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ABSTRACT 

 

Interneurons are critical for the proper functioning of neural circuits and are typically 

considered to act as linear point neurons. However, exciting new findings reveal 

complex, sub- and/or supralinear computations in the dendrites of various interneuron 

types. These findings challenge the point neuron dogma and call for a new theory of 

interneuron arithmetic. Using detailed, biophysically constrained models, we predict 

that dendrites of FS basket cells in both the hippocampus and mPFC come in two 

flavors: supralinear, supporting local sodium spikes within large-volume branches and 

sublinear, in small-volume branches. Synaptic activation of varying sets of these 

dendrites leads to somatic firing variability that cannot be explained by the point neuron 

reduction. Instead, a 2-stage Artificial Neural Network (ANN), with both sub- and 

supralinear hidden nodes, captures the variance. We propose that FS basket cells have 

substantially expanded computational capabilities sub-served by their non-linear 

dendrites and act as a 2-layer ANN. 
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1 INTRODUCTION 

1.1 Brain Anatomy and Function 

1.1.1 The Hippocampus 

The hippocampus, (also known as archicortex) is a critical structure of the mammalian 

brain. There are two hippocampi, one of each side of the brain. The hippocampus is 

located under the cerebral cortex and specifically the temporal lobe. It is a part of the 

limbic system and plays a significant role in memory formation, storage and 

consolidation1 as well as in spatial navigation 2 and other executive functions. The 

hippocampus can be subdivided into 3 subregions; the hippocampus proper (consisting 

of four Cornu Ammonis areas – CA4, CA3, CA2 and CA1), the dentate gyrus and the 

subiculum. Hippocampus accompanying with presubuculum, parasubiculum and 

entorhinal cortex form a structure known as hippocampal formation 3. The basic 

connectivity patterns among hippocampal neurons are conserved among all mammalian 

species. 

1.1.2 The Prefrontal Cortex 

The prefrontal cortex (PFC), is defined as the cortical region in the anterior frontal lobe 

of the mammalian brain. In particular, it is considered as the part of the cerebral cortex 

that receives projection fibers from the mediodorsal nucleus of the thalamus.  The PFC 

lies in front of the premotor cortex and in the front lateral surface of the limbic 

association cortex on the orbital and medial surfaces4. In rodents, the average PFC is 

composed of five layers. The prefrontal cortex is devoted to the executive functions that 

control the goal-directed actions.  It has actually been named the “executive center” of 

the brain. It is considered as the brain area that receives and integrates information and 

finally makes ‘decisions’.  Some of these “executive functions” that the PFC underlies 

are: Focusing attention, motor planning, thought organization, problem solving, 

predicting behavioral consequences, temporal organization, decision-making, 

behavioral inhibition, rule learning and long-term memory storage 5.  Most of the above 

higher order cognitive functions require proper functioning of the working memory 

system.  

1.2 GABAergic interneurons 

GABAergic interneurons play a key role in modulating neuronal activity and 
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transmission in multiple brain regions6–10. Among others, they are responsible for 

controlling the excitability of both excitatory and inhibitory cells, modulating synaptic 

plasticity and coordinating synchrony during neuronal oscillations7,11–13,14. GABAergic 

interneurons come in a variety of molecular profiles, anatomical features and 

electrophysiological properties6,8,15,16. Despite this variability, many interneuron types 

exhibit similar computations, the most common being a precise EPSP-spike 

coupling7,17,18. As they innervate a large number of cells near the site of action potential 

initiation3,13, they are believed to generate a powerful widespread inhibition, also 

referred to as an inhibitory blanket19.  

1.2.1 Fast Spiking Basket Cells 

 

Fast Spiking (FS) basket cells constitute one of the main types of hippocampal and 

neocortical interneurons.11,19,20 They are distinguished from other subtypes by 

molecular markers –e.g. the expression of the Parvalbumin (PV) protein-, their 

anatomical features21, synaptic connectivity patterns19,22 and membrane mechanisms 

such as the presence of calcium permeable AMPA receptors23,11,24 and the high density 

of potassium channels in their aspiny dendritic trees10,20,25,26,11. 

A growing body of literature recognizes the importance of FS basket cells in controlling 

executive functions such as working memory and attention as well as their role in 

neurodegenerative disorders9,27,28. However, little is known about the mechanistic 

underpinnings of FS basket cell contributions to these functions. Most studies have 

focused on the molecular and anatomical features of FS basket cells12,18,21,25,29,30 and 

supported the dogma that these cells integrate inputs like linear –or at best sublinear- 

point neurons31,32.  

 

This dogma is based on the assumption that FS basket cells integrate synaptic inputs in 

a linear manner, completely ignoring potential dendritic infuences11. Active dendritic 

mechanisms however, are known to transform incoming information in non-trivial 

ways, thus greatly influencing output signals33,34,35,36. Despite its fundamental role in 

neuronal computations, dendritic integration has been studied mainly in excitatory 

pyramidal cells33,37–44. The current knowledge about FS basket cell dendrites entails a 

passive backpropagation of APs, low density of sodium channels11 and high density of 
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fast, high-threshold potassium channels in distal dendrites11,45,46. All of the above 

contribute to sublinear dendritic integration, coupled to fast and temporally precise AP 

initiation in response to synaptic input18,31, largely in line with the simplified point-

neuron view of interneurons. 

