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General Introduction

Stable solitary wave solutions appear in nonlinear \eld theories which describe a

variety of physical systems in one2 two or three spatial dimensions plus the time" Our

main concern will be in systems which can be described within two spatial dimensions

and we shall use the term soliton to refer to the stable solitary wave solutions found

for such systems"

The existence of solitons as physical entities has so far being established in a

remarkably diverse collection of physical systems" Condensed matter physics and

Uuid dynamics is only some of the areas where the notion of a soliton has found wide

application" Thus physicists coming from a variety of research areas have studied

the subject from di]erent perspectives while these di]erent insights have provided a

wealth of observations about the statics and dynamics of solitons and keep the interest

for the subject at a high level" In close connection to the above we usually have the

remarkable coincidence that some models which admit soliton solutions are relevant

to a variety of physical systems rather than only a single one"

Fields employed in these theories may sometimes be attributed a topological

index according to which the static or dynamical solutions are classi\ed into mutually

exclusive classes and the relevant solitons will therefore be called topological solitons"

Other consequences of topology are also possible and in fact it is expected to have an

overall impact on soliton dynamics"
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The notion of a soliton has appeared \rst in connection to one@dimensional sys@

tems in order to describe stable traveling wave solutions of nonlinear equations with

a very simple dynamical behavior" Namely a single soliton travels undistorted with

a constant velocity while two such solitons collide only to emerge with essentially

unchanged their pro\le and velocity after su^ciently long time" The looser term soli@

tary wave has been introduced to describe a more general traveling wave solution of

a one@dimensional nonlinear evolution equation"

The surprisingly simple behavior of solitons in one@dimensional systems is at@

tributed to the fact that the relevant equations are integrable in the sense that they

possess an in\nite set of conserved quantities" Along these lines the Landau@Lifshitz

equation which governs at the microscopic level the dynamics of magnetic moments

in a magnetic solid2 has been found to possess soliton solutions which represent mag@

netic domain walls" We parenthetically remark here that the picture for nonlinear

dynamics that we have described so far can only be contrasted to chaotic systems"

These are also described by nonlinear evolution equations and present a highly com@

plex dynamical behavior which leads to deterministic chaos through the routes of

period@doubling2 intermittency and the formation of strange attractors"

In higher@than@one dimensional systems2 one of the best known examples of topo@

logical solitons are the magnetic bubbles observed in abundance in ferromagnetic \lms

_=2 ?`" Such \lms are single {magnetic| domain ferromagnets in which the creation of

bubbles can be controlled mainly by switching an external magnetic \eld" Arrays of

bubbles as well as isolated ones can be obtained" Isolated bubbles have been observed

experimentally as early as =BPK and have been used in device applications since =BP>"

By now a wealth of experimental results can be found in the literature concerning

these bubbles"

Their most notable and unusual dynamical feature is the experimentally observed

skew deUection under the inUuence of an external magnetic \eld gradient" Extensive

experimental studies involving isolated bubbles have been performed and concluded

to some simple rules for bubble dynamics" Theoretical studies for magnetic solitons

have started with a work by Thiele _D` while the \rst attempt to study the dynamics

was done in _J` drawing attention to the bubble internal structure" It is interesting

to note here that the overall picture of bubble dynamics resembles that of vortices

in classical Uuids or superUuids _=J2 DJ`" These observations suggest that we have a

dynamical behavior of solitons generic to a variety of physical systems" Nevertheless

di]erent dynamics has been observed in other models such as for monopoles or for

skyrmions in �@models"
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A fresh look into magnetic bubble dynamics as well as into the underlying

Landau@Lifshitz equation was given in _H`" A simple theoretical description of the

dynamics for the model was given emphasizing the role of the topological invariant

called the winding number" The approach has been successful in understanding the

patterns observed for isolated or pairs of solitons" Thus a ferromagnetic bubble is

shown to be pinned in the ferromagnet while the above mentioned skew deUection is

understood" Moreover two like solitons are found to move on a more or less circular

orbit while a pair of solitons with opposite topological charge undergo Kelvin motion

along roughly parallel lines" We also note that a dynamical behavior analogous to

that of magnetic bubbles was also found for Abrikosov vortices in a superconductor

_P2 >`"

Concentrating on the main subject of this thesis we shall try to give an account

of the di]erent classes of magnets that are encountered in practice" The most well

known class is ferromagnets while as a second class from the theoretical point of view

come the antiferromagnets" It is clear that materials of high experimental interest

belong to this last class2 the parent compounds of high Tc superconductors being a

good example" Other classes of magnetic materials are also encountered in practice

such as the weak ferromagnets" These are basically antiferromagnets in which an

extra so@called Dzyaloshinskii@Moriya interaction gives rise to a weak net magnetic

moment _B`"

We shall con\ne ourselves to the important cases of ferromagnets and antiferro@

magnets" As a \rst step we have to understand the interactions therein" The strength

of the most important among them exchange interaction may vary a lot along the

three space directions thus giving rise to layered magnets" The magnetization is ex@

pected to vary in principle along only two spatial dimensions allowing for a study

within a ?D model" In addition to the exchange an anisotropy energy may be present

which comes in a lot of varieties" Some important cases are the uniaxial and an

anisotropy of the easy@plane type" Other interactions such as the dipole@dipole inter@

action among ferromagnetically ordered moments gives rise to a magnetostatic \eld

which plays an important role in certain cases"

An externally supplied magnetic \eld has often been found to be important" Thus

a uniform magnetic \eld is needed to stabilize bubbles in ferromagnetic \lms while

dynamics is best studied in an external magnetic \eld gradient" Also in other cases

an external \eld is found to a]ect profoundly the statics and dynamics in magnets

such as is the case for antiferromagnets studied in Chapter III of this thesis" Thus

the use of external \elds can be a source of intuition as well as a tool for studying the
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magnetic soliton dynamics"

The above remarks apply to ferromagnets as well as to antiferromagnets" We

only note here that2 contrary to the wealth of experiments done for ferromagnets2 no

magnetic solitons have been observed in antiferromagnets mainly because2 in contrast

to ferromagnetic bubbles2 they carry almost no magnetic dipole moment" Nevertheless

theoretical arguments suggest that they should exist for essentially the same reasons

as in ferromagnets" Moreover an indirect proof for their existence is provided from

related work in weak ferromagnets"

We now proceed to a description of the general outline of this thesis" In Chapter

I we present a theory for the description of the dynamics of bubbles in ferromagnetic

\lms" This is based on the theory presented in _H`" The quasi two@dimensional geom@

etry of the \lm calls for a generalization to three dimensions and a suitable extension

of the arguments of _H` to properly take into account boundary e]ects" The chapter

is completed with a detailed numerical calculation of the axially symmetric {so@called

fundamental| bubble taking into full account the long range non@local magnetostatic

\eld" This \eld is known to be present due to the dipole@dipole interaction among

magnetic ions and plays a crucial role in the statics of the bubble" We believe to give

here a clear picture of the dynamics of an isolated bubble in a realistic ferromagnetic

\lm"

Some of the \ner issues of the motion of the bubble remain di^cult to study either

numerically or analytically in the DD \lm geometry" Thus the long term dynamics

may be quite complicated and can only be studied within a DD numerical algorithm"

But2 despite that the bubbles are three@dimensional objects2 their topological char@

acteristics are essentially two@dimensional" Thus we decided to analyze some of the

important details of the bubble motion within the two@dimensional isotropic Heisen@

berg model and perform some straightforward numerical calculations" In Chapter II

we study this model within the present theoretical framework and present the results

of an analysis obtained mainly through numerical simulations of the bubble motion

which further complete and clarify the arguments presented in Chapter I"

In Chapter III we study vortices in two@dimensional or layered antiferromagnets"

Their dynamics is expected to be essentially di]erent from that of ferromagnetic soli@

tons and be described by the relativistic nonlinear �@model _B`" We \rst give a detailed

derivation of the �@model treating properly some parity breaking contributions that

are implicit in the model due to the antiferromagnetic discontinuity" We then proceed

to study numerically the dynamics of vortices" Two vortices are shown to scatter at

right angles but we \nd that the presence of a uniform external magnetic \eld a]ects
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the dynamics rather profoundly" Then an isolated vortex is found to be pinned in

the antiferromagnet while relevant motion is only possible in the presence of other

vortices" This is a situation similar to that in the ferromagnet" A topological charge

relevant to the dynamics is given and \nally the dynamical behavior of vortices in the

presence of the external \eld is explained by arguments analogous to those employed

in the theory of Chapter I"



Ferromagnetic �lms �

CHAPTER I

FERROMAGNETIC FILMS

�� Introduction

Magnetic bubbles have been known to exhibit some distinct dynamical features

due to their nontrivial topological structure" The inherent link between topology

and dynamics was already apparent in the early work of Thiele _J` as well as in many

investigations that followed _=2 ?`" The essence of the early work is best summarized by

the experimentally observed skew deUection of magnetic bubbles under the inUuence

of an applied magnetic@\eld gradient" The so@called golden rule of bubble dynamics

relates the deUection angle � to the winding number Q by

gr�

?V
sin � ~ Q� {=�=|

where g is the strength of the applied \eld gradient2 r is the bubble radius and V

its speed" Relation {="=| is remarkable in two respects" First2 it suggests that only

topologically trivial {Q ~ K| bubbles move in the direction of the gradient {� ~ K|2

even though such a behavior would naively be expected for all magnetic bubbles�

in fact2 bubbles with a nonvanishing winding number {Q ~ �=� �?� � � �| tend to
be deUected in a direction nearly perpendicular {� � BK�| to the applied gradient"
Second2 Eq" {="=| implies some sort of a topological quantization in that it relates

the integer@valued winding number to experimentally measured quantities that can2

in principle2 assume any values"

Although golden rule {="=| has been employed with considerable success in the

analysis of actual experiments2 especially for hard {jQj � =| bubbles2 it is still a semi@
empirical relation whose precise meaning and domain of validity must be speci\ed"
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For instance2 the meaning of the various quantities entering Eq" {="=| needs to be

explained because magnetic bubbles are extended structures rather than point@like

particles" Furthermore the usual derivations of {="=| are based on the assumption

that the bubble reaches a steady state2 in the presence of dissipation2 in which the

deUection angle �2 the radius r and the speed V approach constant values" But such

an assumption was never justi\ed and is actually incorrect" In practice2 experiments

are analyzed by applying Eq" {="=| with average values for the deUection angle and

the speed and by assuming that the radius does not change signi\cantly during the

application of the gradient"

In some recent work on this subject _H` the link between topology and dynamics

was made explicit through the construction of unambiguous conservation laws as

moments of a suitable topological vorticity" The important qualitative features of

bubble dynamics became then apparent" Thus2 in the absence of external magnetic@

\eld gradients or other perturbations2 bubbles with a nonvanishing winding number

cannot move freely but are always spontaneously pinned" On the other hand2 in

the absence of dissipation2 a bubble would be deUected at a right angle {� ~ BK�|

with respect to an applied magnetic@\eld gradient2 with a drift velocity that can be

calculated analytically in some important special cases _H` and is generally consistent

with Eq" {="=|" The emerging picture is thus analogous to the Hall motion of an

electron as well as to the Magnus e]ect of Uuid dynamics" These analogies further

suggest that the deUection angle should deviate from BK� in the presence of dissipation"

However an exact calculation of the deUection angle2 i"e"2 a derivation of the golden

rule2 is no longer possible on the basis of conservation laws alone"

Therefore the semi@quantitative picture derived from the conservation laws must

be supplemented by some results from a numerical solution of the underlying Landau@

Lifshitz equation" Such a solution is not straightforward under completely realis@

tic conditions� calculation of the long@range magnetostatic \eld is always a problem

and the \nite thickness of actual magnetic \lms forces one to work with a three@

dimensional {DD| grid2 even though the essential topological structure of magnetic

bubbles is two@dimensional {?D|" Hence the numerical e]orts have thus far been re@

stricted to strictly ?D models of increasing complexity _=K2 ==`"

Our purpose in the present chapter is to provide a precise formulation within

the quasi@?D geometry of realistic ferromagnetic \lms2 taking into account the e]ects

from the \lm boundaries and the magnetostatic \eld based on the work presented

in _=?`" In Section ? we review some basic facts about the Landau@Lifshitz equation

and introduce convenient {rationalized| physical units" In Section D we discuss the
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two ingredients that are important to establish a direct link between the topological

complexity of magnetic structures and their dynamics2 the gyrovector and the stress

tensor" The derivation of unambiguous conservation laws is then carried out in Section

J in the presence of \lm boundaries" A byproduct of our study of conservation laws is

a set of virial theorems that generalize the well@known scaling relation of Derrick _=D`2

an issue taken up in Section H" In Section P we desribe in detail a numerical relaxation

algorithm for the calculation of static bubble solutions" We \nally present a detailed

numerical calculation of the fundamental {Q ~ =| bubble which is consistent with the

virial theorems" The issue of skew deUection in an applied magnetic@\eld gradient is

studied in Section > where we \nd that the semi@empirical golden rule is veri\ed in

its gross features but not in its details" Our conclusions are summarized in Section W

together with some suggestions for further work"

�� The Landau�Lifshitz equation

A ferromagnetic medium is described in terms of the density of magnetic moment

or magnetization M which is due primarily to the electron spins but may include

contributions also from the orbital motion" In general2 the vectorM ~ {M��M��M�|

is a function of position and time except that its magnitude is nearly constant for a

wide temperature range su^ciently below the Curie point" Thus we write

M ~M{x� t|� M� �M�
� �M

�
� �M

�
� ~M

�
� � {?�=|

where x ~ {x�� x�� x�| is the position vector2 t is the time variable2 and the constant

M� is the saturation magnetization"

Static as well as dynamical properties of the magnetization are governed by the

Landau@Lifshitz equation

�M

�t
� �{M� F| ~

�

M�

�
M � �M

�t

�
� {?�?|

which describes precession around an e]ective \eld F with the constant � given by

� ~
gejej
?mec

� {?�D|

where ge � ? is the gyromagnetic ratio2 e the electron charge2 me the electron mass2

and c the velocity of light" Equation {?"?| also includes a phenomenological {Landau@

Gilbert| dissipative term where the dissipation constant � is dimensionless" This

choice of dissipation preserves the magnitude of magnetization"



Ferromagnetic �lms �	

The e]ective \eld F may be written as

F ~ Fe �Fa �Hb �H� {?�J|

Here Fe is the exchange \eld

Fe ~
?A

M�
�

�M� {?�H|

where A is the exchange sti]ness constant and � the Laplace operator" Fa is the

anisotropy \eld

Fa ~ � ?K
M�

�

{M��M�� K|� {?�P|

where K is a positive constant leading to an easy axis in the third direction" In

ferromagnetic \lms made out of bubble materials the easy axis is perpendicular to

the \lm surface _=`" Hb is a uniform bias \eld2

Hb ~ {K� K�Hb|� Hb ~ const� {?�>|

applied along the easy axis" Finally H is the magnetic \eld produced by the magne@

tization itself and thus satis\es the magnetostatic equations

r�H ~ K� r �B ~ K� B ~ H� J�M� {?�W|

where B is the corresponding magnetic induction" The use of the magnetostatic

instead of the complete Maxwell equations is justi\ed by the fact that time variations

of magnetic structures of practical interest are slow"

Numerical values of the various constants introduced above may be found in Ref"

_=` for a number of ferromagnetic materials" However using all these constants within

a theoretical development clouds the underlying simplicity of the Landau@Lifshitz

equation" Hence we introduce rationalized physical units as follows" First2 we work

with the normalized magnetization

m ~M	M�� m� ~ =� {?�B|

Second2 we measure distance2 time and magnetic \eld {induction| in units ofs
A

?�M�
�

�
=

J��M�
and J�M�� {?�=K|

respectively" We further de\ne the dimensionless anisotropy constant


 ~
K

?�M�
�

� {?�==|
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which is usually referred to as the quality factor" Finally2 we introduce new symbols for

dimensionless magnetic \elds2 such as h ~ H	J�M�2 but maintain the same symbols

x and t for the rationalized space and time variables"

The Landau@Lifshitz equation is then written as

�m� {m� f| ~ �{m� �m|� m� ~ =� {?�=?|

where the dot denotes di]erentiation with respect to time2 a convention that will be

adopted from now on" The e]ective \eld f is given by

f ~ �m� 
{m��m�� K| � hb � h� {?�=D|

where hb ~ {K� K� hb| is the bias \eld and h satis\es the magnetostatic equations

r� h ~ K� r � b ~ K� b ~ h�m� {?�=J|

The only free parameters are now the quality factor 
2 the dissipation constant �2

and the bias \eld hb"

The remainder of this section is devoted to a discussion of the hamiltonian struc@

ture associated with the Landau@Lifshitz equation at vanishing dissipation {� ~ K|"

Then we write

�m� {m� f| ~ K� m� ~ =� {?�=H|

where the e]ective \eld f is still given by Eq" {?"=D| and may be expressed entirely in

terms of the magnetization once the magnetostatic \eld h is determined by solving

the linear system {?"=J|" Now a conserved energy functional W ~W {m| exists such

that the e]ective \eld is obtained through the general relation

f ~ ��W
�m

� {?�=P|

where the symbol � denotes the usual functional derivative" Equation {?"=P| together

with Eq" {?"=H| imply that the functional W is indeed conserved2 and that {?"=H| is

the Hamilton equation associated with the hamiltonianW endowed with the Poisson@

bracket relations

fmi{x|�mj{x
�|g ~ �ijkmk{x|�{x � x�|� {?�=>|

which are reminiscent of the spin commutation relations" Here �ijk is the DD antisym@

metric tensor and the usual summation convention for repeated indices is invoked"

In order to display the explicit form of the energy functional we write

W ~We �Wa �Wb �Wm� {?�=W|
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where the four terms correspond to the exchange2 anisotropy2 bias2 and mangetostatic

\eld" The more or less obvious choice of the exchange energy2

We ~

Z
wedV� we ~

=

?
{�im � �im|� {?�=B|

where we is the corresponding energy density2 requires some quali\cation in the pres@

ence of boundaries" Thus we consider the functional variation

�We ~

Z
{�i�m � �im|dV ~

I
{�m � �im|dSi �

Z
{�m ��m|dV� {?�?K|

where the surface@element vector dS ~ {dS�� dS�� dS�| is perpendicular to the bound@

aries of the ferromagnetic medium" Equation {?"?K| would yield the desired relation

Fe ~ ��We

�m
~ �m� {?�?=|

if the surface integral were absent� that is2 if the gradient of the magnetization along

the normal to the surface vanished" We write symbolically

�m

�n
~ K� {?�??|

which will be viewed as a boundary condition to be imposed at the free boundaries of

the medium2 in addition to the familiar boundary conditions of magnetostatics" This

�unpinned� boundary condition was previously employed in the study of ferromag@

netic \lms _=` and will play an important role in the following"

On the other hand2 the usual bulk expressions for the anisotropy and bias {Zee@

man| energies2

Wa ~

Z
wadV� wa ~




?
{m�

� �m
�
�|

Wb ~

Z
wbdV� wb ~ hb{=�m�|�

{?�?D|

are free of boundary ambiguities and obviously yield the corresponding contributions

to the e]ective \eld through the general relation {?"=P|" Note that in the Zeeman

energy we have subtracted the {trivial| contribution from the state

m� ~ {K� K� =|� {?�?J|

which describes a fully saturated ferromagnet and will thus be referred to as the

ground state" Con\guration {?"?J| is the simplest example of a static solution of the

Landau@Lifshitz equation"
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Boundary e]ects are also important in the de\nition of the magnetostatic energy

and will be described here in some detail" We begin with the reasonable ansatz

Wm ~
=

?

Z
h�dV� {?�?H|

where it is understood that the integral extends over all volume2 inside and outside

the material2 and that the \eld h is expressed in terms of the magnetization through

Eqs" {?"=J|" However2 in order to justify that {?"?H| is an appropriate choice of the

mangetostatic energy within the context of the Landau@Lifshitz equation2 one must

show that

h ~ ��Wm

�m
� {?�?P|

Such a demonstration is not completely straightforward because of the implicit de@

pendence of h on the magnetization"

To make this dependence explicit we introduce a scalar potential � from

h ~ �r�� �� ~ {r �m|� {?�?>|

and solve the Poisson equation to obtain

�{x| ~
=

J�

�I
m{x�| � dS�
jx� x�j �

Z
{r �m|{x�|
jx� x�j dV �

�
� {?�?W|

where the surface integral extends over the boundaries of the ferromagnetic medium2

if any2 and the volume integral over the bulk of the medium" Applying a careful

partial integration yields the equivalent relation

�{x| ~
=

J�

Z
{x � x�| �m{x�|

jx� x�j� dV �� {?�?B|

whose advantage is that it contains no derivatives of the magnetization and is valid

irrespectively of the presence of boundaries"

As an elementary illustration we consider a ferromagnetic \lm of thickness d

{see Fig" =| and assume that the magnetization is equal to its ground@state value

{?"?J| inside the \lm {region I| and vanishes outside {regions II and III|" An explicit

calculation of the integral in Eq" {?"?B| then yields

� ~

���
��
d	?� x� 
 d	?

x�� �d	? � x� � d	?

�d	?� x� � �d	?�
{?�DK|
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Fig� �� Conventions concerning a ferromagnetic �lm of thickness d� The �lm extends to in�nity in
the x� and x� directions�

Therefore the magnetic \eld is given by h ~ �r� ~ �m� inside the \lm and vanishes

outside" The magnetic induction b ~ h�m� vanishes everywhere"

We now return to the magnetostatic energy {?"?H| and replace h� by �h � {r�|"

An application of the divergence theorem and Eqs" {?"=J| then gives

Wm ~
=

?

�I
�{m � dS|�

Z
�{r �m|dV

�
� {?�D=|

where we have also used the fact that � is continuous across the boundary and that

the di]erence between the normal components of the magnetic \eld on the two sides

of the boundary is equal to the normal component of the magnetization" A further

partial integration transforms {?"D=| into

Wm ~ �=
?

