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Abstract

The purpose of this thesis is to examine parity-time surface plasmon polaritons(SPP) known as
PT plasmons, in short, in rectangular geometries. We start by defining what is a PT symmetry.
Then we continue by analyzing the theoretical background of the electromagnetic(EM) waves and
the dielectric function in both classical,using the Drude model, and quantum approach, using the
random phase approximation(RPA). Furthermore, we examine the dispersion of volume(bulk) plas-
mons and we move directly to the surface plasmons at single- and multi- layer interfaces, where we
find a gain that counterbalance the losses of the physical system and has similar properties as of
the PT symmetry. Finally we perform some simulations using the COMSOL Multiphysics software
for those interfaces and for graphene and we present our conclusions.
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Chapter 1

Introduction

The study of surface plasmons, which are created when incident light interacts with electrons to
create a surface-bound electromagnetic wave, is known as plasmonics. Plasmons are appealing for
the development of new technologies with a variety of applications since they can arrange light to
nanoscale volumes. Plasmons are mysterious phenomena that have drawn a lot of attention for
their capacity to contain and control electromagnetic waves at length scales considerably smaller
than the wavelength of light. This skill has enormous potential for use in a wide range of fields,
including optics, electronics, biology, and energy harvesting. The basic idea behind plasmonics is
the stimulation of surface plasmons, which normally happens when light photons interact with the
electrons at a metal-dielectric interface. When electromagnetic surface waves emerge as a result of
this interaction, they have the potential to spread over the metal-dielectric border and confine light
to nanoscale dimensions. Especially when these EM waves are polarized then we have a surface
plasmon polariton (SPP).
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Chapter 2

Parity - Time (PT ) Symmetry
Theory

We define T̂ as the time reversal operator and P̂ as the space reversal operator, known as parity
operator. If the system obeys T-symmetry, the evolution can be time-reversed, so the system be-
longs to the same PHASE TRAJECTORY, but we now have t → −t(going backwards).Similarly
we have for P-symmetry with r → −r.

These two symmetries can be showed in the following equations:

P̂ : P̂ |r⃗, t⟩ = |−r⃗, t⟩ (2.0.1)

T̂ : T̂ |r⃗, t⟩ = ⟨r⃗,−t| = |r⃗,−t⟩∗ (2.0.2)

P̂ T̂ : P̂ T̂ |r⃗, t⟩ = |−r⃗,−t⟩∗ (2.0.3)

We can also see the symmetries in the Hamiltonian operator regarding parity, time and parity-
time. Thus we have:

P̂ : Ĥ(p⃗, r⃗, t) = Ĥ(−p⃗,−r⃗, t) (2.0.4)

T̂ : Ĥ(p⃗, r⃗, t) = Ĥ∗(−p⃗, r⃗,−t) (2.0.5)

P̂ T̂ : Ĥ(p⃗, r⃗, t) = Ĥ∗(p⃗,−r⃗,−t) (2.0.6)

Furthermore, for the P̂ operator we also have symmetries for the current J⃗ and the electric field
E⃗. Those symmetries can be applied for polar vectors where the axial vectors are not affected.
Similarly we can see that the magnetic field ,H⃗, and the angular momentum, L⃗, are invariant under
P̂ symmetry.
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In general, for both symmetries, we obtain:

P̂ †r⃗P̂ = −r⃗ (2.0.7)

P̂ †p⃗P̂ = −p⃗ (2.0.8)

P̂ †L⃗P̂ = L⃗ (2.0.9)

T̂ †r⃗T̂ = r⃗ (2.0.10)

T̂ †p⃗T̂ = −p⃗ (2.0.11)

T̂ †L⃗T̂ = −L⃗ (2.0.12)

We also define the symmetric operator, Ô, that gives the following permutation:

[Ĥ, Ô] = 0 (2.0.13)

Thus we can see that PT-symmetric Hamiltonians have a real eigen-value spectrum ωk, in their
PT-symmetric phase, when the corresponding eigen-solutions ψk, satisfy PT symmetry.

P̂ T̂ |r⃗, t⟩ = |−r⃗,−t⟩∗ = |r⃗, t⟩ ⇒ [Ĥ, P̂ T̂ ] = 0 (2.0.14)

From (2.0.14) we can see that the system has a real energy spectrum[1][7].
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Chapter 3

Theoretical EM Backround

3.1 Maxwell’s Equations & EM Wave Propagation

A solid comprehension of how metals react to electromagnetic fields can be achieved using the
principles outlined in Maxwell’s equations within a classical limit. This applies also to metallic
nanostructures with size of a few nanometers, eliminating the necessity to rely on quantum me-
chanics. This is due to the abundant presence of free carriers in metals, leading to extremely close
spacings between electron energy levels in comparison to the thermal energy excitations at room
temperature, which are on the order of kBT .

We take as a starting point Maxwell’s equations of macroscopic electromagnetism in the following
form:

∇ ·D = ρext (3.1.1)

∇ ·B = 0 (3.1.2)

∇×E = −∂B
∂t

(3.1.3)

∇×H = Jext +
∂D

∂t
(3.1.4)

We differentiate between the charge and current densities originating from external sources
(ρext,Jext) and those that exist internally within the system (ρ,J). Consequently, the total charge
density is given by ρtot = ρext+ρ, and the total current density by Jtot = Jext + J . The external
charge and current densities act as driving forces for the system, while the internal ones react and
adapt in response to the external stimuli.

The interconnection between the four macroscopic fields is established through the polarization
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P and magnetization M, which serve as additional links. Thus we have:

D = ϵ0E + P (3.1.5)

H =
1

µ0
B −M (3.1.6)

where ε0 and µ0 are the electric permittivity1 and magnetic permeability2 of vacuum, respec-
tively.

P represents the electric dipole moment per unit volume within the material, resulting from
the alignment of microscopic dipoles in response to the electric field. It is connected to the internal
charge density through the following relationship:∇ · P = −ρ

∇ · J = −∂ρ
∂t

⇒ J =
∂P

∂t
(3.1.7)

The equation ∇ · J = −∂ρ
∂t

is known as the continuity equation.

Now if we combine eq.(3.1.1) and eq.(3.1.5) we obtain the following:

∇ ·E =
ρext
ϵ0

(3.1.8)

We can stop to the linear response, isotropic and nonmagnetic media, we find the following
results:

D = ϵ0ϵE (3.1.9)

B = µ0µH (3.1.10)

where ϵ and µ are the dielectric constant and relative permeability, respectively. To our case
we can define µ = 1. The linear correlation Eq.(3.1.9) between D and E is frequently expressed
implicitly by incorporating the dielectric susceptibility χ, which describes the linear relationship
between P and E via

P = ϵ0χE, ϵ = 1 + χ (3.1.11)

1ϵ0 ≃ 8.854×10−12F/m
2µ0 ≃1.257×10−6H/m
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Another significant constitutive linear relationship to mention is the connection between the
internal current density J and the electric field E, which is defined by the conductivity σ:

J = σE (3.1.12)

Now we will demonstrate the close connection between ϵ and σ, showing that electromagnetic
phenomena involving metals can indeed be explained using either quantity. However, it is important
to note that Eqs. (3.1.9) and (3.1.12) are only applicable to linear materials that do not exhibit
temporal or spatial dispersion. Since the optical behavior of metals is clearly affected by the fre-
quency (and possibly the wave vector) of the EM wave, we must consider the non-local effects in
time and space. As a result, we generalize the linear relationships to encompass ϵ0ϵ and σ, which
accurately describe the impulse response of the corresponding linear relationship.