Exciting new findings however, reveal that the dendrites of certain interneuron types 

are much more powerful than originally assumed. For example, sublinear dendritic 

EPSP integration along with supralinear calcium accumulations has been reported in 

cerebellar Stellate Cells (SCs)17,47.Moreover, RAD dendrite-targeting interneurons in 

the CA1 area exhibit calcium supralinearities48 while in the CA3, both calcium 

nonlinearities and sodium spikes in FS basket cell dendrites during sharp wave ripples, 

have been reported7. The exact nature of dendritic computations in FS basket cells, 

however, is unknown. As a result, whether a linear point neuron or a more sophisticated 

abstraction -like the two-stage38 or multi-stage integration49 proposed for pyramidal 

neurons- can successfully capture their synaptic integration profile, remains an open 

question. 

 

1.3 Motivation of the Study 

To address this question, we developed detailed, biologically constrained biophysical 

models of FS basket cells using anatomical reconstructions of both hippocampal 50 and 

cortical (medial Prefrontal Cortex) neurons51 (shown in figure 2). Synaptic stimulation 

within the dendrites of model cells predicts the co-existence of two distinct integration 

modes; some dendrites exhibit supralinear synaptic integration while others operate in 

a sublinear mode (figure 6, 7, 8). Morphological features such as dendritic length and/or 

diameter influence the integration mode and these features differ between hippocampal 

and cortical neurons. Interestingly, dendritic volume appears to be a consistent 

discriminating feature among sub- and supralinear dendrites of both areas (figure 11). 

By generating a large number of different spatial patterns of synaptic activation we find 

that spatially dispersed inputs lead to higher firing rates than inputs clustered within a 

few dendrites in both Hippocampus and PFC models (figure 12), opposite to respective 

simulations in pyramidal neurons52. Moreover, a 2-layer Artificial Neural Network 
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(ANN) with both sub- and supralinear hidden nodes can predict the firing rate of the 

aforementioned models much better than a linear ANN (figures 13-16, Table 7).  

1.4 Impact of the study 

This is the first study that provides a systematic, cross-area analysis of dendritic 

integration in FS basket cells. Our findings challenge the current dogma, whereby 

interneurons are treated as linear summing devices, essentially void of dendrites. We 

predict that the dendrites of FS basket cells in both Hippocampal and Neocortical 

regions can operate in distinct non-linear modes. As a result, FS basket cells, similar to 

pyramidal neurons38, are better represented by a 2-stage integrator abstraction rather 

than a point neuron. 

 

 

 

 

 

 

 

 

 

 

2 Methods 

Simulations were performed on a High-Performance Computing Cluster equipped with 

312 CPU cores and 1.150 Gigabytes of RAM, under 64-bit CentOS 6.7 Linux.  
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2.1 Compartmental modeling 

All 8 model neurons were implemented within the NEURON simulation environment 

(version 7.3)53. Detailed morphological reconstructions of the 5 Fast spiking Basket 

cells of the rat Hippocampus were adopted from Tukker et al. 201350, via the 

NeuroMorpho.org database. Due to the lack of axonal reconstructions, we used the axon 

from the B13a.CNG.swc reconstruction for all 5 hippocampal neuron models. The 3 

PFC morphologies were adopted from Rotaru et al. 201151, via the NeuroMorpho.org 

database and included their respective axons.   

Dendritic branches with mean diameter values larger than 1.2 μm were excluded from 

all simulations and data analysis procedures, based on Emri et al. 200154. The NLM 

Morphology Viewer Software was used to transform morphological reconstructions 

into .hoc files. 

2.2 Biophysical Properties of FS Basket Cells Models 

All model neurons were calibrated with respect to their biophysical properties so as to 

conform to experimental data. The same active and passive properties were used in all 

model cells, with the exception of very small modifications in the conductances of 

somatic/axonal Sodium and Kdr mechanisms (Tables 1 and 2). The latter were 

necessary to account for the influence of morphological variability on neuronal 

responses.   

Conductances of all active ionic mechanisms were adapted from Konstantoudaki et al. 

201455. Both hippocampal and PFC models include fast voltage-dependent sodium 

channels (gnafin), delay rectifier potassium channels (gkdrin), slow inactivation potassium 

channels (gslowin), slow calcium dependent potassium channels (gkcain), A-type 
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potassium channels for proximal and distal dendritic regions (gkadin, gkapin), h currents 

(ghin), and L-, N- and T- type voltage-activated calcium channels (gcal, gcan and gcat, 

respectively).  Sodium current conductances were substantially larger in axonal 

compared to somatic compartments, which were in turn an order of magnitude larger 

than dendritic sodium conductances11. Moreover, dendritic branches located beyond 

100 microns from the soma (distal dendrites) had smaller sodium conductances than 

proximal branches (located less than 100 microns from the soma) as per11,46. A calcium 

buffering mechanism was included in all compartments. Details about all biophysical 

mechanisms are listed in Table 2. 

 

 

 

Table 1:  Passive properties common to the 8 biophysical models 

 

 

 

 

 

 

Table 1. Passive properties of biophysical models 
 Soma Axon Proximal 

dendrites 
Distal 

Dendrites 

Leak conductance (g_pas)18  1.315e-4 

S/cm2 

3.55e-6 S/cm2 1.315e-4 S/cm2 1.34e-5 

S/cm2 

Resting Membrane Potential 

(e_pas)18,25 

-68 mV -68 mV -68 mV -68 mV 

Membrane capacitance (cm) 18 1.2 uf/cm-2 1.2 uf/cm-2 1.2 uf/cm-2 1.2 uf/cm-2 

Axial Resistance (Ra) 18 172 ohm/ 

cm 

172 ohm/ cm 142 ohm/ cm 142 ohm/ 

cm 
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Table 2: Active membrane conductances across somatic, axonal, proximal (≤100 

microns from the soma) and distal (>100 microns from the soma) dendritic 

compartments. Sodium current conductances are larger in axonal than somatic 

compartments. Dendritic sodium conductances are ~10 times smaller than axo-somatic 

conductances. 

