, as they were taking too long to terminate (see results

about running time in Appendix D.1); we stopped execution if a time limit of 2 days

was exceeded. Specifically, for the gisette and nova datasets MMPC was only executed

with maxK ≤ 2

We would like to point out that for a given value K for FBEDK, all solutions with

fewer runs (smaller K) can be computed with minimal computational overhead, as

the forward phases have already been computed and only the backward phases need

to be performed separately. As the number of variables selected is relatively small,

the computational cost of the backward phases is usually negligible. Thus, FBEDK

4.4. Experimental Evaluation 37

required a single execution with K = ∞ for a given α. Unfortunately, something similar

can not be done with MMPC, and thus it has to be executed for each hyper-parameter

value separately 2.

Predictive models

We used both, linear and non-linear predictive models. As linear models we used

elastic net regularized logistic regression [169], using λmax = 100 and the mixture

parameter α set to {0,0.25,0.5,0.75, 1} (α = 0 corresponds to L2 regularization and

α = 1 to L1 regularization), leading to a total of 500 hyper-parameter combinations. We

remind the reader that regularization is important, especially after feature selection has

been performed, in order to improve predictive performance due to inflated coefficients

[56] (see also Section 2.4.1). As non-linear models we used Gaussian support vector

machines (SVM) [34] and random forests (RF) [20]. For SVMs we used the LIBSVM

[26] implementation, while for RFs we used the TreeBagger implementation in Matlab.

The cost hyper-parameter C of SVMs was set to {2−10,2−9, . . . ,29} (a total of 20 values),

while the remaining hyper-parameters were set to their default values. For RFs the

number of trees was set to 500, the minimum leaf node size was set to {1,5,9} and the

number of variables to split at each node was set to {0.5, 1, 1.5} · √p (9 combinations in

total). In a recent large-scale evaluation between many classifiers (179 from 17 different

families) on the whole UCI data base (121 datasets at the time), it has been shown that

RFs and SVMs with Gaussian kernels are the top two performers [50], and thus we

did not consider other non-linear methods.

Linear vs non-linear models

Throughout the section, we will report results obtained by using only linear models

or a combination of linear and non-linear models. The former is done to evaluate

the ability of the feature selection methods of identifying features that are linearly (or

possibly monotonically) related to the outcome. The reason for that is that all evaluated

methods can only identify such types of dependencies; we note that all algorithms

(except for LASSO) can be trivially adapted to also handle non-linear dependencies

by using an appropriate conditional independence test. Non-linear models were also

considered to better simulate a realistic scenario, as such methods would be used in a

typical analysis. Furthermore, it is interesting to see whether there are any significant

differences between linear and non-linear modeling for any of the considered feature

selection algorithms.

2This is only partially true, as for FBEDK, FBS and MMPC we implemented a caching mechanism to avoid
fitting the same logistic regression model more than once. This mechanism was not used however for experi-
ments measuring the running time of the algorithms.

38 Chapter 4. Forward-Backward Selection with Early Dropping

Model selection and performance estimation protocols

Ideally, we would like to evaluate each feature selection algorithm using an optimal predictive

model, in order to measure how informative the selected features are. As an optimal model is

not available in practice, we approximate this by using a variety of predictive algorithms

as well as multiple hyper-parameter value combinations for each (see above), and

perform hyper-parameter optimization (also called tuning or model selection) to find

a good approximate model; interested readers may refer to [51,150] for more details.

We proceed with a description of the model selection and performance estimation

protocols we used. As the performance metric we optimize and report the area under

the ROC curve (AUC). For model selection and performance estimation we used a

60/ 20/ 20 stratified split of the data, using 60% as a training set, 20% as a validation

set and the remaining 20% as a test set. A hyper-parameter configuration is defined

as a combination of a feature selection algorithm and its hyper-parameters, as well as

a modeling algorithm and its hyper-parameters. Given a set of configurations, the best

one is chosen by training models for all of them on the training set and selecting the

configuration of the model with the highest performance on the validation set. Finally,

the predictive performance of that configuration is obtained by training a final model

on the pooled training and validation sets, and evaluating it on the test set. To account

for the variation due to the data splitting, we repeated this procedure multiple times

for different splits and report averages over repetitions. For datasets with more than

1000 samples the number of repetitions was set to 10, and to 50 for the rest.

4.4.2 Effect of the Number of Runs K

We performed an experiment to measure the effect of K on the running time, number

of selected variables and predictive performance of FBEDK. For the running time

and number of selected variables we executed FBEDK once for each hyper-parameter

value on the complete datasets, while for the predictive performance we used the

model selection and performance estimation protocols described previously and report

averages over multiple repetitions of the experiment.

Figure 4.1 shows how the number of runs K affects the running time and the

number of selected variables. Vertical lines show the value of K for which the algorithm

has converged (that is, after that point more runs do not select any more variables).

We can see that running time increases almost linearly with an increasing number of

runs K, meaning that any additional run has a roughly linear computational cost with

respect to the size of the dataset. Furthermore, convergence is typically achieved in

less than 10 runs, although for a few cases up to 16 runs are required. As expected,

the number of selected variables increases with K, as well as with the threshold α. In

the majority of cases however, most progress is made in the first few runs, and further

4.4. Experimental Evaluation 39

0 2 4 6 8 10
0
4
8

madelon

0 1 2 3 4 5
0

10

20
arcene

0 4 8 12 16 20
0

450

900
gina

0 4 8 12 16 20
0

25

50
secom

0 2 4 6 8 10
0

35
70

sylva

0 2 4 6 8 10
0

1000

2000
nova

0 3 6 9 12 15
0

1500
3000

gisette

0 4 8 12 16 20
0

4000
8000

p53

0 2 4 6 8 10
0

200

400
hiva

0 2 4 6 8 10
0

150
300

dexter

0 2 4 6 8 10
0

1000

2000
dorothea

0 3 6 9 12 15
0

45

90
musk

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

Running Time (seconds) with Increasing K

0 2 4 6 8 10
0

50

100
madelon

0 1 2 3 4 5
0

10

20
arcene

0 4 8 12 16 20
0

100

200
gina

0 4 8 12 16 20
0

50

100
secom

0 2 4 6 8 10
0

20

40
sylva

0 2 4 6 8 10
0

50

100
nova

0 3 6 9 12 15
0

100

200
gisette

0 4 8 12 16 20
0

100

200
p53

0 2 4 6 8 10
0

50

100
hiva

0 2 4 6 8 10
0

20

40
dexter

0 2 4 6 8 10
0

20

40
dorothea

0 3 6 9 12 15
0

50

100
musk

0.001 0.005 0.01 0.05 0.1

N
um

be
r

of
 S

el
ec

te
d

V
ar

ia
bl

es

K

Number of Selected Variables with Increasing K

Figure 4.1: The figure shows how the running time (top) and the number of selected vari-

ables (bottom) vary with an increasing number of runs K for different values of the thresh-

old parameter α. The vertical lines indicate the value of K for which FBEDK has converged.

Running time increases almost linearly with K. Most progress is made in the first few runs,

and additional runs increase running time while only selecting a few more variables.

40 Chapter 4. Forward-Backward Selection with Early Dropping

runs increase the number of selected variables only marginally. Based on those results,

we recommend considering relatively small values of K, up to K< 10.

Figure 4.2 shows how the area under the ROC curve (AUC) varies with an increas-

ing number of runs K, for 5 different values of the threshold parameter α of FBEDK.

We observe that, although AUC often tends to increase with K, this is not always the

case. For instance, for the nova and dexter datasets, AUC actually decreases with K

for some values of α. The maximum AUC is typically achieved with relatively small

values of K, further suggesting that considering higher values for K is not necessary.

Also, there are no clear relationships between AUC, the value of α and the type of

predictive models used. Depending on the dataset different values of α or predictive

models may be optimal. Thus, in practice we recommend considering several combinations

of α and K. Optimizing over both α and K will be considered in Section 4.4.4.

4.4.3 FBEDK vs FBS

In this section we compare FBEDK to the standard FBS algorithm in terms of predic-

tive performance, number of selected variables and running time. The algorithms were

compared on the same hyper-parameters (for example, FBS vs FBED0 with α = 0.01);

results when also optimizing over hyper-parameters are shown in Section 4.4.4. Model

selection and performance estimation was performed for each feature selection algo-

rithm and each hyper-parameter value separately, following the procedure described

in the experimental setup. The main goal of this comparison is to show that FBEDK

and FBS perform similarly for the same hyper-parameters, with the former being faster. A

summary of the results is presented next.

Figure 4.3 shows how the algorithms compare in terms of predictive performance,

number of selected variables and running time. Each column shows the distribution of

the respective metric across all thresholds and datasets, as well as the mean and median

values. The difference in AUC is computed is AUC(FBEDK) - AUC(FBS), the relative

number of selected variables is computed as the ratio of variables selected by FBEDK

compared to FBS, and the speed-up is computed as Time(FBS) / Time(FBEDK). The

y-axis corresponds to different values of K used by FBEDK. Only the first few values

(K ≤ 9), as well as the last one (K = ∞) are shown, as the left-out ones were almost

identical to K = ∞.
Regarding predictive performance, FBEDK performs as good as FBS on average,

irrespective of the type of predictive models used. For FBEDK with K< 3, the average

difference in AUC is less than 1% while the median difference is close to 0, and for

all other K the performance is almost identical to FBS. We note that all those lower-

performing cases are also the ones where FBEDK selected much fewer variables than

FBS. In terms of the number of selected variables, FBEDK produces smaller solutions

4.4. Experimental Evaluation 41

0 4 8 12 16 20
59.5%

61.8%

64.0%
madelon

0 2 4 6 8 10
75.5%

77.3%

79.0%
arcene

0 9 18 27 36 45
91.5%

94.8%

98.0%
gina

0 5 10 15 20 25
54.5%

63.5%

72.5%
secom

0 3 6 9 12 15
99.5%

99.8%

100.0%
sylva

0 2 4 6 8 10
90.5%

92.5%

94.5%
nova

0 3 6 9 12 15
99.0%

99.3%

99.5%
gisette

0 5 10 15 20 25
92.0%

93.8%

95.5%
p53

0 6 12 18 24 30
61.5%

67.8%

74.0%
hiva

0 2 4 6 8 10
96.0%

96.8%

97.5%
dexter

0 2 4 6 8 10
81.0%

83.5%

86.0%
dorothea

0 4 8 12 16 20
90.5%

95.3%

100.0%
musk

0.001 0.005 0.01 0.05 0.1

A
re

a
U

nd
er

 th
e

R
O

C
 C

ur
ve

K

All Models

0 4 8 12 16 20
59.5%

61.8%

64.0%
madelon

0 2 4 6 8 10
75.5%

77.3%

79.0%
arcene

0 9 18 27 36 45
91.5%

94.8%

98.0%
gina

0 5 10 15 20 25
54.5%

63.5%

72.5%
secom

0 3 6 9 12 15
99.5%

99.8%

100.0%
sylva

0 2 4 6 8 10
90.5%

92.5%

94.5%
nova

0 3 6 9 12 15
99.0%

99.3%

99.5%
gisette

0 5 10 15 20 25
92.0%

93.8%

95.5%
p53

0 6 12 18 24 30
61.5%

67.8%

74.0%
hiva

0 2 4 6 8 10
96.0%

96.8%

97.5%
dexter

0 2 4 6 8 10
81.0%

83.5%

86.0%
dorothea

0 5 10 15 20 25
90.5%

95.3%

100.0%
musk

0.001 0.005 0.01 0.05 0.1

A
re

a
U

nd
er

 th
e

R
O

C
 C

ur
ve

K

Linear Models

Figure 4.2: The figure shows how the AUC varies with an increasing number of runs K for

different values of the threshold parameter α, using non-linear and linear models (top) or

linear models only (bottom). There is no clear pattern for which thresholds or values of K
to prefer, but the optimal values depend on the specific dataset, as well as on the predictive

models used. In most cases only a few runs are required to achieve maximal AUC.

42 Chapter 4. Forward-Backward Selection with Early Dropping

0 1 2 3 4 5 6 7 8 9
-8%

-6%

-4%

-2%

0%

2%

4%

A
re

a
U

nd
er

 th
e

R
O

C
 C

ur
ve

 D
iff

er
en

ce

AUC Difference of FBED K and FBS (All Models)

mean
median

0 1 2 3 4 5 6 7 8 9
-8%

-6%

-4%

-2%

0%

2%

4%

A
re

a
U

nd
er

 th
e

R
O

C
 C

ur
ve

 D
iff

er
en

ce

AUC Difference of FBED K and FBS (Linear Models)

mean
median

0 1 2 3 4 5 6 7 8 9
12%

18%

25%

35%

50%

71%

100%

141%

200%

R
el

at
iv

e
N

um
be

r
of

 S
el

ec
te

d
V

ar
ia

bl
es

Selected variables of FBED K over FBS

mean
median

0 1 2 3 4 5 6 7 8 9

1

2

4

8

16

32

64

128

256

512

1024

S
pe

ed
-u

p
Speed-up of FBED K over FBS

mean
median

Figure 4.3: The x-axis of the figures on the top row shows the difference in AUC between

FBEDK and FBS, with positive values indicating that FBEDK performs better than FBS. The

AUC of the top left figure is computed by optimizing over all models, while for the one of

the top right figure only linear models were considered. The relative number of selected

variables (bottom left) shows the number of variables selected by FBEDK compared to the

ones selected by FBS. The speed-up (bottom right) is computed as the one obtained by

FBEDK over FBS. For all cases, the distribution over all thresholds and datasets is shown,

as well as the mean and median values. The y-axis on all figures is the value of K used

by FBEDK. Overall, FBEDK has a virtually identical performance with FBS, while being on

average between 1 and 2 orders of magnitude faster.

for K < 3, and tends to select the same number as FBS with increasing K. Finally, in

terms of running time, FBEDK is significantly faster than FBS, being about 1-2 orders

of magnitude faster on average in all cases.

An interesting case is for FBED3, where the number of selected variables and AUC

between both algorithms is almost identical, while being around 10 times faster than

FBS. If speed and small solutions are important, FBED0 and FBED1 are good choices,

4.4. Experimental Evaluation 43

as they are ∼30-100 times faster than FBS, selecting only ∼70%-80% of the variables

with a minimal drop in AUC. Therefore, if the number of variables is high, FBED0

and FBED1 are preferable due to their low computational lost. Furthermore, in low

sample settings the smaller solutions of FBED0 and FBED1 are important, as selecting

many variables leads to loss of power and overfitting. If on the other hand the sample

size is large and the number of variables is relatively small, both FBS and FBEDK with

higher values of K are reasonable choices, with the latter being more attractive, as it is

around 1 order of magnitude faster and thus can scale to higher variable sizes.

4.4.4 Comparison of FBEDK with other Feature Selection Methods

We performed an experiment where we also optimize over the hyper-parameter values

of feature selection algorithms. The main objective of this comparison is to compare FBEDK

to other feature selection algorithms in a realistic scenario, where hyper-parameter values are

optimized. For this comparison we focus on the predictive performance and number of

selected variables; additional results showing the running time of each algorithm can

be found in Appendix D.1.

Setup

For FBEDK optimization is performed over the threshold α and the number of runs

K. We examine four versions of FBEDK: FBED0, FBED≤1, FBED≤3 and FBED≤∞.

FBED≤K means that optimization was performed for all results up to K runs. Thus,

the number of hyper-parameter configurations used were 5, 10, 20 and around 50

(for most cases) for FBED0, FBED≤1, FBED≤3 and FBED≤∞ respectively. The hyper-

parameter values for FBS, MMPC and LASSO-FS are the ones described in Section 4.4.1

(a total of 100, 20 and 100 respectively). We also included results when no feature se-

lection was performed (NO-FS). Finally, we remind the reader that we used two sets of

classification algorithms and hyper-parameters, one containing only linear algorithms

(elastic net regularized logistic regression) and one also containing non-linear ones in

addition to the linear ones (Gaussian support vector machines and random forests).

For brevity, we will refer to linear models as LM and to the combination of linear and

non-linear models as NLM hereafter.

Results

A summary of the results averaged over repetitions, measuring the AUC and number of

selected variables is shown in Tables 4.2 and 4.3. For each algorithm, we computed a

score which is the average rank of that algorithm over all datasets. The final rank of an

algorithm is then computed based on that score. We used a bootstrap-based procedure

44 Chapter 4. Forward-Backward Selection with Early Dropping

Table 4.2: Area under the ROC curve and number of selected variables for all feature se-

lection algorithms using linear and non-linear models. The results are obtained after opti-

mizing the hyper-parameters of the feature selection and modeling algorithms. Bold and

italic entries denote that the method is significantly better or worse than all other feature

selection methods (excluding NO-FS) respectively. The score is the average rank of each

method over all datasets and the final rank is computed using those scores. Methods that

select more variables tend to also perform better (Spearman correlation between AUC and

variable rankings is -0.976).

Algorithm musk sylva madelon secom gina hiva gisette p53 arcene nova dexter dorothea Score Rank

A
U

C
(a

ll
m

o
d

e
ls

)

FBED0 98.5 99.9 63.4 63.7 97.0 67.4 99.4 93.3 77.5 93.6 96.7 83.8 6.33 8

FBED≤1 98.7 99.9 63.3 63.0 97.3 70.9 99.4 93.5 76.9 94.0 96.8 83.5 6.17 7

FBED≤3 99.2 99.9 63.0 68.0 97.3 68.8 99.4 93.2 77.3 93.6 96.8 84.3 5.46 6

FBED≤∞ 99.5 99.9 63.6 67.6 97.6 72.3 99.4 93.5 77.3 93.6 96.8 84.9 4.71 4

FBS 99.5 99.9 64.8 69.5 97.5 69.1 99.4 94.1 77.2 92.4 95.9 84.3 5.00 5

MMPC 98.9 99.9 65.1 63.4 98.1 68.3 99.6 93.1 79.6 96.7 97.3 91.7 4.00 3

LASSO-FS 99.9 99.9 82.3 69.8 98.2 74.2 99.7 94.2 82.4 96.1 97.2 89.0 2.58 2

NO FS 99.9 99.9 82.8 71.9 98.3 74.3 99.6 94.7 90.0 96.6 98.2 94.6 1.75 1

S
e

le
c

te
d

V
a

ri
a

b
le

s FBED0 22.1 13.4 8.4 15.0 32.9 18.8 72.9 24.2 8.7 66.5 17.4 21.6 1.33 1

FBED≤1 35.6 15.2 8.2 18.6 47.7 34.1 80.2 23.5 9.6 71.9 18.0 23.2 2.79 2

FBED≤3 47.1 21.1 14.0 24.4 56.5 43.5 80.2 26.4 9.3 72.1 18.5 22.3 3.63 4

FBED≤∞ 77.6 25.5 14.9 41.1 105.8 75.1 79.4 33.7 9.3 72.3 18.7 22.4 4.79 5

FBS 76.1 21.1 19.6 28.4 78.7 33.8 65.0 32.6 11.0 71.6 16.9 22.0 3.46 3

MMPC 42.5 20.7 17.0 16.2 155.4 51.7 388.2 68.8 43.9 879.7 187.2 445.1 5.42 6

LASSO-FS 138.2 43.0 495.4 133.3 406.4 306.6 187.5 161.9 29.6 349.8 97.9 70.1 6.58 7

NO FS 166.0 213.0 500.0 468.0 970.0 1617.0 4948.0 5408.0 9955.0 11853.0 9988.0 88215.0 8.00 8

to compute the probability of an algorithm being significantly better or worse than all

competitors, and used a threshold of 95%. The procedure is described in more detail

in Appendix B.1. In the tables, algorithms that are statistically significantly better than

all others are shown in bold, whereas algorithms that are worse than the rest are

shown in italic.

Overall, performing no feature selection has the highest AUC. Out of all feature

selection methods, LASSO-FS offers the best predictive performance, statistically signif-

icantly outperforming the rest in 4 datasets. MMPC outperforms the rest in 2 and 3

datasets using NLM and LM respectively. In two cases FBED0 is significantly worse

than the rest (musk and gina), while FBS is the worst in 1 dataset. However, in terms

of the number of selected variables, LASSO-FS selects statistically significantly more in

7 and 5 cases for NLM and LM, while MMPC selects the most variables in 5 datasets for

both NLM and LM. FBEDK and FBS on the other hand tend to select fewer variables.

Thus, there is a clear trade-off between model interpretability (number of selected variables)

and predictive performance (AUC). Specifically, there is a -0.976 and -0.595 Spearman

correlation between the AUC and selected variables ranks for NLM and LM respec-

tively. For that reason, we performed an additional experiment, comparing the AUC

between FBEDK, FBS and LASSO-FS by constraining the total number of variables to

select, presented in Section 4.4.5.

4.4. Experimental Evaluation 45

Table 4.3: Area under the ROC curve and number of selected variables for all feature selec-

tion algorithms using linear models. The results are obtained after optimizing the hyper-

parameters of the feature selection and modeling algorithms. Bold and italic entries de-

note that the method is significantly better or worse than all other feature selection meth-

ods (excluding NO-FS) respectively. The score is the average rank of each method over

all datasets and the final rank is computed using those scores. Methods that select more

variables tend to also perform better (Spearman correlation between AUC and variable

rankings is -0.595), but the effect is not as strong as the one of the previous results (Ta-

ble 4.2).

Algorithm musk sylva madelon secom gina hiva gisette p53 arcene nova dexter dorothea Score Rank

A
U

C
(l

in
e

a
r

m
o

d
e

ls
) FBED0 93.0 99.9 62.3 65.1 93.3 69.4 99.3 94.0 78.0 93.3 96.6 81.7 4.58 4

FBED≤1 94.6 99.9 62.2 62.6 93.3 68.3 99.3 94.4 78.0 93.7 96.6 83.5 4.83 5

FBED≤3 96.5 99.9 62.0 64.0 93.2 68.3 99.2 95.0 77.7 93.4 96.5 83.5 5.38 6

FBED≤∞ 97.1 99.9 62.0 63.8 92.1 69.0 99.2 95.1 77.7 93.4 96.5 83.3 5.71 7

FBS 97.1 99.9 62.2 67.0 92.5 67.3 99.2 94.6 75.5 92.5 95.6 83.3 5.92 8

MMPC 93.8 99.9 62.3 64.3 93.4 68.3 99.3 95.3 75.6 96.7 96.6 89.3 3.50 3

LASSO-FS 97.5 99.9 62.1 64.8 92.1 70.7 99.6 95.4 80.6 95.8 97.3 86.9 3.17 2

NO FS 97.6 99.9 59.5 66.6 91.2 71.8 99.6 95.8 87.3 96.5 98.3 91.7 2.92 1

S
e

le
c

te
d

V
a

ri
a

b
le

s FBED0 22.7 14.1 8.0 15.6 34.2 20.4 71.5 23.2 8.6 66.5 17.5 21.0 1.21 1

FBED≤1 35.2 16.8 10.6 18.0 46.9 31.2 79.3 25.5 9.4 71.4 17.9 22.0 2.71 2

FBED≤3 51.4 23.3 11.6 26.4 51.9 40.3 83.9 32.8 9.7 71.6 18.3 21.2 3.88 4

FBED≤∞ 86.7 25.3 11.6 47.0 114.1 70.2 84.0 33.8 9.7 71.6 18.3 21.3 4.71 5

FBS 79.5 22.8 9.0 34.7 80.1 29.3 65.0 34.6 11.0 72.4 16.7 22.0 3.63 3

MMPC 43.3 34.2 8.0 17.7 137.8 36.1 389.0 92.2 43.0 879.7 193.4 363.2 5.29 6

LASSO-FS 144.5 57.8 47.2 93.5 369.3 285.5 206.5 208.0 25.7 307.8 87.0 74.6 6.58 7

NO FS 166.0 213.0 500.0 468.0 970.0 1617.0 4948.0 5408.0 9955.0 11853.0 9988.0 88215.0 8.00 8

A strong outlier in the NLM case is the difference in performance of LASSO-FS

compared to the other methods on the madelon dataset, where LASSO-FS reaches an

AUC that is 17.3 − 19.5% higher, which is also close to the AUC of NO-FS. The main

reason why all methods fail is because the madelon dataset has been constructed in a

way that makes it hard for linear methods (FBEDK, FBS and MMPC using the logistic

regression test). Specifically, the outcome variable has been artificially constructed to

be a XOR-type problem of 5 variables [65]. Further evidence for the hardness of this

problem is the fact that using LM and NO-FS achieves an AUC of only 59.5 (even

lower than all feature selection methods). LASSO-FS, although also linear, is able to

pick up the signal as it basically performs no feature selection, selecting 495.4 out

of 500 variables on average. This happens because LASSO-FS explores up to 100

values for λ, some of which correspond to very dense solutions. In contrast, due to

the experimental setup, none of the remaining methods selects that many variables in

this case.

An interesting observation is the fact that FBED0 and FBED≤1, the forward selec-

tion methods selecting the fewest variables, are ranked higher in terms of AUC than

FBED≤3, FBED≤∞ and FBS when using LM. Thus, they are better suited to pick out

linear trends in the data, producing solutions that are smaller and more predictive

46 Chapter 4. Forward-Backward Selection with Early Dropping

(a) Dominating Relationships (All Models) (b) Dominating Relationships (Linear Models)

Figure 4.4: The figures show how often a feature selection method dominates another (that

is, has a higher AUC while selecting fewer variables), using non-linear models (left) and lin-

ear models (right). An edge from method A to Bwith weight w indicates that A dominates

B in w datasets. Except for FBED≤∞ for linear models, which gets dominated by FBS in 1

dataset, methods in the FBEDK family are never dominated by FBS, MMPC or LASSO-FS,

while typically dominating them in 1-3 datasets.

compared to algorithms of the same type. Using NLM gives an even bigger advantage

to methods selecting more variables, as this increases the chance to also capture some

non-linear signals in the data.

Finally, we performed a statistical test between all pairs of methods to identify cases

where a method outperforms others, both in terms of AUC and number of selected

variables. Again, we used a bootstrap-based test, computing the joint probability that

method A has a higher AUC and selecting fewer variables than method B, using the

same procedure as described in Appendix B.1. A method is considered to dominate

another, if that probability is higher than 95%. The results are summarized in Fig-

ure 4.4. Each node corresponds to a feature selection method, and a directed edge

from method A to B with weight w denotes that A dominates B in w datasets. We ob-

serve that, except for a single case where FBED≤∞ gets dominated by FBS in 1 dataset

for LM, FBEDK is never dominated by any other method, neither for the NLM nor for

the LM case. In both NLM and LM cases, FBEDK dominates the competitors in 1-3

cases, while LASSO-FS and MMPC only dominate each other in 1-3 cases. Especially

interesting is the fact that for NLM, FBED≤3, FBED≤∞ and FBS (that is, the forward-

selection algorithms typically selecting the most variables) are the only algorithms that

dominate others, while also not getting dominated. On the other hand, using LM

4.4. Experimental Evaluation 47

only FBED0 and FBED≤1 both dominate others and are not getting dominated. This

agrees with the observation made before, that FBED0 and FBED≤1 are particularly

well suited to identify compact and linearly predictive solutions.

Overall, there is no clear winner, and the choice depends solely on the goal. If the

goal is predictive performance, LASSO-FS or MMPC are clearly preferable. If on the

other hand one is interested in interpretability, then methods from the FBEDK family

with small values of K are preferable. Regarding FBS, there is no scenario where it

is preferable over one of the other algorithms. We must note that those results are

somewhat artificial, as the performance of FBEDK and FBS highly depends on the

hyper-parameter values chosen for the experiment, while LASSO-FS is not as sensitive

to those choices. Furthermore, the fact that hyper-parameters are optimized based

on performance naturally tends to favor methods that select more variables, putting

LASSO-FS at a disadvantage in terms of interpretability.

4.4.5 Fixing the Number of Selected Variables

As confirmed by the previous experiment, there are two main trade-offs for feature

selection algorithms: (a) the number of selected variables, with fewer variables leading

to more interpretable results, and (b) the predictive ability of the selected variables,

with more variables typically leading to better results. In general, algorithms that

select more variables also tend to perform better in terms of predictive performance.

Because of that, we performed a comparison where algorithms are forced the select the same

number of variables. That way, the predictive performance of algorithms can be compared on

equal footing.

We will compare FBEDK and LASSO-FS, when both are limited to select the same

number of features. FBS is not included in the comparison, as we have already

shown in Section 4.4.3 that FBS and FBEDK exhibit similar predictive performance

with a similar number of selected features, with FBEDK being orders of magnitude

faster. MMPC was not included, because neither MMPC nor FBEDK allow to set the

number of features to select. In order to perform the comparison, we executed FBEDK

for multiple hyper-parameter values (the ones given in the experimental setup) and

then executed LASSO-FS with the constraint to select the same number of variables

as FBEDK did. As it was not always possible to select the exact same number of

variables, we identified the solution of LASSO-FS with at least as many variables as

FBEDK. Except for a few cases where LASSO-FS selected 1 more variable than FBEDK,

both methods selected the same number of variables. As a final comment, we note that

the above experiment does not favor FBEDK over LASSO-FS, as no optimization over

its hyper-parameter values is performed. The reason we did not use a fixed number

of variables M to select is because there is no easy way to select exactly M variables

48 Chapter 4. Forward-Backward Selection with Early Dropping

0 1 2 3 4 5 6 7 8 9
-15%

-10%

-5%

0%

5%

10%

A
re

a
U

nd
er

 th
e

R
O

C
 C

ur
ve

 D
iff

er
en

ce

AUC Difference of FBED K and LASSO-FS (All Models)

mean
median

0 1 2 3 4 5 6 7 8 9
-15%

-10%

-5%

0%

5%

10%

A
re

a
U

nd
er

 th
e

R
O

C
 C

ur
ve

 D
iff

er
en

ce

AUC Difference of FBED K and LASSO-FS (Linear Models)

mean
median

Figure 4.5: LASSO-FS with limit on selected variables: The x-axis shows the distribution

of the difference in AUC of FBEDK and LASSO-FS, with positive values indicating that

FBEDK performs better. The y-axis corresponds to value of K used by FBEDK. The mean

and median values are shown in red and blue respectively. The average difference using

non-linear models is 0.78%, and 0.23% when using only linear models. The difference

can be explained by the arcene dataset, where LASSO-FS outperforms FBEDK even when

selecting the same number of variables. A more detailed explanation is given in the main

text.

using FBEDK.

The comparison was performed similarly to the comparison between FBEDK and

FBS in Section 4.4.3. Specifically, for a given K and threshold α, we computed the

difference in AUC obtained by FBEDK and LASSO-FS. Thus, the only hyper-parameter

optimization performed was over predictive models and not over the hyper-parameters

of FBEDK. The results are shown in Figure 4.5. The x-axis corresponds to the

difference in AUC between FBEDK and LASSO-FS, while the y-axis indicates the value

K of FBEDK. We can see that, overall, both methods perform very similarly, regardless

of whether linear models or non-linear models were used. For non-linear models,

LASSO-FS outperforms FBEDK on average (over all K and α) by 0.78%, while using

linear models the difference drops to 0.23%. In terms of median difference in AUC,

a metric which is more stable with the respect to the datasets and hyper-parameter

values used, both algorithms perform almost identically. Those results also agree with

previous comparisons between forward selection and LASSO-FS [70].

We investigated the difference in performance and found that it can be attributed

to the arcene dataset. By removing this dataset, LASSO-FS outperforms FBEDK by

0.32% on average using non-linear models, while for linear models FBEDK performs

better by 0.22%. Note that, arcene is the dataset which contains the fewest number of

samples, while also containing a large number of variables. It contains 200 samples

and 10000 variables, and only 120/160 are used for training and validation respectively.

4.4. Experimental Evaluation 49

Theoretical results by [111] show that LASSO performs well in settings with low sample

size and many irrelevant variables, as is the case for the arcene dataset. One possible

explanation for the lower performance of FBEDK on arcene is that forward selection

based procedures use more effective degrees of freedom (see Figure 1 in [70]), thus

requiring more sample size to have sufficient statistical power to pick up weak signals.

It would be interesting to study this effect in more depth, but it is out of the scope

of this work. In summary, LASSO-FS and FBEDK perform similarly when the number of

variables to select is the same.

4.4.6 Simulation Study on the Multiple Testing Problem

The idea of early dropping of variables used by FBEDK does not only reduce the run-

ning time, but also reduces the problem of multiple testing, in some sense. Specifically,

it reduces the number of variables falsely selected due to type I errors. In general, the

number of false selections is related to the total number of variables considered in all

forward iterations. Thus, the effect highly depends on the value of K used by FBEDK,

with higher values of K leading to more false selections. We show this for FBED0 by

considering a simple scenario, where none of the candidate variables are predictive for

the outcome. Then, in the worst case, FBED0 will select about α · p of the variables on

average (where α is the significance level), since all other variables will be dropped in

the first iteration. This stems from the fact that, under the null hypothesis of condi-

tional independence, the p-values are uniformly distributed. In practice, the number

of selected variables will be even lower, as FBED0 will keep dropping variables after

each variable inclusion. On the other hand, FBS may select a much larger number of

variables, since each variable is given the chance to be included in the output at each

iteration and will often do so, simply by chance.