For a local response, the functional form of the impulse response functions is similar of a δ-
function and they are given below:

D(r, t) = ϵ0

∫
dt′dr′ϵ(r−r′, t− t′)E(r′, t′) (3.1.13)

J(r, t) =

∫
dt′dr′σ(r−r′, t− t′)E(r′, t′) (3.1.14)

Applying Fourier Transform in Eqs. (3.1.13) and (3.1.14), we decompose the fields into in-
dividual plane-wave components of wave vector K and angular frequency ω. This leads to the
constitutive relation in the Fourier Domain:

D(K, ω) = ϵ0ϵ(K, ω)E(K, ω) (3.1.15)

J(K, ω) = σ(K, ω)E(K, ω) (3.1.16)

Using Eqs. (3.1.5),(3.1.6), (3.1.15), (3.1.16) we finally obtain the relation of the dielectric
function and the conductivity, given by:

ϵ(K, ω) = 1 +
iσ(K, ω)

ϵ0ω
(3.1.17)

In the interaction of light with metals, the general form of the dielectric response ϵ(K, ω) can
be simplified to the limit of a spatially local response via ϵ(K = 0, ω) = ϵ(ω). The simplification
is true as long as all of the characteristic parameters, such as the size of the unit cell or the mean
free path of the electrons, are significantly shorter than the wavelength λ in the material. Generally
speaking, this is still met at UV frequencies.
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In general we know that ϵ(ω) = ϵ1(ω)+ ϵ2(ω), where ϵ1(ω) and ϵ2(ω) are the real and imaginary
parts of the dielectric function ϵ(ω), and σ(ω) = σ1(ω)+σ2(ω),in which are complex valid functions
of angular frequency ω, linked via Eq. (3.1.17). At optical frequencies, ϵ can be experimentally
determined for example via reflectivity studies and the determination of the complex refractive
index ñ(ω) = n(ω) + iκ(ω) of the medium, defined as ñ =

√
ϵ. Explicitly, this yields to some basic

complex algebra obtaining the following results:

ϵ1 = n2 − κ2 (3.1.18)

ϵ2 = 2nκ (3.1.19)

n2 =
1

2

(
ϵ1 +

√
ϵ21 + ϵ22

)
(3.1.20)

κ =
ϵ2
2n

(3.1.21)

where κ is called the extinction coefficient and determines the optical absorption of electromag-
netic waves propagating through the medium. It is linked to the absorption coefficient α of Beer’s
law(the intenisty of a beam propagating through the medium I(x) = I0 exp(−αx)) by the relation

α(ω) =
2κ(ω)ω

c
(3.1.22)

Therefore we see that the imaginary part ϵ2 of the dielectric function determines the amount of
absorption inside the medium. For |ϵ1| ≫ |ϵ2|, the real part n of the refractive index, quantifying
the lowering of the phase velocity, vph, of the propagating waves due to polarization of the material,
is mainly determined by ϵ1. By examining Eq. (3.1.17), we see that the real part of σ determines
the amount of absorption, while the imaginary part contributes to ϵ1 and therefore to the amount
of polarization.

We now examine the traveling - wave solution of Maxwell’s equations in the absence of external
stimuli. Combining the curl Eqs. (3.1.3), (3.1.4)

∇×∇×E = −µ0
∂2D

∂t2
(3.1.23)

which leads to the wave solution

K(K·E)−K2E = −ϵ(K, ω)ω
2

c2
E (3.1.24)

in the time and Fourier domains, respectively. Two cases need to be distinguished, depending
on the polarization direction of the electric field vector. We look first for transverse waves, where
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K·E = 0, yielding to the generic dispersion relation

K2 = ϵ(K, ω)
ω2

c2
(3.1.25)

For longitudinal waves, the second case, we have that ϵ(K, ω) = 0, signifying that longitudinal
collective oscillations can only occur at frequencies corresponding to zeros of ϵ(ω).

3.2 The Dielectric Function of the Free Electron Gas

In this section, we study the dielectric function that we are going to use in this thesis. We can write
a simple equation of motion for an electron of the plasma sea subjected to an external electric field
E:

mẍ+mγẋ = −eE (3.2.1)

where m is the electron mass of the plasma, and γ are the losses. We assume a harmonic time
dependence E(t) = E0e

−iωt of the driving field. Therefore a particular solution of this equation
describing the oscillation of the electron is x(t) = x0e

−iωt, where x0 is the initial spacial parameter

for t = 0, and
∂

∂t
→ −iω. Thus, we have:

−mω2x0 − imγωx0 = −eE0 (3.2.2)

which gives us the following relation between x0 and E0:

x0 =
e

m(ω2 + iγω)
E0 (3.2.3)

and when we evolve it through time we obtain:

x(t) =
e

m(ω2 + iγω)
E(t) (3.2.4)

The displaced electrons contribute to the macroscopic polarization P = −nex, explicitly given
by:

P = − ne2

m(ω2 + iγω)
E (3.2.5)
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Thus we obtain for the electric displacement field we have:

D = ϵ0(1−
ω2
p

ω2 + iγω
)E (3.2.6)

where ω2
p =

ne2

ϵ0m
is the plasma frequency of the free electron gas. Thus the dielectric function

of the free electron gas is given by:

ϵ(ω) = 1−
ω2
p

ω2 + iγω
(3.2.7)

The real and imaginary parts of this complex dielectric function ϵ(ω) = ϵr,m(ω) + iϵi,m(ω) are
given by the following :

ϵr,m(ω) = 1−
ω2
p

ω2 + γ2
(3.2.8)

ϵi,m(ω) =
ω2
p

ω(γ + ω2γ2)
(3.2.9)

In this context, we will focus only on frequencies ω that are lower than ωp, where metals exhibit
their typical metallic behavior. When dealing with high frequencies near ωp, the value of ωτ ≫1,
resulting in minimal damping. In this case, the majority of ϵ(ω) is characterized by being primarily
a real value:

ϵ(ω) = 1−
ω2
p

ω2
(3.2.10)

can be taken as the dielectric function of the undamped free electron plasma.

Next we study the regime of very low frequencies, where ωτ ≪ 1. Therefore, we have that
ϵi,m ≫ ϵr,m, and both the real and the imaginary part of this complex refractive index have a
similar magnitude given by the following equation

n ≈ κ =

√
ϵi,m
2

=

√
τω2

p

2ω
(3.2.11)

In this region, metals are mostly absorbing, with an absorption coefficient α given by:

α =

√
2ω2

pτω

c2
(3.2.12)
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By introducing the conductivity σ0 of the system, this expression can be re-written using σ0 =
ne2τ

m
= ω2

pτϵ0 to

α =
√
2σ0ωµ0 (3.2.13)

The application of Beer’s law of absorption suggests that for low frequencies the fields fall off
inside the metal as exp(−z/δ), where δ is the skin depth

δ =
2

α
=

c

κω
=

√
2

σ0ωµ0
(3.2.14)

This is one of one of many free-electron models. In general we can see that the residual po-
larization due to the positive backround of the ion cores can be described by adding the term
P∞ = ϵ0(ϵ∞−1)E, where P now represents soely the polarization due to free electrons. This effect
is therefore described by a dielectric constant ϵ∞(usually 1 ≤ ϵ∞ ≤ 10), and we can write the new
dielectic function as

ϵ(ω) = ϵ∞ −
ω2
p

ω2 + iγω
(3.2.15)

3.3 The Dielectric function in the RPA

Further investigation of the dynamical dielectric function can be performed using quantum mechan-
ics. An explicit form of ϵ(k, ω) including screening effect has been evaluated in the context of the
random phase approximation(RPA) as in the electron gas[12]. The hamiltonian, Ĥ, of this system
is given by

Ĥ =
∑
k,σ

εkα
†
kσαkσ +

1

2V

∑
k,k′,q,σσ′

v(q)α†
k+q,σα

†
k′−q,σ′αk′σ′αkσ (3.3.1)

where the creation,α†
k,σ, and annihilation, αk,σ, operators of the plane waves are connected

through the following relation,

[αkσ, α
†
k′σ′ ]−ζ = δk,k′δσ,σ′ , ζ = −1 (3.3.2)

where ζ is the symbol of which type of particles we have in our system. For bosons we have that
ζ = +1 and for fermions ζ = −1. Here because we are dealing with plasma oscillation systems, we
have electrons, hence ζ = −1. The Coulomb potential is defined as:

v(q) =


4πe2

|q|2
, q ̸= 0

0, q = 0

(3.3.3)
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From the linear response theory we have

1

ϵ(q, ω)
= 1 +

v(q)

V
≪ ρq; ρ

†
q ≫r

ω (3.3.4)

where ≪ ρq; ρ
†
q ≫r

ω is the retarded Green function density-density with

ρq =

∫
d3xe−iq·xρ(x) =

∑
k,σ

α†
k,σαk + q,σ (3.3.5)

Using the above equations we can now write the Green function of density-density as follows

Π(q, z) =
1

V
≪ ρq; ρ

†
q ≫z=

1

V

∑
k,σ

≪ α†
kσαk+qσ; ρ

†
q ≫z

=
1

V

∑
k,k’,σ,σ′

≪ α†
kσαk+qσ;α

†
k′+q,σ′αk′σ′ ≫z (3.3.6)

We see that Π(q, z) has the form of a particle-hole Green function. Thus we can obtain the
following equation of motion

z ≪ α†
kσαk+q,σ; ρ

†
q ≫z=

〈
[α†

kσαk+q,σ; ρ
†
q]
〉
+ ≪ [α†

kσαk+q,σ, H − µN̂ ]; ρ†q ≫z (3.3.7)

where N̂ =
∑

k,σ α
†
kσαkσ is the particle number operator and µ is the chemical potential of the

system.