2.3 Synaptic conductances 

Calcium permeable (GluR2-lacking) AMPA, NMDA and autaptic GABAa synaptic 

currents were incorporated in all model cells. Synaptic weights were validated so as to 

reproduce the current waveforms depicted in Wang Gao et al 200958 and Bacci et al 

200325  and are shown in Table 3 and figure 5. 

 

 

 

Table 2. Active properties of biophysical models 
Ion 
channel 

(S/cm2) 

Soma Axon Proximal 
dendrites 

Distal 
Dendrites 

Nav 
11,32,56 0.145(PFC1-3) 

/0.396 (Hipp1-3) 

/0.828(Hipp4,5) 

0.675(PFC1-3) 

/1.296(Hipp1-3) 

/1.512(PFC4,5) 

0.018 0.014 

Hv 0.00001 X x X 

Kdrv 0.036 (PFC)/ 

0.0432(Hipp) 

0.108 (PFC)/ 

0.144 (Hipp) 

0.0009 0.009 

Kslowv 0.000725 X x X 

Kctv 0.0001 X x X 

Kcav 0.02 X x X 

Kav 

(proximal 

type) 56
 

0.0032 X 0.001 0.0009 

Kav (distal 

type) 57 
x X x 0.00216 

Calv x X 0.00003 0.00003 

Canv x X 0.00003 0.00003 

Catv x X 0.0002 0.0002 

Calcium 

buffering 

dynamics 

Yes No Yes Yes 
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Table 3. Synaptic mechanisms of biophysical models 

Synaptic Current Conductance Weight 

Autaptic GABAa 71.1e-4 

Ca permeable AMPA 7,5e-4 

NMDA 16e-4 

Table 3: Validated Synaptic conductance weight values of Autaptic GABAa Calcium 

permeable AMPA and NMDA currents, used in all simulations. 

2.4 Electrophysiological validation 

All model neurons were heavily validated against experimental data in order to ensure 

biological plausibility (figure1). Averaged electrophysiological values for the model 

cells and respective experimental values are shown in Table 4. 

 

  

 

 

 

 

 

 

 

 

Figure 1: Action potential features of Fast Spiking Basket cells. 
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Table 4. Electrophysiological properties of biophysical models 

Value Model Experimental data 

rHeobase (pA)21 150.0 ± 30.0 123 ± 58 

Input Resistance (Ohm)21 97.7 ± 30.0 182 ± 83 

Spike threshold (mV)21 -37.0 ± 3.0 -34 ± 2 

Spike amplitude (mV)21 52.0 ± 2.0 53.0 ± 8.0 

Spike half width (msec)21,25 0.5 ± 0.1 0.2 ± 0.01/0.38 ± 0.008 

f-i slope (Hz/pA)25 0.26 ± 0.03 0.2 ± 0.002 

AHP (mV)19  24.6 ± 2.6 24.3 ± 0.7/23 ± 5 

Table 4: Validation of electrophysiological properties. 

 

2.5 Bi-modal dendritic integration in Fast Spiking Basket 

cells. 

To map the dendritic integration profiles of our model neurons, we activated increasing 

numbers of synapses (1 to 20, with step 1) in each dendrite and recorded the voltage 

responses both locally and at the cell body for 100 ms. Synaptic input was simulated as 

a single depolarizing pulse, as per Poirazi et al 2003a37. Sodium conductances in 

somatic and axonal compartments were set to zero in order to avoid backpropagation 

effects. 12 autaptic events were also activated in somatic compartments59.  

2.5.1 Integration modes  

Integration modes were deduced by comparing the measured dendritic/somatic 

responses (Actual maximum EPSP) against what would be expected if synaptic 

depolarizations summed linearly (Expected maximum EPSP). A dendrite was termed 

supralinear if Actual responses were larger than Expected, even if this was true only for 

a short range of synaptic inputs. A dendrite was considered sublinear if the Actual 

EPSPs were smaller than the Expected values for all synaptic inputs tested.  
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2.5.2 Sensitivity analysis 

Sensitivity analysis was performed by modifying the conductances of NMDA, calcium-

permeable AMPA receptors, Voltage gated Calcium Channels (VGCCs), Sodium, and 

A-type (proximal and distal) mechanisms by ± 20%. Increasing numbers of synapses 

(for 1 to 40) were used to assess possible changes in single branch integration. Results 

for all manipulations are shown in figure 10. 

 

2.6 Morphological determinants of dendritic integration 

mode 

Mean dendritic diameter and total dendritic length for supralinear and sublinear 

dendrites were measured for all reconstructed neurons. Dendritic volume was 

calculated according to the following formula: 

 𝑉 = (𝜋 ∗ (
𝑑𝑖𝑎𝑚

2
)

2

) ∗ 𝑙𝑒𝑛𝑔𝑡ℎ    (𝜇𝑚3)  

Statistical analysis for all morphological features was performed using Student’s t-test 

with equal sample sizes and assuming unequal variances (Welch’s t-test). 

 

2.6.1 Synaptic Stimulation Protocols 
 

In all stimulation protocols, inputs were activated using a 50 Hz Poisson spike train. 