Z
{h �m|dV� {?�D?|

which shares with Eq" {?"?B| the property that it is valid whether or not boundaries

are present" Hence2 using this form of the magnetostatic energy and a magnetic \eld

calculated from Eq" {?"?B|2 the basic relation {?"?P| is established by straightforward

manipulations"

We complete the discussion of the canonical structure noting that the Landau@

Lifshitz equation is actually a constrained hamiltonian system" Nevertheless one may

resolve the constraintm� ~ = explicitly using2 for example2 the spherical parametriza@

tion

m� ~ sin�cos�� m� ~ sin� sin �� m� ~ cos�� {?�DD|

The energy functional is then parametrized in terms of the two independent \elds �

and � and the general form of the Landau@Lifshitz equation reads

sin� �� ~ ��W
��

� sin� �� ~
�W

��
� {?�DJ|
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which suggests that the pair of \elds

� ~ cos� and � {?�DH|

is a canonical pair5

�� ~
�W

��
� �� ~ ��W

��
� {?�DP|

However most of the special dynamical features of the ferromagnetic continuum

emerge exactly when the de\nition of the canonical variables {?"DH| encounters am@

biguities due to a possibly nontrivial topological structure of the magnetization"

Finally we return brieUy to the issue of dissipation and rewrite Eq" {?"=?| in the

equivalent form

�m� {m�G| ~ K� m� ~ =�

G ~ ��f� ��{m� f|� �� ~
=

= � ��
� �� ~

�

= � ��
�

{?�D>|

We then examine the rate at which the energy changes in the presence of dissipation5

�W ~

Z �
�W

�m
� �m

�
dV ~ ��

Z
�m� dV� {?�DW|

whish is negative when the dissipation constant � is positive"

�� Gyrovector and the stress tensor

The key quantity for the description of both topological and dynamical properties

of the magnetization is the gyrovector or vorticity 
 ~ {��� ��� ��| whose cartesian

components are given by

�i ~ �=
?
�ijk{�jm� �km| �m� {D�=|

The former terminology was introduced in the early work _J` but the latter seems

more appropriate in view of the signi\cant formal analogy of the vector 
 with ordi@

nary vorticity in Uuid dynamics" Nevertheless one should stress that 
 is not related

to actual rotational motion in the ferromagnetic continuum but rather to the topo@

logical complexity of the magnetization" For the moment2 we are concerned with

instantaneous properties of the unit vector \eld m ~ m{x| at some instant t that is

not displayed explicitly" Questions of dynamics will be addressed later in this section"
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An immediate consequence of the de\nition {D"=| and the constraint m� ~ = is

that the vorticity \eld is solenoidal2

r � 
 ~ K� {D�?|

and hence the corresponding vortex lines cannot terminate but at the boundaries of

the ferromagnetic medium" The precise nature of vortex lines is revealed by expressing

the vorticity in terms of the canonical variables {?"DH|2


 ~r��r�� {D�D|

a relation that suggests an analogy of � and � with the Clebsch potentials of Uuid

dynamics _=J`" It also establishes that vortex lines are de\ned as the intersections of

the two surfaces �{x| ~ c� and �{x| ~ c� where c� and c� are arbitrary constants"

In other words2 vortex lines are the curves along which the magnetization vector m

remains constant"

Such a simple de\nition of vortex lines allows a transparent topological classi\@

cation of the possible distributions of magnetization" We shall consider the physically

interesting class of con\gurationsm ~m{x| that are di]erentiable functions of posi@

tion and approach the ground state of the ferromagnet at spatial in\nity5

m{x| ��
jxj��

m� ~ {K� K� =|� {D�J|

In the absence of boundaries the medium extends to in\nity in all directions and

vortex lines are closed curves" One may then de\ne a degree of knottedness2 or

helicity2 of tangled vortex lines by analogy with related work in Uuid dynamics _=H`

and magnetohydrodynamics _=P`" The current status of the topological aspects of the

above subjects may be traced from Ref" _=>`" In the present context2 such a degree

is more appropriately referred to as the Hopf index _=W`" In view of the boundary

condition {D"J| the DD space is isomorphic to the sphere S� and a speci\c con\guration

m ~m{x| establishes a map from S� to S�2 where S� is the ?D sphere de\ned from

the constraint m� ~ =" Such a map is characterized by the integer@valued Hopf index

de\ned as follows" Let m{x| ~ m� and m{x| ~ m� be any two vortex lines where

m� and m� are constant unit vectors" The linking number of these two curves is

independent of the speci\c choice of the pair of vortex lines and is called the Hopf

index of con\guration m{x|"

In order to make a \rst contact with the dynamics we also quote an analytical

de\nition of the Hopf index" The solenoidal vorticity is derived from a vector potential

a2


 ~r� a� {D�H|
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and the Hopf index is given by

N ~
=

J�

Z
{a � 
|dV� {D�P|

Although the vector potential is unique only to within a gauge transformation2 N is

gauge invariant and may be expressed entirely in terms of 
 by

N ~
=

{J�|�

Z
�ijk�i{x|

{x � x�|j
jx� x�j� �k{x

�|dV dV �� {D�>|

The remarkable fact is that the above integral is always equal to an integer2 and its

explicit values coincide with those obtained through the linking@number de\nition

given in the preceding paragraph _=B2 ?K`"

It would appear that a simpler {local| expression for the vector potential may be

derived from Eq" {D"D| which suggests that

a ~ �r�� {D�W|

provided that � and � are di]erentiable functions of position" However inserting {D"D|

and {D"W| in {D"P| would then lead to a vanishing Hopf index" Putting it di]erently2

the canonical variables � and � cannot be both di]erentiable for \eld con\gurations

with N 	~ K2 even though the magnetization is always assumed to be di]erentiable"
Indeed explicit examples worked out in the literature _H2 ?=` demonstrate that the

magnetization reaches the north as well as the south pole of the spherem� ~ = along

certain {vortex| lines where the angular variable � becomes multivalued when N 	~ K"
While these di^culties are largely irrelevant2 because of the gauge@invariant de\ni@

tion {D">|2 they already provide an important hint concerning dynamics" Note that

the vector potential {D"W| coincides with the familiar expression for the momentum

density associated with the Hamilton equations {?"DP|" We thus conclude that the

di^culties discussed in connection with Eq" {D"W| render ambiguous also the usual

linear momentum"

We defer for the moment further discussion of dynamics and return to the ques@

tion of topological classi\cation in the presence of boundaries" Speci\cally we consider

the \lm geometry of Fig" = where vortex lines need not be closed but may terminate at

the boundaries of the \lm" Hence a de\nition of a Hopf index is no longer meaningful"

Instead we consider the Uux of vorticity

Q ~
=

J�

Z
S


 � dS {D�B|
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through any open surface S that is contained within the \lm but extends to in\nity

on all sides" The Uux is independent of the speci\c choice of a surface with the above

properties2 thanks to r � 
 ~ K and an elementary application of the divergence
theorem" In particular2 S may be a plane perpendicular to the third axis2

Q ~
=

J�

Z
��dx�dx�� �d

?
� x� �

d

?
� {D�=K|

where the double integral is independent of x�" In fact2 this integral coincides with

the Pontryagin index or winding number _=B` of the magnetization and is also integer@

valued {Q ~ K��=��?� � � �|" Again2 when Q 	~ K2 the canonical variables � and �
cannot be de\ned everywhere and the corresponding linear momentum is ambiguous"

To be sure2 the topological classi\cation described above does not assume that

the con\guration m ~ m{x| solves the Landau@Lifshitz equation but merely that it

obeys some general physical restrictions such as di]erentiability and Eq" {D"J|" Of

course2 this classi\cation would become especially relevant if stationary solutions were

found with a nontrivial topology" In this respect2 we note that arguments of varying

completeness have been presented in the literature for the existence of magnetic vortex

rings with a nonvanishing Hopf index _H2 ?=` but a de\nite theoretical treatment and

actual observation are still lacking" Nonetheless magnetic bubbles with a wide range

of winding numbers have been observed in ferromagnetic \lms _=2 ?`" Finally2 if the

magnetization itself is allowed to be nondi]erentiable at isolated singular points2 one

is naturally led to a class of topological defects that are also characterized by a winding

number of the form {D"B| except that the surface S is now closed around a singular

point" Such defects have been observed in the bulk of the ferromagnetic continuum

and are called Bloch points _=2 ?`"

We now organize the various hints concerning the connection between topology

and dynamics by considering the time evolution of the vorticity {D"=|" An elementary

calculation based on the Landau@Lifshitz equation at vanishing dissipation2 Eq" {?"=H|2

leads to

��i ~ ��ijk�j {f � �km| ~ �ijk�j�k� {D�==|

where

�k � �{f � �km| ~
�
�W

�m
� �km

�
{D�=?|

is the �generalized force density� that appeared \rst in the work of Thiele _J`" We

take this calculation one step farther and write �k as a total divergence2

�k ~ ���k�� {D�=D|
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where �k� will be called the stress tensor and it is given by the general formula _H`

�k� ~ w�k� � �w

�{��mi|
�kmi� {D�=J|

where w is the energy functional" Equation {D"==| then reads

��i ~ �ijk�j���k� {D�=H|

and proves to be fundamental for our purposes _H`"

To complete this line of reasoning we must also supply an explicit expression for

the stress tensor" As a \rst step we insert in Eq" {D"=?| the e]ective \eld f of Eq"

{?"=D|5

�k ~ �
e
k � �

a
k � �

b
k � �

m
k �

� ek ~ �{�m � �km|� �ak ~ 
{m��km� �m��km�|�

� bk ~ �hb�km�� �mk ~ �{h � �km|�

{D�=P|

We then search for a tensor

�k� ~ �
e
k� � �

a
k� � �

b
k� � �

m
k� {D�=>|

that must lead to Eq" {D"=P| by applying the general relation {D"=D|" The \rst three

terms are simply

�ek� ~ we�k� � {�km � ��m|� �ak� ~ wa�k�� �bk� ~ wb�k�� {D�=W|

where we2 wa and wb are the energy densities de\ned in Eqs" {?"=B| and {?"?D|" The

construction of the magnetostatic contribution is slightly more involved but trial and

error leads to

�mk� ~ hkb� �
=

?
b��k�� {D�=B|

where the magnetic induction b ~ h �m is used mostly as a notational abbrevia@

tion" As usual2 it is understood that the magnetic \eld in Eq" {D"=B| is expressed in

terms of the magnetization through the magnetostatic equations {?"=J|" A repeated

application of these equations establishes the desired relation

���
m
k� ~ �{h � �km| ~ �mk � {D�?K|

A notable feature of the derived stress tensor �k� is that all but the magnetostatic

contributions are symmetric under exchange of the indices k and �" The asymmetry of
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the last term anticipates the physical fact that the orbital angular momentumand the

total magnetization are not separately conserved in the presence of the magnetostatic

interaction2 as we shall see shortly" A further interesting property is that the preceding

construction applies whether or not boundaries are present2 taking into account that

the magnetic induction b is equal to the magnetic \eld h outside the ferromagnetic

material where the stress tensor reduces to

�k� ~ �
m
k� ~ hkh� �

=

?
h��k�� {D�?=|

which is symmetric and satis\es the continuity equation

���k� ~ K {D�??|

by virtue of r�h ~ K ~r �h" Equation {D"??| is consistent with a vanishing Thiele
force density outside the material"

�� Conservation laws

The occurrence of ambiguities in the canonical de\nition of conservation laws

has already received considerable attention" Slonczweski _??` was apparently the \rst

to recognize that the usual de\nition of linear momentum fails for magnetic bubbles

with a nonvanishing winding number" Haldane _?D` and Volovik _?J` also addressed

the question from di]erent perspectives" But we believe that a simple as well as

complete resolution of this issue was given only in some recent work _H` where the

linear and angular momentumwere expressed as moments of the topological vorticity

{D"=|" Since the available studies address strictly ?D and DD models2 our aim here is

to establish unambiguous conservation laws in the context of the quasi@?D geometry

appropriate for the description of ferromagnetic \lms"

We consider the geometry of Fig" = where a \lm of constant thickness d extends to

in\nity in the {x�� x�| plane and the easy axis is perpendicular to the \lm" Therefore

the relevant symmetries are {i| translations in the {x�� x�| plane2 and {ii| azimuthal

rotations around the third axis" We shall show that the corresponding conservation

laws are the moments

I� ~

Z
x���dV� � ~ = or ?� {J�=|
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which are related to the linear momentum2 and the third component of the total

angular momentum

J ~ �� �� � ~
=

?

Z
����dV� � ~

Z
{m� � =|dV� {J�?|

where �� ~ x�� � x
�
� and hence the �orbital� angular momentum � is also expressed

as a moment of the vorticity� � is the total magnetic moment along the easy axis2

except that we have subtracted the trivial contribution from the ground state so that

� is \nite and negative" It should be noted that all volume integrals in Eqs" {J"=|

and {J"?| extend over region I of Fig" ="

Although the conservation laws quoted above have a similar appearance with

those derived for strictly ?D models _H`2 a proof of their validity is not obvious because

of potential boundary e]ects" We consider \rst the time evolution of the moments

{J"=|2

�I� ~

Z
x� ���dV ~ ��jk

Z
x��j���k�dV� {J�D|

where we have used the fundamental relation {D"=H| applied for i ~ D" Notation is

organized by asserting that Greek indices �� �� � � � assume only the two distinct values

= and ?2 corresponding to the two spatial coordinates x� and x�2 while Latin indices

i� j� � � � assume all three values2 as usual" We further introduce the ?D antisymmetric

tensor ��� 2 whose elements are ��� ~ K ~ ��� and ��� ~ = ~ ����2 and invoke the
summation convention for repeated indices without exception" Then

�I� ~ ���

Z
x��������dV ~ ���

Z
_��{x������| � ��������`dV� {J�J|

where both terms in the integrand are in the form of a total divergence" Since the \lm

extends to in\nity in the x� and x� directions2 the \rst integral vanishes for either

� ~ = or ? provided that the magnetization exhibits a reasonable behavior at large

x� or x�" By reasonable we mean that the magnetization approaches its ground@state

value su^ciently fast so that the energy of the con\guration is \nite" Then we may

write
�I� ~ ����

Z
�����dV� {J�H|

where the integrand is also a total divergence but the integral need not vanish because

the Latin index � is summed over all three values2 � ~ =� ? and D2 and may lead to a

nonvanishing contribution from the \lm boundaries2 namely

�I� ~ ����

	

� Z
x��d��

���dx�dx� �
Z

x���d��

���dx�dx�

�

� � {J�P|
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where the tensor elements ��� are evaluated right inside the boundaries and are

certainly not equal to zero"

However we may now return to the explicit form of the stress tensor given in

Section D and apply it for ��� with � 	~ D to obtain

��� ~ �{��m � ��m| � h�b�� {J�>|

which must be evaluated at the boundaries of the \lm where ��m ~ K on account of

the unpinned boundary condition {?"??|" Hence

���{x�� x�� x� ~ �d	?| ~ h�b�� {J�W|

where we further note that the combination of \elds h�b�� with � ~ = or ?2 is con@

tinuous across the boundaries thanks to the familiar boundary conditions of mag@

netostatics" The double integrals in Eq" {J"P| may thus be evaluated right outside

the boundaries where the stress tensor satis\es the continuity equation {D"??|" An

application of the divergence theorem in region II yields

K ~

Z
II

�����dV ~ �
Z

x��d��

���dx�dx�� {J�B|

and a similar relation for region III" The net conclusion is that both integrals in Eq"

{J"P| vanish and
�I� ~ K� {J�=K|

which is the desired result" We shall defer discussion of the interesting physical

consequences of Eq" {J"=K| until a corresponding result is obtained for the angular

momentum"

The time evolution of the orbital angular momentum is governed again by the

fundamental relation {D"=H|" The analog of Eq" {J"J| now reads

�� ~
=

?
���

Z
���������dV ~

=

?
���

Z
_��{�

������| � ?x������`dV� {J�==|

where the \rst integral in the last step of Eq" {J"==| vanishes for both � ~ = and ?5

�� ~ ����
Z

x������dV ~ ���

Z
_��� � ��{x����|`dV� {J�=?|

Recalling that the volume integration extends over region I we writeZ
I

��{x����|dV ~

Z
x��d��

x����dx�dx� �
Z

x���d��

x����dx�dx�� {J�=D|
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where the double integrals may be calculated either above or below the \lm sur@

faces because the tensor elements ��� given by Eq" {J"W| are continuous across the

boundaries" An argument similar to that used in Eq" {J"B| then leads to

Z
x��d��

x����dx�dx� ~ �
Z
II

���dV� {J�=J|

and Z
x���d��

x����dx�dx� ~

Z
III

���dV� {J�=H|

Therefore Eq" {J"=D| may be rewritten as

Z
I

��{x����|dV ~ �
Z
II

���dV �
Z
III

���dV� {J�=P|

where the right@hand side is symmetric under exchange of the indices � and � be@

cause the stress tensor is symmetric outside the \lm" Hence inserting Eq" {J"=P|

in Eq" {J"=?| yields a vanishing contribution2 because of the contraction with the

antisymmetric tensor ���2 and

�� ~

Z
I

������dV� {J�=>|

To summarize2 if the magnetostatic interaction were absent2 the stress tensor

would be symmetric in all regions and Eq" {J"=>| would lead to a conserved orbital

angular momentum { �� ~ K|" In general2 using the complete stress tensor given in Eqs"

{D"=W| and {D"=B|2

������ ~ ���h�b� ~ ���h�m�� {J�=W|

and

�� ~

Z
{m�h� �m�h�|dV� {J�=B|

so that the orbital angular momentum is not by itself conserved"

Nevertheless a conservation law is obtained by including the total magnetic mo@

ment � of Eq" {J"?| whose time derivative is computed by applying directly the

Landau@Lifshitz equation {?"=H| to write

�� ~

Z
�m�dV ~ �

Z
{m� f|�dV� {J�?K|
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Now taking into account the explicit expression for the e]ective \eld f of Eq" {?"=D|

we \nd that the contributions from the anisotropy and bias \elds drop out from Eq"

{J"?K| and

�� ~ �
Z
{m��m�m� h|�dV� {J�?=|

To compute the exchange contribution we note thatZ
{m��m|dV ~

Z
�i{m� �im|dV ~

I
{m� �im|dSi� {J�??|

where the surface integral vanishes because of the unpinned boundary condition

{?"??|" Therefore

�� ~ �
Z
{m� h|�dV ~ �

Z
{m�h� �m�h�|dV� {J�?D|

Comparing this result with Eq" {J"=B| establishes that

�J ~ K� {J�?J|

or that the total angular momentum J ~ �� � is conserved"

Having thus demonstrated the validity of the conservation laws {J"=| and {J"?|

we now turn to the discussion of their physical content" We \rst note that these

conservation laws are free of all ambiguities even for con\gurations with a nontrivial

topological structure" Su^ce it to say that the potential nondi]erentiability of the

canonical variables � and � does not a]ect Eqs" {J"=| and {J"?| because they are

both expressed in terms of the vorticity which can be calculated directly from the

magnetization through Eq" {D"=|" A detailed discussion of this issue may be found in

_H` within a strictly ?D context and applies here with minor modi\cations" Hence we

will simply list the important points adapted to the present quasi@?D situation"

The conserved moments {J"=| are related to the linear momentum p ~ {p�� p�|

by

p� ~ ���I� � fp��mg ~ ���m� {J�?H|

where the Poisson@bracket relation establishes that p is indeed the generator of trans@

lations in the {x�� x�| plane" However p cannot be interpreted as ordinary momentum

for two related reasons" First2 the Poisson bracket of its two components2

fp�� p�g ~ �J�dQ� {J�?P|

does not vanish except for a vanishing winding number" Second2 under translations

in the plane2 x� � x� � c� and x� � x� � c�2 the moments transform according to

I� � I� � J�dQc�� {J�?>|
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which is a consequence of de\nition {J"=| and Eq" {D"=K|" The nontrivial transfor@

mation of the linear momentum {J"?H| implied by Eq" {J"?>| is surely an unusual

property because one would expect the momentum to remain unchanged under a

rigid translation" Nevertheless the above properties suggest a formal analogy with

the familiar electron motion in a uniform magnetic \eld2 the role of the latter being

played here by the winding number"

Therefore2 when Q 	~ K2 a more useful interpretation of the conserved moments
is obtained through the guiding center coordinates

R� ~

Z
x���dVZ
��dV

~
I�
J�dQ

� � ~ = or ?� {J�?W|

which are conserved and transform as {R�� R�| � {R� � c�� R� � c�| under a rigid

translation in the plane {x�� x�|� {x��c�� x��c�|" The latter property suggests that
the ?D vector R ~ {R�� R�| may be interpreted as the mean position of a magnetic

bubble with Q 	~ K in a ferromagnetic \lm2 and its conservation implies that such
a bubble cannot be found in a free translational motion" In other words2 Q 	~ K
bubbles are always spontaneously pinned or frozen within the ferromagnetic medium

provided that external perturbations are absent� in analogy with electrons undergoing

a ?D cyclotron motion in a uniform magnetic \lm2 in the absence of electric \elds"

The physical meaning of the orbital angular momentum � de\ned in Eq" {J"?|

is also unusual2 for it actually provides a measure of the size of a con\guration with

Q 	~ K" More precisely2 one may de\ne a mean squared radius from

r� ~

Z
_{x� �R�|

� � {x� �R�|
�`��dVZ

��dV

~
�

?�dQ
�R�� {J�?B|

which is directly proportional to � when the latter is de\ned with respect to the

guiding center {R ~ K|" Note that we use the abbreviated ?D notation R ~ {R�� R�|

and R� ~ R�
� � R

�
�" The radius r of Eq" {J"?B| plays an important role in our

theoretical development but does not2 in general2 coincide with the naive radius at

which the third component of the magnetization vanishes {m� ~ K|" One should

also note that r would be a conserved quantity in the absence of the magnetostatic

interaction because the orbital angular momentum would then be by itself conserved"

In order to pursue further a meaningful discussion of dynamics2 one must \rst

ascertain the existence of interesting static solutions of the Landau@Lifshitz equation
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such as magnetic bubbles with a nonvanishing winding number� an issue addressed in

the following two sections" We shall return to a more detailed study of the implications

of the derived conservation laws for dynamics in Section >"

 � Virial theorems

A simple scaling argument due to Derrick _=D` leads to a virial relation that

must be satis\ed by any \nite@energy static solution of a nonlinear \eld theory" Since

Derrick1s relation is mainly used in the literature to establish the nonexistence of

nontrivial static solutions2 it is of some interest to demonstrate how the present theory

evades its potential consequences and leads to the observed wealth of magnetic bubbles

with practically any winding number _=`" However a generalization of the original

scaling argument to the present case is not completely straightforward2 because of

the \lm boundaries2 and is given below"

Static solutions are stationary points of the energy functional W ~ W {m| pro@

vided that the constraint m� ~ = is taken into account" For instance2 one may use

the spherical variables {?"DH| to write

�W

��
~ K ~

�W

��
� {H�=|

which are the static versions of the Hamilton equations {?"DP|" In this section2 we

shall neither write out nor solve the above equations explicitly but merely use them

to derive some general relations"

For the moment2 let us ignore the \lm boundaries and assume that the medium

extends to in\nity in all directions" We may then apply Derrick1s scaling argument in

a straightforward fashion" Suppose that � ~ �{x| and � ~ �{x| is a solution of Eqs"

{H"=| with {\nite| energyW ~We�Wa�Wb�Wm" The energy of the con\guration

�{�x| and �{�x|2 where � is some constant2 is then given by

W {�| ~
=

�
We �
=

��
{Wa �Wb �Wm|� {H�?|

By our hypothesis � ~ = is a stationary point of W {�| and thus W �{� ~ =| ~ K or

We � D{Wa �Wb �Wm| ~ K� {H�D|

which is a virial relation that must be satis\ed by any static solution with \nite energy"

Since all pieces of the energy are positive de\nite2 one must conclude from Eq" {H"D|
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that nontrivial static solutions with \nite energy do not exist in a DD ferromagnetic

continuum without boundaries"

The preceding derivation of virial relation {H"?| is clearly inapplicable in the

presence of boundaries" We thus seek to obtain the analog of this relation for the \lm

geometry of Fig" = by a method that was already employed in the simpler context of

Ref" _H` and leads to a series of virial theorems2 Derrick1s relation being the simplest

example" An alternative form of the Thiele force density is given by

�k ~
�W

��
�k� �

�W

��
�k� ~ ���k� {H�J|

and vanishes for static solutions satisfying Eqs" {H"=|" Therefore the stress tensor

satis\es the continuity equation

���k� ~ K {H�H|

within the ferromagnetic medium" Recalling that the stress tensor satis\es the conti@

nuity equation outside the \lm even for time@dependent solutions2 see Eq" {D"??|2 we

conclude that static solutions satisfy Eq" {H"H| everywhere"

A series of virial relations may now be derived by taking suitable moments of

Eq" {H"H| and by a systematic application of the divergence theorem" The simplest

possibility is Z
V

xj���k�dV ~ K� {H�P|

where the integration extends over some volume V that is left unspeci\ed for the

moment" The divergence theorem then yields

Z
V

�ijdV ~

I
S

xj�i�dS�� {H�>|

where we have e]ected a trivial rearrangement of indices and S is the surface sur@

rounding the volume V " It is understood that the region of integration is such that

the surface S does not cross the \lm boundaries because of potential discontinuities

that may render the divergence theorem invalid"

Thus we proceed with an application of Eq" {H">| in several steps" First we

consider the subset of relations obtained by restricting the indices i and j to the

values = or ?" Using our standard convention we write

Z
V

���dV ~

I
S

x����dS�� {H�W|
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where �� � ~ = or ?2 and subsequently apply this relation to each region I2 II or III

separately5 Z
I

���dV ~ S
�
�� � S��� �

Z
II

���dV ~ �S�
���

Z
III

���dV ~ S
�
���

{H�B|

where

S��� �
Z

x���d��

x����dx�dx� ~

Z
x���d��

x�h�b�dx�dx�� {H�=K|

Here we have recalled the boundary values of the tensor elements ��� from Eq" {J"W|

which are continuous across each boundary for � ~ = or ?" In fact2 the last two equa@

tions in {H"B| coincide with Eqs" {J"=J| and {J"=H| obtained in our earlier discussion

of conservation laws because the stress tensor satis\es the continuity equation outside

the \lm even for time@dependent \elds" However the \rst equation in {H"B| applies

only to static solutions" An immediate consequence of all three equations is the set

of relations Z
all volume

���dV ~ K� �� � ~ = or ?� {H�==|

where explicit surface contributions are no longer present" A special case that empha@

sizes the role of the magnetostatic interaction is obtained by contracting both sides

of Eq" {H"==| with the ?D antisymmetric tensor2Z
������dV ~

Z
{m�h� �m�h�|dV ~ K� {H�=?|

a relation that is consistent with Eqs" {J"=B| and {J"?D| since both the orbital angular

momentum � and the total magnetic moment � are time independent in a static

solution"

The absence of explicit surface terms in Eq" {H"==| is not surprising because

scaling arguments of the Derrick variety continue to apply in the x� and x� directions"

Speci\cally Eq" {H"==| may be arrived at also by performing the linear transformation

x� � ���x�����x� and x� � ���x�����x� in a static solution and by demanding that

the resulting energy W ~ W {�| be stationary at ��� ~ = ~ ��� and ��� ~ K ~ ���"

However the situation is di]erent when one or both indices i� j in Eq" {H">| are equal

to D"
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Actually some useful information on the latter case can be obtained directly from

the continuity equation {H"H| which is written as

���i� � ���i� ~ K {H�=D|

and implies that the double integrals
R
�i�dx�dx�2 with i ~ =2 ? or D2 are independent

of x� but may assume di]erent values in regions I2 II2 or III" In fact2 all integrals

vanish outside the \lm because they can be calculated at large jx�j where the tensor
elements vanish" For i ~ � ~ = or ? the integrals vanish also inside the \lm thanks

to Eq" {J"B|5 Z
���dx�dx� ~ K� � ~ = or ?� {H�=J|

for any x�" On the other hand2

Z
���dx�dx� ~

�
K� jx�j 
 d	?�

s� �d	? � x� � d	?�
{H�=H|

where s is constant throughout the \lm but need not vanish" Collecting the above

information we may also write Z
all volume

���dV ~ sd� {H�=P|

which should be contrasted with Eq" {H"==| where the right@hand side vanishes"

We have thus derived a number of virial relations that must be satis\ed by any

static solution" We have also gathered su^cient information to make contact with

relation {H"D| obtained for a strictly DD medium" Indeed Eqs" {H"==| and {H"=P| may

be combined to yield Z
tr�dV ~ sd� {H�=>|

where the integration extends over all volume2 tr� ~ ��� � ��� � ��� is the trace of

the stress tensor2 s the constant de\ned from Eq" {H"=H|2 and d the \lm thickness"

The trace is calculated by using the explicit expression of the stress tensor from Eqs"

{D"=W| and {D"=B|5

tr� ~ we � D{wa � wb| � {h � b|� D
?
b�� {H�=W|

where we� wa and wb are the exchange2 anisotropy and bias energy densities" We may

further insert in Eq" {H"=W| the magnetic induction b ~ h�m to write

tr� ~ we � D{wa � wb|� =
?
h� � J

�
�=
?
h �m

�
� D
?
m�� {H�=B|
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where the magnetostatic energy density appears both in the form entering Eq" {?"?H|

and that of Eq" {?"D?|2 while in the last term we must set m� ~ = within the \lm

and zero outside" Therefore a more explicit form of Eq" {H"=>| reads

We � D_Wa �Wb � {Wm �W ���
m |` ~ sd� {H�?K|

where we recognize the various pieces of the energy2 as in relation {H"D|2 and W
���
m

originates in the last term of Eq" {H"=B| and is equal to the magnetostatic energy of

the ground state con\guration m� ~ {K� K� =|"