The final form of the equation of motion is

[z − (εk+q − εk)] ≪ α†
kσαk+q,σ; ρ

†
q ≫z=

[〈
α†
kσαkσ

〉
−

〈
α†
k+q,σαk+q,σ

〉]
+

1

V

∑
k′,q′,σ′

v(q′) ≪ α†
kσα

†
k′+q′,σ′αk′σ′αk+q+q′,σ′ ; ρ†q ≫z

− 1

V

∑
k′,q′,σ′

v(q′) ≪ α†
k+q′,σα

†
k′−q′,σ′αk′σ′αk+q,σ; ρq ≫z (3.3.8)
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We can see that two new Green functions appeared. We can solve this system by applying the
Hartree-Fock approximation:

≪ α†
λ1
α†
λ2
αλ3

αλ4
;α†

ναν ≫z ≃
〈
α†
λ2
αλ3

〉
≪ α†

λ1
αλ4

;α†
ναν′ ≫z

+ζ
〈
α†
λ1
αλ3

〉
≪ α†

λ2
αλ4 ;α

†
ναν′ ≫z

+ζ
〈
α†
λ2
αλ4

〉
≪ α†

λ1
αλ3 ;α

†
ναν′ ≫z

+
〈
α†
λ1
αλ4

〉
≪ α†

λ2
αλ3

;α†
ναν′ ≫z (3.3.9)

Using the identity 〈
α†
kσαk′σ′

〉
= δσσ′δkk′

〈
α†
kσαkσ

〉
(3.3.10)

in the random phase approximation, the equation of motion has the following form

[z − (Ek+q,σ − Ekσ)] ≪ α†
kσαk+q,σ; ρ

†
q ≫z=

[〈
α†
kσαkσ

〉
−

〈
α†
k+q,σαk+q,σ

〉]
×
[
1 +

v(q)

V
≪ ρq; ρ

†
q ≫z − 1

V

∑
k′

v(k− k′) ≪ α†
k′σαk′+q,σ; ρ

†
q ≫z

]
(3.3.11)

where

Ekσ = εk +
1

V

∑
k′,σ′

〈
α†
k′σ′αk′σ′

〉
[v(0)− δσσ′v(k− k′)] (3.3.12)

The term v(q) is called direct term and v(k−k′) is called exchange term. For small wavevectors,
q → 0 we have that v(q) = 4πe2/|q|2 → ∞. Therefore we expect the direct term to have the
dominant role over the exchange term. Thus, we have that〈

α†
kσαkσ

〉
≈ f(εk) =

1

eβ(εk−µ) + 1
(3.3.13)

where f(ε) is the Fermi-Dirac distribution function, β = 1/kBT with Boltzmann’s constant
denoted by kB and T is the absolute temperature. Ignoring the exchange term the Green function
takes the following form

≪ α†
kσαk+q,σ; ρ

†
q ≫z= −f(εk+q)− f(εk)

z − (εk+q − εk)

[
1 +

v(q)

V
≪ ρq; ρ

†
q ≫z

]
(3.3.14)

15



At zero temperature, the chemical potential is equal to the Fermi energy, i.e., µ = EF and the
Fermi-Dirac distribution is reduced to Heaviside step function, thus, f(εk)|T=0 = θ(EF − εk). The
kinetic energy of each electron of mass m in state k is given by

εk =
ℏ2k2

2m
, (3.3.15)

hence

εk+q − εk =
1

2m
(|q|2 + 2k · q) (3.3.16)

where ℏ = 1.

Summing the left and right part of the above equation over (k, σ) we obtain the final Green
function of density-density in the RPA is

ΠRPA(q, z) =
1

V
≪ ρq; ρ

†
q ≫RPA

z =
Π0(q, z)

1− v(q)Π0(q, z)
(3.3.17)

where

Π0(q, z) ≡
1

V
≪ ρq; ρ

†
q ≫(0)

z = − 2

V

∑
k

f(εk+q)− f(εk)

z − (εk+q − εk)
(3.3.18)

is called Lindhard function[12]. We can easily see that the Green function of density-density of
the non-interacting electrons equally related to Π0(q, z). Substituting z = ω + iη we obtain the
dielectric function in the RPA approximation

ϵRPA(q, ω) = 1− v(q)Π0(q, ω + iη) = 1 +
2v(q)

V

∑
k

f(εk+q)− f(εk)

ω − (εk+q − εk) + iη
(3.3.19)

By setting k+ q → −k and we re-write the Lindhard function as follows

Π0(q, z) =
2

V

∑
k

f(εk)

[
1

z − (εk+q − εk)
− 1

z + (εk+q − εk)

]
=

4

V

∑
k

f(εk)[1− f(εk+q)]
εk+q − εk

z2 − (εk+q − εk)2
(3.3.20)
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At zero temperature, due to the Heaviside step function, the surviving terms in the summation
above are those with k < kF , where kF is the Fermi wavenumber and related to the Fermi energy
as kF = (2mEF )

1/2. Thus, we have

Π0(q, z) =
2

V

∑
|k|<kF

[
1

z − (εk+q − εk)
− 1

z + (εk+q − εk)

]
=

4

V

∑
|k|<kF

|k+q|>kF

εk+q − εk
z2 − (εk+q − εk)2

, T = 0 (3.3.21)

Summation turns into integration by using the formula V −1
∑

k(...) → (2π)−3
∫
d3k(...), hence

Π0(q, ω) =
4

(2π)3

∫
d3k

εk+q − εk
z2 − (εk+q − εk)2

(3.3.22)

As we mentioned before, the imaginary part in z guarantees the convergence around the poles
ω = ±(εk+q − εk). The poles of Π0 determine the Landau-damping regime where plasmons decay
into electron-hole pairs excitation. In particular, the damping regime is a continuum bounded by
the limit values of (εk+q−εk);k takes the maximum absolute value |k| = kF and the inner product

kF k̂ · q = ±kF |q|.

Thus the Landau damping continuum will be under the following condition

|q|
2m

(|q| − 2kF ) < ω <
|q|
2m

(|q|+ 2kF ) (3.3.23)

In RPA approach, the conductivity reads as

σ =
iωe2

q2
Π0(q, ω) (3.3.24)

Now we can reveal the relation betweeen the dielectric function and conductivity as follows

ϵRPA(q, ω) = 1 + i
q2v(q)

ωe2
σ(q, ω) (3.3.25)

with v(q) being the Coulomb potential as follows

v(q) =



0, q = 0

2πe2

|q|2εb
, (2D)

4πe2

|q|2εb
, (3D)

(3.3.26)
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where εb represents the background lattice dielectric constant of the system.

Changing to spherical coordinates (r, θ, φ), where r = |k| and θ are the angle between k and q,
we obtain the following

Π0(q, ω) =
2k4F |q|

(2π)3mz2

∫ 2π

0

dϕ

∫ 1

0

dx x2
∫ π

0

dθ
( |q|kF

+ 2x cos θ) sin θ

1− ( vF |q|
z )2( |q|

2kF
+ x cos θ)2

(3.3.27)

where x = r/kF is a dimensionless variable and vF = kF /m the Fermi velocity. In the non-
static(ω ≫ vF |q|) and long wavelength(|q| ≪ kF ) limits we can expand the above integral in a
power of series of |q|. We keep up to |q|3 orders and we keep the imaginary part of z zero, that is
z = ω. That leads to a third-order approximation polarizability function which is

Π0(|q|, ω) =
k3F |q|2

3π2mω2

(
1 +

3v2F |q|2

5ω2

)
(3.3.28)

Using the 3D formula for the Coulomb interaction we have that

ϵ(|q| → 0, ω) = 1− ωp(0)
2

ω2

(
1 +

3

5

(
vF |q|
ω

)2)
(3.3.29)

where the vacuum here is assumed as the background (εb = 1).