The maximum number of activated synapses was 60, as it was sufficient to induce firing 

at gamma related frequencies (30-100 Hz). The spatial arrangement of activated 

synapses was defined according to each of the following stimulation protocols: 
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2.6.2 Randomly dispersed, whole tree stimulation 
 

Different numbers of synapses (Nsysn = 5, 10 up to 60) were randomly placed on 

randomly selected dendrites. For a given number of synapses Nsyn, at each allocation 

step, one dendrite was chosen at random and one synapse was placed at a random 

location within this dendrite. For the selected dendrite, synaptic location was randomly 

changed 5 times. This process was repeated N times, where N was the number of 

dendrites for each model cell. This process ensured a realistic distribution of activated 

synapses within the entire dendritic tree of each modelled neuron. 

 

 

2.6.3 Clustered, whole tree stimulation 
 

The only difference of this protocol from the one described above is that each selected 

dendrite received a cluster (of size Sclu = 10 or 20) of synapses as opposed to a single 

synapse. For example, for Nsyn=60 and Sclu = 10, a total of 6 dendrites were randomly 

selected to receive 10 synapses each. We followed the same experimental design as in 

the disperse, whole tree protocol. Thus, for a given number of synapses Nsyn, at each 

allocation step, one dendrite was chosen at random and one synapse was placed at a 

random location within this dendrite. For the selected dendrite, synaptic location was 

randomly changed 5 times. This process was repeated N times, where N was the number 

of dendrites for each model cell.  

2.7 Artificial Neural Network Models 

We constructed four feed-forward, backpropagation Artificial Neural Networks with 
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customized code written in MATLAB, version 2009: a) a 2-layer modular ANN 

whereby hidden neurons were divided in two parallel layers (1 & 2). In hidden layer 1, 

neurons consisted of supralinear (step-sigmoid) transfer functions while neurons in 

hidden layer 2 consisted of sublinear (saturating linear) transfer functions. The two 

types of transfer functions corresponded to respective supra- and sublinear dendrites of 

the biophysical model cells60. b) a 2-layer ANN with one hidden layer, whereby all 

hidden neurons had supralinear transfer functions, c) a 2-layer ANN with one hidden 

layer, whereby all hidden neurons had sub-linear transfer functions and d) a linear ANN 

whereby the hidden and output neurons had a linear transfer function (classical linear 

point neuron). In all ANNs, the output neuron had a linear transfer function. All ANNs 

were trained with the same input/output data sets and performance accuracy was 

estimated according to the correlation among predicted (by the ANN) and actual mean 

firing rates generated by the biophysical model, for a wide range of stimulation 

protocols. The parameters of each ANN are listed in Table 5. Firing rate corresponding 

to this particular configuration. 

 

 

Table 5. ANN properties 

Train function Levenberg-Marquardt backpropagation 

Error Function Mean squared normalized error performance  

Number of epochs 1000 

Type of network feedforward  

Table 5: Network parameters of all ANNs. 

 

2.7.1 ANN training/testing datasets 

 

Input to the four ANNs consisted of the number of synapses located in the modelled 
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dendritic branches and the target output consisted of the mean firing rate generated by 

the biophysical model in response to synaptic stimulation. In the biophysical model, 

these synapses were activated with the Dispersed and Clustered protocols described 

above as well as five new protocols using the same pattern of repetition trials as 

described above:  1) Randomly dispersed activation of synapses (Nsyn=2:2:60) in the 

entire dendritic trees. 2,3) Clustered (Sclu=3, Nsyn=20) or 4,5) Dispersed (Nsyn 10) 

synaptic allocation on supralinear dendrites and Clustered or Dispersed synaptic 

allocation on sublinear dendrites, respectively. Data shown in Figures 15, 16 

correspond to PFC3 and HIPP2 model neurons and are representative of all model cells. 

 

2.7.2 Linear Regression and Statistical Analysis. 

 

We calculated the correlation coefficient (R) between Actual Mean Firing Rates (Target 

rates, in Hz) generated from the biophysical models and Predicted Mean Firing Rates 

(Predicted rates, in Hz) generated by the trained ANNs, respectively.  Statistical 

analysis between Target and Predicted firing rates was performed using Student’s t-test 

with equal sample sizes and assuming unequal variances (Welch’s t-test). 
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3 RESULTS 

3.1 The models 

A total of 8 biophysical model neurons were built within the NEURON simulation 

environment53. We used realistic reconstructions of FS basket cells from the rat 

hippocampus (5 cells)50 and from the mPFC (3 cells)51 of mice (figure 2). All 

morphologies were downloaded from the Neuromorpho.org database and checked for 

reconstruction accuracy (diameter) (See Methods). To ensure biological relevance, 

ionic and synaptic conductances as well as basic membrane properties of model cells 

were heavily validated against experimental data11,18,21,25,46,57 (see Tables 1-4 and 

figures 3-5). Moreover, for consistency reasons, the same set of biophysical 

mechanisms (type and distribution) was used in all model cells. This is to our 

knowledge the first set of detailed, biologically realistic models of FS basket cells from 

two brain areas. 
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Figure 2: 

 Fast spiking basket cell reconstructions from 5 Hippocampal and 3 PFC interneurons. 

Dendrites are shown in red.  Firing patterns in response to 200 pA current injection at 

the cell body are also shown for each morphology. 
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Figure 3. 

 Model cell firing profiles. Somatic Current-clamp traces of Hippocampal (A) and PFC 

(B) model cells, after a depolarizing current injection in somata (500 pA; 1000 ms) 

evoked a high-frequency firing pattern. A hyperpolarizing current injection in somata 

(-300pA, 1000ms) induced a realistic hyperpolarizing response. 
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Figure 4:   

Mean firing frequencies in response to injected currents of different amplitudes (600 

ms duration) in Hippocampal (A) and PFC (B) model cells. 
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Figure 5: Validation of synaptic currents in Fast Spiking basket cells.  