Virial relation {H"?K| di]ers from {H"D| in two signi\cant ways" First2 a surface

term appears in the right@hand side which is entirely due to the \lm geometry and

is generally di]erent from zero" Second2 the {in\nite| magnetostatic energy of the

ground state2 W
���
m 2 is subtracted out" Now implicit in the derivation of {H"D| was the

assumption that the magnetostatic \eld vanishes at large distances2 in all directions2

so that the energy Wm is \nite" This assumption is clearly false in a ferromagnetic

\lm because h ~ �m� at large x� and x� and thus both Wm and W
���
m are in\nite"

Nevertheless the di]erenceWm�W ���
m appearing in Eq" {H"?K| is expected to be \nite

for reasonable solutions" Furthermore this di]erence is not positive de\nite" In fact2

using Eqs" {?"?H| {?"D?|2 we have Wm ~ �
R
{h �m� �

�
h�| dV so that

Wm �W ���
m ~ �

Z
{h �m� =

?
h� �
=

?
m�| dV ~ �

Z
{h�m|� dV 
 K� {H�?=|

with the equal sign when h ~ �m2 that is for a uniform con\guration only" So2 the
uniform magnetization con\guration has maximummagnetostatic energy" As a result

the magnetostatic \eld favors expansion of a domain with magnetization opposite to

that of the ground state2 i"e" it favors expansion of the bubble domains" This is

balanced by the exchange2 anisotropy and bias \elds to produce a stable bubble of

de\nite radius _D`" Therefore virial relation {H"?K|2 unlike {H"D|2 does not a priori

exclude nontrivial static solutions in a ferromagnetic \lm2 irrespectively of the sign

of the surface contribution in the right@hand side" An explicit example is worked out

in the following section where s is negative and Eq" {H"?K| is veri\ed"

!� The fundamental magnetic bubble

The construction of static solutions with a nonvanishing winding number is an is@

sue of signi\cant practical interest and occupied most of the early studies of magnetic
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bubbles _=2 ?`" Because of the long@range nature of the mangetostatic \eld and the

related e]ects of \nite \lm thickness2 writing out the static equations {H"=| explicitly

leads to a rather complex system that is not particularly illuminating" Hence the

question was addressed through approximate solutions in the limit of a large quality

factor 
 _D`2 variational methods _?H`2 and numerical simulations in the important spe@

cial case of the fundamental {Q ~ =| bubble _?P`" However2 in order to illustrate some

basic aspects of our theoretical development2 we shall need some detailed information

on the pro\le of a bubble that is not easily accessible from the early work" We have

thus decided to recalculate the Q ~ = bubble by a numerical method with a simple

physical origin"

Suppose that some initial con\guration with a given winding number Q evolves

according to the Landau@Lifshitz equation {?"D>| including dissipation" After a suf@

\ciently long time interval precession e]ects are suppressed and the con\guration

eventually relaxes to a static solution of the Landau@Lifshitz equation with the same

winding number" Since our aim in this section is only to obtain static solutions2 the

process may be accelerated using Eq" {?"D>| with a very large dissipation constant �"

On introducing the rescaled time variable � ~ t	�2 the � � � limit of Eq" {?"D>|
reads

�m

��
�m� {m� f| ~ K� m� ~ =� {P�=|

In view of Eq" {?"DW| the energy decreases when the con\guration evolves according to

either Eq" {?"D>| or its fully dissipative limit {P"=|" The advantage of the latter is that

it suppresses transients and leads to equilibrium with reasonable speed" Of course2

the calculated static solution is independent of the details of the initial con\guration

provided that the winding number is kept \xed" Thus the initial condition may be

chosen more or less at convenience and convergence may be improved by incorporating

any a priori information on the expected static solution"

A substantial simpli\cation occurs in the case of the fundamental bubble because

of its strict axial symmetry� that is2 invariance under a simultaneous rotation in the

{x�� x�| plane and a corresponding azimuthal rotation of the magnetization" It is then

convenient to use cylindrical coordinates de\ned from

x� ~ � cos�� x� ~ � sin�� x� ~ z� {P�?|

A strictly axially symmetric con\guration is of the general form

m� � im� ~ {m� � im�|e
i�� m� ~ mz {P�D|
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where the radial {m�|2 azimuthal {m�| and longitudinal {mz| components are func@

tions of only � and z2

m� ~ m�{�� z|� m� ~m�{�� z|� mz ~mz{�� z|� {P�J|

while they continue to satisfy the constraint

m�
� �m

�
� �m

�
z ~ =� {P�H|

The dissipative equation {P"=| becomes e]ectivelly two@dimensional and a signi\cant

simpli\cation of the numerical problem results"

Speci\cally2 when ansatz {P"D| is inserted in Eq" {P"=|2 the resulting equation

retains the same form except that the three@component vector m ~ {m��m��m�| is

formally replaced by {m��m��mz| and the e]ective \eld f by {f�� f�� fz| with

f� ~ �m� � m�

��
� 
m� � h��

f� ~ �m� � m�

��
� 
m� � h��

fz ~ �mz � hb � hz�

{P�P|

where the Laplace operator is reduced to

� ~
��

���
�
=

�

�

��
�

��

�z�
� {P�>|

hb is the bias \eld2 and h�2 h� and hz are the polar components of the magnetostatic

\eld" Actually2 the azimuthal component vanishes because

r �m ~ �m�

��
�
m�

�
�
�mz

�z
{P�W|

and hence the magnetostatic potential is a function of only � and z� � ~ �{�� z|"

Therefore

h� ~ ���
��

� h� ~ K� hz ~ ���
�z

� {P�B|

and the polar components of the magnetic induction are

b� ~ h� �m�� b� ~m�� bz ~ hz �mz� {P�=K|

For future reference we also quote some discrete symmetries of the reduced system

of equations" First2 given a static solution of the form {P"J|2 the con\guration

m�{�� z|� �m�{�� z|� mz{�� z| {P�==|
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is also a solution" Second2 the parity relations

m�{�� z| ~ �m�{���z|� m�{�� z| ~m�{���z|� mz{�� z| ~ mz{���z|�

h�{�� z| ~ �h�{���z|� h� ~ K� hz{�� z| ~ hz{���z|�
{P�=?|

are compatible with the evolution equation {P"=|" In other words2 if Eq" {P"=| is solved

with an initial condition satisfying relations {P"=?|2 the resulting static solution will

satisfy the same relations"

To complete the description of strictly axially symmetric con\gurations we return

brieUy to the conservation laws {J"=| and {J"?|" The relevant third component of the

vorticity reduces to

�� ~
=

�

�mz

��
� {P�=D|

Therefore the winding number calculated from Eq" {D"=K| is given by

Q ~
=

?

Z �

�

�mz

��
d� ~
=

?
_mz{�� z| �mz{K� z|` ~ =� {P�=J|

provided that the magnetization approaches its ground@state value mz ~ = at in\nity

and the value mz ~ �= at the origin" We further note the trivial fact that the
moments I� vanish and the guiding center coincides with the origin of the coordinate

system" Finally the orbital angular momentum is computed from Eqs" {J"?| and

{P"=D|2

� ~
=

?

Z d��

�d��

dz

Z �

�

�mz

��
?���d� ~ �

Z d��

�d��

dz

Z �

�

{mz � =|?��d�� {P�=H|

where we have performed a partial integration taking into account that mz ~ = at

in\nity" We then recognize in the right@hand side of Eq" {P"=H| the total magnetic

moment � of Eq" {J"?|" Hence � ~ �� and

J ~ �� � ~ K� {P�=P|

As expected2 the total angular momentum vanishes for a strictly axially symmetric

con\guration" A related fact is that the radius r calculated from Eq" {J"?B| with

R ~ K and � ~ �� satis\es the relation

� ~ �?�dr�� {P�=>|

which could also be arrived at by considering a crude model of a bubble where the

magnetization points toward the north pole2 m ~ {K� K� =|2 for � 
 r and toward the

south pole2 m ~ {K� K��=|2 for � � r"
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A� The numerical algorithm

Eq" {P"=| is the starting point for the derivation of a numerical relaxation algo@

rithm for the calculation of static solutions" For the calculation of the fundamental

bubble we shall use the magnetization components {P"J| taking advantage of its axial

symmetry2 so that the relaxation equations become e]ectively two@dimensional"

Although the principle of the method is very simple2 an e^cient solution of the

initial@value problem posed in Eq" {P"=| confronts us with a nontrivial numerical

task� at every step of the time evolution one must solve the Poisson equation {?"?>|

in order to determine the magnetostatic \eld h and subsequently the e]ective \eld f

from Eq" {P"P|" Calculation of the latter near the \lm boundaries should also take into

account the unpinned boundary condition {?"??|" The remainder of this subsection

will be devoted to the description of the details for the numerical calculation of the

fundamental bubble" Speci\cally we shall describe the approximations needed to

obtain a discrete version of Eq" {P"=|" The unpinned boundary conditions as well as

those entering due to the presence of the \lm surface will play an important role in

this procedure"

For the integration in time we use the simplest forward di]erence method2 that

is2 we substitute the left hand side of Eq" {P"=| by the simple discrete version of the

time derivative5
�m

��
� m{� � �� |�m{� |

��
� {P�=W|

The method is stable if the time step �� is chosen small enough" The values that may

be used depend on the spacing of the grid that is used for the discrete version of the

space derivatives of m" We also note that the discretization {P"=W| in time does not

preserve the magnitude of the vector m" Thus2 following a standard practice in this

thesis2 we normalize the vector m to unity at every time step2 so that the constraint

of constant magnitude of the magnetization is retained _?>`"

A two@dimensional numerical mesh will be used to describe the spatial variations

of the magnetization" A sketch of it is given in Fig" ?2 where the lattice sites are

denoted by black circles" In the vertical direction2 taken to be the z@direction the

spacing is uniform and equal to �z" In the horizontal direction we describe the

variations of m in the radial �@direction" We distinguish three regions there" First we

have the region in the bulk of the bubble where the magnetization is expected to vary

slowly and basically point to the south pole" Second2 the outer of the bubble region

where the magnetization is expected to point to the north pole" Between these two

regions we have the bubble domain wall where the magnetization changes quickly
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Fig� �� A sketch of the numerical mesh used for the time evolution of the Landau�Lifshitz equation
�denoted by black circles	
 and a corresponding mesh used for the numerical solution of the Poisson
equation �����	� The grids are both uniform in the vertical z�direction but they are both non�uniform
in the horizontal � direction� The upper surface of the �lm �z ~ d��	 is denoted by a solid line on
this �gure� The center of the �lm �z ~�	 is denoted by a dashed line� Note that the number of grid
points presented here as well as the relative distances have been chosen for the sake of clarity of this
sketch and do not correspond to actual number of points or relative distances used in the numerical
algorithm of this section�

from the south to the north pole state" We use a lattice constant �� for the bulk

of the bubble as well as for the outer of the bubble region2 while a \ner grid with

constant ��w is used to describe the domain wall"

Note that only the upper half of the \lm is drawn in Fig" ?2 but the values of

m at the lower half of the \lm are assumed to be known through the parity relations

{P"=?|" The upper surface of the \lm is at z ~ d	? where d is the \lm thickness

and it is marked by a solid line while the center of the \lm {z ~ K| is marked by a

dashed line" Note also that no grid points are taken on the \lm boundary but they

are only a distance �z	? from it" This convention will prove of signi\cant help in the

following and in particular2 it will render easier and more elegant the magnetostatic

\eld calculations"

The \lm is assumed in\nite in the �@direction" So our grid has to be long enough

in this direction" In fact2 we use a grid approximately two times the bubble radius

long2 beyond the bubble domain wall" We note here that an ideal domain wall is

exponentially localized and would not need such a long grid to be described" Never@

theless2 the magnetostatic \eld entering in our calculations is a long range \eld and is

responsible for a slow decay of the bubble domain wall magnetization to the ground

state" Our grid proves long enough to overcome this di^culty and we check that the
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magnetization vector has reached its saturation value m� ~ {K� K� =| before the end of

the numerical mesh in the �@direction"

In order to obtain a discrete version for the right hand side of Eq" {P"=|2 we

need to discretize the e]ective \eld f of Eq" {P"P| on the numerical mesh of Fig"

?" The anisotropy and bias \eld terms give us no trouble and it is straightforward

to be written at every lattice site" The calculation of the exchange \eld is a little

more involved" We calculate the \rst derivatives of the magnetization using central

di]erences while the second derivatives are calculated by the usual three point formula"

The relevant calculations near the \lm surface should take into account the unpinned

boundary condition {?"??|" Special attention must be paid to the lattice points where

the lattice spacing changes from �� to ��w" We use Taylor series expansions to \nd

the corresponding expressions for the derivatives in �2 at such points"

We now turn to the discussion of the calculation of the magnetostatic \eld which

proves to be by far the most involved among the \elds appearing in Eq" {P"P|" This is

because h is a non@local \eld and its calculation requires the solution of the boundary

value Poisson problem {?"?>|" We \rst note that the magnetostatic potential � as

well as the \eld h have \nite values2 not only in the \lm2 but also outside it" It is

thus unavoidable that we solve the Poisson problem in the whole space2 despite that

only the values of h inside the \lm need to be known for the relaxation algorithm"

The analytical solution to the Poisson equation {?"?>| is known in principle and

it is given in Eq" {?"?W| in integral form" So the calculation of h appears straight@

forward" But the numerical calculation of the triple integrals2 involved in {?"?>|2 is a

slow process" Since the \eld h should be calculated for every time step of the relax@

ation algorithm2 this method proves practically inapplicable" To complete this line

of reasoning we also mention that the denominator in the integrand in Eq" {?"?W|

vanishes at the grid points2 so that numerical calculation of improper integrals would

be involved in the computations"

To avoid such di^culties we decided to follow a discretization scheme for the

Poisson equation" We discretize Eq" {?"?>| on the sites of the lattice denoted by

white circles in Fig" ?" As opposed to the black circle lattice2 the present one extends2

not only inside2 but also outside the \lm" We also note that the present lattice has

points just on the \lm boundary2 a fact that will be useful in applying the boundary

conditions there" As a result2 the two lattices are nested2 that is2 every point of the

one lattice has four neighbors which belong to the other one"

The discretization of the Poisson equation on the lattice2 results in a large number

of coupled linear equations" A conjugate gradient method {CGM| has been used2
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which e^ciently solves this system by taking successive steps to approach the exact

solution" Such a method is most suitable to work in conjunction with our relaxation

algorithm" This is because2 the algorithm works iteratively changing the con\guration

only a little at every time step� so at every such step2 the CGM need only take a few

steps to adjust the potential � to the evolving con\guration" This method proves

very e^cient and rapid for our problem2 provided that the numerical mesh is not too

large"

The boundary conditions for the potential � enter the calculations" We use the

physical fact that � vanishes away from the bubble {either inside or outside the \lm|

provided that we subtract the uniform magnetization contribution" That is2 we have

the condition

�{x|�����{x| ��
jxj��
K� {P�=B|

where ���� is the uniform magnetization potential given in Eq" {?"DK|" Then we

formally have to solve the Poisson equation with the condition {P"=B|" In practice2

the values of � would be known at the edges of the lattice z ��2 ��� by virtue
of {P"=B| provided that this is long enough compared to the bubble1s radius" But since

the potential falls o] slowly away from the bubble2 we would need a very large lattice

in order to use {P"=B|" So2 we decided to calculate the values of �2 through Eq" {?"?W|2

at a series of sites around the bubble" Then2 the Poisson equation can be solved by

CGM within the region de\ned by this series of sites" Using such a combination of

methods2 the calculation of triple integrals is limited to only one series of sites on the

lattice while2 on the other hand2 the lattice needed for the CGM can be considerably

shortened" In order to end up with a lattice as short as possible for the CGM2 we

need calculate the values of � at a series of sites as close as possible to the \lm

surface" Nevertheless2 this may result to numerical errors during the calculation of

the integrals due to small denominators if we perform calculations too close to the

boundaries" Thus2 we perform the calculations at a horizontal series of sites a few

lattice sites above the \lm boundary" We also perform similar calculations at a vertical

series of sites2 to the direction � � �2 away enough from the bubble" To complete
this discussion we note that the relation �{z ~ K| ~ K holds true by virtue of the

parity relations {P"=?| and it can be used in the numerical algorithm"

On the \lm surface z ~ d	?2 we have to apply the usual boundary conditions of

electromagnetism" Namely2 the potential � should be continuous on crossing the \lm

surface2 while the normal to the surface component of h {hz| should be discontinuous2

the discontinuity being equal to the magnetization component mz at that point" We

notice that the \rst condition is easily applied thanks to the construction of our grid2
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having points just on the \lm surface" The second condition can be used to write the

derivatives of � normal to the \lm surface and obtained the discrete version of the

Poisson equation at the lattice sites on the \lm surface"

zΔ

Δρ

A B

CD

K

N M

Λ

Fig� 
� Sketch of a small part of the nested
lattices drawn in Fig� ��

The description of the calculation

of the magnetostatic \eld h is completed

by the presentation of a discrete version

of the term {P"W| used as a source term

for the numerical solution of the Poisson

equation" We shall also give a formula

for the derivation of h from the numeri@

cally calculated magnetostatic potential

�" Note \rst that an initial con\gura@

tion for the magnetization will be given

on the black circle sites of the lattice in

Fig" ?2 while the divergence of m need be calculated on the white circle sites" To

illustrate how this is done2 we have drawn in Fig" D a small part of the two nested

lattices inside the \lm" The derivatives of m at a generic white circle site K are

written in terms of the values of m at the four neighboring black circle sites by use

of the formulas

�m

��
{K| � =
?��
_m{B| �m{C|�m{A|�m{D| `

�m

�z
{K| � =
?�z
_m{C| �m{D| �m{A|�m{B| ` �

{P�?K|

Needless to say that the constant ��2 in the above formulas2 should be substituted

by ��w if {P"?K| are applied in the domain wall region" The value of m at K2 which

is also needed in the computation of {r �m|{K|2 is approximated by

m{K| � =
J
_m{A| �m{B| �m{C| �m{D|`� {P�?=|

The numerical error in formulas {P"?K| {P"?=| is of the order of the squared lattice

spacing" These formulas are used to obtain a discrete version of r �m{K| according
to Eq" {P"W|" The solution of the Poisson equation is then found by the CGM"

The result of the CGM algorithm is the calculation of the magnetostatic potential

� on the white circle lattice" But we notice now that the magnetostatic \eld h is

given by the derivatives of � through Eq" {P"B|" So that2 given � on the white circle

sites2 we can calculate h on the black circle sites by use of formulas analogous to
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{P"?K|" For instance the \eld at site C of Fig" D is given by

h�{C| ~ ���
��
{C| � � =

?��
_�{�| � �{M| ��{K| ��{N| `

hz{C| ~ ���
�z
{C| � � =

?�z
_�{M| ��{N|��{K|��{�| `

{P�??|

These remarks conclude the calculation of the e]ective \eld f on the lattice"

Now2 if Eq" {P"=| is solved for an initial condition with strict axial symmetry

and winding number Q ~ =2 it will eventually lead to a static solution with the same

symmetry and winding number" A simple choice of the initial con\guration is given

by the two@parameter family

m� ~ K� m� ~ �sechu� mz ~ tanhu� {P�?D|

with

u ~ ln{�	��| � {�� ��|	��� {P�?J|

which coincides with the variational ansatz employed by DeBonte _?H` treating the

constants �� and �� as variational parameters" The constant �� is the naive radius

of the bubble2 i"e"2 the radius at which the third component of the magnetization

vanishes2 while both �� and �� provide a measure of the wall width �w in a picture

where the bubble is viewed as a curved domain wall5

=

�w
~

du

d�

����
����

~
=

��
�
=

��
� {P�?H|

On this occasion we recall that the width of an ideal {straight| domain wall in an

in\nite medium is

�w ~

r
A

K
or
=p



{P�?P|

in the original or rationalized units2 respectively {see Section ?|" Needless to say2 for

our purposes the constants �� and �� need not be determined variationally because

the relaxation algorithm should lead to the true static solution for any choice of these

parameters" However convergence may be accelerated when con\guration {P"?D| is as

close as possible to the true bubble"

The description of the initial ansatz is completed noting that the � freedom in
Eq" {P"?D| reUects the discrete symmetry {P"==|" The speci\c choice of sign in m�

will be referred to as the polarity of the bubble2 the winding number being the same

{Q ~ =| for either polarity" Finally con\guration {P"?D| is independent of z and
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trivially satis\es the parity relations {P"=?|" Therefore the anticipated static solution

will satisfy the same relations2 even though it will develop a nontrivial z dependence"

At this point2 one must specify the true parameters of the problem2 namely the

quality factor 
2 the bias \eld hb and the \lm thickness d" We have aimed at providing

an illustration where the bubble radius is roughly equal to the \lm thickness and have

thus arrived at the speci\c values {in rationalized units|


 ~ ?� hb ~ K�D?� d ~ =P�w ~
=Pp


� {P�?>|

which belong to a parameter regime that is thought to be ideal for the formation of

magnetic bubbles _D`" A possible choice of the variational parameters in the initial

ansatz {P"?J| is accordingly given by �� ~ =W�w and �� ~ =�=�w but it is certainly

not unique" We \nally mention that in all of the ensuing graphical illustrations of

the fundamental bubble we invoke a slight departure from the rationalized physical

units introduced in Section ? and used throughout our theoretical development" Thus

distances will now be measured in units of the ideal domain wall width �w ~ =	
p

 ~

=	
p
? in order to emphasize the wall structure of the calculated bubble" For instance2

the \lm thickness will appear as d ~ =P"

We quote here the lattice constants used for the calculation of the bubble de@

scribed in this section" In the z@direction the uniform lattice constant is �z ~ K�H>

and corresponds to =J lattice sites to this direction for the half \lm which is used in

the numerical algorithm" We use ?K lattice sites in the �@direction to describe the bulk

region of the bubble" Since the bubble radius is found to be approximately equal to

the \lm thickness d ~ =P2 we have used the value �� ~ K�PP for the lattice constant"

At the domain wall we use a lattice spacing ��w ~ K�K>H in a series of WK lattice sites"

An other JK lattice sites are used from there on with a spacing �� ~ K�PP to describe

the region outside the bubble until the magnetization reaches its saturation value"

The value of the time step �� used2 depends on the above mentioned values of

the lattice spacing" We \nd that for the speci\c values used here2 the algorithm is

stable if the time step is chosen in the vicinity of �� ~ H� =K�	"

B� The solution

The calculated fundamental magnetic bubble is illustrated in several ways" We

mostly describe a Q ~ = bubble with positive polarity2 originating in the initial ansatz

{P"?D| with the upper sign in m�2 the results for negative polarity being inferred from



Ferromagnetic �lms ��

Fig� �� The calculated magnetization for the
fundamental �Q��	 magnetic bubble with pos�
itive polarity and parameters speci�ed by Eq�
�����	� Results are given at the �lm center �z��	
and at the upper boundary {z ~ d��|
 whereas
the corresponding results at the lower boundary
{z ~ �d��| may be inferred from the parity re�
lations �����	� Here and in all subsequent graph�
ical illustrations distance is measured in units of
the ideal wall width �w ~ ��

p
��

Fig� �� The calculated magnetic induction
for the Q�� bubble� see caption of Fig� �
for further explanations�

the discrete symmetry {P"==|" Thus in Fig" J we display the dependence of the

magnetization on the radial distance � at the \lm center {z ~ K| and near the upper

boundary {z ~ d	?|� the � dependence near the lower boundary {z ~ �d	?| may be
obtained from the parity relations {P"=?|" The corresponding results for the magnetic

induction are shown in Fig" H" One should keep in mind that the magnetostatic \eld

extends beyond the \lm boundaries2 but the calculated values will not be discussed



Ferromagnetic �lms ��

Fig� �� Illustration of the Q�� bubble with
positive polarity through the projection of
the magnetization vector �eld m on the
{x�� x�| plane� The bubble is Bloch�like at
the �lm center {x���	 and N�eel�like near
the boundaries {x� ~ �d��|�

Fig� �� Another view of theQ�� bubble through

the projection of m on the {x�� x�| plane�

further here"

Some important general features of

the fundamental bubble are already ap@

parent in Fig" P" If we view the bub@

ble as a curved domain wall2 the wall is

purely Bloch at the \lm center {m� ~ K|

and nearly N�eel at the boundaries where

the radial component m� achieves signif@

icant values while the azimuthal compo@

nentm� is small" A better view of the sit@

uation is obtained by plotting the projec@

tion of the magnetization vectorm on the

{x�� x�| plane in Fig" P� whereas Fig" >

illustrates the projection on a plane that

contains the easy axis2 which is chosen

to be the {x�� x�| plane without loss of

generality thanks to the axial symmetry"

The case of a Q ~ = bubble with

negative polarity may be inferred from

Eq" {P"==| applied2 for example2 to Fig"P"
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The reUection m� � �m� will reverse the sense of circulation of the magnetization

at the \lm center but will not signi\cantly a]ect the picture at the boundaries where

m� is small"

Having thus provided an overall view of the fundamental bubble2 we now turn

to the description of some important details" The simplest way to analyze the \ne

structure of the bubble is by recalling the concept of a vortex line introduced in

Section D" We \rst restate the condition of strict axial symmetry in terms of the

spherical variables {?"DD|5

� ~ �{�� z|� � ~ �� �{�� z|� {P�?W|

where the functions � and � are independent of the angle � and are related to the

polar components of the magnetization by

cos � ~mz� � ~ arctan{m�	m�|� {P�?B|

Therefore a vortex line is equivalently de\ned as the intersection of the two surfaces

mz{�� z| ~m�� �� �{�� z| ~ ��� {P�DK|

where m� and �� are arbitrary constants in the intervals _�=� =` and _K� ?�`2 respec@
tively"

The \rst relation in {P"DK| de\nes a curve in the {�� z| plane2 illustrated in Fig" W

for three typical values of m�2 and the surface obtained by a simple revolution of the

curve around the third axis has the shape of a barrel" Of special interest is the case

m� ~ K which may be used to de\ne a {naive| radius of the bubble �� ~ ��{z| as the

radius of the circular intersection of the barrel with the {x�� x�| plane at altitude z"

We use the same symbol for the naive radius as for the variational parameter �� in

Eq" {P"?J| because the two coincide within the initial ansatz" The current de\nition

of the radius is especially useful at the \lm boundaries where �� is the distance from

the center of the bubble at which a sharp change in contrast takes place {see Fig"

P| that may be detected experimentally" In our numerical example we found that

��{z ~ �d	?| ~ =H�B�w which should be compared with the value at the \lm center
��{z ~ K| ~ =P�D�w2 thus providing a measure of bubble bulging _D`" We also quote

the average value of the naive radius

��� ~
=

d

Z d��

�d��

��{z|dz ~ =P�=H�w {P�D=|



Ferromagnetic �lms ��

Fig� �� The calculated curves mz{�� z| ~
m� for m���
 � ��� �upper entry	 and the
z�dependence of � along a vortex line �lower
entry	 for the Q�� bubble with positive po�
larity� see the text for further explanations�

and compare it with the radius r de\ned

by Eq" {J"?B| and related to the total

magnetic moment by Eq" {P"=>|5

r ~ =P�?=�w� {P�D?|

The radius r appears naturally within

the theoretical development2 as will be@

come evident in the discussion of skew

deUection in Section >2 whereas the

naive radius �� is closer to what is actu@

ally measured in an experiment" There@

fore the observed proximity of the nu@

merical values quoted in Eqs" {P"D=| and

{P"D?| is of special signi\cance" Note in@

cidentally that the calculated bubble ra@

dius for the speci\c parameters {P"?>| is

approximately equal to the \lm thick@

ness"

Next we consider the second re@

lation in {P"DK|" We will not at@

tempt to draw the corresponding sur@

faces2 for various values of the constant

��2 but examine directly their inter@

sections {vortex lines| with a barrel at

given m�" Thus in Fig" W we also dis@

play the z@dependence of � along a vor@

tex line� that is2 we plot the function

�{�{z�m�|� z| � �{z�m�| where �{z�m�| is the root of the algebraic equation

mz{�� z| ~ m� which depends on z and the particular value of m�" At m� ~ K2

the root �{z�m� ~ K| reduces to the naive radius ��{z| discussed in the preceding

paragraph" Actually Fig" W shows the z@dependence of � along a vortex line only

for m� ~ K2 but our numerical simulation furnished values for � that are virtually

indistinguishable when m� varies in the region jm�j � =	?" Nevertheless departures
from such a universal behavior occur for jm�j 
 =	?"

