
Computer Science Department

University of Crete

FPGA implementation of a Cache Controller with

Configurable Scratchpad Space

Master’s Thesis

Giorgos Nikiforos

January 2009

Heraklion, Greece

University of Crete

Computer Science Department

FPGA implementation of a Cache Controller with Configurable

Scratchpad Space

Thesis submitted by

Giorgos Nikiforos

in partial fulfillment of the requirements for the

Master of Science degree in Computer Science

Author:

Giorgos Nikiforos

THESIS APPROVAL

Committee approvals:

Manolis Katevenis

Professor, Thesis Supervisor

Dionisios Pneumatikatos

Associate Professor, Technical University of Crete

Angelos Bilas

Associate Professor

Departmental approval:

Panos Trahanias

Professor, Director of Graduate Studies

Heraklion, January 2009

Computer Science Department

University of Crete

FPGA implementation of a Cache Controller with

Configurable Scratchpad Space

Master’s Thesis

Giorgos Nikiforos

Abstract

Chip Multiprocessors (CMP) are the dominant architectural approach

since the middle of this decade. They integrate multiple processing cores

on a single chip. It is desirable for future CMP’s to support both implicit

and explicit communication. Implicit communication occurs when we do

not know in advance which input data will be needed, or who last modified

them; caches and coherence work well for such communication. Explicit

communication is when the producer knows who the consumers will be,

or when the consumer knows its input data set ahead of time; scratchpad

memories and remote DMA work best, then.

This thesis designed and implemented a cache controller that allows a

(run-time) configurable part of its cache to behave as directly addressable,

local, scratchpad memory. We merged this cache controller with the vir-

tualized, user-level RDMA controller and network interface (NI) that was

designed by other members of our group. An FPGA prototype is imple-

mented, around the MicroBlaze softcore processor. We implemented an ex-

ternal 1-clock-cycle L1 data cache, and a pipelined L2 cache with interleaved

banks, operating with a 4-clock-cycle latency, and offering an aggregate ac-

cess rate (to the processor and to the NI) of two words per clock cycle;

i

way-prediction is used to reduce power consumption. The scratchpad capa-

bility is integrated at the level of the L2 cache. We do not yet provide for

coherence with corresponding caches of other processors.

The design consumes one fifth of the resources in a medium-size FPGA.

The merged cache controller and NI is about 8 percent more area-efficient

than the sum of a distinct cache controller and a separate NI. We evaluate

the performance of the system, using simulations and micro-benchmarks

running on the MicroBlaze processor.

Supervisor professor: Manolis Katevenis

ii

�����������
	�� �������������	���������� ����
�
 "!�#%$&#('*),+�)-+,.

FPGA
.&/�0(12.3!4.&576,8�9-6;:"<>=?9@1BAC/�9
A")@1DA".

:"<>E(A?FHG(0IAJ.�/;#LKNM�:�#OAC/&94AJ),1
SRAM

PRQ�S3T�U�SWVYX[Z\T^]�_a`
b(c&T�d>e\T

f%�g�
h��^�I�ji"�lkI��m�nIho�I�

paq�r^sut�vxwyv
���

(chips) z ����{�|}	W|�~o|�h��^����o�lkI�
�[��{���������W�}�
����	W����|}���I���C�����J���I^�gk����Ih��
� � �o|�kI�������gk��O�o����O��	Wn��������������������|}kI�I|}�o�u�����-�7����
�������
����{��D	W�������W	W�������
	W{�h�����|���|}	W|�~o|�h��^������I����}������� �

chip
�4����|}	�� �&{��W� ��n���}����|}�������o�o�gkI���{���������W���

|�� ���I�x���a{�	��������h��u�o�I{���k;�;��������|���I{��N�
implicit � k;�I�>����|���I{���� explicit � ��h�n��

	W��{���|}	��lk;�I� ���
���u������� �7����|���I�?�oho��	W�I��|}	��lk;�I� ���
���u��^{������I� ��|���n������"��|��j|�� ���I���^���y�
���n�|�~o�Ih � ���J	W�I{���h�� �k;���o�;�^�}�N��|��o�I�������^�&|��u�����J|}	��gkI�;� �o�
�����I�"	W�I{�	W�Ih��W����h�|3� �}�;�
�|��{���������W����k;ho{�m��������o���������y� �j��|���I����h�nW	W�I�?|}	��gkI�;� �o�
�����I��	W�Iho������h�|3� �}�;�Wn��}�I�
��	W�Ih������ �^nI���^�o�
h�����|3�;	W�;� �I�J|3� �o�;����kI���}�I���W���4��������|�m&��h���nI�o|}���I��^|�^{�����������}�
��|j�������W|}�

scratchpad
kI�;�

Remote DMA (RDMA)
�

�7�4�I{����¡������|�h��^�I^�u�2 � |������������kI|akI�;�@{����W	W�;�l������kI|¢�}���I�a|}��|}k������ (con-

troller)
k;h���m^���
�W���������,�"�W	��I� �I�
|}	�� ��h���	�|����o{��������lk;�������"����ho�I�4�����,kIh�{�m����
���o���

�������o�"�{���	W|�h���m���h�|����;���
��|}{��&���
�@���g|�{���{���^� ��������������|��o�j�}��	��lkI�"���o�����
(scrach-

pad)
�>�7����	W�I�l������W|4��{���nW�,���"|}��|}k�����kIh�{�m����4�����������7��|
�����j|��gkI�W���gkInj�|
|}	���	W|����

� h��������£W|}��|�kI��� RDMA
k;�I���W�g�����g|}	W�Im^�"���lkI������{j�J��	W�;���C � |������������kI|���	Wn[�����

�������}��������{�|�h��^�������h�� �I{;�
��{���kI|}k;h��������o��£>{�����	W�;� �I����|������a	Who�4��n��o{�	W�a����^� ��W�}�����|

FPGA
kI�;�>�}���

|�	�|}h��^�I����
MicroBlaze

�������W	��I�g������W|��W���¤|�~o�4��|�h��gk��¥k;ho{�m��¥�W�������¦	Who�4����{
|�	I�l	W������{§��|����o�NkI��kI���Nk;���&{������h�����Lk;�;�x�W�g�¢k;ho{�m������������§��|�{�����ho�I{§|}	��l	W������{
	W��{j|3� �o�;�

pipelined
kI�;�

bank interleaved
��|,¨JkI��kI����{��,k;����{������h�����"	�ho���

�m���h����o�}�I���{��o���W�gkIn¥h�{�����n¢	Who�I�	W|}���I�|}�
��©§����~�|3� �������Nk;��k����¢ho��������� �I�D�ª�W���

iii

�������|}	W|�~o|�h��^�������k;�I���W�g������[���gkI��{�� � ��	Wh�n��W��|�«����}�
��|}����| � nI��|��o�
���oh�n����
�������
���o���������}�
�C��|}���I�������
��	W|�h�� �Ih�����|3�W�����"kI���������W���
���� � ���I���7¬ � �
ho�I� scratch-

pad
��h�� �k;|}�}�;�>������

(L2)
�������������|���	�|}h��l���I�����I�o|}���I�%��kInI���

coherence
��|

�o� �J������|��jkIh�{�m&�}�����o����|��j���
���������
�C|}	W|�~�|}h��^�I����
���
����W	I� ����
��I��|jn��o���}��kInI������?�}�I{C�{������������n����|�|������I��n��j|�� ���I�W�}��������	W�����

	����2�W�g�I�N��|���;� �I{D��|��^������{��
FPGA

�
®¯{�����	W�;� ���������¤��h � � ��|}k��������lkI�D|�� ���I�7°�±
��	W�I�o�����lk;n���|�h��"�W������h � � ��|}k��������lkI�J��|������[~�| � �
h�� ����I���?|}��|���k������@�����[k;h�{�m^�J���o���
���[kI�;�

DMA
�W�j~�� �������^�I����|������"�W	WnI������"���I{[�{�����������}�I���W�}��¤|�~o�I���;�l�
�|}�
��£

	Wh��I����W�I�g�
�|}�
��kI�;�(|3�g���lkI�
����	����
��	Wh����^ho�I�������}�
��	W��{§|}kI��|}�������o�}�;�&�������|}	W|²�
~�|�h��^�I������ ����|3�����gkI����{�����	Wh����^ho�I�������}��|}~��I���I�g�
�o�I{������I^�lk;������|�� ����{�h����u|}��	W�I{
	W�Ih��W����h��I�������I���|�kI�I�o�W���gkI��	Wh����^h������W�W���^�

�
	�nW	������"kI�W�^������������³4´¦�I�on�������µJ����|²���I� �����

iv

Acknowledgments

I feel grateful to my supervisor, Prof. Manolis Katevenis as also Prof.

Dionysios Pneumatikatos for their valuable assistance and guidance in my

academic steps in the field of Computer Science. The extensive discussions

about my work and their wide knowledge have been of great value for me.

A big thanks to George Kalokairinos, Vasilis Papaefstathiou anb Stama-

tis Kavadias for their support and help to a major part of my work. More-

over, I would like to thank my friend and colleague, Dimitris Tsaliagos, for

his help.

My warmest appreciation to the following, past and current, members of

the CARV Laboratory of the FORTH-ICS, whom I feel to be friends more

than just colleagues: Mixalis Ligerakis, Manolis Marazakis, Mixalis Flouris,

Markos Foundoulakis, Giorgos Tzenakis, Stavros Passas, Vagelis Mangas

Thanos Makatos, Mixalis Alvanos, Giannis Klonatos, and Zoe Zembekou.

Last but not least, I would like to thank my family, my parents Nikos

and Eleni and my brother Michalis for the support and encouragement they

provided me with.

This work was carried out with the financial and technical support from

FORTH - ICS and the Europoean Commission in the context of the SARC

integrated project (FP6 #27648), and with the assistance of the HiPEAC

Network of Excellence.

Giorgos Nikiforos

Heraklion, January 2009

v

Contents

1 Introduction 1

1.1 Thesis Contributions . 6

1.2 Thesis Organization . 7

2 Related Work 9

3 Architecture 17

3.1 Overall Diagrams and Operation 17

3.1.1 Regions & Types Table (R&T) 19

3.1.2 Integrated Scratchpad and Cache 22

3.1.3 Incoming - Outgoing Network Interface 22

3.2 Architecture Diagrams . 23

3.2.1 Detailed diagrams - Datapaths 23

3.2.2 Detailed diagrams - Timing 25

3.3 Caching functionality . 25

3.3.1 Sequential Tag Array 25

3.3.2 Way Prediction . 27

3.3.3 Replacement Policy 30

3.3.4 Bank Interleaving . 31

3.3.5 Multiple Hits under Single Outstanding Miss 33

3.3.6 Deferred Writes . 34

3.3.7 Access Pipelining . 34

vii

3.4 Scratchpad functionality . 35

3.4.1 Access Pipelining . 38

3.4.2 Scratchpad Request Types 38

3.5 The Network Interface (NI) 39

3.5.1 NI Special Lines . 40

3.5.2 Message and DMA Transfer Descriptors 42

3.5.3 Virtualized User Level DMA 44

3.5.4 Network Packet Formats 45

4 Implementation and Hardware Cost 49

4.1 FPGA Prototyping Environment 49

4.1.1 Target FPGA . 49

4.1.2 Timing Considerations 50

4.2 System Components . 51

4.2.1 The Processor . 51

4.2.2 Processor Bus Alternatives 51

4.2.3 L1 Cache . 54

4.2.4 Way Prediction . 54

4.2.5 Regions and Types Table 56

4.3 Integrated L2 Cache and Scratchpad 57

4.3.1 General features . 57

4.3.2 Bank Interleaving . 57

4.3.3 Replacement policy . 57

4.3.4 Control Tag Bits . 58

4.3.5 Byte Access . 59

4.4 The Write Buffer and Fill Policy 59

4.5 Network on Chip (NoC) . 60

4.6 Hardware Cost . 60

4.6.1 Hardware Resources 60

4.6.2 Floorplan and Critical Path 62

viii

4.6.3 Integrated Design Benefit 64

4.7 Design Testing and Performance Measurements 70

4.7.1 Testing the Integrated Scratchpad and L2 Cache . . . 71

4.7.2 Performance Measurements 72

5 Conclusions 77

ix

List of Figures

1.1 CPU Memory gap . 2

3.1 Overall (abstract) block diagram 17

3.2 Regions and Types table: address check (left); possible con-

tents(right) . 20

3.3 Read Data Path - detailed Block diagram, timing information 23

3.4 Write Data Path - detailed Block diagram, timing information 24

3.5 Timing Diagram . 26

3.6 Common tag organization . 28

3.7 Scratchpad optimized tag organization 28

3.8 Proposed tag organization . 28

3.9 Bank interleaving in word and double alignment 32

3.10 L2 memory 2 stage pipeline 35

3.11 Cache memory access pipeline (L1 miss, L2 hit) 35

3.12 Abstract memory access flow 36

3.13 Tag contents . 37

3.14 Local memory configurability 37

3.15 Pipeline of a scratchpad access 38

3.16 Normal cache line . 41

3.17 Special cache line . 41

3.18 Message descriptor . 42

3.19 Copy - Remote DMA descriptor 43

xi

3.20 Remote read packet . 46

3.21 Remote write packet . 47

4.1 MicroBlaze Core Block Diagram 52

4.2 Block diagram . 53

4.3 Way prediction module functionality 55

4.4 Write buffer . 60

4.5 Floorplanned view of the FPGA (system) 63

4.6 Area cost breakdown in LUTS 65

4.7 Area cost breakdown in Registers 66

4.8 Incoming NI area cost in LUTs 67

4.9 Incoming NI area cost in Registers 67

4.10 Outgoing NI area cost in LUTs 68

4.11 Incoming NI area cost in Registers 68

4.12 NI area cost in LUTs . 69

4.13 NI area cost in Registers . 69

4.14 Merge-sort Miss Latency in clock cycles 73

4.15 Matrix Multiplication Miss Latency in clock cycles 73

xii

List of Tables

4.1 Virtex II Pro Resource Summary 50

4.2 Regions classification in R&T table 56

4.3 Misses per 1000 Instructions for LRU and Random Replace-

ment policies . 58

4.4 Utilization summary for the whole system 61

4.5 Utilization summary of the implemented blocks only 62

4.6 Delay of critical paths . 64

4.7 System Parameters . 70

4.8 Access Latency (measured in processor Clock Cycles - 50 MHz) 71

4.9 Matrix Multiplication way prediction measurements 74

4.10 FFT way prediction measurements 75

xiii

Chapter 1

Introduction

Computer pioneers correctly predicted that programmers would want unlim-

ited amounts of fast memory. The rate of improvement in microprocessor

speed exceeds the rate of improvement in DRAM (Dynamic Random Ac-

cess Memory) speed. Hence computer designers are faced with an increasing

Processor-Memory Performance Gap (Figure 1.1) [15], which is the primary

obstacle to improved computer system performance. A perfect memory sys-

tem is one that can supply immediately any datum that the CPU requests.