A,C: A three-step voltage clamp of voltage changes from −70 mV to 10 mV (duration 

1 ms) and back to −70 mV was used to produce a self-inhibitory (autaptic) current. 

During the validation of this current, the reversal potential of Cl− was adjusted from 

−80 to −16 mV, in order to reproduce the experimental set up of Bacci et al., 200325. 

However, a physiological reverse potential (−80 mV) was used for all other simulations. 

B,D: Model reproduction of cp-AMPA (−70 mV) and NMDA (+60 mV) currents in 

response to stimulation of 2 synapses as per Wang et al., 200958. * Each trace represents 

the mean of all Hippocampal and PFC cells respectively. 
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3.2 Bi-modal dendritic integration in Fast Spiking Basket 

cells  

The first step for deducing a realistic abstraction of FS basket cells is the systematic 

characterization of dendritic/neuronal integration properties across a significant number 

of neurons and dendrites. Towards this goal, we simulated gradually increasing 

excitatory synaptic input to the dendrites of all neuronal models (total of 637 simulated 

dendrites) and recorded the voltage response both locally (figure 6) and at the soma 

(figure 7)17,37. Increasing numbers of synapses (1:1:20) were uniformly distributed in 

each stimulated dendrite and activated synchronously with a single pulse. Sodium 

conductances in somatic and axonal compartments were set to zero, to avoid AP 

backpropagation contamination effects. We compared measured EPSPs to their linearly 

expected values, given by the number of activated inputs multiplied by the unitary 

EPSP. We found that within the same dendritic tree, branches summate inputs either in 

a supralinear or a sublinear mode (figures 6,7,8). While there were differences in the 

number of dendrites and proportions of sub- vs. supralinear dendrites, all of the 

morphologies tested expressed both integration modes (Table 6). Importantly, while 

both modes have been suggested in distinct interneuron types17,48, this is the first study 

that predicts their co-existence within a single cell. 
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Figure 6:  

Bimodal dendritic integration in FS basket cell models.  Representative recordings from 

supralinear (A,C) and sublinear (B,D) dendritic branches in Hippocampal (top) and PFC (bottom) 

biophysical model interneurons, in response to synaptic stimulation. Increasing numbers of 

synapses (1:1:20) were uniformly distributed within each activated branch and activated with a 

single pulse. The y-axis shows the actual peak depolarization caused by synaptic activation while 

the x-axis shows the expected peak depolarization that would result from the linear summation of 

unitary EPSPs. The dashed line indicates linearity. 
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Figure 7: 

 Bimodal non-linear integration in Fast Spiking basket cells. Representative Somatic EPSPs after 

stimulation (single pulse) of an increasing number of synapses (1:1:20), uniformly distributed 

within dendrites.   
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Figure 8:  

Related to figure 2. Bimodal non-linear integration in Fast Spiking basket cells. Supralinear (blue) 

and sublinear (magenta) dendrites shown in each model cell.  

 

 

 

Blocking sodium currents in dendrites totally eliminates supralinear EPSP responses 

(figure 9). To assess the robustness of this finding, we performed a sensitivity analysis 

whereby the cp-AMPA, NMDA, VGCCs, sodium and IA potassium conductances were 
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varied by ±20% of their control value. We found no changes in the integration mode of 

dendrites (data not shown) and only insignificant alterations in the spike threshold of 

supralinear dendrites (figure 10). These simulations suggest that under physiological 

conditions, FS basket cells are highly likely to express two types of dendritic integration 

modes. 

 

 

 

 

 

 

Figure 9: Block of sodium currents totally elliminates Supralinear mode, both in 

Hippocampus (up) and PFC (down).    
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Figure 10:  

Related to figure 2. Sensitivity analysis of biophysical dendritic mechanisms reveals minor 

changes in the synaptic threshold for spike generation in supralinear dendrites across 

Hippocampus (A) and PFC (B). 
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Table 6: Number of supralinear and sublinear dendrites per cell. 

 

 

3.3 Morphological determinants of dendritic integration 

modes. 

Morphological features of dendrites were previously shown to influence synaptic 

integration profiles61. We thus investigated whether specific anatomical features 

correlate with the expression of each integration mode. We found that the mean 

dendritic diameter was highly statistically different (p-value=4.1966e-54) among sub-

(thinner) and supra-linear (thicker) dendrites in the hippocampus (figure 11C) while in 

the PFC the dendritic length was a better determinant of sub- (shorter) vs. supra-

linearity (longer) (p-value=7.6543e-05) (figure 11B). Length was less significant in the 

hippocampus (p-value=0.0064) (figure 11A) while diameter was not different among 

sub- and supralinear dendrites in the PFC (p-value=0.2454) (figure 11D). Dendritic 

volume considers both of the above features and serves as a robust morphological 

determinant for all dendrites in both areas (p-value=1.8433e-09), (figure 11E). These 

findings predict that morphology plays a crucial role in the spiking abilities of FS basket 

cell dendrites (figure 11F). 

Table 6. Nonlinearity distributions 

Cell ID Number of supralinear dendrites Number of Sublinear dendrites 

Hipp 1 95 67 

Hipp 2 13 38 

Hipp 3 10 41 

Hipp 4 89 98 

Hipp 5 27 32 

PFC 1 36 7 

PFC 2 48 5 

PFC 3 43 14 



26 
 

 

 

 

Figure 11: Morphological determinants of dendritic integration modes. A-B:  Total length (μm) 

distributions of supralinear vs. sublinear dendrites in the hippocampus (A) and the PFC (B). 