The preceding \ndings are best summarized by the sketch of a typical vortex line
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A

B

Fig� �� Sketch of a typical vortex line for
a Q�� bubble with positive polarity� The
sense of twist is reversed for a Q�� bubble
with negative polarity�

given in Fig" B" Since the sum � �

�{�{z�m�|� z| must remain equal to a con@

stant ��2 a vortex line originating at a point

A of the upper boundary2 i"e"2 at given ��

and m�2 proceeds downward along the sur@

face of the barrel at the same time twist@

ing by an amount determined by the varia@

tion of � illustrated in the lower part of Fig"

W" The vortex line eventually terminates at

the lower boundary2 at a point B2 having

su]ered a total twist �� ~ ��� ~ �{z ~

d	?�m�|��{z ~ �d	?�m�| which generally

depends on m�" For the speci\c example

m� ~ K shown in Fig" W the calculated to@

tal twist is �� ~ =HW�" This value remains

practically the same in the range jm�j � =	?
but deviations do occur for jm�j 
 =	?"

Finally we note that the vortex lines twist around the surface of a barrel counter@

clockwise for the Q ~ = bubble with positive polarity considered in our illustrations�

the twist takes place clockwise for the Q ~ = bubble with negative polarity obtained

through the discrete symmetry {P"==|"

Returning to the topological classi\cation discussed in Section D2 we note that

all vortex lines in the fundamental magnetic bubble terminate at the \lm boundaries

and do not tangle with each other" Hence a de\nition of a Hopf index is not possible2

as expected for a \lm of \nite thickness" On the other hand2 the Uux of vorticity

through the plane {x�� x�| is equal to J� for all z2 thus leading to a unit winding

number"

We also return to the virial relations derived in Section H and comment on the

manner they are satis\ed in our explicit calculation of the fundamental bubble" Be@

cause of the strict axial symmetry the surface integrals S��� of Eq" {H"=K| reduce

to

S��� ~ S
���� � {P�DD|

where ��� is the ?D Kronecker delta and

S� ~
=

?

Z �

�

�h�bz?��d�� {P�DJ|

x���d��
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Hence relations {H"B| applied for � 	~ � simplify to
Z

���dV ~ K ~

Z
���dV� {P�DH|

which are valid in each region I2 II or III separately" In fact2 using the explicit

expression of the stress tensor for an axially symmetric con\guration2 Eqs" {P"DH|

reduce to the single equation Z
h�m�dV ~ K� {P�DP|

which is automatically satis\ed thanks to the parity relations {P"=?|" Furthermore

Eqs" {H"B| applied for � ~ � ~ = or ? yield for the various regions

Z
I

���dV ~

Z
I

���dV ~ S
� � S��

Z
II

���dV ~

Z
II

���dV ~ �S��

Z
III

���dV ~

Z
III

���dV ~ S
��

{P�D>|

as well as Z
���dV ~ K ~

Z
���dV� {P�DW|

when the integration extends over all volume" The above relations were veri\ed

explicitly in our numerical simulation and were thus used to test its validity" We

further veri\ed the Derrick@like relation {H"?K| in our speci\c numerical example where

We ~ J=DJ2 Wa ~ PKKW2 Wb ~ ==BH?2 Wm �W
���
m ~ �??H>D2 and sd ~ �B>=D� here

energy is measured in the rationalized units introduced in Section ?"

"� Skew de#ection

We are thus ready to study the main dynamical question posed in the Introduc@

tion" A static bubble with winding number Q initially located at2 say2 the origin of

the coordinate system is subjected to an external magnetic \eld

hext ~ {K� K� hext|� hext ~ hext{x� t|� {>�=|
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that points along the easy axis and its strength is some prescribed function of position

and time" Our task is to determine the response of the bubble to such an external

probe" In the absence of dissipation {� ~ K| the relevant dynamical equation is Eq"

{?"=H| extended according to

f� f� hext� {>�?|

in order to include the e]ect of the applied \eld {>"=| which is turned on at t ~ K"

One must then solve the resulting equation with an initial condition provided by the

static bubble and calculate the magnetization m ~m{x� t| at all later times"

However a great deal can be learned without actually solving this initial@value

problem thanks to the special nature of the conservation laws derived in Section J"

Since the position of the guiding center R ~ {R�� R�| is conserved in the absence of

dissipation and external \elds other than a uniform bias \eld2 examining the rate at

which R changes in the presence of the \eld {>"=| should yield direct information on

the response of the bubble" Hence the vorticity 
 now obeys the relation

��i ~ �ijk_�j���k� � �j {hext � �km|`� {>�D|

which is Eq" {D"==| or {D"=H| extended according to Eq" {>"?|" In particular2 the

evolution of the third component of the vorticity is governed by

��� ~ ���_������� � ��{hext � ��m|`� {>�J|

where we have returned to the ?D notation for Greek indices2 as in Section J2 except

for the Latin index � that is summed over all three values" The evolution of the

moments I� of Eq" {J"=| is then given by

�I� ~

Z
���x�_������� � ��{hext � ��m|`dV� {>�H|

where the contribution of the \rst term may be shown to vanish by reasoning com@

pletely analogous to that used in the derivation of the conservation laws in Section

J" Implicit in the above statement is the assumption that the applied \eld {>"=| does

not a]ect signi\cantly the con\guration of the bubble at large distances or2 equiva@

lently2 it does not a]ect the ground state of the ferromagnet" We shall return to this

assumption later in this section" Thus the evolution of the moments in the presence

of the applied \eld is governed by

�I� ~ �
Z

���x���{hext��m�|dV ~

Z
���hext��m�dV� {>�P|



Ferromagnetic �lms ��

where we have taken into account that the \eld {>"=| points in the third direction and

have also performed an elementary partial integration" On the assumption thatm� �
= su^ciently fast at spatial in\nity2 one may perform a further partial integration to

write

�I� ~ �
Z
{�����hext|{m� � =|dV� {>�>|

Also recall that the winding number is conserved even in the presence of the applied

\eld provided that the latter does not destroy the ground state of the ferromagnet"

Therefore the drift velocity of the bubble may be inferred from Eqs" {J"?W| and {>">|5

V� � �R� ~ � =
J�dQ

Z
{�����hext|{m� � =|dV� {>�W|

This result for the drift velocity is not completely explicit because the third compo@

nent of the magnetization appearing under the integral sign must still be determined

through a detailed solution of the initial@value problem described in the introductory

paragraphs of this section" However Eq" {>"W| already contains the essential infor@

mation concerning the experimentally observed skew deUection of magnetic bubbles2

for it suggests that the drift velocity will acquire a signi\cant component mainly in a

direction perpendicular to the gradient of the applied \eld"

In order to appreciate the physical content of Eq" {>"W| the applied \eld is written

as

hext ~ gx�� g ~ g{x� t|� {>�B|

where the �gradient� g may still be a function of position and time" The two compo@

nents of the drift velocity {>"W| are given equivalently by

V� ~ � =
J�dQ

Z
{x���g|{m��=|dV� V� ~

=

J�dQ

Z
{g�x���g|{m��=|dV� {>�=K|

The \eld is now restricted to the physically interesting situation where the gradient

is nearly spatially uniform2 i"e" g � g{t|2 over a large region surrounding the bubble

and drops to zero outside that region" Under such conditions all implicit assumptions

made in deriving Eqs" {>"=K| are satis\ed" In particular2 all partial integrations

performed on the assumption that the \eld does not signi\cantly alter the behavior

of the bubble at large distances are justi\ed" Nevertheless it is clear from Eqs" {>"=K|

that an especially transparent result would be obtained in the ideal limit where the

gradient g is spatially uniform everywhere" Then

g ~ g{t|� V� ~ K� V� ~
�g

J�dQ
� {>�==|
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where � is the total magnetic moment de\ned in Eq" {J"?|"

A completely uniform gradient would imply an in\nite \eld at x� � �� oppos@
ing the magnetization in its ground state m ~ {K� K� =|" Therefore2 in the presence

of some dissipation2 the magnetization would align with the applied \eld almost im@

mediately after the \eld is turned on and assume the value m ~ {K� K��=| far in
the left plane" Such an instance would destroy the original topological structure of

the bubble and obscure the question of skew deUection" Nevertheless the preceding

criticism does not apply in the case of vanishing dissipation considered so far because

the magnetization would then precess wildly around the easy axis far in the left plane

but never align with the external \eld" Hence the uniform limit considered in Eq"

{>"==| is mathematically meaningful in the absence of dissipation and provides the

clearest2 albeit idealized2 illustration of the main theme discussed in this chapter"

Thus the guiding center of a bubble with Q 	~ K moves in a direction perpendic@
ular to the applied gradient2 in analogy with the familiar Hall motion of an electric

charge in a uniform magnetic \eld {the analog of the winding number| and a uniform

electric \eld {the analog of the uniform magnetic@\eld gradient|" Furthermore the

drift velocity {>"==| is expressed in terms of quantities with a simple physical mean@

ing" However this expression for the drift velocity is not completely explicit because

the total moment is not conserved during the application of the gradient and thus

acquires some time dependence � ~ �{t| that can be determined only through a

detailed solution of the initial@value problem" The moment � would be conserved if

the magnetostatic \eld were absent" Indeed the orbital angular momentum � and the

total magnetic moment � would then be separately conserved in the absence of the

applied \eld and2 while the latter violates conservation of � because it breaks rota@

tional symmetry2 it does not a]ect � because it points in the third direction" Under

such conditions Eq" {>"==| provides an explicit expression for the drift velocity since

the conserved moment � could then be calculated from the initial con\guration of

the {static| bubble" This situation occurs in the case of the ?D isotropic Heisenberg

model where an analytical result for the drift velocity was given in Ref" _H` and was

later veri\ed by a numerical simulation in Ref" _=K`" Detailed numerical simulations

on this model will be presented in the next chapter"

Returning to the realistic case where the magnetostatic \eld is not negligible2 we

note that the total moment � may still be calculated from the pro\le of the static

bubble during the initial stages of the process" If we further restrict our attention to

the fundamental bubble calculated in Section P2 the moment is related to the bubble
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radius through Eq" {P"=>| and the initial drift velocity may be written as

Q ~ =� V� ~ K� V� ~ �=
?
gr�� {>�=?|

where we may substitute the numerical value for the bubble radius given in Eq" {P"D?|

which is approximately equal to the naive radius measured in an experiment" Now

applying Eq" {>"=?| for the speed V ~ jV�j yields
gr�

?V
~ =� {>�=D|

which is golden rule {="=| with a deUection angle � ~ BK�2 as is appropriate in the

absence of dissipation2 and a winding number Q ~ ="

However one should keep in mind that the above result provides only a partial

veri\cation of the golden rule for two reasons" First2 Eq" {>"=D| is in general violated

during the late stages of the process because neither � nor r are conserved� in partic@

ular2 the relation � ~ �?�dr� is strictly valid only for a static bubble" Second2 one
must examine the extent to which {="=| is valid in the presence of dissipation when the

deUection angle is no longer equal to BK�" The last statement follows from the simple

physical fact that dissipation induces a tendency for alignment of the magnetization

with the external \eld2 which drives the bubble also toward the left half plane where

the \eld points along the negative third direction"

A� Initial drift velocity

In this subsection we shall calculate the initial drift velocity of the bubble when

dissipation is present2 based only on the conservation laws" In order to study the

e]ect of dissipation more precisely we return to Eq" {?"D>| and extend it according

to Eq" {>"?| to write

�m� {m�G| ~ K� m� ~ =� {>�=J|

where the e]ective \eld G is given by

G ~ ��{f� hext| � ��_m� {f� hext|`�

�� ~
=

= � ��
� �� ~

�

= � ��
�

{>�=H|

Since Eq" {>"=J| is formally identical to the dissipationless equation2 with the replace@

ment f � G2 the time derivative of the vorticity may be inferred from Eq" {D"==|

with the same replacement5

��i ~ ��ijk�j{G � �km|� {>�=P|
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Substitution of the \eld G from Eq" {>"=H| leads to

��i ~ �ijk�jf�����k� � ��{hext � �km|� ��_m� {f� hext|` � �kmg� {>�=>|

a result that may be used to study the time evolution of the guiding center in a

manner analogous to our earlier discussion in the absence of dissipation" The drift

velocity is now given by

V� ~
���
J�dQ

Z
_��hext � ��_m� {f� hext|` � ��mdV� {>�=W|

which reduces to Eq" {>"W| at vanishing dissipation"

The above result is highly implicit in that the magnetization in the right@hand

side must still be determined through a detailed solution of the initial value problem"

However some explicit information can be extracted from Eq" {>"=W| for the early

stages of the bubble motion" The magnetization may then be calculated from the

static pro\le of the bubble for which m� f ~ K" Therefore the initial drift velocity is
given by

V� ~
���
J�dQ

Z
_��hext � ��{m� hext|` � ��mdV� {>�=B|

where it is understood that the magnetization is that of a static bubble with wind@

ing number Q" Taking into account that the \eld points in the third direction and

performing a partial integration in the \rst term yields the equivalent relation

V� ~ � ���
J�dQ

Z
_��{��hext|{m� � =| � ��hext{m���m� �m���m�|`dV� {>�?K|

At this point2 one should recall the assumptions on the gradient g ~ g{x� t|

discussed following Eq" {>"B| which are especially important in the presence of dis@

sipation" Speci\cally the gradient must vanish outside a large region surrounding

the bubble2 for otherwise both the ground state and the topological structure of the

bubble would be signi\cantly altered" Yet the speci\c choice of the gradient at large

distances will certainly a]ect the long@time behavior of the bubble but should not be

crucial during the early motion" Therefore it is still meaningful to approximate the

initial drift velocity by inserting in Eq" {>"?K| the applied \eld hext ~ gx� with a

gradient g ~ g{t| that is spatially uniform" If we further restrict Eq" {>"?K| to the

fundamental magnetic bubble calculated in Section P we \nd that

Q ~ =� V� ~ ��� g�

J�d
� V� ~ ��

g{�� �c|

J�d
� {>�?=|
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where � is the dissipation constant2 d is the \lm thickness2 and the constants �2 �

and c are given by

� ~

Z
{mz � =|dV� � ~

=

?

Z
{m�

� �m
�
�|dV�

c ~
=

?

Z
�

�
m�

�m�

��
� �m�

��
m�

�
dV�

{>�??|

Here � is the total moment2 � is essentially the anisotropy energy2 and c vanishes on

account of the parity relations {P"=?|" Therefore our \nal result for the initial drift

velocity in the presence of dissipation is

V� ~ ��� g�

J�d
� V� ~ ��

g�

J�d
� {>�?D|

Since the total moment � is always negative and the constant � positive2 the

guiding center moves o] in the lower left plane with an initial deUection angle � with

respect to the negative x� axis given by

tan � ~
V�
V�
~
=

��
or sin � ~

=p
= � ����

� {>�?J|

where the coe^cient

� ~ ��

�
~ K�KW {>�?H|

is calculated from Eqs" {>"??| using as input the static bubble" The speci\c numerical

value quoted above corresponds to the speci\c choice of parameters made in Section

P" Finally we calculate the speed

V ~
q
V �
� � V

�
� ~

p
= � ����

= � ��
gj�j
J�d

{>�?P|

and relate it to the bubble radius through Eq" {P"=>| and the deUection angle through

Eq" {>"?J|5
gr�

?V
sin � ~

= � ��

= � ����
� {>�?>|

At vanishing dissipation {� ~ K| the deUection angle {>"?J| becomes � ~ BK� and

relation {>"?>| reduces to {>"=D|"

Relation {>"?>| establishes contact with the semi@empirical golden rule {="=| in

the important special case of the fundamental magnetic bubble" For small values of

the dissipation constant � encountered in practice _=` the right@hand side of Eq" {>"?>|

is well approximated by unity2 to within terms of order ��2 and is thus consistent with
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Eq" {="=| applied for Q ~ =" However this is again only a partial veri\cation of the

golden rule because Eq" {>"?>| is strictly valid only for the initial drift velocity"

B� Steady state approximation

A complete veri\cation would require \rst to ascertain that the bubble eventually

reaches a steady state2 namely a state with constant velocity and radius" Such a

question could be addressed by a direct numerical solution of the initial@value problem

posed in the \rst paragraph of this section" This numerical task is in several respects

similar to the solution of the fully dissipative equation {P"=| described in Section P2

except for a technical di]erence that might prove crucial in practice" Because the

applied \eld breaks rotational invariance the bubble looses its strict axial symmetry

during skew deUection and thus leads to a DD numerical simulation"

We shall not search for such a solution here but assume that a steady state is

eventually reached when dissipation as well as a \eld gradient are present" We shall

also not examine here conditions on the form of the external \eld that would guarantee

the development of a steady state" In particular2 it is not known whether or not a

simple2 almost uniform gradient2 would actually lead to a steady state" In fact Thiele

_J` seems to suggest that the \eld gradient may have to exhibit a carefully selected

time dependence" Nevertheless2 the assumption of a steady state for a moving bubble

will lead to a certain prediction for its velocity as we shall see"

Let the magnetization be of the form m ~ m{x � vt�v|" We write the Landau@

Lifshitz equation including dissipation and an external \eld in a form analogous to

{?"=?|5

�m�m� {f� hext| ~ � {m� �m|� {>�?W|

Inserting the special form of m in this equation we \nd

m� {f� hext| ~ V�{��m� �m� ��m| {>�?B|

where V� is the �@th component of the bubble velocity" We take the cross product

of both sides with ��m and then take the inner product with m" Integrating the

resulting equation over all space we \nd

J�dQ���V� � �b��V� � C� ~ K � ~ = or ?� {>�DK|

where

C� � �
Z
{hext��m�| dV {>�D=|
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and

b�� �
Z
{��m � ��m|dV ~

Z
{������� sin

��������|dV {>�D?|

is called the dissipation tensor _J`" Applying relation {>"DK| for � ~ = and ? yields a

system of equations for the components of the velocity V� and V�"

The algebraic manipulation of this system would be easy only if the dissipation

tensor b�� would not depend on the velocity" But2 since the pro\le of a moving

bubble depends in general on the velocity2 we have b�� ~ b��{v|" Thus we invoke

the approximation of weak external \eld" In fact Eq" {>"DK| implies that the bubble

velocity is small for weak \elds" In this case we may approximate b�� by its value

for a static bubble pro\le" Eqs" {>"DK| become then a system of linear equations for

V�� V�"

A simpler form for C� is obtained by applying a partial integration5

C� ~

Z
{��hext|{mz � =|dV {>�DD|

and if we restrict the external \eld to the ideal form of a pure gradient hext ~ gx�2

we \nd

C� ~ g�� C� ~ K� {>�DJ|

where � is given in Eq" {>"??|" The system {>"DK| is now solved to yield

V� ~
�b��

��detb � {J�dQ|�
g�� V� ~

J�dQ� �b��
��detb� {J�dQ|�

g�� {>�DH|

The criticism concerning the uniform gradient form of the external \eld2 presented in

connection with Eq" {>"==| applies here" Thus2 it is not legitimate to use this form

of hext in the present problem" Nevertheless2 Eq" {>"DH| can be considered to give

the limiting result for the case of an external \eld which develops a uniform gradient

over a large region surrounding the bubble and drops to zero outside this region" The

form of a steady state magnetization considered here guarantees that the original

topological structure of the bubble will not be destroyed by the external \eld even if

we take the limiting case of a uniform gradient"

A simpler version of relations {>"DH| is obtained by using some further informa@

tions about the initial pro\le of the bubble" Thus we assume that the bubble is axial

symmetric {for instance2 it is the fundamental bubble|2 i"e" it is described in its rest

frame by spherical variables of the form � ~ �{�| and � ~ const" � �2 where � and

� are the usual polar variables de\ned from x� ~ � cos� and x� ~ � sin�" Then the
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elements of the dissipation tensor {>"D?| reduce to

b�� ~K ~ b���

b�� ~b�� ~
=

?
{b�� � b��| ~We�

{>�DP|

where We is the exchange energy of the bubble and Eq" {>"DH| becomes

V� ~
�We

��W �
e � {J�dQ|

�
g�� V� ~

J�dQ

��W �
e � {J�dQ|

�
g�� {>�D>|

The speed of the bubble is then given by

V ~ {V �
� � V

�
� |

��� ~
jg�j

_��W �
e � {J�dQ|

�`���
� {>�DW|

Since � is negative we have that V�� V� � K {if g 
 K|" Thus the bubble moves to the

lower left plane" The deUection angle � measured from the negative x@axis is given by

sin � ~
�V�
V
~ �J�dQV

g�
� {>�DB|

Relation {>"DB| may also be written as

Q ~ � g�

J�dV
sin �� {>�JK|

In this relation we may further substitute the total magnetization � ~ �?�dr� ob@
tained in Eq" {P"=>| for the fundamental bubble2 but is reasonable to hold for any

bubble2 and obtain the golden rule of bubble dynamics

Q ~
gr�

?V
sin �� {>�J=|

In conclusion we note that the two approaches of this section2 concerning the

skew deUection of the bubble2 lead to only a partial veri\cation of the golden rule" In

particular2 we note that the question of the steady state motion of the bubble remains

open"

Nevertheless the question was addressed and answered within a strictly ?D

Skyrme model _==` which also leads to Eqs" {>"?J| and {>"?>| for the initial drift

velocity" However it was found through an explicit numerical solution of the initial@

value problem that a sharp transient period exists during which the deUection angle

departs rapidly and signi\cantly from Eq" {>"?J|" The transient period is followed

by an intermediate regime where the deUection angle reaches a more or less constant
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value and the golden rule is veri\ed in a rough manner" But a true steady state is

never achieved and the \ner predictions of the golden rule are not sustained" In par@

ticular2 the long@time behavior of the bubble is sensitive to the details of the gradient

at large distances"

We have performed numerical simulations for the ?D isotropic Heisenberg model

along the lines of this section and the results will be presented in the next chapter"

The steady state for a moving bubble is never achieved in this model for reasonable

choices of the gradient" On the other hand the result obtained through the initial

velocity approximation is found to remain valid for an intermediate period of time"

The results from the ?D Skyrme model _==` as well as from the ?D isotropic

Heisenberg model could be used as a guide for future numerical investigations of the

realistic quasi@?D model studied in the present chapter" We thus turn to a summary

of our main conclusions given in the following section"

$� Concluding remarks

We believe to have provided a clear illustration of an important link that exists

between the topological complexity of ferromagnetic structures and their dynamics"

The most direct manifestation of such a link is the construction of unambiguous

conservation laws as moments of the topological vorticity" The special dynamical

features of magnetic bubbles become transparent and are formally related to more

familiar situations such as the Hall e]ect of electrodynamics or the Magnus e]ect of

Uuid dynamics"