We performed a small simulation to investigate the behavior of FBED0, FBED1,

FBED∞ and how they compare to FBS. We generated 500 normally distributed

datasets with 1000 samples each, a uniformly distributed random binary outcome,

and considered different variable sizes p ∈ {100,200,300,400,500} and 5 significance

levels α uniformly spaced in [0.01,0.1]. All variables are generated randomly, and

there is no dependency between any of them. Thus, a false positive rate of about α is

expected, if no adjustment is done to control the false discovery rate. For each setting,

we computed the ratio of false positives with respect to the expected number of false

positives.

Figure 4.6 (top) shows how the ratio varies for sample sizes 100 and 500 with

increasing α, and Figure 4.6 (bottom) shows how the ratio varies for α 0.01 and 0.1

with increasing number of variables. In all cases, FBED0 and FBED1 select fewer

false positives than expected, and their behavior improves both with increasing α and

50 Chapter 4. Forward-Backward Selection with Early Dropping

0.01 0.0325 0.055 0.0775 0.1

Significance Level

0.5

0.75

1

1.25

1.5

R
el

at
iv

e
N

um
be

r
of

 F
al

se
 S

el
ec

tio
ns

Relative Number of False Selections for p = 100

Expected

FBED0

FBED1

FBED
FBS

100 200 300 400 500

Number of Variables p

0.5

0.75

1

1.25

1.5

R
el

at
iv

e
N

um
be

r
of

 F
al

se
 S

el
ec

tio
ns

Relative Number of False Selections for = 0.01

0.01 0.0325 0.055 0.0775 0.1

Significance Level

0.5

0.75

1

1.25

1.5

R
el

at
iv

e
N

um
be

r
of

 F
al

se
 S

el
ec

tio
ns

Relative Number of False Selections for p = 500

100 200 300 400 500

Number of Variables p

0.5

0.75

1

1.25

1.5
R

el
at

iv
e

N
um

be
r

of
 F

al
se

 S
el

ec
tio

ns

Relative Number of False Selections for = 0.1

Figure 4.6: The figures show the relative number of false selections by each algorithm on

randomly generated data. The expected number of false selections is α · p, where α is the

significance level and p the number of variables. The numbers are computed as the ratio

between the average number of selected variables to the expected false positives. FBED0

and FBED1 typically select fewer variables than expected, and their behavior improves

with increasing α and p. FBED∞ and FBS on the other hand select more false positive

variables, getting worse with larger values of α or on datasets with more variables.

number of variables. FBED∞ and FBS perform almost identically, and tend to select

more variables. We also observe that the number of false positives increases both with

α and with the number of variables. Thus, in case one is interested to limit the number of

false selection, we recommend running FBEDK with a small value of K.

Chapter 5

Extending FBED for Big Data of High

Dimensionality

We introduced the Forward-Backward selection with Early Dropping algorithm, to

speed-up the standard Forward-Backward Selection. Next, we will further extend

it for Big Data with high sample volume and high dimensionality, using heuristics

that take advantage of large sample sizes, by avoiding examining all samples unless

necessary. Furthermore, in order to efficiently parallelize it, we will use statistical

meta-analysis techniques that allow it to compute statistics and p-values with minimal

communication overhead. All of the above, combined with the early dropping heuristic,

allow the algorithm to scale super-linearly with sample size, and linearly with feature

size and number of available cores, enabling it to deal will massive datasets.

5.1 Massively Parallel Forward-Backward Algorithm

We provide an overview of our algorithm, called Parallel, Forward-Backward with

Pruning (PFBP), an extension of the Forward-Backward Selection with Early Drop-

ping (FBEDK) algorithm. PFBP is presented in “evolutionary” steps where successive

enhancements are introduced in order to make computations local or reduce compu-

tations and communication costs; the complete algorithm is presented in Section 5.1.4.

To evaluate predictive performance of candidate features we use the p-values of con-

ditional independence tests, as described in Section 2.4.1. We assume the data are

provided in the form of a 2-dimensional matrix D where rows correspond to training

instances (samples) and columns to features (variables), and one of the variables is the

target variable T. Physically, the data matrix is partitioned in sub-matrices Di,j and

stored in a distributed fashion in workers in a cluster running Spark [162] or similar

platforms. Workers perform in parallel local computations on each Di,j and a master

node performs the centralized, global computations.

51

52 Chapter 5. Extending FBED for Big Data of High Dimensionality

5.1.1 Data Partitions in Blocks and Groups and Parallelization Strategy

Figure 5.1: Left: Data partitioning of the algorithm. In the top the initial data matrix D
is shown with 6 features and instances I1, . . . , Im. In the bottom, the 6 features are parti-

tioned to Feature Subsets F1 = {1,2,3} and F2 = {4,5,6}. The rows are randomly parti-

tioned to Sample Subsets S1, . . . , Sns, and the Sample Subsets are assigned to Group Sam-

ples. Each Block Di,j is physically stored as a unit. Right: Example of trace of a Forward

Iteration of PFBP. (a) The Remaining features, Alive features, and Selected features are

initialized. (b) All Data Blocks D1,1,D1,2,D4,1,D4,2 in the first Group are processed in paral-

lel (by workers). (c) The resulting local p-values are collected (reduced) in a master node

for each Alive feature and Sample Set in the first Group (as well as the likelihoods, not

shown in the Figure). (d) Bootstrap-based tests determine which features to Early Drop

or Stop based on Π, or whether to Early Return (based on Λ, not shown in the Figure).

The sets R and A are updated accordingly. In this example, X2, X5 and X6 are Dropped,

X3 is stopped, and only X1 and X4 remain Alive. Notice that always A ⊆ R. (e) The sec-

ond Group is processed in parallel (by workers) containing Blocks D3,1,D3,2,D2,1,D2,2. (f)

New local p-values for all features still Alive are appended to Π. If G2 was the last Group,

global p-values for the Alive features would be computed and the one with the minimum

value (in this example X1) would be selected for inclusion in S. (g) In case, X1 and X4 are

deemed almost equally predictive (based on their log-likelihoods) the current best is Early

Returned.

We now describe the way D is partitioned in sub-matrices to enable parallel com-

putations. First, the set of available features (columns) F is partitioned to about

equal-sized Feature Subsets {F1, . . . ,Fnf }. Similarly, the samples (rows) are randomly

5.1. Massively Parallel Forward-Backward Algorithm 53

partitioned to about equal-sized Sample Subsets {S1, . . . , Sns}. The row and column

partitioning defines sub-matrices called Data Blocks Di,j with rows Si and features Fj.

Sample Subsets are assigned to Q Group Samples {Gq}C1 of size C each, where each

group sample Gq is a set {Sq1 , . . . , Sqn} (i.e., the set of Sample Subsets is partitioned).

The Data Blocks Di,j with samples within a group sample Si ∈ Gq belong in the same

Group. This second, higher level of grouping is required by the bootstrap tests ex-

plained in Section 5.2. Data Blocks in the same Group are processed in parallel in

different workers (provided enough are available). However, Groups are processed

sequentially, i.e., computation in all Blocks within a Group has to complete to begin

computations in the Blocks of the next Group. Obviously, if workers are more than

the Data Blocks, there is no need for defining Groups. The data partitioning scheme is

shown in Figure 5.1:Left. Details of how the number of Sample Sets ns, the number of

Feature Subsets nf , and the number C of Group Samples are determined are provided

in Section 5.3.

5.1.2 Approximating Global p-values by Combining Local p-values Using Meta-

Analysis

Recall that FBEDK uses p-values stemming from conditional independence tests to

rank the variables and to select the best one for inclusion (forward Phase) or exclusion

(backward Phase). Extending the conditional independence tests to be computed over

multiple Data Blocks is not straightforward, and may be computationally inefficient.

For conditional independence tests based on regression models (e.g. logistic or Cox

regression), a maximum-likelihood estimation over all samples has to be performed,

which typically does not have a closed-form solution and thus requires the use of an

iterative procedure (e.g. Newton descent). Due to its iterative nature, it results in a

high communication cost rendering it computationally inefficient, especially for feature

selection purposes on Big Data where numerous models have to be fit at each Iteration.

Instead of fitting full (global) regression models, we propose to perform the con-

ditional independence tests locally on each data block, and to combine the resulting

p-values using statistical meta-analysis techniques. Specifically, the algorithm computes

local p-values denoted by πi,k for candidate feature Xk from only the rows in Si of a data

block Di,j, where Fj contains the feature Xk. This enables massive parallelization of

the algorithm, as each data block can be processed independently and in parallel by

a different worker (Figure 5.1(b)). The local p-values πi,k are then communicated to

the master node of the cluster, and are stored in a matrix Π (Figure 5.1(c)); we will

use πi,k to refer to the elements of matrix Π, corresponding to the local p-value of Xk

computed on a data block containing samples in sample set Si. Using the p-values in

matrix Π, the master node combines the p-values to global p-values for each feature Xk

54 Chapter 5. Extending FBED for Big Data of High Dimensionality

using Fisher’s combined probability test [53] (Figure 5.1(c)) 1. Finally, we note that

this approach is not limited to regression-based tests, but can be used with any type

of conditional independence test, and is most appropriate for tests which are hard to

parallelize, or computationally expensive (e.g. kernel-based tests [164]).

Using Fisher’s combined probability test to combine local p-values does not neces-

sarily lead to the same p-value as the one computed over all samples. There are no

guarantees how close those p-values will be in case the null hypothesis of conditional

independence holds, except that they are uniformly distributed between 0 and 1. In

case the null hypothesis does not hold however (the dependency holds), one expects to

reject the null hypothesis using either method in the sample limit. What is important

for PFBP is to make the same decision at each Iteration, that is, that the top ranked

variable given by either p-value computation method is the same. However, even if

the top ranked variable is not the same one, PFBP may still perform well, as long

as some other informative variable is ranked first. In Appendix D.2 we investigate

in experiments on synthetic data how both approaches compare when the task is to

select the best variable at a given Iteration. We show that, if the sample size per data

block is sufficiently large, combined p-values and p-values obtained from tests on all

samples lead to the same choice with high probability.

For the computation of the local p-values on Di,j, samples Si of the selected features

S are required, and thus the data need to be broadcast to every worker processing

Di,j whenever S is augmented, i.e., in the end of each Forward Iteration. In total, the

communication cost of the algorithm is due to the assembly of all local p-values πi,k to

determine the next feature to include (exclude), as well as the broadcast of the data

for the newly added feature in S at the end of each forward Iteration. We would like

to emphasize that the bulk of computation of the algorithm is the calculation of local p-values

that require expensive statistical tests and it takes place in the workers in parallel. The central

computations in the master are minimal.

5.1.3 Speeding-up PFBP using Pruning Heuristics

In this section, we present 3 pruning heuristics used by PFBP to speed-up computation.

Implementation details of the heuristics using locally computed p-values are presented

in Section 5.2.

Early Dropping of Features from Subsequent Iterations

PFBP, as does FBEDK, uses the Early Dropping (ED) heuristic, presented in Section 4.1.

For the sake of completeness, we briefly describe it next.

1Naturally, any method for combining p-values can be used instead of Fisher’s method, but we did not
further investigate this in this work.

5.1. Massively Parallel Forward-Backward Algorithm 55

Let R denote the set of remaining features, that is, the set of features still under

consideration for selection. Initially, R = F\S, where F is the set of all available features

and S is the set of selected features, which is initially empty. At each forward Iteration,

ED removes from R all features that are conditionally independent of the target T given

the set of currently selected features S. Typically, just after the first few Iterations of

PFBP, only a very small proportion of the features will still remain in R, leading to

orders of magnitude of efficiency improvements even in the non-parallel version of the

algorithm. When the set of variables R becomes empty, we say that PFBP finished one

Run. Unfortunately, the Early Dropping heuristic without further adjustments may

miss important features which seem uninformative at first, but provide information for

T when considered with features selected in subsequent Iterations. Features should

be given additional opportunities to be selected by performing more Runs. Each

additional Run calls the forward phase again but starts with the previously selected

variables S and re-initializes the remaining variables to R = F \ S. By default, PFBP

uses 2 Runs, although a different number of Runs may be used. Typically a value of

1 or 2 is sufficient in practice, with larger values requiring more computational time

while also giving stronger theoretical guarantees.

Early Stopping of Features within the Same Iteration

The next addition to the algorithm regards Early Stopping (ES) of consideration of

features within the same Iteration, i.e., in order to select the next best feature to select

in a forward Iteration or to remove in a backward Iteration. To implement ES we

introduce the set A of features still Alive (i.e., under consideration) in the current

Iteration, initialized to A = R at the beginning of each Iteration (see Figure 5.1(a)).

As the master node gathers local p-values for a feature Xk from several Data Blocks,

it may be able to determine that no more local p-values need to be computed for Xk.

This is the case if these p-values are enough to safely decide that with high probability

Xk is not going to be selected for inclusion (Forward Phase) or exclusion (Backward

Phase) in this Iteration (see Section 5.2 for a bootstrap-based procedure that performs

this test). In this case, Xk is removed from the set of alive features A, and is not

further considered in the current Iteration (see Figure 5.1(d)). This allows PFBP to

quickly filter out variables which will not be selected at the current Iteration. Thus, ES leads

to a super-linear speed-up of the feature selection algorithm with respect to the sample size:

even if the sample size is doubled, the same features will be Early Stopped; p-values will not

be computed for these features on the extra samples.

56 Chapter 5. Extending FBED for Big Data of High Dimensionality

Early Return of the Winning Feature

The final heuristic of the algorithm is called Early Return (ER). Recall that Early

Dropping will remove features conditionally independent of T given S from this and

subsequent Iterations while Early Stopping will remove non-winners from the current

Iteration. However, even using both heuristics, the algorithm will keep producing local

p-values for features Xj and Xk that are candidates for selection and at the same time

are informationally indistinguishable (equally predictive given S) with regards to T

(this is the case when the residuals of Xj and Xk given S are almost collinear). When

two or more features are both candidates for selection and almost indistinguishable, it

does not make sense to go through the remaining data: all choices are almost equally

good. Hence, Early Return terminates the computation in the current Iteration and

returns the current best feature Xj, if with high probability it is not going to be much

worse than the best feature at the end of the Iteration (see Figure 5.1(g)). Again,

the result is that computation in the current Iteration may not process all Groups.

The motivation behind Early Return is similar to Early Stopping, in that it tries to

quickly determine the next feature to select. The difference is that, Early Return tries

to quickly determine whether a variable is “good enough” to be selected, in contrast

to Early Stopping which discards unpromising variables.

A technical detail is that judging whether two features Xi and Xj are “equally

predictive” is implemented using the log-likelihoods λi and λj of the models with

predictors S ∪ {Xi} and S ∪ {Xj} instead of the corresponding p-values. The likelihoods

are part of the computation of the p-values, thus incur no additional computational

overhead.

5.1.4 The Parallel Forward-Backward with Pruning Algorithm

We present the proposed Parallel Forward-Backward with Pruning (PFBP) algorithm,

shown in Algorithm 4. To improve readability, several arguments are omitted from

function calls. PFBP takes as input a dataset D and the target variable of interest T.

Initially the number of Sample Sets ns and number of Feature Sets nf are determined

as described in Section 5.3. Then, (a) the samples are randomly assigned to Sample

Sets S1, . . . , Sns, to avoid any systematic biases (see also Section B.2.1), (b) the Sample

Sets S1, . . . , Sns are assigned to Q approximately equal-sized Groups, G1, . . . ,GQ, (c)

the features are assigned to feature sets F1, . . . ,Fnf , in order of occurrence in the

dataset, and (d) the dataset D is partitioned into data blocks Di,j, with each such block

containing samples and features corresponding to sample set Si and feature set Fj

respectively. The selected variables S are initialized to the empty set. The main loop of

the algorithm performs up to maxRuns Runs, as long as the selected variables S change.

Each such Run executes a forward and a backward Phase.

5.1. Massively Parallel Forward-Backward Algorithm 57

Algorithm 4 Parallel Forward-Backward With Pruning (PFBP)

Input: DatasetD, Target T, Maximum Number of Runs maxRuns

Output: Selected Variables S
1: //Data Partitioning

2: Randomly assign samples to sample sets S1, . . . , Sns
3: Assign sample sets S1, . . . , Sns to equally-sized Groups G1, . . . ,GK

4: Assign features to feature sets F1, . . . ,Fnf

5: PartitionD to data blocks Di,j containing samples from Si and Fj, ∀i, j
6:

7: S← ∅ //No selected variables

8: run← 1 //First run

9:

10: //Iterate until (a) maximum number of runs reached, or (b) selected features S did not

change

11: while run ≤ maxRuns ∧ S changes do

12: S← ONERUN(D, T, S)

13: run← run + 1
14: end while

15: return S

16: function ONERUN(Data Blocks D, Target T, Selected Variables S, Maximum Number

of Variables To Select maxVars)

17: R← F \ S //All variables remaining
18: //Forward phase: iterate until (a) maximum number of variables selected or (b) no new

variable has been selected

19: while |S| < maxVars ∧ S changes do

20: 〈S,R〉 ← FORWARDITERATION(D, T, S, R)

21: end while

22:

23: //Backward phase: iterate until no variable can be removed

24: while S changes do

25: S← BACKWARDITERATION(D, T, S)

26: end while

27: return S

The OR function takes as input a set of data blocks D, the target variable T, a

set of selected variables S, and a limit on the number of variables to select maxVars. It

initializes the set of remaining variables R to all non-selected variables F \ S. Then, it

executes the forward and backward Phases. The forward (backward) Phase executes

forward (backward) Iterations until some stopping criteria are met. Specifically, the

forward Phase terminates if the maximum number of variables maxVars has been

selected, or until no more variable can be selected, while the backward Phase terminates

if no more variables can be removed from S.

58 Chapter 5. Extending FBED for Big Data of High Dimensionality

Algorithm 5 FORWARDITERATION

Input: Data Blocks D, Target T, Selected Variables S, Remaining Variables R
Output: Selected Variables S, Remaining Variables R

1: A←R //Initialize Alive Variables

2: Π //Array of log-pvalues, initially empty

3: Λ //Array of log-likelihoods, initially empty

4: q← 1 //Initialize current Group counter

5: Q← #Groups //Set Q to the total number of Groups

6:

7: while q ≤ Q do

8: //Process the alive features A for all data blocks containing sample sets in Gq (de-

noted as Dq) in parallel in workers for the given T, S and A, compute sub-matrices Πq

and Λq from each block, and append results to Π and Λ

9: 〈Πq, Λq〉 ← TESTPARALLEL(Dq ,T,S,A)
10: 〈R,A〉 ← EARLYDROPPING(Π,R,A)
11: A← EARLYSTOPPING(Π,A)
12: A← EARLYRETURN(Λ,A)
13: Update Π and Λ (Retain only columns of alive variables)

14: //Stop if single variable alive

15: if |A| ≤ 1 then

16: break

17: end if

18: q← q + 1
19: end while

20:

21: if |A| > 0 then

22: π ← COMBINE(Π) //Compute final combined p-value for all alive variables

23: Xbest← argmin
Xi∈A

πi //Identify the best variable Xbest

24: //Select Xbest if dependent with T given S
25: if πbest ≤ α then

26: S← S ∪ {Xbest}
27: R←R \ {Xbest}
28: end if

29: end if

30: return 〈S,R〉

The forward and backward Iteration procedures are shown in Algorithms 5 and

6. FI takes as input the data blocks D, the target variable T as well as

the current sets of remaining and selected variables, performs a forward Iteration and

outputs the updated sets of selected and remaining variables. It uses the variable set A
to keep track of all alive variables, i.e. variables that are candidates for selection. The

arrays Π and Λ contain the local log p-values and log-likelihoods, containing ns rows

5.1. Massively Parallel Forward-Backward Algorithm 59

Algorithm 6 BACKWARDITERATION

Input: Data Blocks D, Target T, Selected Variables S
Output: Selected Variables S, Remaining Variables R

1: A← S //Initialize Alive Variables

2: Π //Array of log-pvalues, initially empty

3: q← 1 //Initialize current Group counter

4: Q← #Groups //Set Q to the total number of Groups

5:

6: while q ≤ Q do

7: //Process the alive features A for all data blocks containing sample sets in Gq (de-

noted as Dq) in parallel in workers for the given T, S and A, compute sub-matrix Πq

from each block, and append it to Π

8: Πq ← TESTPARALLEL(Dq ,T,S,A)
9: A← EARLYSTOPPINGBACKWARD(Π,A)

10: Update Π (Retain only columns of alive variables)

11: //Stop if single variable alive

12: if |A| ≤ 1 then

13: break

14: end if

15: q← q + 1
16: end while

17:

18: if |A| > 0 then

19: π ← COMBINE(Πq) //Compute final combined p-value for all alive variables

20: Xworst← argmax
Xi∈A

πi //Identify the worst variable Xworst

21: //Remove Xworst if independent with T given S \Xworst

22: if πworst > α then

23: S← S \ {Xworst}
24: end if

25: end if

26: return S

(one for each sample set) and |A| columns (one for each alive variable). The values of

Π and Λ are initially empty, and are filled gradually after preprocessing each Group.

We use Dq to denote all data blocks which corresponds to Sample Sets contained in

Group Gq. Similarly, accessing the values of Π and Λ corresponding to Group q and

variables X is denoted as Πq and Λq.

In the main loop, the algorithm iteratively processes Groups in a synchronous

fashion, until all Groups have been processed or no alive variable remains. The

TP function takes as input the data blocks Dq corresponding to the current

Group Gq, and performs all necessary independence tests in parallel in workers. The

60 Chapter 5. Extending FBED for Big Data of High Dimensionality

results, denoted as Πq and Λq are then appended to the Π and Λ matrices respectively.

After processing a Group, the tests for Early Dropping, Early Stopping and Early

Return are performed, using all local p-values computed up to Group q; details about

the implementation of the ED, ES and ER algorithms

when data have only been partially processed are given in Section 5.2. The values

of non-alive features are then removed from Π and Λ (see also Figure 5.1(f) for

an example). If only a single alive variable remains, processing stops. Note that,

this is not checked in the while loop condition, in order to ensure that at least one

Group has been processed if the input set of remaining variables contains a single

variable. Finally, the best alive variable (if such a variable exists) is selected if it is

conditionally dependent with T given the selected variables S. Conditional dependence
is determined by using the p-value resulting from combining all local p-values available

in Π. BI is similar to FI with the exception that (a)

the remaining variables are not needed, and thus no dropping is performed, (b) no

early return is performed, and (c) the tests are reversed, i.e. the worst variable is

removed.

Implementation details regarding the accurate computation of the logarithm of p-

values, the logistic-regression based likelihood-ratio test, as well as a more efficient

method for the univariate tests based on score tests are given in Appendix B.2.

5.1.5 Massively-Parallel Predictive Modeling

The technique of combining locally computed p-values to global ones to massively

parallelize computations, can be applied not only for feature selection, but also for

predictive modeling. We exploit this opportunity in the context of independence tests

implemented by logistic regression. During the computation of local p-values πi,k a

(logistic) model for T using all selected features S is produced from the samples in Si.

Such a model computes a set of coefficients βi that weighs each feature in the model

to produce the probability that T = 1. We used the weighted univariate least squares

(WLS) approach [72], with equal weights for each model; equal weights were used

as the sample size of each partition is (approximately) the same. The WLS method

with equal weights combines the N local models to a global one β by just taking the

average of the coefficient vectors of the model , i.e., β = 1
N

∑N
i=1 βi. Thus, the only

change to the algorithm is to cache each βi and average them in the master node.

This way, at the end of the feature selection process one could obtain an approximate

predictive model with no additional overhead! By default, PFBP uses the WLS method

to construct a predictive model at each forward Iteration. Other multivariate methods

for combining multiple models, which also consider the co-variance of the estimated

coefficients are described in [9]. Such methods could also be applied in our case

5.2. Implementation of the Early Dropping, Stopping and Return Heuristics using
Bootstrap Tests on Local p-values 61

without any significant computational overhead, but were not further considered in

this work.

Using the previous technique, one could obtain a model at the end of each Iteration

without extra computations and assess its predictive performance (e.g., accuracy) on a

hold-out validation set. Constructing for instance the graph of the number of selected

features versus achieved predictive performance on the hold-out set could visually

assist data analysts [87] in determining how many features to include in the final

selections; an example application on SNP data is given in the experimental section

in Figure 5.4. An automated criterion for selecting the best trade-off between the

number of selected features and the achieved predictive performance could also be

devised, although this is out of the scope of this work, as multiple testing has to be

taken into consideration.

5.2 Implementation of the Early Dropping, Stopping and Return

Heuristics using Bootstrap Tests on Local p-values

Recall that the algorithm processes Group Samples sequentially. After processing each

Group and collecting the results, PFBP applies the Early Dropping, Early Stopping

and Early Return heuristics, computed on the master node, to filter out variables

and reduce subsequent computation. Thus, all three heuristics involve making early

probabilistic decisions based on a subset of the samples examined so far. Naturally,

if all samples have been processed, Early Dropping can be applied on the combined

p-values without making probabilistic decisions.

Before proceeding with the details, we provide the notation used hereafter. Let Π

and Λ be 2-dimensional arrays containing K local log p-values and log-likelihoods for

all alive variables in A and for all Groups already processed. The matrices reside on

the master node, and are updated each time a Group is processed. Let πi,j and λi,j

denote the i-th value of the j-th alive variable, denoted as Xj. Recall that those values

have been computed locally on the Data Block containing samples from Sample Set Si.

For the sake of simplicity, we will use πj and λj (lj) to denote the combined p-value

and sum of log-likelihoods (likelihood) respectively of variable Xj. The vectors π and

λ will be used to refer to the combined p-values and sum of log-likelihoods for all alive

variables respectively. Also, let Xbest be the variable that would have been selected if no

more data blocks were evaluated, that is, the one with the currently lowest combined

p-value, denoted as πbest.

62 Chapter 5. Extending FBED for Big Data of High Dimensionality

5.2.1 Bootstrap Tests for Early Probabilistic Decisions

In order to make early probabilistic decisions, we test: (a) P(πj ≥ α) > Pdrop for

Early Dropping of Xj (i.e., the probability of the j-th feature deemed independent at

significance level α at the end of the Iteration is larger than a threshold), (b) P(πbest <

πj) > Pstop for Early Stopping of Xj (i.e., the probability of the current best feature

having a smaller “better” p-value than feature j is larger than a threshold), and (c)

∀Xj, (P(lbest/ lj ≥ t) > Preturn) for Early Return of Xbest (the likelihood ratio lbest/ lj indicate

how close is the model with the currently best feature and the mode with feature lj;

if all ratios with all alive features are above a certain threshold with high probability,

then the current best choice is close to optimal). The t is a tolerance parameter that

determines how close the compared models should be. It takes values between 0 and

1; the closer it is to 1, the closer it is guaranteed that the current best model will be to

all other ones in consideration in terms of likelihood. By taking the logarithm, (c) can

be rewritten as ∀Xj,P(λbest − λj ≥ lt), where lt = log(t).

We employed bootstrapping to test the above. A bootstrap-sample b of Π (Λ),

denoted as Πb (Λb), is created by sampling with replacement K rows from Π (Λ).

Then, for each such sample, the Fisher’s combined p-values (sum of log-likelihoods)

are computed, by summing over all respective values for each alive variable; we refer to

the vector of combined p-values (log-likelihoods) on bootstrap sample b as πb (λb), and

the i-th element is referred to as πb
i (λ

b
i). By performing the above B times, probabilities

(a), (b) and (c) can be estimated as:

P(πj ≥ α) =
I(πj ≥ α) +

∑B
b=1 I(π

b
j
≥ α)

B+ 1
(Early Dropping)

P(πj > πbest) =
I(πj > πbest) +

∑B
b=1 I(π

b
j
> πb

best
)

B+ 1
(Early Stopping)

P(λbest − λj ≥ lt) =
I(λbest − λj ≥ lt) +

∑B
b=1 I(λ

b
best
− λb

j
≥ lt)

B+ 1
(Early Return)

where I is the indicator function, which evaluates to 1 if the inequality holds and to 0

otherwise. For all of the above, the condition is also computed on the original sample,

and the result is divided by the number of bootstrap iterations B plus 1. Note that, for

Early Return the above value is computed for all features Xj.

Algorithms 7,8 and 9 show the procedures in more detail. For all heuristics,

a vector named cnts is used to keep track of how often the inequality is satisfied

for each variable. To avoid cluttering, the indicator function I performs the check

for multiple variables and returns a vector of values in each case, containing one

5.2. Implementation of the Early Dropping, Stopping and Return Heuristics using
Bootstrap Tests on Local p-values 63

Algorithm 7 EARLYDROPPING

Input: Log p-values Π, Remaining Variables R, Alive Variables A, Number of Bootstrap

Samples B, Significance Level Threshold α, ED Threshold Pdrop

Output: Remaining variables R, Alive Variables A
1: π← COMBINE(Π) //Combine log p-values Π using Fisher’s c.p.t.

2: cnts← 0|A| //Count vector of size equal to the number of alive variables

3: cnts← cnts + I(π ≥ α)
4: for b = 1 to B do

5: Πb← BOOTSTRAPSAMPLE(Π)
6: πb← COMBINE(Πb) //Combine log p-values Πbusing Fisher’s c.p.t.

7: cnts← cnts + I(πb ≥ α)
8: end for

9: //Drop variables if p-value larger than α with probability at least Pdrop

10: R← R \ {Xi ∈ A : cntsi/ (B+ 1) ≥ Pdrop}
11: A← A \ {Xi ∈ A : cntsi/ (B+ 1) ≥ Pdrop}
12: return 〈R,A〉

Algorithm 8 EARLYSTOPPING

Input: Log p-values Π, Alive Variables A, Number of Bootstrap Samples B, ES Threshold

Pstop

Output: Alive Variables A
1: π← COMBINE(Π) //Combine log p-values Π using Fisher’s c.p.t.

2: Xbest← argmin
Xi∈A

πi //Identify variable with minimum Fisher’s combined p-value

3: cnts← 0|A| //Count vector of size equal to the number of alive variables

4: cnts← cnts + I(πbest < π)

5: for b = 1 to B do

6: Πb← BOOTSTRAPSAMPLE(Π)
7: πb← COMBINE(Πb) //Combine log p-values Πbusing Fisher’s c.p.t.

8: cnts← cnts + I(πb
best
< πb)

9: end for

10: //Exclude variables from A that are worse than Vbest with probability at least Pstop

11: A← A \ {Xi ∈ A : cntsi/ (B+ 1) ≥ Pstop}
12: return A

value for each variable. The function BS creates a bootstrap sample as

described above, function C uses Fisher’s combined probability test to compute

a combined p-value, and SR sums over all rows of the log-likelihoods contained

in Λ, returning a single value for each alive variable.

64 Chapter 5. Extending FBED for Big Data of High Dimensionality

Algorithm 9 EARLYRETURN

Input: Log-likelihoods Λ, Alive Variables A, Number of Bootstrap Samples B, ER Thresh-

old Preturn, ER Tolerance lt
Output: Alive Variables A

1: π← COMBINE(Π) //Combine log p-values Π using Fisher’s c.p.t.

2: λ← SUMROWS(Λ) //Sum rows of log-likelihoods Λ

3: Xbest← argmin
Xi∈A

πi //Identify variable with minimum Fisher’s combined p-value

4: cnts← 0|A| //Count vector of size equal to the number of alive variables

5: cnt← cnts + I(λbest − λ > lt)
6: for b = 1 to B do

7: Λb← BOOTSTRAPSAMPLE(Λ)
8: λb← SUMROWS(Λ) //Sum rows of log-likelihoods Λb

9: cnts← cnts + I(λb
best
− λb > lt)

10: end for

11: //Select Xbest early if better than all other variables with probability at least Preturn

12: if ∀i, cntsi/ (B+ 1) ≥ Preturn then

13: A← {Xbest}
14: end if

15: return A

5.2.2 Implementation Details of Bootstrap Testing

We recommend using the same sequence of bootstrap indices for each variable, and

for each bootstrap test. The main reasons are to (a) simplify implementation, (b)

avoid mistakes and (c) ensure results do not change across different executions of the

algorithms. This can be done by initializing the random number generator with the

same seed. Next, note that ED, ES and ER do not necessarily have to be performed

separately, but can be performed simultaneously (i.e,. using the same bootstrap sam-

plings). This allows the re-usage of the sampled indices for all tests and variables,

saving some computational time. Another important observation for ED and ES is

that the actual combined p-values are not required. It suffices to compare statistics

instead, which are inversely related to p-values: larger statistics correspond to lower

p-values. For the ED test, the statistic has to be compared to the statistic correspond-

ing to the significance level α, which can be computed using the inverse χ2 cumulative

distribution. This is crucial to speed-up the procedure, as computing log p-values is

computationally expensive. Finally, note that it is not always necessary to perform all

bootstrap iterations to decide if the probability is below the threshold. This can be

done by keeping track of an upper bound of the estimated probabilities, and to stop

the bootstrap procedure if that bound is below the threshold, further reducing the

computational cost. For example, let Pdrop = 0.99 and B= 999. Then, in order to drop

5.3. Tuning the Data Partitioning Parameters of the Algorithm 65

a variable Xi, the number of times cntsi where the p-value of Xi exceeds α has to be at

least 990. If after K iterations (B−K)+ cntsi is less than 990, one can determine that Xi

will not be dropped; even if in all remaining bootstrap iterations its p-value is larger

than α, cntsi + B− K will always be less than 990, and thus the probability P(πi ≥ α)

will be less than the threshold Pdrop = 0.99.