Statistically significant differences are observed for both sub- and supra-linear models, in both 

areas. Significance is higher in PFC cells (p-value=7.6543e-05, 130 dendrites analyzed) compared 

to Hippocampal (p-value=0.0064, 507 dendrites analyzed) FS basket cells. C-D: Same as in A-B, 

for mean dendritic diameter (μm). Statistically significant differences are observed in 

Hippocampal (p-value=4.1966e-54, 507 dendrites analyzed) but not in PFC FS basket cells (p-

value=0.2454, 130 dendrites analyzed).  E. Dendritic Volume (μm3) is a common discriminating 

characteristic among supralinear (larger) and sublinear dendrites, for both areas (p-value= p-

value=1.8433e-09, 637 dendrites analyzed). F. Schematic illustration of distinctive morphological 

features for supralinear and sublinear dendrites in Hippocampus (left) and PFC (right).  
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3.4 Effect of bimodal dendritic integration on neuronal 

firing 

In light of a bimodal dendritic integration in the modeled FS basket cells, the natural 

question that arises concerns the functional implications of such a property. To answer 

this question, we simulated a large variety of different spatial patterns of synaptic 

activation and assessed their effect on neuronal output. Specifically, we generated over 

10,000 synaptic stimulus patterns, which comprised of 0 to 60 excitatory synapses 

(activated with random Poisson spike trains at 50 Hz) distributed within a few, strongly 

activated branches (clustered) or randomly distributed within the entire dendritic tree 

(dispersed). 

Several stimulation protocols were devised, in which different numbers of synapses 

were activated in various locations within the dendritic tree (see Methods). Dendrites 

were selected at random and inputs were distributed uniformly within selected 

dendrites. For the dispersed case, we allocated 5 or 10 synapses in randomly selected 

dendrites, one at a time, while for the clustered case we allocated 10 or 20 synapses 

within an increasing number of branches. In all cases, the number of activated synapses 

increased gradually up to a maximum of 60, as this number was sufficient to induce 

spiking at gamma frequencies (30-100 Hz). This process was repeated k times (k = 

number of dendrites in each cell) to ensure full coverage of the entire tree. As expected 

given the two modes of dendritic integration, the localization of activated inputs 

affected neuronal firing. For a given number of activated synapses, dispersed activation 

led to higher somatic firing rates than clustered activation, both in Hippocampal (p-

value=2.0914e-21, figure 12A) as well as in PFC FS basket cells (p-value=0.0051, 

figure 12B). Interestingly, this finding is opposite to what has been reported for 

pyramidal neurons, in which synapse clustering increases firing rates52. 
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Figure 12: Effect of bimodal dendritic integration on neuronal firing.  Firing rate responses (in 

Hz) from one Hippocampal (A) and one PFC (B) model cell, in response to stimulation of 

increasing numbers of synapses (10 to 60) that are either randomly distributed throughout the 

entire dendritic tree (blue) or clustered within a few dendritic branches (pink).) Synapses are 

stimulated with a 50 Hz Poisson spike train. Indicative somatic traces in response to stimulation of 

30 synapses are shown for the four cases. Red dots represent the synaptic allocation motif. 

 

3.5 FS basket cells as 2-layer artificial neural networks 

The non-linear synaptic integration taking place within the dendrites of cortical39 and 

CA137,40 pyramidal neurons was previously described as a sigmoidal transfer 

function60. Based on this reduction, a single pyramidal neuron was proposed to integrate 

its synaptic inputs like a 2-layer artificial neural network, where dendrites provide the 

hidden layer and the soma/axon the output layer38. To assess whether a similar 

mathematical formalization could be ascribed to our FS basket cell models, we 

constructed linear and non-linear artificial neural networks (as graphically illustrated in 

figure 13) and asked which of them can better capture the spike variance of the 

biophysical models. 
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Figure 13:  Reducing detailed compartmental models into mathematical abstractions. Two types 

of abstractions were used: a) a Linear ANN, in which the input (number of synapses) was linearly 

combined at the cell body and b) a 2-layer modular ANN, in which the input was fed into two 

parallel, separated hidden layers. The supralinear-layer was fed with the number of inputs landing 

onto supralinear branches while the sublinear layer was fed with the number of inputs landing 

onto sub-linear dendrites. Neurons in both hidden layers were equipped with nonlinear transfer 

functions, a step-sigmoid function in the supralinear layer and a saturating linear function in the 

sublinear layer. The somatic transfer functions of both ANNs were linear.   
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Figure 14: 

 

 

 

Specifically, four types of feedforward, backpropagation Artificial Neural Networks 

(ANNs) were constructed (see Methods). In the 2-layer modular ANN, supralinear and 

sublinear dendrites were simulated as 2 parallel hidden layers consisting of a step-

sigmoidal and a saturating linear activation function, respectively62 (figure 13). The 

total number of activated synapses allocated to supralinear and/or sublinear dendrites 

in the biophysical models was used as input to the respective hidden layers. The output 

layer represented the soma/axon of the biophysical model and consisted of a linear 

activation function. In the linear ANN, there was only a single hidden layer consisting 

of linear activation functions (figure 13). We also constructed two ANNs with the exact 

same architecture as the linear one, but with either a) a step-sigmoidal (2-layer 

supralinear ANN) or b) a saturating linear (2-layer sublinear ANN) activation function 

in the hidden layer neurons (figure 14). These ANNs represent FS basket cells with just 

one type of non-linear dendrites. The free parameters in all networks were identical 

(Table 5).  