This ideal memory is not practically implementable; because, the four fac-

tors of memory speed, area, power and cost are in direct opposition. More

than 70% of the chip area is dedicated to memory. As a result the power

consumption increases and can reach 80% of the global system consumption.

An economical solution, then, is a memory hierarchy organized into several

levels, each smaller, faster, and more expensive per byte than the next. The

goal is to provide a memory system with cost almost as low as the cheapest

level of memory and speed almost as fast as the fastest level. The concept

of memory hierarchy takes advantage of the principle of locality. Further,

smaller is faster; smaller pieces of hardware will generally be faster than

larger pieces. This simple principle is particularly applicable to memories

built from similar technologies for two reasons. First, larger memories have

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: CPU Memory gap

more signal delay and require more levels to decode addresses to fetch the

required datum. Second, in most technologies smaller memories are faster

than larger memories. This is primarily because the designer can use more

power per memory cell in a smaller design. The fastest memories are gen-

erally available in smaller number of bits per chips at any point in time,

and they cost substantially more per byte. Memory hierarchies of modern

multicore computing systems are based on the two dominant schemes; either

multi-level cache (with coherence support), or scratchpads (with DMA func-

tionalities). The case of caches is usually met in general purpose systems

due to the transparent (implicit) way of handling data locality and com-

munication. Data are located and then moved not under the direct control

of the application software; instead, data copies are placed and moved as

a result of cache misses or cache coherence events, which are indirect only

results of application software actions.

The benefit is simplicity: the application programmer needs not worry

about where data should reside and how and when they should be moved.

The disadvantage is inability to optimize for the specific data transport

3

patterns that occur in specific applications; such optimization becomes es-

pecially important in scalable systems, because the mechanisms of cache

coherence-being ignorant of what the application is trying to do-fail to de-

liver acceptable performance in large-scale multiprocessors.

Scratchpads are the on-chip SRAM, which is a small, high-speed data

memory that is connected to the same address and data buses with off-

chip memory. Scratchpad, like cache, has a single processor cycle access

latency. One main difference between the scratchpad SRAM and data cache

is that the SRAM guarantees a single-cycle access time, whereas an access

to cache is subject to compulsory, capacity, and conflict misses. Another

major difference between cache and scratchpad is the power consumption

and area overhead. In scratchpad memories there is no need of comparators

for tag matching and the tag area is used for saving data, so with the same

memory size, scratchpad has more memory space for data, due to the lack

of tags.

Scratchpads are very popular in embedded and special purpose systems

with accelerators, where complexity, predictable performance and power are

dominant factors in real-time applications such as multimedia and stream

processing. Scratchpads are also used in modern heterogeneous multicore

systems which support hundreds of general purpose and special purpose

cores (accelerators).

Due to the explicit communication mechanisms, systems using scratch-

pad, become a necessity for large-scale multiprocessors because of the scal-

able performance. The programmers concern, in those systems, is about

worst-case performance and the battery life time and that is why embedded

system designers do not choose hardware intensive optimizations in the quest

of better memory hierarchy performance as most general purpose system de-

signers would do. The cost in embedded systems burdens the programmers

because those systems have to deal with communication and locality explic-

4 CHAPTER 1. INTRODUCTION

itly which means how to best control data placement and transport.

Scratchpads memories overcome the problems arise from conflict misses

and the cache line granularity transfers which are major cache characteris-

tics. Scratchpad memories can support data transfer of any size, less than

the memory size. However, comparing to cache, scratchpad memories do

not include logic circuit responsible for performing its read and write op-

erations in bursts. In platforms using cache memories, the data transfers

between hierarchy levels are performed by cache circuits which copy cache

line size while the processor is not concerned on how the data are fetched.

In platforms with scratchpad memory hierarchy, the processor has to per-

form each data block transfer between levels using Direct Memory Access

(DMA) circuits. However for their initialization, extra cycles are needed by

processor for computing the data block source and destination addresses in

the memory layers and for programming the DMAs to perform the transfers.

When designing a (System-on-Chip) SoC, the most general solution is

to employ a memory hierarchy containing both cache and scratchpad in

order support both primitives for every kind of application. However the

inclusion of scratchpad in the memory system raises the question of how best

to utilize the scratchpad space. In SoCs where each processor includes in

its memory system both cache and scratchpads in different memory blocks,

underutilization problem arises depending on the application running on the

system. In cases of non-deterministic applications scratchpads are useless so

only caches are fully utilized. On the other hand, when stream processing

applications are running on the system, caches are not fully utilized.

Towards the direction of memory system utilization, our work focuses

on the configurability of the SRAM-blocks that are in each core, near each

processor, so that they operate either as cache or scratchpad or dynamic

mix of them.

We also strive to merge the communication subsystems required by the

5

cache and scratchpad into one integrated Network Interface (NI) and Cache

Controller (CC), in order to economize on circuits. Network Interface and

generally the integration of NI and CC is outside of the scope of this dis-

sertation. In many parts of this document there will be some references to

characteristics of this merging.

This master thesis is part of the integrated project, Scalable Computer

ARChitecture (SARC), concerned with long term research in advanced com-

puter architecture.

SARC focuses on a systematic scalable approach to systems design rang-

ing from small energy critical embedded systems right up to large scale

networked data servers.

It comes at a stage where, for the first time, we are unable to increase

clock frequency at the same rate as we increase transistors on a chip. Fu-

ture performance growth of computers from technology miniaturization is

expected to atten out and we will no longer be able to produce systems with

ever increasing performance using existing approaches.

As current methods of designing computer systems will no longer be

feasible in 10-15 years time, what is needed is a new innovative approach to

architecture design that scales both with advances in underlying technology

and with future application domains.

This is achieved by fundamental and integrated research in scalable archi-

tecture, scalable systems software, interconnection networks and program-

ming models each of which is necessary component in architectures 10+

years from now.

FORTH’s responsibility for SARC project is to do the majority of the

architectural research, some of the congestion control and all of the FPGA

prototyping and NI development.

This work is part of the FPGA prototyping, relevant to cache controllers

with scratchpad configurable regions (see list of contributions later in this

6 CHAPTER 1. INTRODUCTION

section).

1.1 Thesis Contributions

In this thesis we present the architecture and the implementation of a node

of a multicore chip with an area efficient cache controller with configurable

scratchpad space.

Apart from the scratchpad(DMA) support and its functionality (pre-

sented before), the design in order to support high throughput memory

accesses and power aware characteristics, includes way prediction and selec-

tive direct-mapping techniques, without losing much in performance. Way

prediction techniques predict according to some algorithm the possible ways

that contain the requested data without having to search all the ways of

a cache. Selective direct-mapping is a technique where only a specific way

is probed per cycle in order to check for a hit/miss. An efficient way pre-

diction algorithm can lead to full utilization of the memory ports and to

power reduction if the ways probed are less than the associativity way of

the cache. If the ways probed in each access are close to one (on average)

apart from the energy efficiency feature, our cache controller is maintaining

the performance of a common cache controller.

A feature of the cache controller that has changed due to memory con-

figurability is the replacement policy due to scratchpad regions which are

not removable.

The proposed cache controller supports one outstanding miss and multi-

ple hits under this miss. In order to be implemented the outstanding miss;

a structure called Miss Status Holding Register (MSHR) is needed which

holds the information about the miss request until it is finished.

A final major characteristic of the implemented cache controller is the

multiple bank of cache ways support, leading in high throughput due to

multiple cache accesses from processor and Network interface.

1.2. THESIS ORGANIZATION 7

The contributions of this master thesis are:

1. Design and Implement a run-time configurable cache - scratchpad

memory.

2. We also present the benefit on hardware resources of the merging of

the communication subsystems required by the cache and scratchpad

into one integrated Network Interface (NI) and Cache Controller (CC).

3. A high efficient way prediction algorithm and

4. Multiple other characteristics that make a cache controller perfor-

mance aware.

1.2 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 refers to related

work. Chapter 3 presents the architecture of the proposed design. Chapter 4

presents the implementation issues, the evaluation cost of the prototype

and the experimental results. Finally, we summarize our work and draw

conclusions in Chapter 5.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Related Work

A significant amount of research and literature is available on the topic of

memory hierarchies and especially on scratchpad memories. For example,

in [35], [43] and [21] some possible architectures for embedded processors

with scratchpad memories are described. Scratchpad memories, in these

works, can act in cooperation with caches, either by taking the role of fast

buffers for data transfer or by helping prevent cache pollution with the use

of intelligent data management mechanisms.

Configurable Memory Hierarchies. Most works treated scratchpad sep-

arately from cache memory space [29], [3]. Several research groups have

investigated the problem of how to best employ scratchpads in embedded

systems. In these works, the major problem is not the space configurability

but the data allocation on fixed size memory regions. Panda et al. [30] pre-

sented a technique for minimizing the total execution time of an embedded

application by carefully partitioning of scalar and array variables used in ap-

plication into off-chip DRAM (accesses through data cache) and scratchpad

SRAM. This technique managed to minimize data cache conflicts, and the

experiments showed improvements of 30comparable on-chip memory capac-

ity and random partitioning strategies. In [28] Panda et al. proposed an

exploration tool for determining the optimal allocation of scratchpad and

9

10 CHAPTER 2. RELATED WORK

data cache. Kademir et al. take compiler-driven approach, employing loop-

and data - transformations to optimize the flow of data into a dynamically

(software) controlled scratchpad [5]. Their memory model includes a cache,

but they are more concerned with “managing the data transfers between

the off-chip memory and the scratchpad”, and ignore the cache. Benini

et al. take a more hardware-oriented approach, showing how to generate

scratchpad memories and specialized address decoders from the application

characteristics [5]. In [29] proposed an algorithm which optimally solves a

mapping problem by means of Dynamic Programming applied to a synthe-

sizable hardware architecture. The algorithm works by mapping elements of

external memory to physically partitioned banks of an on-chip scratchpad

memory, saving significant amounts of energy.

Apart from architectures with memory hierarchy containing both cache

and scratchpad, there are some that uses only scratchpads. In [44] presented

a decoupled [11] architecture of processors with a memory hierarchy of

only scratchpad memories and a main memory. Each scratchpad memory

level is tied with a DMA controller configured by a specific access processor

which performs the data transfers between main memory, the layers of the

scratchpad memory hierarchy and the register file of the Execute processor

which performs data processing.

[9] and [17] present run time scratchpad management techniques, ap-

plied in uniprocessor platforms. In [9] the benefits on hiding memory latency

are presented, using DMA combined with a software prefetch technique and

a customized on-chip memory hierarchy mapping. The platform used in

[9] contains one level of cache, one of scratchpad, a DMA controller, and a

controller that controls the DMA engine. The computation of memory ad-

dresses are done by the processor that that also handles the processing data,

something that means that the architecture is not decoupled as in [24]. Our

memory hierarchy merges the cache with scratchpad memory space and uses

11

the same control mechanisms to handle cache misses and DMA transfers.

Chip Multiprocessors. Moving towards chip multiprocessors (CMP), re-

cently with the appearance of the IBM Cell processor [10] design, which is

based on addressable scratchpad memories for its synergistic processing ele-

ments, there was renewed interest for the streaming programming paradigm.

Addressable local memory usefulness in general purpose CMPs was consid-

ered in some studies [36], [13]. Implementations side-by-side with caches

or in cache using the sideffects of cache control bits in existing commercial

processors are exploited in these studies. In [36] communication initia-

tion (send/receive) and synchronization are considered important for high

frequency streaming where transfer delay can be overlapped providing suf-

ficient buffering. Transfer initiation is similar to ours, but data are kept in

shared memory and delivered in L2 caches. Addition of dedicated receive

storage (in separate address space) increases performance to that of heavy-

weight hardware support. Address translation hardware is not described.

In [13] a scatter-gather controller at the L2 cache accesses off-chip memory

and can use in-cache control bits to avoid replacements (most of the time).

Cache requirements are not described, while a large number of miss status

holding registers is used to exploit the full memory system bandwidth. This

study exploits streaming through main memory in contrast to our L1 NI

that targets flexible on-chip communication. The first study does not ex-

ploit dynamic sharing of caching space with addressable space explored in

our L1 NI design. The second does not describe how to implement it and

does not consider hardware support for queues. In contrast to our design

for scalable CMPs, theses studies target a bus based system.

Network Interface Placement. Network interface (NI) placement in the

memory hierarchy has been explored in the past. The Alewife multiproces-

sor [23] explored an NI design on the L1 cache bus to exploit its efficiency for

both coherent shared memory and message passing traffic. The mechanisms

12 CHAPTER 2. RELATED WORK

developed exploited NI resource overflow only to main memory, which was

adequate with 90’s smaller processor-memory speed gap and loosely-coupled

systems. At about the same time, the Flash multiprocessor [14] was de-

signed with the NI on the memory bus for the same purposes. Cost effective-

ness of NI placement was evaluated assessing the efficiency of interprocessor

communication (IPC) mechanisms. One of the research efforts within the

Flash project explored block-transfer IPC implemented on theMAGIC con-

troller (the NI and directory controller in Flash) and found very limited

performance benefits for shared memory parallel workloads [46]. Later in

the 90’s, Mukherjee et al. [26] demonstrated highly efficient messaging IPC

with a processor cacheable buffer of a coherent NI on the memory bus of a

multiprocessor node, The memory bus placed NI was (and is) less intrusive

and thus easier to implement than the top performing cache-bus placed NI of

that study whose advantage faded in the evaluated applications. This body

of research in the early 90’s explored less tightly-coupled systems than those

of today and far less than future many-core CMPs. More recent scalable

multiprocessors that use the network primarily for IPC, like Alpha 21364

systems [25], Blue Gene/L [39] and SiCortex systems [16], adopt the latter

placement of the network interface on the memory bus, but also bring it on-

chip. The same is done in contemporary chips targeted for the server market

like Opteron-based AMD CMPs and SUN Niagara I and II processors.