Finally, we note that, in order to minimize the probability of wrong decisions, large

values for the ED, ES and ER thresholds should be used. We found that values

of 0.99 for Pdrop and Pstop, and values of Preturn = 0.95 and tol = 0.9 work well in

practice. Furthermore, the number of bootstraps B should be as large as possible, with

a minimum recommended value of 500. By default, PFBP uses the above values.

5.3 Tuning the Data Partitioning Parameters of the Algorithm

The main parameters for the data partitioning to determine are (a) the sample size s of

each Data Block, (b) the number of features f in each Data Block, and (c) the number

of Sample Subsets C in each Group; the latter determines how many new p-values per

feature are computed in each Group. Notice that s determines the horizontal partitioning

of the data matrix and f the vertical partitioning of data matrix. In this section, we provide

detailed guidelines to determine those parameters, and show how those values were

set for the special case of PFBP using conditional independence tests based on binary

logistic regression. Selecting the data partitioning parameters needs to consider both statistical

phenomena, as well as the hardware architecture. A trade-off exists between accuracy of

statistical estimation of p-values and the bootstrap tests and the induced parallelism.

5.3.1 Determining the Required Sample Size s for Conditional Independence

Tests

For optimal computational performance, the number of Sample Sets should be as large

as possible to increase parallelism, and each Sample Set should contain as few sam-

ples as possible to reduce the computational cost for performing the local conditional

independence tests. On the other hand, there should be enough samples per Sample

Set so that the local tests have enough statistical power.

Various rules of thumb have appeared in the literature to choose a sufficient number

of samples for linear, logistic and Cox regression [67,116,153]. We focus on the case of

binary logistic regression hereafter. For binary logistic regression, it is recommended

to use at least s = c/ min(p0, p1) · df samples, where p0 and p1 are the proportion of

negative and positive classes in T respectively, df is the number of degrees of freedom

in the model (that is, the total number of parameters, including the intercept term)

and c is usually recommended to be between 5 and 20, with larger values leading to

66 Chapter 5. Extending FBED for Big Data of High Dimensionality

more accurate results. This rule is based on the events per variable (EPV) [116], and

will referred to as the EPV rule hereafter.

Rules like the above can be used to determine the number of samples s in each

Sample Set, by setting the minimum number of samples in each Data Block in a way

that the locally computed p-values are valid for the type of test employed in the worst

case. The worst case scenario occurs if the maximum number of features maxVars have

been selected. If all features are continuous, then the maximum number of parameters

of a model is df = maxVars + 1. This can easily be adapted for the case of categorical

features, by considering the maxVars variables with the most categories, and setting df

appropriately. By considering the worst case scenario, the required number of samples

can be computed by plugging the values of df , c, p0 and p1 into the EPV rule. We

found out that, although the EPV rule works reasonably well, it tends to overestimate

the number of samples required for skewed class distributions. As a result, it may

unnecessarily slow down PFBP in such cases. Ideally for a given value of c the results

should be equally accurate irrespective of the class distribution and the number of

model parameters.

To overcome the drawbacks of the EPV rule, we propose another rule, called the

STD rule, which is computed as s = df · c/ √p0 · p1. For balanced class distributions the

result is identical to the EPV rule, while for skewed distributions the value is always

smaller. We found that a value of c = 10 works sufficiently well, and recommend to

always set c to a minimum of 10; higher values could lead to more accurate results, but

will also increase computation time. Again, the number of samples per Sample Set is

determined as described above. A comparison of both rules is given in Appendix D.2.

We show that the STD rule behaves better across different values of df and class

distributions of the outcome than the EPV rule.

5.3.2 Setting the Number of Sample Sets C per Group

We now discuss the determination of the C value, the number of Sample Sets in each

Group. The value of C determines how many Sample Sets are processed in parallel

and thus, how many additional local p-values for each feature are added to matrix Π

at the end of processing each Group. In other words, before invoking the next round

of bootstrap tests that decide on Early Dropping, Stopping or Return, C additional

p-values will be available to these tests. We recommend a minimal value for C to

be at least 15, otherwise the first round of bootstrap tests becomes unreliable. The

value of C determines how often the workers stop and await the master to perform the

bootstrap tests, which should not be too often. In our experiments we have set C = 30,

without extensive tuning. In addition, whenever there is no progress made by any of

the heuristics (when the “easy-to-determine” features have already been stopped or

5.4. Related Work 67

dropped), the value of C is doubled dynamically for that Iteration. This trick avoids

stopping too often without any progress made. C is then reset in the next iteration.

5.3.3 Determining the Number of Features per Data Block

At this point, we assume we have chosen the sample size s of each data block Di,j. We

also assume we have decided upon the value of C, i.e., the number of Sample Sets in

each Group. In other words, we have selected the horizontal partitioning of the data

at two levels: first, the partitioning of samples to Sample Sets and then to samples

that belong to the same Group. Next, we need to decide the vertical partitioning to nf

equal-size Feature Sets. The number of blocks per group will then become C×nf . In a

system with M available workers that can process the blocks in parallel, it makes sense

to determine nf so that M ≈ C × nf . Specifically, we set nf = ⌊M/C⌋. In the extreme

case where a data block does not fit in the main memory of a machine, nf has be to

increased and the data to be physically partitioned to different machines.

5.4 Related Work

In this section we provide an overview of related parallel feature selection methods,

focusing on methods for MapReduce-based systems (such as Spark), and compare

them to PFBP. An overview of common classes of feature selection algorithms can be

found in Chapter 3, as well as in [63] and [94].

5.4.1 Parallel Univariate Feature Selection and Parallel Forward-Backward Se-

lection

UFS and FBS rank features according to p-values of independence tests. UFS com-

putes the p-values of the unconditional test between a feature and the target, while

FBS performs conditional tests given the already selected features. UFS statically ranks

features, while FBS updates the ranking with every newly selected feature. The algo-

rithms stop when the maximum number of features has been selected, or the p-values

are below some significance threshold. Both UFS and FBS can be parallelized at the

level of the underlying statistical test employed. Specifically, the Spark machine learning li-

brary MLlib [104] offers parallel implementations of Pearson and Spearman correlation

coefficients for continuous data, and the chi-square test of independence for discrete

data. For conditional independence, tests can be constructed using the likelihood ratio

technique by fitting statistical models. MLlib offers parallelized binomial, multinomial,

and linear regression models to this end. We employed these parallelized statistical

tests to implement UFS and FBS in the experimental section.

The main advantages of PFBP over UFS and FBS are that (a) PFBP does not

68 Chapter 5. Extending FBED for Big Data of High Dimensionality

require specialized distributed implementations of independence tests, as it only relies

on local computations and thus can use existing implementations. Local fitting and

combining is also much faster than fitting full models over all samples, and (b) PFBP

employs the Early Dropping, Early Stopping and Early Return heuristics, allowing it

to scale both with number of features and samples. Perhaps, most importantly (c) UFS

will not necessarily identify the Markov Blanket of T even in faithful distributions; the

solution by UFS will have false positives (e.g., redundant features) as well as false

negatives (missed Markov Blanket features).

5.4.2 Single Feature Optimization

The Single Feature Optimization algorithm (SFO) [135] is a Map-Reduce-based exten-

sion of the standard forward selection algorithm using binary logistic regression. In

essence, SFO employs an efficiency trick to approximate the parallel computation of

the criterion to select the next best feature, when the binary logistic regression test is

employed. Thus, the algorithm is specific to classification tasks and cannot be tivially

generalized to other types of classifiers in place of the logistic regression.

In more detail, SFO (a) employs a heuristic that ranks the features at each step

without the need to fit a full logistic regression model (that is, one over all samples)

for all variables, and (b) uses a parallelization scheme to perform parallel computation

over samples and features.

We proceed by describing the ranking heuristic used by SFO. Let S be the selected

features up to some point and R = F \ S be all candidate variables for selection, and

assume that a full logistic regression model M for T using S is available. SFO creates

an approximate model for each variable Ri ∈ R by fixing the coefficients of S using their

coefficients in M, and only optimizing the coefficient of Ri. This problem is much sim-

pler than fitting full models for each remaining variable, significantly reducing running

time. Then, the best variable R∗ is chosen based on those approximate models (using

some performance measure such as the log-likelihood), and a full logistic regression

model M∗ with S ∪ R∗ is created. Thus, at each iteration only a single, full logistic

regression model needs to be created. By default, SFO uses a maximum number of

variables to select as a stopping criterion. Alternatively, to decide whether R∗ should

be selected a likelihood-ratio test could be used, in which case the test is performed

on M and M∗, and R∗ is selected if the p-value is below a threshold α; we used this

in our implementation of SFO in the experiments. The parallelization over samples

is performed in the map phase, in which one value pj is computed for each sample j,

which equals

pj =
eβ·Sj

1 + eβ·Sj

5.4. Related Work 69

where β are the coefficients of S in M and Sj are the values of S in the j-th sample.

The values of pj, the values of the outcome T and all of candidate variables R are

then sent to workers to be processed in the reduce phase. Note that, this incurs a high

communication cost, as essentially the whole dataset has to be exchanged among workers over

the network. Finally, in the reduce phase, all workers fit in parallel over all variables R
the approximate logistic regression models.

Although SFO significantly improves over the standard forward selection algorithm

in terms of running time, it has three main drawbacks compared to PFBP: (a) it

has a high communication cost, in contrast to PFBP which only requires minimal

information to be communicated, (b) to select a variable all non-selected variables have

to be considered, while PFBP employs the Early Dropping heuristic that significantly

reduces the number of remaining variables, and (c) SFO always uses all samples,

while PFBP uses Early Stopping and Early Return allowing it to scale sub-linearly

with number of samples. Finally, (d) SFO does not provide any theoretical guarantees

of correctness.

5.4.3 Information Theoretic Feature Selection for Big Data

Information theoretic feature selection (ITFS) [22] methods have been extended to

Big Data settings [121] and implemented for Spark2. They are applicable only for

discrete features and outcomes, and use mutual information and conditional mutual

information estimates to rank and select variables; a more detailed description and

their relation with forward selection can be found in Chapter 3 and in [22].

The main advantage of the specific implementation of ITFS over PFBP’s is that

estimating the (conditional) mutual informations for discrete data under the multino-

mial assumption, does not require fitting any model; it only requires counting and

constructing the contingency tables of the joint. This can be done in one pass of the

data and can thus trivially exploit the sparsity of the data. In Big Data settings it

can be easily parallelized. However, ITFS methods do not have the same theoretical

properties of PFBP, which can be shown to be optimal for distributions that can be

faithfully represented by Bayesian networks and maximal ancestral graphs. This stems

from the fact that PFBP solves an inherently harder problem, as it conditions on all

selected features (creates a model with all selected features) at each iteration in order

to select the next feature, while ITFS only conditions on one feature at a time. Fur-

thermore, ITFS methods are not as general as PFBP, which can be applied to various

data types as long as an appropriate conditional independence test is available. Appro-

priate statistical tests for different cases (e.g., survival analysis, time-course data) are

available and put in use within statistical-based methods similar to PFBP [89]. Last

2https://spark-packages.org/package/sramirez/spark-infotheoretic-feature-selection

70 Chapter 5. Extending FBED for Big Data of High Dimensionality

but not least, as currently implemented, ITFS variants are only applicable to discrete

data. Thus, continuous variables have to be discretized before feature selection, which

may lead to information loss [43, 82], increases computational time and may require

tuning to find a good discretization.

5.4.4 Parallel Lasso

The Lasso has been parallelized for single machines and shared-memory clusters [19,

95,167]. These approaches only parallelize over features and not samples (i.e. consider

vertical partitioning). Naturally, ideas and techniques presented in those works could

be adapted or extended for Spark or related systems. An implementation of Lasso

linear regression is provided in the Spark MLlib library [104]. A disadvantage of

that implementation is that it requires extensive tuning of its hyper-parameters (like

the regularization parameter λ and several parameters of the optimization procedure),

rendering it impractical as typically many different hyper-parameter combinations have

to be tried to obtain the optimal settings. Unfortunately, we were not able to find any

Spark implementation of Lasso for logistic regression, or any work dealing with the

problem of efficient parallelization of Lasso on Spark.

Comparing Lasso with algorithms related to PFBP, we note that in extensive simula-

tions it has been shown that causally-inspired feature selection methods are competitive

in terms of predictive performance with Lasso on classification and survival analysis

tasks on many real datasets [4,89–91]. Furthermore, as shown in Section 4.4, FBEDK

performs as well as Lasso when restricted to select the same number of variables. Fi-

nally, we note that in contrast to forward selection using conditional independence tests,

Lasso is not easily extensible for different tasks, and requires specialized algorithms for

different data types [77, 102, 131], whose objective function may be non-convex [131]

or computationally demanding [47]. For example, for time-course data, the Lasso

problem is not convex and does not scale up, while causal-based FS methods do [143].

5.4.5 Other Approaches

In addition to forward-selection based, information theoretic and Lasso based meth-

ods, there also exist other parallel feature selection methods which can’t directly be

categorized into one of the above but are worth mentioning. However, none of those

methods has actually been applied to Big Data, which may contain millions of samples

and/or features. Furthermore, all of the methods perform virtual partitioning of the

data, and thus only parallelize over features and not over samples, in contrast to PFPB

which parallelizes over both.

Bolón-Canedo et al. [15] introduced a method which uses vertical partitioning to

distribute computations across workers. The method focuses mainly on DNA mi-

5.4. Related Work 71

croarray data, whose number of features is much larger than the number of samples,

although it is not limited to those cases. It can be applied using any feature selection

method that ranks features, like the ITFS methods described previously, or even for-

ward selection type algorithms using as a ranking the order of selection of variables.

The main idea is to rank variables on each worker independently and to combine the

partial rankings into a complete one. In order to be able to combine the rankings,

each variable may be distributed to multiple workers in order to have some kind of

overlap between the partial rankings, allowing them to be merged into one. Although

the method is quite general, as it can be used in combination with any method that

produces a ranking of the features, its theoretical properties are not explored in the

paper, making it hard to compare theoretically against other methods.

Zhou et al. [168] introduced a general, parallel feature selection method for classi-

fication tasks that is based on group testing theory. The idea is to select a collection

of tests (i.e., a subset of the input variables), with each variable being present with

some probability p. This implicitly creates multiple datasets, one for each test. Those

datasets can be processed independently in parallel, producing a score using some scor-

ing function for each dataset corresponding to how predictive the respective variables

are of the outcome of interest. Then, variables are ranked based on the scores attained

on the datasets they participated in. The authors show that, for specific values of p, if

the number of tests is large enough and if the scoring function satisfies some properties

(i.e., it is what the authors call C-separable), the proposed algorithm is able to select

the best features with high probability. However, it is not clear how those results are

related to the theoretical properties of other feature selection algorithm (such as PFBP

or Lasso), nor how they can be used in practice, especially given that the authors do

not propose any way to tune the hyper-parameters of their method.

Wang et al. [155] proposed a method that also uses vertical partitioning for paral-

lelization. It is method that can be used with any penalized regression method, both

for feature selection and for model fitting. Given a dataset, it is partitioned vertically

into multiple datasets, and a decorrelation step is performed on each new dataset that

tries to minimize the dependencies between all datasets. Then, each dataset can be

analyzed independently across multiple workers, and the results are combined into a

final one on the master machine. It is shown that the convergence rate of the pro-

posed method is nearly minimax optimal under weakly sparse assumptions on the

model parameters. Furthermore, it is shown that the algorithms retains those proper-

ties irrespective of the number of partitions. In experiments, the method is shown to

perform similarly to lasso while exhibiting lower running time. In contrast to PFBP,

the method is specialized only to specific cases (penalized regression methods with

continuous predictors), and thus is not easily extensible to other cases.

72 Chapter 5. Extending FBED for Big Data of High Dimensionality

5.5 Experimental Evaluation

We performed three sets of experiments to evaluate PFBP.

1. We investigate the scalability of PFBP in terms of variable size, sample size and

number of workers on synthetic datasets, simulated from Bayesian networks.

2. We compare PFBP to three competing forward-selection based feature selection

algorithms.

3. We compare against three algorithms from the family of information theoretic

feature selection methods [22], implemented for Big Data [121].

4. We performed a proof-of-concept experiment of PFBP on dense synthetic Single

Nucleotide Polymorphism (SNP) data. These are important types of very high-

dimensional data that arise in biology and for which feature selection algorithms

that can scale up are needed.

We made every reasonable effort to include all candidate competitors. These alter-

natives constitute algorithms specifically designed for MapReduce architectures (i.e.,

SFO), standard FS algorithms using parallel implementations of the conditional inde-

pendence tests (i.e., UFS and FBS) and ITFS. The only Lasso implementation for Spark

available in the Spark MLlib library [104] (a) is for continuous targets, and thus is not

suitable for binary classification tasks, and (b) required tuning of 5 hyper-parameters;

as no procedure has been suggested by the authors for their tuning, it was excluded

from the comparative evaluation. Additionally, for the comparative evaluation, final

predictive models were build using the selected features by each algorithm using:

1. The logistic regression implementation in the Spark machine learning library

MLlib, hereafter denoted as SparkLR

2. The logistic regression model stemming from combining local logistic models

using our own implementation (see Section 5.1.5), hereafter denoted as CombLR

The reason for including both types of modeling is because we noticed that SparkLR

often fails to converge and produces models that are worse than the trivial classifier

classifying to the most common class. This last comparison provides evidence that not

only local p-values can be combined using meta-analysis techniques, but also model

coefficients and other estimated quantities.

5.5.1 Experimental Setup

For the scalability experiments of PFBP (Section 5.5.2) and the proof-of-concept ap-

plication on SNP data (Section 5.5.4) we used a cluster with 5 machines, 1 acting as a

5.5. Experimental Evaluation 73

master and 4 as workers, connected to a 1 Gigabit network, with each machine having

2 Intel Xeon E5-2630 v3 CPUs with 8 physical cores each and 256 GB of RAM (a

total of 64 cores and 1 TB of RAM). For the comparative evaluation of PFBP with

other feature selection algorithms we used a cluster with 5 workers, connected to a

14 Gigabit network, with each machine having 4 Intel Xeon E5-4650 v2 CPUs with a

total of 80 cores and 400 GB of RAM (a total of 320 cores and 1.6 TB of RAM). In

all cases, 2 cores per worker were left out for other tasks (e.g. the operating system).

The first cluster is running Spark 2.1.0 while the second is running Spark 2.0.2, and

both are using the HDFS file system. All algorithms were implemented in Java 1.7 and

Scala 2.11.

The significance level α was set to 0.01 for all algorithms 3, and PFBP was executed

with 2 Runs. For the bootstrap tests used by PFBP, we used the default parameter

values as described in Section 5.2.2. For each feature selection method we produced

two predictive models: (a) using the approach described in Section 5.1.5 that combines

multiple locally learned models into a single one, and (b) using the logistic regression

implementation in the Spark machine learning library MLlib [104]. Parameter values

related to the number of Group Samples, Sample Sets and Feature Sets were determined

using the STD rule, and by setting the maximum number of variables to select to

maxVars (the exact value is given for each specific experiment later); see Section 5.3 for

more details. We note that, none of the experiments required a physical partitioning

to Feature Sets, and thus each Block contains all features (i.e., the number of Features

Sets nf is 1).

5.5.2 Scalability of PFBP with Sample Size, Feature Size and Number of Work-

ers

We investigated the scalability of PFBP on dense synthetic datasets in terms of sample

size, variable size and number of workers used. The data were sampled from ran-

domly generated Bayesian networks, which are probabilistic models that can encode

complicated dependency structures among features. Such simulated data contain not

only features necessary for optimal prediction (strongly relevant in the terminology of [78])

and irrelevant, but also redundant features (weakly relevant [78]). This is a novelty in

the Big Data FS literature as far as we know, making the synthetic tasks more realis-

tic. A detailed description of the data and network generating procedures is given in

3Typical choices for the significance level α are 0.01 and 0.05 [4]. Using lower values of α leads to fewer type
I errors (falsely selected variables) but more type II errors (falsely rejected variables). This also depends on
the sample size, with more samples typically leading to fewer type II errors, with type I errors not affected by
sample size. Therefore, in large sample settings, as the ones considered in our experiments, one should use
lower values for α to minimize type I errors. For that reason, we chose α = 0.01, although it would make sense
to consider even lower values.

74 Chapter 5. Extending FBED for Big Data of High Dimensionality

Figure 5.2: Scalability of PFBP with increasing sample size (top left), feature size (top right)

and number of machines (bottom). Time and speed-up were computed relatively to the

first point on the x-axis, for the same number of Runs. PFBP improves super-linearly with

sample size, linearly with feature size and running time is reduced linearly with increasing

number of machines. The results are similar for PFBP with 1 run and 2 runs.

Appendix C.1.

For each experimental setting, we generated 5 Bayesian networks, and sampled

one dataset from each. The connectivity parameter C was set to 10 (i.e., the average

degree of each node), the class distribution of T was 50/50, and the variance of the

error term was set to 1. To investigate scalability in terms of sample size, we fixed the

number of features to 1000 and varied the sample size from 2M to 10M. Scalability

in terms of feature size was evaluated on datasets with 100K samples and varying

the feature size from 20K to 100K, all of which also included the optimal feature set

(i.e. the Markov blanket of T). Finally, scalability in terms of number of workers was

investigated on datasets with 10K variables and 1M samples. The maximum number

of variables maxVars to select was set to 50.

The results are summarized in Figure 5.2. On the top row we show the relative

5.5. Experimental Evaluation 75

Table 5.1: Binary classification datasets used in the comparative evaluation

Name #Samples #Variables Non-zeros per Row

SUSY 5000000 18 17.79

HIGGS 11000000 28 25.79

covtype.binary 581012 54 11.88

epsilon 500000 2000 2000.00

rcv1.binary 697641 47236 73.15

avazu-app 14596137 1000000 15.00

avazu-site 25832830 1000000 15.00

criteo 45840617 1000000 39.00

news20.binary 19996 1355191 454.99

url 2396130 3231961 115.63

webspam 350000 16609143 3727.71

kdd2010a 8407752 20216830 36.35

kdd2010b 19264097 29890095 29.40

runtime of PFBP with varying sample size (left) and number of variables (right),

respectively. The bottom figure shows the speed-up achieved with varying the number

of workers. Relative time and speed up are computed with respect to the lowest

point on the x-axis. We can clearly see that: (Top Left) PFBP improves super-linearly

with sample size; in other words, feeding twice the number of rows to the algorithm

requires less than double the time. This characteristic can be attributed to the Early

Stopping and Early Return heuristics. (Top Right) PFBP scales linearly with number

of features due to the Early Dropping heuristic and (Bottom) PFBP is able to utilize

the allocated machines, although the speed-up factor does not reach the theoretical

optimum. The reason for this is that the Early Stopping heuristic quickly prunes

many features from consideration after processing the first Group sample, reducing

parallelization in subsequent Groups as only few features remain Alive.

5.5.3 Comparative Evaluation of PFBP on Real Datasets

We evaluated the PFBP algorithm on 13 binary classification datasets, collected from

the LIBSVM dataset repository4, with the constraint that each dataset contains at least

500K samples or variables. A summary of the datasets, shown in order of increasing

variable size, is shown in Table 6.1. The first two columns show the total number

of samples and variables of each dataset, while the last column shows the average

number of non-zero elements of each sample. The maximum number of non-zero

elements equals the total number of variables. Except for the first four datasets, all

4http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/

76 Chapter 5. Extending FBED for Big Data of High Dimensionality

other datasets are extremely sparse.

All algorithms were compared in terms of classification accuracy and running time.

To estimate the classification accuracy, 10% of the training instances were randomly

selected and kept out. The remaining 90% were used by each algorithm to select a set

of features and to train a logistic regression model using those features. The maximum

number of features to select was set to 50. We note that, for PFBP, the backward

phases and the second phase were only executed if the algorithm terminated (i.e., the

remaining variables were empty) before the variable limit was reached. This was done

because PFBP would not have terminated otherwise (i.e., the first phase would still

have variables to consider), and thus would not have executed the extra phases. A

timeout limit of 12 hours was used for each algorithm. In case an algorithm did

not terminate within the time limit, the number of features selected up to that point

are reported. If no feature was selected, the accuracy was set to N/A (not available).

For PFBP, we used the data partitioning strategy described in Section 5.3. For the

remaining methods, the number of partitions was set to 4 times the total number of

Spark tasks. We ran 6 Spark tasks, each one using 13 cores, on each of the 5 workers.

Thus, the total number of partitions was set to 120.

Comparison of PBFP with Forward Selection Based Methods

We compared PFBP to 3 forward selection based algorithms: (i) Single Feature Op-

timization (SFO) [135], (ii) Forward-Backward Selection (FBS), and (iii) Univariate

Feature Selection (UFS). UFS and FBS were implemented using a parallelized imple-

mentation of standard binary logistic regression for Big Data provided in the Spark

MLLib [104].

Table 5.2 shows the running times of the algorithms (rounded up to the closest

minute), and Table 5.3 show the classification accuracy and the number of selected

variables. We included the results of the trivial classifier, which assigns each sample

to the most frequent class, and thus attains an accuracy equal to the frequency of the

most common class.

It can be seen that PFBP outperforms all competing methods in terms of running time.

SFO, UFS, and FBS only terminate selecting at least 1 feature in the smallest, first 4

datasets. UFS and FBS reach the timeout limit and do not select a single feature even

for the moderately sized rcv1 dataset, which contains only 47K variables and 698K

samples, while SFO is able to select only a single feature in 12 hours 5. PFBP is able

to terminate for all datasets within 12 hours, taking a maximum of 10.5 hours for the

kdd2010b dataset which contains 19M samples and 30M variables.

5We tried running SFO, UFS and FBS on some of the large datasets using a timeout limit of 2 days, the
maximum possible on the cluster we used; however, none of the algorithms were able to select even a single
variable

5.5. Experimental Evaluation 77

Table 5.2: The table shows the total running time for each algorithm and dataset. The

fastest algorithms are shown in bold, while algorithms that timed out are indicated with

an asterisk. PFBP significantly outperforms all competitors in terms of running time, and

is the only algorithm that is able to terminate for all datasets within the given time limit

of 12 hours. Furthermore, except for 2 cases (FBS on the epsilon dataset and SFO on the

rcv1 dataset; see Table 5.3), none of the competing algorithms were able to select a single

variable within 12 hours.

Running Time (HH:MM)

Dataset PFBP SFO UFS FBS

SUSY 00:01 00:09 00:02 00:40
HIGGS 00:02 00:16 00:03 01:59
covtype 00:09 01:05 00:04 05:17
epsilon 00:02 02:43 00:49 12:00*
rcv1 00:15 12:00* 12:00* 12:00*
avazu-app 04:23 12:00* 12:00* 12:00*
avazu-site 05:43 12:00* 12:00* 12:00*
criteo 03:15 12:00* 12:00* 12:00*
news20 00:44 12:00* 12:00* 12:00*
url 01:48 12:00* 12:00* 12:00*
webspam 06:13 12:00* 12:00* 12:00*
kdd2010a 06:37 12:00* 12:00* 12:00*
kdd2010b 10:34 12:00* 12:00* 12:00*

In terms of predictive performance, PFBP always produces the best or an equally predictive

model. When a competitor produces a better model the difference is in order of 0.01%

of accuracy. Some larger differences are observed only when the final model is fit

with the SparkLR. In terms of the number of features, PFBP always selects the lowest

number of features to achieve the same or better performance. An exception is when

FBS timed-out for the epsilon dataset selecting 10 features vs. 50 for PFBP; however,

the lower number of features comes with a significant drop in performance of about

10% of accuracy.

Comparison of PBFP with Information Theoretic Feature Selection Methods

Next, we compare PFBP to three algorithms of the family of information theoretic fea-

ture selection (ITFS) methods [22]: the Minimum-Redundancy Maximum-Relevance

(MRMR) algorithm [118], the Joint Mutual Information (JMI) algorithm [161] and the

Conditional Mutual Information Maximization algorithm [55]. Those methods were

chosen as they have been shown to be perform well compared to several other members

of the ITFS family [22]. For all of the above algorithms, we used existing Spark-based

implementations6 [121].

As information-theoretic feature selection methods require discrete data, we per-

6https://github.com/sramirez/spark-infotheoretic-feature-selection

78 Chapter 5. Extending FBED for Big Data of High Dimensionality

Table 5.3: The table shows the number of selected variables and the classification accuracy

of forward-selection based algorithms on all datasets. Classification accuracy is obtained

by combining models CombLR (see Section 5.1.5) as well as using the default MLlib logis-

tic regression implementation, SparkLR. Bold numbers show the best performing method

for a given classifier, while numbers highlighted in red indicate that there is a significant

difference (> 1%) between the predictive performance obtained using the classifiers, or

that the classifier performs worse than the trivial classifier. Overall, all feature selection

methods perform similarly, with PFBP and SFO typically having the best predictive perfor-

mance. PFBP achieves the better or on par performance by selecting fewer variables than

its competitors. Furthermore, in most cases, combining models CombLR works as well or

better than the logistic regression of MLlib, SparkLR.

Classification Accuracy (%) #Selected Variables

CombLR SparkLR

Dataset PFBP SFO UFS FBS PFBP SFO UFS FBS Trivial PFBP SFO UFS FBS

SUSY 78.91 78.91 78.90 78.91 78.59 78.59 78.61 78.59 54.22 12 14 18 13
HIGGS 64.26 64.27 64.27 64.27 64.12 64.15 64.16 64.15 53.06 16 18 28 18
covtype 75.16 71.02 57.77 57.59 75.80 75.74 76.00 73.57 50.78 34 44 50 48
epsilon 86.05 85.84 80.08 76.39 86.07 85.82 80.02 76.33 51.05 50 50 50 10
rcv1 91.46 64.86 N/A N/A 91.28 64.86 N/A N/A 52.71 50 1 0 0
avazu-app 88.16 N/A N/A N/A 87.80 N/A N/A N/A 88.12 50 0 0 0
avazu-site 80.48 N/A N/A N/A 80.07 N/A N/A N/A 80.14 50 0 0 0
criteo 76.43 N/A N/A N/A 76.37 N/A N/A N/A 74.41 50 0 0 0
news20 85.15 N/A N/A N/A 83.19 N/A N/A N/A 51.47 50 0 0 0
url 96.93 N/A N/A N/A 97.13 N/A N/A N/A 67.11 50 0 0 0
webspam 98.08 N/A N/A N/A 98.03 N/A N/A N/A 60.42 50 0 0 0
kdd2010a 86.12 N/A N/A N/A 57.11 N/A N/A N/A 85.33 50 0 0 0
kdd2010b 86.16 N/A N/A N/A 44.18 N/A N/A N/A 86.09 50 0 0 0

formed a simple discretization method on all sparse datasets (i.e., except for SUSY,

HIGGS, covtype and epsilon), by setting the value to 0 if the original value was 0, and

to 1 otherwise. Thus, a 0 or 1 indicates the absence or presence of a value respectively.

Although this discretization method may be sub-optimal, it still allows for a fair com-

parison between all methods, as they are all executed on the same data. Furthermore,

discretization to more than 2 values would put PFBP at a disadvantage, as the inde-

pendence tests based on logistic regression models would need to fit models for more

parameters. Specifically, if a discrete variable takes K values, logistic regression would

need to fit K− 1 coefficients. As we will see below, this discretization method does not

significantly affect the results in terms of classification accuracy, justifying its use in

this case. On the contrary, in some cases the produced models have a higher accuracy

than the ones obtained from the original data.

The results are summarized in Tables 5.4 and 5.5. They show the running time in

hours and minutes (rounded up to the closest minute) and the classification accuracy

for each algorithm. The number of selected variables is not shown, as all algorithms

5.5. Experimental Evaluation 79

Table 5.4: The table shows the total running time of each algorithm on all discretized

datasets. The fastest algorithm for each dataset is shown in bold. ITFS methods signifi-

cantly outperform PFBP in terms of running time, being almost 23 times faster than PFBP

(for the avazu-app dataset).

Running Time (HH:MM)

Dataset PFBP MRMR JMI CMIM

rcv1 00:13 00:06 00:06 00:07
avazu-app 06:00 00:16 00:16 00:16
avazu-site 06:02 00:29 00:25 00:32
criteo 03:56 01:15 01:36 01:23
news20 01:02 00:03 00:03 00:04
url 02:20 00:15 00:14 00:16
webspam 02:00 00:53 01:04 00:58
kdd2010a 07:03 00:25 00:22 00:23
kdd2010b 08:49 00:43 00:40 00:48

Table 5.5: The table shows the classification accuracy % for each algorithm and dataset.

Classification accuracy is obtained by combining models (see Section 5.1.5) as well as us-

ing the default MLlib logistic regression implementation. Bold numbers show the best

performing method for a given classifier, while numbers highlighted in red indicate that

the classifier performs worse than the trivial classifier. In most cases, PFBP produces bet-

ter methods, often significantly so, having a higher accuracy of up to 5-9% on the rcv1,

news20 and webspam datasets. As before, in most cases, combining models works as good

or better than the implementation in MLlib.