Our work has also revealed that some of the quantitative predictions of the early

studies must be interpreted with caution" In particular2 the golden rule is valid in its

gross features but not in its details" Hence there exists room for further development

of the dynamical theory of magnetic bubbles" Numerical simulations along the lines

of those performed within the strictly ?D Skyrme model _==` could prove feasible and

provide important hints concerning the remaining questions" There has also been some

speculation to the e]ect that the dynamics might simplify for hard {jQj � =| bubbles2
in analogy with the adiabatic dynamics of electric charges in strong magnetic \elds

_=K`" The semi@empirical golden rule might then prove to be exact in the extreme large@

Q limit and could possibly be corrected through a systematic adiabatic perturbation

theory at \nite Q"

In this chapter we have con\ned our attention to the response of a bubble to an

externally applied magnetic@\eld gradient" However a \eld gradient is intrinsically
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present also in the problem of two or more interacting magnetic bubbles" Thus two

interacting bubbles with winding numbers of the same sign are expected to orbit

around each other2 in analogy with the ?D motion of two electrons in a uniform

magnetic \eld or two vortices in an ordinary Uuid" Similarly two bubbles with opposite

winding numbers {e"g"2 Q ~ = and Q ~ �=| should move in formation along roughly
parallel lines2 also in analogy with an electron@positron pair in a uniform magnetic

\eld or a vortex@antivortex pair in a Uuid" These expectations were con\rmed through

numerical simulations in the Skyrme model _==` and should be possible to establish

both theoretically and experimentally in real ferromagnetic \lms" Analogous results

are expected for interacting Abrikosov vortices in a superconductor _P`"
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CHAPTER II

THE ISOTROPIC HEISENBERG MODEL

�� Introduction

The results of Chapter I motivate the study of a much simpler model where

both the analytical and the numerical work can be pushed further" In particular2 we

shall study the skew deUection of bubbles in the two@dimensional isotropic Heisenberg

model" We use the rationalized form of the Landau@Lifshitz equation {I"?"=H| and omit

all terms except for the exchange in the e]ective \eld f5

�m ~m� f� f ~ �m� m� ~ =� {=�=|

The magnetization is supposed to be a function of two spatial variables and the

time2 m ~m{x�� x�� t|2 and � denotes the Laplacian in two dimensions" The energy

functional for model {="=| is accordingly given by the exchange energy of Eq" {I"?"=B|

restricted to two dimensions"

In searching for nontrivial static solutions of Eq" {="=| it will be useful to rewrite

this equation by explicitly resolving the constraint on the vector variable m" We use

the stereographic variable � de\ned from

� ~
m� � im�

= �m�
� {=�?|

where mi denotes the i@th component of m" The magnetization components are

expressed through � by inverting relation {="?|5

m� ~
���

= ���
� m� ~

=

i

�� �
= � ��

� m� ~
=���
= ���

� {=�D|
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where � denotes the complex conjugate of �" We also use the complex position

variables z ~ x� � i x�� �z ~ x� � i x� to write Eq" {="=| as

i

J
�� ~ �z
z � ?�

= � ��
�z�
z� {=�J|

Static solutions satisfy the above equation with the time derivative absent5

�z
z � ?�
= ���

�z�
z ~ K� {=�H|

It is obvious that any function � of the complex variable z or �z alone satis\es the

above equation" Finite energy solutions are obtained with the choice � ~ ��{z|	��{z|

or � ~ ��{�z|	��{�z|2 where ��� �� are arbitrary polynomials" These are the well@known

Belavin@Polyakov instantons _?W`2 viewed here as static solutions in a ?�=@dimensional

Heisenberg model"

In this Chapter we shall often use for illustration2 as well as for numerical simu@

lations2 the special class of solutions

� ~
��a
�z

�n
and � ~

�a
z

�n
� {=�P|

where a is an arbitrary complex constant reUecting the scale invariance of the model

{="H|" These solutions are such that � � K {m� � =| at spatial in\nity2 that
is2 the boundary condition {I"D"J| is satis\ed" On the other hand we have � � �
{m� ~ �=| at the origin so that z ~ K may be considered the center of the bubble"
Finally at z ~ a we have � ~ =2 or m� ~ K2 and hence jaj can be taken as a naive
de\nition of the bubble radius" The bubble solutions {="P| can be written in terms of

the magnetization vector components as

m� ~
?an�n

��n � a�n
cos{n�|�

m� ~
?an�n

��n � a�n
sin{n�|�

m� ~
��n � a�n

��n � a�n

and

m� ~
?an�n

��n � a�n
cos{n�|�

m� ~� ?a
n�n

��n � a�n
sin{n�|�

m� ~
��n � a�n

��n � a�n
�

{=�>|

where �� � are the polar coordinates"

The bubbles in a ?D model are characterized by an integer@valued winding num@

ber or topological charge Q2 de\ned in analogy to the quantity {I"D"=K|5

Q ~
=

J�

Z
� d�x� {=�W|
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In this equation2 � is a topological vorticity de\ned as a ?D restriction of {I"D"=|5

� ~ �=
?
��� {��m� ��m| �m� �� � ~ =� ?� {=�B|

We \nd that the con\gurations {="P| carry a winding number Q ~ n and �n2 respec@
tively"

�� Conservation laws

We shall use the vorticity to construct the conservation laws and study the dy@

namics of bubbles in this model _H`" The conserved linear momentum is given by

p� ~ ���I�� I� ~

Z
x� � d

�x {?�=|

and guiding center coordinates can be de\ned by

R� ~

R
x� � d

�xR
� d�x

~
I�
J�Q

� � ~ = or ?� {?�?|

where Q and I� are given in Eqs" {="W| and {?"=|"

Similarly2 the orbital angular momentum is expressed in terms of the vorticity

through

� ~
=

?

Z
��� d�x� {?�D|

where ��~x�� � x
�
�2 while the total magnetization to the third direction is

� ~

Z
{m� � =| d�x� {?�J|

We mention here that � and � are conserved separately in the present isotropic Heisen@

berg model because the magnetostatic interaction is absent and hence the model is

invariant in separate rotations of coordinates or spin vectors" The mean squared

radius of the bubble is de\ned in terms of the angular momentum � by

r� ~
�

?�Q
�R�� {?�H|

with � and R ~ {R�� R�| given in Eqs" {?"D| and {?"?| respectively" Note that the

radius r is a conserved quantity in this model"
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An explicit calculation of the above quantities can be performed taking as an

example the bubble solutions {="P|" The guiding center coordinates calculated from

Eq" {?"?| vanish {R ~ K|2 which means that the bubble is set at the origin" More

interestingly2 the angular momentum {?"D| is

� ~ ?�Q
{�	Q|

sin{�	Q|
jaj�� {?�P|

where Q ~ �n is the topological charge of the bubbles" The mean squared radius
de\ned in Eq" {?"H| is

r� ~
{�	Q|

sin{�	Q|
jaj�� {?�>|

For unit topological charge {n~�=| the radius is divergent2 reUecting the slow decay
of the fundamental BP instanton" This property is certainly not shared by more

realistic magnetic bubbles such as the fundamental bubble calculated in section I"P"

In the opposite limit2 n � �2 the bubble radius coincides with the naive de\nition
r ~ jaj"
The total magnetization can also be calculated for the examples {="P|" Using Eq"

{?"J| we \nd

� ~ �?� {�	Q|
sin{�	Q|

jaj�� {?�W|

which naturally is a negative quantity {� � K|" Eqs" {?">|2 {?"W| imply the simple

relation

� ~ �?�r�� {?�B|

which is a formula with a simple geometrical meaning" If we imagine a crude model

for the bubble in which m� takes the value �= for radial distances smaller than the
bubble radius r and the value �= otherwise2 then m� � = takes the values �? and K
respectively2 and the total magnetization is indeed given by Eq" {?"B|"

�� Skew de#ection

A bubble initially at rest is now subjected to a uniform magnetic \eld hext which

is accounted for by the simple replacement �m � �m� hext in Eq" {="=|" If the
\eld is pointing in the third direction i"e" it is of the form {I">"=| the evolution of the

guiding center coordinates is given by a formula analogous to {I">"W|5

V� � �R� ~ � =
J�Q

Z
{�����hext|{m� � =| d�x� {D�=|
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A uniform gradient of the form hext ~ gx�2 where g ~ g{t|2 gives the simple result

V� ~ K� V� ~
�g

J�Q
� Q ~ �n� {D�?|

In the current model2 the total magnetization �2 de\ned in Eq" {?"J|2 is a conserved

quantity even in the presence of an external \eld since this is pointing in the third

direction" This is because such a \eld does not break the rotational invariance of the

model around the third axis" Thus we may substitute in Eq" {D"?| the initial value

for the total magnetization given in Eqs" {?"W| and {?"B| to get a completely explicit

result valid for all times"

V� ~ K� V� ~ �gr
�

?Q
� {D�D|

which is consistent with the golden rule {I"="=| applied for V ~ jV�j and � ~ �BKo
as is appropriate in the absence of dissipation" Numerical simulations presented later

in this Chapter2 con\rm the above predictions and also shed light on the extent to

which the bubble follows the motion of its guiding center"

In the presence of dissipation conservation laws alone do not su^ce to determine

the drift velocity at all times" Nevertheless the initial drift velocity is given by the

?D restriction of {I">"?K|5

V� ~ � ���
J�Q

Z
_��{��hext|{m� � =| � ��hext{m���m� �m���m�|`d

�x� {D�J|

The discussion following Eq" {I">"?K| concerning the form of the gradient applies

here without change" Keeping those precautions in mind2 we use the simple uniform

gradient \eld hext ~ gx� with g 
 K and also insert the static solutions of Eq" {="P|

in Eq" {D"J| to calculate the initial drift velocity5

V� ~ ��� g�
J�

� V� ~ ��
g�

J�Q
� Q ~ �n� {D�H|

where � is the initial total magnetization given in Eq" {?"W|2 while the constant � is

de\ned from

� ~
=

?

Z
{m�

� �m
�
�|d

�x� {D�P|

It is understood that m��m� are the initial values of the magnetization vector given

in Eq" {=">|" Some algebra shows that

� ~ � �

jQj � {D�>|
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We note that such a simple result depends crucially on the speci\c form of the bubble

solutions {="P| and is thus special to the current isotropic Heisenberg model" The

drift velocity is then given by

V� ~ ��
g�

J�jQj � V� ~ ��
g�

J�Q
� Q ~ �n� {D�W|

The speed of the bubble is

V ~
q
V �
� � V

�
� ~

p
��

gj�j
J�jQj � {D�B|

Substituting � from Eq" {?"B| we obtain

V ~
p
��

gr�

?jQj � {D�=K|

The deUection angle measured from the negative x� axis is accordingly given by

sin � ~ �V�
V
~
jQj
Q

p
��� {D�==|

We now insert Eq" {D"==| in Eq" {D"=K| to recover the golden rule

gr�

?V
sin � ~ Q� {D�=?|

Thus2 within the present model2 we have derived the exact form of the golden rule

{compare {D"=?| to {I"="=|| while in section I"> only an approximate expression for the

golden rule has been found as Eq" {I">"?>|" But we note here that the derivation of

Eq" {D"=?| depends crucially on the analytical accident given in Eq" {D">|"

The discussion of this section actually establishes only a \rst contact with the

golden rule for the isotropic Heisenberg model" In particular Eqs" {D"W| and {D"=?|

are valid only at the initial steps of the bubble motion" A complete investigation

of the golden rule in the presence of dissipation would require {a| to examine the

extent to which Eq" {D"=?| remains valid during the late stages of the motion and {b|

to determine whether or not the bubble moves coherently together with its guiding

center" These issues have been addressed by a direct numerical solution of the initial

value problem" But \rst we discuss a rather simple model of noninteracting spins

which will serve as guide for a precise understanding of the numerical results"
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�� The free spin model

The evolution of the guiding center coordinates in the absence of dissipation is

given in Eq" {D"?| where we note that the velocity of the bubble is proportional to the

strength of the external \eld gradient2 whereas no trace of the exchange interaction

strength is found" In close relation to this remark2 approximation {D"J| is based on

the assumption that the exchange interaction only sets the initial con\guration as a

static solution of this model and does not play any other role at the beginning of the

process" The bubble is2 at this initial stage2 driven by the \eld hext" The numerical

results of Refs" _=K` suggest that the simple results obtained by this approximation

describe the bubble motion fairly well2 under certain conditions2 for times longer than

expected"

These remarks prompt us to examine in more detail the model of noninteracting

spins which we shall call the free spin model" This will certainly be an oversimpli\ed

model but some general results that will be obtained will prove useful for comparison

with the corresponding numerical and analytical results for the Heisenberg model"

The most suitable formalism for the present section is achieved through the

stereographic variable" The equation of motion for � in an external \eld hext ~

{K� K� hext| is
i � �

J
�� �

hext
J
� ~ �z
z � ?�

= � ��
�z�
z {J�=|

with � being the dissipation constant" We omit all terms but the external \eld in the

right hand side of this equation to obtain the free spin model5

{i� �| �� � hext� ~ K� {J�?|

The \eld h will be taken to be a function of the position variables only2 for simplicity5

hext ~ hext{x�� x�|" The above is a linear equation and its general solution is

�{x� t| ~ e�����i���hextt ��� {J�D|

where ��� �� are de\ned in Eq" {I"?"D>| and �� is the con\guration at t ~ K"

Within the present analysis2 the candidates for the initial con\guration �� are

the static solutions of the exchange model and we shall use here for de\niteness

�� ~
an

�zn
a 5 real constant� {J�J|

This choice for �� makes the time dependent solution {J"D| completely explicit and

allows for the calculation of its general characteristics2 such as the vorticity and the

guiding center coordinates"
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The vorticity can be calculated for the solution {J"D| by use of Eq" {="B|" Actually

� can be written in terms of the variable � as

� ~
J{j�
zj� � j�zj�|
{= � ��|�

� {J�H|

Using this formula2 we \nd

� ~
Jn

��
a�n ��n e���hextt

{a�n � ��n e���hextt|�
_n� _�� � {��hext| � ��{��hext| ` t ` � {J�P|

where �� � are the polar variables and ��� �� denote di]erentiation with respect to the

corresponding variable" Integration of � over all space should give the winding number

result Q ~ n multiplied by J�" Before performing this integration2 some assumptions

have to be made for the form of the \eld hext" Based on the discussion and results of

the two preceding sections2 we shall suppose that hext develops a gradient in a certain

direction" In particular2 throughout this section we shall assume hext to be an odd

function in the x� variable and even in x�" Such a choice for hext includes the uniform

gradient form and it also allows for more realistic \elds" Then2 the third term in Eq"

{J"P| is odd in x� and give zero on integration2 while the rest give the winding number

as

Q ~
=

J�

Z
� d�x ~ ?n

Z �

�

a�n ��n�� e���hextt

{a�n � ��n e���hextt|�
_n� �� � {��hext| t ` d�� {J�>|

The integrand of the above equation can be written as a total derivative in � so that

we obtain

Q ~ �n
Z �

�

d

d�

�
a�n

a�n � ��n e���hextt

�
d� ~ n� {J�W|

The integration in the last relation can be carried out only if we make the assumption

that hext{x�� x�| is \nite at spatial in\nity" This condition is important in the above

and in the subsequent calculations" A uniform gradient \eld does not satisfy such a

condition2 as we have already discussed in the previous section"

A rederivation of result {D"?| within the context of the present free spin model

should be possible since2 as we have mentioned in the beginning of this section2 it does

not depend on any parameters related to the exchange interaction" We shall give this

derivation here for the con\guration {J"J|" We \rst write the vorticity {J"P| for � ~ K

{�� ~ =� �� ~ K| and for a \eld hext taken to be the uniform gradient used in section

D {with g a constant|" The result is

� ~ �Jn
��

a�n ��n

{a�n � ��n|�
{n� g x� t | � {J�B|
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The moment of this vorticity I�~
R
x�� d

�x is easily seen to vanish since the integrand

is odd" The moment I� is

I� ~ �
Z
Jn

��
a�n ��n

{a�n � ��n|�
�
nx� � g x

�
� t
�
d�x� {J�=K|

The \rst term in this integral is odd in x� and vanishes on integration" The second

term can be written2 using polar coordinates �� �2 as

I� ~ �g t ?�
Z �

�

?na�n ��n

{a�n � ��n|�
� d�� {J�==|

where we have performed a trivial integration in �" The integrand can be written as

a sum of two terms by use of the relation

?na�n ��n��

{a�n � ��n|�
~
? a�n �

a�n � ��n
� d

d�

�
a�n ��

a�n � ��n

�
� {J�=?|

The second term on the right hand side of Eq" {J"=?| gives zero on integration2 since

it is a total derivative vanishing at the edges of the integration interval {for n 
 =|

while the \rst term2 integrated in �2 is related to the conserved total spin � quoted

in Eq" {?"J|" Thus we \nally have

I� ~ �g t ?�
Z �

�

? a�n� d�

a�n � ��n
~ g � t� {J�=D|

Putting together the results of this paragraph we have for the evolution of the guiding

center of the bubble

V� � �R� ~ K� V� � �R� ~
�g

J�n
� {J�=J|

thus reaching to the same result as in Eq" {D"?|"

The presence of dissipation will signi\cantly change the situation" We \rst note

that the uniform gradient \eld cannot be used in the present analysis" So in what

follows we suppose that the \eld hext is \nite at spatial in\nity" We suppose in this

section that hext is odd in the x� variable and even in x�2 but the analytic calculation

of the guiding center coordinates as a function of time is not feasible for such an

arbitrary \eld in the presence of dissipation" Guided by the results of the previous

section and in particular by Eq" {D"W|2 we shall attempt to calculate the following

quantity5

R� � �R� ~
=

J�n

Z
{x�� � �x��| d

�x� {J�=H|
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We substitute � from Eq" {J"P| in the above equation" Some terms under the integral

appear to be odd in x� giving zero on integration" The remaining terms are written

as

R� � �R� ~
=

�

Z
a�n ��n�� e���hextt

{a�n � ��ne���hextt|�
�
nx� � �� {��hext| �

� t
�
d�x ~

~
=

?�

Z
d

dx�

�
a�n

a�n � ��ne���hextt

�
dx�dx� ~ K

{J�=P|

where2 in the last integration2 we have a total derivative integrated from minus to plus

in\nity2 whence the vanishing result" The symbol �� in the above relation denotes

di]erentiation with respect to x�"

Eq" {J"=P| determines the orbit of the bubble as a straight line with inclination

angle � with respect to the x� axis2 with tan � ~ R�	R� ~ =	�" This result is

consistent with the result {D"W| obtained within the exchange model" It is valid for

the initial stages of the bubble motion within the exchange model and it is strictly

correct for all times in the present free spin model" The question arises to what extent

does the presence of the exchange interaction changes it at later stages of the bubble

motion"

A more important question is whether the guiding center faithfully describes the

position of the bubble" In the case of the free spin model the bubble is not expected

to move coherently since the vector m only precesses around the \eld hext" Solution

{J"D| helps us con\rm this picture" We see2 for instance2 that at every time t2 we

have j�j � � at the origin" This means that the point where m� ~ �=2 which
can be thought of as the center of the bubble2 stays still during the evolution of the

con\guration" This is certainly enough to exclude a coherent bubble motion"

On the other hand2 the presence of the exchange interaction is expected to help

the bubble move in a more organized way thus following its guiding center" These

questions may be answered by numerical simulations which will show the domain of

validity of Eq" {J"=P| within the Heisenberg model as well as the details of the bubble

motion"
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 � Numerical integration

In this section we shall describe a numerical integration in time of the exchange

model in the presence of an external \eld gradient" The results obtained within the

free spin model in the preceding section will serve as a guide to the present numerical

simulations and will also help us in the interpretation of the dynamics of the exchange

model" In some respects we shall follow Ref" _=K`"

When no dissipation is present2 the numerical solution should reproduce the exact

result {D"?| for the evolution of the guiding center coordinates2 which was also found

as Eq" {J"=J| within the free spin model" In the presence of dissipation2 we expect

that the guiding center of the bubble will follow the simple result {D"W|2 but deviations

from it are expected to be observed soon" The details of the bubble motion will also

be an important product of the numerical simulations2 since the description of the

bubble position through the guiding center coordinates relies upon the assumption of

a coherent motion of the bubble"

The numerical calculations will use a discrete version of the equations of motion"

We use second order di]erence to approximate the Laplacian on a ?D lattice" We also

use an external \eld of the form

hext ~ g x� e
����b�m � ~

q
x�� � x

�
�� g� b�m 5 constants� {H�=|

throughout our numerical calculations" This form ful\lls all the requirements imposed

in our theoretical development2 namely it develops a nearly uniform gradient around

the origin and it vanishes at in\nity"

The time evolution algorithm requires an initial con\guration which will be taken

to be a static solution of the exchange model" In particular we shall use the one given

in Eq" {J"J|" We make the choice a ~ = which sets the scale for the present problem

and also take n ~ ? which sets the topological charge to Q ~ ?" With these choices2

the con\guration is written in terms of the magnetization vector m as

m� ~
?��

�	 � =
cos ?�� m� ~

?��

�	 � =
sin ?�� m� ~

�	 � =
�	 � =

� {H�?|

To obtain a discrete version of this con\guration2 we must set the lattice spacing"

Since the naive bubble radius a is equal to unity we choose

� ~ K�KH {H�D|

so that the naive bubble radius is equal to ?K lattice sites" We then expect that

variations of the spin variable are slow so that we are close to the continuum limit"
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Fig� ��a� A �D plot of the spin vector m
for the bubble ����	� m is represented by its
projection in the ���	 plane�

Fig� ��b� A contour plot of the third compo�
nent of the spin
 multiplied by a factor of ten
��� m�	
 for the bubble ����	�

In fact2 this discretization proves more than adequate to describe con\guration {H"?|

but it is only enough to describe the bubble evolution in time so that departures from

the continuum limit do not occur too soon"

We \t con\guration {H"?| in a ?JK � ?JK lattice2 with the center of the bubble2
i"e" the point where S� ~ �=2 placed at the origin" A ?D plot of it is given in Fig"
=Ka" Only a small part {central part| of the lattice is drawn and the spin is drawn

every \fth lattice site" Fig" =Kb presents a contour plot of the third component of

the spin vector for {H"?|" Actually2 we have plotted the quantity =KS�2 so that the

number =K in the contours corresponds to the spin pointing to the north pole2 while

�=K corresponds to the spin pointing to the south pole" To conclude the discussion
on the initial con\guration2 we note that2 despite that the Q ~ = bubble might seem

simpler for the simulations2 we shall avoid it for two related reasons" First2 it has

in\nite total magnetization �2 as we have already mentioned in Section ?2 a fact that

would obscure the simplicity of our results" Second2 because of the low decay of its

spin \eld which would require a very large lattice to be described"

For the \eld hext in Eq" {H"=| we choose b ~ J2 so that a nearly uniform \eld

gradient develops in a large area surrounding the bubble2 while we take m ~ J so that

the \eld quickly falls to zero away from the bubble" The strength of the gradient is

taken g ~ =" So the \eld used in our simulations is

hext ~ x� e
����	�� � � ~

q
x�� � x

�
�� {H�J|

The integration in time is performed by a fourth order Runge@Kutta method2
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with a time step chosen at the vicinity of �� ~ H � =K�	" This proves enough to
produce a stable algorithm2 but we note that when the exchange interaction is omitted2

i"e" when the free spin model is simulated2 the time step can be chosen two orders

of magnitude larger" The constraint of constant magnitude for the magnetization

{m� ~ =|2 is implemented by reinforcing it in every step of the time integration

algorithm _?>`" This2 considerably improves the stability of the algorithm" We \nally

note that because of the accumulating numerical errors and the gradual complication

of the evolving con\guration2 the accuracy of the calculated quantities is getting

poorer as the simulation time passes"

Simulations for vanishing dissipation have been performed \rst" We simulate both

the free spin model and the full exchange model with external \eld" The evolution

of the moments of the vorticity follow quite accurately Eq" {D"?| {or {J"=J|| for both

cases2 while the details of the evolving con\guration di]er signi\cantly in the two

cases" We shall not give further details for these simulations but we believe that all

the essential features of the bubble1s time evolution emerge also when dissipation is

present"

Thus2 we shall give here the details for the simulation of the dissipative algorithm"

We use a dissipation constant � ~K"?H and we run the program until the time � ~D"

This time interval proves enough for the essential characteristics of the bubble motion

to be revealed" We believe that the calculated results are accurate to a few percent"

For instance2 the topological charge is calculated numerically as ="BB= at � ~ K and

="BH> at � ~ D2 instead of the exact value Q ~ ?"