The plasmon condition determines the q- dependent plasmon dispersion relation ωp(q). De-
manding ϵ(q, ω) = 0 the above equation yields approximately to

ωp(q) ≈ ωp(0)

(
1 +

3

10

(
vF |q|
ω

)2)
(3.3.30)

where q = |q|. If we set q = 0, we get the Drude dielectric function ϵ(q, ω).

We can easily see that 3D plasmons are purely classical modes as they do not include any
quantum quantity, such as vF , which appears as non-local correction in sub-leading terms.

3.4 The Dispersion of the Free Electron Gas and Volume
Plasmons

Now we study the ω > ωp regime of the free electron gas model. Using the dispersion relation for
the transverse wave we conclude to

ω2 = ω2
p + β2c2 (3.4.1)
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This relation is for a generic free electron metal. The propagation of transverse electromagnetic
waves only exists in the ω > ωp domain and the plasma supports transverse wave propagating with
a group velocity vg = dω/dβ < c.

In Fig.3.1, we present the dispersion relation of a bulk plasmon

Figure 3.1: The dispersion relation ω − β of a bulk plasmon. Both ω and β are normalized.
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Chapter 4

Surface Plasmon Polaritons at
Metal / Insulator Interfaces

4.1 The Wave Equation

From the four Maxwell Equations inside media, combining Eqs.(3.1.3) and (3.1.4) we have:

∇×∇×E = −µ0
∂2D

∂t2
(4.1.1)

Now by using the identities∇×∇×E = ∇(∇ ·E)−∇2E

∇ · (ϵE) = E · ∇ϵ+ ϵ∇ ·E
(4.1.2)

and given the fact that due to the absence of external stimuli ∇ ·D = 0, we obtain that

ϵ∇ ·E = −E∇ · ϵ (4.1.3)

Combining the above into the differential wave equation we see that:

∇
(
− 1

ϵ
E · ∇ϵ

)
−∇2E = −µ0ϵ0ϵ

∂2E

∂t2
⇒ ∇

(
− 1

ϵ
ϵ∇ ·E

)
−∇2E = − ϵ

c2
∂2E

∂t2
(4.1.4)

and thus the wave function inside our media

∇2E − ϵ

c2
∂2E

∂t2
= 0 (4.1.5)
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By assuming a harmonic time dependence E(r, t) = E(r)e−iωt of the electric field. Eq. (4.1.5)
is written as:

∇2E + k20ϵE = 0, k0 =
ω

c
(4.1.6)

where, k0, is the wave vector in vacuum and Eq.(4.1.6) is known as the Helmholtz equation.

4.2 Propagation Geometry

We assume for simplicity a one-dimensional problem. The EM waves propagate along the x-direction
of (x, y, z) and show no spatial variation in the perpendicular, in-plane y-direction. Therefore we
have that ϵ = ϵ(z). Applied to electromagnetic surface problems, the plane z = 0 coincides with
the interface sustaining the propagating waves, described by

E(x, y, z) = E(z)eiβx (4.2.1)

Figure 4.1: The planar propagation geometry of a waveguide in cartesian coordinates[8].

The propagation constant of traveling waves, denoted by the complex parameter β = kx, repre-
sents the wave vector component aligned with the direction of propagation. Using it on Eq.(4.1.6)
we obtain:

∂2E(z)

∂z2
+ (k20ϵ− β2)E = 0 (4.2.2)

∂2H(z)

∂z2
+ (k20ϵ− β2)H = 0 (4.2.3)
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Using Maxwell’s equations we have:

∂yEz − ∂zEy = iωµ0Hx (4.2.4)

∂zEx − ∂xEz = iωµ0Hy (4.2.5)

∂xEy − ∂yEx = iωµ0Hz (4.2.6)

∂yHz − ∂zHy = −iωϵ0ϵEx (4.2.7)

∂zHx − ∂xHz = −iωϵ0ϵEy (4.2.8)

∂xHy − ∂yHx = −iωϵ0ϵEz (4.2.9)

For propagation along the x-direction(∂x → iβ) and homogeneity in the y-direction (∂y → 0)
the Eqs. (4.2.4) - (4.2.9) are reshaped as follows:

∂yEz = −iωµ0Hx (4.2.10)

∂zEx−iβEz = iωµ0Hy (4.2.11)

iβEy = iωµ0Hz (4.2.12)

∂yHz = iωϵ0ϵEx (4.2.13)

∂zHx−iβHz = iωϵ0ϵEy (4.2.14)

iβHy = −iωϵ0ϵEz (4.2.15)

We see that the system has two solutions with different polarization one for its mode (TM(p)
or TE(s)). We first look at the TM mode where the non-zero components are Ex, Ez, Hy. Thus,
we obtain:

Ex = − i

ωϵϵ0
∂zHy (4.2.16)

Ez = − β

ωϵϵ0
Hy (4.2.17)

and the wave equation for p-modes is

∂2Hy

∂z2
+ (k20ϵ− β2)Hy = 0 (4.2.18)

For the TE mode similarly we obtain

Hx =
i

ωµ0
∂zEy (4.2.19)

Hz =
β

ωµ0
Ey (4.2.20)
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and the wave equation for s-modes is

∂2Ey

∂z2
+ (k20ϵ− β2)Ey = 0 (4.2.21)

4.3 Surface Plasmon Polaritons at a Single Interface

We assume that the most simple geometry for a SPP propagation is a single, flat interface between
a dielectric, absorbing half space (z > 0) with positive dielectric constant ϵ2 = ϵr + iϵi,where ϵr
is the ℜ(ϵ2), ϵi is the ℑ(ϵ2) or the ”gain” coefficient for our dielectric material and an adjacent
conducting half space (z < 0) described via a dielectric function:

ϵ1 = ϵ(ω) = 1−
ω2
p

ω2 + iγω
(4.3.1)

where ωp is the plasmon’s frequency and γ is the loss coefficient for our metal.

Figure 4.2: Depicting the planar propagation geometry of a single interface of dielectric/metal for
a surface plasmon polariton.

We first examine the TM modes. From our solutions (4.2.16) and (4.2.17) we obtain in both
half spaces, for z > 0:

Ex(z) = −iA1
k2

ωϵ2ϵ0
eiβxe−k2z (4.3.2)

Ez(z) = A2
β

ωϵ2ϵ0
eiβxe−k2z (4.3.3)

Hy(z) = A2e
iβxe−k2z (4.3.4)
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and for z < 0

Ex(z) = −iA1
k1

ωϵ1ϵ0
eiβxek1z (4.3.5)

Ez(z) = −A1
β

ωϵ1ϵ0
eiβxek1z (4.3.6)

Hy(z) = A1e
iβxek1z (4.3.7)

where kj = kz,j , j = 1, 2 is the component of the wave vector perpendicular to the interface in
the two media.

We now depict below the electric field distribution of the rectangular geometry of the SPP

Figure 4.3: The electric field distribution of a SPP in a plane geometry.

The relation between the kj and ϵj for j = 1, 2 is:

k2
k1

= −ϵ2
ϵ1

(4.3.8)

We also know that the wavevectors kj and β, the propagation constant are releated with the
following equations:

k2j = β2 − k20ϵj j = 1, 2 (4.3.9)

k0 =
ω

c
(4.3.10)
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Thus we obtain the relation between β, ϵj and k0:

β = k0

√
ϵ1ϵ2
ϵ1 + ϵ2

(4.3.11)

To continue with, we now examine the TE modes. The equations that emerge, for z > 0, are

Hx(z) = −iA2
k2
ωµ0

eiβxe−k2z (4.3.12)

Hz(z) = A2
β

ωµ0
eiβxe−k2z (4.3.13)

Ey(z) = A2e
iβxe−k2z (4.3.14)

and for z < 0

Hx(z) = iA1
k1
ωµ0

eiβxek1z (4.3.15)

Hz(z) = A1
β

ωµ0
eiβxek1z (4.3.16)

Ey(z) = A1e
iβxek1z (4.3.17)

Impling the continuity of Ey and Hx we see that A1(k1 + k2) = 0. This implies A1 = 0 =
A2(ℜ[k1],ℜ[k2] > 0). Therefore we see that there is no existance of TE polarization, but only for
TM.