Our NI takes this trend one step further to investigate cache-to-cache

IPC free from off-chip main memory and/or directory controller side effect

traffic for future highly integrated and scalable systems. To achieve this

goal we provide novel hardware support for efficient and fully-virtualized

software control of nearly all cache resources and mechanisms.

Coherent Shared Memory Optimizations. Another body of research in

the 90’s explored optimizations of coherence protocols for producer-consumer

communication patterns [7] as well as combination of producer-initiated

13

communication with consumer prefetching [31], [1], [20]. These stud-

ies report that prefetching alone provides good average performance while

push-type mechanisms may provide an additive advantage. Streamline [6],

an L2 cache-based message passing mechanism, is reported as the best per-

forming in applications with regular communication patterns among a large

collection of implicit and explicit mechanisms in [7]. The limited promise of

message passing mechanisms in the loosely coupled systems studied in the

past, has led to the widespread use of hardware prefetchers. In addition, it

contributes to the current trend of restricting NIs to off-chip communication,

that has prevented the use of explicit communication in fine-grain applica-

tions. In the flip side, the advent of CMPs and the abundance of transistors

in current and future integration processes raises today a concern about their

use and programmability for general purpose applications. Our NI design

addresses these concerns in two ways. First, by providing support for non

shared memory programming models and paradigms to exploit large CMPs

and basic explicit communication mechanisms.

Way Prediction to Reduce Cost, Power and Occupancy. To improve

the cost effectiveness of associative caches several techniques that rely on

sequential access to narrow memory blocks have been proposed. The narrow

memory blocks are area efficient and the tag check circuitry -and energy-

is reduced. To mitigate the increased hit latency caused by the sequential

access, way-prediction [8], [47] and Selective Direct-Mapping [4] have

been proposed. These techniques attempt to predict the matching way of

the cache, so the hit can be serviced with a single access in the common case,

achieving average performance very close to that of a cache with fully parallel

access to all the ways. Our way prediction adds a look-up of all-set combined

tag signature in parallel to previous cache level access expecting that most of

the time only one will match for a good signature (e.g. CRC). This will allow

not only cost reduction with minimum performance penalty, but also power

14 CHAPTER 2. RELATED WORK

savings and reduced occupancy of the cache since the processor will occupy

at most one bank per cycle leaving other banks available for incoming and

outgoing network processing.

Replacement policy. Cache replacement algorithms to reduce the num-

ber of misses have been extensively studies in the past. Many replacement

policies have been proposed, but only a few of them are widely adopted in

caches such as random, true LRU (Least Recently Used), and Pseudo LRU.

Random policy chooses a random cache line for eviction without a specific

algorithm. The randomness emerges from, let say, the number of clock cy-

cle. LRU policy exploits the principle of temporal locality and evicts the

cache line which has not been used for the longest time. Apart from local

replacement policies there are some proposed policies which adapt to the

application behavior, but within a single cache. For instance, Qureshi et .al

propose retaining some fraction of the working set in the cache so that some

fraction of the working set contribute to cache hits [33]. They do this by

bringing the incoming block in the LRU position instead MRU (Most Re-

cently Used), thus reducing cache thrashing. Another adaptive replacement

policy is presented in [42], where the cache switches between two different

replacement policies based on the behavior.

Some current microprocessors have cache management instructions that

can flush or clean a given cache line, prefetch a line or zero out a given

line [45], [34]. Other processors permit cache line locking within the cache,

essentially removing those cache lines as candidates to be replaced [37],

[2]. Explicit cache management mechanisms have been introduced into cer-

tain processor instruction sets, giving those processors the ability to limit

pollution. In [42] the use of cache line locking and release instructions is

suggested based on the frequency of usage of the elements in the cache lines.

In [12], policies in the range of LRU and Least Frequently Used are dis-

cussed (LFU). Our research field is not close to replacement policy field, but

15

the merging of scratchpad space in the cache; adapt the replacement policy

in a way not to evict the scratchpad (locked) regions.

In this master thesis a configured replacement policy is used due to the

existence of not evictable memory regions in the second level of memory

hierarchy.

Miss Status Holding Registers. The Miss Handling Architecture (MHA)

is the logic needed to support outstanding misses in a cache. Kroft [22]

proposed the first MHA that enabled a lock-up free cache (one that does not

block on a miss) and supported multiple outstanding misses at a time. To

support a miss, he introduced a Miss Information/Status Holding Register

(MSHR). An MSHR stored the address requested and the request size and

type, together with other information. Kroft organized the MSHRs into

an MSHR file accessed after the L1 detects a miss. He also described how

a store miss buffers its data so that it can be forwarded to a subsequent

load miss before the full line is obtained from main memory. Scheurich and

Dubois [38] described an MHA for lock-up free caches in multiprocessors.

Later, Sohi and Franklin [41] evaluated the bandwidth advantages of using

cache banking in non-blocking caches. They used a design where each cache

bank has its own MSHR file, but did not discuss the MSHR itself. In this

work we support one outstanding miss through the use of one MSHR.

The proposed work supports one outstanding miss so the number of

MSHR is only one and its structure is as simple as possible.

16 CHAPTER 2. RELATED WORK

Chapter 3

Architecture

In this chapter is presented a detailed description of the architecture of the

whole system. Choices made and decisions taken about the cache controller,

the scratchpad configurability and the Network interface are presented and

discussed.

3.1 Overall Diagrams and Operation

A very abstract architectural organization of the system can be seen in

Figure 3.1. It is shown in the left side, the processor which can be a

general-or special-purpose or an accelerator. The two hierarchies of cache

memory are assuming to be private. The Network Interface (NI) is assuming

to be operating at the level of L2 cache. An issue of major significance is

where to place (in L1 or L2 memory hierarchy) scratchpad memory and

Figure 3.1: Overall (abstract) block diagram

17

18 CHAPTER 3. ARCHITECTURE

the NI functionality in the design. Scratchpad memory and NI are tightly

coupled due to the functionality the NI supports to scratchpad in order

to be accessed. So the placement of the one influences the other. The

decision taken was in favor of the L2 level cache. L1 caches are usually

quite small (on the order of 16 KBytes), of narrow associativity, they need

to be very fast, and they are tightly integrated into the processor datapath.

Interfacing NI functionality so close to the datapath and so tightly coupled

to the processor clock cycle would be difficult. During most clock cycles, the

processor accesses most or all SRAM blocks that form L1 caches, thus leaving

little excess bandwidth for NI traffic. Dedicating a part of the -about- 16

KBytes to NI buffers, data structures, and tables would be extremely tight.

Allocating another part of the -about- 16 KBytes as scratchpad memory

would be nearly useless, since many modern applications require scratchpad

areas in the hundreds of KBytes.

By contrast, at the L2 level, a processor core will usually be surrounded

by several SRAM blocks (layout considerations suggest numbers around 8

or more such blocks); these can often be organized as wide-associativity L2

cache banks. SRAM block sizes at this level range around 32 or 64 KBytes

each, so we are talking about a local memory on the order of 256 KBytes to

1 MBytes; scratchpad and NI areas can be comfortably allocated out of such

sizes. Processor access time to this second level of the memory hierarchy

is a few clock cycles (e.g. 4 to 8), and there is a danger for this increased

latency to adversely affect NI performance. However, the challenge that we

successfully faced and resolved is to implement the frequent NI operations

so that the processor can initiate them using pipelined (store) accesses that

proceed at the rate of one per clock cycle.

A table near L1 cache is the way prediction table (Prediction in Figure

3.1) which supports information about the possible “hit” ways of L2 cache

in order to minimize the possible L2 way accesses of the processor, leaving

3.1. OVERALL DIAGRAMS AND OPERATION 19

plenty of excess bandwidth for use by the NI and save in power. More details

about this structure will be discussed in 3.3.2

3.1.1 Regions & Types Table (R&T)

Another structure-table near L1 is the Regions and Types (R&T) table

which keeps information relative to permissions. Address region informa-

tion is needed not only to check load/store instruction permissions, but also

to provide caching policy and locality information for use by the local mem-

ories and the network interface. While a single table can provide all this

information, it is likely that systems will want to use multiple tables, often

containing copies of the same information, so that the processor and the NI

can access them in parallel. We call these tables Regions and Types (R&T)

tables, and their structure can be as illustrated in Figure 3.2. We expect

R&Ts to be quite small -say 8 to 16 entries. While TLBs are just caches con-

taining the most recently used entries of the (quite large) page translation

tables, we expect R&Ts to usually fully contain all the region information

relevant to their purpose. The big difference between the two structures is

as follows. Physical pages end up being scattered all over physical address

space, thus page tables contain a large number of unrelated entries. On the

contrary, in virtual address space, applications use a small number of ad-

dress regions: each of them may potentially be large, but they each consist

of contiguous addresses; thus, each such region can be defined using a single

pair of “base-bound” registers (or a single ternary-CAM entry, if its size is

a power of 2). For example, a typical protection domain may consist of the

following set of address regions: (i) one contiguous (in virtual address space)

region for the code of application; (ii) a couple of regions for (dynamically

linked) library codes; (iii) a private data and heap address region; (iv) a

(private) stack region; (v) a “scratchpad memory” region (locations that

are locked in the local memories of the participating processors, so that the

coherence protocol cannot evict them from their “home”); and (vi) a couple

20 CHAPTER 3. ARCHITECTURE

Figure 3.2: Regions and Types table: address check (left); possible con-

tents(right)

of shared regions, each of them shared e.g. with a different set of other

domains.

Address regions are of variable and potentially large size. Thus, the

tables describing them, R&T, cannot be structured like traditional page ta-

bles. Instead, each R&T entry must contain a base and a bound address

defining the corresponding region; at run-time, each address must be com-

pared against all such boundary values, as illustrated in the top left part of

Figure 3.2. The comparisons involved can be simplified if region sizes are

powers of 2, and if regions are aligned on natural boundaries for their size;

in this case, ternary CAM (content-addressable memory) -i.e. CAM that

allows don’t care bits in its patterns- suffices for implementing the R&Ts,

as illustrated in the bottom left part of the Figure 3.2.

The protection purposes discussed earlier in this section can be served

by an R&T placed next to the processor, as shown in Figure 3.1, and

containing, for each entry, a couple of bits specifying read/write/execute

permissions; access to absent regions is forbidden. However, it is convenient

to add more information to this R&T, to be used when accessing the local

memories. The most important such information determines if the relevant

3.1. OVERALL DIAGRAMS AND OPERATION 21

region corresponds to local scratchpad memory (non-evictable from local

memory), and if so in which local SRAM bank.

The cache controller may also need to know e.g. which remote scratchpad

regions are locally cacheable (non-exclusively), and which ones are non-

cacheable. Besides adding a few bits to each entry, such information is also

likely to increase the number of entries in the R&T, because the global

scratchpad region must now be broken down into finer-granularity portions,

distinct for local and for remote scratchpad regions. We expect that an R&T

of size 12 to 16 entries will suffice for both purposes. The right part of the

R&T shown in Figure 3.2, labeled GVA prefix, illustrates another possibility

for using region tables. A large system is likely to need wide global virtual

addresses (GVA) -say 48- to 64-bit wide. Yet, within such systems, there

may be several accelerator engines or processors that use narrow datapaths

-e.g. 32-bit or even narrower. How can a processor or engine that generates

narrow (virtual) addresses talk to a system that communicates via wide

global virtual addresses? The GVA prefix part of the ART in Figure 3.2

provides the answer. Say that the processor generates 32-bit local virtual

addresses (VA), and this processor is to be placed in a system using 48-bit

GVAs. The 8-entry R&T of Figure 3.2 allows this processor to access up to 8

regions anywhere within the 256 TBytes GVA space, provided that the sum

of their sizes does not exceed 4 GBytes. The idea is as follows: the processor

can generate 4 Giga different 32-bit addresses; the R&T prepends 16 bits to

each of them, thus mapping it (almost) anywhere in the 256 TBytes GVA

space; eight different mapping functions exist, one per region defined in the

R&T, each function being a linear mapping (fixed offset addition, simplified

as bit concatenation owing to alignment restrictions). The description and

presentation of the R&T is chosen in this part of the chapter because it is

critical to know its functionality and usage for the following sections.

22 CHAPTER 3. ARCHITECTURE

3.1.2 Integrated Scratchpad and Cache

Scratchpad space corresponds to cache lines that are pinned (locked) in the

cache, i.e. cache line replacement is not allowed to evict (replace) them.

The address of a scratchpad word must be compatible with the cache line

where that word is allocated, i.e. the LS bits of the address must coincide

with the cache line index; this minimizes address multiplexing, hence speeds

up accesses. For proper cache operation -whenever some part of the local

memory is allocated as cache- at least one of the ways of this local memory

should contain no scratchpad regions, but it is programmer decision.

L2 cache lines can be configured as scratchpad, i.e. locked into local

memory, using either of two ways: a lock bit can be set in the line’s tag, or

the processor’s R&T table may specify that certain addresses correspond to

scratchpad memory and are mapped to this specific cache line (and in this

specific way bank). The latter method consumes an R&T entry, but offers

two advantages: any number of contiguous cache lines, up to a full L2 cache

way, can be mass-configured as scratchpad using a single R&T entry; and

the tag values of these R&T-configured scratchpad lines become irrelevant

for proper cache/scratchpad operation, and are thus available to be used for

other purposes. More details of scratchpad allocation and configuration are

presented in section 3.4.

3.1.3 Incoming - Outgoing Network Interface

Even the Network Interfaces are outside the scope of this master thesis, it

is critical for the presentation of this work to mention some characteristics

and functionality to understand how the whole system works and how these

interfaces influence it. In section 3.5 are presented some remarkable features

that help the flow of the presentation.