The evolution of the guiding center coordinates is given in Fig" ==a" Formula

{?"?| has been used for the calculation of R�� R�2 while the discrete derivatives2 needed

for the calculation of the vorticity2 have been calculated with the central di]erences

prescription of Ref" _=K`" The solid lines show the results obtained from the exchange

model and the dashed lines show the corresponding results from a free spin model

simulation" Fig" ==b show the corresponding bubble velocity calculated as the nu@

merical derivative of R" Our \rst remark on these \gures is that the free spin model

calculations for R� follow the simple result {J"=P| to within numerical accuracy2 that

is the ratio R�	R� is constant throughout the motion and equal to K"?H" On the other

hand the values of V� ~ �R� at � ~ K2 read form Fig ==b2 are very close to the values

calculated by use of {D"J|2 with m��m��m� taken from Eq" {H"?|" The values found

from Eq" {D"J| are �R�{� ~ K| ~ �K�KWP� �R�{� ~ K| ~ �K�DJH while the numerically
calculated values are �R�{� ~ K| ~ �K�KW=� �R�{� ~ K| ~ �K�D?="
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Fig� ��a� Evolution of the guiding center coor�
dinates of the bubble ����	
 with a dissipation

constant � ~���� and under the in�uence of
an external �eld ����	� The dashed lines corre�
spond to the free spin model simulations and
the solid lines to the exchange model with ex�
ternal �eld�

Fig� ��b� The drift velocity of the bubble
V� ~ �R�
 calculated as the numerical derivative

of the guiding center presented in Fig� ��a� The
dashed lines correspond to the free spin model
simulations and the solid lines to the exchange
model with external �eld�
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Fig� ��c� The orbit of the bubble ����	
 i�e� a
plot of R� versus R�
 using the numerical data

of Fig� ��a� The dashed lines correspond to the
free spin model simulations and the solid lines to
the full exchange model with external �eld�

The unexpected result read o] from

Fig" ==a or ==b is that deviations of the

guiding center or velocity for the exchange

model2 from the simple results obtained

within the free spin model2 occur only at

late times" An other way to see this is

to plot the orbit of the bubble2 that is a

diagram of R� versus R�" This is given

in Fig" ==c and it shows that the bub@

ble evolving in the exchange model {solid

line| follows the straight line orbit derived

within the free spin model {dashed line|

for signi\cantly long times and deviates

from it2 after it has traveled a distance ap@

proximately equal to its radius"

In order to give a semi@theoretical explanation for these numerical results2 we have

organized an expansion in time for the expressions of the guiding center coordinates

R� and R�" These expressions are written in terms of the vorticity quoted in Eq" {J"P|

with the \eld hext that of Eq" {H"=|" When the exchange interaction and the \eld

hext are included in the equations of motion2 very involved algebraic calculations have

to be performed in order to \nd terms in the expansion for R�� R� higher than the

second order in time" So2 we are obliged to resort to symbolic calculation computer
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Fig� ��a� Vector plot of the magnetization
m represented through its projection on the
���	 plane� The bubble ����	 is evolved within
the free spin model� We use �eld ����	 and
a dissipation constant � ~����� We give two
snapshots
 at times � ~��� and � ~
�

Fig� ��b� Contour plot of the third component
of the magnetization multiplied by ten� ��m��
The bubble ����	 is evolved within the free spin
model� We use �eld ����	 and a dissipation con�
stant � ~����� We give two snapshots
 at times
� ~��� and � ~
�

programs" We have used for this purpose �MATHEMATICA� and have found no

trace of the exchange interaction in the \rst three terms of the two time expansions"

In the fourth term2 the exchange interaction is involved in both expansions only when

dissipation is present2 so that the di]erence from the corresponding free spin calcula@

tion is O{t	| in both R� and R�" Correspondingly2 the di]erence in the components

of the drift velocity V� ~ �R� is O{t�|"
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Fig� �
a� Vector plot of the magnetization m
represented through its projection on the ���	
plane� The bubble ����	 is evolved within the
exchange model with the external �eld ����	�
We use a dissipation constant � ~����� We
give two snapshots
 at times � ~��� and � ~
�

Fig� �
b� Contour plot of the third component of
the magnetization multiplied by ten� ��m�� The
bubble ����	 is evolved within the exchange model
with the external �eld ����	� We use a dissipa�
tion constant � ~����� We give two snapshots
 at
times � ~��� and � ~
�

Figs" ==a2b2c as well as the time series expansions give a picture of the overall

motion of the bubble2 but the details of the con\guration are also important" As we

mentioned at the end of Section J2 we do not expect a coherent bubble motion in

the free spin model" To con\rm this expectation we give in Fig" =?a a ?D vector

plot produced with the results of our numerical simulation of the free spin model at

times � ~ =�H and � ~ D" The magnetization vector is represented by its projection

on the {=?| plane" In Fig" =?b2 we give the corresponding contour plots for the third

component of the magnetization" Actually we give the contour plot of the quantity

=Km�" From these two \gures we only observe a distortion of the bubble during the
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process without any sign of a bubble moving as a whole" In particular the point where

S� ~ K2 de\ned some times as the center of the bubble2 is always set at the origin"

The situation changes to a considerable extent when the exchange model is sim@

ulated" In Figs" =Da and =Db we give the corresponding ?D spin plots and also the

contour plots for m� which should be compared to those of Figs" =?a2b" Figs" =Da2b

show that the exchange interaction helps the bubble move in a more rigid way" This

is clear even at � ~ =�H2 that is2 before any di]erence in the evolution of the guiding

center coordinates between the two models occur" Nevertheless2 the bubble does not

move in a rigid way even when the exchange interaction is present" But this is2 to

a large extent2 attributed to the conformal invariance of the model and the ensuing

metastability of the bubble" We note especially the shrinking of the con\guration

which can be attributed to the scale invariance of the Heisenberg model"

To avoid the e]ects introduced due to the scale invariance of the Heisenberg

model we may add a Skyrme term in the Hamiltonian to set a scale and thus stabilize

the bubble _==`" If an external \eld is also included in this model2 the motion of

the bubble is rather coherent and basically follow the motion of the guiding center"

However a sharp transient period is observed at the beginning of the process and then

the bubble follows an almost straight line orbit for an intermediate period of time� but

a steady state is never achieved and the long time behavior of the bubble is sensitive

to the details of the gradient at large distances"

In conclusion we have found that the general features of the bubble motion are

clear and independant of the particular model" Furthermore the bubble is generaly

following its guiding center but the details of its motion depend on the model as well

as on the form of the external \eld" On the other hand2 a pair of bubble with winding

numbers of the same sign are expected to orbit around each other while two bubbles

with winding numbers with opposite sign should move in formation along roughly

parallel lines" Numerical simulations within the Skyrme model _==` have con\rmed

this picture and have shown that each of the bubbles move in a coherent way and

follow quite faithfully their guiding centers"
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CHAPTER III

TWO�DIMENSIONAL ANTIFERROMAGNETS

�� Introduction

We have seen in the previous chapters that topological magnetic solitons have

been studied extensively in the case of ferromagnets {FM|" Extensive studies have

also been performed for weak ferromagnets {WFM|" In both cases a nonvanishing

magnetization develops in the ground state2 albeit by a di]erent physical mechanism2

which allows a detailed experimental investigation by standard techniques _=2B`" In

contrast2 direct experimental evidence for pure antiferromagnetic {AFM| solitons is

limited" Nevertheless2 theoretical arguments suggest that static AFM solitons should

exist for essentially the same reason as in ordinary ferromagnets2 even though their

dynamics is signi\cantly di]erent"

The dynamics is now governed by suitable extensions of the relativistic nonlinear

� model _B` instead of the Landau@Lifshitz equation _=`" Therefore dynamical concepts

familiar from the theory of FM domain walls and bubbles need to be reanalyzed within

the relativistic theory" It is our general purpose in this chapter to pursue a study of the

dynamics of two@dimensional {?D| AFM solitons that emphasizes the inUuence of the

underlying topological structure" Our starting point is some recent work on AFM and

WFM domain walls _?B` which revealed that some important issues in the derivation

of the associated nonlinear � model had been mistreated in earlier treatments" We are

thus su^ciently motivated to extend the analysis of Refs" _?B` to the case of layered

or ?D antiferromagnets whose signi\cance has increased in recent years in connection

with high@Tc superconductivity"



Two�dimensional antiferromagnets ��

In the present work we proceed by a combination of numerical and analytical

methods" Numerical calculations will be performed within the standard discrete spin

model" However a transparent interpretation of the numerical results could not be

achieved without the aid of a continuum approximation at the heart of which lies the

relativistic nonlinear � model" A complete account of the continuum model is given

in Section ? where we discuss2 in particular2 the relevance of certain parity@breaking

contributions that are implicit in spin models involving antiferromagnetic interactions"

Numerical and analytical results are then combined in Section D to provide a complete

description of static AFM vortices"

Subsequent sections are devoted to a detailed study of some special dynamical

features due to the underlying topology" For instance2 head@on collisions of vortices

are examined in Section J and shown to exhibit a characteristic BK� scattering pattern

familiar from similar studies of relativistic skyrmions and monopoles _DK2 ?>`" The

most surprising element is described in Section H where it is shown that an applied

uniform magnetic \eld a]ects vortex dynamics rather profoundly" We follow the

theoretical analysis We follow the theoretical analysis given in Chapters I and II and

establish a direct link between topology and dynamics by means of the conservation

laws of linear and angular momentum expressed as moments of a suitable topological

vorticity" Possible phenomenological implications of the derived dynamical picture

are further discussed in the concluding SectionP" The present chapter is based on the

work presented in _D=`"

�� The nonlinear � model

We shall study a spin system described by the Hamiltonian

W ~
X
ij

_J Si	j � {Si��	j � Si	j��| � =
?
g{S�

i	j|
�`� {?�=|

where the summation extends over all sites of a square lattice2 Si	j is the spin vector

at site {i� j| and S�
i	j its third component" Both the exchange constant J and the

anisotropy constant g are taken to be positive and hence {?"=| describes a Heisenberg

antiferromagnet with an easy@plane single ion anisotropy"

The spin variables are treated as classical vectors with constant magnitude s and

satisfy the equation of motion

�Si	j
�t
~ Si	j � Fi	j � S�i	j ~ s

�� {?�?|
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Fig� ��� Illustration of the dimerization process for a �nite portion of the square lattice cut along
the diagonals� Solid and open circles denote the sites of the two intertwining sublattices�

where the e]ective \eld F is determined from the general relation

Fi	j ~ � �W

�Si	j
� {?�D|

or2 more explicitly2 by

Fi	j ~ �J{Si��	j � Si�i	j � Si	j�� � Si	j��| � gS�
i	je� {?�J|

where e ~ {K� K� =| is a unit vector along the third direction" The exchange contribu@

tion in the e]ective \eld {?"J| contains fewer than four terms on the perimeter of a

\nite lattice2 the precise number of such terms being equal to the number of nearest

neighbors" All dynamical simulations presented in this chapter will be based on the

above relatively simple set of discrete equations adapted to an open \nite lattice"

However2 in order to pursue an e^cient study of the dynamics2 we also consider

a continuum approximation which is possible at weak anisotropy2

� ~

r
g

J

 =� {?�H|

where soliton structures extend over a large number of sites given roughly by =	�"

The continuum limit is not completely straightforward because of the implicit anti@

ferromagnetic discontinuity as one moves from site to site" It is then important to

\rst identify dynamical variables that may possess a smooth limit as �� K"
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In one dimension continuity is achieved by a simple dimerization process _?B`"

A square lattice may also be thought of as a collection of dimers2 as illustrated in

Fig" =J for a \nite lattice cut along the diagonals" The sites of the original square

lattice are depicted by two sets of {solid and open| circles which form two intertwining

sublattices" This designation is used merely to indicate that the two spins of any given

dimer belong to di]erent sublattices" In particular2 the ground {N�eel| state is such

that the two spins point in opposite directions but are uniform on each sublattice"

Because of the easy@plane anisotropy the N�eel state is polarized along any direction in

the plane perpendicular to the third axis" This azimuthal degeneracy of the ground

state will play an important role in the following"

A generic dimer AB {see Fig" =J| is labeled by a pair of indices {�� �| numbered

consecutively {�� � ~ =� ?� � � � �N|" In our explicit illustrations N is taken to be even2

but this is only a minor technical assumption" Let us denote by A
	� and B
	� the

two spins of dimerAB" Eq" {?"?| is then written as a system of two coupled equations2

�A
	�

�t
~ A
	� �F
	�

�B
	�

�t
~ B
	� �G
	�� {?�P|

where the e]ective \elds F and G are given by

F
	� ~ �J{B
	� �B
��	� �B
	��� �B
��	���|� gA�

	�e�

G
	� ~ �J{A
	� �A
��	� �A
	��� �A
��	���|� gB�

	�e�

{?�>|

for a generic point inside the lattice" The exchange contributions in Eq" {?">| contain

only two terms for each point on the perimeter of the \nite lattice of Fig" =J"

As a \rst step in the derivation of a continuum approximation we introduce the

discrete set of variables

� ~
p
? �{� � ��|� � ~

p
? �{� � ��|� {?�W|

which become continuous in the limit �� K and provide a measure of distances along
the diagonals of the square lattice" Actual distances are given by a�	� and a�	� where

a is the physical distance between two neighboring magnetic ions" The lattice constant

a will not appear in our theoretical development except when various quantities of

interest will have to be translated in physical units" Finally the convenient choice

�� ~ {N � =|	? ~ �� in Eq" {?"W| sets the origin of the coordinate system at the

center of the lattice of Fig" =J"

The main assumption supported by numerical calculations is that the spin vari@

ables A
	� andB
	� approach smooth continuum limits A ~ A{�� �| andB ~ B{�� �|
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at weak anisotropy {� � K|" Then we make the substitutions A
	� � A and

B
	� � B in Eqs" {?"P|@{?">| together with the Taylor expansions

A
��	� � A� �A� �
=

?
��A���

A
	��� � A� �A
 �
=

?
��A

�

A
��	��� � A� �{A� �A
| �
=

?
��{A�� �A

 � ?A�
|�

{?�B|

and similar expansions for the \eld B" Here subscripts denote di]erentiation with

respect to the indicated arguments and

� ~
p
? � {?�=K|

is used as a temporary notational abbreviation" Eqs" {?"P| are then approximated by

�A

�t
~ A� F�

�B

�t
~ B�G� {?�==|

where

F ~ �J _JB� ?�{B� �B
| � �
�{B�� �B

 �B�
|`� gA�e�

G ~ �J _JA� ?�{A� �A
| � �
�{A�� �A

 �A�
|`� gB�e�

{?�=?|

This system of equations is not yet fully consistent because it appears to mix di]erent

powers of � {or �|"

In order to obtain a consistent continuum model we proceed as in the =D case

studied in Ref" _?B`" First2 we introduce the linear combination of \elds

m ~
=

?s
{A �B|� n ~

=

?s
{A �B|� {?�=D|

which satisfy the constraints

m � n ~ K� m� � n� ~ =� {?�=J|

Second2 we de\ne a dimensionless time variable

� ~ ?�sJt ~ ?
p
? �sJt� {?�=H|
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An equivalent form of Eqs" {?"==| then reads

�
�m

��
~� �_{m� n|� � {m� n|
` �

=

?
��_n� {n�� � n

 � n�
|

�m� {m�� �m

 �m�
|` � =
J
��_m�{m� e| � n�{n � e|`�

�
�n

��
~J{m� n| � �_m� {m� �m
| � n� {n� � n
|`

�
=

?
��_m� {n�� � n

 � n�
|� n� {m�� �m

 �m�
|`

� =
J
��_m�{n� e| � n�{m� e|`�

{?�=P|

A simple inspection of the above equations suggests that consistency is obtained if m

is of order �" Then the leading approximation of the second equation is

�
�n

��
~ J{m� n|� �_n� {n� � n
|` {?�=>|

and the constraints of Eq" {?"=J| reduce to

m � n ~ K� n� ~ =� {?�=W|

to within terms of order ��" Therefore taking the cross product of both sides of Eq"

{?"=>| with n and using the constraints {?"=W| yields

m ~
�

?
p
?
_�{n� � n
| � {n � �n|`� {?�=B|

where we have restored the small parameter � from Eq" {?"=K|" Finally Eq" {?"=B| is

inserted in the \rst of Eqs" {?"=P| to give in the limit �� K the di]erential equation

n� f ~ K� f ~ �n��n� n�e� {?�?K|

where � is the ?D Laplacian

� ~
��

���
�

��

���
� {?�?=|

It is understood that terms of order �� in Eqs" {?"=W|2 {?"?K| and order �� in Eq"

{?"=B| have been neglected"

Therefore the continuum approximation is governed mainly by Eq" {?"?K| which

is a simple extension of the relativistic nonlinear � model to include a single ion

anisotropy" The corresponding velocity of light is equal to unity thanks to our choice
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of rationalized space and time variables" In our conventions2 the spin magnitude s is

a simple multiple of the Planck constant {e"g"2 s ~ �
�
�h| and thus carries dimension of

action2 sJ of frequency and s�J of energy" The ratio � of Eq" {?"H| is dimensionless2 so

is the time variable � of Eq" {?"=H|" Also recalling that actual distances are given by

a�	� and a�	�2 where a is the lattice constant2 we conclude that velocity is measured

in units of

c ~ ?
p
?asJ� {?�??|

which coincides with the phase velocity of pure AFM magnons on a square lattice in

the long@wavelength limit" More generally2 the magnon velocity is given by

c ~ ?asJ

r
z

?
� {?�?D|

where z is the lattice coordination number" Applied for a square lattice {z ~ J| Eq"

{?"?D| reduces to Eq" {?"??|2 whereas for a chain {z ~ ?| it yields the limiting velocity

c ~ ?asJ of Refs" _?B`"

Needless to say2 a complete description of the original spin model requires knowl@

edge of both \elds m and n" On the other hand2 given a solution n ~ n{�� �� � |

of the nonlinear � model2 the \eld m may be determined from Eq" {?"=B| by simple

di]erentiations and may thus be viewed as an auxiliary \eld" Yet this apparently

straightforward result has been controversial" For instance2 the parity@breaking gra@

dient terms in Eq" {?"=B| were recently derived within the =D model and shown to

be important for various structural properties of AFM and WFM domain walls _?B`"

The possible occurrence of such terms had been anticipated on symmetry grounds

_D?` but this possibility was overlooked in the literature for a long time _DD`"

One should stress that symmetry arguments do not predict the precise coe^cients

of the parity@breaking gradient terms in Eq" {?"=B| and are generally susceptible to

overinterpretation" The danger from this dimerization ambiguity is already present

in one dimension and was completely analyzed in Refs" _?B`" The situation is only

compounded in two dimensions" For example2 had we chosen to work with a horizontal

instead of the vertical dimerization of Fig" =J2 the nonlinear � model of Eq" {?"?K|

would not be a]ected but the gradient terms in Eq" {?"=B| would appear as n� � n


instead of n��n
" This is an indication that the local values of the \eldm are sensitive

to the mode of dimerization and cannot be literally interpreted as magnetization"

However no real mathematical or physical ambiguity appears when the results of

a calculation or an experiment are consistently interpreted in reference to a speci\c

mode of dimerization" But an attempt to measure the �magnetization�m by standard
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Fig� ��� Illustration of the tetramerization process of a �nite portion of the square lattice�

techniques may lead to a fuzzy magnetization curve around any nontrivial soliton

structure2 unless spin values can be resolved at every site _?B`"

To press the above picture further we note that dimerization is not the only way

to achieve continuity on a square antiferromagnetic lattice" We may also consider the

tetramerous con\guration illustrated for a \nite lattice in Fig" =H" Each tetramer

is again labeled by two indices � and � numbered consecutively {�� � ~ =� ?� � � � �N|

and spin values are smooth as one moves from corresponding sites of one tetramer to

the next" Let us again denote by A
	�2 B
	�2 C
	� and D
	� the spins on a generic

tetramer ABCD shown in Fig" =H2 in terms of which the original equation of motion

{?"?| may be written as a system of four coupled equations analogous to Eqs" {?"P|"

This new system may then be used for the derivation of the continuum approximation

by a method similar to the one explained earlier within the dimerization scheme of

Fig" =J"

We omit the lengthy algebraic details and simply state the \nal results" We now

use the Cartesian coordinates

x ~ ?�{� � ��|� y ~ ?�{� � ��|� {?�?J|

which are related to the coordinates � and � of Eq" {?"W| by a JH� rotation" Here the

origin of the coordinate system is again set at the center of the lattice of Fig" =H by

choosing the arbitrary constants as �� ~ {N � =|	? ~ ��" Next we assume that the
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four spins on a tetramer approach smooth continuum limits when �� K denoted by
A�B�C and D which are some functions of the spatial coordinates x and y of Eq"

{?"?J| and the time variable � of Eq" {?"=H|" A more convenient set of \elds is given

by

m ~
=

Js
{A �B�C �D|�

k ~
=

Js
{A �B�C �D|�

n ~
=

Js
{A �B�C �D|�

l ~
=

Js
{A �B�C �D|�

{?�?H|

and satisfy the constraints

m� � n� � k� � l� ~ =�

m � n� k � l ~ K�

m � k� n � l ~ K�

m � l � n � k ~ K�
{?�?P|

In the strict continuum limit {�� K| the constraints reduce to

m � n ~ k � n ~ l � n ~ K� n� ~ =� {?�?>|

the \elds m�k and l are expressed in terms of n by

m ~
�

?
p
?
{n� �n|� k ~ � �

?
nx� l ~ � �

?
ny� {?�?W|

and n itself satis\es the di]erential equation

n� f ~ K� f ~ �n��n� n�e� {?�?B|

where � is the ?D Laplacian

� ~
��

�x�
�

��

�y�
� {?�DK|

It is again understood that Eqs" {?"?>|@{?"?B| are accurate to within terms of order

��"

Although the \eld n de\ned in Eq" {?"?H| is not directly related to the \eld n of

Eq" {?"=D|2 its continuum dynamics is still governed by the nonlinear � model of Eq"

{?"?B| which is equivalent to Eq" {?"?K|" However a clear distinction between the two

formulations emerges at the level of the auxiliary \elds" We now need three such \elds

{m�k and l| which are expressed in terms of n through Eqs" {?"?W|" These relations

reenforce our earlier remarks concerning parity@breaking contributions2 namely that

they are sensitive to the speci\c mode of taking the continuum limit" For instance2

such contributions are no longer present in the \eld m but their e]ect is accounted
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for by the new auxiliary \elds k and l" Once again we must conclude that the local

values of the \eld m cannot be interpreted literally as magnetization"

The perplexing nature of the auxiliary \elds calls for a summary of our main

strategy" The continuummodel is extensively used to motivate the results discussed in

subsequent sections" But all numerical calculations are based on the original discrete

equation {?"?|" The actual calculations may be performed on an open \nite lattice

either of the type shown in Fig" =J or that of Fig" =H" The explicit results may then

be employed to construct the \elds m and n in the former case and the \elds m�n�k

and l in the latter" In both cases the validity of the respective continuum models can

be veri\ed explicitly for a su^ciently weak anisotropy {� 
 =|" Nonetheless several
apparent paradoxes emerged in the course of our investigation which were all resolved

in favor of the formulation presented in this section"

�� Static vortices

We consider \rst the problem of \nding interesting static solutions within the

continuum model" In both formulations developed in the previous section2 the basic

issue is to determine the \eld n from the nonlinear � model and then proceed with

the calculation of the auxiliary \elds" Time derivatives vanish in the static limit and

one obtains the reduced equations

n� f ~ K� f ~ ��n� n�e� {D�=|

It proves convenient to derive the \eld f from a variational argument2

f ~
�W

�n
� W ~

=

?

Z
_{��n � ��n| � n��`dxdy� {D�?|

where W is the energy functional in the static limit {see Section H|" The repeated

index is summed over two distinct values � ~ = and ? corresponding to the two spatial

coordinates x and y {or � and �|" It is also useful to resolve the constraint n� ~ =

explicitly using2 for example2 the spherical parametrization

n� ~ sin�cos �� n� ~ sin� sin �� n� ~ cos� {D�D|

in terms of which

W ~
=

?

Z
_{������| � sin

��{������| � cos
��`dxdy {D�J|
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and Eqs" {D"=| are equivalent to

�W

��
~ K ~

�W

��
� {D�H|

or

��� _=� {������|` cos� sin� ~ K� ��{sin
�� ���| ~ K� {D�P|

It should be noted that the above static equations are formally identical to those

encountered in easy@plane ferromagnets" However the physical interpretation of the

\eld n is now di]erent and the actual construction of the corresponding AFM solitons

on the discrete lattice is e]ected by the prescriptions of Section ?"

The simplest solution of Eqs" {D"P| is the ground state con\guration � ~ �
�
and

� ~ ��2 where �� is an arbitrary constant2 for which the energy achieves its absolute

minimum {W ~ K|" Such a simple con\guration {n� ~ cos��2 n� ~ sin��2 n� ~ K|

is consistent with our earlier remark that the ground state is the usual N�eel state

with spins polarized along any direction in the {=?| plane" Nontrivial static solutions

are also stationary points of the energy functional W and are subject to limitations

imposed by the familiar scaling theorem of Derrick _=D`" Applied for the functional

{D"J| Derrick1s argument yields the virial relation

Z
cos�� dxdy ~ K� {D�>|

Therefore one must conclude that nontrivial static solutions with \nite energy do not

exist"

The above argument does not exclude interesting solutions with in\nite energy

such as vortices" In fact2 the possible existence of vortices is probed by a suitable

generalization of the Derrick theorem _D=`" Eq" {D">| is then replaced by

Z
cos�� dxdy ~ �� {D�W|

which not only does not exclude the possibility of vortex solutions but predicts the ac@

tual value of their anisotropy energy" However the exchange energy is logarithmically

divergent"

To obtain an explicit solution we consider the usual cylindrical coordinates x ~

� cos�2 y ~ � sin� and make the following ansatz for a vortex located at the origin5

� ~ �{�|� � ~ 
{�� ��|� {D�B|
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Fig� ��� The numerically calculated pro�le of a static vortex at weak anisotropy�

where 
 ~ �= will be referred to as the vortex number and �� is an arbitrary constant
reUecting the azimuthal symmetry" Then the second equation in {D"P| is automatically

satis\ed and the \rst yields

=

�

�

��

�
�
��

��

�
�

�
=� =

��

�
cos � sin � ~ K� {D�=K|

The energy {D"J| is accordingly reduced to

W ~
=

?