Replacing k0 with ω/c we solve the above equation and we have our final dispersion relation
ω − β:

β2 − ω2

c2

(1− ω2
p

ω2+iγω )(ϵr + iϵi)

(1− ω2
p

ω2+iγω + ϵr + iϵi)
= 0 (4.3.18)

which ends up giving us the following initial dispersion relation between ω and β, respectively.
We have that:

c2β2(ω(iγ + ω)(iεi + εr + 1)− ω2
p) + ω2(iεi + εr)(−iγω − ω2 + ω2

p)

c2(ω(iγ + ω)(iεi + εr + 1)− ω2
p)

= 0 (4.3.19)

First we have to check for which values of ω, the denominator is 0. We see that

c2(ω(iγ + ω)(iεi + εr + 1)− ω2
p) = 0 (4.3.20)
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And therefore we obtain the two solutions:

ω± =
−iγ ±

√
−γ2 + 4ω2

p

1+ϵr+iϵi

2
(4.3.21)

We see that those solutions do not match with the solutions of the dispersion relation that we
have. Therefore we can procceed with the nominator being 0. Thus we have:

c2β2(ω(iγ + ω)(iεi + εr + 1)− ω2
p) + ω2(iεi + εr)(−iγω − ω2 + ω2

p) = 0 (4.3.22)

The above equation results in a polynomial with degree equal to d = 4

ϵ2ω
4 + iγϵ2ω

3 − (c2β2(1 + ϵ2) + ϵ2ω
2
p)ω

2 − c2β2iγ(1 + ϵ2)ω + c2β2ω2
p = 0 (4.3.23)

For a lossless metal, γ = 0, we obtain the following dispersion curve:
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Figure 4.4: The dispersion relation ω − β of a SPP in a single interface with negligible damping
(γ = 0). The blue-orange-dashed line depicts the frequency of the surface plasmon ωsp. Both ω
and β are normalized[6].

We must investigate SPPs’ attributes. The SPP excitations correspond to the portion of the
dispersion curve that is to the right of the respective light line of air, according to the preceding
figure for minimal damping from the Drude metal and air as the dielectric. We can see that when
ω > ωp, radiation into the metal occurs.The domain of the bound and surface plasmon modes
have a frequency gap region with pure ℑ(β) that does not permit SPP propagation. The SPP
propagation constant is near to k0 at the light line for tiny wave vectors β associated with lower
frequencies, and the waves spread over a wide range of wavelengths into the dielectric space.

In the opposite limit of large wave vectors, the frequency of the SPPs approaches the surface
plasmon frequency

ωsp =
ωp√
1 + ϵ2

(4.3.24)

The plasmon’s dispersion relation can be demonstrated by including the free-electron dielectric
function. The wave vector β increases to infinity as the frequency approaches ωsp and the group
velocity vg → 0 in the case of negligible damping of the conduction electron oscillation, which
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implies that ℑ(ϵ1(ω)) = 0. The mode now has an electrostatic quality, and is called a surface
plasmon[13][14].

Solving the Laplace equation for the single interface geometry, where ϕ is the electric poten-
tial, yields the same results as the prior method[11][4]. The equation yields a solution that is
exponentially declining in the z direction and wavelike in the x direction.

ϕ(z) = A2e
iβxe−k2z (4.3.25)

for z > 0 and

ϕ(z) = A1e
iβxek1z (4.3.26)

for z < 0. ∇2ϕ = 0 requires that k1 = k2 = β: the exponential decay lengths |ẑ| = 1/kz into
the dielectric and into the metal are equal. Continuity of ϕ and ϵ∂ϕ/∂z ensure continuity of the
tangential field components and the normal components of the dielectric displacement and require
that A1 = A2 and additionally

ϵ1(ω) + ϵ2 = 0 (4.3.27)

This requirement is satisfied at ωsp for a metal described by a dielectric function such as Eq.
(4.2.2) Consequently, we can see that the surface plasmon is really in the limiting form of an SPP
as β → ∞ by comparing the dispersion relation with the dielectric function equation.

These results imply for a Drude metal with negligible damping ( ℑ(ϵ1) = 0). Real metals
include the damping factor γ as we mentioned in the beginning of the paragraph. Therefore, ϵ1(ω)
is complex, and with it also the SPP propagation constant β. The travelling SPPs are damped
with an energy attenuation length(also called propagation length) L = (2ℑ(β))−1. Some typical
numbers for the propagation length stand between 10 and 100 µm in the visible regime, depending
upon the metal/dielectric configuration.
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Figure 4.5: The dispersion relation ω − β of a SPP in a single interface with damping (γ = 0.01).
Now ω, γ and β are normalized[6].

The above figure shows the dispersion relation of SPPs propagating at a metal/air interface,
with the dielectric function ϵ1(ω) of the metal having losses. Compared with the dispersion relation
of completely undamped SPPs as we depicted before, it can be seen that the bound SPPs approach
now a maximum, finite wave vector at the surface plasmon frequency ωsp of the system above. This
limitation puts a lower bound both on the wavelength λsp = 2π/ℜ(β) of the surface plasmon and
also on the amount of mode confinement perpendicular to the interface, since the SPP fields in the

dielectric fall as e−|kz||z| with kz =

√
β2 − ϵ2

(
ω

c

)2

. In contrast to the situation of an ideal metal,

the quasibound, leaky portion of the dispersion relation between ωsp and ωp is now permitted.

4.4 Active Dielectric - PT Gain

In this part, we examine how the Drude metal losses in SPP propagation can be balanced by
introducing gain into the dielectric[10][9]. Gain materials have a complex permittivity function
with the formula ϵd = ϵ′d + iϵ′′d , where ϵ

′
d, ϵ

′′
d > 0, where ϵ′′d is a small value in comparison to ϵ′d and

accounts for gain[16]. Additionally, active dielectrics have been used to investigate PT symmetry
in optical systems defined by the requirement that n(−x) = n∗(x), where n, n∗, and x denote
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the spatial coordinate along the interface and correspondingly the refractive index and its complex
conjugate. Gain dielectrics and loss metals can be used to create meta-materials with PT symmetric
effective refractive indices. PT symmetric media are intriguing because they permit EM control.

The dispersion relation ω−β can be also written as β = k0nsp, where nsp is the plasmon effective
refractive index given by

nsp =

√
ϵdϵm
ϵd + ϵm

(4.4.1)

The effective index nsp must become real for us to get the benefit ϵ′′d . The function nsp is
represented in the ordinary complex form as by substituting the complex function characterizing
the metal and dielectric into the dispersion relation. Hence, we have that

nsp =

√√
x2 + y2 + x

2
+ isgn(y)

√√
x2 + y2 − x

2
(4.4.2)

where sgn(y) is the discontinuous signum function and

x =
ϵ′d|ϵm|2 − ϵ′m|ϵd|2

|ϵd + ϵm|2
(4.4.3)

y =
ϵ′′d |ϵm|2 − ϵ′′m|ϵd|2

|ϵd + ϵm|2
(4.4.4)

with the |ϵj | denoting the norm of the complex number ϵj , where j = d,m. The poles of x, y
correspond to the nonretarded surface plasmon limit

ϵd + ϵm = 0 (4.4.5)

When the requirements y = 0 and x > 0 are met at the same time, lossless propagation of the
plasmon effective index nsp is warranted, as shown by the observation that (ℑ(nsp) = ℑ((b)) = 0).
The imaginary portion of nsp vanishes for y = 0 and x0 due to the signum function, but its real

part becomes imaginary, i.e., nsp = i
√
|x|, which does not correspond to propagation waves. We

find two exact solutions to the equation y = 0 by solving it with respect to gain ϵ′′d and avoiding
the nonretarded limit, which is ϵd ̸= ϵm. From the above we solve for ϵ′′d and we get that

ϵ′′d,± =
|ϵm|2

2ϵ′′m

(
1±

√
1−

(
2ϵ′dϵ

′′
m

|ϵm|2

)2)
(4.4.6)
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Due to the fact that ϵd is real, we read from the above equation that

|ϵm|2 ≥ 2ϵ′dϵ
′′
m (4.4.7)

With the help of the aforementioned inequality, we can deduce that ϵ′′d > ϵ′d is not the solution.
Since the ϵ′′d is defined to be smaller than the ϵ′d, this is a contradiction. So, ϵ′′d,+ does not correlate
to a gain that is meaningful in terms of physical reality.