3.2. ARCHITECTURE DIAGRAMS 23

Figure 3.3: Read Data Path - detailed Block diagram, timing information

3.2 Architecture Diagrams

3.2.1 Detailed diagrams - Datapaths

Figures 3.3 and 3.4 even that we are in architecture chapter are drawn with

a rough notion of implementation issues and of time running horizontally,

from left to right. They contain a lot of implementation characteristics but

they are presented here, in order to describe in an understandable way the

architecture of the proposed design. The processor issues memory requests

to the first level of its memory hierarchy; these often hit in L1, and responses

come back within 1 clock cycle. The R&T table is accessed in parallel with

L1 caches, to provide access permission information and the way the data

resides if the region is scratchpad. For accesses to non-scratchpad regions

that miss in L1, one may consider providing L2 way-prediction (e.g. read

and match narrow signatures of all L2 tags) in parallel with or very soon

after L1 access. Load or store instructions that miss in L1, or that write

through to L2, or that have to bypass L1, are directed to the “L2” local

SRAM blocks, presumably with a knowledge of the particular bank (way)

24 CHAPTER 3. ARCHITECTURE

Figure 3.4: Write Data Path - detailed Block diagram, timing information

that is targeted. This “L2” local memory consists of multiple interleaved

banks, and which are shared between the processor on one hand, and the

network interface (NI) and cache controller (CC) on the other hand. These

two agents compete for accesses to the L2 banks (ways); owing to wide

(e.g. 8-way) interleaving, L2 memory should provide sufficient throughput

to serve both of them.

Network Out and Network In are the interfaces to the Network in cases of

DMAs and cache miss services through the same functionalities (integration

of controllers). This issue is outside the scope of this work even though in

section 3.5 will be discussed some details.

The L2 memory space is dynamically shared (through arbiter) among

three functions: cache controller (processor side); incoming NI; and outgoing

NI. The space allocation among the three functions can be changed at run

time; we consider this to be an important feature of new NIs, by contrast

to old NI architectures that used dedicated NI memory, thus leading to

frequent underutilization of either the NI or the processor memory, and to

costly data copying between the two.

3.3. CACHING FUNCTIONALITY 25

One major difference between Figures 3.3 and 3.4 is the presence of a

module called Write Buffer (Wr Buf in the Figure 3.4). It is combined with

the outgoing Network Interface adding performance to packet generation in

order to start transmission to the network as fast as possible. For more

details see section 4.4.

3.2.2 Detailed diagrams - Timing

Although in Figures 3.3 and 3.4 have presented a timing aspect of the

architecture, in Figure 3.5 have been removed all the functionalities that

will beguile us and only timing has remained.

According to architecture and the timing diagram of Figure 3.5, L1

cache, Way Prediction and R&T tables accessed in parallel and respond in

one cycle, taking decisions about L1 hit/miss, the possible L2 “hit” ways, the

region and the type of memory the requested data may exist. Between L1

and L2 level caches there is a pipeline register making the path between them

shorter and leaving L2 arbitration in a separate clock cycle. Arbitration and

BRAM port driving (de-multiplexing to all BRAM ports) is the 3rd cycle and

multiplexing from all BRAMs to L2 output and the response to processor

are the last two cycles.

3.3 Caching functionality

Having discussed the overall architecture we now step inside in more details

about the architecture. In this section it is presented the L2 cache controller.

The major features of its organization and functionality are the following.

3.3.1 Sequential Tag Array

One of our main goals is to achieve configurability of the local SRAM space,

and be able to use it either as cache or as scratchpad at both coarse and fine

granularities. We would also like to use the same memory blocks for cache

and scratchpad regions. The parallel nature of set-associative caches results

26 CHAPTER 3. ARCHITECTURE

Figure 3.5: Timing Diagram

3.3. CACHING FUNCTIONALITY 27

in a requirement for simultaneous access to memories that implement the

cache ways (tags + data) so as to determine quickly the hit or miss and serve

the issued request. To support both cache and scratchpad in coarse grain

reconfiguration, one natural and convenient way is to utilize multiple mem-

ory banks and configure them either as cache ways or as local scratchpad

memory. While this approach is straightforward for the data arrays of the

cache, the tag arrays are of different total size (and in most cases of different

dimensions) than the data array. The common caches consist of small, fast

memories containing tags and larger containing data (Figure 3.6). This

uniformity of memory block arrangement in case of scratchpad allocation,

preclude the tag memory utilization leaving the tag memory blocks unused.

From scratchpad point of view, the tag memory blocks can be fully utilized

if their size is equivalent to the data memory blocks (Figure 3.7). This ap-

proach is straightforward for the scratchpad to use all memory bits, but the

cache is forced to use larger (and hence slower) memory blocks for the tag

arrays. The optimized memory block organization that conforms to both

cache and scratchpad memory arrangements is depicted in Figure 3.8. All

memory banks are equally sized and many (possibly all) of tags memory

blocks are placed together in a single array. This organization saves consid-

erable space since the utilization of the tag array is greatly improved, but

disallows the parallel access in the tags for all the banks, forcing a sequential

check of the tags. This limitation increases both hit and miss latencies and

affects the performance.

The sequential access approach increases cache access time but it can

prove very effective in reducing the energy dissipation in embedded systems

and balance the performance-energy tradeoff.

3.3.2 Way Prediction

In sequential access, a 4-way-associative cache accesses one tag way after the

other (in parallel with the data way) until someone hits or even the fourth

28 CHAPTER 3. ARCHITECTURE

Figure 3.6: Common tag organization

Figure 3.7: Scratchpad optimized tag organization

Figure 3.8: Proposed tag organization

3.3. CACHING FUNCTIONALITY 29

one misses. Phased caches [19] wait until the tag array determines the

matching way, and then accesses only the matching way of the data array,

dissipating about 75% less energy than a parallel access cache. Sequential

access, however, serializes the tag and data arrays, adding as much as 60%

to the cache access time [32]. If a tag memory block takes 1 cycle to be

accessed, an eight way associative cache will take 8 cycles to detect a miss.

Here arises the dilemma to decide between performance and memory block

utilization due to scratchpad characteristic. Schemes like Way-Prediction

[32], [8], [47] and Selective Direct-Mapping [4] go one step further, by

predicting the way that will likely hit, and thus minimize the wasted energy.

While most schemes try to use and benefit from PC values to predict a

way, the way prediction model we propose uses “signatures” of the address

tags. The signature of the proposed design derives from the bitwise XOR

of the three most significant bytes of the address of the request. These

two popular schemes represent the two extremes of the trade-off between

prediction accuracy and early availability in the pipeline. The PC is available

much earlier than the XOR approximation but the XOR approximation is

more accurate. Instead of probing all tags in parallel and comparing against

the MSBs of the address, or use prediction tables, we use an SRAM block

to store representative signatures - a few address bits or a simple checksum

with uniform properties - from every address tag. The comparison of the

signatures with the actual address gives an indication for a specific way that

is highly possible to produce a hit, and then we have to probe the way to

verify that it is not a false positive hit. We have to carefully select the

signature format so as no false negatives occur - Bloom Filters’ properties

fit very well. The way prediction module executes in parallel with L1 tag

matching losing no cycles to generate the way prediction mask.

Moreover, the proposed method reduces the required SRAM bank through-

put from the processor side allowing the NI to efficiently share the memory

30 CHAPTER 3. ARCHITECTURE

throughput. This scheme with the memory blocks organization we adopted

(Figure 3.8) gain both in configurability and efficiency, as well as in power

consumption. As for the dissipation, it is likely that the signatures - ac-

cessed in every memory request - are placed in a small SRAM block that

will be more energy efficient.

3.3.3 Replacement Policy

The design of an efficient cache hierarchy is anything but a trivial issue.

Cache replacement policy is one of the pivotal design decisions of any mem-

ory hierarchy. Replacement policy affects the overall performance of the

cache, not only in terms of hits and misses, but also in terms of band-

width utilization and response time. Another cache hierarchy decision is

the set associativity, which offers good balance between hit rates and im-

plementation cost. Associativity and replacement policy are strictly related

characteristics. The higher the associativity of the cache, the more vital the

replacement policy becomes.

The replacement policy, in common cache architectures, must select ac-

cording to an algorithm between a static number of cache lines which is

the number of way associativity. As the associativity number increases the

possible replaceable cache lines increase, so the algorithm becomes more

complex.

In our design things concerning replacement algorithm are more com-

plex than common designs. As mentioned earlier scratchpad areas are not

removable. In case the replacement policy chooses a pinned (locked) cache

line for eviction, it has to change its decision and choose a cacheable block

of the same index. The complexity has to do with the possible replaceable

cache lines of a set which are not fixed because scratchpad can be any block

in memory. Lock bit is a way that a cacheable block is distinguished from

scratchpad one. So before the replacement policy starts executing the lock

bits of the set must be checked first, in order to exclude the scratchpad

3.3. CACHING FUNCTIONALITY 31

blocks from the possible replaceable cache lines.

3.3.4 Bank Interleaving

One of the major performance features of the unified cache - scratchpad

memory is the multi-banking. It is an extensively used feature in high

bandwidth memory subsystems when accessed by several agents (processors,

accelerators, NIs, e.t.c.). To allow simultaneous memory access by a num-

ber of processors, such memory subsystems consist of multiple banks that

can be independently addressed. Memory blocks are typically interleaved

with low-order bits of the address over the available memory banks in or-

der to minimize bank conflicts. In order to avoid conflicts the simultaneous

references must address different banks. These multi-banking, interleaved

concepts are recently applied to high bandwidth, multi-ported caches.

Multi-ported caches apart from interleaving are also implemented in one

of other three ways: either by conventional and costly ideal multiporting,

by time division multiplexing, or by replicating multiple single-port copies

of the cache. Conceptually, ideal multi-porting requires that all p-ports of

a p-ported cache be able to operate independently, allowing up to p cache

accesses per cycle to any addresses. However ideal multiporting is generally

considered too costly and impractical for commercial implementation for

anything larger than a register file.

The time division multiplexed technique (virtual multiporting) employed

in the DEC Alpha21264 [40], achieves dual-porting by running the cache

SRAM at twice the speed of the processor clock. In this thesis we do not

explore this technique.

The data cache implementation in the DEC Alpha 21264 [40] provides an

example of multiport through multiple copy replication. This architecture

keeps two identical copies of a data set in each cache. A drawback of this

technique is to keep both copies coherent. Another major cost is the area

duplication in the die. In this thesis we do not explore this technique.

32 CHAPTER 3. ARCHITECTURE

Figure 3.9: Bank interleaving in word and double alignment

In the proposed architecture 2-bank interleaving is supported as shown

in Figures 3.3 and 3.4. These two banks are shared between the processor,

the outgoing and the incoming NI. The imbalance scheduling between the

chosen bank will increase the bank conflicts (3 agents, 2 banks) and degrade

the delivered performance. The scheduling is performed by an arbiter who

chooses the agent that will access each bank, each cycle.

In Figure 3.9 it is shown that each way is consisted by two banks, where

in the left bank are placed the odd double words of a cache line and the

right the even ones. Each bank is one double-word (64 bits) width. The

concurrent access of the two banks maximize the possible throughput to

128bits/cycle if both banks are accessed concurrently even if the two agents

- processor and network interface - that access the memory banks are 32

bits.

3.3. CACHING FUNCTIONALITY 33

3.3.5 Multiple Hits under Single Outstanding Miss

For pipeline computers that allow out-of-order completion, the processors

need not to stall on a cache miss. The processor will continue fetching in-

structions while waiting cache to return the missing data. In the current

design the processor is not out-of-order so when a load is issued the proces-

sor stalls until the data return. In cases of store instructions the processor

need not to wait on something. So when a store miss occurs, the processor

does not stall and continues fetches instructions from instruction memory.

This cache feature escalates the potential benefits of outstanding misses by

allowing the data cache to continue supply cache hits during a miss. This

outstanding miss (or multiple hits under one miss) optimization reduces the

effective miss penalty by being helpful during a store miss instead of ignor-

ing the requests of the processor. In case of miss under miss the cache stalls

waiting the first miss to complete. The proposed cache controller supports

one outstanding miss something reduces the stall memory time about 40-

60% according the SPEC92 benchmarks [15]. In order to support the above

characteristics, nonblocking (lockup-free) caches require special hardware re-

sources called Miss Status Holding Registers (MSHR). These registers are

used to hold information on outstanding misses. These structures are fully

associative and bypassed. It is beyond the scope of this work to discuss in

details MSHR. Due to the one outstanding miss supported by cache con-

troller, the organization of the MSHR is very simple, holding the address

and the data, in word granularity, of the outstanding store miss. In case of

an access in the same cache line that refers the current outstanding miss,

a tag bit named pending is set and the pipeline stalls in order to serve the

miss and after the request in the same cache line. This bit serves the occa-

sion where two back to back requests, refer to the same missing cache line.

Without the functionality the Pending bit offers, if the first access is a miss

and the second will be also, the pipeline stalls. When the first miss returns,

34 CHAPTER 3. ARCHITECTURE

the second starts to be served as a miss even the data exist in L2 cache. In

other implementations tag matching will executed again in order to decide

that we have a hit. With Pending bit functionality we gain in time, not

needing to match the tags again or to serve a miss in a present cache line,

losing the data stored before (due to write back property).

3.3.6 Deferred Writes

Another feature of the cache controller is the deferred writes. Due to the

pipeline and as observed in the Figure 3.10 the final cycle of a store hit is

overlapped with the first cycle of a load. As shown in the Figure 3.10, during

cycle 1 the store access write the data in the cache, while the next request

(load) reads the data banks in parallel with tags (no phased cache). In this

cycle both requests try to access the same port of the memory blocks. One

solution is to delay one cycle the load access or to delay the store completion.

The choice that was taken is the second and that is the reason why this cache

controller is load optimized. The store request is postponed and the special

buffer holds the address and the data o the store request. The buffer is

flushed when memory block port is idle. When the buffer is valid and a

load request in the related cache line issued, the data are bypassed. In the

occasion of a write back of the related cache line, the buffer is first flushed

to memory banks and then the write back is served.

3.3.7 Access Pipelining

After presenting the major characteristics of the architecture of the cache

controller, we show the pipeline of a common access. According to the timing

information presented in Figures 3.3, 3.4 and 3.5, Figure 3.11 shows in

more details the different cycles of a load request (for example). Something

that did not have shown in the previous Figures is the way probing (cycles

2 to 5 at most) where every predicted way is probed sequentially until a hit

or a miss happens. When a hit happens, the whole cache line must be read

3.4. SCRATCHPAD FUNCTIONALITY 35

Figure 3.10: L2 memory 2 stage pipeline

Figure 3.11: Cache memory access pipeline (L1 miss, L2 hit)

which means some extra cycles according to the width of the path between

L2 and L1 and the size of the cache line. The second level of cache hierarchy

is designed to have 2 stage pipeline. The first for tag matching and memory

bank driving and the other for memory bank response. Taking this into

account, store hit accesses coming the one after the other are served back to

back, something that cannot be happen in cases of stores and loads without

the support of deferred writes presented in the section before.