Z �

�

��
��

��

��

�
sin� �

��
� cos� �

�
{?��d�| {D�==|

and its stationary points are solutions of Eq" {D"=K|" This equation is consistent with

the asymptotic behavior

� �
���

c��� � �
���

�

?
� c�e

��

p
�

� {D�=?|

where c� and c� are some constants" The actual solution depicted in Fig" =P was

calculated numerically via a relaxation algorithm applied to the restricted energy

functional {D"==| taking into account the boundary values {D"=?|"

Furthermore we note that for every solution � of Eq" {D"=K| a new solution is

obtained by the formal replacement � � � � �" Hence the complete result for the

\eld n ~ {n�� n�� n�| reads

n� ~ sin � cos_
{�� ��|`� n� ~ sin � sin_
{�� ��|`� n� ~ � cos �� {D�=D|

where � ~ �{�| is taken from Fig" =P2 while the vortex number 
 and the polarity �

are given by


 ~ �=� � ~ �=� {D�=J|
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Fig� ��� Spin vectors of a vortex and an antivortex projected on the ���	 plane� Spins are shown
at every fourth site of the original lattice and distances on the grid are measured according to Eq�
�����	 applied with � ~����

taken in any combination" In other words2 both the vortex {
 ~ =| and the antivortex

{
 ~ �=| come in two varieties {� ~ �=|"
The asymptotic behavior {D"=?| makes it evident that the centrifugal {second|

term in the energy {D"==| diverges logarithmically with the size of the system but the

remaining terms are \nite" In fact2 the numerically calculated anisotropy contribution

was found to be in excellent agreement with virial relation {D"W|" The weak {logarith@

mic| divergence of the total energy is not necessarily an obstacle to the production

of vortices in an antiferromagnet" In this respect2 one should recall that vortices are

easily produced in a rotating cylindrical bucket \lled with an ordinary Uuid or a su@

perUuid _DJ`" Furthermore vortex@antivortex pairs have \nite energy and should play

an important role in thermodynamics"

Keeping with the strategy outlined in the concluding paragraph of Section ?2 we

must comment on the manner in which Eq" {D"=D| furnishes a vortex on the discrete

lattice" The \eld n of Eq" {D"=D| may be used to calculate the auxiliary \eld m of

Eq" {?"=B| or the \elds m�k and l of Eq" {?"?W|2 applied for a static solution { �n ~ K|2

and thereby determine the original spin con\guration on the lattices of Fig" =J and

Fig" =H2 respectively" As a check of consistency we have used the resulting spin

con\guration as initial condition within a fully@dissipative algorithm _?B` applied to

the complete energy functional {?"=| on a ?KK � ?KK lattice" The calculated relaxed
state accurately reproduced both the pro\le of Fig" =P and the corresponding auxiliary

\elds for a reasonably small value of the anisotropy constant {� ~ K�=|" The spin values

on the discrete lattice are partially illustrated in Fig" => for both a vortex and an
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antivortex and exhibit the characteristic antiferromagnetic discontinuity between the

two sublattices" Finally we mention that a similar calculation of an AFM vortex can

be found in Ref" _DH` using an Ising@like instead of a single@ion anisotropy"

Since the vortex solutions described above are present for any \nite value of

the anisotropy2 however weak2 it is also of interest to examine the extreme limit of

vanishing anisotropy" The static equations {D"=| then reduce to

n��n ~ K� n� ~ = {D�=H|

and are equivalent to the O{D| nonlinear � model in a ?D Euclidean space" The small

parameter � hidden in the de\nition of spatial coordinates is no longer related to

an anisotropy constant but is an intrinsic scale set by the actual spread of localized

solitons" The implied arbitrariness of � is reUected by the scale invariance of Eq"

{D"=H| and is already an indication that the corresponding solitons are metastable"

Explicit solutions of Eq" {D"=H| are the well@known Belavin@Polyakov {BP| instantons

_?W` viewed here as static solitons in the ?�= dimensional theory of current interest"

They di]er from the vortex {D"=D| mainly in the asymptotic value of the \eld n which

is now given by

n ��
jxj��
{K� K� =| {D�=P|

and coincides with the ground state con\guration of the isotropic antiferromagnet

de\ned up to a global O{D| rotation" Therefore the BP instantons may be called

AFM bubbles2 by analogy to FM bubbles _=`2 discussed in Chapters I and II of this

thesis" These are classi\ed by the Pontryagin index or winding number Q de\ned in

Eq" {I"D"=K| which is written here again in the present notation5

Q ~
=

J�

Z
q dxdy� q ~

=

?
���{��n� ��n| � n� {D�=>|

where ��� is the ?D antisymmetric tensor" The topological density q may also be

expressed in terms of the spherical variables as

q ~ ��� sin� ������� {D�=W|

and we have seen that it plays an important role in the dynamical theory of FM

bubbles _H2=?`"

An examination of the asymptotic behavior of Eq" {D"=D| suggests that a vortex

may be viewed roughly as a half bubble" To push this remark further we calculate

the density q for the vortex con\guration {D"=D|2

q ~

�

�

� cos �

��
� {D�=B|



Two�dimensional antiferromagnets ��

where � ~ �{�| must be taken from Fig" =P" Therefore the winding number calculated

from Eq" {D"=>| is found to be

Q ~
=

?

�_cos �{�| � cos �{K|` ~ �=

?

� {D�?K|

and depends on both the vortex number 
 and the polarity �" This result con\rms

the vague notion that a vortex is topologically equivalent to a half bubble {Q ~ ��
� |"

However a modi\ed topological charge that is related to the vortex number but not

the polarity will arise more naturally in the dynamical context of Section H"

�� Head�on collisions

Although static AFM solitons are similar to those encountered in ferromagnets2

their dynamics is signi\cantly di]erent" For comparison purposes2 it is useful to recall

at this point the two main dynamical features of FM bubbles5 {a| An FM bubble

cannot be found in free translational motion� it is always spontaneously pinned or

frozen within the ferromagnetic medium" {b| An FM bubble tends to move in a

direction perpendicular to an applied magnetic \eld gradient" For example2 a single

bubble will undergo a BK� deUection with respect to an externally supplied uniform

gradient in the absence of dissipation" In the case of two or more interacting bubbles2

a gradient arises intrinsically and leads to a characteristic relative motion similar

to the Hall motion of electric charges in a uniform magnetic \eld or the motion of

vortices in a Uuid _==`"

Property {a| is clearly not the case for AFM bubbles or vortices because of the

Lorentz invariance of the underlying nonlinear � model" Indeed2 for any static vortex

n ~ n{x| constructed in the preceding section2 a vortex propagating freely with an

arbitrary speed v � ={~ c| in2 say2 the x@direction may be obtained by the elementary

Lorentz transformation

n{x� y| � n

�
x� v�p
=� v�

� y

�
� {J�=|

One may then calculate the corresponding auxiliary \elds from Eq" {?"=B| or {?"?W|2

taking into account that the dynamical contribution {n � �n| is no longer vanishing2
and subsequently construct the spin con\guration on the discrete lattice to obtain a

rigidly moving AFM vortex"

Similarly2 there is no reason to believe that property {b| is sustained for AFM

bubbles or vortices" Yet one should expect that topology will continue to play an im@

portant role within the relativistic dynamics" A possible manifestation of a topological
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e]ect occurs in the dynamics of two bubbles in a head@on collision" Such a process

was studied extensively in the context of the isotropic O{D| nonlinear � model and

shown to exhibit a characteristic BK� scattering pattern _DP`" This pattern is certainly

unusual from the point of view of ordinary particle dynamics but strongly reminiscent

of the BK� deUection of FM bubbles in a \eld gradient" Of course2 the above analogy is

super\cial but indicates that both the Landau@Lifshitz and the relativistic dynamics

are inUuenced by the underlying topology"

The isotropic nonlinear � model is special in several ways" In particular2 its scale

invariance leads to metastable bubbles of arbitrary radius" The radius of each bubble

changes during collision and never returns to its initial value _DP`" A healthier situation

arises in the presence of anisotropy which sets a de\nite scale for the soliton size" Then

individual solitons may be deformed during scattering but will always bounce back to

their original shape well after collision" The AFM vortices constructed in Section D

are examples of ?D solitons with de\nite scale and their dynamics will be the subject

of the remainder of this chapter"

The simplest dynamical experiment is to consider the evolution of a pair of two

identical vortices which are initially at rest at a relative distance d" Because vortices

are extended structures2 the above initial con\guration is not uniquely de\ned and

generally depends on the details of the physical process that brings the two vortices

to their initial positions" However such details may be important for a short transient

period but are not expected to signi\cantly inUuence the global properties of the

ensuing motion2 especially when the initial distance d is large" Therefore there exists

signi\cant freedom in the construction of the initial con\guration" The simplest choice

is to consider the product ansatz

�{x� y| ~ ��

�
x � d

?
� y

�
��

�
x �

d

?
� y

�
� {J�?|

where � is the complex stereographic variable

� ~
n� � in�
= � n�

~ tan{�	?| ei� {J�D|

for the vortex pair and �� is the corresponding variable for a single vortex" In view

of Eq" {D"=D| we may write

��

�
x � d

?
� y

�
~
sin ��
= � � cos ��

ei��������� {J�J|

where

�� ~ �{��|� �� ~

s�
x � d

?

��

� y�� �� ~ arctan
y

x� d
�

� {J�H|
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and � ~ �{�| is the pro\le of Fig" =P" In our simulations we made the speci\c choices


 ~ =2 � ~ �= and �� ~ K" The product ansatz {J"?| is then written as

� ~ f{��|e
i��f{��|e

i�� � f{��| ~ cot
��
?

{J�P|

and represents a pair of two identical vortices initially at rest2 at a relative distance

d on the x@axis"

The remaining steps for a complete speci\cation of the initial con\guration on

the discrete lattice of2 say2 Fig" =H proceed as follows" The \eld n is obtained by

inverting Eq" {J"D| according to Eq" {II"="D|" The auxiliary \elds m�k and l are

then computed from Eq" {?"?W| applied for a static con\guration {n � �n ~ K|" The
original spin variables A�B�C and D on a generic tetramer with coordinates {�� �|

are determined from Eq" {?"?H| applied for the discrete set of points x ~ ?�{� � ��|

and y ~ ?�{� � ��| of Eq" {?"?J| with �� � ~ =� ?� � � � �N " The spin con\guration is

thus speci\ed at every site of the original lattice"

Having determined the initial con\guration2 the ensuing evolution of the vortex

pair was calculated by a numerical solution of the initial@value problem {?"?|@{?"J|

using a fourth@order Runge@Kutta algorithm" Typical runs were performed on a ?KK�
?KK lattice for a reasonably weak anisotropy � ~ K�= that leads to a respectable

grid _�=K� =K` for the dimensionless position variables x and y" The rigidity of our
numerical results was frequently checked on larger lattices2 up to JKK � JKK2 and
stability was improved by reenforcing the constraint S�i	j ~ s� at every site of the

lattice after every Runge@Kutta step" This numerical trick was borrowed from related

simulations in the isotropic nonlinear � model _?>2 DP`" On this occasion2 it should

be emphasized that we do not directly simulate the dynamics of the � model but

rather of the original Heisenberg antiferromagnet" A byproduct of this fact was that

various theoretical predictions based on the continuum approximation of Section ?

were veri\ed in detail" In particular2 we have been able to illuminate numerous subtle

points in connection with the parity@breaking contributions in the auxiliary \elds"

The results of the numerical simulation described above revealed no surprises

when the two vortices are initially at rest� they begin to drift away from each other

along the x@axis apparently in order to minimize their interaction energy" Therefore

the calculated behavior is similar to that of two ordinary particles interacting with a

repulsive potential" Nevertheless this behavior is already signi\cantly di]erent from

the one observed in the case of two interacting FM bubbles which would rotate around

each other irrespectively of whether the potential is repulsive or attractive _==`"
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Fig� ��� Three characteristic snapshots of a head�
on collision of two like vortices originating at a
relative distance d�� on the x�axis with initial
velocities v�������
 �	 and v��������
 �	� Af�
ter collision the two vortices scatter at ��� and
su�er an internal phase shift also equal to ����
Vectors represent the projection of the �eld n on
the ���	 plane�

A more interesting situation arises

when the two vortices in Eq" {J"P| are

initially Lorentz boosted to velocities v

and �v and are thus set on a head@on
collision course on the x@axis" As ex@

pected2 the two vortices begin to discel@

erate thanks to their mutual repulsion"

However the future of the process depends

crucially on the magnitude of the initial

velocity" At low velocities the two vortices

approach each other to a minimum dis@

tance at which they come to rest and then

turn around and move o] in opposite di@

rections" When the initial speed exceeds

a certain critical value the vortices again

discelerate but come su^ciently close to a

relative distance where the interaction po@

tential seems to have become attractive"

The vortices then begin to accelerate to@

ward each other until they overlap almost

completely" More importantly2 they sub@

sequently split and reemerge as two sepa@

rate vortices moving o] along the positive

and negative y@direction2 thus undergoing

a BK� scattering analogous to the one ob@

served in numerical simulations of bubbles

in the pure O{D| model _DP`" The main

di]erence here is that vortices regain their

initial shape except for a Uip of their in@

ternal phase equal to �� ~
�
� "
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Fig� ��� Three characteristic snapshots of the
annihilation process of a vortex and an antivor�
tex that are initially at rest at a relative dis�
tance d�� on the x�axis� The vortex and the
antivortex converge toward each other and are
eventually annihilated into spinwaves� Vectors
represent the projection of the �eld n on the
���	 plane�

Fig� ��� Level contours of the energy density
corresponding to the vortex�antivortex annihi�
lation process shown in Fig� ��� After col�
lision two distinct energy lumps emerge along
the positive and negative y�axis but eventually
dissipate into spinwaves�
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The situation described above is illustrated in Fig"=W which depicts three charac@

teristic snapshots of the collision of two like vortices that start from an initial relative

distance d ~ H with velocities v� ~ {K�PH� K| and v� ~ {�K�PH� K|" We have chosen
to illustrate only the \eld n2 through its projection on the {=?| plane2 and hence

the antiferromagnetic discontinuity present in Fig" => is not apparent in Fig" =W"

However we have actually calculated the spin values on the original lattice and then

proceeded with the determination of n as well as the auxiliary \elds" We were thus

able to con\rm several important details of the formulation presented in Section ?"

The picture changes drastically in the case of a vortex@antivortex pair initially at

rest2 at a relative distance d on the x@axis" Such a pair is initially described by the

product ansatz

� ~ f{��|e
i��f{��|e

�i�� � {J�>|

where notation is the same as in Eq" {J"P|" The subsequent evolution was again

studied by a numerical calculation similar to the one described earlier for a pair of

two like vortices" The vortex and the antivortex now begin to accelerate toward

each other apparently because their interaction potential is attractive" Fig"=B depicts

three characteristic snapshots of the \eld n which indicate that the resulting spin

con\guration shows no sign of a nontrivial topological structure2 or that the vortex@

antivortex pair is annihilated" Nevertheless a closer examination of the time evolution

of the energy density shown in Fig" ?K suggests that the annihilation process is not

completely dull" Indeed two distinct lumps of energy are emitted along the positive

and negative y@axis which do not correspond to any well de\ned soliton structures

and eventually dissipate into spinwaves" It is interesting that a tendency for a BK�

scattering persists even in the present case _DP`"

To summarize2 our calculation of head@on collisions of AFM vortices con\rms

what appears to be a robust feature of relativistic topological solitons _?>2 DK2 DP`"

It is more than clear that a simple theoretical explanation of the observed behavior

should be possible to obtain almost independently of the speci\c dynamical model"

However such an explanation has thus far been o]ered only within the context of some

variant or other of collective coordinates" For example2 vortices in a Higgs model were

discussed along those lines in Ref" _D>` and shown to exhibit BK� scattering2 at least in

the so@called Bogomonly limit" At this point2 we do not have a convincing theoretical

interpretation of our numerical data for head@on collisions" But in the case of AFM

vortices in a uniform magnetic \eld2 a theoretical explanation of the dynamics can be

given following the theory of Chapter I for FM bubbles" This issue is taken up in the

next section"
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 � Vortices in a magnetic %eld

The e]ect of an applied uniform magnetic \eld H is accounted for by including

a Zeeman term in the Hamiltonian {?"=|2

W �W � g���
X
ij

{H � Si	j|� {H�=|

where g� � ? is the gyromagnetic ratio and �� ~ e	?mc is the Bohr magneton divided

by the Planck constant" AFM vortices then acquire the general dynamical features of

FM bubbles described in the beginning of Section J" Such a radical change of behavior

was already speculated in Ref" _DW` and is established here by means of unambiguous

conservation laws that link the dynamics with the underlying topology" The derived

qualitative picture is then con\rmed by direct numerical simulations"

The classical ground state is now obtained by assigning a spin value A on the

\rst sublattice {solid circles| and a value B on the second {open circles|" We further

introduce the unit vectors a ~ A	s and b ~ B	s to write for the energy of such a

con\guration

W	s�J� ~ ?{a � b| � =
J
��{a�� � b

�
�| �

g���
?sJ

H � {a� b|� {H�?|

where � is the dimensionless anisotropy constant of Eq" {?"H| and � is the total

number of lattice sites assumed to be large" For a \eld of strength H applied along

the third direction the minimum of {H"?| is achieved by the canted spin con\guration

of Fig" ?=2 de\ned up to an arbitrary azimuthal rotation2 where the canting angle is

given by

sin � ~
H

Hc
� Hc ~

{W � ��|sJ

g���
� {H�D|

for \eld values in the rangeH � Hc" Above the critical \eldHc a transition takes place

into a ferromagnetic phase {� ~ �
� |" Actually we shall mostly study the parameter

regime where both the anisotropy and the applied \eld are weak2 namely

�
 =� H 
 Hc � WsJ
g���

� {H�J|

which are conditions for the validity of a continuum approximation and are su^ciently

nonstringent for practical applications" For future reference2 Fig" ?= also displays the

two vectors

m ~
=

?
{a� b|� n ~

=

?
{a� b|� {H�H|
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ab
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Fig� ��� Schematic illustration of the ground
state in the presence of an external uniform
magnetic �eld along the symmetry �third	
axis� The canting angle 	 is given by Eq� ���
	�

which may be expressed in terms of the canting angle as

m ~ {K� K� sin �| � {g���H	WsJ|{K� K� =|�

n ~ {cos �� K� K| � {=� K� K|�
{H�P|

where the second steps have been restricted to the parameter regime {H"J|" There@

fore a nonvanishing magnetization m develops along the third direction whereas n is

con\ned in the basal plane"

When the \eld is turned on2 the N�eel state is set in a precessional mode that

eventually relaxes into the canted state of Fig" ?= thanks to some dissipative process

or other that is always present in a realistic antiferromagnet" Throughout this section

we shall assume that the \eld has been turned on su^ciently long to ensure that

equilibrium has been achieved in the ground state" The argument is carried out in

\ve steps described in the following \ve subsections"

A� The continuum model

We now return to the discrete equations {?"P|@{?">| which we extend according

to

F
	� � F
	� � g���H� G
	� � G
	� � g���H� {H�>|
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It is also convenient to introduce the rationalized \eld _?B`

h ~ he� h ~
g���H

?
p
?�sJ

� {H�W|

Eqs" {?"=P| are then extended simply by adding a term �{m� h| to the right@hand

side of the \rst equation and �{n� h| to the second2 where � ~ p?�" The remaining
algebraic details will be omitted here because they are similar to those of Section ?"

Hence the continuum limit is now governed by the strong inequalities

�� �h
 =� {H�B|

the \elds m and n continue to satisfy the constraints

m � n ~ K� n� ~ =� {H�=K|

the auxiliary \eld m is given by

m ~
�

?
p
?
_�{n� � n
| � {n� �n|� n� {n� h|` {H�==|

and the \eld n satis\es the di]erential equation

n� f ~ K� f ~ �n��n� ?{h� �n| � {n � h|h� n�e� {H�=?|

As a check of consistency one may explicitly verify that the ground state values

{H"P| are compatible with the above equations for parameters that satisfy the strong

inequalities {H"B|" Finally we note that Eq" {H"=?| emerges also in connection with

the tetramerization scheme of Fig" =H2 while the associated auxiliary \elds are

m ~
�

?
p
?
_{n� �n| � n� {n � h|`�

k ~ � �

?
nx� l ~ � �

?
ny�

{H�=D|

which should be compared to Eqs" {?"?W|"

We may thus concentrate on the dynamics of the extended nonlinear � model

{H"=?| where the e]ect of the applied \eld is twofold� it breaks Lorentz invariance and

renormalizes the single ion anisotropy" An e^cient study of the dynamics is carried

out through a variational principle2 namely

f ~ ��A
�n

� {H�=J|
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where A is the action
A ~

Z
Ldxdyd�� {H�=H|

and L is the corresponding Lagrangian density _B`

L ~
=

?
_ �n� � {��n � ��n|` � h � {n� �n|� =

?
_{n � h|� � n��`� {H�=P|

We further resolve the constraint n� ~ = explicitly using2 for example2 the spherical

parametrization {D"D| to write

L ~
=

?
_ ��� � sin�� ���`� =

?
_{������| � sin

��{������|`

� h sin�� �� � =
?
{= � h�| cos���

{H�=>|

Hence there exist two pairs of canonical \elds given by

�� ~ �� �� ~ ��

�� ~ �� �� ~ sin
��{ �� � h|�

{H�=W|

The Hamiltonian is then obtained from

W ~

Z
wdxdy� w ~ �a ��a � L� {H�=B|

where the repeated Latin index a is summed over the two distinct values of Eq"{H"=W|"

A more explicit form of the energy density w expressed directly in terms of the \eld

n reads

w ~
=

?
_ �n� � {��n � ��n|` � =

?
{= � h�|n��� {H�?K|

where we \nd no trace of the nonrelativistic term h �{n� �n| of Eq" {H"=P|" The energy
W is now measured in units of ?

p
?�s�J "

Therefore the extended nonlinear � model {H"=?| may be cast in the standard

Hamiltonian form

��a ~
�W

��a
� ��a ~ � �W

��a
� a ~ =� ?� {H�?=|

which will be the basis for our subsequent theoretical discussion" For instance2 the

conserved linear momentum should be given by

p� ~ �
Z

�a���a dxdy� {H�??|
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and the angular momentum by

� ~ �
Z

�a���x����a dxdy� {H�?D|

Using the canonical variables of Eq" {H"=W| a more explicit form of linear momentum

reads

p� ~ �
Z
{ ������ sin

�� ������ h sin
�� ���|dxdy {H�?J|

and is in agreement with the expression quoted in Ref" _DW`" However the \eld de@

pendent term in Eq" {H"?J| leads to an improper integral for vortex con\gurations for

which � � �
�
and � � 
� at spatial in\nity" One would think that this di^culty

may be resolved by modifying the momentum density by a total divergence2 thus

replacing sin�� ��� by {sin
��� =|��� ~ � cos�� ���2 which would indeed lead to

proper behavior at in\nity where cos� ~ K" Nevertheless the ambiguity would then

be shifted to the origin of the vortex where ��� is singular2 because � is multivalued2

while � ~ K or � and cos� ~ �= 	~ K"
The ambiguities in the linear momentum signal an important link between the

dynamics and the underlying topological complexity2 in analogy with the situation

previously analyzed for FM bubbles" In turn2 the relativistic dynamics of AFM vor@

tices studied in earlier sections should be radically altered by the applied \eld" A

complete resolution of the ambiguities is given in subsection C after the ground is

prepared in subsection B"

B� Vorticity and the stress tensor

For any ?D \eld theory that can be brought to the standard Hamiltonian form

{H"??| one may de\ne a {scalar| vorticity

� ~ ������a���a� {H�?H|

where ��� is the ?D antisymmetric tensor {��� ~ K ~ ���2 ��� ~ = ~ ����|" Termi@
nology is borrowed from Uuid dynamics because the quantity � shares with ordinary

vorticity several formal properties" The time derivative of � is calculated from the

Hamilton equations to yield

�� ~ �������� {H�?P|

where the vector density

�� ~
�W

��a
���a �

�W

��a
���a {H�?>|
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is analogous to the �force density� employed by Thiele _J` in the problem of FM

bubbles" It is not di^cult to see that �� may be written as a total divergence2

�� ~ ������ {H�?W|

where the tensor ��� is the stress tensor

��� ~ w��� � �w

�{���a|
���a � �w

�{���a|
���a {H�?B|

calculated for a speci\c energy density w" Eq" {H"?P| then reads

�� ~ ����������� {H�DK|

and proves to be fundamental for our purposes _H2=?`"

It should be noted that the preceding discussion makes no distinction between

ordinary \eld theories and those endowed with nontrivial topological structure or

related properties" However a clear distinction emerges when we consider the total

vorticity

� ~

Z
� dxdy ~ ���

Z
���a���a dxdy� {H�D=|

which is conserved by virtue of Eq" {H"DK| for any \eld con\guration with reasonable

behavior at in\nity" One may also write

� ~ ���

Z
_��{�a���a|� �a�����a`dxdy {H�D?|

to indicate that a vanishing value of the total vorticity is the rule rather than the

exception" Indeed2 under normal circumstances2 the \rst term in {H"D?| is shown to

vanish by transforming it into a surface integral at in\nity and the second term also

vanishes because ��������a ~ K for any di]erentiable function �a" Yet the above

conditions may not be met in a \eld theory with nontrivial topology2 a fact closely

related to the ambiguities discussed in connection with the linear momentum" In

general2 the canonical de\nition of conservation laws is rendered ambiguous when the

total vorticity � is di]erent from zero"

It is then important to examine more closely the de\nition of vorticity in the

current model" Substitution of the canonically conjugate \elds of Eq" {H"=W| in Eq"

{H"?H| and straightforward algebraic manipulation yield the local vorticity

� ~ �����{ �n � ��n| � h�� {H�DD|
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where

� ~ �=
?
_��� sin{?�| �� {?�|���`� {H�DJ|

The \rst term in Eq" {H"DD| is an uncomplicated total divergence which leads to a

vanishing contribution in the total vorticity � of Eq" {H"D=|" Thus we may write

� ~ h

Z
� dxdy {H�DH|

and further note that the density � of Eq" {H"DJ| resembles the Pontryagin density

q of Eq" {D"=W| except for an overall factor ��
�
and the replacement � � ?�" The

latter suggests considering the three@component vector N ~ {N��N��N�| with

N� ~ ?n�n� ~ sin{?�| cos ��

N� ~ ?n�n� ~ sin{?�| sin ��

N� ~ ?n�
� � = ~ cos{?�|�

{H�DP|

which is also a unit vector \eld {N� ~ =|" The density � may then be written as

� ~ �=
J
���{��N� ��N| �N {H�D>|

and should be compared to the standard Pontryagin density of Eq" {D"=>|" Further@

more the \eld N satis\es the simple boundary condition

N ��
jxj��
{K� K��=|� {H�DW|

thanks to the condition n� � K satis\ed by all relevant \eld con\gurations2 including
the vortex con\gurations of Section D" The net conclusion is that � is actually the

Pontryagin density for the \eld N and thus yields an integer@valued total vorticity

� ~ ?�h
� 
 ~ K��=��?� � � � � {H�DB|

where the integer 
 will be referred to as the vortex number" Indeed an explicit

calculation for a single vortex or antivortex {
 ~ �=| discussed in Section D con\rms
Eq" {H"DB| for any choice of the polarity �2 in contrast to Eq" {D"?K| that depends on

both the vortex number and the polarity"

To complete this level of description of the current model we quote an explicit

expression for the stress tensor calculated from Eq" {H"?B| using as input the energy

density {H"?K|" The \nal result is

��� ~ w��� � {��n � ��n|� {H�JK|
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where the energy density w may be expressed directly in terms of the \eld n through

Eq" {H"?K|"

Finally we give the DD generalization of the discussion of this subsection" For

instance2 Eq" {H"DK| becomes

��i ~ ��ijk�j�l�kl� {H�J=|

where Latin indices i� j� � � � assume three distinct values and �ijk is the DD antisym@

metric tensor" The stress tensor in Eq" {H"J=| is obtained by an obvious DD extension

of Eq" {H"JK| and the vorticity 
 ~ {��� ��� ��| is given by

�i ~ �ijk�j�a�k�a ~ �ijk�j { �n � �kn| � h�i� {H�J?|

where the vector density 
 ~ {��� ��� ��| reads

�i ~ �=
J
�ijk{�kN� �jN| �N {H�JD|

and generalizes the scalar Pontryagin density {H"D>|"

C� Conservation laws

We now return to the ?D theory and consider the derivation of unambiguous

conservation laws" Since the main strategy was already explained in the related

context of FM bubbles our description here will address only the essential points

adapted to the present model" The appearance of a double derivative in the right@

hand side of the fundamental relation {H"DK| suggests that some of the low moments

of the local vorticity � must be conserved" Indeed the linear momentum p ~ {p�� p�|

is given by

p� ~ ����I� � I� ~

Z
x�� dxdy� {H�JJ|

and the angular momentum � by

� ~
=

?