Solving, on the other hand y = 0 for x > 0, with respect to the dielectric gain ϵ′′d , we determine
a critical value ϵc distinguishing the regimes of lossless and prohibited SPP propagation, namely

ϵc = ϵ′d

√
|ϵm|2

ϵ′mϵ
′
d

− 1 (4.4.8)

Consequently, ϵc establishes a maximum gain value. The appearance of critical gain can be
explained by the following equation: the gain ϵd,− becomes equal to ϵc when ϵd+ ϵm = 0, where the
last item is the nonretarded limit when β → ∞. In particular, the Drude dielectric function ϵ(ω),
ϵ′′d,− = ϵc at ω = ωsp, or a maximum frequency, indicates the presence of the surface plasmon.

The fact that the refractive index n meets the requirement that n(y = 0) = n∗(y = 0) since
its imaginary portion vanishes as a result of the signum function is an intriguing aspect of the
lossless SPP propagation scenario, or for ϵ′′d,− < ϵc. With n being spatially independent, this may
thus be viewed as the PT symmetry phase requirement. The structure is not mathematically PT
symmetric in the strict sense, but time-reversal and geometrical symmetry are permitted by the
real value of the supported propagation constant along the interface. Then, the dielectric gain
expression ϵ′′d,−, represented as ϵ′′d,− ≡ ϵPT , can be attributed to the PT symmetry property pro-
vided by the lossless SPP propagation. The following will preserve the denomination. The PT
condition is not met in the case of ϵ′′d,− > ϵc, however, because the refractive index is imaginary, the
crucial gain ϵc may then be viewed as the plasmonic system analysis’ PT -symmetry breaking point.

Below we present the results
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Figure 4.6: The lossless propagation of a PT plasmon, where gain is added to counterbalance the
losses

Figure 4.7: The gain-frequency diagram in the range of [0.3ωp, 0.75ωp] with step 0.001ωp.

Figure 4.8: Plotting the propagation Length L with respect of the normalized frequency within the
same range as Fig. 5.7. We see that the amplified SPP now has significantly larger L than the one
without gain/loss.
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4.5 Surface Plasmon Polaritons at a Bi-Layer System

We study now, SPPs in multilayers consisting of alternating conducting and dielectric thin films.
In a system like that, each single interface can sustain bound SPPs. Interactions between SPPs
result in linked modes when the distance between consecutive interfaces is equal to or less than the
interface mode’s decay length ẑ. We will concentrate on two distinct three-layer systems in order
to clarify the overall characteristics of coupled SPPs. First, an insulator/metal/insulator (IMI)
heterostructure composed of a thin metallic layer (I) sandwiched between two (infinitely) thick
dielectric claddings (II, III), and second, a metal/insulator/metal (MIM) heterostructure composed
of a thin dielectric core layer (I) sandwiched between two metallic claddings (II, III)[2].

We depict the geometry below

Figure 4.9: The propagation geometry of the bi-layer interface[8].

Since we are only interested in the lowest-order bound modes, we start with a general description
of the TM modes that are non-oscillatory in the z−direction normal to the interfaces.

For z > a, the field components are

Hy = Aeiβxe−k3z (4.5.1)

Ex = iA
1

ωϵ0ϵ3
k3e

iβxe−k3z (4.5.2)

Ez = −A β

ωϵ0ϵ3
eiβxe−k3z (4.5.3)

where for z < −a we have that

Hy = Beiβxek2z (4.5.4)

Ex = −iB 1

ωϵ0ϵ2
k2e

iβxek2z (4.5.5)

Ez = −B β

ωϵ0ϵ2
eiβxek2z (4.5.6)
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Hence, the fields must decay exponentially in the claddings (II) and (III).

In the core region −a < z < a, the modes localized at the bottom and top interface couple,
yielding to

Hy = Ceiβxek1z +Deiβxe−k1z (4.5.7)

Ex = −iC 1

ωϵ0ϵ1
k1e

iβxek1z + iD
1

ωϵ0ϵ1
k1e

iβxe−k1z (4.5.8)

Ez = C
β

ωϵ0ϵ1
eiβxek1z +D

β

ωϵ0ϵ1
eiβxe−k1z (4.5.9)

The requirement of continuity of Hy and Ex for z = a leads to the following relations

Ae−k3a = Cek1a +De−k1a (4.5.10)

A

ϵ3
k3e

−k3a = −C
ϵ1
k1e

k1a +
D

ϵ1
k1e

−k1a (4.5.11)

and for z = −a we have that

Be−k2a = Ce−k1a +Dek1a (4.5.12)

−B
ϵ2
k2e

−k2a = −C
ϵ1
k1e

−k1a +
D

ϵ1
k1e

k1a (4.5.13)

Thus we obtain a linear system of four coupled equations.

Solving the above system results in a implicit expression for the dispersion relation linking β
and ω via

e−4k1a =
k1/ϵ1 + k2/ϵ2
k1/ϵ1 − k2/ϵ2

k1/ϵ1 + k3/ϵ3
k1/ϵ1 − k3/ϵ3

(4.5.14)

We can see that if we have an infinite thickness of the metal (a → ∞) the two coupled SPPs
become uncoupled at the respective interfaces.

We select the two dielectric claddings to be the same. Thus we obtain k2 = k3. Hence ϵ2 = ϵ3.
In this case, the dispersion relation can be split into a pair of equations, hence

tanh k1a = −k2ϵ1
k1ϵ2

(4.5.15)

coth k1a = −k2ϵ1
k1ϵ2

(4.5.16)
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We can show that the first equation describes modes of odd vector parity(Ex(z) is odd,Hy(z) and
Ez(z) are even functions), while the second equation describes modes of even vector parity(Ex(z)
is even, Hy(z) and Ez(z) are odd functions). The above dispersion relations can now be applied to
both IMI and MIM structures in order to investigate the properties of the coupled SPP modes in
these two systems.

Below we present the odd and even modes of the bi-layer system

Figure 4.10: The hybridization of the two modes in the bi-layer geometry. The upper mode represent
the field magnitude of the the antisymmetric (odd one), where the lower mode represent the field
magnitude of the symmetric (even one).

We first start with the IMI geometry where we depict a thin metallic layer of thickness equals to
2a. Thus the dielectric function ϵ1 = ϵ1(ω) is for the metal and ϵ2 is the dielectric constant, positive
and real, of the insulating sub- and superstrates. We now draw the dispersion relation ω−β of this
system. Hence, we have
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Figure 4.11: The dispersion relation of an IMI geometry where the metal is represented as a Drude
model with negligible damping (γ = 0). Both ω and β are normalised[8][3][6].

Here for simplicity we have chosen the dielectric function of silver being approximated via a
Drude model with negligible damping, hence ℑ(β) = 0. For large wave vectors β we have that the
modes ω±(which are only achievable if ℑ(ϵ(ω)) = 0) have a limit and that is

ω± =
ωp√
1 + ϵ2

√
1± 2ϵ2e

−2βa

1 + ϵ2
(4.5.17)

The (+) symbolizes the odd modes and the (−) the even modes.

When we add losses to the metal the dispersion relation diagram transforms as follows
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Figure 4.12: The dispersion relation of an IMI geometry where the metal is represented as a Drude
model with damping (γ = 0.01). Both ω and β are normalised[6].

We see that the two modes are combined as one mode after the surface plasmon frequency and
lead to a finite limit of the wave vector.

We now move on to the MIM geometry, where we depict a thin insulating core sandwiched
between two metals. We set now ϵ2 = ϵ2(ω). We depict the dispersion relation below

Figure 4.13: The dispersion relation of a MIM geometry where the metal is represented as a Drude
model with damping (γ = 0.01). Both ω and β are normalised[6].
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We see that the now we have only one mode (the two modes are matched). Now that the
dielectric function has both real and imaginary part we see the losses in the dispersion relation as
a finite limit of the wave vector. Hence, β does not go to infinity as the surface plasmon frequency
ωsp is approached. It kindly reminds of the single layer SPP propagation[5].
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Chapter 5

Simulations

In this section we performed some simulations using the COMSOL Multiphysics® software in order
to verify our results. We construct a 2D space for the purpose to study in the frequency domain
the EM waves in the rectangular geometry for TM polarization electric field. Precisely, we want
to calculate the SPPs propagation length L with respect to the normalised frequency ω/ωp. We
perform this simulation for the single interface geometry with an active dielectric and a Drude
metal. We want to study the behavior from the lossless to prohibited propagation for the SPP.