Classification Accuracy (%)

CombLR SparkLR

Dataset PFBP MRMR JMI CMIM PFBP MRMR JMI CMIM Trivial

rcv1 90.64 86.14 85.64 85.60 90.87 86.35 86.20 85.63 52.71
avazu-app 88.19 88.14 87.89 88.15 87.45 87.54 88.11 88.08 88.12
avazu-site 80.48 80.50 79.74 79.79 79.77 80.33 80.42 80.42 80.14
criteo 76.39 76.19 75.98 75.91 76.32 75.92 75.98 75.91 74.41
news20 86.03 81.22 79.79 79.27 83.16 77.43 77.12 78.30 51.47
url 96.80 94.87 95.79 95.07 96.98 95.77 95.36 95.70 67.11
webspam 98.22 94.30 94.62 93.92 98.22 89.52 91.23 90.88 60.42
kdd2010a 86.17 86.27 86.15 86.10 59.15 38.89 30.20 29.58 85.33
kdd2010b 86.10 86.08 86.07 86.07 43.17 37.98 38.22 37.49 86.09

terminated within the time-limit of 12 hours and selected 50 variables.

As expected, regarding running time, ITFS methods clearly outperform PFBP, being

about 2-23 times faster than PFBP. As explained in the discussion in Section 5.4.3,

this is because PFBP treats data as dense and is not specific or optimized for discrete

data. In addition, PFBP’s current implementation is based on fitting logistic regression

models that require iterative techniques, while ITFS methods only require the counts

in the contingency tables of the joint distributions.

80 Chapter 5. Extending FBED for Big Data of High Dimensionality

Table 5.6: Difference in classification accuracy between models obtained using CombLR

and SparkLR across all experiments. Positive values indicate that CombLR performs better.

In the continuous data from the comparison between PFBP, SFO, UFS and FBS, N/A values

correspond to cases where the algorithm did not terminate. For the discretized data, N/A

values correspond to cases where the experiment was not performed. In all cases, PFBP

using CombLR produces models with similar or better performance than SparkLR.

Continuous Data Discretized Data

Dataset PFBP SFO UFS FBS PFBP MRMR JMI CMIM

SUSY 0.32 0.32 0.29 0.32 N/A N/A N/A N/A
HIGGS 0.14 0.12 0.11 0.12 N/A N/A N/A N/A
covtype -0.64 -4.72 -18.23 -15.98 N/A N/A N/A N/A
epsilon -0.02 0.02 0.06 0.06 N/A N/A N/A N/A
rcv1 0.18 0.00 N/A N/A -0.21 -0.21 -0.76 -0.03
avazu-app 0.36 N/A N/A N/A 0.74 0.70 -0.22 0.07
avazu-site 0.41 N/A N/A N/A 0.71 0.17 -0.68 -0.63
criteo 0.06 N/A N/A N/A 0.07 0.27 0.00 0.00
news20 1.96 N/A N/A N/A 2.87 3.79 2.67 0.97
url -0.20 N/A N/A N/A -0.18 -0.90 0.43 -0.63
webspam 0.05 N/A N/A N/A 0.00 4.78 3.39 3.04
kdd2010a 29.01 N/A N/A N/A 27.02 47.38 55.95 56.52
kdd2010b 41.98 N/A N/A N/A 42.93 48.10 47.85 48.58

In terms of classification accuracy, PFBP outperforms ITFS methods in most cases. In

some cases (rcv1, news20, webspam) the accuracy difference is more than 4%; when

PFBP does not produce the best model, the accuracy difference is less than 0.1%.

Thus, overall, if the goal is predictive accuracy, PFBP should be preferred over ITFS

methods.

Comparison of CombLR and SparkLR

We proceed by comparing the performance obtained using different logistic regression

classifiers, namely SparkLR and CombLR. We remind the reader that CombLR comes

at no additional computational overhead by combining the coefficients of local models

already produced by PFBP for feature selection purposes. SparkLR in contrast, fits a

global LR model, with a corresponding computational overhead. Table 5.6 shows the

difference in accuracy obtained by CombLR and SparkLR over all experiments, with

positive values corresponding to cases where CombLR outperforms SparkLR.

For the comparison between PFBP, SFO, UFS and FBS on the original datasets,

CombLR slightly outperforms SparkLR on most datasets. There are however a few

cases where large differences between both classifiers can be seen. For covtype,

CombLR results in a large performance drop for SFO, UFS and FBS. However, the

performance of PFBP is similar, regardless of the method used for producing the clas-

sifier. For PFBP, for kdd2010a and kdd2010b, SparkLR completely fails, achieving an

5.5. Experimental Evaluation 81

accuracy lower than the one obtained by the trivial classifier (see Table 5.3). Regard-

ing the comparison of PFBP with information-theoretic methods on the discretized

data, we observe again a qualitatively similar behavior as in the previous experiments.

The problematic datasets seem to be news20, webspam, kdd2010a and kdd2010b. As

before, there are cases where SparkLR fails to produce a model better than the trivial

classifier, whereas CombLR is more robust overall. The difference may exceed 50% of

accuracy! When CombLR fails to beat the trivial classifier the accuracy difference is

less than 0.5% of accuracy; this case never happen for the PFBP algorithm, arguably

due to a better selection of features with less collinearities (deterministic relations). In

any case, it is encouraging that in all cases, PFBP using CombLR produces models on par

or better than SparkLR.

Unfortunately, we were not able to determine the cases where SparkLR fails. Specif-

ically, we tried to (a) vary the number of partitions used, and (b) relax the stopping

conditions used by the model fitting procedures (increasing number of iterations and

reducing tolerance of the termination criterion), but neither of those made any differ-

ence.

5.5.4 Proof-of-Concept Application on genetic SNP Data

Single Nucleotide Polymorphisms (SNPs)7, the most common type of genetic variation,

are variations of a single nucleotide at specific loci in the genome of a species. The

Single Nucleotide Polymorphism Database (dbSNP) (build 150) [133] now lists 324

million different variants found in sequenced human genomes8. In several human

studies, SNPs have been associated with genetic diseases or predisposition to disease

or other phenotypic traits. As of 2018-05-12, the GWAS Catalog9 contains 3379 publi-

cations and 61620 unique SNP-trait associations. Large scale studies under way (e.g.,

Precision Medicine Initiative [32]) intend to collect SNP data in large population co-

horts, as well as other medical, clinical and lifestyle data. The resulting matrices may

end up with millions of rows, one for each individual, and variables (SNP or some

other measured quantity). Thus, we believe that investigating the behavior of newly

proposed Big Data FS algorithms on such data is worthwhile. A proof-of-concept

application of PFBP is presented next.

7https://ghr.nlm.nih.gov/primer/genomicresearch/snp
8https://ncbiinsights.ncbi.nlm.nih.gov/2017/05/08/dbsnps-human-build-150-has-doubled-the-amount-

of-refsnp-records/
9https://www.ebi.ac.uk/gwas/

82 Chapter 5. Extending FBED for Big Data of High Dimensionality

SNP Data Generation and Setup

We simulated genotype data containing 500000 individuals (samples) and 592555

SNP genotypes (variables), following the procedure described in [25]. As SNP data are

dense, they require approximately 2.16 TB of memory, and thus are more challenging

to analyze than sparse data, such as the ones used in the previous set of experiments.

The data were simulated with the HAPGEN 2 software [27] from the Hapmap 2

(release 22) CEU population [33]. A more detailed description of the data generation

procedure is given in Appendix C.2.

We used M = 100 randomly selected SNPs to generate a binary phenotype (out-

come), as described in [25] (see also Appendix C.2). The optimal accuracy using all

100 SNPs is 81.42%. Ideally and given enough samples, any feature selection method

should select those 100 SNPs and achieve an accuracy around 81.42%. Due to linkage

disequilibrium however, many neighboring SNPs are highly correlated (collinear) and

as a consequence offer similar predictive information about the outcome and are in-

formationally equivalent. Therefore, a high accuracy can be achieved even with SNPs

other than the 100 used to simulated the outcome.

We used 95% of the samples as a training set, and 5% as a test set for performance

estimation. We set a timeout limit of 15 hours, and used the same setup as used in

previous experiments, with the exception that the maximum number of variables to

select was set to 100.

Repartitioning to Reduce Memory Requirements

For big, dense data such as the SNP data considered in this experiment which require

over 2 TB of memory, a direct application of PFBP as used in other experiments

is possible, but may be unnecessarily slow. We found that for such problems, it

makes sense to repartition the data at some point, if enough variables have been

removed by the Early Dropping heuristic. Repartitioning and discarding dropped

variables reduces storage requirements, and may offer a significant speed boost. It is

an expensive operation however, and should only be used in special situations. For

the SNP data, after the first iteration only about a third of the variables remained,

reducing the memory requirements to less than 1 TB, and thus most (if not all) of the

data blocks were able to fit in memory. In this case repartitioning makes sense, as its

benefits far outweigh the computational overhead.

Results on the SNP Data

PFBP was able to select 84 features in 15 hours, using a total of 960 core hours. It

achieved an accuracy of 77.62%, which is over 95% of the theoretical optimal accuracy.

5.5. Experimental Evaluation 83

Figure 5.3: The effects of the early pruning heuristics is shown for the first 10 forward

iterations on the SNP data. The y-axis shows the number of variables on a logarithmic

scale. The width of each iteration is proportional to the number of groups processed. The

early dropping heuristic is able to quickly discard many features, reducing them by about

an order of magnitude. Early stopping filters out most variables after processing the first

group, and early return is applied two times.

The results are very encouraging; in comparison the DISSECT software [25] took 4

hours on 8400 cores (that is, 33600 core hours) and using 16 TB of memory to fit a

mixed linear model on similar data, and to achieve an accuracy around 86% of the

theoretical maximum. The two experiments are not directly comparable because (a)

the outcome in our case is binary instead of continuous requiring logistic regression

instead of linear regression models favoring DISSECT in terms of computational time,

(b) the scenarios simulated in [25] had larger Markov blankets (1000 and 10000

instead of 100) favoring PFBP (although, their results are invariant to the size of the

Markov blanket). Nevertheless, the reported results are still indicative of the efficiency

of PFBP on SNP Big Data.

Figure 5.3 shows the effects of the heuristics used by PFBP for the first 10 iterations.

The y-axis shows the number of Remaining and Alive features on a logarithmic scale.

The x-axis shows the current iteration, and the width is proportional to the total

number of Groups processed in that iteration. We observe that (a) Early Dropping

discards many features in the first iteration, reducing the number of Remaining features

84 Chapter 5. Extending FBED for Big Data of High Dimensionality

0 10 20 30 40 50 60 70 80

Number of Selected Features

50

55

60

65

70

75

80

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

Accuracy vs Selected Features on the SNP Data

Figure 5.4: The figure shows how the accuracy of PFBP on the SNP data increases as it

selects more features. The models are produced by PFBP at each iteration with minimal

computational overhead. In the first few iteration, accuracy increases sharply, while in the

later iterations a plateau is reached, reaching a value of 77.59% with 70 features, with the

maximum being 77.62% with 84 features. This could be used as a criterion to stop feature

selection early.

by about an order of magnitude, (b) in most iterations, Early Stopping is able to reduce

the number of Alive features to around 10 after processing the first Group, (c) Early

Return is applied 2 times, ending the Iteration and selecting the top feature after

processing a single Group.

Finally, by combining the intermediate logistic regression models at each Iteration

using CombLR, we computed the accuracy at each iteration of PFBP with no additional

overhead. This provides an insight regarding its predictive performance behavior with

increasing number of selected features. As before, the accuracy is computed on the

5% of the data that were kept out as a test set. Such information could be used

to decide early whether a sufficient number of features has been selected, and to

stop computation if the accuracy reaches a plateau. This is often the case, as most

important features are typically selected during the first few iterations. This task

can be performed using PFBP with minimal computational overhead, as the local

models required to approximate a full global model (see Section 5.1.5) are already

available. The results are shown in Figure 5.4. As expected, the largest increase in

accuracy is obtained after selecting the first few features, reaching an accuracy of 75%

5.5. Experimental Evaluation 85

even after selecting only 30 features. In addition, after selecting about 70 features,

the accuracy increases only marginally afterwards, increasing from 77.59% with 70

features to 77.62% with 84. Thus, computation could be stopped after 70 features

have been selected, and still attain almost the same accuracy.

5.5.5 Summary and Discussion of Experimental Results

Overall, the experiments indicate that PFBP scales superlinearly with the available

sample size, and linearly with the number of features and available workers. Com-

pared with other algorithms in its class, namely forward selection-based algorithms

with map-reduce implementations, under the same conditions (type of test and predic-

tive model), PFBP dominates the alternatives (UFS, FBS, SFO) in terms of execution

time, number of selected features, and predictive performance. Against information-

theoretic variants specialized for discrete and sparse data with available map-reduce

implementations, PFBP performs worse in terms of running time, however, it is still

applicable and practical to apply to large datasets. However, PFBP dominates the

information-theoretic variants in terms of predicting performance. Furthermore, as

a side product of the experiments, we compared two logistic regression algorithms,

namely SparkLR that is available in MLlib and fits in a parallelized fashion a global

logistic regression model, and CombLR that combines the coefficients of local logistic

regression models. CombLR always converges, providing on average more predictive

models than SparkLR, and it is considerably more efficient than SparkLR even when

computed from scratch and not during PFBD. Finally, the proof-of-concept applica-

tion to SNP data demonstrates that the emergence of Big genetic Data can become

amenable to analysis using algorithms such as PFBP. A detailed trace of the computa-

tional experiment shows the effectiveness of the Early Stop, Drop and Return heuristics

of PFBP: (a) after the first few iterations the Remaining features are reduced by 1b•“2

orders of magnitude. (b) The number of Alive features drops exponentially as more

groups are processed. The trace visualizes PFBPb••s scalability properties.

86

Chapter 6

Extending Greedy Feature Selection Al-

gorithms to Multiple Solutions

Up to this point we considered the single feature selection problem, and proposed

several extensions of the Forward-Backward Selection algorithm to improve its com-

putational efficiency, by introducing several heuristics and proposing a method for

parallelizing it. Next, we will consider theory and algorithms for the multiple feature
selection problem, and show how algorithms like forward-backward selection can be

extended to identify all solutions.

Definition 7 (Multiple Feature Selection Problem). Let S be the solution to the single feature

selection problem (called the reference solution). The solution M to the multiple feature

selection problem consists of all minimal-size sets Si ⊆ F that are statistically equivalent to

S.

There are several ways to define and test statistical equivalence between feature sets,

each of which can lead to a different solution set M to the above problem, which will

be addressed in Section 6.2.

6.1 A Taxonomy of Features in the Presence of Multiple Solutions

In the presence of multiple solutions, the JKP taxonomy of features [78] is counter-

intuitive and misleading. Intuitively, we’d expect that keeping only the strongly rele-

vant features should be enough for optimal prediction using an optimal classifier, as

weakly relevant features are superfluous. Consider however the case where, feature X

is in a reference solution and X′ is a copy of X (or a one-to-one deterministic trans-

formation). Now, both features are weakly relevant (one makes the other redundant);

one expects that both should be filtered out (not selected). However, at least one of

them should be selected for optimal prediction. In fact, if all members of a reference

solution have a copy in the dataset, then no feature is strongly relevant for the given

87

88 Chapter 6. Extending Greedy Feature Selection Algorithms to Multiple Solutions

problem, which is counter-intuitive. The problem stems from the fact that the JKP

taxonomy does not distinguish between weakly relevant features that carry superfluous

information, and features that carry information necessary for optimal prediction but

this information component is shared among many features or feature subsets. The

above considerations lead us to define the following taxonomy of features:

Definition 8 (Irrelevant Feature). A feature X is irrelevant if it provides no information for

T in any context Z, i.e., if ∀Z ⊆ F \ {X},T⊥X | Z.

Definition 9 (Indispensable Feature). A feature X is indispensable if it belongs in all solu-

tions for T, i.e., ∀Si ∈M,X ∈ Si.

Definition 10 (Replaceable Feature). A feature X is replaceable if it is not indispensable

and belongs in some solution for T, i.e., ∃Si,Sj ∈M,Si , Sj ∧X ∈ Si ∧X < Sj.

Definition 11 (Redundant Feature). A feature X is redundant if it provides information for

T in some context but does not belong in any solution, i.e., ∃Z ⊆ F \ {X},T6⊥X | Z ∧ ∀Si ∈
M,X < Si.

The proposed taxonomy is related to the JKP taxonomy as follows: (a) irrelevant

features are defined the same in both taxonomies, (b) strongly relevant features coincide

with indispensable features, (c) a weakly relevant feature is called replaceable if it is

present in some solution, and is called redundant otherwise. Thus, when there is a

single solution, then irrelevant, strongly relevant, and weakly relevant features coincide

with irrelevant, indispensable, and redundant features respectively.

6.2 Statistically Equivalent Feature Sets

In this section, we will provide several definitions and tests for statistical equivalence

of feature sets. Such tests are used by the main algorithm proposed in Section 6.4 for

identifying multiple solutions. We review methods from related statistical literature

on model selection, and show how they can be used to test different types of statistical

equivalence of feature sets. Finally, we provide some advice for performing such tests

in practice.

We proceed with some definitions used hereafter. Let H be a predictive algorithm

(also called learner). Examples are linear and logistic regression, as well as support

vector machines and random forests, where hyper-parameter values (such as the kernel

and cost for support vector machines) are fixed. For given target T and set of random

features X, we denote with H ∗(T|X) the optimal model attainable in the sample limit

using algorithm H and features X for predicting T. Given a dataset D sampled from

the joint distribution of T and F (the set of all features), we denote with H(T|X) the

6.2. Statistically Equivalent Feature Sets 89

model obtained by H on the dataset D for T using only features X. Let L be a loss (or

performance) function, such as the squared error for regression tasks and the deviance

for probabilistic classification (such as logistic regression), as well as penalized versions

of the above such as the Akaike [2] and Bayesian information criteria [132]. We use

E[L(H ∗(T|X))] to denote the expected loss of H ∗(T|X) with respect to the true joint

distribution of T and X.

6.2.1 Definitions of Statistical Equivalence of Feature Sets

We proceed by listing different definitions for assessing equivalence of feature sets.

Tests for them are presented in the subsequent section.

Definition 12 (Performance Equivalence (PEQ) (see also Figure 11 in [138]). Feature sets X
andY are performance equivalent relative to modelH and loss functionL ifE[L(H ∗(T|X))] =

E[L(H ∗(T|Y))].

PEQ requires that the predictive models obtained by two sets features have the

same expected loss, and depends both on H and L. A drawback of performance

equivalent feature sets is that it is not guaranteed that they are Markov blankets (i.e.,

optimal solutions). PEQ can hold even if the feature sets predict separate parts of the

outcome’s distribution equally well. For example, let X ∽ N(0, 1), Y ∽ N(0, 1) and

T = X+Y. It can be seen that the feature sets {X} and {Y} are PEQ for T relative to any

performance measure and linear models. However, none of them is a Markov blanket;

the Markov blanket of T is the union of both feature sets. Another problematic case is

if the loss function used is not a proper scoring function, i.e., if the minimum loss is

not achieved for optimal feature sets. This can be the case for performance functions

such as the classification accuracy. For example, let T and X be binary features, and

let P(T = 1|X = 1) = 0.9, P(T = 1|X = 0) = 0.6 and P(X = 1) = 0.5. Any optimal

model optimizing accuracy would always predict T = 1, irrespective of the value of

X, attaining an accuracy of 75%. Thus, both feature sets {∅} and {X} are performance

equivalent using classification accuracy. However, only {X} is a Markov blanket, as X

clearly gives information about T (X is dependent with T). Therefore, if the main

goal is knowledge discovery, the PEQ definition for identifying equivalences may not

be preferable.

Definition 13 (Model Equivalence (MEQ)). Feature sets X and Y are model equivalent rel-

ative to modelH ifH ∗(T|X) =H ∗(T|Y).

MEQ requires that T can be modeled using H equally well with either set of

features. Intuitively, MEQ implies that the predictions of models obtained using either

feature set are identical. Thus, MEQ directly implies PEQ, irrespective of the loss

function L. Naturally, the opposite does not necessarily hold.

90 Chapter 6. Extending Greedy Feature Selection Algorithms to Multiple Solutions

Definition 14 (Information Equivalence (IEQ)). 1 Feature sets X and Y are information

equivalent if both T⊥X |Y and T⊥Y |X hold.

IEQ [93, 138] is the strictest definition of equivalence, and is independent both

of H and L. It requires that feature sets are interchangeable: they should contain

the same information about the outcome. For example, let X ∽ N(0, 1), Y = βX and

T = X+Y. In this case we say that {X} and {Y} are information equivalent, as Y depends

deterministically on X. Intuitively, choosing any of them gives the same information

about T. In the taxonomy proposed previously, X and Y are called replaceable.

We note that in practice the definition of IEQ may also implicitly depend on some

predictive algorithm. That is because the tests of conditional independence used for

testing IEQ may also use a predictive algorithm (e.g., the logistic regression algorithm

used by nested likelihood-ratio tests).

Thus, there may be special cases of predictive algorithms where MEQ implies IEQ,

but in general this is not the case. Specifically, it is not the case if combining both

feature sets leads to a better set of features (i.e., if the feature sets were not Markov

blankets). For example, let X,Y and W be binary variables, and T = W∨(X⊕Y), where

⊕ is the logical XOR operator. Assuming an optimal classifier H , {X,W} and {Y,W} are
MEQ relative to H , as knowing only X or Y does not provide information for T, and

thus models constructed using either variable set will give the same predictions based

on W. The feature sets are not IEQ, as X and Y provide information for T conditional

on X or Y respectively. The reason for the above is that neither of the feature sets is a

Markov blanket, and combining them leads to a better feature set(which is the Markov

blanket in this example).

6.2.2 Testing Statistical Equivalence of Feature Sets and its Relation to the Model

Selection Problem

The problem of model selection can be defined as identifying the best fitting model out

of a set of candidate models. Most approaches address the more general problem of

selecting among two or more competing models (e.g., choosing between a normal and

log-normal distribution), whereas in our case we are interested in the special case of

comparing two sets of features relative to the same model (e.g., selecting the best feature

set for linear regression); we will focus on the latter hereafter. Testing for equivalence

is related to model selection, as it deals with the problem of identifying models that

fit the data equally well instead of identifying the better one. We will briefly mention

some approaches that are related to the problems of equivalence testing; interested

readers may refer to [119] for an in-depth overview, as well as a discussion about the

1This definition is essentially identical to the one given in [93,138]. Their definition requires also thatT 6⊥ X
and T 6⊥ Y hold which always holds in the context of feature selection, and thus can be dropped.

6.2. Statistically Equivalent Feature Sets 91

similarities of model selection and hypothesis testing.

Vuong’s Variance Test

In the context of model selection, Vuong [154] proposed the variance test to test if

two models fit the data equally well, that is, if they are MEQ. The statistic is computed

as the variance of the log likelihood-ratio 2 of the models (that is, the variance of the

difference of log likelihoods). Let LL denote the log-likelihood function.

For two sets of features X and Y, and predictive algorithm H , the statistic is defined

as follows.

Statistic ≡ var[LL(H ∗(T|X)) − LL(H ∗(T|Y))]

The variance is defined with respect to the true joint distribution of T, X and Y.
In practice it can be estimated using the sample variance of the log-likelihood ratio of

the estimated models H(T|X) and H(T|Y).
In case MEQ holds the statistic equals zero, and follows a sum of scaled chi-squares

otherwise. As no closed-form expression for a sum of scaled chi-squares exist, it is hard

to compute. Furthermore, in practice the statistic is also hard to estimate accurately,

especially for small sample sizes [134]. One way to overcome those problems is to use

resampling-based methods (see Section 7.2 in [119] for an example of using bootstrap

tests [45]). A disadvantage of resampling-based methods such as bootstrapping is that

it requires fitting two models and computing their log-likelihood for each bootstrap

sample, which is very computationally demanding. Another, computationally faster

approach, is to use a permutation test instead; the test is described in more detail in

Section 6.2.3.

The Comprehensive Approach

Atkinson [8] proposed the comprehensive approach, which constructs a third model

that contains both initial models as special cases. When comparing feature sets relative

to the same model, this reduces to creating a third model H(T|X ∪ Y), and testing

whether it provides additional information compared to H(T|X) and H(T|Y) (see

Section 3.1 in [8]). This is done by performing two likelihood-ratio tests, comparing

the original models with the combined model. In case the tests are not rejected,

the sets X and Y can be considered equivalent. Note that, the likelihood-ratio tests

between H(T|X∪Y) and the models H(T|X) and H(T|Y) corresponds to the conditional

independence tests T(T;Y|X) and T(T;X|Y) respectively.

2Extensions for other loss functions also exist [58, 134].

92 Chapter 6. Extending Greedy Feature Selection Algorithms to Multiple Solutions

Thus, this is a direct application of the IEQ definition using likelihood-ratio based

conditional independence tests.

The J-Test

Davidson and MacKinnon [38, 99] propose several methods for choosing among two

competing models, similar in spirit to Atkinson’s approach. One such method is the

J-test, which we describe next. Let P(T|X) denote the predictions of model H(T|X)

on the dataset D used for learning it. The idea of the J-test is similar to the compre-

hensive approach, but instead of testing T(T;X|Y) and T(T;Y|X), the J-test tests

T(T; P(T|X)|Y) and T(T; P(T|Y)|X), (i.e., it tests whether the predictions of the

models provide additional information for T). Basically, the J-test uses the predictions

of the model as proxies for the information provided by the feature sets. That way, it

avoids fitting models using the union of feature sets, and may have higher power than

the comprehensive approach. However, it may not be as accurate, as it only uses the

predictions of one set instead of all features, and thus interactions between feature sets

X and Y may be missed. Thus, it can be seen as a more sample efficient alternative

to the comprehensive approach for (approximately) testing IEQ. An overview of the

J-test can be found in [21].

Paired Two-Sample Tests

Other methods for testing PEQ or MEQ, not based on model selection, are paired

two-sample tests such as paired t-tests or the Wilcoxon signed rank test. MEQ can be

tested by comparing the predictions of models H(T|X) and H(T|Y), while PEQ can be

tested using the losses of each prediction. We note that, the latter is only applicable

for loss functions which can be computed on a per-sample basis (e.g., mean squared

error), and thus is not applicable for measures like the area under the ROC curve.

6.2.3 Practical Considerations and Recommendations

Discovering Multiple Markov Blankets

Although all definitions and tests of statistical equivalence are for arbitrary feature sets

and not restricted to Markov blankets, in practice we are often interested in identifying

multiple solutions that are Markov blankets, i.e., solving the multiple feature selection

problem (see Definition 7). Recall that the solution to the multiple feature selection

problem consists of all feature sets that are statistically equivalent to the reference

solution S (a solution to the single feature selection problem).

In order to identify multiple Markov blankets, it is necessary to be able to test

whether a feature set X is a Markov blanket. We will assume that X already is

6.2. Statistically Equivalent Feature Sets 93

minimal, i.e., no features can be removed from it without losing information about T.

Given a reference solution S (which is a Markov blanket by definition), a way to test

whether X is a Markov blanket is by performing a test of statistical equivalence with

S. Depending on the type of equivalence (PEQ, MEQ and IEQ) there are different

guarantees for X. If X is a Markov blanket all equivalences are implied, but the

opposite is only guaranteed for IEQ. Thus, when the goal is identification of multiple

Markov blankets, we recommend using tests of information equivalence.

Tests with Feature Sets that are not Markov Blankets

One subtle issue is when at least one of the tested feature sets is not a Markov blanket.

This can happen in practice due to statistical errors or violations of assumptions of the

tests.

Assume that the reference S is minimal but not a Markov blanket (i.e., some features

are missing), and that we want to test whether a feature set X, which is a Markov

blanket, is equivalent to it. X will not be considered equivalent to S, as it actually

provides more information about T, and consequently it will not be identified as a

Markov blanket. Thus, no algorithm would be able to identify any Markov blanket in

this case.

Another problem is if S is a Markov blanket, and a feature set X is a superset of

a Markov blanket (i.e., not minimal). In this case, X will falsely be identified as a

Markov blanket. Although this may still be acceptable for some practical applications,

as X contains the optimal predictive information for T, it can be problematic if an

algorithm for identifying multiple solutions does not ensure that the tested feature sets

are minimal, as this can lead to a large number of non Markov blanket solutions.

Both of the above are hard to detect in practice. We propose to perform extensive

hyper-parameter tuning of any multiple feature selection algorithm, in order to get reasonably

good approximations of the Markov blankets and to minimize situations where the above

problems occur.

Power of IEQ Tests

Recall that in order to perform a test of IEQ between two feature sets X and Y,
one has to perform two tests on all of the features (T(T;Y|X) and T(T;X|Y)).
For instance, when likelihood-ratio tests are used, a model using the union of features

X∪Y has to be created to test for IEQ. Because of that, tests of IEQ require significantly

larger sample sizes than PEQ or MEQ tests, which do not fit models using the union of

feature sets. When tests of IEQ are performed with small sample sizes, they may not

have enough power to distinguish between non-equivalent feature sets, and will falsely

consider them equivalent. To avoid this problem, we recommend using tests for PEQ

94 Chapter 6. Extending Greedy Feature Selection Algorithms to Multiple Solutions

or MEQ as a “safe lock” before applying the IEQ test. To further reduce false positives,

we recommend to combine the above with a high significance level (relative to the

available sample size) for all tests.

Reliability of PEQ and MEQ Tests

To improve the reliability of the two-sample and variance tests (due to violations of

assumptions or low sample size) we recommend using permutation-based variants in-

stead. Another advantage is that permutation tests are not limited to any specific class

of loss functions, and can be also applied to performance measures such as the area

under the ROC curve, which are computed using the a vector of predictions. Under

the null hypothesis of PEQ or MEQ, the losses or predictions can be permuted across

paired samples (i.e., exchange randomly whether a prediction comes from model
H(T|X) or H(T|Y)). Thus, a permutation test can be performed as follows: (a) com-

pute the statistic s on the original sample, (b) randomly permute the input vectors

(predictions or losses) across the same (paired) samples, each one with probability 0.5,

(c) compute the statistic si (of the i-th permutation) of interest on the permuted sample,

and (d) repeat (b-c) B times (e.g., 1000 times). For the variance test, the p-value is

then computed as the proportion of permutation statistics (including the statistic on

the original sample from step (a) [40]) smaller than or equal to the sample statistic s

p-value ≡
1 +
∑B

i=1 I(si ≤ s)

B+ 1

where I is the indicator function.

Summary

For knowledge discovery purposes, we recommend aiming for information equivalent

solutions. In order to reduce the chance of false positive equivalences, we recommend

to (a) perform extensive tuning of the hyper-parameter values of the feature selection

algorithm, in order to increase the chance of identifying Markov blankets, (b) first

apply a permutation-based variance test for PEQ or MEQ to quickly filter out false

equivalences and (c) afterwards apply an IEQ test using the comprehensive approach

to decide for equivalence, and (d) use relatively high significance levels to further

reduce the number of false positives. In anecdotal experiments we found that all of

the above were important to reduce the number of non-equivalent solutions, which in

many cases was extremely high otherwise.

6.3. A General Template for Forward-Backward Algorithms 95

Algorithm 10 Template for Greedy Forward-Backward Feature Selection (TFBS)

Output: Function ORDERVARIABLES, Function BACKWARDPHASE

Input: DatasetD, Current Solution S′ Output: Solution S
C← ORDERVARIABLES(D, S′)
if C = ∅ then //Check if forward phase terminated.

return BACKWARDPHASE(D, S′)
end if

return TFBS(D, S′ ∪ {C1}) //Select best variable C1 and call TFBS recursively.

Algorithm 11 Instantiation of TFBS for the Forward-Backward Selection Algorithm using

Independence Tests

function ORDERVARIABLES(D, S′) //Returns dependent variables ordered by p-value

//Sort all non-selected variables that are conditionally dependent given S′ by p-value

C← SORTASCENDING({Ci ∈ {F \ S′} : PVALUE(T,Ci|S′) ≤ α})
return C

end function

function BACKWARDPHASE(D, S′)
while S′ changes do

Si ← argmax
Si

PVALUE(T, Si|S′ \ {Si}) //Find Si with highest p-value given S′ \ {Si}

if PVALUE(T, Si|S′ \ {Si}) > α then

S′ ← S′ \ {Si} //Remove Si if conditionally independent given S \ {Si}
end if

end while

return S′

end function

6.3 A General Template for Forward-Backward Algorithms

We propose a general template for greedy feature selection algorithms, which we will

later extend to select multiple, statistically equivalent solutions. This template can

express a class of stepwise methods, namely algorithms that consist of two phases: (a)

a greedy forward phase, where features are selected one at a time, and (b) an optional

backward phase, applied after the forward phase terminates, to remove false positives.

The algorithm is shown in Algorithm 10, and will be referred to as TFBS hereafter.