3.4 Scratchpad functionality

Some real-time applications - especially in the embedded domain - seek

for predictable performance that caches cannot guarantee. Instead, local

36 CHAPTER 3. ARCHITECTURE

Figure 3.12: Abstract memory access flow

scratchpad memories can be used so that the programmer can reason about

the access cost and the system performance. Coarse grain configurability

at the granularity of the cache data memory module is relatively easy to

support but may prove inflexible for all cases. To provide more flexibility in

the system, besides the coarse grain configurability we provide support for

fine grain configurability, at the granularity of the cache block.

Scratchpad functionality is influenced by the R&T table which distin-

guishes the scratchpad from cacheable area. In an abstract architecture as

Figure 3.12 shows, the tag matching is valid only if the R&T table detects

a cacheable area access. In case of hit the cache data are accessed otherwise

the next level of cache triggered. When a scratchpad request detected the

only thing that matters is if it is Local so the scratchpad data are accessed or

Remote so a communication with a remote scratchpad is initiated. Scratch-

pad regions are of 256Bytes granularity and that is why the least significant

bits of address (Figure 3.12) are ignored.

We propose a special bit that can used to “pin” specific cache-lines and

prevent their eviction from the cache controller. Therefore apart from the

3.4. SCRATCHPAD FUNCTIONALITY 37

Figure 3.13: Tag contents

Figure 3.14: Local memory configurability

required the tag fields (Figure 3.13): valid bit, address tag and other tag

bits including coherence bits and the pending bit mentioned in 3.3.5, we add

an extra lock bit.

The use of the “lock bit” allows us to pin several independent cache-lines

and since no eviction will ever occur, these cache-lines emulate scratchpad

behavior. The valid bits of these cache lines are unset, so no tag matching

is performed for the access of them. The application may use a special

instruction or a special address range that provides access to the tags, similar

to scratchpad, to pin specific cache-lines. Such a feature, illustrated in

Figure 3.14, allows small fragmented scratchpad areas that use the normal

cache access behavior - tag comparison - and have predictable access time;

a long-term use of a cache-line.

Scratchpad areas can also be configured at coarser granularities (e.g.

38 CHAPTER 3. ARCHITECTURE

Figure 3.15: Pipeline of a scratchpad access

large contiguous blocks) using the R&T Table. The R&T Table compares

every requested memory address against a set of regions to ensure protection

but also provides configuration information. A couple of regions can be

marked as block scratchpad regions and so the cache controller omits the

tag comparison step as shown in Figure 3.12, and accesses directly the

specific way provided by the R&T in index equal with the LSBs of the

address. The cache-lines configured as block scratchpad should be handled

by the cache controller as invalid and locked, marked in tags, so as not be

used by the tag matching mechanism and not to be replaced, Figure 3.14.

The rest of the tag bits, in the latter cache-lines, are used for other functions

by the NI, such as network buffer meta-data.

3.4.1 Access Pipelining

One of the innovations of the current work is the fast access of the scratchpad

memory. As previous timing diagrams (Figures 3.3, 3.4) and Figure 3.15

show, a scratchpad access lasts 5 cycles. One cycle takes the R&T table

access, one cycle the arbitration and scratchpad addressing. BRAMS take

one cycle to respond the data and a final cycle takes the transfer to processor.

3.4.2 Scratchpad Request Types

The possible scratchpad requests are the following:

3.5. THE NETWORK INTERFACE (NI) 39

Scratchpad data read and write: common scratchpad region accesses

which last 4 cycles from the moment the processor issues the request to

L1 cache, as discussed above. The address is generated from the proces-

sor and the scratchpad selected way is an information taken from the R&T

table.

Scratchpad tag read: in this case the processor or the NI wants to read

the tag bits of a scratchpad block. The NI reads the lock bit for example to

see if an incoming packet to an address refers to cache or scratchpad area.

The access from processor lasts 4 cycles as a common scratchpad access.

Scratchpad tag write: in this case the processor updates the tag bits. If

for example a cache line must be locked the processor has to write the lock

in the tags of this cache line. In order to perform scratchpad tag write, we

firstly read the tags (read modify write) because there are occasions when

the new value is calculated from the old one. So the duration of this request

is 4 cycles also.

3.5 The Network Interface (NI)

This section briefly (it is outside of the scope of this thesis) presents the

Network Interface Architecture. The following subsections explain some

primitives relative to configurability, management of network packets, de-

scriptors and communication mechanisms (DMAs).

Our work presents a simple, yet efficient, solution for cache/scratchpad

configuration at run-time and a common NI that serves cache and scratch-

pad communication requirements. The NI exploits portions of the scratch-

pad space as control areas and allows on demand allocation of memory

mapped DMA command registers (DMA command buffers). The DMA

registers are thus not fixed and this permits multiple processes/threads to

allocate separate DMA command buffers simultaneously. Therefore, our NI

offers a scalable and virtualized DMA engine. The scratchpad space is allo-

40 CHAPTER 3. ARCHITECTURE

cated inside the L2 cache and consequently the NI and its control areas are

brought very close to the processor. Accessing NI control areas and starting

transfers has very low latency when compared to traditional approaches and

additionally allows sharing of the memory space between the processor and

the NI. Our NI also offers additional features such as fast messages, queues

and synchronization events to efficiently support advanced interprocessor

communication mechanisms; the description of those features is beyond the

scope and page limit of this paper. Another noteworthy concept that is

followed by our work is the use of Global Virtual Addresses and Progressive

Address Translation [18] that simplify the use of DMA at user-level and

facilitate transparent thread migration.

3.5.1 NI Special Lines

The cache-lines in the block scratchpad regions can be either used as simple

memory or as NI sensitive memory, e.g. NI command buffers. We exploit

the address tag field of the tags, not used in block scratchpad regions, and

use it as NI tag to handle the NI sensitive buffers. A couple of bits in the

NI tag indicate whether each cache-line behaves as network buffer or as

scratchpad. If a cache-line is configured as NI command buffer then any

write access there, is monitored. If a command (multiple stores) is written

in the appropriate format, then automatic completion is triggered and the

buffer is handed to the NI for processing. To achieve automatic completion

of the NI commands, we use several bits from the NI tag field to store

temporarily the size of the command and the completion bitmap. When a

command buffer is completed then it is appended in a ready queue and then

the NI tag stores queue pointer values. Figures 3.16 and 3.17 shows the

contents of tag of normal and special cache lines. The address and other bits

(coherence) of tag part that belong to a normal cache line are free when the

space is used as block scratchpad/special cache lines. In these cache lines

the lock bit should be set and the valid bit unset as described in section 3.4.

3.5. THE NETWORK INTERFACE (NI) 41

Figure 3.16: Normal cache line

Figure 3.17: Special cache line

The information stored in the tags of special cache lines (Figure 3.17)

are:

• NI bit: This bit indicates whether a specific cache-line is configured

as scratchpad or as NI sensitive region. If the region is declared as

scratchpad, then all the other bits of the “NI tag” are free and are not

used.

• Q bit: This bit is used by the NI to distinguish between NI command

buffers and NI Queues when a cache-line is declared as NI sensitive.

The NI command buffers are used by the software to issue commands

for outgoing packets, either messages or RDMAs.

• tmpSize: This field is used to store temporarily the size of the message

or RDMA descriptor. This field requires as many bits as needed to

store the size of a message or descriptor in bytes and depends on the

cache-line size.

• Completion Bitmap: This field is used to keep a bitmap with the com-

pleted words inside a cache-line and it used by the automatic comple-

tion mechanism as described later in this section. This field requires

42 CHAPTER 3. ARCHITECTURE

Opcode[7:0] PckSize[7:0]

DstAddress[31:0]

AckAddress[31:0]

Data

Figure 3.18: Message descriptor

as many bits as needed for a mask that marks all the words in a cache-

line.

• Next Pointer: When a message or RDMA is completed, then the field

tmpSize and Completion Bitmask are not used any more by the com-

pletion mechanism. We use the latter bits together with the “No use”

bits in order to store a pointer when this cache-line/command buffer

is appended in the linked-lists of the scheduler. The bits available

for pointer use are 27-bits in a system with 32-bit tags, 32-bit cache-

words and 64-byte cache-lines, which are enough to point to 128M

cache-lines, it is more than enough.

In order for the software to configure the “NI Tag”, that actually con-

trols the use of these cache-lines, it should use a special address range that

provides access to the tag contents of the whole cache. Using this address

range, all the tags contents appear as scratchpad memory and can be simply

read or written. This address range is possibly declared in the R&T.

3.5.2 Message and DMA Transfer Descriptors

The NI defines a command protocol that describes the format and the fields

of the commands that can be issued by the software. The command de-

scriptors are issued by a series of stores, possibly out-of-order, coming from

3.5. THE NETWORK INTERFACE (NI) 43

Opcode[7:0] DescrSize[7:0] DMASize[15:0]

SrcAddress[31:0]

DstAddress[31:0]

AckAddress[31:0]

Cnt[7:0] Stride[23:0]

Figure 3.19: Copy - Remote DMA descriptor

the processor and the NI features an automatic command completion mecha-

nism to inform the NI controller that a new command is present. The format

of the supported command (message - copy (Remote DMA)) descriptors is

shown in Figures 3.18, 3.19. The message descriptor’s fields are described

below (Figure 3.18):

• Opcode: The opcode of the command. Differentiates Messages from

DMA descriptors.

• PacketSize: The size of the packet.

• DstAddress: The destination address of the transfer.

• AckAddress: The address contains information about the completion

of the transfer.

• Data: The data to be transferred.

The copy- RDMA descriptor’s fields are described below (Figure 3.19):

• Opcode: The opcode of the command. Differentiates Messages from

DMA descriptors.

• DescrSize: The size of the descriptor.

• DMASize: The size of the DMA.

• SrcAddress: The source address of the transfer.

44 CHAPTER 3. ARCHITECTURE

• DstAddress: The destination address of the transfer.

• AckAddress: The address which informed about the completion of the

transfer.

• Cnt: The Number of the DMAs.

• Stride: The Stride of the DMAs.

3.5.3 Virtualized User Level DMA

The NI control areas are allocated on software demand inside scratchpad

regions by setting the special-purpose “NI Sensitive” bit inside the tags.

Therefore, any user program can have dedicated DMA registers in the form

of memory-mapped DMA command buffers; this lead to a low-cost virtual-

ized DMA engine where every process/thread can have its own resources.

To ensure protection of the virtualized resources, we utilize permissions bits

in the R&T and require the OS/runtime system to update the R&T appro-

priately on context switches. Moreover, the support of dynamic number of

DMAs at run-time promotes scalability and allows the processes to adapt

their resources on their communication patterns that might differ among

different stages of a program.

The NI defines a DMA command format and protocol that should be

used by the software to issue DMA operations. The DMA command includes

as described before the following common fields: (i) opcode - descriptor size,

(ii) source address, (iii) destination address, (iv) DMA size. The DMAs are

issued as a series of stores filling the command descriptors, possibly out-of-

order. The NI features an automatic command completion mechanism to

inform the NI controller that a new command is present. The completion

mechanism monitors all the stores on “NI Sensitive” cache-lines and marks

the written words in a bitmap located in the tag. The address tag and

other control bit in locked cache-lines are vacant and therefore the NI is free

to utilize them. These bits are used to maintain the pointers for queues

3.5. THE NETWORK INTERFACE (NI) 45

of completed DMA commands that have not yet been served either due to

network congestion or high injection rate.

Note that all addresses involved in the DMA commands are Global Vir-

tual Addresses and thus the user program does not need to call the OS

kernel or the runtime to translate the addresses. The NI only consults,

upon DMA packet departure, a structure, located on the network edge, to

find the next-hop(s) based on the packet’s destination address. This struc-

ture stores information regarding the active set of destinations/nodes that

each NI communicates with. More details are not note worthy because we

are directing outside the scope of this master thesis.

3.5.4 Network Packet Formats

In order to keep the architecture of our NI decoupled from the underlying

network, we have defined a packet format that meets the NI needs, while

at the same time assumes as few details for underlying network as possible.

Figure 3.20 illustrates the proposed minimal packet format. These packets

are used to initiate request to DDR controller in order to serve a cache

miss. The remote read packet asks the DDR for data and the remote write

performs the write back operation. We propose that the links are 32-bit

wide. The fields of the packet and their use are explained below:

Remote Read Packet:

• PckOpcd: The opcode of the packet. Differentiates Read and Write

packets.

• PckSize: The size of the packet without the last word (CRC)

• RI: If the underlying network supports source routing this field is

the Routing Information for packet traveling in the Network through

switches/Routers.

• DstAddress (Descriptor source Addr): The address where to store the

46 CHAPTER 3. ARCHITECTURE

PckOpcd[6:0] PckSize[8:0] RI[15:0]

DstAddress[31:0] (Descriptor source Addr)

Opcode[7:0] DescrSize[7:0] DMASize[15:0]

SrcAddress[31:0]

DstAddress[31:0]

AckAddress[31:0]

Cnt[7:0] Stride[23:0]

CRC[31:0]

Figure 3.20: Remote read packet

descriptor of the packet.

• Opcode: The opcode of the command. Differentiates Messages from

DMA descriptors.

• DescrSize: The size of the descriptor.

• DMASize: The size of the DMA.

• SrcAddress: The source address of the transfer.

• DstAddress: The destination address of the transfer.

• AckAddress: The address contains information about the completion

of the transfer.

• Cnt: The Number of the DMAs.

• Stride: The Stride of the DMAs.

• CRC32: This field is a CRC32 checksum that protects the payload

from transmission and soft-errors.

Remote Write Packet:

3.5. THE NETWORK INTERFACE (NI) 47

PckOpcd[6:0] PckSize[8:0] RI[15:0]

DstAddress[31:0] (Descriptor source Addr)

AckAddress[31:0]

Payload (up to 256 bytes)

CRC[31:0]

Figure 3.21: Remote write packet

It is composed by the PckOpcd, PckSize, RI, DstAddress (Descriptor

source Addr), CRC32 present above, plus the Payload field which is up to

256bytes (Figure 3.21).