We will start by constructing the geometry in COMSOL. We create a rectangular geometry with
legnth L = 2µm and height H = 3µm. We continue by splitting the geometry in to two layers. The
Drude’s metal layer which has height equal to H/4 of the whole geometry and the rest belongs to
the dielectric. Furthermore we insert materials for each layer. For the metal we choose silver and
for the dielectric, air.

We continue now the study of the EM wave and the frequency domain. Because we inserted
materials, from the library of COMSOL we can take the data of each materials refractive index
and insert it to the dispersion equation. Now we initiate from the left side of the geometry an
active port from which the EM wave will propagate. In order for this to work properly we have to
put another port at the right side of the geometry, in order to work as a boundary condition and
terminate the propagation. This port must be inactive.

Continuing with the mesh of the geometry, we choose a custom mesh from the general physics
category and fix the parameters for each element size to be max = 125nm and min = 0.6nm, in
order to have a very detailed grid.

Going to the final step, that is to select the frequency domain to be set from the wavelength
of the metal. That is the wave length domain from 340nm− 600nm with a step of 10nm for each
iteration. Below we present the results.
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Figure 5.1: Simulation of a SPP electric field, propagating in a single interface of silver/air geometry
with damping and no gain.

Figure 5.2: Simulation of a SPP electric field, propagating in a single interface of silver/air geometry
with damping and with PT gain.
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Below we depict the simulated dispersion relation from COMSOL software.

Figure 5.3: Simulating the dispersion relation of a SPP in a sivler/air interface. On the x−axis we
have the propagation constant β in m−1 and on y−axis we have the frequency in eV .

We now continue to the multi-layer geometry where we depict the modes (symmetric and anti-
symmetric) of the electric field.
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Figure 5.4: Simulation of a SPP symmetric electric field mode(even), propagating in a bi-layer
interface of air/silver/air geometry with damping and no gain.

Figure 5.5: Simulation of a SPP anti-symmetric electric field mode(odd), propagating in a bi-layer
interface of air/silver/air geometry with damping and no gain.
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We now continue with a simulation of a 2D material, graphene. The advantage of graphene is
that it can radiate in the IR regime where, noble metals in general have a plasma frequency near
UV. We perform a simulation where graphene is sandwiched in air/SiO2 claddings. We create a
very thin graphene layer and we fix the dielectric function of graphene from its conductivity current
σ.

We depict below the electric field and the dispersion relation of that IMI geometry.

Figure 5.6: Simulation of a SPP electric field, propagating in graphene.

Figure 5.7: Simulation of the dispersion relation of graphene SPP.
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Chapter 6

Conclusion

Summarizing we have studied SPPs at a single interface and multi interface geometry. We saw
that for the single interface geometry there is an explicit function for adding gain to the dielectric
material in order to counterbalance the losses. We found also that there is a critical gain and beyond
that we don’t obtain a SPP propagation. For the multilayer system in order to find the gain we
have to solve it numerically and see when the ℑ(β) = 0. The gain factor for the dielectric has
similar properties for the system as the PT symmetry. We also performed COMSOL simulations
to verify our theoretical results. There is work to be done regarding the multilayer system with
gain saturation in order to find an analytical expression for the gain factor ϵPT .
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Appendix

Python Code for Plasmonics

#!/usr/bin/env python

# coding: utf -8

# # Import Libraries

# In[1]:

import numpy as np

from scipy.optimize import fsolve

import matplotlib.pyplot as plt

import sympy as sp

# # Bulk Plasmon

# In[ ]:

with np.errstate(divide=’ignore ’):

eq_bulk = sp.simplify(sp.sqrt(w**2 -1))

func_bulk = sp.lambdify(w,eq_bulk)

omega = np.linspace (0 ,2 ,1000)

beta_bulk = func_bulk(omega)

plt.figure(figsize = (12 ,8))

plt.plot(beta_bulk ,omega ,’-’)

plt.plot(omega ,omega ,’-.’)

plt.xlabel(r’$\dfrac{ c }{ _p }$’)
plt.ylabel(r’$\dfrac{ }{ _p }$’)
plt.title("Dispersion Curve")

plt.legend ([r"Bulk Plasmon",r"Light Line"])

plt.grid()

# # Single -Layer Interface

# In[ ]:

w,g,k,a,wp, c, re, kp = sp.symbols("\omega \gamma \kappa a \omega_p c e_d k_p", real

= True)
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b = sp.symbols("b")

# # Negligible Damping

# In[ ]:

with np.errstate(divide=’ignore ’):

eq = sp.simplify(w *sp.sqrt ((1+0.j)*(1- 1/(w**2+1j*w*g))/(1+0.j+(1 -1/(w**2+1j*w*

g)))))

eq = eq.evalf(subs = {g:1e -200})

func = sp.lambdify(w,eq)

omega = np.linspace (0 ,2 ,1000)

beta = func(omega)

plt.figure(figsize = (12 ,8))

plt.plot(np.real(beta),omega ,’-’)

plt.plot(np.imag(beta),omega ,’--’)

plt.plot(omega ,omega ,’-.’)

plt.xlabel(r’$\dfrac{ c }{ _p }$’)
plt.ylabel(r’$\dfrac{ }{ _p }$’)
plt.xlim(1e-18 ,3.5)

plt.title("Dispersion Curve")

plt.legend ([r"$\Re{( )}$", r"$\Im{( )}$", r"Light Line: $\omega = c\beta$"])
plt.grid()

# # Adding some Damping

# In[ ]:

with np.errstate(divide=’ignore ’):

eq = sp.simplify(w *sp.sqrt ((1.69+0.0j)*(9.84 - 1/(w**2+1j*w*g))/(1.69+0.0j

+(9.84 -1/(w**2+1j*w*g)))))

eq = eq.evalf(subs = {g:0.0074})

func = sp.lambdify(w,eq)

omega = np.linspace (0 ,2 ,1000)

beta = func(omega)

plt.figure(figsize = (12 ,8))

plt.plot(np.real(beta),omega ,’-’)

plt.plot(np.imag(beta),omega ,’--’)

plt.plot(omega ,omega ,’-.’)

plt.xlabel(r’$\dfrac{ c }{ _p }$’)
plt.ylabel(r’$\dfrac{ }{ _p }$’)
plt.xlim(1e-18,1)

plt.ylim(1e-18 ,0.6)

plt.title("Dispersion Curve")

plt.legend ([r"$\Re{( )}$", r"$\Im{( )}$", r"Light Line: $\omega = c\beta$"])
plt.grid()

# # $\mathcal{PT}$ Gain

# In[ ]:

def PTandGainSaturation ():
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#plt.close(’all ’)

## Materials

eh = 1 # 9.84

wp = 1.367 e16

g = 1.018 e14

c = 3e8

kp = wp/c

## Setup frequency until wMetal

w = np.arange (0.3 * wp, 0.75 * wp, 0.001 * wp)

a = 1.69

ed = a

eS = 4

k0 = w / c

em = drudeModel(eh , wp, g, w)

## PT GAIN

gainPT = -1 / (2 * np.imag(em)) * (np.abs(em) ** 2 - np.sqrt(np.abs(em) ** 4 -

(2 * np.real(ed) * np.imag(em)) ** 2))

plt.figure(figsize = (12 ,8))

plt.plot(w / wp, -gainPT , ’-’)

plt.xlabel(r’$\omega/\ omega_p$ ’, fontsize = 16)

plt.ylabel(r’$\epsilon_{PT}$’,fontsize = 16)

plt.grid(True)

plt.savefig("pt_gain_freq.png")

## DEFINE PT ACTIVE DIELECTRIC

ed = a + 1j * gainPT

edNoG = a

#print(-gainPT)