We present a recursive version of the algorithm, as it will lead to a natural extension

for multiple solutions. For the sake of brevity, constant input arguments like the target

variable T and hyper-parameter values are omitted. TFBS has two main components:

(a) a variable ordering strategy OV, and (b) a function BP

that performs the backward phase of the algorithm. In order for those functions to be

admissible, they have to satisfy the following conditions. OV must return

an ordered set of candidate variables C for selection, such that: (a) C is empty if no

96 Chapter 6. Extending Greedy Feature Selection Algorithms to Multiple Solutions

more variables should be selected, (i.e., if S′ ⊇ S) (b) C does not contain any already

selected variable (i.e., C∩S′ = ∅), and (c) C contains all variables that could be selected

at that iteration, in order of preference. An alternative way to look at (c) is that any

variable Cj+1 would be selected if the algorithm were to be executed on DC1:j (i.e., after

excluding variables C1:j). The BP function must remove all and only the

false positive variables. We note that, for the single solution case OV does

not have to provide a complete ordering, but can only return the next variable to select.

That presentation was chosen to allow for an easier extension for multiple solutions.

A large class of feature selection algorithms can be expressed as instantiations of

TFBS. Examples include the forward-backward selection (FBS) algorithm [88, 156]

and variations or extensions of it [100,101,147], information-theoretic feature selection

methods [22], as well as causal-based algorithms [4] like the MMPC [146] and HITON-

PC [5] algorithms. An instantiation of FBS using p-values of conditional independence

tests to order variables is shown in Algorithm 11. The forward phase tests for each

variable Ci ∈ {F \ S′} if it is dependent with T given S′, and selects the one with the

lowest p-value. Thus, the OV function for FBS returns all variables that

are conditionally dependent dependent given the current set of selected variables S′ in
ascending order of p-values. The backward phase removes at each iteration the least

dependent variable given all selected variables (i.e., the one with the highest p-value

which is higher than the significance level α), until no more variables can be removed.

6.4 Extending TFBS for Multiple Solutions

The forward phase of TFBS can be seen as a search on the space of feature sets [85].

Each state of the search space contains a set of selected variables S′, and its neighbors

are all states which additionally contain one of the variables in C. As the search is only

in one direction (i.e., only when variables are added), we will refer to the neighbors

of a state t containing an extra variable as its children, the previous state as its parent,
and all children of its parent (except for t itself) as its siblings. Thus, TFBS traverses

that search space by only visiting the first child (i.e., the one where C1 is selected).

Given this view, we use a simple idea to extend it for multiple solutions: instead of

exploring a single child at each iteration, we use backtracking [129] to explore all

children and consider multiple solutions. A candidate solution is then returned if it is

equivalent with the reference solution (i.e., the one obtained by TFBS).

The naive approach is not very practical, as it may consider the same solutions

multiple times. For example, the state containing S′ = {X,Y} can be reached twice by

selecting the variables in different order. In general, each solution can be obtained in

m! ways, where m is the size of the solution. Thus, in the worst case, up to p! solutions

(where p is the number of variables) may be considered, even though there are only

6.4. Extending TFBS for Multiple Solutions 97

Figure 6.1: An example showing that naive backtracking can explore the same state twice.

The set of currently selected variables is denoted as S′, and C denotes the set of candidate

variables returned by ORDERVARIABLES using S′. For simplicity, we consider only 4 vari-

ables, assume that ORDERVARIABLES does not remove any variables, and only show part of

the search space. We can see that there are two states (highlighted in red) with the exact

same set of selected variables.

2p unique combinations! An example is shown in Figure 6.1. Next, we propose a

strategy to avoid such repetition.

6.4.1 A Strategy to Avoid Repeating States

Let S′ be the current set of selected variables, C = {C1, . . . ,Ck} be the set of candidate

variables and {t1, . . . , tk} be the corresponding states obtained after selecting one of the

variables in C. To avoid repeating states, each variable Ci is excluded from consider-

ation in all subsequent sibling states of ti (i.e., ti+1, . . . , tk). Therefore, ti+1, . . . , tk will

never lead to the same feature sets as ti, as Ci is in all feature sets explored after ti
but in none of the ones explored by ti+1, . . . , tk. On a more intuitive level, once Ci

98 Chapter 6. Extending Greedy Feature Selection Algorithms to Multiple Solutions

Figure 6.2: An example showing how the proposed strategy can avoid repeating states on

the example considered in Figure 6.1. Note that the set of candidate variables C of any

state does not contain the selected variables of any of its siblings that come before that

(i.e., are above it). For example, variable F1 is selected only once (top state in the middle

column), and variable sets containing it are explored only in its children states, but not

on any of its siblings. However, variable F2 which is selected in the top right state is also

considered for selection in the bottom state, as they are neither children nor siblings of

each other.

is selected and all children states of ti are fully explored, the algorithm is given the

opportunity to consider all feature sets that contain S′∪ {Ci}, and thus there is no need

to further consider it from that point on. Note that, Ci may still be considered in other

tree branches which contain a different set of variables, i.e., where the set of variables

is not a subset of S′. Figure 6.2 shows how this strategy can avoid repeating states in

the previous example of Figure 6.1.

The above strategy is equivalent to executing the algorithm twice with different

input datasets, starting both times with the set of selected variables initialized to S′:
once with D (which contains Ci), and once with the embedded dataset DCi (which

does not contain Ci). This can be shown by simply noting that, up to that point, the

algorithm would select the exact same variables S′ using DCi , and then would select

Ci+1 instead of Ci, as Ci is not contained in the dataset (unless of course Ci was the

last variable, in which case it would terminate). The above observation is summarized

6.4. Extending TFBS for Multiple Solutions 99

Algorithm 12 TFBS for Multiple Solutions (TMFBS)

Output: Function ORDERVARIABLES, Function BACKWARDPHASE

Input: DatasetD, Current Solution S′ Output: Set of Solutions M
//Let S be a reference solution returned by TFBS on D using ORDERVARIABLES and

BACKWARDPHASE

C← ORDERVARIABLES(D, S′)
if C = ∅ then //Check if forward phase terminated.

S′ ← BACKWARDPHASE(D, S′)
//Return the candidate solution S′ if it is equivalent to the reference solution S
if EQUIVALENT(S,S′) then

return {S′}
else

return ∅
end if

end if

M← ∅
for Ci ∈ C do //For each candidate variable in the order given by ORDERVARIABLES.

//LetDC1:i−1 be the datasetDwithout variables C1, . . . ,Ci−1
M←M ∪ TMFBS(DC1:i−1 , S′ ∪ {Ci}) //Exclude C1:i−1 and find all solutions.

end for

return M

in the below.

Lemma 1. LetD be the input dataset, S′ be the current set of selected variables,C = {C1, . . . ,Ck}
be the current set of candidate variables and {t1, . . . , tk} be the corresponding states ob-

tained after selecting one of the variables in C. Excluding Ci from consideration from states

ti+1, . . . , tk is equivalent to re-running the algorithm on the embedded datasetDCi .

6.4.2 The TMFBS Algorithm for Multiple Solutions

We propose the TMFBS algorithm, an extension of TFBS which uses backtracking, as

well as the proposed strategy for avoiding repeated states, in order to identify multi-

ple statistically equivalent solutions. For each identified candidate solution, TMFBS

performs a test for statistical equivalence of feature sets, to test if it is equivalent with

the reference solution S, which is assumed to be known. In practice, S is initialized to

the first solution identified during the search (which coincides with the solution that

would be returned by TFBS). The algorithm is shown in Algorithm 12.

Theoretical Properties of TMFBS

We proceed with the theoretical properties of TMFBS. Let A be an admissible pair

of functions 〈OV,BP〉. We show that TMFBS identifies all

100 Chapter 6. Extending Greedy Feature Selection Algorithms to Multiple Solutions

equivalent solutions if the following assumption3 holds.

Assumption 1. TFBS instantiated withA identifies the Markov blanket of T in any dataset

D.

It is important to notice that Assumption 1 refers to any dataset D, and therefore

implies that TFBS using A can also find a Markov blanket of T in any embedded

dataset in D (or any dataset which contains D); however, note that a Markov blanket

in an embedded dataset is not necessarily a Markov blanket in the original D.
Depending on A, the distributions for which Assumption 1 holds differ. For

example, for FBS4 it has been shown that Assumption 1 holds (assuming an oracle for

testing conditional independence) for distributions that satisfy the local composition

property [138], i.e., if T⊥X | Z ∧ T⊥Y | Z⇒ T⊥X ∪Y | Z holds for any sets X,Y and

Z.
Conditions under which HITON-PC [5] identifies all solutions are given in [138].

We note that, there is no general recipe to identify for which distributions Assumption 1

holds for arbitrary A. However, for algorithms that can be connected to probabilistic

graphical models (such as FBS and HITON-PC), one can use the theory of probabilistic

graphical models as a guide to find conditions under which it holds (see [138]). We

proceed with the main result.

Theorem 3. TMFBS using A will identify all and only the solutions equivalent with the

reference solution in any datasetD, if (a)A satisfies Assumption 1 and, (b) it has access to

an oracle for deciding equivalence.

Proof. See Appendix A.5. �

Sound Rules for Pruning the Search Space

Theorem 3 states that TMFBS will find all solutions in any D, and therefore also in any

embedded dataset DE in D. An immediate consequence of this is that, if no solution

is found in some dataset DE, no solution can be found in any embedded dataset of

DE∪E′ ; if there was one in DE∪E′ , it would also be contained DE as DE∪E′ is embedded

in DE.

Corollary 3. LetDE andDE∪E′ be two datasets, where the latter is embedded in the former.

If no equivalent solution is contained in DE, then no equivalent solution is contained in

DE∪E′ .

Based on this, we propose rules for pruning the search space.

3This assumption is basically identical to admissibility rule I made by TIE* (see Figure 7 in [138])
4The proof is for IAMB [147], which is FBS with a different, but provably correct, backward phase.

6.4. Extending TFBS for Multiple Solutions 101

Pruning Rule 1. If TMFBS(DC1:i−1 , S ∪ {Ci}) does not return any equivalent solution, stop

and return M.

Pruning Rule 2. Before calling TMFBS(DC1:i−1 , S ∪ {Ci}), check if for some DE, E ⊆ C1:i−1
no equivalent solution was returned, and if so stop and return M.

In TMFBS, Rule 2 is checked before the recursive call to TMFBS(DC1:i−1 , S ∪ {Ci}),
while Rule 1 is checked afterwards. We note that Rule 2 is one of the conditions of

the IGS procedure used by TIE* (see fourth bullet and step 1 of Figure 9 in [138]).

Recall that, after including a variable Ci in state ti, none of its subsequent siblings

ti+1, . . . , tk will consider Ci again, and thus increasingly smaller embedded datasets are

explored. Thus, if TMFBS(DC1:i−1 , S ∪ {Ci}) does not lead to a solution, by Corollary 3

neither can any call to TMFBS with datasets embedded in DC1:i−1 . Although Rule 1

identifies many cases implied by Corollary 3 that can be pruned, it does not necessarily

identify all of them. Combining it with Rule 2, which is basically a direct application

of Corollary 3, ensures completeness. We note that, theoretically Rule 1 is not required;

however, in contrast to Rule 2, which requires to keep track of all embedded datasets

that did not lead to any solution, Rule 1 can be implemented trivially and efficiently.

The previous rules only consider the forward phase of TMFBS. We identified

another pruning rule, which regards the backward phase of the algorithm.

Pruning Rule 3. If no solution returned by TMFBS(DC1:i−1 , S ∪ {Ci}) contains Ci, stop and

return M.

Rule 3 is checked after the recursive call to TMFBS(DC1:i−1 , S ∪ {Ci}).
Pruning Rule 3 regards cases where variable Ci is selected at some step but is not in

any solution in DC1:i−1 , which can happen if Ci is removed during the backward phase

from all of them. Basically, if including Ci lead to some solutions (i.e., Rule 1 does

not apply), but none of them actually contains Ci, Ci was a false positive which got

removed by the backward phase. Thus, the call TMFBS(DC1:i−1 , S ∪ {Ci}) would give

the same results as TMFBS(DC1:i , S′), which again equals the union of results of the

recursive call with all remaining candidate variables Ci+1:k. Because of that, there is no

reason to consider the remaining candidates Ci+1:k, which have already been implicitly

considered, and M can be returned.

Despite all attempts to speed-up TMFBS, the number of candidate solutions may

still be exponential in the number of variables, and thus TMFBS may not terminate in

a reasonable time frame. This is not a weakness of TMFBS, but an inherent property

of the problem. Thus, to avoid such cases in practice, we recommend setting a limit

on the number of candidate states to consider, the number of solutions to return, or

a combination of both. This problem also motivated us to develop an algorithm for

summarizing and visualizing multiple solutions, presented in Section 6.5.

102 Chapter 6. Extending Greedy Feature Selection Algorithms to Multiple Solutions

Algorithm 13 TIE* (Figure 6 in [138]

Output: Function ORDERVARIABLES, Function BACKWARDPHASE

Input: DatasetD, Target T, Markov blanket induction algorithmX, Procedure to generate

embedded datasetsY, CriterionZ to verify Markov blankets for T
UseX to find a Markov blanket S inD
repeat

UseY to generate datasetDE by removing a subset of variables E from the full set of

variables F
Use X to find a Markov blanket Snew fromDE

UseZ to determine if Snew is a Markov blanket in the original distribution

until All datasetsDE generated byY have been considered

return All identified solutions equivalent to S according toZ

function IGS(instantiation ofY for TIE* (Figure 9 in [138]))

Inputs”

1) Markov blankets M = {S1, . . . ,Sn} obtained so far by TIE* and ordered by the time

of discovery from earliest (S1) to latest (Sn)

2) Subsets E1, . . . ,En that were used in previous calls to IGS to generate embedded

datasets that led to the discovery of the above Markov blankets (E1 = ∅)
3) Subsets E∗1, . . . ,E∗m that were used in previous calls to IGS to generate embedded

datasets that did not lead to Markov blankets

Generate the smallest subset of variables E: Ei ⊂ G ⊆ (Si ∪ Gi) for some i = 1, . . . ,n
that neither includes G∗j nor coincides with Gk for any j = 1, . . . ,m and k = 1, . . . ,n

Return embedded datasetDE

end function

6.4.3 Relation to the TIE* Algorithm

TIE* [138] is a general method, that can use any feature selection algorithm as a black-

box for identifying multiple solutions. It uses three components: (a) a Markov blanket

discovery algorithm X, (b) a function Y that generates embedded datasets, and (c) a

criterion Z that tests if a solution is a Markov blanket in the original distribution. The

TIE* algorithm, along with the IGS method for creating embedded datasets (slightly

modified to use similar notation as TMFBS) are shown in Algorithm 13. As a criterion

Z, any test for equivalence of feature sets can be used.

The main idea of TIE* is to (a) identify a solution S on the original dataset D,
(b) remove variables of S from D and run X on the embedded datasets to identify

additional solutions, and (c) repeat (a,b) for each new solution found, until no more

solutions can be found. All of this is done without running X multiple times on

the same dataset, and without running X on a dataset if no solution was found in

a superset of it (same as Pruning Rule 2). It has the same theoretical properties as

6.5. Summarizing and Visualizing Multiple Solutions 103

Figure 6.3: An example of a multiple solution graph.

TMFBS, that is, it will identify all equivalent solutions if Assumption 1 holds and it

has access to an oracle for deciding equivalence. In practice, the results of TIE* and

TMFBS may differ due to statistical errors, although, as we will see in the experiments,

they return very similar sets of solutions.

Although more general than TMFBS, TIE* has two main drawbacks: (a) it treats

X as a black-box and thus does not take advantage of its search strategy, leading to

unnecessary repetition of computations, and (b) no details are provided for an efficient

implementation, which may make it hard to use or compare against (for instance,

for our implementation we had to come up with an efficient method to incrementally

explore embedded datasets).

6.5 Summarizing and Visualizing Multiple Solutions

The more solutions are identified, the harder it is to interpret them. Typically, most

solutions have some overlap (features that are indispensable) and only differ for a few

features (replaceable features), enabling a more compact representation. We propose

a data structure for compactly representing feature sets, as well as an algorithm to

construct it next.

6.5.1 Multiple Solution Graphs

Let M denote a set of solutions M = {S1, . . . ,Sk}. We propose to represent them with a

multiple solution graph (MSG), which is a directed acyclic graph G with the following

properties: (a) G contains exactly one root and leaf node, called s and t, (b) each other

node in G is associated with one or more sets of features, and has in and out degree

104 Chapter 6. Extending Greedy Feature Selection Algorithms to Multiple Solutions

Algorithm 14 Feature Set Compression

Input: Solutions M
Output: MSG G representing M

1: G ← {s, t}
2: for each Si ∈M do

3: G ← G ∪ Si
4: G ← G ∪ (s→ Si)
5: G ← G ∪ (Si → t)
6: end for

7: G ← FORWARDCOMPRESSION(G, s)
8: G ← BACKWARDCOMPRESSION(G, t)
9: G ← ORCOMPRESSION(G, t)

10: returnG

at least one (c) each directed path p from s to t represents a solution, which can be

obtained by choosing one of the feature sets of each node on p and taking the union

of the chosen feature sets, and (d) G does not encode any additional solutions.

An example of an MSG is shown in Figure 6.3. All nodes contain a single set

of features, except for N2 which contains two. The solutions this MSG represents are

{F1,F2,F3} (s → N1 → N2 → t), {F1,F2,F4,F5} (s → N1 → N2 → t), {F1,F2,F5,F6,F7}
(s → N1 → N3 → N4 → t) and {F1,F2,F5,F6,F8} (s → N1 → N3 → N5 → t). There

are two paths through N2, one for each feature set. Nodes with multiple features sets

represent OR relations: along paths through such nodes, all solutions contain the same

features, but only contain one of the sets of that node. Note that, feature sets in such

nodes are equivalent in the context of the remaining features on that path.

Hereafter, we will use the names Ni to refer to the i-th node in G and var[Ni] to

refer to the sets of features associated with Ni. In case var[Ni] contains only a single

set of features, it will directly refer to that set. If it is clear from the context, we will

refer to a node with its associated feature set. We will use parents[Ni] and children[Ni]

to refer to the parents and children of Ni in G respectively.

6.5.2 An Algorithm for Constructing Multiple Solutions Graphs

We propose a greedy algorithm to construct an MSG G to compactly represent a set

of solutions M = {S1 . . . ,Sk} (see Algorithm 14). First, k nodes are created, one for

each feature set in M. Then, edges from s into each of those nodes, as well as edges

into t out of them are included in G. It is easy to see that G exactly represents

M, as it contains k paths from s to t, one for each feature set. Afterwards, forward

and backward compression steps are performed to reduce the size of G. Both are

performing operations on G with the goal of simplifying it. Until that step, all nodes

6.5. Summarizing and Visualizing Multiple Solutions 105

Figure 6.4: Examples of the forward merging (left) and OR merging (right) operations.

contain a single feature set. The final step is to merge nodes, creating nodes that

contain multiple feature sets. Before describing everything in detail, we proceed by

presenting the operations used, along with proofs of correctness.

6.5.3 Compression Operations

Operation 1 (Forward Merging). Let N = N1, . . . ,Nn be a set of nodes. If F′ =
⋂

Ni
var[Ni] ,

∅ and all of them have exactly the same set of parents P, then, a new node N′ is created with

var[N′] = F′, parents[N′] = P, children[N′] = N, and remove all incoming edges from N, as

well as all features F′ from N.

Operation 2 (Backward Merging). Let N = N1, . . . ,Nn be a set of nodes. If F′ =
⋂

Ni
var[Ni] ,

∅ and all of them have exactly the same set of children C, then, a new node N′ is created with

var[N′] = F′, parents[N′] = N, children[N′] = C, and remove all outgoing edges from N, as

well as all features F′ from N.

Operation 3 (OR Merging). Let N = N1, . . . ,Nn be a set of nodes. If all nodes have the same

sets of parents P and children C, then, a new node N′ is created with var[N′] = {var[N1],

. . . ,var[Nn]}, add edges from P to N′ as well as edges from N′ to C, and remove all nodes N
fromG.

Figure 6.4 shows examples of the forward merging and OR merging operations; the

backward merging operation is not shown, as it is symmetric to the forward merging

106 Chapter 6. Extending Greedy Feature Selection Algorithms to Multiple Solutions

operation, requiring common children instead of common parents. In the example of

the forward merging operation, the nodes N1, N2 and N3 share the same parents and

have the feature F1 in common. The resulting node N′ contains F1, which is removed

from the feature sets of the other nodes. The OR merging operation requires that the

nodes share the same parents and children. If so, the nodes can be merged into a

single node, containing as feature sets all features sets of the merged nodes, as shown

in the example. As can be seen in the previous examples, all operations simplify the

graph by removing nodes, features and edges. Next we will quantify those effects for

all operations.

We start with the forward and backward merging operations. Without loss of gen-

erality, we consider the forward merging operation; the same also holds for backward

merging. Before its application on node set N and their parents P, the graph contains

|N| · |P| edges between them. The resulting graph contains |P| edges from P to N′, and

|N| edges from N′ to N, much fewer than the ones in the initial graph. In addition, the

total number of features contained in the graph is reduced by (|N| − 1) · |F′|. Note that

application of those operations may result in a node containing no features. In this

case the node can be removed, and edges from all its parents to all its children have

to be added. Finally, OR merging always decreases the number of nodes and edges,

while maintaining the total number of features. Specifically, for node set N, the number

of nodes is reduced by |N − 1|, and the edges are reduced by (|P| − 1)|N|) + (|C| − 1)|N|),
where P and C are the sets of parents and children of N respectively. Next, we will

show that all operations are preserve the number of represented solutions.

Theorem 4. Application of Operation 1 and 2 does not affect the set of represented solutions

by G

Proof. See Appendix A.6. �

A proof sketch for the OR merging operation follows. Observe that OR merging

basically only groups some nodes together into one “super-node”. Based on this

observation, it can easily be shown that it does not alter the solutions represented by

the graph, as nodes are merged if and only if they have the same parents and children.

Furthermore, this operation can be applied locally and independently to any part of

the graph in any order, without affecting the final outcome.

Next, we will present algorithms that perform the forward and backward compres-

sion steps, using the respective merging operations. We do not provide any algorithm

for the OR compression, as it simply is repeated application of OR merging until no

more nodes can be merged.

6.5. Summarizing and Visualizing Multiple Solutions 107

Algorithm 15 Forward Compression

Input: GraphG, Node N
Output: Graph G

1: Groups← SPLITCHILDRENBYFEATURES(G,N)
2: for each Gi ∈ Groups do

3: F′ ← ⋂Nj∈Gi
var[Nj]

4: var[N′]← F′ //Create node N′ with features F′

5: G←G ∪N′ //Add N′ toG
6: ∀Nj∈Givar[Nj]← var[Nj] \ F′ //Remove common features from Gi

7: G ← G ∪ (N→ N′) //Add edge from N to N′

8: ∀Nj∈GiG ← G ∪ (N′ → Nj) //Set N′ as parent of each Nj

9: ∀Nj∈GiG ← G \ (N→ Nj) //Remove Nas parent from Nj

10: G ← FORWARDCOMPRESSION(G,N′)
11: end for

12: returnG

6.5.4 Algorithms for Forward and Backward Compression

The forward compression starts from the root node s and separates its children into

groups as follows. First it identifies the feature with the most occurrences among

all its children and groups together all children that contain that feature (function

SCBF in Algorithm 15). This is repeated for all children that have

not been grouped yet, until none remains. Next, after all children have been grouped,

Operation 1 is performed on each such group Gi (lines 3–9 in Algorithm 15). Appli-

cation of Operation 1 is possible since all nodes in each group share common features

and because all of them share the same parents, by construction. The aforementioned

steps are repeated recursively for each newly created node N′ in place of s, until the

leaf node t is reached. The procedure is summarized in Algorithm 15.

After completing the forward compression, an additional step is employed to further

reduce the size of the DAG. This step is very similar to the forward compression, with a

small modification. The backward compression starts from the leaf node t and groups

all parents of t such that all nodes in the same group have the same children (function

SPBC in Algorithm 16). This is necessary in order to perform the

backward operation. It was not required for the forward compression, as there it

was guaranteed by construction that all nodes always have the same parents. Here

however, it may happen that some parent of t is also a parent of some other parent

of t, complicating things. Next, each such group is further split into sets of nodes that

have common features, similarly to the forward step (function SGBF

in Algorithm 16). Thus, after both splitting steps, nodes in each group have the

same children and share features, allowing application of Operation 2 (lines 4–10 in

108 Chapter 6. Extending Greedy Feature Selection Algorithms to Multiple Solutions

Algorithm 16 Backward Compression

Input: GraphG, Node N
Output: Graph G

1: Groups← SPLITPARENTSBYCHILDREN(G,N)
2: Groups← SPLITGROUPSBYFEATURES(Groups)
3: for each Gi ∈ Groups do

4: F′ ← ⋂Nj∈Gi
var[Nj]

5: var[N′]← F′ //Create node N′ with features F′

6: G←G∪N′ //Add N′ toG
7: ∀Nj∈Givar[Nj]← var[Nj] \ F′ //Remove common features from Gi

8: G ← G ∪ (N′ → N) //Add edge from N′ to N
9: ∀Nj∈GiG ← G ∪ (Nj → N′) //Set N′ as child of each Nj

10: ∀Nj∈GiG ← G \ (Nj → N) //Remove Nas child from Nj

11: end for

12: //Iterate over all parents. Additional parents may be created after BackwardCompres-

sion and must also be considered.

13: for each Ni ∈ Parents(N) do

14: G ← BACKWARDCOMPRESSION(G,Ni)
15: end for

16: returnG

Algorithm 16). Again, this procedure is applied recursively for all parents of t, including

the ones that are created after a recursive call of backward compression5, until the root node

s is reached.

6.5.5 Related Methods

The problem of compactly representing feature sets is closely related to several other

problems that have appeared in the computer science literature, which we briefly

summarize and compare below.

Binary decision diagrams (BDDs) [6,23] are directed acyclic graphs that are used

to compactly represent a Boolean function. Each node is associated with a Boolean

feature and has two outgoing edges, one labeled “0” (or false) and one labeled “1”

(or true), corresponding to the respective assignment of x. It has one root node,

which is one of the Boolean features, and two leaf nodes “0” and “1”. Each path

from the root node to one of the leaf nodes represents a feature assignment for the

represented Boolean function. Depending on the leaf node, this assignment evaluates

the represented Boolean function to true or false. Ordered binary decision diagrams
(OBDDs) [23] are a special type of BDDs. They have the property that there is a

5In an actualy implementation of Algorithm 16, the set of parents of N at line 13 has to be updated after
each recursive call in the loop, as it may change during the loop.

6.5. Summarizing and Visualizing Multiple Solutions 109

unique structure for a given feature ordering, which is not necessarily the case for

BDDs. The size of the OBDD highly depends on the feature ordering. The problem of

finding the minimal OBDD is NP-complete [12] 6. There are various heuristics to find

a good feature ordering; see [124] for a survey on such methods. Another interesting

type of BDDs are zero-suppressed binary decision diagrams (ZDDs) [107]. Often,

especially when there are only a few solutions for a Binary function, ZDDs can be

much smaller than OBDDs. It is straightforward to use BDDs to represent feature sets

(which are a set of sets). Feature sets can be represented with Boolean functions by

converting each set to an AND function and use an OR function between all such sets.

For example, if M = {{F1,F2}, {F2,F3,F4}}, the Boolean function (F1∧F2)∨ (F2∧F3∧F4)

represents all solutions in M. In fact, OBDDs and ZDDs have already been used in

this context [108]. The reason we chose not to use BDDs for our case is that they

aren’t as easy to interpret, and it is harder to identify represented solutions visually.

A path may contain “0” edges, which have to be filtered out in order to retrieve the

respective feature set.

Acyclic deterministic finite-state automata (ADFA) (also known as directed acyclic

word graphs (DAWG)) [36,73,123] are used to represent a set of strings (called lexicon)

in a compact way. ADFAs are directed acyclic graphs with nodes representing states

and edges representing transitions between them. They contain one root and one leaf

node, and each edge is associated with a letter. Each directed path from the root node

to the leaf node represents a string, by concatenating the letters associated with each

edge on that path. There are fast algorithms to incrementally construct a minimal size

ADFA [36], or to minimize a given ADFA [123]; see [35] for a review and comparison

of such methods. In our case, ADFAs could be used by converting each feature set to

a string, and then using them to encode the whole set of feature sets. One way to do

this is to choose a feature ordering, and to convert feature sets to strings by sorting

them according to that ordering. This however is sub-optimal, as it unnecessarily

restricts the resulting DAG to some feature ordering, which is not needed to actually

represent feature sets. On the other hand, ADFAs also allow the repetition of letters,

which is not needed in our problem as we deal with sets. Both of those reasons may

potentially reduce their efficiency for compactly representing feature sets, which is why

we decided to not use them.

We did not further investigate the possibility of using one of those data structures

for our problem. We note that, due to their similarity with our proposed data structure,

it may be that techniques used for minimization of BDDs or ADFAs could be applied

in our case.

6Specifically, the decision version of the problem is NP-complete

110 Chapter 6. Extending Greedy Feature Selection Algorithms to Multiple Solutions

Table 6.1: Summary of the datasets used for the experimental evaluation. We used 6 regres-

sion datasets and 5 binary classification datasets, with number of variables ranging from

46 to 970, and samples sizes between 1994 and 60021.

Dataset #Samples #Variables

R
e

g
re

ss
io

n
CnC Non-violent 2118 102

CnC Violent 1994 102

BlogData 60021 276

CT Slice 53500 379

UJI Latitude 21048 520

UJI Longitude 21048 520

C
la

ss
ifi

c
a

ti
o

n Ada 4562 46

Musk 6598 166

Sylva 14394 213

Madelon 2600 500

Gina 3468 970

6.6 Experimental Evaluation

We evaluated TMFBS and compared it to the TIE* algorithm [138]. In our first

experiment we compared (a) the number of solutions returned by each algorithm, as

well as how many of them are statistically equivalent, (b) the predictive performance of

the returned solutions, and (c) how the algorithms compare in terms of computational

performance. Then, we investigated how the number of solutions and running time

of both algorithms is affected by sample size. Finally, we show some examples of

multiple solution graphs obtained on solutions returned by TMFBS.

Data. We considered binary classification and regression datasets. The data were

collected from the UCI ML repository [41], using the following criteria: (a) they contain

at least 1000 samples, to ensure that the equivalence tests have sufficient power, and (b)

they contain at most 1000 features, so that all algorithms can terminate in a reasonable

time frame. The datasets are shown in Table 6.1. More details about the data collection

and pre-processing are given in Appendix C.3.

Feature Selection Algorithms and Hyper-parameters. For a fair comparison, we

instantiated both TIE* and TMFBS with the FBS algorithm, as presented in Section 6.3.

For continuous outcomes, we used the partial correlation test, and for binary outcomes

we used a likelihood-ratio test based on logistic regression (see Section 2.4.1). For the

significance level α of the conditional independence tests we considered 100 values

uniformly spaced in the exponent of 10[−8,...,log10(0.05)], (i.e., the minimum α is 10−8

and the maximum is 0.05). A wide range of values for α is considered to allow for

better tuning of FBS (see Section 6.2.3 for the motivation behind this).

6.6. Experimental Evaluation 111

Predictive Modeling. As predictive algorithms, we used ridge logistic and linear

regression for binary classification and regression outcomes respectively7. For the

regularization parameter λ of ridge regression we considered values 2[−30,...,30], with a

step size of 0.5 on the exponent (a total of 121 values).

Equivalence Test for Solutions. The goal of the experiments is to identify multiple,

statistically equivalent Markov blankets. Following the recommendations given in

Section 6.2.3, we combine a PEQ test with an IEQ test. Specifically, we (a) use a

permutation-based variant of the variance test [154] for PEQ with 1000 permutations

(see Section 6.2.3 for details), and (b) an IEQ test based on likelihood-ratio tests

using logistic and linear regression models for classification and regression outcomes

respectively. As sample sizes are relatively large, we set the significance level to 0.05

for both tests to minimize the number of false solutions.

Analysis Protocol. We employed a train/validation/test protocol, splitting the data to

60%/20%/20% respectively. As performance metrics we used the out-of-sample R2 for

regression and the area under the ROC curve for classification. We used the following

procedure: (a) on the training set, we trained a ridge regression model using the

features identified by FBS for each combination of λ and α (a total of 121 ·100 = 12100

combinations), (b) we selected the best combination based on its performance on

the validation set, (c) we executed TMFBS and TIE* on the combined training and

validation set using the best α and trained one model for each solution using the best

λ, and (d) estimated their predictive performance on the test set.

Implementations. All algorithms were implemented by us in Matlab, except for ridge

logistic regression, for which we used the implementation provided by the LIBLINEAR

package [48].

6.6.1 Evaluation of TMFBS and Comparison with TIE*

For the first experiment we employed the aforementioned analysis protocol on the

datasets shown in Table 6.1 datasets. In order to measure the speed-up of TMFBS

over TIE*, we used the number of independence tests performed by each algorithm as

a proxy of running time8. For each solution, we compute the predictive performance

obtained on the test set, as explained previously. Ideally, all identified equivalent

solutions should have similar predictive performance. In order to verify that, we

performed a test of performance equivalence for each identified solution with the

7We chose those models to compare equivalent solutions on an equal footing, as the conditional inde-
pendence tests used by FBS only identify linear (or monotonic) dependencies. Using non-linear predictive
models might obfuscate the results, as they would favor solutions which happen to identify variables that are
non-linearly related to the outcome.