48 CHAPTER 3. ARCHITECTURE

Chapter 4

Implementation and

Hardware Cost

This section describes the implementation of a chip multiprocessor with

a L2 cache controller with configurable scratchpad space. Scaling down

the characteristics of modern chip multiprocessor systems, we implement in

FPGA Xilinx Virtex II-pro the most features of the architecture described

in Chapter 3.

4.1 FPGA Prototyping Environment

4.1.1 Target FPGA

The whole system has been designed and implemented on a Virtex-II Pro

FPGA, embedded in a Xilinx University Program board. The size of the

FPGA is 30K and the speedgrade is -7C. The FPGA is equipped with two

embedded PowerPC processors and as many Microblaze softcore processors

as can fit in the FPGA area. As it can be observed in Table ??, the specific

FPGA is rather a medium one. However, the attractive element of all the

system was the low price of the XUP board, which enables a multimode

system, out of many XUP boards, to be built.

49

50 CHAPTER 4. IMPLEMENTATION AND HARDWARE COST

Device PowerPC Logic 18Kb Max

Processor Cells Slices Blocks DCMs User

Blocks I/O Pads

XC2VP2 0 3186 1408 12 4 204

XC2VP4 1 6768 3008 28 4 348

XC2VP7 1 11088 4928 44 8 396

XC2VP20 2 20880 9280 88 8 564

XC2VPX20 1 22032 9792 88 8 552

XC2VP30 2 30816 13696 136 8 644

XC2VP40 2 43632 19392 192 8 804

XC2VP50 2 53136 23616 232 8 852

XC2VP70 2 74448 33078 328 8 996

XC2VPX70 2 74448 33088 308 8 992

XC2VP100 2 99216 44096 444 12 1164

Table 4.1: Virtex II Pro Resource Summary

4.1.2 Timing Considerations

The clock frequency of the system is constrained by two factors that con-

stitute the upper and the lower ceiling. The first factor comes from the

inability of the Xilinx DDR controller to operate in clock frequencies lower

than 100 MHz. This behavior is a documented bug and has also been re-

ported in [27]. The DDR controller cannot operate if the other parts of the

design run with clock other than multiples of 50MHz. Even the most recent

version of the controller, which comes along with the latest version of EDK

9.1 software, has this disadvantage. On the other hand, the complexity of

the implemented system restricts the use of high frequencies. As it will also

be shown below, the system is not able to operate above 70 MHz. Thus,

the cut of the two sets of possible frequencies, which meets all the criteria,

is chosen to be 50MHz, the frequency of the whole system.

4.2. SYSTEM COMPONENTS 51

4.2 System Components

4.2.1 The Processor

The MicroBlaze embedded processor soft core is a reduced instruction set

computer (RISC) optimized for implementation in Xilinx Field Programmable

Gate Arrays (FPGAs). Figure 4.1 shows a functional block diagram of the

MicroBlaze core. The MicroBlaze soft core processor is highly configurable,

allowing you to select a specific set of features required by your design. The

processor’s fixed feature set includes:

• Thirty-two 32-bit general purpose registers

• 32-bit instruction word with three operands and two addressing modes

• 32-bit address bus

• Single issue 5-stage pipeline

In addition to these fixed features, the MicroBlaze processor is param-

eterized to allow selective enabling of additional functionality but all these

are outside of the scope of this implementation.

MicroBlaze uses Big-Endian bit-reversed format to represent data. The

hardware supported data types for MicroBlaze are word, half word, and

byte.

All MicroBlaze instructions are 32 bits and are defined as either Type

A or Type B. Type A instructions have up to two source register operands

and one destination register operand. Type B instructions have one source

register and a 16-bit immediate operand (which can be extended to 32 bits).

4.2.2 Processor Bus Alternatives

The MicroBlaze core is organized as a Harvard architecture with separate

bus interface units for data and instruction accesses. The following three

52 CHAPTER 4. IMPLEMENTATION AND HARDWARE COST

Figure 4.1: MicroBlaze Core Block Diagram

memory interfaces are supported: Local Memory Bus (LMB), IBM’s On-

chip Peripheral Bus (OPB), and Xilinx CacheLink (XCL). The LMB pro-

vides single-cycle access to on-chip dual-port block RAM. The OPB interface

provides a connection to both on-chip and off-chip peripherals and memory.

The CacheLink interface is intended for use with specialized external mem-

ory controllers. MicroBlaze also supports up to 8 Fast Simplex Link (FSL)

ports, each with one master and one slave FSL interface.

The major (what we needed) bus interfaces that a MicroBlaze can be

configured are:

• A 32-bit version of the OPB V2.0 bus interface (see IBM’s 64-Bit

On-Chip Peripheral Bus, Architectural Specifications, Version 2.0). It

supports both instruction (IOPB) and data (DOPB) interface.

• LMB provides simple synchronous protocol for efficient block RAM

transfers. It supports both instruction (ILMB) and data (DLMB)

interface.

• FSL provides a fast non-arbitrated streaming communication mecha-

4.2. SYSTEM COMPONENTS 53

nism. It supports both master (MFSL) and slave (SFSL) interfaces.

• Core: Miscellaneous signals for: clock, reset, debug e.t.c.

Figure 4.2: Block diagram

The OPB bus used in order to connect the processor through an OPB-

LMB bridge (Master OPB) with the UART and the DDR controller (Slave

OPB). In our design we are not using the Microblaze hidden caches con-

nected in LMB bus, but we need the LMB bus speed (single cycle access).

In order to connect to this fast bus our L1 cache, we “cheated” the LMB

controller and L1 cache connection to processor through LMB interface

achieved. Timing constraints lead us to use an OPB-LMB bridge in or-

54 CHAPTER 4. IMPLEMENTATION AND HARDWARE COST

der to connect Microblaze with the DDR controller through another path

apart from the cache hierarchy path. Figure 4.2 shows a diagram of what

we have said so far in this chapter.

FSL interface connects DDR controller (through a switch) with cache

hierarchy in order to serve the DDR accesses (misses, DMAs e.t.c.).

4.2.3 L1 Cache

The decision to place the scratchpad space in L2 cache, lead us to add to our

memory hierarchy a first level cache. Common implementations of L1 caches

have size 32 -128 KBytes and up to 4-way associativity. Scaling down these

characteristics due to the FPGA resources, an efficient size for L1 cache is

4KBytes. Due to its small size it is chosen to be direct map. The small

size of cache comes with small cache line size which is 32bytes. Some other

characteristics are:

• Inclusive property with L2 cache.

• Single cycle access.

L1 cache research is out of the scope of this work so it is as simple as

possible and it is not further discussed.

4.2.4 Way Prediction

Way prediction is the technique used to increase the throughput of mem-

ory banks, to minimize the L2 cache access time which has increased due

to sequential tag access and to economize on the power dissipation of the

circuit. Way prediction table is accessed in parallel with L1 so no extra

cycle consumed in L2 in order to do the prediction. In terms of the imple-

mentation of this feature, we used 4 memory blocks, one for each L2 way

and so many entries per block as the number of L2 cache lines per way.

Each entry consists of 1 byte, which is the size of the signature (or partial

match). Figure 4.3 shows the way prediction table organization and the

4.2. SYSTEM COMPONENTS 55

prediction functionality. The signature in this implementation is created

from the XOR function of the three most significant bytes of the processor

address. So in order to predict the possible hit L2 ways, the three most

significant bytes of the processor address are bitwise XORed and compared

with the four signatures, of the index relevant to the processor address. In

case of a L2 miss the way prediction table has to be updated with the new

signature something that is responsible for, the L2 cache controller. The

port A of the way prediction table is read port dedicated to processor for

prediction and the port B dedicated to L2 controller only for update (write

port).

Figure 4.3: Way prediction module functionality

56 CHAPTER 4. IMPLEMENTATION AND HARDWARE COST

4.2.5 Regions and Types Table

R&T table as described with details in Chapter 3, in section 3.1.1, supports

the processor with information related to permissions and scratchpad re-

gions in memory level of hierarchy. In the implementation of this master

thesis, is a much simpler structure than that presented in 3.1.1. The classi-

fication of the regions is done according the processor address bits as shown

in Table 4.2. The second most significant bit of the address differentiates

the scratchpad (LM) from the cacheable regions. The LM accesses are sep-

arated in Data, Tag, Register and Remote accesses. Bits 17:16 separate the

different scratchpad regions from each other as presented in the following

table. R&T table must reside in both processor and incoming NI side in

order to classify the accesses according the permissions and the memory re-

gion they refer to. The incoming NI side does not access the R&T table and

the differentiation between cache and scratchpad (DMAs) accesses is accom-

plished by reading the lock bit of the corresponding cache line. Address bits

29:18 denote the node ID which only in remote accesses if different from the

node issues the request. Finally bits 15:14 are the L2 cache way in case of

scratchpad accesses. Address bit 31 has been chosen to denote the accesses

in our address space.

addr[30] addr[29:18] addr[17:16] addr[15:14] addr[13:0]

Cache 1 X X X L2 Index

LM data 0 Node ID X Way select L2 Index

LM tag 0 Node ID 01 Way select L2 Index

Regs 0 Node ID 10 X L2 Index

Rem 0 Not Node ID X X L2 Index

Table 4.2: Regions classification in R&T table

Scratchpad regions can be in data memory blocks, in tag memory blocks

(when for example lock bits must be updated), in registers or remote scratch-

4.3. INTEGRATED L2 CACHE AND SCRATCHPAD 57

pads of other nodes.

4.3 Integrated L2 Cache and Scratchpad

4.3.1 General features

The remarkable characteristics of the cache controller have been noticed in

Chapter 3. Here will be presented some implementation details. Even L2

cache sizes vary from 256 to 2048 KBytes; the FPGA prototype forced us to

downscale the size and implement a 64 KByte L2 cache. The optimal [15]

associativity way of this size, is 4, and that is the reason why we decide to

make our cache, 4-way associative. The decision about the cache line size

has taken influenced by both L1 and L2 cache implementation. Concerning

pipeline, it has two stages.

4.3.2 Bank Interleaving

As mentioned in Chapter 3, L2 local memory consists of multiple interleaved

banks for throughput-bandwidth purposes. The multibanking in the pro-

totype is implemented with 2-ported memory blocks per way, where these

ports are shared between the processor, the outgoing and the incoming NI.

In the proposed implementation the first port is dedicated to processor and

the other is shared between the NIs (Incoming, Outgoing). Theses ports

are 64bit wide so the maximum possible throughput is 128bits/cycle even if

processor and network is only 32 bits.

4.3.3 Replacement policy

The replacement policy has been adopted in the implementation of the cache

controller was not an easy question. Replacement policy interests us only

in terms of the scratchpad (locked) regions which are not allowed to be

evicted. On the other hand we have to select a replacement policy which

does not add area and control overhead in our cache design. Schemes like

LRU and Pseudo - LRU add complexity to the L2 cache controller in case of

58 CHAPTER 4. IMPLEMENTATION AND HARDWARE COST

any access (LRU information has to be updated). LRU algorithms use some

history information to decide the replaced cache line, so we have to store

this information somewhere, something inefficient in FPGA environment

especially when replacement policy algorithms is not the research target.

The decision was in favor to random replacement policy which is very simple

in implementation (only a counter) and need not “history” update. Table

4.3 [15] shows that for our cache the differences between random and LRU

policies are negligible.

2-way 4-way 8-way

Size LRU Random LRU Random LRU Random

16KB 114.1 117.3 111.7 115.1 109.0 111.8

64KB 103.4 104.3 102.4 102.3 99.7 100.5

256KB 92.2 92.1 92.1 92.1 92.1 92.1

Table 4.3: Misses per 1000 Instructions for LRU and Random Replacement

policies

4.3.4 Control Tag Bits

An implementation issue in L2 cache is the tag bits organization. The tags

are accessed sequentially as mentioned in Chapter 3. In order to be accessed

in parallel they have to be placed in a single memory block with a single

dedicated port for processor and another for the network interface. The

replacement policy has to decide as fast as possible the cache line to be

replaced. So the critical, for the replacement policy, tag bits (dirty and

lock) are placed in a separate, small (two bits per cache line) memory block,

in order to be accessed in parallel (single cycle) for all the four ways and

not sequential as all the other tag bits do. This small memory block is two

ported, both dedicated to processor, one for read and the other for write

purposes in order not to stall the pipeline in cases when a store is followed

by a load; where in the same cycle a dirty bit have to be updated (store

4.4. THE WRITE BUFFER AND FILL POLICY 59

access) and to be read for the replacement policy of a predicted load miss

(way prediction mask equals to zero). A copy of the lock bit is also placed in

the tag bits because the incoming NI has to access it to decide if an incoming

request is directed to scratchpad or cacheable regions.

4.3.5 Byte Access

In order to support byte accesses (in way prediction table and in data banks),

1-byte wide memory blocks used with separate read - write enable signals.

In case of scratchpad tag write, the read modify write property used because

we needed bit access. So every L2 cache access in both data and tag banks

lasts at least 2 cycles.

4.4 The Write Buffer and Fill Policy

Apart from issues discussed in Chapter 3 concerning NI, here we present

some implementation issues. Close to network there is a module called

write buffer (Figure 4.4) serving performance issues. During processor DMA

descriptor creation, the descriptor is saved in the write buffer (if it is empty).

It has one cache line size. Due to the fact that it is closer to network than

L2 memory banks, the departure of descriptor to network when it is ready is

time efficient. Write buffer supports auto-completion detection which means

that when processor finishes creating the descriptor, write buffer detects the

completion without needing an extra store of the processor to signal it. This

detection is performed by comparing the eight valid bits of the word of the

write buffer with the size of the message placed in the first words of the

write buffer. In cases of cacheable requests to outgoing NI write buffer is

bypassed. Completion detection triggers the DMA engine in outgoing NI

which builds packets for the network and sends them.

When a packet reaches its destination the incoming NI has to detect

if the packet refers to cacheable or scratchpad area. In case it refers to

cacheable area the memory access (write) has to follow wraparound and

60 CHAPTER 4. IMPLEMENTATION AND HARDWARE COST

critical word first policy for size of one cache line, in contrast to scratchpad

area, where the data are stored starting from destination address for the

size referred in the incoming packet.

Figure 4.4: Write buffer

4.5 Network on Chip (NoC)

The communication between the different cores and the main memory is

accomplished through an unbuffered crossbar with a simple round robin

scheduler. It is not further discussed because it is outside the scope of this

master thesis.