Z
��� dxdy� {H�JH|

where �� ~ x� � y�" The list of conservation laws is completed by the total magneti@

zation � in the third direction2

� ~

Z
_e � {n� �n| � hn��`dxdy� {H�JP|
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which can be derived directly from the equation of motion"

The preceding identi\cations are made plausible by inserting the general ex@

pression for the vorticity given by Eq" {H"?H| in Eqs" {H"JJ| and {H"JH| and by freely

performing partial integrations to recover the canonical forms of linear and angular

momentum quoted in Eqs" {H"??| and {H"?D| which are plagued by the ambiguities

discussed in connection with Eq" {H"?J|" However no such ambiguities occur in Eqs"

{H"JJ| and {H"JH| because the local vorticity � can be obtained directly from the \eld

n2 rather than the angular variables2 and is a particularly well de\ned quantity� see

Eqs" {H"DH| and {H"D>|" In other words2 partial integrations should be performed with

great care and are often unjusti\ed"

The main point of this theoretical exercise is that the very structure of the con@

servation laws {H"JJ|@{H"JP| suggests a radical change in the dynamical behavior of

vortices in an applied \eld {h 	~ K|" The e]ect of a nonvanishing total vorticity
{� ~ ?�h
| becomes apparent by considering the transformation of the moments I�

of Eq" {H"JJ| under a translation of coordinates x � x � c where c ~ {c�� c�| is a

constant vector2

I� � I� � �c�� {H�J>|

which implies a nontrivial transformation of the linear momentum {H"JJ| when � 	~ K"
This is surely an unusual property2 because linear momentum should be expected

to remain unchanged under a constant translation of the origin of coordinates2 and

indicates that the moments I� provide a measure of position rather than momentum"

Such a fact is made explicit by considering the guiding center vector R ~ {R�� R�|

with coordinates

R� ~
I�
�
~
=

�

Z
x�� dxdy� {H�JW|

which transforms as R� R�c under a constant translation and is thus a measure of

position of a spin con\guration with � 	~ K" Nevertheless the vector R is conserved"
A related fact is that the familiar Poisson bracket algebra is signi\cantly a]ected

when � 	~ K" Using the canonical Poisson brackets2

f�a{x|� �b{x�|g ~ �ab�{x � x�|� {H�JB|

and the general expression of the local vorticity {H"?H| in the de\nition of the linear

momentum {H"JJ|2 it is not di^cult to establish the relations

fp�� p�g ~ �� fR�� R�g ~ =	�� {H�HK|
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which are strongly reminiscent of the situation in the case of electron motion in a

uniform magnetic \eld2 the role of the latter being played here by the total vorticity

�"

Similarly the angular momentum{H"JH| actually provides a measure of the vortex

size2 a fact made explicit by considering the mean squared radius de\ned from

r� ~
=

�

Z
{x �R|�� dxdy ~

?�

�
�R�� {H�H=|

which is also conserved" Needless to say2 the conservation laws {H"JJ| and {H"JH|

resume their ordinary physical signi\cance at vanishing total vorticity {� ~ K|"

The observed transmutation in the physical signi\cance of the conservation laws

of linear and angular momentum implies a radical change in the dynamical behavior

of topological solitons" For example2 a single AFM vortex or antivortex {
 ~ �=| in
a uniform magnetic \eld carries a nonvanishing total vorticity {� ~ �?�h| and thus
cannot be found in a free translational motion { �R ~ K|" It is always spontaneously

pinned or frozen within the antiferromagnetic medium2 in contrast to the freely mov@

ing vortices occurring in the relativistic theory at vanishing \eld" Vortex motion can

occur in the presence of other vortices2 but the dynamical pattern is also expected

to be substantially di]erent from the one obtained at vanishing \eld in Section J"

Speci\cally2 interacting AFM vortices should now behave as ordinary vortices in a

Uuid or as electric charges in a uniform magnetic \eld2 as demonstrated by direct

simulations in subsection D"

The preceding discussion was kept deliberately general in order to emphasize that

the emerging qualitative picture is valid in any \eld theory for which the total vorticity

� may be di]erent from zero" However it is now useful to express the conservation

laws in a more explicit form that takes into account the speci\c structure of the

current model" We thus insert the local vorticity of Eq" {H"DD| in Eq" {H"JJ| to obtain

the linear momentum

p� ~ �
Z
_{ �n � ��n| � h���x��`dxdy� {H�H?|

where we have performed a partial integration in the \rst term which is free of all

ambiguities" Similarly the angular momentum {H"JH| reads

� ~

Z
_����x�{ �n � ��n| � =

?
h���`dxdy� {H�HD|

As mentioned already2 the above conservation laws possess their usual physical sig@

ni\cance only at vanishing total vorticity2 � ~ ?�h
 ~ K2 which may be achieved
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when either the applied \eld h or the vortex number 
 vanishes" Otherwise one must

consider the guiding center coordinates {H"JW| or

R� ~
=

?�h


Z
_����{ �n � ��n| � hx��`dxdy {H�HJ|

and the radius r calculated from Eq" {H"H=|" It should be noted that the preceding

conservation laws display some formal similarities to those derived in a model for a

superconductor _P2>`"

Finally we return brieUy to the DD theory discussed in the concluding paragraph

of subsection B and quote the corresponding conservation laws of linear and angular

momentum

p ~ �=
?

Z
{r� 
|dV� l ~ �=

D

Z
_r� {r� 
|`dV� {H�HH|

where r ~ {x� y� z|2 dV ~ dxdydz and 
 ~ {��� ��� ��| is the vector vorticity \eld

of Eq" {H"J?|" It is interesting that {H"HH| are formally identical to the conservation

laws derived in Uuid dynamics2 at least for incompressible Uuids� see Eqs" {>"?"H| and

{>"?"P| of Ref" _=J`"

D� Interacting vortices

In the presence of a bias \eld the static vortices of Section D adjust to a slightly

di]erent shape" It is not di^cult to see that the functional form of a static vortex

remains the same as in Eq" {D"=D| except that � ~ �{�| now satis\es the ordinary

di]erential equation

=

�

�

��

�
�
��

��

�
�

�
= � h� � =

��

�
cos � sin � ~ K� {H�HP|

which di]ers from Eq" {D"=K| only by an additional easy@plane anisotropy with

strength equal to h�" Consequently Eq" {H"HP| reduces to Eq" {D"=K| by the simple

rescaling � ~
p
= � h�� and the vortex pro\le � ~ �{�| is again given by Fig" =P with

the replacement � � �" More importantly2 the auxiliary \elds {H"==| or {H"=D| now

contain \eld dependent terms that are crucial for a correct calculation of the actual

spin values on the lattice of Fig" =J or Fig" =H2 respectively"

A pair of like vortices initially at rest is described by the product ansatz {J"?|

taking into account the \eld dependent modi\cations discussed in the preceding para@

graph" The ensuing time evolution of the vortex pair was obtained numerically" In@

stead of drifting away the two vortices actually begin to rotate around each other2
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Fig� ��� Time evolution of a pair of like vortices in
the presence of a bias �eld h��� The two vortices
are initially at rest
 at a relative distance d�
 on
the x�axis
 and subsequently orbit around each
other instead of drifting away� Together with the
initial con�guration of the �eld n projected on
the ���	 plane �upper entry	 we provide snapshots
at instances when the pair had rotated by ���

�middle entry	 and ���� �lower entry	� A ���

rotation in real space is always followed by a ���

internal phase shift�

in sharp contrast to the situation de@

scribed in Section J at vanishing \eld" In

other words2 each vortex moves in a di@

rection perpendicular to the applied force2

in analogy with the skew deUection of

FM bubbles in a \eld gradient analyzed

in Chapters I and II" Fig" ?? illustrates

the initial con\guration together with two

characteristic snapshots taken at time in@

tervals such that the pair had rotated

roughly by BK� and =WK�2 respectively" It

is interesting to note that a BK� rotation

of the pair in real space is always followed

by a BK� internal phase shift of each vor@

tex" Fig" ?D depicts the actual trajecto@

ries obtained by tracking the points where

jn�j ~ =" Inspite of an apparent initial ten@
dency to drift away2 the two vortices even@

tually orbit around each other2 in com@

plete analogy with the ?D motion of two

like vortices in an ordinary Uuid or two in@

teracting electrons in a uniform magnetic

\eld" The observed departures of the tra@

jectories of Fig" ?D from a circular shape

correspond to the well@known Larmor os@

cillations in the electron problem" These

oscillations are expected to be smoothed

out in the limit of large relative distance"
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Fig� �
� Trajectories of the two rotating vor�
tices of Fig� �� obtained by tracking the
points where jn�j��� The two vortices orig�
inated at points A and B on the x�axis and
the process was interrupted after the pair had
completed a ���� rotation�

Fig� ��� Evolution of the angular momen�
tum of the vortex pair of Figs� �� and �

calculated from Eq� ����
	� The total angu�
lar momentum � �solid line	 is fairly well con�
served
 except at late times when numerical
instabilities develop on the �nite lattice� The
lower �upper	 dashed line depicts the nontriv�
ial time dependence of the �rst �second	 term
in Eq� ����
	�

The above results are consistent with the qualitative picture suggested by the

conservation laws of subsection C" The two@vortex system carries a total vortex num@

ber 
 ~ ? and thus a nonvanishing total vorticity � ~ J�h" The guiding center

calculated from Eq" {H"HJ| is initially located at the origin of the coordinate system

and remains \xed at all later times" The angular momentum was calculated numeri@

cally based on Eq" {H"HD| and its time evolution is demonstrated in Fig" ?J" Although

the two pieces of Eq" {H"HD| acquire a nontrivial time dependence2 their sum is fairly

well conserved" Furthermore the same general picture was obtained by repeating the

calculation for a pair of vortices with the same vortex numbers {
� ~ 
�| but opposite

polarities {�� ~ ���|" This result is consistent with the fact that the driving issue is
the total vorticity � ~ ?�h{
��
�| which is independent of the polarities2 in contrast

to the ordinary winding number Q of Eq" {D"?K|"

The calculation was further repeated for a vortex@antivortex pair initially de@

scribed by the product ansatz {J">| incorporating the appropriate \eld dependent

modi\cations" Recall that at vanishing \eld the vortex and the antivortex are at@

tracted toward each other and are eventually annihilated" The situation is drastically

di]erent at nonvanishing \eld" The pair undergoes Kelvin motion roughly along par@

allel lines that are perpendicular to the line connecting the vortex and the antivortex"
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Fig� ��� Evolution of a vortex�antivortex pair
in the presence of a bias �eld h��� The vor�
tex and the antivortex are initially at rest at

the points ����
 ����	 and �����
 ����	 of the
xy�plane �upper entry	� Instead of converging
toward each other and annihilating
 the pair
moves in formation along the y�axis �Kelvin
motion	 as demonstrated by the snapshot of
the lower entry taken at a later instance {� �
��	�

Fig" ?H depicts the initial con\guration

together with a snapshot taken at a later

instance when the pair had moved in for@

mation along the y@axis to a distance ap@

proximately equal to the initial relative

separation" Fig" ?P demonstrates the

actual trajectories {solid lines| obtained

by tracking the points where jn�j ~ ="
Therefore the derived picture is qualita@

tively identical to the Kelvin motion of

a vortex@antivortex pair in an ordinary

Uuid or the Hall motion of an interacting

electron@positron pair in a uniform mag@

netic \eld"

Returning to the conservation laws

we note that the total vorticity of a

vortex@antivortex pair vanishes {
 ~ 
��


� ~ K and hence � ~ K|" Therefore it

is now meaningful to interpret {H"H?| as

the conserved total linear momentum of

the system" A nonvanishing component

develops only along the y@axis2 i"e"2 along

the direction of motion of the pair2 and its

conservation is demonstrated in Fig" ?>"

Again each of the two pieces in Eq" {H"H?|

exhibits a nontrivial time dependence but

their sum is fairly well conserved" On the

other hand2 it is still meaningful to de@

\ne individual guiding centers when the

pair is widely separated" For example2

approximate guiding centers for the vor@

tex and the antivortex may be de\ned by

restricting the integration in Eq" {H"HJ| to the right and left half plane and setting


 ~ = and 
 ~ �=2 respectively" The trajectories obtained by tracking the above
approximate guiding centers are also shown in Fig" ?P {dashed lines| and are close to

two parallel straight lines" The analogy with the motion of an electron@positron pair

in a uniform magnetic \eld in now made more de\nite" The actual trajectories of the
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Fig� ��� Trajectories of the vortex and the
antivortex of Fig� �� originating at the points
B�����
 ����	 and A������
 ����	� The ac�
tual trajectories �solid lines	 were obtained by
tracking the points where jn�j��� The tra�
jectories of the guiding centers �dashed lines	
were calculated from Eq� �����	 restricted
to the corresponding half planes and are re�
markably close to two parallel straight lines�

Fig� ��� Evolution of the linear momentum
of the vortex�antivortex pair of Figs� �� and
�� calculated from Eq� �����	� �We dis�
play only the y�component because the x�
component vanishes�	 The total linear mo�
mentum �solid line	 is fairly well conserved

whereas the lower �upper	 dashed line depicts
the nontrivial time dependence of the �rst
�second	 term of Eq� �����	�

electron and positron undergo Larmor oscillations along the parallel trajectories of

their guiding centers2 which become increasingly narrower with increasing relative

separation" The absence of more than one such oscillation in Fig" ?P is due to our

{numerical| inability to follow the motion to a larger distance� see2 however2 a related

calculation of interacting vortices in a charged Uuid _>`" Finally we have veri\ed that

a vortex@antivortex pair {
��
� ~ K| exhibits Kelvin motion for any choice of relative

polarities {�� ~ �� or �� ~ ���|2 a fact that reenforces the prominence of the total
vorticity � in the study of dynamics"

To summarize2 a simple comparison of the results of this subsection to those of

Section J establishes that the dynamics of AFM vortices is profoundly altered by the

applied \eld2 in remarkable analogy with the familiar Hall e]ect" Nevertheless one

should keep in mind that the e]ect of a bias \eld on AFM vortices would not have

been as drastic without the aid of the underlying nontrivial topological structure"

E� The isotropic antiferromagnet

The special case of an isotropic Heisenberg antiferromagnet is important for

both practical and theoretical purposes" The isotropic limit was brieUy discussed in
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the concluding paragraphs of Section D in the absence of a bias \eld" It was then

mentioned that the model possesses metastable AFM bubbles2 instead of vortices2

which are characterized by the standard Pontryagin index {D"=>|" However2 when a

bias \eld is turned on2 the picture changes drastically for two reasons" First2 the

applied \eld itself supplies an e]ective easy plane anisotropy that leads to vortices

instead of bubbles" Second2 the dynamics of vortices departs signi\cantly from the

relativistic dynamics of the pure antiferromagnet"

In the remainder of this section we shall brieUy describe the necessary modi\@

cations of the formalism to accommodate the isotropic model in a uniform magnetic

\eld" Since a single ion anisotropy is no longer available to provide the small param@

eter � of Eq" {?"H|2 such a parameter is now furnished by the applied \eld which is

assumed to be weak5

� ~
g���H

?
p
?sJ


 =� {H�H>|

The relevant dynamical equations are then obtained from our earlier results by the

formal substitution h � e ~ {K� K� =|2 or h � =2 and by omitting the contribution
from the single ion anisotropy" Thus the dynamics of the \eld n is now governed by

the parameter free Lagrangian

L ~
=

?
_ �n� � {��n � ��n|` � e � {n� �n| � =

?
{e � n|�� {H�HW|

which leads to the equation of motion

n� f ~ K� f ~ �n��n� ?{e� �n| � {n � e|e� {H�HB|

The associated auxiliary \elds are accordingly given by

m ~
�

?
p
?
_�{n� � n
| � {n� �n|� n� {n� e|`� {H�PK|

for the lattice of Fig" =J2 or

m ~
�

?
p
?
_{n� �n| � n� {n� e|`�

k ~ � �

?
nx� l ~ � �

?
ny�

{H�P=|

for the lattice of Fig" =H" Finally we must set h ~ = throughout our discussion of

conservation laws"

Therefore the corresponding physical picture can be readily inferred without

further calculation" Static vortices are formally identical to those of Section D but
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their dynamics is similar to the nonrelativistic dynamics of the current Section H2 for

any \nite value of the applied \eld" In other words2 to the extent that topological

solitons are relevant for the physics of an isotropic antiferromagnet2 the dynamical

picture is changed signi\cantly even by a very weak bias \eld"

!� Concluding remarks

The emphasis in the main text was placed on elementary processes involving only

two AFM vortices2 in order to clearly illustrate an important link between topology

and dynamics" However further progress in that direction hinges upon the actual

production of isolated vortices" Although there exist several examples of realistic an@

tiferromagnets that are e]ectively two@dimensional2 including the parent compounds

of high@Tc superconductors2 there seems to be no direct experimental evidence for iso@

lated AFM vortices or bubbles" This situation is in marked contrast to the observed

abundance of ferromagnetic bubbles2 vortices in superUuid helium2 or Abrikosov vor@

tices in superconductors2 and may change in the future"

The qualitative picture derived from elementary processes must also inUuence

the thermodynamics of ?D antiferromagnets" Work in that direction was already

presented in Refs" _DB2JK` for both Ising@like and single@ion anisotropy2 while the e]ect

of an applied \eld was considered in Ref" _DW`" It is clear that much remains to be

done in connection with the anticipated Berezinskii@Kosterlitz@Thouless {BKT| phase

transition which relies on the dynamics of a gas of interacting vortices and antivortices"

Su^ce it to say that the dynamics of vortex@antivortex pairs studied in Section J is

radically modi\ed by an applied magnetic \eld discussed in Section H" The BKT

theory may have to be reformulated in a way that clearly reUects the fundamental

change of behavior in the elementary vortex processes when a \eld is turned on"

Perhaps the clearest manifestation of the e]ect of an applied \eld will emerge

in the thermodynamics of an isotropic antiferromagnet" Topological solitons at van@

ishing \eld are metastable AFM bubbles that obey relativistic dynamics" However

the smallest external \eld will trigger Hall dynamics for AFM vortices which become

the relevant topological excitations" Again a successful BKT theory must reUect this

abrupt transition in the limit of vanishing \eld"

Our discussion is concluded with some comments on a variation of the main theme

that has not been treated in this chapter" An easy@axis anisotropy {g � K| would lead

to a ground {N�eel| state that is polarized along the easy axis" Therefore topological
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solitons must then satisfy the simple boundary condition {D"=P| and would be AFM

bubbles classi\ed by the standard Pontryagin index {D"=>|" However an application

of the Derrick theorem either in its original form or its extended version discussed

in _D=` leads to the conclusion that such solitons do not exist either with \nite or

in\nite energy" This is a notable di]erence from FM bubbles that occur in easy@axis

ferromagnets" The latter have been studied in Chapter I and shown to be stabilized

by a combination of the e]ects of the long@range magnetostatic \eld created in a

ferromagnetic \lm and of an applied bias \eld {see also _=?`|"

Nevertheless2 when an easy@axis antiferromagnet is immersed in a uniform mag@

netic \eld pointing along the symmetry axis2 an e]ective easy@plane anisotropy is

produced that competes with the easy@axis anisotropy" And2 when the \eld exceeds a

certain critical value2 a spin@Uop transition takes place from the N�eel state polarized

in the third direction to a canted state of the type shown in Fig" ?= which exhibits

azimuthal degeneracy" Consequently AFM vortices reappear above the critical value

of the applied \eld and their dynamical properties are very similar to those discussed

in Section H"
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Conclusions

The dynamics of magnetic solitons has been studied in this thesis" We have

mainly been concerned with a two@dimensional magnetic continuum where the topo@

logical excitations are called magnetic bubbles or vortices depending on the structure

of the ground state of the magnet" Throughout the text the emphasis was placed on

elementary processes involving either one or a pair of solitons" This approach has been

fruitful since the dynamical behavior of solitons has been expected and was actually

found to be rich as well as unusual at least from the point of view of ordinary parti@

cles" This should mainly be attributed to the fact that solitons are extended structures

rather than point like particles" The topology of the \eld describing the solitons has

been known to dominate the dynamics and this dominant role has been con\rmed

here and made clear throughout our study" Nevertheless the role of topology has yet

to be examined in the problem of vortex scattering observed in antiferromagnets"

The theoretical study of elementary processes might appear somewhat arti\cial

had there not been the wealth of experiments with isolated bubbles in ferromagnetic

\lms" Thus2 because of this background and also in view of the results derived here2

we believe that further theoretical as well as experimental study for isolated solitons

and their dynamics is well motivated"

We have con\ned ourselves to the study of the most well known and important

classes among magnets namely the ferromagnets and the antiferromagnets" There

certainly are a lot of di]erences between the two due to the di]erent structure of
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their ground states" The staggered magnetization in the antiferromagnet and the

subsequent lack of a net magnetic moment is its most striking di]erence from the

ferromagnet at least from a macroscopic point of view" An important di]erence in

the dynamics is that a bubble or vortex in an antiferromagnet may be found in free

translational motion while this is not possible in a ferromagnet"

Nevertheless the two magnets also bear important similarities" Thus the dynam@

ical behavior of ferromagnetic vortices is comparable to that of the antiferromagnetic

when the last are in an external magnetic \eld" It is clear that some experimental

work has to be done in this direction to obtain a better understanding and further

clarify these remarks2 taken into account that little has been done up to now with

respect to vortex observation in antiferromagnets"

We also remark here that there certainly are many more interesting questions to

be answered with respect to elementary processes in both ferromagnets and antifer@

romagnets" Thus the detailed long time behavior of a bubble in a ferromagnetic \lm

remains an open question with potential implications in the use of such bubbles in

applications" This program seems to rely largely on computer power but theoretical

questions have also to be answered"

One further question is suggested by the vortex@antivortex Kelvin motion in an@

tiferromagnets shown in \gures III"?H and III"?P" Thus we are tempted to think

that a vortex@antivortex like pair can be constructed such that it travels coherently

with a constant velocity" Such a possibility is in fact realized in an easy@plane ferro@

magnet _J=2 J?` and one can certainly look for corresponding soliton solutions in an

antiferromagnet based on the results of section III"H"

The methodology employed here is certainly useful not only for ferromagnets

and antiferromagnets but can be extended and applied to other classes of magnets

such as weak ferromagnets _?B`" We expect that some modi\cations may be needed for

the successful application and extraction of relevant results" Nevertheless2 any further

theoretical progress to this direction will rely upon corresponding experimental results

which would render the development of a complete theory useful"

The good understanding of elementary processes achieved so far can be a ba@

sis for the study and the understanding of more complex phenomena in magnetic

systems involving many bubbles or vortices" Thus we expect that a study of the

thermodynamic quantities could in principle provide a proof for the existence of an@

tiferromagnetic vortices" Such an approach could be an alternative to the search for

isolated vortices"

Finally we refer to the possibility of genuinely DD magnetic solitons that is soli@
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tons in a DD model for a magnet without boundaries" The experimentally observed

Bloch points are DD topological defects whose dynamics has not yet been studied

within the present framework" Furthermore theoretical arguments for the existence

of magnetic vortex rings with a non@vanishing Hopf index _H2 ?=` have not yet been

concluded to a de\nite calculation that would provide the necessary background for

a corresponding experimental search in the bulk of the ferromagnetic medium" Nev@

ertheless some preliminary calculations have been already performed _J=` within an

easy@plane ferromagnet for a DD soliton with vanishing Hopf index"
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