8The number of tests is used instead of running time, as this is independent of the implementations used
for the algorithms and tests. This is common practice when comparing algorithms based on independence
tests (see [4] for example)

112 Chapter 6. Extending Greedy Feature Selection Algorithms to Multiple Solutions

Table 6.2: The table shows the summary of the comparison. It shows the speed-up of

TMFBS over TIE*, the performance of the reference solution as well as the range of perfor-

mances over all returned solutions, the number of additional solutions returned by each

algorithm (#Sol.) (i.e., without counting the reference) and how many of them are statis-

tically equivalent with the reference on the test set (#Eq.). Both algorithms produce very

similar results in terms of the number of solutions and equivalent solutions identified, and

all identified solutions have similar predictive performance. In terms of number of statis-

tical tests performed, TMFBS performs around 2 times fewer tests than TIE*.

Performance Range #Sol. (#Eq.)

Dataset Speed-up Performance TMFBS TIE* TMFBS TIE*

R
e

g
re

ss
io

n

CnC Non-violent 2.18 0.585 - - - -

CnC Violent 2.31 0.588 [0.583, 0.590] [0.583, 0.590] 2 (2) 2 (2)

BlogData 1.91 0.304 - - - -

CT Slice 2.29 0.834 [0.834, 0.834] [0.834, 0.834] 19 (16) 19 (16)

UJI Latitude 2.20 0.911 - - - -

UJI Longitude 2.40 0.938 [0.938, 0.938] [0.938, 0.938] 12 (9) 13 (10)

C
la

ss
ifi

c
a

ti
o

n Ada 1.97 0.904 - - - -

Musk 2.24 0.991 - - - -

Sylva 1.66 0.999 - - - -

Madelon 1.81 0.646 - - - -

Gina 2.09 0.932 [0.932, 0.934] [0.932, 0.934] 1 (1) 1 (1)

reference solution on the test set. As a performance equivalence test we employed the

permutation-based variance test, as described above. As the significance level is set

to 0.05, we expect around 5% of equivalent solutions to be rejected on average. The

results are summarized in Table 6.2.

First of all, we notice that both algorithms return a similar number of solutions. In

fact, the solutions are identical, except for the UJI Longitude dataset, where TMFBS

returned 12 solutions while TIE* returns 13. Those results agree with what we would

expect from theory, as both algorithms have the same theoretical guarantees, although

the results might differ in practice (see Section 6.4.3).

In terms of total number of returned solutions, we see that in most cases the

algorithms identify only a single solution (7 out of 11 datasets), while in the rest the

number of additional solutions is at most 19. Most of them are statistically equivalent,

and even the ones that are not have very similar predictive performance (the difference

is less than 0.1% in all cases). Even though the number of solutions is low, this is

important evidence that multiple solutions indeed exist in practice. It is unlikely that

those are false positives, given that the analysis is designed so that the number of

false positive equivalences is minimized: we used large sample sizes, a relatively high

6.6. Experimental Evaluation 113

threshold for the equivalence tests, filtered out solutions using a PEQ test, and used

extensive tuning of the algorithms (see Section 6.2.3 for explanations of how the

above affect the number of solutions). Furthermore, we there is no reason to believe

a priori that the selected datasets do contain equivalent solutions, as the criteria used

for selecting them are based on their size.

Finally, regarding speed-up, in all cases TMFBS is around 1.5-2.5 times faster

than TIE*, showing that TMFBS is able to successfully take advantage of the search

structure of FBS; larger speed-ups are expected with increasing number of features

and solutions (see also the results of the next experiment, where speed-ups of 1-2

orders of magnitude are the norm).

6.6.2 Number of Solutions and Speed-up with Increasing Sample Size

Next, we performed an experiment to investigate how the number of solutions is

affected by lower sample sizes, where more false positive solutions are expected due to

lower power of the equivalence tests. Furthermore, we also check how the increased

number of solutions affects the speed-up of TMFBS over TIE*. For this experiment,

we only used the regression datasets, as the experiment is too time consuming for

the classification datasets. The reason is that the logistic regression based test are

significantly more computationally expensive than partial correlation tests, making

such a large experiment infeasible.

We used the same experimental setup as before, but instead of using the full

training set (i.e., the 60% of the original samples), we sampled 10%,20%, . . . ,90%

of the training data and used that as a training set to tune the hyper-parameters of

FBS. The sampling was performed 20 times for each value, i.e., we performed a total

of 20 · 9 = 180 runs of the analysis protocol for each dataset, and we report averages

over the 20 runs. A limit of 1000 solutions was set, as in some small sample cases the

TIE* algorithm would not terminate otherwise (the number of solutions often ranged

in the millions).

Figure 6.5 shows how the number of solutions identified by TMFBS and TIE*

varies with sample size. As before, the results are very similar for both algorithms.

First we notice that, as expected, the number of solutions tends to decrease with increasing

sample size. The only exception is for the CnC Non-violent dataset, where the number of

solutions increases a bit for 70% of the samples or higher. Furthermore, for some cases

(e.g., 40% and 70% for the UJI Longitude dataset) the number of solutions increases

temporarily, and decreases afterwards. We were not able to identify the cause of this,

but believe it may be an artifact of the experimental setup. Specifically, we believe it is

due a combination of the relatively small number of runs (we used only 20 repetitions,

due to the large computational cost) and the limit of 1000 solutions (again, to reduce

114 Chapter 6. Extending Greedy Feature Selection Algorithms to Multiple Solutions

10 20 30 40 50 60 70 80 90

Percentage of training set used

0

100

200

300

400

500

600

700

800

900

A
ve

ra
ge

 n
um

be
r

of
 s

ol
ut

io
ns

Number of solutions of TMFBS with increasing sample size

BlogData
CnC Non-violent
CnC Violent
CT Slice
UJI Latitude
UJI Longitude

10 20 30 40 50 60 70 80 90

Percentage of training set used

0

100

200

300

400

500

600

700

800

A
ve

ra
ge

 n
um

be
r

of
 s

ol
ut

io
ns

Number of solutions of TIE* with increasing sample size

BlogData
CnC Non-violent
CnC Violent
CT Slice
UJI Latitude
UJI Longitude

Figure 6.5: The figures show the average number of solutions over 20 runs with increasing

sample size for TMFBS (left) and TIE* (right). In both cases, we can see that the number of

solutions tends to decrease with increasing sample size.

10 20 30 40 50 60 70 80 90

Percentage of training set used

1

10

100

1000

S
pe

ed
-u

p
F

ac
to

r

Speed-up of TMFBS over TIE*

BlogData
CnC Non-violent
CnC Violent
CT Slice
UJI Latitude
UJI Longitude

Figure 6.6: The figure shows the speed-up of TMFBS over TIE* with increasing sample size.

We can see that TMFBS is typically 1-2 orders of magnitude faster than TMFBS on average.

the total computational cost). In any case, even though the number of solutions is not

strictly monotonically decreasing with sample size, overall there is a clear monotonic

trend for most datasets.

Figure 6.6 shows the speed-up of TMFBS over TIE*, computed as the ratio of

statistical tests performed by TIE* over TMFBS, and averaged over all runs. We see

that, on average, TMFBS significantly outperforms TIE*, typically being 1-2 orders of

magnitude faster. The largest speed-ups are observed for lower sample sizes, where

6.6. Experimental Evaluation 115

Figure 6.7: Multiple solutions graphs for the solutions on the CnC violent (left) and CT

slice (right) datasets. The graphs contain 3 and 20 solutions, and require only 5 and 15

nodes respectively to represent them (excluding s and t). The first node contains 5 and 212

variables respectively, which correspond to variables that are contained in all solutions,

i.e., variables that are indispensable.

the number of identified solutions is also larger. Thus, the more solutions are identified,

the larger the speed-up of TMFBS over TIE* is. Recall however that we set an upper

limit of 1000 solutions for each run and, given that TIE* requires more tests per

solution, we expect the speed-up to be even larger if no limit is enforced. Those

results were expected, and can be explained by the search strategy of TMFBS which

efficiently reuses computations, in contrast to TIE* which has to restart the search for

each candidate solution.

6.6.3 Multiple Solutions Graphs

We show two multiple solution graphs (constructed using Algorithm 14) on the so-

lutions of first experiment for the CnC violent and CT slice datasets in Figure 6.7.

The number of solutions are 3 and 20 for the CnC violent and CT slice datasets re-

spectively. We see that the multiple solution graphs are able to efficiently encode all

solutions, requiring only 5 and 15 nodes respectively. They also allow us to quickly

identify interesting patterns. Recall that a solution can be read-off the graph by taking

the union of features present in a path from s to t. Thus, the first node, which in

both cases contains most of the features, corresponds to indispensable features. An

example of replaceable features can be seen for the CnC dataset (graph on the left),

where features 11 and 73 can be interchanged in all solutions. Another example can

be seen on node 12 (graph on the right), which contains three sets of features (features

168, 186 and 196), which are replaceable for all solutions ob

116

Chapter 7

Conclusions

In this work we proposed several extensions of stepwise feature selection methods.

We reviewed approaches from different fields and showed that a large class of existing

methods can be expressed as stepwise selection methods. Not only does this unify

them under a common framework, but it also enables the usage of techniques from

different algorithms, such as the ones proposed in this work, by other algorithms that

fit in this framework.

We presented a heuristic to speed-up the forward-backward feature selection al-

gorithm (FBS), which gives rise to a family of algorithms, called forward-backward

selection with early dropping (FBEDK). FBEDK is a general algorithm that can be

adapted to handle different variable types (for example, continuous, categorical, or-

dinal), cross-sectional and time-course data, linear and non-linear dependencies, as

well as different analysis tasks (for example, regression, classification, survival analy-

sis) by using an appropriate conditional independence test. In contrast, algorithms

like LASSO [139], although being computationally fast and performing well in terms

of predictive performance for common problems like regression and classification,

are not as general [77, 102, 131] and are computationally demanding for some prob-

lems [47, 60, 143]. Furthermore, we investigated the theoretical properties of three

of its members, namely FBED0, FBED1 and FBED∞. We proved that, if the distri-

bution of the data can be faithfully represented by a Bayesian network or maximal

ancestral graph, FBED1 and FBED∞ respectively can identify the optimal solution

(the Markov blanket) of the target variable. In experiments we demonstrated that

FBEDK behaves similarly to FBS in terms of predictive performance and number of

selected variables, while being 1-2 orders of magnitude faster. Compared to other fea-

ture selection algorithms like LASSO [139] and MMPC [146], FBEDK has competitive

predictive performance, while selecting the fewest variables, which is especially impor-

tant if feature selection is performed for knowledge discovery. An interesting result is

that FBEDK and LASSO perform about equally well, when limited to select the same

number of variables. This, combined with the fact that FBEDK is more general, makes

117

118 Chapter 7. Conclusions

it an attractive alternative to LASSO, especially for problems where no efficient solution

to the LASSO problem exists.

Afterwards we proposed an extension of FBEDK for Big Data settings called Paral-

lel, Forward-Backward with Pruning (PFBP). PFBP works on both dense and sparse

data, and can scale to millions of predictive quantities (i.e., features, variables) and

millions of training instances (samples). PFBP enables computations that can be per-

formed in a massively parallel way by partitioning data both horizontally (over samples)

and vertically (over features) and using meta-analysis techniques to combine results

of local computations. Similar meta-analysis tricks can combine local logistic regres-

sion coefficients to global models with excellent results in practice against the global

logistic regression models produced by MLlib. PFBP is equipped with heuristics that

can quickly and safely drop from consideration some of the redundant and irrelevant features

to significantly speed up computations. Bootstrapping testing allows PFBP to deter-

mine whether enough samples have been seen to safely apply the heuristics and forgo

computations on the remaining samples. Our empirical analysis confirms that, PFBP

exhibits a super-linear speedup with increasing sample size and a linear scalability

with respect to the number of features and processing cores. A comparative evalua-

tion shows that PFBP dominates other alternative map-reduce algorithms in its class

in terms of computational performance, number of selected features, and predictive

performance. Against information theoretic algorithms, specialized for sparse, discrete

data it is slower, but returns models with higher predictive performance.

Finally, we presented a novel strategy for extending single-solution feature selection

algorithms to identify multiple statistically equivalent solutions, and showed under

which conditions it is able to identify all solutions. We extended the taxonomy of

features proposed by John et al. [78] to take multiplicity into account. We also proposed

three definitions of statistical equivalence of solutions, as well as methods for testing

them. In experiments, we showed that the proposed algorithm is faster than the

TIE* algorithm [138], the only other method with the same theoretical guarantees,

while returning similar solutions. This happens because our algorithm directly takes

advantage of the computations performed during the search, while TIE* does not.

Open Problems and Future Work

Next, we list several possible future directions for research.

Selecting Variables using Correlation with the Residuals

For all algorithms considered in this work, the forward phase selects the variable that,

once selected, results in the best predictive model. This is computationally expensive,

119

as the algorithm has to fit one model for each candidate variable for selection. An

alternative approach is to approximate this by selecting the variable which has the

highest correlation with the residuals of the current model, similar to methods like

orthogonal matching pursuit and least angle regression. This would dramatically

reduce the computational time required for feature selection. An open problem is if

and under which conditions this approximation retains the theoretical properties or

the predictive performance of forward-backward selection.

Automatically Tuning the Significance Level

There are two main directions related to methods for automatically tuning the sig-

nificance level used for selecting or removing variables. One is related to tuning the

threshold for optimizing predictive performance, and the other regards minimizing

false positive selections due to multiple testing. The latter is a problem of stepwise

selection methods in general as, due to multiple testing, the p-values of the tests are too

small [56,67], leading to a high false discovery rate. One research direction is to per-

form a large-scale evaluation of information criteria for feature selection, as they can be

seen as methods that automatically set the significance level (see Section 2.4.1). Exam-

ple of such approaches are the extended Bayesian information criterion (EBIC) [29],

the generalized information criterion (GIC) [49,83], and the corrected risk information

criterion (RICc) [165]. Another important direction is to combine feature selection

methods (like the proposed FBEDK algorithm) with methods that deal with the prob-

lem of sequential testing of stepwise procedures [61,140].

Improvements to the PFBP Algorithm

There are several improvements that can be made to the PFBP algorithm. As presented,

PFBP requires the user to set the maximum number of features to select. This is mainly

done to determine the number of samples to assign to each sample set, as the data are

partitioned once before running the algorithm. One way to overcome this is to devise

a principled criterion to automatically re-partition the data. Apart from removing the

hard limit on the maximum number of features to select, this also has the advantage

that it can speed-up the algorithm (as seen on the SNP data application in Section 5.5.4,

where re-partitioning was used after the univariate phase). Other, relatively simple

extensions, which could lead to significant reductions in running time, are to exploit

the sparsity of the data and to use specialized GPU implementations of conditional

independence tests.

120 Chapter 7. Conclusions

Multiple Solutions for Stepwise Methods

The proposed strategy for multiple solutions is for methods that can be expressed using

separate forward and backward phases. An important future direction is to extend

the proposed strategy and heuristics for a more general class of algorithms, namely

methods that search in the space of solutions by adding or removing one or multiple

variables at each iteration. This would allow extending other methods for multiple

solutions, like recursive feature elimination, lasso [139], and stepwise selection [88,156]

methods, to name a few.

Learning Multiple Equivalent Causal Networks

The problem of feature selection and causal discovery are closely related. Many fea-

ture selection methods, such as the ones proposed in this work, are inspired by causal

modeling. Furthermore, feature selection is often used as a first step before learning a

full causal network. For example, the max-min hill-climbing Bayesian network struc-

ture learning algorithm [149] first applies the MMPC feature selection algorithm [146]

on each variable to find its neighbors, and then uses a scoring phase to piece them

together and learn a Bayesian network. Methods for learning causal networks assume

the existence of a single underlying causal network, and learn a Markov equivalence

class (i.e., a set of networks which encode the same conditional independencies). How-

ever, it may be the case that there exist multiple, statistically equivalent networks that

are not Markov equivalent, similar to the existence of multiple Markov blankets of a

target variable. Methods, such as the one proposed in this work, could possibly be

used as building blocks for learning multiple networks, similar to how single solution

methods are used to learn a single network.

Bibliography

[1] Alan Agresti. Categorical Data Analysis. Wiley Series in Probability and Statistics.

Wiley-Interscience, 2 edition, 2002.

[2] Hirotogu Akaike. Information theory and an extension of the maximum likeli-

hood principle. In Second International Symposium on Information Theory, pages

267–281, Budapest, 1973. Akadémiai Kiado.

[3] Anastasios Alexandridis, Giorgos Borboudakis, and Athanasios Mouchtaris. Ad-

dressing the data-association problem for multiple sound source localization

using DOA estimates. In Signal Processing Conference (EUSIPCO), 2015 23rd

European, pages 1551–1555. IEEE, 2015.

[4] Constantin F. Aliferis, Alexander Statnikov, Ioannis Tsamardinos, Subramani

Mani, and Xenofon D. Koutsoukos. Local causal and Markov blanket induction

for causal discovery and feature selection for classification part i: Algorithms

and empirical evaluation. Journal of Machine Learning Research, 11(Jan):171–234,

2010.

[5] Constantin F. Aliferis, Ioannis Tsamardinos, and Alexander Statnikov. HITON: a

novel Markov blanket algorithm for optimal variable selection. In AMIA Annual

Symposium Proceedings, volume 2003, page 21. American Medical Informatics

Association, 2003.

[6] Henrik Reif Andersen. An introduction to binary decision diagrams. Lecture

notes, available online, IT University of Copenhagen, 1997.

[7] Larry Armijo. Minimization of functions having Lipschitz continuous first partial

derivatives. Pacific Journal of Mathematics, 16(1):1–3, 1966.

[8] Anthony C. Atkinson. A method for discriminating between models. Journal of

the Royal Statistical Society. Series B (Methodological), pages 323–353, 1970.

[9] Betsy Jane Becker and Meng-Jia Wu. The synthesis of regression slopes in

meta-analysis. Statistical Science, pages 414–429, 2007.

[10] Dimitris Bertsimas, Angela King, and Rahul Mazumder. Best subset selection

via a modern optimization lens. The Annals of Statistics, 44(2):813–852, 2016.

121

122 Bibliography

[11] Thomas Blumensath and Mike E. Davies. On the difference between Orthogonal

Matching Pursuit and Orthogonal Least Squares. Technical report, 2007.

[12] Beate Bollig and Ingo Wegener. Improving the variable ordering of OBDDs is

NP-complete. IEEE Transactions on Computers, 45(9):993–1002, 1996.

[13] Verónica Bolón-Canedo, Noelia Sánchez-Maro no, and Amparo Alonso-Betanzos.

Feature Selection for High-Dimensional Data. Springer Publishing Company, Incor-

porated, 1 edition, 2015.

[14] Verónica Bolón-Canedo, Noelia Sánchez-Maro no, and Amparo Alonso-Betanzos.

Recent advances and emerging challenges of feature selection in the context of

Big Data. Knowledge-Based Systems, 86:33–45, 2015.

[15] Verónica Bolón-Canedo, Konstantinos Sechidis, Noelia Sánchez-Marono, Am-

paro Alonso-Betanzos, and Gavin Brown. Exploring the consequences of dis-

tributed feature selection in DNA microarray data. In International Joint Conference

on Neural Networks, pages 1665–1672, 2017.

[16] Giorgos Borboudakis, Taxiarchis Stergiannakos, Maria Frysali, Emmanuel

Klontzas, Ioannis Tsamardinos, and George E Froudakis. Chemically intuited,

large-scale screening of MOFs by machine learning techniques. npj Computational

Materials, 3(1):40, 2017.

[17] Giorgos Borboudakis and Ioannis Tsamardinos. Bayesian network learning with

discrete case-control data. In UAI, pages 151–160, 2015.

[18] Giorgos Borboudakis and Ioannis Tsamardinos. Towards robust and versa-

tile causal discovery for business applications. In Proceedings of the 22nd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, pages

1435–1444. ACM, 2016.

[19] Joseph K. Bradley, Aapo Kyrola, Danny Bickson, and Carlos Guestrin. Parallel

coordinate descent for L1-regularized loss minimization. In Proceedings of the 28th

International Conference on Machine Learning, ICML 2011, Bellevue, Washington,

USA, June 28 - July 2, 2011, pages 321–328, 2011.

[20] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[21] Dale S. Bremmer. J-tests: To nest or not to nest, that is the question. In 79th

Annual Conference of the Western Economics Association, 2003.

[22] Gavin Brown, Adam Pocock, Ming-Jie Zhao, and Mikel Luján. Conditional

likelihood maximisation: A unifying framework for information theoretic feature

selection. Journal of Machine Learning Research, 13:27–66, January 2012.

Bibliography 123

[23] Randal E. Bryant. Graph-based algorithms for boolean function manipulation.

IEEE Transactions on computers, 100(8):677–691, 1986.

[24] Krisztian Buza. Feedback prediction for blogs. In Data analysis, machine learning

and knowledge discovery, pages 145–152. Springer, 2014.

[25] Oriol Canela-Xandri, Andy Law, Alan Gray, John A. Woolliams, and Albert

Tenesa. A new tool called DISSECT for analysing large genomic data sets using

a Big Data approach. Nature communications, 6, 2015.

[26] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector

machines. ACM transactions on intelligent systems and technology (TIST), 2(3):27,

2011.

[27] Christopher C. Chang, Carson C. Chow, Laurent C. A. M. Tellier, Shashaank

Vattikuti, Shaun M. Purcell, and James J. Lee. Second-generation PLINK: rising

to the challenge of larger and richer datasets. Gigascience, 4(1):7, 2015.

[28] M. Aslam Chaudhry and Syed M. Zubair. On a class of incomplete gamma functions

with applications. CRC press, 2001.

[29] Jiahua Chen and Zehua Chen. Extended Bayesian information criteria for model

selection with large model spaces. Biometrika, 95(3):759–771, 2008.

[30] Sheng Chen, Stephen A Billings, and Wan Luo. Orthogonal least squares meth-

ods and their application to non-linear system identification. International Journal

of control, 50(5):1873–1896, 1989.

[31] Ronald Christensen. Plane answers to complex questions: the theory of linear models.

Springer Science & Business Media, 2011.

[32] Francis S. Collins and Harold Varmus. A new initiative on precision medicine.

New England Journal of Medicine, 372(9):793–795, 2015.

[33] International HapMap Consortium. A haplotype map of the human genome.

Nature, 437(7063):1299–1320, 2005.

[34] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning,

20(3):273–297, 1995.

[35] Jan Daciuk. Comparison of construction algorithms for minimal, acyclic, deter-

ministic, finite-state automata from sets of strings. In International Conference on

Implementation and Application of Automata, pages 255–261. Springer, 2002.

124 Bibliography

[36] Jan Daciuk, Stoyan Mihov, Bruce W. Watson, and Richard E. Watson. Incremen-

tal construction of minimal acyclic finite-state automata. Computational linguistics,

26(1):3–16, 2000.

[37] Samuel A. Danziger, S. Joshua Swamidass, Jue Zeng, Lawrence R. Dearth, Qiang

Lu, Jonathan H. Chen, Jianlin Cheng, Vinh P. Hoang, Hiroto Saigo, Ray Luo,

et al. Functional census of mutation sequence spaces: the example of p53

cancer rescue mutants. IEEE/ACM Transactions on Computational Biology and

Bioinformatics (TCBB), 3(2):114–125, 2006.

[38] Russell Davidson and James G. MacKinnon. Several tests for model specification

in the presence of alternative hypotheses. Econometrica: Journal of the Econometric

Society, pages 781–793, 1981.

[39] Geoffrey M. Davis, Stephane G. Mallat, and Zhifeng Zhang. Adaptive time-

frequency decompositions. Optical engineering, 33(7):2183–2192, 1994.

[40] Anthony Christopher Davison and David Victor Hinkley. Bootstrap methods and

their application, volume 1. Cambridge university press, 1997.

[41] Thomas G. Dietterich, Ajay N. Jain, Richard H. Lathrop, and Tomas Lozano-

Perez. A comparison of dynamic reposing and tangent distance for drug activity

prediction. Advances in Neural Information Processing Systems, pages 216–216,

1994.

[42] Edward R. Dougherty and Marcel Brun. On the number of close-to-optimal

feature sets. Cancer informatics, 2:189–196, 2006.

[43] James Dougherty, Ron Kohavi, and Mehran Sahami. Supervised and unsuper-

vised discretization of continuous features. In Machine Learning Proceedings 1995,

pages 194–202. Elsevier, 1995.

[44] Bradley Efron, Trevor Hastie, Iain Johnstone, Robert Tibshirani, et al. Least

angle regression. The Annals of Statistics, 32(2):407–499, 2004.

[45] Bradley Efron and Robert J. Tibshirani. An introduction to the bootstrap. CRC

press, 1994.

[46] Robert F. Engle. Wald, likelihood ratio, and Lagrange multiplier tests in econo-

metrics. Handbook of econometrics, 2:775–826, 1984.

[47] Jianqing Fan, Yang Feng, Yichao Wu, et al. High-dimensional variable selection

for Cox’s proportional hazards model. In Borrowing Strength: Theory Power-

ing Applications–A Festschrift for Lawrence D. Brown, pages 70–86. Institute of

Mathematical Statistics, 2010.

Bibliography 125

[48] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen

Lin. LIBLINEAR: A library for large linear classification. Journal of machine

learning research, 9(Aug):1871–1874, 2008.

[49] Yingying Fan and Cheng Yong Tang. Tuning parameter selection in high di-

mensional penalized likelihood. Journal of the Royal Statistical Society: Series B

(Statistical Methodology), 75(3):531–552, 2013.

[50] Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, and Dinani Amorim.

Do we need hundreds of classifiers to solve real world classification problems.

Journal of Machine Learning Research, 15(1):3133–3181, 2014.

[51] Matthias Feurer and Frank Hutter. Hyperparameter optimization. In Frank

Hutter, Lars Kotthoff, and Joaquin Vanschoren, editors, AutoML: Methods, Sytems,

Challenges, chapter 1, pages 3–37. Springer, December 2018. To appear.

[52] Livio Finos, Chiara Brombin, and Luigi Salmaso. Adjusting stepwise p-values

in generalized linear models. Communications in Statistics-Theory and Methods,

39(10):1832–1846, 2010.

[53] R. A. Fisher. Statistical methods for research workers. Edinburgh Oliver & Boyd,

1932.

[54] Ronald Aylmer Fisher. The distribution of the partial correlation coefficient.

Metron, 3:329–332, 1924.

[55] Franc�ois Fleuret. Fast binary feature selection with conditional mutual informa-

tion. Journal of Machine Learning Research, 5(Nov):1531–1555, 2004.

[56] Peter L. Flom and David L. Cassell. Stopping stepwise: Why stepwise and

similar selection methods are bad, and what you should use. In NorthEast SAS

Users Group Inc 20th Annual Conference, 2007.

[57] Robert V. Foutz and R. C. Srivastava. The performance of the likelihood ratio

test when the model is incorrect. The Annals of Statistics, 5(6):1183–1194, 1977.

[58] Richard M. Golden. Discrepancy risk model selection test theory for comparing

possibly misspecified or nonnested models. Psychometrika, 68(2):229–249, 2003.

[59] Franz Graf, Hans-Peter Kriegel, Matthias Schubert, Sebastian Pölsterl, and

Alexander Cavallaro. 2D image registration in CT images using radial image

descriptors. In International Conference on Medical Image Computing and Computer-

Assisted Intervention, pages 607–614. Springer, 2011.

126 Bibliography

[60] Andreas Groll and Gerhard Tutz. Variable selection for generalized linear mixed

models by L1-penalized estimation. Statistics and Computing, 24(2):137–154,

2014.

[61] Max Grazier G’Sell, Stefan Wager, Alexandra Chouldechova, and Robert Tibshi-

rani. Sequential selection procedures and false discovery rate control. Journal

of the Royal Statistical Society: Series B (Statistical Methodology), 78(2):423–444,

2016.

[62] Isabelle Guyon, Amir Reza Saffari Azar Alamdari, Gideon Dror, and Joachim M.

Buhmann. Performance prediction challenge. In The 2006 IEEE International

Joint Conference on Neural Network Proceedings, pages 1649–1656. IEEE, 2006.

[63] Isabelle Guyon and André Elisseeff. An introduction to variable and feature

selection. Journal of machine learning research, 3(Mar):1157–1182, 2003.

[64] Isabelle Guyon, Steve Gunn, Asa Ben-Hur, and Gideon Dror. Result analysis

of the NIPS 2003 feature selection challenge. In Advances in neural information

processing systems, pages 545–552, 2004.

[65] Isabelle Guyon, Jiwen Li, Theodor Mader, Patrick A Pletscher, Georg Schneider,

and Markus Uhr. Feature selection with the CLOP package. Technical report,

2006.

[66] Mazin Abdulrasool Hameed. Comparative analysis of orthogonal matching pur-

suit and least angle regression. Master’s thesis, Michigan State University, Elec-

trical Engineering, 2012.

[67] Frank Harrell. Regression Modeling Strategies. Springer, corrected edition, January

2001.

[68] Trevor Hastie, Jonathan Taylor, Robert Tibshirani, Guenther Walther, et al. For-

ward stagewise regression and the monotone lasso. Electronic Journal of Statistics,

1:1–29, 2007.

[69] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical

learning: data mining, inference and prediction. Springer, 2 edition, 2009.

[70] Trevor Hastie, Robert Tibshirani, and Ryan J Tibshirani. Extended comparisons

of best subset selection, forward stepwise selection, and the lasso. arXiv preprint

arXiv:1707.08692, 2017.

[71] He He, Hal Daumé III, and Jason Eisner. Cost-sensitive dynamic feature selection.

In ICML Inferning Workshop, 2012.

Bibliography 127

[72] Larry V. Hedges and Jack L. Vevea. Fixed-and random-effects models in meta-

analysis. Psychological methods, 3(4):486, 1998.

[73] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Au-

tomata Theory, Languages, and Computation (3rd Edition). Addison-Wesley Long-

man Publishing Co., Inc., Boston, MA, USA, 2006.

[74] David W. Hosmer, Jr., Stanley Lemeshow, and Rodney X. Sturdivant. Introduction

to the Logistic Regression Model. John Wiley & Sons, Inc., 2013.

[75] Grace T Huang, Ioannis Tsamardinos, Vineet Raghu, Naftali Kaminski, and

Panayiotis V Benos. T-ReCS: stable selection of dynamically formed groups of

features with application to prediction of clinical outcomes. In Pacific Symposium

on Biocomputing Co-Chairs, pages 431–442. World Scientific, 2014.

[76] Jing-Shiang Hwang and Tsuey-Hwa Hu. A stepwise regression algorithm for

high-dimensional variable selection. Journal of Statistical Computation and Simula-

tion, 85(9):1793–1806, 2015.

[77] Stéphane Ivanoff, Franck Picard, and Vincent Rivoirard. Adaptive lasso and

group-lasso for functional Poisson regression. J. Mach. Learn. Res., 17(1):1903–

1948, January 2016.

[78] George H. John, Ron Kohavi, and Karl Pfleger. Irrelevant features and the subset

selection problem. In Machine learning: Proceedings of the Eleventh International

Conference, pages 121–129. Morgan Kaufmann, 1994.

[79] Markus Kalisch and Peter Bühlmann. Estimating high-dimensional directed

acyclic graphs with the PC-algorithm. Journal of Machine Learning Research,

8(Mar):613–636, 2007.

[80] Alexandros Kalousis, Julien Prados, and Melanie Hilario. Stability of feature

selection algorithms: a study on high-dimensional spaces. Knowledge and infor-

mation systems, 12(1):95–116, 2007.

[81] Karen-Inge Karstoft, Isaac R. Galatzer-Levy, Alexander Statnikov, Zhiguo Li,

and Arieh Y. Shalev. Bridging a translational gap: using machine learning to

improve the prediction of PTSD. BMC Psychiatry, 15(1):30, March 2015.

[82] Randy Kerber. Chimerge: Discretization of numeric attributes. In Proceedings

of the tenth national conference on Artificial intelligence, pages 123–128. Aaai Press,

1992.

128 Bibliography

[83] Yongdai Kim, Sunghoon Kwon, and Hosik Choi. Consistent model selection

criteria on high dimensions. Journal of Machine Learning Research, 13(Apr):1037–

1057, 2012.

[84] Jonas R. Klasen, Elke Barbez, Lukas Meier, Nicolai Meinshausen, Peter

Bühlmann, Maarten Koornneef, Wolfgang Busch, and Korbinian Schneeberger.

A multi-marker association method for genome-wide association studies with-

out the need for population structure correction. Nature communications, 7:13299,

2016.

[85] Ron Kohavi and George H. John. Wrappers for feature subset selection. Artificial

intelligence, 97(1-2):273–324, December 1997.

[86] Daphne Koller and Mehran Sahami. Toward optimal feature selection. In Pro-

ceedings of the Thirteenth International Conference on Machine Learning, pages 284–

292, 1996.