4.6 Hardware Cost

4.6.1 Hardware Resources

This section presents some metrics showing the implementation cost and the

area benefits derived from the cache controller with configurable scratchpad.

Table 4.4 presents the utilization of resources required for the system.

The numbers presented correspond to the whole experimental system in-

4.6. HARDWARE COST 61

cluding parts, such as the processor(MicroBlaze), the DDR controller and

I/O path and which are not relevant to the proposed design. The resources

occupied by our implementation only, are shown in Table 4.5. The numbers

presented are those derived by “synthesis” procedure of Xilinx ISE 9.1 tool.

Resources occupied available %

FFs 5,192 27392 18

LUTs 8359 27392 30

Slices 7607 13696 55

BRAMs 61 136 44

IOBs 119 556 21

PPC 0 2 0

GCLK 5 16 31

DCMs 2 8 25

Equivalent Gate Count 4,541,071

Table 4.4: Utilization summary for the whole system

As it can be seen, the whole system occupies the half of the logic-related

resources available in the FPGA. Specifically, 55% of the available slices host

logic of the system. The 21.5% is occupied by the implemented design, while

the rest by soft-cores provided by Xilinx. As far as the memory resources

of the system are concerned, 61 out of the 136 available BRAM blocks are

used. 40 BRAM blocks are dedicated to the L2 memory system, 3 to L1

cache, 4 to way prediction table and 5 to the Interfaces to the Network as

FIFOs. The rest of the blocks from the private memory are available to

the processors. Finally, only 21% of the available IOBs are used, mainly for

communicating with the external DDR memory. The rest of them can be

easily used by a network module, which will provide connectivity with the

rest of the world.

62 CHAPTER 4. IMPLEMENTATION AND HARDWARE COST

Block FFs LUTs Slices BRAMs

L1 Cache 120 519 269 3

Way prediction 33 58 19 4

R&T 0 11 6 0

L2 control 391 1296 699 0

Memory blocks 0 405 225 40

Incoming NI 286 561 318 0

Outgoing NI 1192 1819 825 1

NoC interface 315 662 588 4

Total 2437 5702 2949 52

Table 4.5: Utilization summary of the implemented blocks only

4.6.2 Floorplan and Critical Path

Figure 4.5 depicts a floorplaned view of the whole design. Our implementa-

tion is the dark green box in the upper left corner of the figure. The major

modules that shown here are the L1 and L2 cache the outgoing and the

incoming Network Interface. The NoCFSLif box shown in the bottom is the

interface between the NoC and the DDR controller through the FSL bus.

More details about the area breakdown of the design are presented in

the tables and figures of this chapter.

As mentions in section 4.1.2 the frequency of the design is the cut of the

frequencies the DDR operates and the critical path of the circuits. As it will

also be shown below, the system is not able to operate above 70 MHz. Thus,

the cut of these two sets of possible frequencies (50MHz), which meets all

the criteria, is chosen to be the frequency of the whole system.

The two dominant critical path are presented in Table 4.6, verifying the

70MHz frequency derived from the ISE Xilinx tool.

The first observation form the table above is that the wire delay is over

4.6. HARDWARE COST 63

Figure 4.5: Floorplanned view of the FPGA (system)

64 CHAPTER 4. IMPLEMENTATION AND HARDWARE COST

Action Logic delay Route delay Total delay

Write hit 4.661 ns (33%) 9.464 ns (66 14.126 ns

L2 Miss Ending 2.809 ns (20%) 11.236 ns (80%) 14.045 ns

Table 4.6: Delay of critical paths

65% of the total delay something that is relevant to the FPGA characteris-

tics. The path that determines the frequency of the design is the store hit.

The tag memory has just been clocked and output the corresponding tag

lines. Address and tags are checked for equality. Cache hit is resolved and

data are written in the cache. After tag matching in the same cycle (due to

pipelining) the cache Ready signal is set and the next request is dequeued

from the intermediate (L1 - L2) pipeline register and the tag banks are

feed with the new address request. The other critical path presented here

is relevant to miss completion. The incoming NI fill the data from DDR

and informs L2 cache controller to dequeue the next request from the inter-

mediate pipeline register and the tag banks are feed with the new address

request.

4.6.3 Integrated Design Benefit

In order to have a clear essence about the area covering the proposed design,

it is compared in terms of LUTS (Figure 4.6) and Registers (Figure 4.7)

with a scratchpad only, a cache only design and a sum of the two implemen-

tation using corresponding mechanisms. The two figures present an area

breakdown of the whole implemented system (besides the processor and the

DDR controller).

The area breakdown consists of different implementation modules. These

are L1/WP/R&T, L2 control, the outgoing and the incoming NI and the

interfaces with the NoC.

Moving on details relevant to the presented different parts of each de-

4.6. HARDWARE COST 65

Figure 4.6: Area cost breakdown in LUTS

sign, L1/WP/R&T consists of the first level of memory hierarchy, the way

prediction table, the R&T table (and a pipeline Register which shortens the

path between L1 and L2 cache memories). The incoming and the outgoing

NIs are the interfaces of the node to the other world. The outgoing NI con-

tains apart from the necessary FIFOs, and some structures that make the

design optimized enough. L2 control is the L2 cache controller managing the

processor accesses and initializing the miss serving requests to the outgoing

NI. The final part of the break down is the NoC Interface which contains

the interface between the crossbar (NoC) and the incoming and outgoing

NIs.

The cache only system (third bar Figures 4.6, 4.7) consists of an L1

cache, the way prediction table and the R&T table. The L2 control supports

only cacheable accesses. The incoming and outgoing NIs support only cache

miss serving using a DMA engine of one cache line DMAs.

66 CHAPTER 4. IMPLEMENTATION AND HARDWARE COST

Figure 4.7: Area cost breakdown in Registers

In contrast with cache only design, the scratchpad only one do not in-

clude way prediction and the L2 control. The outgoing and the incoming

NIs in the scratchpad implementation are more complex comparing to the

cacheable one due to the message and DMA support and the write buffer

and monitor optimization structures.

Making a hypothetical system supporting two disjointed controllers for

cache and scratchpad accesses, its area breakdown would match to this of

the second bar of Figures 4.6, 4.7. NoCIF counted only once while all the

other module area are added.

The first bar matches to the proposed implemented design with inte-

grated cache controller with scratchpad configuration. It is obvious in both

figures that the integrated design is area efficient comparing to the sum

of the two controllers due to the merging of functionalities; especially in

the outgoing and incoming NIs. The gain reaches 8% in LUTS and 5% in

4.6. HARDWARE COST 67

Registers measurements.

Figure 4.8: Incoming NI area cost in LUTs

Figure 4.9: Incoming NI area cost in Registers

As mentioned above the area gain is observed in the outgoing and in-

coming NIs due to the FSMs which handle the misses, the messages and the

68 CHAPTER 4. IMPLEMENTATION AND HARDWARE COST

Figure 4.10: Outgoing NI area cost in LUTs

Figure 4.11: Incoming NI area cost in Registers

DMAs. Figures 4.8, 4.9, 4.10, 4.11, 4.12, 4.13 isolate these two modules

from the whole system and present a more careful view of the four different

4.6. HARDWARE COST 69

Figure 4.12: NI area cost in LUTs

Figure 4.13: NI area cost in Registers

70 CHAPTER 4. IMPLEMENTATION AND HARDWARE COST

systems. The saving achieved in area by merging the two controllers is in

terms of 12% in outgoing NI and 20% in incoming NI as the following fig-

ures present. The total area saving (sum of incoming and outgoing NIs) is

in terms of 13%.

4.7 Design Testing and Performance Measurements

This section presents some evaluation measurements and verification testing

of the cache controller. The system parameters used in both evaluation and

verification are presented in Table 4.7.

Clock frequency = 50 MHz,

Processor Internal BRAMs enabled (16KB),

Internal Data & instruction Cache disabled,

No O/S. Processor operate in standalone mode,

No Memory translation - Global addressing used

Clock frequency = 50 MHz,

L1 Cache Direct map,

Write through,

Size = 4KB,

Clock frequency = 50 MHz,

L2 Cache 4-way associative,

Write back,

Size = 64KB

DDR Memory Clock frequency = 100 MHz,

Size = 256MB

Table 4.7: System Parameters

4.7. DESIGN TESTING AND PERFORMANCE MEASUREMENTS 71

Type of Access Access Latency in clock cycles

L1 Read Hit 2

L1 Write Hit 2

L2 Read Hit 5 (critical word) / 8 (cache line)

L2 Write Hit 5

Scratchpad Read 5

Scratchpad Write 5

DMA (8 bytes) 29

Message 29

Remote Write (4 bytes) 29

Table 4.8: Access Latency (measured in processor Clock Cycles - 50 MHz)

4.7.1 Testing the Integrated Scratchpad and L2 Cache

A large part of the verification procedure was carried out in the implemen-

tation phase of the system. Each part was intensively simulated to check as

many cases as possible. Furthermore, parts were put together and simulated

in order to check their in-between communication. However, deeper inves-

tigation of the system is required in order to verify the correctness of the

system. Larger programs were written to produce large amounts of cache

traffic. In this way, the system’s functionality was stretched out to cover

all the various cases that it is supposed to support. Apart from small and

large simulation random testbenches, the design tested in real hardware us-

ing small test programs and two algorithms; a matrix multiplication and a

sorting algorithm, the merge-sort with various sizes of workloads.

Chapter 3 presents timing diagrams and pipeline stages of the proposed

design. These values are verified through the programs run on FPGA.

In table 4.8 are presented the latencies of different types of accesses

derived from simulation. These values are already mentioned in some points

72 CHAPTER 4. IMPLEMENTATION AND HARDWARE COST

in chapter 3. The last three entries of Table 4.8 are not explained due to the

fact that are outside the scope of this thesis, but mentioned here because

they are types of accesses of the whole design.

4.7.2 Performance Measurements

• Miss Latency

Figures 4.14, 4.15 present the miss latency in clock cycles for the two

applications (matrix multiplication and merge-sort) for different problem

sizes. A simple miss (without write back) takes 79 clock cycles, something

that is shown in Figure 4.14 in the first bar were only simple (without write

backs) misses happen. In every other occasion in merge-sort the data do

not fit in L2 cache so there are cases of write backs, and that is the reason

why the miss latency is increased to 100 cycles and remains there for every

workload. In matrix multiplication (Figure 4.15) the first two bars present

workloads that fit the L2 cache so no misses (apart from cold start) occur.

In every other case a behavior similar to that of merge-sort is observed.

Miss latency stacks at value 100 due to the fact that the writebacks are

proportional to the total number of misses.

Merge-sort algorithm uses two arrays of the same size; the first is the

output and the other a temporary. So for an array size (Figure 4.15) 65536

bytes the total workload is 65536 integers/array*4 bytes/integer*2 arrays =

512KBytes. Matrix multiplication uses 3 matrixes of the same size, the two

that are multiplied and the product. The workload is estimated as follows:

for a matrix size 128x128 the total workload is 128*128*4bytes/integer*3

arrays = 192KBytes.

• Way Prediction Evaluation

As mentioned in the previous chapters, way prediction is something sig-

nificant in our implementation for throughput and power efficiency matters.

4.7. DESIGN TESTING AND PERFORMANCE MEASUREMENTS 73

Figure 4.14: Merge-sort Miss Latency in clock cycles

Figure 4.15: Matrix Multiplication Miss Latency in clock cycles

74 CHAPTER 4. IMPLEMENTATION AND HARDWARE COST

Between the PC based and the access address based we choose the second

one for accuracy purposes even though address is “valid” later in the pipeline

path. During the implementation a noteworthy issue is the decision of the

function that will predict the possible hit L2 ways. We compared (through

simulation) some different applications including matrix multiplication, FFT

(and some SPEC benchmarks). XOR-based way prediction generation mask

algorithms compared with simple algorithms (without functions on the ad-

dress bits). Different sizes of signatures were compared each other to study

their accuracy. Below in the tables are presented some of the results (not

all of the taken). The algorithm is false negative free as mentioned in the

relative section.

Matrix multiplication Miss rate = 43.8% Hit rate = 56.2%

Accesses = 1039717

Algorithm XOR function signature Simple function signature

Signature size 4 bits 8 bits 4 bits 8 bits

Miss prediction 39.31% 43.7% 0% 39.53%

One hot mask 56.12% 56.12% 28.68% 42.2%

Two ones mask 1.32% 0.08% 45.34% 17.2%

Three ones mask 2% 0.07% 0% 1%

Four ones mask 0.82% 0.03% 25.86% 0.32%

Table 4.9: Matrix Multiplication way prediction measurements

Miss prediction mentioned in the tables 4.9 and 4.10 means when the

prediction mask is all zeros, so it has been detected a miss without tag

matching. One hot mask means that the possible way the data located is

only one (direct map caches). Two ones mask is with two possible hit ways

and so on for the other two cases.

As it can be seen by the Tables 4.9 and 4.10 the 8 bits signatures is

4.7. DESIGN TESTING AND PERFORMANCE MEASUREMENTS 75

FFT Miss rate = 5.45% Hit rate = 94.55%

Accesses = 785646

Algorithm XOR function signature Simple function signature

Signature size 4 bits 8 bits 4 bits 8 bits

Miss prediction 4.87% 5.43% 0.03% 5.01%

One hot mask 85% 94.3% 28.5% 88.8%

Two ones mask 6.21% 0.07% 45.3% 5.95%

Three ones mask 2.25% 0.14% 20.9% 0.17%

Four ones mask 1.46% 0.08% 5.3% 0.09%

Table 4.10: FFT way prediction measurements

more accurate than the 4 ones. It is noteworthy to observe the accuracy

of the miss prediction (the access is miss without checking the tags) of 8

bit signature. In matrix multiplication the miss rate is 43.8% of 1 million

accesses (workload) and the predicted are 43.7% with XOR function and

39.53% without function (only take the 8 least significant bits if the tag

address). It is also remarkable to see that the accuracy of the 4bit XOR

signatures is more efficient than the 8 bit simple function signature. Another

observation concerns the hits. The 8 bit XOR signature predicts the only

correct way (one hot mask) with great possibility, converting the 4-way

associative cache to direct map in terms of power consumption without

converting the cache to phased even it is behaved so.

The same behavior is observed in all the applications was tested.

All these reasons lead us to choose the 8bit XOR-based signature gener-

ation for the way prediction algorithm.