For a given hippocampal and a given mPFC biophysical model cell, the linear and 2-

layer modular ANNs were trained using the number of synapses to supra-/sublinear 
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dendrites as inputs to the respective hidden layers and the mean firing rate of the soma 

as target output. A randomly selected 70% of our synaptic activation data set (See 

Methods) was used to train the model and the rest to assess its generalization 

performance (15% Validation, 15% testing). Performance accuracy was estimated 

based on regression analysis between the ANN-generated firing rates and those 

produced by the biophysical models. The 2-layer modular ANN reached an average 

performance accuracy of 96% and 95% (figure 15A, C) in predicting the spike rate 

variance in hippocampal and PFC models, respectively, while the linear ANN captured 

85% and 75% of the spike rate variance, respectively (figure 15B, D). As expected, the 

supralinear and sublinear ANNs achieved intermediate accuracies for both 

hippocampal: 91%, 92% and PFC 90.8%, 92% models, indicating that both types of 

non-linear transfer functions are needed to capture the biophysical model variability 

(figure 16). 

The relatively high performance of the linear ANN can be attributed to the wide range 

of activated synapses (2 to 60) which resulted in large differences in the somatic firing, 

irrespectively of synapse location, and can thus be captured by any linear model (also 

see38). To perform a fairer comparison, we also assessed the performance accuracy of 

linear and 2-layer modular ANNs to the more challenging task of discriminating 

between input distributions corresponding to the exact same number of synapses. To 

do so, we subdivided the data into input categories corresponding to 20, 40 and 60 

synapses, respectively. In this case, the 2-layer modular ANN clearly outperformed the 

linear ANN, which failed to explain the variance produced by differences in input 

location (Table 7).  

Taken together, this analysis suggests that a 2-layer artificial neural network that 

considers both types of dendritic non-linearities is a much better mathematical 

abstraction for FS basket cells than the currently assumed linear point neuron. 
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Figure 15: Challenging the point neuron dogma: FS basket cells as 2-stage nonlinear integrators. 

Linear regression analysis for 2-layer modular (A,C) and linear (B,D) ANNs for one indicative 

Hippocampal (top) and one indicative PFC (bottom) model cell.  Actual Mean Firing Rates (Hz) 

correspond to the responses of the compartmental model when stimulating -with 50Hz Poisson 

spike trains- varying numbers of synapses (1 to 60), distributed in several ways (clustered or 

dispersed) within both sub- and supra-linear dendrites. Expected Mean Firing Rates (Hz) are those 

produced by the respective ANN abstraction when receiving the same input (number of stimulated 

synapses) in its respective sub-/supra- or linear input layer nodes.  
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Figure 16. Related to figure 6. Challenging the point neuron dogma: FS basket cells as 2-stage 

nonlinear integrators. Linear regression analysis for one hidden layer supralinear (A,C) and one 

hidden layer sublinear (B,D) ANNs for one indicative Hippocampal (top) and one indicative PFC 

(bottom) model cell.  Actual Mean Firing Rates (Hz) correspond to the responses of the 

compartmental model when stimulating -with 50Hz Poisson spike trains- varying numbers of 

synapses (1 to 60), distributed in several ways (clustered or dispersed) within both sub- and supra-

linear dendrites. Expected Mean Firing Rates (Hz) are those produced by the respective ANN 

abstraction when receiving the same input (number of stimulated synapses) in its respective sub-

/supra- or linear input layer nodes.  
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Table 7: Comparison of ANN prediction accuracy (measured as the correlation coefficient, R) for 

all four ANN reductions, when tested on three sets of synaptic inputs consisting of 20, 40 or 60 

activated synapses, respectively. Synapses were randomly distributed in various ways/locations in 

the biophysical model cells and resulting firing rates were used as target vectors for the ANNs. 

The 2-layer modular ANN is clearly superior to the Linear ANN when it comes to capturing 

location-induced firing-rate variability.  

 

 

 

4 DISCUSSION 

 

The role of dendrites in interneuron computations is a rapidly emerging and debatable 

subject45. Several recent reports present exciting findings according to which dendrites 

may serve as key players7,17,47,48,63. For example, sodium spikes and supralinear calcium 

accumulation have recently been reported in the dendrites of FS basket cells7,45,64, yet 

the consensus still favors the linear point neuron dogma11,45,65.  The present study 

provides new insight into this ongoing debate by systematically analyzing the dendritic 

integration mode of FS basket cells in two widely studied areas: the Hippocampus and 

the PFC. We predict that dendrites of both cortical and hippocampal FS basket cells 

operate in one of two modes of synaptic integration: supralinear or sublinear (figure 6). 

Supralinearity is due to the generation of dendritic sodium spikes, and can be facilitated 

–or prohibited as in sublinear dendrites- by the morphology (diameter, length, volume, 

(figure 11)) of dendrites. Moreover, we find that somatic output is influenced by the 

Table 7. ANN regression performance (R) for individual sets of synapses 

ANN type 20 synapses 40 synapses 60 synapses 

2-layer modular ANN 0.8994(HPC)/  

0.8750 (PFC) 

0.9508 (HPC) / 0.8869 

(PFC) 

0.9406(HPC) 

/0.8399(PFC) 

Linear ANN 0.4862 (HPC) /  

0.4867 (PFC) 

0.6296 (HPC) / 0.5527 

(PFC) 

0.6801 (HPC) / 

0.5136 (PFC) 

2-layer supralinear ANN 0.6486 (HPC) /  

0.7468 (PFC) 

0.8172 (HPC) / 0.7995 

(PFC) 

0.8474 (HPC) 

/0.6633 (PFC) 

2-layer sublinear ANN 0.7645 (HPC) /  

0.8130 (PFC) 

0.8816 (HPC) / 0.8487 

(PFC) 

0.8617 (HPC) 

/0.7674 (PFC) 
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spatial distribution of activated synapses, with dispersed stimulation inducing higher 

firing rates than clustered stimulation (figure 12). Due to these properties, a 2-layer 

Artificial Neural Network abstraction with both sub- and supra-linear hidden neurons 

captures the spiking profile of biophysical neurons with much higher accuracy 

compared to a linear ANN, analogous to a point neuron (figures 13,15). These findings 

suggest that the dendrites of FS basket cells in both the hippocampus and the cortex can 

support two types of non-linear computations and are the first to explicitly challenge 

the point neuron dogma. 