[87] Pradap Konda, Arun Kumar, Christopher Ré, and Vaishnavi Sashikanth. Fea-

ture selection in enterprise analytics: A demonstration using an R-based data

analytics system. Proceedings of the VLDB Endowment, 6(12):1306–1309, August

2013.

[88] Michael H. Kutner, Christopher J. Nachtsheim, John Neter, and William Li. Ap-

plied Linear Statistical Models. McGraw-Hill/Irwin, 5 edition, August 2004.

[89] Vincenzo Lagani, Giorgos Athineou, Alessio Farcomeni, Michail Tsagris, and

Ioannis Tsamardinos. Feature selection with the R package MXM: Discovering

statistically equivalent feature subsets. Journal of Statistical Software, 80(7), 2017.

[90] Vincenzo Lagani, George Kortas, and Ioannis Tsamardinos. Biomarker signa-

ture identification in ”omics” data with multi-class outcomes. Computational and

structural biotechnology journal, 6(7):1–7, 2013.

[91] Vincenzo Lagani and Ioannis Tsamardinos. Structure-based variable selection

for survival data. Bioinformatics, 26(15):1887–1894, 2010.

[92] Seunghak Lee, Jin Kyu Kim, Xun Zheng, Qirong Ho, Garth A. Gibson, and Eric P.

Xing. On Model Parallelization and Scheduling Strategies for Distributed Ma-

chine Learning. In Advances in Neural Information Processing Systems 27: Annual

Conference on Neural Information Processing Systems 2014, December 8-13 2014,

Montreal, Quebec, Canada, pages 2834–2842, 2014.

[93] Jan Lemeire. Learning causal models of multivariate systems and the value of it

for the performance modeling of computer programs, 2007.

Bibliography 129

[94] Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Robert P. Trevino, Jil-

iang Tang, and Huan Liu. Feature selection: A data perspective. ACM Computing

Surveys, 50(6):94:1–94:45, December 2017.

[95] Qingyang Li, Shuang Qiu, Shuiwang Ji, Paul M. Thompson, Jieping Ye, and

Jie Wang. Parallel lasso screening for Big Data optimization. In Proceedings of

the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, KDD ’16, pages 1705–1714, New York, NY, USA, 2016. ACM.

[96] Huawen Liu, Lei Liu, and Huijie Zhang. Ensemble gene selection by grouping

for microarray data classification. Journal of biomedical informatics, 43(1):81–87,

2010.

[97] Thomas M. Loughin. A systematic comparison of methods for combining p-

values from independent tests. Computational statistics & data analysis, 47(3):467–

485, 2004.

[98] Jinchi Lv and Jun S. Liu. Model selection principles in misspecified models.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76(1):141–

167, 2014.

[99] James G. MacKinnon. Model specification tests against non-nested alternatives.

Econometric Reviews, 2(1):85–110, 1983.

[100] Dimitris Margaritis. Toward provably correct feature selection in arbitrary do-

mains. In Advances in Neural Information Processing Systems, pages 1240–1248,

2009.

[101] Dimitris Margaritis and Sebastian Thrun. Bayesian network induction via local

neighborhoods. In S. A. Solla, T. K. Leen, and K. Müller, editors, Advances in

Neural Information Processing Systems 12, pages 505–511. MIT Press, 2000.

[102] Lukas Meier, Sara Van De Geer, and Peter Bühlmann. The group Lasso for

logistic regression. Journal of the Royal Statistical Society, Series B, 2008.

[103] Nicolai Meinshausen and Peter Bühlmann. High-dimensional graphs and vari-

able selection with the lasso. The Annals of Statistics, pages 1436–1462, 2006.

[104] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkatara-

man, Davies Liu, Jeremy Freeman, D. B. Tsai, Manish Amde, Sean Owen, Doris

Xin, Reynold Xin, Michael J. Franklin, Reza Zadeh, Matei Zaharia, and Ameet

Talwalkar. MLlib: Machine Learning in Apache Spark. Journal of Machine Learn-

ing Research, 17(1):1235–1241, January 2016.

130 Bibliography

[105] Stefan Michiels, Serge Koscielny, and Catherine Hill. Prediction of cancer out-

come with microarrays: a multiple random validation strategy. The Lancet,

365(9458):488–492, 2005.

[106] Alan Miller. Subset selection in regression. CRC Press, 2002.

[107] Shin-ichi Minato. Zero-suppressed BDDs for set manipulation in combinatorial

problems. In 30th Conference on Design Automation, pages 272–277. IEEE, 1993.

[108] Shin-ichi Minato. Zero-suppressed BDDs and their applications. International

Journal on Software Tools for Technology Transfer, 3(2):156–170, 2001.

[109] Thomas P. Minka. A comparison of numerical optimizers for logistic regression.

Unpublished draft, 2003.

[110] Ryuhei Miyashiro and Yuichi Takano. Subset selection by Mallows’ Cp: A mixed

integer programming approach. Expert Systems with Applications, 42(1):325–331,

2015.

[111] Andrew Y. Ng. Feature selection, L1 vs. L2 regularization, and rotational invari-

ance. In Proceedings of the twenty-first international conference on Machine learning,

page 78. ACM, 2004.

[112] Sarah Nogueira and Gavin Brown. Measuring the stability of feature selec-

tion. In Joint European Conference on Machine Learning and Knowledge Discovery

in Databases, pages 442–457. Springer, 2016.

[113] Yagyensh Chandra Pati, Ramin Rezaiifar, and Perinkulam Sambamurthy Krish-

naprasad. Orthogonal matching pursuit: Recursive function approximation with

applications to wavelet decomposition. In Conference Record of The Twenty-Seventh

Asilomar Conference on Signals, Systems and Computers, pages 40–44. IEEE, 1993.

[114] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988.

[115] Judea Pearl. Causality, Models, Reasoning, and Inference. Cambridge University

Press, Cambridge, U.K., 2000.

[116] Peter Peduzzi, John Concato, Elizabeth Kemper, Theodore R. Holford, and Al-

van R. Feinstein. A simulation study of the number of events per variable

in logistic regression analysis. Journal of clinical epidemiology, 49(12):1373–1379,

1996.

Bibliography 131

[117] Jose M. Pe na, Roland Nilsson, Johan Björkegren, and Jesper Tegnér. Towards

scalable and data efficient learning of Markov boundaries. International Journal

of Approximate Reasoning, 45(2):211–232, 2007.

[118] Hanchuan Peng, Fuhui Long, and Chris Ding. Feature selection based on mutual

information criteria of max-dependency, max-relevance, and min-redundancy.

IEEE Transactions on pattern analysis and machine intelligence, 27(8):1226–1238,

2005.

[119] M. Hashem Pesaran and Melvyn Weeks. Non-nested Hypothesis Testing: An

Overview. Cambridge Working Papers in Economics 9918, September 1999.

[120] Junyang Qian, Ttrevor Hastie, Jerome Friedman, Rob Tibshirani, and Noah Si-

mon. Glmnet for Matlab, 2013.

[121] S. Ramı́rez-Gallego, H. Mouri no-Taĺın, D. Mart́ınez-Rego, V. Bolón-Canedo, J. M.

Beńıtez, A. Alonso-Betanzos, and F. Herrera. An information theory-based

feature selection framework for Big Data under Apache Spark. IEEE Transactions

on Systems, Man, and Cybernetics: Systems, PP(99):1–13, 2017.

[122] Michael A. Redmond and Timothy Highley. Empirical analysis of case-editing

approaches for numeric prediction. In Innovations in Computing Sciences and

Software Engineering, pages 79–84. Springer, 2010.

[123] Dominique Revuz. Minimisation of acyclic deterministic automata in linear time.

Theoretical Computer Science, 92(1):181–189, 1992.

[124] Michael Rice and Sanjay Kulhari. A survey of static variable ordering heuristics

for efficient BDD / MDD construction. Technical report, 2008.

[125] Thomas Richardson. Markov properties for acyclic directed mixed graphs. Scan-

dinavian Journal of Statistics, 30(1):145–157, 2003.

[126] Thomas Richardson and Peter Spirtes. Ancestral graph Markov models. Annals

of Statistics, pages 962–1030, 2002.

[127] Paul Roepman, Patrick Kemmeren, Lodewijk F. A. Wessels, Piet J. Slootweg,

and Frank C. P. Holstege. Multiple robust signatures for detecting lymph node

metastasis in head and neck cancer. Cancer Research, 66(4):2361–2366, 2006.

[128] Anna Roumpelaki, Giorgos Borboudakis, Sofia Triantafillou, and Ioannis

Tsamardinos. Marginal causal consistency in constraint-based causal learning.

In CFA@ UAI, pages 39–47, 2016.

132 Bibliography

[129] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.

Pearson Education, 2 edition, 2003.

[130] Toshiki Sato, Yuichi Takano, Ryuhei Miyashiro, and Akiko Yoshise. Feature sub-

set selection for logistic regression via mixed integer optimization. Computational

Optimization and Applications, 64(3):865–880, 2016.

[131] Jürg Schelldorfer, Peter Bühlmann, and Sara Van De Geer. Estimation for high-

dimensional linear mixed-effects models using L1-penalization. Scandinavian Jour-

nal of Statistics, 38(2):197–214, 2011.

[132] Gideon Schwarz et al. Estimating the dimension of a model. The annals of

statistics, 6(2):461–464, 1978.

[133] Stephen T. Sherry, M.-H. Ward, M. Kholodov, J. Baker, Lon Phan, Elizabeth M.

Smigielski, and Karl Sirotkin. dbSNP: the NCBI database of genetic variation.

Nucleic acids research, 29(1):308–311, 2001.

[134] Xiaoxia Shi. A nondegenerate vuong test. Quantitative Economics, 6(1):85–121,

2015.

[135] Sameer Singh, Jeremy Kubica, Scott Larsen, and Daria Sorokina. Parallel large

scale feature selection for logistic regression. In Proceedings of the 2009 SIAM

International Conference on Data Mining, pages 1172–1183. SIAM, 2009.

[136] Peter Spirtes, Clark N. Glymour, and Richard Scheines. Causation, prediction, and

search. MIT press, 2 edition, 2000.

[137] Alexander Statnikov and Constantin F. Aliferis. Analysis and computational

dissection of molecular signature multiplicity. PLoS computational biology, 6(5):1–

9, 2010.

[138] Alexander Statnikov, Nikita I. Lytkin, Jan Lemeire, and Constantin F. Aliferis.

Algorithms for discovery of multiple Markov boundaries. Journal of Machine

Learning Research, 14(Feb):499–566, 2013.

[139] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of

the Royal Statistical Society. Series B (Methodological), pages 267–288, 1996.

[140] Ryan J. Tibshirani, Jonathan Taylor, Richard Lockhart, and Robert Tibshirani.

Exact post-selection inference for sequential regression procedures. Journal of the

American Statistical Association, 111(514):600–620, 2016.

Bibliography 133

[141] Joaqúın Torres-Sospedra, Raúl Montoliu, Adolfo Mart́ınez-Usó, Joan P Avariento,

Tomás J Arnau, Mauri Benedito-Bordonau, and Joaqúın Huerta. Ujiindoorloc: A

new multi-building and multi-floor database for wlan fingerprint-based indoor

localization problems. In International Conference on Indoor Positioning and Indoor

Navigation (IPIN), pages 261–270. IEEE, 2014.

[142] Michail Tsagris, Giorgos Borboudakis, Vincenzo Lagani, and Ioannis Tsamardi-

nos. Constraint-based causal discovery with mixed data. International Journal of

Data Science and Analytics, pages 1–12, 2018.

[143] Michail Tsagris, Vincenzo Lagani, and Ioannis Tsamardinos. Feature selection

for high-dimensional temporal data. BMC bioinformatics, 19(1):17, 2018.

[144] I. Tsamardinos, V. Lagani, and D. Pappas. Discovering multiple, equivalent

biomarker signatures. In 7th Conference of the Hellenic Society for Computational

Biology and Bioinformatics (HSCBB12), 2012.

[145] Ioannis Tsamardinos and Constantin F. Aliferis. Towards principled feature

selection: relevancy, filters and wrappers. In Proceedings of the Ninth International

Workshop on Artificial Intelligence and Statistics, 2003.

[146] Ioannis Tsamardinos, Constantin F. Aliferis, and Alexander Statnikov. Time

and sample efficient discovery of Markov blankets and direct causal relations.

In Proceedings of the Ninth ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 673–678. ACM, 2003.

[147] Ioannis Tsamardinos, Constantin F. Aliferis, and Alexander R. Statnikov. Algo-

rithms for large scale Markov blanket discovery. In FLAIRS conference, volume 2,

2003.

[148] Ioannis Tsamardinos, Giorgos Borboudakis, Pavlos Katsogridakis, Polyvios

Pratikakis, and Vassilis Christophides. A greedy feature selection algorithm

for Big Data of high dimensionality. Machine Learning, Aug 2018.

[149] Ioannis Tsamardinos, Laura E. Brown, and Constantin F. Aliferis. The max-min

hill-climbing Bayesian network structure learning algorithm. Machine learning,

65(1):31–78, 2006.

[150] Ioannis Tsamardinos, Elissavet Greasidou, and Giorgos Borboudakis. Bootstrap-

ping the out-of-sample predictions for efficient and accurate cross-validation.

Machine Learning, May 2018.

134 Bibliography

[151] Ioannis Tsamardinos and Asimakis P. Mariglis. Multi-source causal analysis:

Learning Bayesian networks from multiple datasets. In IFIP International Confer-

ence on Artificial Intelligence Applications and Innovations, pages 479–490. Springer,

2009.

[152] T. Verma and Pearl. Causal Networks: Semantics and Expressiveness. In Proceed-

ings, 4th Workshop on Uncertainty in Artificial Intelligence, pages 352–359, August

1988.

[153] Eric Vittinghoff and Charles E. McCulloch. Relaxing the rule of ten events

per variable in logistic and Cox regression. American journal of epidemiology,

165(6):710–718, 2007.

[154] Quang H. Vuong. Likelihood ratio tests for model selection and non-nested

hypotheses. Econometrica: Journal of the Econometric Society, pages 307–333,

1989.

[155] Xiangyu Wang, David B. Dunson, and Chenlei Leng. DECOrrelated feature space

partitioning for distributed sparse regression. In Advances in Neural Information

Processing Systems, pages 802–810, 2016.

[156] Sanford Weisberg. Applied linear regression, volume 528. John Wiley & Sons,

2005.

[157] William J. Welch. Algorithmic complexity: three NP-hard problems in compu-

tational statistics. Journal of Statistical Computation and Simulation, 15(1):17–25,

1982.

[158] Halbert White. Maximum likelihood estimation of misspecified models. Econo-

metrica, 50(1):1–25, 1982.

[159] Samuel S. Wilks. The large-sample distribution of the likelihood ratio for testing

composite hypotheses. The Annals of Mathematical Statistics, 9(1):60–62, March

1938.

[160] Eric P. Xing, Qirong Ho, Pengtao Xie, and Dai Wei. Strategies and principles of

distributed machine learning on Big Data. Engineering, 2(2):179–195, 2016.

[161] Howard Hua Yang and John Moody. Data visualization and feature selection:

New algorithms for nongaussian data. In Advances in Neural Information Process-

ing Systems, pages 687–693, 2000.

[162] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and

Ion Stoica. Spark: Cluster computing with working sets. In HotCloud, 2010.

Bibliography 135

[163] Yiteng Zhai, Yew-Soon Ong, and Ivor W. Tsang. The Emerging ”Big Dimension-

ality”. IEEE Comp. Int. Mag., 9(3):14–26, 2014.

[164] Kun Zhang, Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Kernel-

based conditional independence test and application in causal discovery. In

Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence,

pages 804–813, 2011.

[165] Yongli Zhang and Xiaotong Shen. Model selection procedure for high-

dimensional data. Statistical Analysis and Data Mining: The ASA Data Science

Journal, 3(5):350–358, 2010.

[166] Zheng Zhao, Ruiwen Zhang, James Cox, David Duling, and Warren Sarle. Mas-

sively parallel feature selection: an approach based on variance preservation.

Machine Learning, 92(1):195–220, 2013.

[167] Peng Zhimin, Yan Ming, and Yin Wotao. Parallel and distributed sparse optimiza-

tion. In Proceedings of the Asilomar Conference on Signals, Systems and Computers,

2013.

[168] Yingbo Zhou, Utkarsh Porwal, Ce Zhang, Hung Q. Ngo, XuanLong Nguyen,

Christopher Ré, and Venu Govindaraju. Parallel feature selection inspired by

group testing. In Advances in Neural Information Processing Systems, pages 3554–

3562, 2014.

[169] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic

net. Journal of the Royal Statistical Society, Series B, 67:301–320, 2005.

136

Appendix A

Proofs

For all of the proofs we assume that the algorithms have access to an independence
oracle that can perfectly determine whether a given conditional dependence or inde-

pendence holds. Furthermore, in all proofs we will use the terms d-connected/m-

connected (d-separated/m-separated) and dependent (independent) interchangeably;

this is possible due to the faithfulness assumption.

Lemma 2. Let A, T be variables and B, C sets of variables. Then

T⊥A | B ∪ C ∧ T⊥B | C⇒ T⊥A | C holds for any such variables.

Proof.

T⊥A | B ∪ C ∧ T⊥B | C⇒ (Contraction)

T⊥A ∪ B | C⇒ (Decomposition)

T⊥A | C ∧ T⊥B | C

�

The following lemma will be useful for proving some of the theorems.

Lemma 3. Let S be a set of variables selected for some target T and R = F \ S. Assume that

∀Fr ∈ R T⊥Fr | S holds. Then, if ∃Fs ∈ S such that T⊥Fs | S \ Fs holds, ∀Fr ∈ R T⊥Fr | S \ Fs

also holds.

Proof. We are given that ∀Fr ∈ R T⊥Fr | S holds. By applying Lemma 2 to each variable in

Fr ∈ R with A = Fr, B = {Fs} and C = S \Fs, we get that T⊥Fr | Fs ∪ (S \Fs)∧T⊥Fs | S \Fs ⇒
T⊥Fr | S \ Fs holds for any such Fr, which concludes the proof. �

To put it simple, Lemma 3 states that if we remove any variable Fs from a set of

selected variables S by conditioning on S \ Fs, no variable that is not in S becomes

conditionally dependent with T given S \ Fs. In practice this means that removing

variables using backward selection from a set of variables selected by forward selection

137

138 Appendix A. Proofs

will not create any additional conditional dependencies, meaning that we do not have

to reconsider them again.

A.1 Proof of Corollary 1

Proof. To show that S is minimal, we have to show the following

i ∀Fs ∈ S T6⊥Fs | S \ Fs (No variable can be removed)

ii ∀Fr ∈ FD \ S,T⊥Fr | S (No variable can be added)

Proof of (i): This holds trivially, as backward selection removes any variable Fs ∈ S if

T⊥Fs | S \ Fs holds.

Proof of (ii): We know that after the termination of forward selection, no variable can be

added, that is, ∀Fr ∈ RT⊥Fr | S holds. Given that, Lemma 3 can be repeatedly applied after

each variable removal by backward selection, and thus no variable in R can be added to

S. �

A.2 Proof of Corollary 2

Proof. As is the case with FBS, the forward selection phase of FBED∞ stops if no more

variables can be included. Using this fact, the proof is identical to the one of Theorem

1. �

A.3 Proof of Theorem 1

Proof. In the first run of FBED1, all variables that are adjacent to T (that is, its parents

and children) will be selected, as none of them can be d-separated from T by any set of

variables. In the next run, all variables connected through a collider path of length 2 (that

is, the spouses of T) will become d-connected with T, since the algorithm conditions on

all selected variables (including its children), and thus will be selected. The resulting set of

variables includes the Markov blanket of T, but may also include additional variables. Next

we show that all additional variables will be removed by the backward selection phase. Let

MB(T) be the Markov blanket of T and Sind = S\MB(T) be all selected variables not in

the Markov blanket of T. By definition, T⊥X |MB(T) holds for any set of variables X not

in MB(T), and thus also for variables Sind. By applying the weak union graphoid axiom,

one can infer that ∀Si ∈ Sind,T⊥Si | MB(T) ∪ Sind \ Si holds, and thus some variable Sj
will be removed in the first iteration. Using the same reasoning and the definition of a

Markov blanket, it can be shown that all variables in Sind will be removed from MB(T) at

A.4. Proof of Theorem 2 139

some iteration. To conclude, it suffices to use the fact that variables in MB(T) will not be

removed by the backward selection, as they are not conditionally independent of T given

the remaining variables in MB(T). �

A.4 Proof of Theorem 2

Proof. In the first run of FBED∞, all variables that are adjacent to T (that is, its parents,

children and variables connected with T by a bi-directed edge) will be selected, as none

of them can be m-separated from T by any set of variables. After each run additional

variables may become admissible for selection. Specifically, after k runs all variables that

are connected with T by a collider path of length k will become m-connected with T, and

thus will be selected; we prove this next. Assume that after k runs all variables connected

with T by a collider path of length at most k − 1 have been selected. By conditioning on all

selected variables, all variables that are into some selected variable connected with T by

a collider path will become m-connected with T. This is true because conditioning on a

variable Y in a collider 〈X,Y,Z〉m-connects X and Z. By applying this on each variable on

some collider path, it is easy to see that its end-points become m-connected. Finally, after

applying the backward selection phase, all variables that are not in the Markov blanket of

T will be removed; the proof is identical to the one used in the proof of Theorem 1 and

thus will be omitted. �

A.5 Proof of Theorem 3

TMFBS using A will identify all and only the solutions equivalent with the reference solution

in any dataset D, if (a) A satisfies Assumption 10 and, (b) it has access to an oracle for

deciding equivalence.

Proof. Let S ⊆ F be an arbitrary solution equivalent to the reference solution. We will

show inductively that any such solution can be obtained by running TMFBS.

Let Sj be the current solution after j steps, and let Cj be the corresponding candidate

variables returned by ORDERVARIABLES given Sj. Assume that Sj ⊆ S. We will show that, if

progress can be made (i.e., if Sj is not a solution), then there is a neighbor state such that

Sj+1 ⊆ S.

If Sj equals S, then Cj is empty (condition (a) of admissibility of ORDERVARIABLES), and

the algorithm would terminate and return the solution. We will prove the Sj ⊂ S case by

contradiction. Assume that Cj does not contain any variable of S. Because of that, Cj could

be excluded without altering the solution, which is equivalent to executing the algorithm

on DCj
by Lemma 9. After j steps this would lead to a state where Cj is empty, and the

algorithm would terminate. However, as Sj is a subset of S it can’t be a solution, given that

140 Appendix A. Proofs

S is a solution, otherwise S wouldn’t be minimal. This would violate Assumption 10 for

DCj
which contains S, leading to a contradiction. Therefore Cj must contain some variable

from S \ Sj, and consequently there is a neighbor state such that, after j + 1 steps, Sj+1 ⊆ S
holds.

Finally, because TMFBS has access to an oracle for deciding statistical equivalence,

any false positive solutions identified during the search will be discarded, retaining only

equivalent solutions. �

A.6 Proof of Theorem 4

Proof. Without loss of generality, we only prove the correctness of Operation 1. The cor-

rectness of Operation 2 can be shown following the same reasoning.

To prove correctness, it suffices to show that all paths into any node in P and out of any

node Ni contain the same set of variables. Let Pj be some parent of Ni. Initially, the set of

variables on the path through Pj and Ni are var[Pj] ∪ var[Ni]. After performing the forward

merging operation, the set of represented variables is not affected, as var[Pj] ∪ var[N′] ∪
(var[Ni] \ var[N′]) = var[Pj] ∪ var[Ni]. Since the set of incoming edges of each Pj as well

as the set outgoing edges of each Ni do not change, the set of represented solutions of the

initial DAG is not altered. �

Appendix B

Implementation Details

B.1 Bootstrap Test For Comparing Algorithms

We used bootstrapping to compute the probability that algorithm Ai is better/worse or

equal than all others in terms of some measure of interest f (for example, AUC), that

is P(∧j,if (Ai) ≥ f (Aj)). The procedure is described next. Let fi,k denote the measure

of interest of algorithm i on test set k. We resample with replacement B = 100000

times the test sets and compute f , denoted as fi,k,b for the b-th sample of algorithm i

and test set k. Then, fi,k,b are averaged over test sets, obtaining fi,b. The probability

P(∧j,if (Ai) ≥ f (Aj)) is then computed as 1/B
∑

b I(fi,b ≥ maxj fj,b), where I is the indicator

function.

B.2 Practical Considerations and Implementation Details for PFBP

In this section, we discuss several important details for an efficient and accurate im-

plementation of PFBP. The main focus is on PFBP using conditional independence

tests based on binary logistic regression, which is the test used in the experiments,

although most details regard the general case or can be adapted to other conditional

independence tests. We note that, everything described is not specific to PFBP, but can

also be used by FBEDK and other feature selection algorithms.

B.2.1 Accurate Combination of Local p-values Using Fisher’s method

In order to apply Fisher’s combined probability test, the data distributions of each data

block should be the same for the test to be valid. There should be no systematic bias on

the data or the combining process may exacerbate this bias (see [151]). Such bias

may occur if blocks contain data from the same departments, stores, or branches, or

in consecutive time moments and there is time-drift on the data distribution. This

problem is easily avoided if before the analysis the partitioning of samples to blocks is

done randomly, as done by PFBP.

141

142 Appendix B. Implementation Details

Another important detail to observe in practice, is to directly compute the logarithm

of the p-values for each conditional independence test instead of first computing the p-value

and then taking the logarithm. As p-values tend to get smaller with larger sample sizes

(in case the null hypothesis does not hold), they quickly reach the machine epsilon, and

will be rounded to zero. If this happens, then sorting and selecting features according

to p-values breaks down and PFBP will select an arbitrary feature. This behavior is

further magnified in case of combined p-values, as a single zero local p-value leads

to a zero combined p-value no matter the values of the remaining p-values. The R

language provides the option to directly compute the logarithm of the p-value (using

the option log.p = T). Next, we give pointers to our implementation, since there was no

other implementation available for Spark. For the χ2 distribution, the p-value can be

computed as Γ(k/2,x/2)
Γ(k/2)

, where x is the test statistic, k the degrees of freedom, Γ(·, ·) the
incomplete gamma function and Γ(·) the gamma function. Formulas for computing

the incomplete gamma function can be found in [28]. For completeness, we provide

them next. Equation 2.27 in [28] for k/ 2 = n + 1/ 2,n = 0, 1,2, . . . is

Γ(n +
1
2

, x) = Γ(n +
1
2
){erfc(

√
x) + e−x

n−1
∑

j=0

xj+
1
2

Γ(j + 3
2)
}

where erfc is is the Gauss error function, while Corollary 2.1 in [28] is for positive

integer values of k/ 2 = n,n = 0, 1,2, . . .

Γ(n + 1, x) = nΓ(n, x) + xne−x

To compute the logarithm of the p-value, one has to take compute the logarithm of the

above formulas. As the formulas contain sums, one has to be careful when computing

the logarithm. What is most important is to avoid computing exponents and values for

Γ directly, as they may quickly lead to numerical overflows. Instead, one can compute

them more accurately by working with logarithms, and then taking the exponent. For

instance, xj+
1
2

Γ(j+ 3
2)

can be computed more accurately as follows:

xj+
1
2

Γ(j + 3
2)

= e
log x

j+ 1
2

Γ(j+ 3
2) = elog x

j+ 1
2 −logΓ(j+ 3

2) = ej+
1
2+log x−logΓ(j+ 3

2)

A function for accurately computing the logarithm of the Γ function exist in most

math libraries and languages. Furthermore, another important observation is that low

values are usually outweighed by very large ones (which may be several tens of orders

of magnitude larger), and thus will not be important in the final computation. Thus,

the logarithm of a sum can be computed as log(a+b) ∼ log(a) if a >> b. Using the above

B.2. Practical Considerations and Implementation Details for PFBP 143

observations, the logarithm of the p-value can be computed with very high accuracy

(even 10−1000000).

B.2.2 Implementation of the Conditional Independence Test using Logistic Re-

gression for Binary Targets

The conditional independence test is the basic building block of PFBP, and thus using

a fast and robust implementation is essential. Next, we briefly review optimization

algorithms used for maximum likelihood estimation, mainly focusing on binary logistic

regression, and in the context of feature selection using likelihood-ratio tests.

A comprehensive introduction and comparison of algorithms for fitting (i.e., finding

the β that maximizes the likelihood) binary logistic regression models is provided

in [109]. Three important classes of optimization algorithms are Newton’s method,

conjugate gradient descent and quasi-Newton methods. Out of those, Newton’s method

is the most accurate and typically converges to the optimal solution in a few tens of

iterations. The main drawback is that each such iteration is slow, requiring O(n · d2)
computations, where n is the sample size and d the number of features. Conjugate

gradient descent and quasi-Newton methods on the other hand require O(n · d) and

O(n · d + d2) time per iteration, but may take much longer to converge. Unfortunately,

there are cases were those methods fail to converge to an optimal solution even after

hundreds of iterations. This not only affects the accuracy of feature selection, but

also leads to unpredictable running times. Most statistical packages include one or

multiple implementations of logistic regression. Such implementations typically use

algorithms that can handle thousands of predictors, with quasi-Newton methods being

a popular choice. For feature selection however, one is typically interested to select a

few tens or hundreds of variables. In anecdotal experiments, we found that for this

case Newton’s method is usually faster and more accurate, especially with fewer than

100-200 variables. Because of that, and because of the issues mentioned above, we

used a fine-tuned, custom implementation of Newton’s method.

There are some additional, important details. First of all, there are cases where

the Hessian is not invertible 1. If this the case, we switch to conjugate gradient

descent using the fixed Hessian as a search direction for that iteration, as described

in [109]. Finally, as a last resort, in case the fixed Hessian is not invertible we switch

to simple gradient descent. Next, for all optimization methods there are cases in which

the computed step-size has to be adjusted to avoid divergence, whether it is due to

violations of assumptions or numerical issues. One way to do this is to use inexact

1One case where this happens is if the covariance matrix of the input data is singular, or close to singular.
Note that, due to the nature of the feature selection method which considers one variable at a time, this can
happen only if the newly added variable is (almost) collinear with some of the previously selected variables. If
this is the case, the variable would not be selected anyway.

144 Appendix B. Implementation Details

line-search methods, such as backtracking-Armijo line search [7], which was used in

our implementation.

B.2.3 Score Tests for the Univariate Case

In the first step of forward selection where no variable has been selected, one can use a

score test (also known as Lagrange multiplier test) instead of a likelihood-ratio test to

quickly compute the p-value without having to actually fit logistic regression models.

The statistic of the Score test equals [74]

Statistic ≡
∑n

j=1Xj(Tj − T)
√

T(1 − T)
∑n

j=1(Xj − X)2

where n is the number of samples, T is the binary outcome variable (using a 0/1

encoding), and X is the variable tested for independence. Note that, such tests can

also be derived for models other than binary logistic regression, but it is out of the

scope of the thesis. The score test is asymptotically equivalent to the likelihood ratio

test, and in anecdotal experiments we found that a few hundred samples are sufficient

to get basically identical results, justifying its use in Big Data settings. Using this in

place of the likelihood ratio test reduces the time of the univariate step significantly

and is important for an efficient implementation, as the first step is usually the most

computationally demanding one in the PFBP algorithm, as a large portion of the

variables will be dropped by the Early Dropping heuristic.

Appendix C

Dataset Generation and Preparation

C.1 Simulating Data from Bayesian Networks

To generate data with complex correlation structures, we chose to generate data from

Bayesian networks. This is done in three steps: (a) generate a Bayesian network

structure G with N nodes (variables) and M edges, (b) sample the parameters of G,
and (c) sample instances from G. We will next describe the procedures used for each

step.

C.1.1 Generating the Bayesian network structure

First, we need to specify the number of nodes N and the connectivity C between those

nodes, which implicitly corresponds to some number of edges M. The connectivity pa-

rameter C corresponds to the (average) degree of each variable. Using the connectivity

instead of setting the number of edges allows one to easily control the complexity of

the network, as C directly corresponds to the average number of parents and children

of each node. We proceed by showing how the edges were sampled. Let F1, . . . ,FN

be all nodes of G, listed in topological order. To sample the edges of the network we

iterate over all pairs of variables Fi and Fj (i ¡ j), and add an edge from Fi to Fj with

probability C/ (N−1), ensuring acyclicity of the resulting graph. It can be easily shown

that this will result in a network with an average degree of C.

C.1.2 Generating the Bayesian network parameters

The first step is to pick the variable that corresponds to the outcome variable T. We

chose to use the node at position ⌈N/ 2⌉, as this node has the same number of parents

and children on average. For our experiments, we chose T to be of binary type and

all remaining variables to be of continuous type, but in principle everything stated can

be easily adapted to other variable types. In Bayesian networks, the each variable F is

145

146 Appendix C. Dataset Generation and Preparation

a function of its parents Pa(F). The functional form for continuous variables Fi is

Fi = β0 +
∑

Fj∈Pa(Fi)

βjFj + εi

where β0 is the intercept, βj is the coefficient of the j-th parent of Fi and εi is its error

term. In our case, we set the intercept to 0, as it does not affect the correlation structure.