76 CHAPTER 4. IMPLEMENTATION AND HARDWARE COST

Chapter 5

Conclusions

In this master thesis we present an approach for a configurable second level

of memory hierarchy. The configuration is achieved between cacheable and

scratchpad regions. The configuration apart from the memory space which

is configured dynamically between cache and scratchpad is achieved in the

“control” level. The mechanisms that manipulate the L2 memory space are

unified despite their cacheable or not nature. The proposed cache controller

is equipped with several features making it performance and area efficient

and power aware. Some of them are: Way Prediction, Bank Interleaving

and Outstanding Miss support.

The miss serving of a cache line is achieved through the same function-

ality the DMAs performed (integrated control).

The measurements taken from the hardware tool reports indicate the

benefits on hardware resources due to the integration of the two memory

subsystems.

The area gain of the integrated controller comparing to two distinct

controllers reaches 7% on average in both LUTS and Register measurements.

Future work will aim at extending the current work in the following ways:

• Increase the level of integration of the functionalities of cache and

DMA (scratchpad) controllers.

77

78 CHAPTER 5. CONCLUSIONS

• Minimize the critical path, increasing the circuit frequency “porting”

the design in the larger and faster FPGAs.

• Move the L2 cache tags in a cycle earlier (already exists this cycle)

minimizing the critical path and the false positives accesses generated

by the way prediction algorithm.

• Generate a DDR controller supporting DMAs as presented before, in

this master thesis.

• Support cache coherence providing the mechanisms to share memory

between different nodes.

Bibliography

[1] H. Abdel-Shafi, J. Hall, S. V. Adve, and V. S. Adve. An evaluation

of fine-grain producer-initiated communication in cache-coherent mul-

tiprocessors. In HPCA ’97: Proceedings of the 3rd IEEE Symposium on

High-Performance Computer Architecture, page 204, Washington, DC,

USA, 1997. IEEE Computer Society.

[2] H. Al-Zoubi, A. Milenkovic, and M. Milenkovic. Performance evalu-

ation of cache replacement policies for the spec cpu2000 benchmark

suite. In ACM-SE 42: Proceedings of the 42nd annual Southeast re-

gional conference, pages 267–272, New York, NY, USA, 2004. ACM.

[3] F. Angiolini, L. Benini, and A. Caprara. Polynomial-time algorithm for

on-chip scratchpad memory partitioning. In CASES ’03: Proceedings

of the 2003 international conference on Compilers, architecture and

synthesis for embedded systems, pages 318–326, New York, NY, USA,

2003. ACM.

[4] B. Batson and T. N. Vijaykumar. Reactive-associative caches. In PACT

’01: Proceedings of the 2001 International Conference on Parallel Ar-

chitectures and Compilation Techniques, pages 49–60, Washington, DC,

USA, 2001. IEEE Computer Society.

[5] L. Benini, A. Macii, E. Macii, and M. Poncino. Increasing energy effi-

ciency of embedded systems by application-specific memory hierarchy

1

2 BIBLIOGRAPHY

generation. IEEE Des. Test, 17(2):74–85, 2000.

[6] G. T. Byrd and B. Delagi. Streamline: Cache-based message passing

in scalable multiprocessors. In ICPP (1), pages 251–254, 1991.

[7] M. Byrd, G.T. Flynn. Producer-consumer communication in dis-

tributed shared memory multiprocessors. Proceedings of the IEEE,

87(3):456–466, Mar. 1999.

[8] B. Calder, D. Grunwald, and J. Emer. Predictive sequential associative

cache. In HPCA’96: Proceedings of the 2nd IEEE Symposium on High-

Performance Computer Architecture, page 244, Washington, DC, USA,

1996. IEEE Computer Society.

[9] M. Dasygenis, E. Brockmeyer, B. Durinck, F. Catthoor, D. Soudris, and

A. Thanailakis. A combined dma and application-specific prefetching

approach for tackling the memory latency bottleneck. IEEE Trans.

Very Large Scale Integr. Syst., 14(3):279–291, 2006.

[10] D. P. et al. The design and implementation of a first-generation CELL

processor. In Proc. IEEE Int. Solid-State Circuits Conference (ISSCC),

February 2005.

[11] P. Francesco, P. Marchal, D. Atienza, L. Benini, F. Catthoor, and

J. M. Mendias. An integrated hardware/software approach for run-

time scratchpad management. In DAC ’04: Proceedings of the 41st

annual conference on Design automation, pages 238–243, New York,

NY, USA, 2004. ACM.

[12] B. R. Gaeke, P. Husbands, X. S. Li, L. Oliker, K. A. Yelick, and

R. Biswas. Memory-intensive benchmarks: Iram vs. cache-based ma-

chines. In IPDPS ’02: Proceedings of the 16th International Paral-

lel and Distributed Processing Symposium, page 203, Washington, DC,

USA, 2002. IEEE Computer Society.

BIBLIOGRAPHY 3

[13] J. Gummaraju, M. Erez, J. Coburn, M. Rosenblum, and W. J. Dally.

Architectural support for the stream execution model on general-

purpose processors. In PACT ’07: Proceedings of the 16th International

Conference on Parallel Architecture and Compilation Techniques, pages

3–12, Washington, DC, USA, 2007. IEEE Computer Society.

[14] J. Heinlein, K. Gharachorloo, S. Dresser, and A. Gupta. Integration of

message passing and shared memory in the stanford flash multiproces-

sor. SIGOPS Oper. Syst. Rev., 28(5):38–50, 1994.

[15] J. L. Hennessy and D. A. Patterson. Computer architecture: a quan-

titative approach. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 2002.

[16] InfiniBand Trade Association. Infiniband architecture specification re-

lease 1.2.1. http://www.infinibandta.org/specs/register/publicspec/,

January 2008.

[17] M. Kandemir, J. Ramanujam, M. Irwin, N. Vijaykrishnan, I. Kadayif,

and A. Parikh. A compiler-based approach for dynamically managing

scratch-pad memories in embedded systems. Computer-Aided Design of

Integrated Circuits and Systems, IEEE Transactions on, 23(2):243–260,

Feb. 2004.

[18] M. Katevenis. Interprocessor communication seen as load-store instruc-

tion generalization. In The Future of Computing, essays in memory of

Stamatis Vassiliadis, K. Bertels e.a. (Eds.), Delft, The Netherlands,

pages 55–68, Sept. 2007.

[19] J. Kin, M. Gupta, and W. H. Mangione-Smith. The filter cache: an en-

ergy efficient memory structure. In MICRO 30: Proceedings of the

30th annual ACM/IEEE international symposium on Microarchitec-

4 BIBLIOGRAPHY

ture, pages 184–193, Washington, DC, USA, 1997. IEEE Computer

Society.

[20] D. Koufaty and J. Torrellas. Comparing data forwarding and prefetch-

ing for communication-induced misses in shared-memory mps. In ICS

’98: Proceedings of the 12th international conference on Supercomput-

ing, pages 53–60, New York, NY, USA, 1998. ACM.

[21] T. Koyama, K. Inoue, H. Hanaki, M. Yasue, and E. Iwata. A 250-

mhz single-chip multiprocessor for audio and video signal processing.

Solid-State Circuits, IEEE Journal of, 36(11):1768–1774, Nov 2001.

[22] D. Kroft. Lockup-free instruction fetch/prefetch cache organization. In

ISCA ’81: Proceedings of the 8th annual symposium on Computer Ar-

chitecture, pages 81–87, Los Alamitos, CA, USA, 1981. IEEE Computer

Society Press.

[23] J. Kubiatowicz and A. Agarwal. Anatomy of a message in the alewife

multiprocessor. In ICS ’93: Proceedings of the 7th international con-

ference on Supercomputing, pages 195–206, New York, NY, USA, 1993.

ACM.

[24] A. Milidonis, N. Alachiotis, V. Porpodas, H. Michail, A. P. Kakaroun-

tas, and C. E. Goutis. Interactive presentation: A decoupled archi-

tecture of processors with scratch-pad memory hierarchy. In DATE

’07: Proceedings of the conference on Design, automation and test in

Europe, pages 612–617, San Jose, CA, USA, 2007. EDA Consortium.

[25] S. S. Mukherjee, P. Bannon, S. Lang, A. Spink, and D. Webb. The

alpha 21364 network architecture. IEEE Micro, 22(1):26–35, 2002.

[26] S. S. Mukherjee, B. Falsafi, M. D. Hill, and D. A. Wood. Coherent

network interfaces for fine-grain communication. SIGARCH Comput.

Archit. News, 24(2):247–258, 1996.

BIBLIOGRAPHY 5

[27] N. Njoroge, S. Wee, J. Casper, J. Burdick, Y. Teslyar, C. Kozyrakis,

and K. Olukotun. Building and using the atlas transactional memory

system. In in Proceedings of the Workshop on Architecture Research

using FPGA Platforms, held at HPCA12. 2006.

[28] P. Panda, N. Dutt, and A. Nicolau. Local memory exploration and op-

timization in embedded systems. Computer-Aided Design of Integrated

Circuits and Systems, IEEE Transactions on, 18(1):3–13, Jan 1999.

[29] P. R. Panda, N. D. Dutt, and A. Nicolau. Efficient utilization of scratch-

pad memory in embedded processor applications. In EDTC ’97: Pro-

ceedings of the 1997 European conference on Design and Test, page 7,

Washington, DC, USA, 1997. IEEE Computer Society.

[30] P. R. Panda, N. D. Dutt, and A. Nicolau. On-chip vs. off-chip memory:

the data partitioning problem in embedded processor-based systems.

ACM Trans. Des. Autom. Electron. Syst., 5(3):682–704, 2000.

[31] D. K. Poulsen and P.-C. Yew. Data prefetching and data forwarding

in shared memory multiprocessors. In ICPP ’94: Proceedings of the

1994 International Conference on Parallel Processing, pages 280–280,

Washington, DC, USA, 1994. IEEE Computer Society.

[32] M. D. Powell, A. Agarwal, T. N. Vijaykumar, B. Falsafi, and K. Roy.

Reducing set-associative cache energy via way-prediction and selec-

tive direct-mapping. In MICRO 34: Proceedings of the 34th annual

ACM/IEEE international symposium on Microarchitecture, pages 54–

65, Washington, DC, USA, 2001. IEEE Computer Society.

[33] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer. Adap-

tive insertion policies for high performance caching. SIGARCH Comput.

Archit. News, 35(2):381–391, 2007.

6 BIBLIOGRAPHY

[34] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt. A case for

mlp-aware cache replacement. In ISCA ’06: Proceedings of the 33rd

annual international symposium on Computer Architecture, pages 167–

178, Washington, DC, USA, 2006. IEEE Computer Society.

[35] F. Raam, R. Agarwal, K. Malik, H. Landman, H. Tago, T. Teruyama,

T. Sakamoto, T. Yoshida, S. Yoshioka, Y. Fujimoto, T. Kobayashi,

T. Hiroi, M. Oka, A. Ohba, M. Suzuoki, T. Yutaka, and Y. Yamamoto.

A high bandwidth superscalar microprocessor for multimedia applica-

tions. Solid-State Circuits Conference, 1999. Digest of Technical Pa-

pers. ISSCC. 1999 IEEE International, pages 258–259, 1999.

[36] R. Rangan, N. Vachharajani, A. Stoler, G. Ottoni, D. I. August, and

G. Z. N. Cai. Support for high-frequency streaming in cmps. In MICRO

39: Proceedings of the 39th Annual IEEE/ACM International Sym-

posium on Microarchitecture, pages 259–272, Washington, DC, USA,

2006. IEEE Computer Society.

[37] S. Sair and M. Charney. Memory behavior of the spec2000 benchmark

suite. Technical report, IBM T. J. Watson Research Center, 2000.

[38] C. Scheurich and M. Dubois. The design of a lockup-free cache for

high-performance multiprocessors. In Supercomputing ’88: Proceedings

of the 1988 ACM/IEEE conference on Supercomputing, pages 352–359,

Los Alamitos, CA, USA, 1988. IEEE Computer Society Press.

[39] SiCortex - Lawrence C. Stewart and David Gin-

gold. A new generation of cluster interconnect.

http://www.sicortex.com/products/white papers/, December 2006.

[40] R. L. Sites and R. T. Witek. Alpha AXP architecture reference manual

(2nd ed.). Digital Press, Newton, MA, USA, 1995.

BIBLIOGRAPHY 7

[41] G. S. Sohi and M. Franklin. High-bandwidth data memory systems for

superscalar processors. SIGOPS Oper. Syst. Rev., 25(Special Issue):53–

62, 1991.

[42] R. Subramanian, Y. Smaragdakis, and G. Loh. Adaptive caches: Ef-

fective shaping of cache behavior to workloads. Microarchitecture,

2006. MICRO-39. 39th Annual IEEE/ACM International Symposium

on, pages 385–396, Dec. 2006.

[43] M. Suzuoki, K. Kutaragi, T. Hiroi, H. Magoshi, S. Okamoto, M. Oka,

A. Ohba, Y. Yamamoto, M. Furuhashi, M. Tanaka, T. Yutaka,

T. Okada, M. Nagamatsu, Y. Urakawa, M. Funyu, A. Kunimatsu,

H. Goto, K. Hashimoto, N. Ide, H. Murakami, Y. Ohtaguro, and

A. Aono. A microprocessor with a 128-bit cpu, ten floating-point mac’s,

four floating-point dividers, and an mpeg-2 decoder. Solid-State Cir-

cuits, IEEE Journal of, 34(11):1608–1618, Nov 1999.

[44] D. Talla and L. K. John. Mediabreeze: a decoupled architecture for ac-

celerating multimedia applications. SIGARCH Comput. Archit. News,

29(5):62–67, 2001.

[45] W. Wong and J.-L. Baer. Modified lru policies for improving second-

level cache behavior. High-Performance Computer Architecture, 2000.

HPCA-6. Proceedings. Sixth International Symposium on, pages 49–60,

2000.

[46] S. C. Woo, J. P. Singh, and J. L. Hennessy. The performance advantages

of integrating block data transfer in cache-coherent multiprocessors.

In ASPLOS-VI: Proceedings of the sixth international conference on

Architectural support for programming languages and operating systems,

pages 219–229, New York, NY, USA, 1994. ACM.

8 BIBLIOGRAPHY

[47] K. C. Yeager. The mips r10000 superscalar microprocessor. IEEE

Micro, 16(2):28–40, 1996.