4.1 Mediators of supralinear and sublinear dendritic 

integration in FS basket cells 

A bimodal dendritic integration is predicted for all hippocampal and PFC morphologies 

analyzed. In all cases, supralinearity is due to the occurrence of dendritic sodium spikes. 

Several mechanisms can influence the generation of such dendritic spikes: ionic 

conductances (primarily of sodium currents but also potassium currents) and 

morphological features. In our models, biophysical mechanisms are constrained by 

existing experimental data and dendritic sodium conductances are kept to a minimum 

(10 times smaller than the soma11), so as to minimize the probability of non-

physiological dendritic spiking. Sensitivity analysis further demonstrates that results 

are robust to physiological variations in a wide range of dendritic conductances. These 

findings strongly suggest that dendritic spiking in certain dendrites of FS basket cells 

are highly likely to occur under physiological conditions, in line with recent 

experimental reports7. Apart from sodium currents as a universal enabling mechanism, 

we find a key role of morphology in gating local dendritic spikes. A combination of 

dendritic length and mean diameter, or otherwise the dendritic volume, is statistically 

different between sub- (smaller) and supralinear (larger) dendrites across all 

morphologies tested. These results are in line with other studies reporting a similar 

effect of morphology on the ability of dendrites to generate local spikes66. 
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4.2 Functional coexistence of sub- and supra-linear 

dendrites within FS basket cells 

 

Our simulations predict the co-existence of both sublinear and supralinear dendrites in 

all simulated FS basket cells (figures 6, 7, 8). Similar bimodal dendritic integration has 

been reported in hippocampal CA1 pyramidal neurons37,40 and predicted in PFC 

pyramidal neurons67. However, the functional consequences of this coexistence in 

interneurons requires further investigation.  

The existence of sublinear dendritic branches supports the idea of inhibitory neurons 

acting as coincidence detectors by aggregating spatially disperse and nearly 

synchronous synaptic inputs11. Moreover, sub-linear dendrites can compute complex 

non-linear functions similar to those computed by sigmoidal dendrites60, thus 

substantially extending the processing capacity of these neurons compared to a linear 

integrator. Why have two types of nonlinearity then?  

One possibility is to enable the detection of few but highly correlated inputs: via spatial 

clustering onto supralinear dendrites these inputs would reliably induce dendritic spikes 

capable of overcoming the dampening effects of inhibitory conductances, thus 

generating strong somatic responses. Another possibility entails increases in flexibility 

through the ability to (a) engage intrinsic plasticity mechanisms (e.g. regulation of 

potassium channels) and/or (b) to dynamically tune the neuronal operation mode from 

generic (sublinear domination) to specific (supralinear domination), depending on the 

behavioral state. As dendrites of FS basket cells often cross layers and receive input 

from different afferent pathways68, another possibility is that feedback vs. feedforward 

pathways target dendrites with distinct modes of integration. These scenarios can be 

tested in future studies engaging network models and/or experimental probing.  
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4.3 Not that Simple: FS basket cells as 2-layer modular 

ANNs  

 

Artificial Neural Network analysis demonstrates that a FS basket cell is better described 

by a 2-stage abstraction, which takes into account both modes of dendritic integration. 

This work, along the lines of the 2-stage model proposed for pyramidal neurons38, 

strongly challenges the prevailing point neuron dogma. The 2-stage abstraction is 

supported by experimental reports of dendritic sodium spikes and supralinear calcium 

accumulations7 while it also explains sublinear dendritic integration11,17,32,69, providing 

a unifying framework for interneuron processing. 

Possible limitations of our work include the imprecise modeling of ionic and synaptic 

mechanisms given the shortage of sufficient information for FS basket cells. This 

limitation is counteracted by the sensitivity analysis of the mechanisms that mostly 

influence our findings and their consistency across several cortical and hippocampal 

morphologies. Another limitation is the lack of inhibitory inputs (except from the 

autaptic GABAa current that is incorporated in all models) and gap junctions on our 

model cells. Inhibitory inputs consist of just 6% of all incoming contacts in Fast Spiking 

interneurons11,50,70. Thus, our results are unlikely to be affected by inhibitory inputs. FS 

basket cells in the hippocampus and the neocortex are highly interconnected by gap 

junctions11, that can speed the EPSP time course, boost the efficacy of distal inputs and 

increase the average action potential frequency after repetitive synaptic activation.11 All 

of these effects would contribute to stronger responses but unless gap junctions are 

spatially specific to certain branches and not others, they are unlikely to influence the 

non-linear integration modes of dendrites. 
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5 Conclusion 

 

This work provides a novel view of dendritic integration in FS basket cells, that extends 

in hippocampal and cortical areas71. To our knowledge, we are the first to suggest a 

new reductionist model for interneuron processing, in which dendrites play a crucial 

role. Experimental validation of this new model is likely to change the way we think 

about interneuron processing, attribute new and exciting roles to FS basket cells and 

open new avenues for understanding interneuron contributions to brain function. 
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