The coefficients βj are sampled uniformly at random from [−1,−0.1]∪ [0.1, 1] to avoid

coefficients which are close to 0. The error term εi follows a normal distribution with

0 mean and σ2
i variance, which was set to the default value of 1 in our experiments,

unless stated otherwise. Note that all variables are normally distributed as they are

sums of normally distributed variables. For each variable Fi the mean equals zero

and the variance equals σ2
i +
∑

Fj∈Pa(Fi) β2
j
. The fact that the variance increases may

lead to numerical instabilities in practice, especially when generating large networks.

Because of that, we standardize each variable to have unit variance by dividing it with

its standard deviation, which is the square root of the variance as described above. For

the target T, its log-odds ratio is again a linear function of its parents, defined as

log(
P(T = 1)

1 − P(T = 1)
) = β0 +

∑

Fj∈Pa(T)
βjFj + εT

As before, the log-odds ratio is standardized to have unit variance.

The value of T is set to 1 whenever the log-odds ratio is larger than some threshold

t, and to 0 otherwise. Setting t to 0 results in a 50/50 class distribution of T. Other

class distributions p0/ p1 can be obtained by simply setting t to N−1
0,1

(1 − p0), where N−1
0,1

is the standard normal inverse cumulative distribution function. As a final note, the

standardization method used above only guarantees that variables that come before

T in the topological ordering are standard normal variables. As T is not normally

distributed (nor does it have unit variance), all variables that are direct or indirect

functions of T are not exactly normally distributed. However, as this neither alters the

correctness of the data generation method, nor leads to any other issues, we leave it

as is.

C.1.3 Sampling data from the generated Bayesian network

To generate a sample, one has to traverse the network in topological order and to

compute the value of each variable separately, using the formulas described previously.

By construction the network is already in topological order, which is simply given by

the index of each variable. To compute the value of a variable one has to compute the

sum of its parents (if it has any parents), and to add the error term, which is drawn

C.2. SNP Data Generation 147

from a normal distribution.

C.2 SNP Data Generation

To generate the SNP dataset we followed the procedure described in [25]. We used

the HAPGEN 2 software [27] with the Hapmap 2 (release 22) CEU population [33] to

simulate 500000 individuals (samples). This population contains 2543887 SNPs, but

only 592555 were kept, by filtering out the ones not available in the Illumina Human

OmniExpress-12 v1.1 BeadChip 1. The final dataset contains 500000 samples and

592555 SNPs. Each variable takes values in {0, 1,2}, which correspond to the number

of reference alleles. Thus, the dataset is dense, and requires approximately 2.16 TB

memory (stored as double precision floats). Naturally, fewer bytes can be used to store

SNP data as each variable only takes 3 values, but this would require a specialized

implementation.

C.2.1 Phenotype Simulation

Let sij be the i-th value of the j-th SNP sj, and pj be the reference allele frequency of

SNP j, that is, pj is the average value of sij divided by 2. The standardized value of sij,

zij is defined as

zij = (sij − μj)/ σj

where μj = 2pj and σj =
√

2pj(1 − pj).
The phenotype (outcome) y follows an additive genetic model

yi = gi + ei =
M
∑

j=1

zijuj + ei

where yi is the i-th value of y, gi is the genetic effect, ei is the noise term, M is the

number of variables influencing y, and uj is the effect (coefficient) of zj. The coefficients

zj were sampled from a normal distribution with zero mean and unit variance. The

error terms ei follow a normal distribution with zero mean and variance σ2
i (1 − h2)/ h2,

where σ2
i is the variance of gi and h2 corresponds to the trait heritability. Naturally,

the larger h2, the more y depends on the SNPs. In our case, we chose M = 100 and set

h2 = 0.7, one of the values used in [25]. Finally, to obtain a binary outcome, we set

the value of yi to 1 if it is positive, and to 0 otherwise, resulting in an approximately

balanced outcome.

1https://support.illumina.com/array/array_kits/humanomniexpress-12-beadchip-kit.html

148 Appendix C. Dataset Generation and Preparation

Table C.1: Binary classification and regression datasets used in the experimental evalua-

tion. n is the number of samples, p the number of variables, type is the type of variables

Dataset n p Type Outcome Domain Source

Ada 4562 46 Real Binary Census Data
WCCI 2006 Challenge

[62]

Musk (v2) 6598 166 Real Binary Musk Activity Prediction
UCI ML Repository

[41]

Sylva 14394 216 Mixed Binary Forest Cover Types
WCCI 2006 Challenge

[62]

Madelon 2600 500 Integer Binary Artificial
NIPS 2003 Challenge

[64]

Gina 3568 970 Real Binary Handwritten Digit Recognition
WCCI 2006 Challenge

[62]

Communities & Crime Violent 1994 102 Real Real Crime Prediction
UCI ML Repository

[122]

Communities & Crime Non-violent 2118 102 Real Real Crime Prediction
UCI ML Repository

[122]

BlogData 60021 276 Mixed Real #Comments on Blog Posts
UCI ML Repository

[24]

CT Slice 53500 379 Real Real CT Slice Localization
UCI ML Repository

[59]

UJI Indoor Loc Latitude 21048 520 Mixed Real Indoor Localization
UCI ML Repository

[141]

UJI Indoor Loc Longitude 21048 520 Mixed Real Indoor Localization
UCI ML Repository

[141]

C.3 Dataset Collection and Preparation for the Evaluation of TMFBS

Table C.1 shows the list of all datasets, containing information about their number of

samples n and variables p, the type of variables and outcomes, domain and sources
2. For all datasets, we performed the following pre-processing steps: (a) we removed

all constant variables as they do not provide any information about the outcome, (b)

we removed variables related to sample ids and other types of metadata, and (c) we

removed samples containing missing values. Missing values were only present in a

few datasets, and only for a few samples. In a real-world application, this should be

handled appropriately to avoid biased results, using either missing value imputation

or predictive algorithms that can handle missingness. However, for our purposes it

would only unnecessarily complicate the tuning procedure and is not that important

2The communities & crime data were originally collected from: (a) U. S. Department of Commerce, Bu-
reau of the Census, Census Of Population And Housing 1990 United States: Summary Tape File 1a & 3a (Com-
puter Files), (b) U.S. Department Of Commerce, Bureau Of The Census Producer, Washington, DC and Inter-
university Consortium for Political and Social Research Ann Arbor, Michigan. (1992), (c) U.S. Department of
Justice, Bureau of Justice Statistics, Law Enforcement Management And Administrative Statistics (Computer
File) U.S. Department Of Commerce, Bureau Of The Census Producer, Washington, DC and Inter-university
Consortium for Political and Social Research Ann Arbor, Michigan. (1992), and (d) U.S. Department of Justice,
Federal Bureau of Investigation, Crime in the United States (Computer File) (1995).

C.3. Dataset Collection and Preparation for the Evaluation of TMFBS 149

given the rare presence of missing values.

The communities & crime data contain a total of 18 continuous outcome variables.

Out of those, 8 measure the total number of committed crimes, 8 measure the number

of crimes per 100K population, and 2 measure the number of violent and non-violent

crimes per 100K population (by appropriately summing over the other outcomes). We

chose to create two datasets, one measuring the violent and one the non-violent crimes.

Note that, the number of samples differs, as there were missing values in the outcome

variables.

The UJIIndoorLoc datasets also contain multiple outcome values, such as the lo-

cation (longitude and latitude), the floor of the building, the building ID and others.

Again, we chose to create two datasets, one using the latitude outcome and one for the

longitude.

The CT Slice data consist of samples obtained from CT scans on 97 patients. In

this case, the training/validation/test splits where performed on the patients, and not

directly on the samples (i.e., stratified on the patient id). This was done to avoid

having data from the same patients both on the training and on the held-out data.

150

Appendix D

Additional Results

D.1 Running Times of FBEDK, FBS, MMPC and LASSO

Table D.1 shows the running time of each feature selection algorithm and configuration,

on all datasets. The values correspond to a single run on the complete dataset. All

runs were performed on a single machine, and no runs were performed simultaneously.

For FBEDK we only show running times for K ∈ {0, 1,3,∞}, and for LASSO-FS we

show results for λmax ∈ {25, 100,500}. MMPC for a given value of maxK is denoted as

MMPCmaxK.

It can clearly be seen that LASSO-FS is the fastest in large datasets, irrespective

of the number of λ values used. For smaller datasets (musk, sylva, madelon, secom,

gina and hiva), FBED0 and FBED1 are often at least as fast as LASSO-FS. FBS and

MMPC with maxK ≥ 3 are the slowest among all algorithms. For the gisette and nova

datasets, MMPC with maxK ≥ 3 fails to terminate after a timeout limit of 2 days. For

maxK ≤ 2 MMPC often has competitive performance with the other algorithms. We

note that MMPC was designed specifically for low sample sizes and high dimensional

data, such as data from biological domains which contain a few tens or hundreds of

samples and tens of thousands of variables, explaining the high running times on the

datasets considered in our experiments, most of which contain thousands of samples.

The large difference between the running time of LASSO-FS and the other algo-

rithms can largely be attributed to their implementations. For LASSO-FS the glmnet

implementation was used, which is highly optimized and written in FORTRAN. In

contrast, for FBEDK, FBS and MMPC we used a custom logistic regression implemen-

tation written in Matlab. A difference of 1-2 orders of magnitude can be expected

between the same implementation in a low-level language such as FORTRAN, C or

C++ and higher-level languages such as Matlab. Therefore, we would expect that an

implementation in a lower-level language would perform similarly to LASSO-FS. Of

course, LASSO-FS has the advantage that it returns the whole solution path, and thus

would still be faster in practice if hyper-parameter optimization is also performed.

151

152 Appendix D. Additional Results

Table D.1: Running times in seconds on the full datasets.

Algorithm musk sylva madelon secom gina hiva gisette p53 arcene nova dexter dorothea

α
=

0
.0

0
1

FBED0 1.5 3.3 0.3 0.3 5.0 2.8 56.7 48.6 2.6 21.8 6.2 133.9

FBED1 3.2 7.6 0.7 0.3 11.3 2.8 186.5 137.8 6.0 90.6 20.1 377.9

FBED3 9.1 7.6 0.7 0.3 24.8 2.8 546.3 242.3 14.5 308.0 42.8 1033.0
FBED∞ 22.1 7.6 0.7 0.3 24.8 2.8 2962.7 242.3 14.5 536.1 42.8 1855.3
FBS 46.0 36.3 1.3 1.4 140.4 22.4 5773.0 1186.4 66.8 3486.3 309.2 7233.3

MMPC1 3.9 9.5 0.3 0.5 21.2 5.0 309.2 115.0 4.1 112.9 14.9 91.8

MMPC2 7.9 17.9 0.3 0.5 84.0 5.4 1885.4 163.4 4.1 1524.9 17.9 92.0

MMPC3 7.9 20.9 0.3 0.6 171.2 5.6 N/A 175.9 4.1 N/A 19.9 92.0

MMPC4 9.8 21.8 0.3 0.5 292.4 5.6 N/A 210.7 4.1 N/A 21.3 93.1

α
=

0
.0

0
5

FBED0 1.8 3.9 0.2 0.3 6.7 3.3 79.2 60.4 2.8 31.3 6.5 139.9

FBED1 5.4 8.3 0.6 0.8 14.2 10.7 244.2 158.5 10.8 114.1 22.3 457.0

FBED3 11.7 12.9 0.6 1.6 36.2 28.1 756.1 418.0 19.9 435.7 77.9 865.6
FBED∞ 29.7 12.9 0.6 1.6 49.2 28.1 1105.3 700.5 19.9 1426.2 202.2 865.6
FBS 82.2 50.4 2.1 3.1 192.7 82.7 10932.7 3864.6 66.8 7015.8 503.0 7233.3

MMPC1 4.6 10.4 0.3 0.6 25.8 6.0 384.6 142.2 4.7 238.3 17.4 106.3

MMPC2 10.5 24.5 0.3 0.6 126.0 6.4 2869.2 230.4 4.7 3993.7 30.2 107.1

MMPC3 10.2 43.6 0.3 0.6 307.1 6.9 N/A 330.3 4.7 N/A 36.6 115.0

MMPC4 11.5 45.0 0.3 0.6 470.4 6.9 N/A 469.6 4.7 N/A 54.2 126.6

α
=

0
.0

1

FBED0 2.0 4.3 0.2 0.3 8.3 3.6 88.0 64.2 3.0 39.0 6.8 144.7

FBED1 5.3 8.9 0.2 0.8 16.8 11.9 261.1 164.3 11.8 123.3 25.2 463.0

FBED3 16.5 14.1 0.2 1.7 46.0 32.3 824.3 450.7 11.8 505.8 95.4 884.6
FBED∞ 32.5 14.1 0.2 2.1 97.6 81.8 824.3 1615.0 11.8 760.0 136.7 884.6
FBS 94.3 61.0 2.5 4.4 234.8 150.2 10932.7 5160.2 66.8 8811.8 503.0 7233.3

MMPC1 5.0 12.8 0.3 0.6 28.0 7.0 426.9 161.3 5.1 347.0 19.6 119.1

MMPC2 12.4 28.7 0.3 0.6 141.0 7.8 3570.4 269.8 5.3 8262.0 41.6 128.8

MMPC3 12.7 45.1 0.4 0.6 426.0 9.1 N/A 460.1 5.3 N/A 63.5 146.0

MMPC4 13.3 62.0 0.4 0.7 573.4 9.8 N/A 728.7 5.3 N/A 104.6 200.6

α
=

0
.0

5

FBED0 3.3 5.6 0.4 0.5 14.2 6.4 140.2 95.2 3.9 111.9 9.5 201.0

FBED1 6.4 11.4 0.9 1.1 34.9 17.0 398.6 242.8 3.9 380.7 42.0 644.6

FBED3 25.6 24.8 2.0 2.7 82.8 50.5 398.6 779.5 3.9 957.2 42.0 644.6
FBED∞ 76.1 49.9 4.6 7.7 221.6 206.5 398.6 7688.4 3.9 957.2 42.0 644.6
FBS 191.9 108.6 18.6 15.4 1243.4 3490.9 10932.7 31681.6 66.8 10119.3 621.0 7233.3

MMPC1 6.4 15.0 0.6 0.8 38.3 16.6 604.2 266.6 7.9 1050.6 48.9 406.0

MMPC2 15.8 48.1 1.5 1.1 222.2 22.4 6279.9 566.7 10.2 45093.2 204.1 750.2

MMPC3 22.0 152.2 3.3 1.1 921.7 46.3 N/A 977.6 12.7 N/A 525.3 1499.5

MMPC4 23.3 209.4 5.6 1.3 1499.4 68.8 N/A 2103.9 12.2 N/A 624.8 3818.6

α
=

0
.1

FBED0 4.1 7.6 0.8 0.7 20.1 11.0 213.0 128.4 4.7 162.3 14.1 246.7

FBED1 8.9 17.3 1.8 1.9 49.0 37.2 858.6 359.8 4.7 428.5 53.7 246.7

FBED3 26.8 40.0 4.5 4.0 127.5 289.0 858.6 1280.7 4.7 980.2 53.7 246.7
FBED∞ 84.6 64.9 7.5 40.3 889.1 347.7 858.6 3476.2 4.7 980.2 53.7 246.7
FBS 253.7 246.7 48.7 29.0 3688.9 9997.9 10932.7 31681.6 66.8 10784.8 621.0 7669.2

MMPC1 7.0 16.9 1.2 1.3 44.2 28.1 733.7 388.2 13.3 2063.8 117.0 1033.3

MMPC2 17.7 96.9 7.3 2.6 278.0 68.4 8313.7 955.9 24.5 122716.3 715.0 3873.2

MMPC3 25.2 187.9 52.4 4.2 1315.8 160.0 N/A 1675.6 29.5 N/A 2065.3 10196.9

MMPC4 33.6 371.5 236.8 6.3 2959.9 405.1 N/A 4359.6 39.5 N/A 3761.7 24259.0

LASSO-FS25 12.2 7.0 2.7 6.0 12.3 13.7 6.9 118.6 0.2 1.6 0.4 4.0

LASSO-FS100 12.2 11.3 4.1 7.3 16.2 16.3 8.9 65.0 0.3 3.3 0.8 11.0

LASSO-FS500 10.5 19.7 4.9 11.2 22.5 34.1 24.5 133.4 1.0 14.7 3.5 51.1

D.2 Accuracy of p-value Combination using Meta-Analysis and Eval-

uation of the STD Rule

We evaluated the ability of the proposed p-value computation method (combination of

local p-values using Fisher’s combined probability test) in identifying the same variable

D.2. Accuracy of p-value Combination using Meta-Analysis and Evaluation of the STD
Rule 153

to select as when global p-values are used. We performed a computational experiment

on simulated data to investigate the effect of the total sample size and number of data

Blocks on the accuracy of the proposed approach. Furthermore, we compare the STD

and EPV rules for setting the minimum number of samples in each Data Block. The

EPV rule computes the sample size per Sample Group as s = df · c/ min(p0, p1), while

STD uses s = df · c/ √p0 · p1, where df is set to the maximum number of degrees of

freedom (see 5.3.1 for more details), c is a positive constant (which may take different

values for each rule), and p0 and p1 are the frequencies of the negative and positive

class respectively.

D.2.1 Data Generation

To generate data with complex correlation structures, we chose to generate data from

simulated Bayesian networks. All variables are continuous Gaussian and are linear

functions of their parents. The target variable is binary, and the log-odds ratio is a

linear function of its parents. The procedure is described in detail in Appendix C.1.

We used the following parameters to generate Bayesian networks and data from

those networks: (a) the number of variables was set to 101 (100 variables plus

the outcome T), (b) the connectivity parameter was set to 10 (i.e., the average de-

gree of each node), (c) the frequency of the most frequent class of T was set to

{50%,60%, 70%,80%,90%} and (d) the standard deviation of the error terms was set

to {0.01,0.1, 1}. In total this results in 15 possible Bayesian network configurations.

Note that, the connectivity is relatively high and the standard deviation of the error

terms is relatively low so that all variables are highly correlated, increasing the difficulty

of the problem of selecting the best variable. For each such parameter combination we

generated 250 Bayesian networks, resulting in a total of 250 × 15 = 3750 networks.

Next, we generated datasets with different sample sizes, by varying the sample size

from 102.5 to 104 in increments of 0.1 of the exponent, leading to 16 different sample

sizes. Overall this resulted in 60000 datasets.

D.2.2 Simulation Results: Combined p-values vs Global p-values

We performed conditional independence tests on all generated datasets to simulate

a forward Iteration using p-values from global tests (i.e., using all data) and from

combined p-values using Fisher’s method. We varied the following parameters: (a)

the number of conditioning variables, which was set to 0, 1, 2 or 3, and (b) the number

of Sample Sets each dataset was split to, which ranged from 1 (no split) to 25 with

increments of 1 (a total of 25 cases). This allows us to investigate the effect of the

total number of combined local p-values. The simulation of a forward Iteration was

performed for each dataset and conditioning size k as follows: (a) k variables were

154 Appendix D. Additional Results

0 100 200 300 400 500

Sample size per sample set

70%

75%

80%

85%

90%

95%

100%

A
gr

ee
m

en
t p

er
ce

nt
ag

e

Agreement between p-value computation methods (2 parameters)

Class distribution 90/10
Class distribution 80/20
Class distribution 70/30
Class distribution 60/40
Class distribution 50/50

0 100 200 300 400 500

Sample size per sample set

70%

75%

80%

85%

90%

95%

100%

A
gr

ee
m

en
t p

er
ce

nt
ag

e

Agreement between p-value computation methods (3 parameters)

Class distribution 90/10
Class distribution 80/20
Class distribution 70/30
Class distribution 60/40
Class distribution 50/50

0 100 200 300 400 500

Sample size per sample set

70%

75%

80%

85%

90%

95%

100%

A
gr

ee
m

en
t p

er
ce

nt
ag

e

Agreement between p-value computation methods (4 parameters)

Class distribution 90/10
Class distribution 80/20
Class distribution 70/30
Class distribution 60/40
Class distribution 50/50

0 100 200 300 400 500

Sample size per sample set

70%

75%

80%

85%

90%

95%

100%

A
gr

ee
m

en
t p

er
ce

nt
ag

e

Agreement between p-value computation methods (5 parameters)

Class distribution 90/10
Class distribution 80/20
Class distribution 70/30
Class distribution 60/40
Class distribution 50/50

Figure D.1: The percentage of agreement is shown, which corresponds to how often com-

bining local p-values and computing the p-value on all samples leads to the same decision.

The y-axis shows how the sample size per sample set affects the agreement percentage.

Both methods tend to agree asymptotically for various class distributions and condition-

ing set sizes.

randomly selected from the Markov blanket of T (simulating that k variables have

already been selected), (b) the global conditional independence test was performed

between T and the remaining variables over all samples (i.e. number of sample sets

equals 1), (c) the same test was performed on all Sample Sets resulting by splitting the

data randomly to m equally-sized sample sets (m ranging from 2 to 25) and combining

the p-values using Fisher’s combined probability test.

We compute the percentage of agreement between both methods, that is, how often

both methods select the same variable. This is computed as the proportion of times

both methods agreed on the 250 repetitions, leading to one value for each of the 15

Bayesian network configurations, each sample size, conditioning set size and number

of Sample Sets. Thus, in total we have 15 × 16 × 4 × 24 = 23040 such values. The

results are summarized in Figure D.1. There are 4 figures, one for each different

conditioning size, and each figure contains 5 curves, one for each class distribution of

D.2. Accuracy of p-value Combination using Meta-Analysis and Evaluation of the STD
Rule 155

Table D.2: Median value of c to obtain an agreement percentage between 85% and 95%.

pmax corresponds to the proportion of the most frequent class, while df is the degrees of

freedom in the largest model. The relative differences for the STD rule are smaller (less

than 2 against over 2.5 for the EPV rule), suggesting it is more appropriate. A minimum

value of c = 10 with the proposed rule is recommended and used in the experiments.

EPV Rule STD Rule

pmax | df 2 3 4 5 2 3 4 5

0.5 11.2 7.8 9.0 9.7 11.2 7.8 9.0 9.7

0.6 7.7 7.6 7.4 11.2 9.4 9.3 9.1 13.7

0.7 6.6 5.7 5.9 8.6 10.1 8.8 9.1 13.2

0.8 5.7 5.2 5.7 6.7 11.5 10.5 11.4 13.3

0.9 5.0 4.4 4.2 4.4 14.9 13.2 12.5 13.3

T. Each such curve summarizes the results over all error variances, sample sizes and

number of Sample Sets (that is, 3 × 16 × 24 = 1152 points). Note that the number of

parameters of the largest model is always the conditioning size plus 2, as the model

also includes the variable that is tested for (conditional) independence with T and the

intercept. The x-axis shows the sample size per Sample Set, which is computed as the

sample size divided by the number of Sample Sets. We only show the results up to 500

samples per Sample Set; the agreement percentage approaches 100% in all cases with

increasing sample size, reaching at least 99% with 5000 samples per Sample Set. The

y-axis shows how often both methods lead to the same decision. To avoid cluttering,

we computed the curves by fitting a power regression model y = α · xβ + c. We found

that this model is appropriate, as it has R2 values between 0.75 and 0.95. We conclude

the following: (a) both approaches tend to make the same decision with increasing sample

size, (b) the sample size per Sample Set required depends on the number of parameters and the

class distribution, and increases with increasing number of parameters and class imbalance.

D.2.3 Simulation Results: STD vs EPV for Determining the Required Sample

Size

We propose an alternative rule to EPV, which is computed as df · c/ √p0 · p1. The de-

nominator is the standard deviation of the class distribution, which follows a Bernoulli

distribution. We call this the STD rule hereafter. For balanced class distributions the

result is identical to the EPV rule, while for skewed distributions the value is always

smaller.

To validate the STD rule, we used the results of the previous simulation experiment

and computed the value of c by solving the equation for c and substituting in the values

of the class distributions, degrees of freedom and sample size per Sample Set. We kept

156 Appendix D. Additional Results

the values of c that correspond to an agreement percentage between 85% and 95%

(focusing on an interesting range of high agreement between p-value computation

methods), and computed their median value for each class distribution, conditioning

size k and for both rules. Ideally, one would expect c to be constant across rows

(class distribution) and columns (conditioning size). A constant value of c for a rule

means that the rule can exactly compute the required sample size to get an agreement

percentage around 90%. Furthermore, we note that the values of c are not comparable

between rules, and thus their exact values are not important; what matters is the

relative difference between values of c for the same rule.

The results are shown in Table D.2. Although the value of c varies across class

distributions and degrees of freedom, we can see that the relative differences are

smaller the STD rule. Specifically, for EPV c ranges from 4.2 to 11.2, the latter being

over 2.5 times larger, while for STD it ranges from 7.8 to 14.9, which is less than 2

times larger. This suggests that the STD rule performs better than EPV across various

conditioning set sizes and class distributions, at least on the experiments considered

here. Furthermore, the results suggest that a value of at least c = 10 should be used

for STD to get reasonably accurate results. We note that, in practice this value is much

higher in most cases for PFBP, as it partitions the samples initially by considering

the worst case scenario (i.e., selecting maxVars variables). Thus especially in early

Iterations, which are the most crucial ones, PFBP will typically have a sufficient number

of samples even with c = 10 to select the best variables.

Appendix E

Publications

Publications on Feature Selection

The research related to this thesis has lead to the following publications.

(1) Giorgos Borboudakis, Ioannis Tsamardinos. Forward-Backward Selection with Early

Dropping. Journal of Machine Learning Research, 2018. (third revision)

(2) Ioannis Tsamardinos, Giorgos Borboudakis, Pavlos Katsogridakis, Polyvios Pratikakis,

Vassilis Christophides. A Greedy Feature Selection Algorithm for Hybridly Partitioned

Big Data. Machine Learning, 2018 [148].

(3) Giorgos Borboudakis, Ioannis Tsamardinos. Extending Greedy Feature Selection

Algorithms to Multiple Solutions. Data Mining and Knowledge Discovery, 2018.

(to be submitted)

The contributions are described in detail in Chapters 4, 5 and 6 respectively.

Other Publications

In addition to the above, which are directly related to the main topic of this thesis, we

have also published papers in the fields of causal discovery, general machine learning

and applications, and signal processing. A list of publications follows.

Causal Discovery

(4) Michail Tsagris, Giorgos Borboudakis, Vincenzo Lagani, Ioannis Tsamardinos.

Constraint-based Causal Discovery with Mixed Data. International Journal of Data

Science and Analytics, 2018. [142].

Abstract: We address the problem of constraint-based causal discovery with mixed

data types, such as (but not limited to) continuous, binary, multinomial, and ordinal

variables. We use likelihood-ratio tests based on appropriate regression models and

show how to derive symmetric conditional independence tests. Such tests can then

be directly used by existing constraint-based methods with mixed data, such as the

157

158 Appendix E. Publications

PC and FCI algorithms for learning Bayesian networks and maximal ancestral graphs,

respectively. In experiments on simulated Bayesian networks, we employ the PC

algorithm with different conditional independence tests for mixed data and show that

the proposed approach outperforms alternatives in terms of learning accuracy.

(5) Anna Roumpelaki, Giorgos Borboudakis, Sofia Triantafillou, Ioannis Tsamardinos.

Marginal Consistency of Constraint-Based Causal Learning. Causation: Foundation

to Application Workshop at UAI, 2016 [128].

Abstract: Maximal Ancestral Graphs (MAGs) are probabilistic graphical models that

can model the distribution and causal properties of a set of variables in the presence

of latent confounders. They are closed under marginalization. Invariant pairwise

features of a class of Markov equivalent MAGs can be learnt from observational data

sets using the FCI algorithm and its variations (such as conservative FCI and order

independent FCI). We investigate the consistency of causal features (causal ancestry

relations) obtained by FCI in different marginals of a single data set. In principle,

the causal relationships identified by FCI on a data set D measuring a set of variables

V should not conflict the output of FCI on marginal data sets including only subsets

of V. In practice, however, FCI is prone to error propagation, and running FCI in

different marginals results in inconsistent causal predictions. We introduce the term

of marginal causal consistency to denote the consistency of causal relationships when

learning marginal distributions, and investigate the marginal causal consistency of

different FCI variations. Results indicate that marginal causal consistency varies for

different algorithms, and is also sensitive to network density and marginal size.

(6) Giorgos Borboudakis, Ioannis Tsamardinos. Towards Robust Causal Discovery for

Business Applications. Conference on Knowledge Discovery and Data Mining

(KDD), 2016 [18].

Abstract: Causal discovery algorithms can induce some of the causal relations from

the data, commonly in the form of a causal network such as a causal Bayesian network.

Arguably however, all such algorithms lack far behind what is necessary for a true

business application. We develop an initial version of a new, general causal discovery

algorithm called ETIO with many features suitable for business applications. These

include (a) ability to accept prior causal knowledge (e.g., taking senior driving courses

improves driving skills), (b) admitting the presence of latent confounding factors, (c)

admitting the possibility of (a certain type of) selection bias in the data (e.g., clients

sampled mostly from a given region), (d) ability to analyze data with missing-by-

design (i.e., not planned to measure) values (e.g., if two companies merge and their

databases measure different attributes), and (e) ability to analyze data from different

interventions (e.g., prior and posterior to an advertisement campaign). ETIO is an

instance of the logical approach to integrative causal discovery that has been relatively

159

recently introduced and enables the solution of complex reverse-engineering problems

in causal discovery. ETIO is compared against the state-of-the-art and is shown to be

more effective in terms of speed, with only a slight degradation in terms of learning

accuracy, while incorporating all the features above

(7) Giorgos Borboudakis, Ioannis Tsamardinos. Bayesian Network Learning with Dis-

crete Case-Control Data. Conference on Uncertainty in Artificial Intelligence (UAI),

2015 [17].

Abstract: We address the problem of learning Bayesian networks from discrete, un-

matched case- control data using specialized conditional independence tests. Those

tests can also be used for learning other types of graphical models or for feature selec-

tion. We also propose a post- processing method that can be applied in conjunction

with any Bayesian network learning algorithm. In simulations we show that our

methods are able to deal with selection bias from case-control data.

General Machine Learning and Applications

(8) Ioannis Tsamardinos, Elissavet Greasidou, Giorgos Borboudakis. Bootstrapping

the Out-of-sample Predictions for Efficient and Accurate Cross-Validation. Machine

Learning, 2018 [150].

Abstract: Cross-Validation (CV), and out-of-sample performance-estimation protocols

in general, are often employed both for (a) selecting the optimal combination of algo-

rithms and values of hyper-parameters (called a configuration) for producing the final

predictive model, and (b) estimating the predictive performance of the final model.

However, the cross-validated performance of the best configuration is optimistically

biased. We present an efficient bootstrap method that corrects for the bias, called Boot-

strap Bias Corrected CV (BBC-CV). BBC-CV’s main idea is to bootstrap the whole

process of selecting the best-performing configuration on the out-of-sample predic-

tions of each configuration, without additional training of models. In comparison to

the alternatives, namely the nested cross-validation and a method by Tibshirani and

Tibshirani , BBC-CV is computationally more efficient, has smaller variance and bias,

and is applicable to any metric of performance (accuracy, AUC, concordance index,

mean squared error). Subsequently, we employ again the idea of bootstrapping the

out-of-sample predictions to speed up the CV process. Specifically, using a bootstrap-

based statistical criterion we stop training of models on new folds of inferior (with

high probability) configurations. We name the method Bootstrap Bias Corrected with

Dropping CV (BBCD-CV) that is both efficient and provides accurate performance

estimates.

(9) Giorgos Borboudakis, Taxiarchis Stergiannakos, Maria Frysali, Emmanuel Klontzas,

Ioannis Tsamardinos, George E. Froudakis. Chemically intuited, large-scale screen-

160 Appendix E. Publications

ing of MOFs by machine learning techniques. Nature Computational Materials,

2017 [16].

Abstract: A novel computational methodology for large-scale screening of MOFs is

applied to gas storage with the use of machine learning technologies. This approach

is a promising trade-off between the accuracy of ab initio methods and the speed

of classical approaches, strategically combined with chemical intuition. The results

demonstrate that the chemical properties of MOFs are indeed predictable (stochasti-

cally, not deterministically) using machine learning methods and automated analysis

protocols, with the accuracy of predictions increasing with sample size. Our initial

results indicate that this methodology is promising to apply not only to gas storage in

MOFs but in many other material science projects.

Signal Processing

(10) Anastasios Alexandridis, Giorgos Borboudakis, Athanasios Mouchtaris. Address-

ing the Data-Association Problem for Multiple Sound Source Localization using DOA

Estimates. European Signal Processing Conference (EUSIPCO), 2015 [3].

Abstract: In this paper, we consider the data association problem that arises when

localizing multiple sound sources using direction of arrival (DOA) estimates from

multiple microphone arrays. In such a scenario, the association of the DOAs across

the arrays that correspond to the same source is unknown and must be found for

accurate localization. We present an association algorithm that finds the correct DOA

association to the sources based on features extracted for each source that we propose.

Our method results in high association and localization accuracy in scenarios with

missed detections, reverberation, and noise and outperforms other recently proposed

methods.