## Conditions

wspp = np.sqrt(wp ** 2 / (eh + np.real(a)) - g ** 2)

kz = k0 * np.sqrt(ed ** 2 / (em + ed))

kx = k0 * np.sqrt(ed * em / (ed + em))

kxNoG = k0 * np.sqrt(edNoG * em / (edNoG + em))

kd = k0 * np.sqrt(np.real(ed))

kS = k0 * np.sqrt(eS) * np.sin (0.905)

linn = np.linspace (0.2, 8, w.size)

plt.figure(figsize = (12 ,8))

plt.plot(np.real(kx) / kp, w / wp, ’b:’, np.abs(np.imag(kx)) / kp, w / wp , ’r--’

, kd / kp, w / wp , ’y-.’, linn , w / w * wspp / wp, ’g-’)

plt.xlim (0 ,10)

setFigDisp ()

L = 1 / (2 * np.abs(np.imag(kx))) * 1e6

LNoG = 1 / (2 * np.abs(np.imag(kxNoG))) * 1e6

#print(L)

linn = np.logspace(-4, 15, w.size)

plt.figure(figsize = (12 ,8))

plt.semilogy(w/wp,L, ’b-’, w/wp ,LNoG , ’g-’, w / w * wspp / wp , linn , ’r--’)
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setFigL ()

def drudeModel(eh, wp , g, w):

em = eh - wp ** 2 / (w ** 2 + 1j * w * g)

return em

def setFigDisp ():

plt.legend ([r’$\Re[\beta]$’, r’$\Im[\beta]$’, r’$k$ -number in dielectric ’, r’$\
omega_{sp}$’], loc=’upper right’)

plt.title("Dispersion Curve")

plt.xlabel(r’$\beta/k_p$’, fontsize =16)

plt.ylabel(r’$\omega/\ omega_p$ ’, fontsize =16)

plt.axis(’tight’)

plt.grid(True)

plt.savefig("pt_disp_curve.png")

plt.show()

def setFigL ():

plt.legend ([r’$L$(theory)’, r’$L$ with 0 gain(theory)’, r’$\omega_{sp} = 0.61\

omega_p$ ’], loc=’upper right’)

plt.xlabel(’$\omega/\ omega_p$ ’, fontsize =16)

plt.ylabel(’Propagation Length L ( m )’, fontsize =16)

plt.grid(True)

plt.savefig("L_freq.png")

plt.show()

PTandGainSaturation ()

# # Multi -Layer Inteface

# # IMI Geometry

# In[2]:

wp = 2.2789 e16 #silver = 1.3673 || aluminum = 2.2789 e16

gamma = 0.00 #normalized

a = 9e-9

c = 3e8

ed = 1

ed2 = 0.0

kp = wp/c

N = 1000

def funcspace(func ,invfunc ,start ,end ,step = 20):

return func(np.linspace(invfunc(start),invfunc(end),step))

#wnorm = funcspace(lambda x: np.sqrt(x), lambda x: x**2, start = 0, end = 1, step =

N)

wnorm = np.linspace (0,1,N)

dw = wnorm [1] - wnorm [0]

def f(bnorm ,wnorm ,gamma ,ed2):
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return np.tanh(a*wp/c*np.sqrt((bnorm)**2 - ((1 - 1/( wnorm **2+1j*gamma*wnorm))*(

wnorm)**2))) + np.sqrt(bnorm **2 -(ed+1j*ed2)*wnorm **2) *(1 - 1/( wnorm **2+1j*gamma

*wnorm))/((ed+1j*ed2)*np.sqrt(bnorm **2 - (1 - 1/( wnorm **2+1j*gamma*wnorm))*(

wnorm **2)))

def g(bnorm ,wnorm ,gamma ,ed2):

return 1/np.tanh(a*wp/c*np.sqrt((bnorm)**2 - ((1 - 1/( wnorm **2+1j*gamma*wnorm))

*(wnorm)**2))) + np.sqrt(bnorm **2 -(ed+1j*ed2)*wnorm **2) *(1 - 1/( wnorm **2+1j*

gamma*wnorm))/((ed+1j*ed2)*np.sqrt(bnorm **2 - (1 - 1/( wnorm **2+1j*gamma*wnorm))

*(wnorm **2)))

# In[3]:

from tqdm.notebook import tqdm ,trange

def temn(a, b, func , epsilon , args):

count = 0

f = 0

funca = func(a,*args)

funcb = func(b,*args)

c = (b * funca - a * funcb) / (funca - funcb)

#print(c)

while abs(f := func(c,*args)) > epsilon:

a = b

b = c

funca = func(a,*args)

funcb = f

c = (b * funca - a * funcb) / (funca - funcb)

#print(c)

count += 1

#print(count)

return c

odd_b = np.zeros(N, dtype= complex)

even_b = np.zeros(N, dtype = complex)

k = 0.001+0j

l = 0.0012+0j

for i in trange(1,N):

sol = temn(k,l,f,1e-2,args = (wnorm[i],gamma ,ed2))

#while (np.abs(sol - odd_b[i-1]) > 100):

# k += 0.00001

# l += 0.00001

# sol = temn(k,l,f,1e-6,wnorm[i])

odd_b[i] = sol

k = odd_b[i] + dw*(odd_b[i]-odd_b[i-1])/(wnorm[i] - wnorm[i-1]) + 0j

l = k + 0.002

k = 0.01+0j
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l = 0.012+0j

for i in trange(1,N):

sol = temn(k,l,g,1e-6,args = (wnorm[i],gamma ,ed2))

#while ( np.abs(sol - even_b[i-1]) > 100):

# k += 0.00001

# l += 0.00001

# sol = temn(k,l,g,1e-6,wnorm[i])

even_b[i] = sol

k = even_b[i] + dw*( even_b[i]-even_b[i-1])/( wnorm[i] - wnorm[i-1]) + 0j

l = k + 0.02

#f(0.5149 ,0.5) ,g(0.5149 ,0.5)

# In[4]:

odd_index = (odd_b.real > 0) * (odd_b.real < 10)

even_index = (even_b.real > 0) * (even_b.real < 10)

odd_realb = odd_b.real[odd_index]

odd_realw = wnorm[odd_index]

even_realb = even_b.real[even_index]

even_realw = wnorm[even_index]

# vale a = 1.5

plt.plot(odd_realb ,odd_realw ,’--’,color = ’green’,label = ’odd mode’)

plt.plot(even_realb ,even_realw ,’--’,color = ’orange ’, label = ’even mode’)

plt.plot(wnorm ,wnorm ,’--’, color = ’black’,label = ’Light line’)

plt.xlabel(r’${ c }/{ _p }$’)
plt.ylabel(r’ $ / _p$ ’)

#plt.xlim (0,6)

#plt.ylim (0 ,0.8)

plt.legend ()

plt.grid()

#plt.savefig (" multilayer_disp_relation_IMI.png")

plt.show()

# In[5]:

L = 1/(2* odd_b[odd_index ].imag)

# # MIM Geometry

# In[2]:

loss = 0.01 #normalized

wp = 1.367 e16

a = 1.5e-8
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c = 3e8

ed = 1

kp = wp/c

N = 1000

def funcspace(func ,invfunc ,start ,end ,step = 20):

return func(np.linspace(invfunc(start),invfunc(end),step))

#wnorm = funcspace(lambda x: np.sqrt(x), lambda x: x**2, start = 0, end = 1, step =

N)

wnorm = np.linspace (0,1,N)

dw = wnorm [1] - wnorm [0]

def f(bnorm ,wnorm):

return np.tanh(a*wp/c*np.sqrt((bnorm)**2 - (ed*( wnorm)**2))) + np.sqrt(bnorm **2

-(1 - 1/( wnorm **2+1j*loss*wnorm))*wnorm **2)*ed/((1 - 1/( wnorm **2+1j*loss*wnorm))

*np.sqrt(bnorm **2 - ed*(wnorm **2)))

def g(bnorm ,wnorm):

return 1/np.tanh(a*wp/c*np.sqrt((bnorm)**2 - (ed*(wnorm)**2))) + np.sqrt(bnorm

**2 -ed*wnorm **2) *(1 - 1/( wnorm **2+1j*loss*wnorm))/(ed*np.sqrt(bnorm **2 - (1-1/(

wnorm **2+1j*loss*wnorm))*( wnorm **2)))

#f(0.81+0.8j,0.5),g(0.8098+0.1j,0.5)

# In[3]:

from tqdm.notebook import tqdm ,trange

def temn(a, b, func , epsilon , omega):

count = 0

f = 0

funca = func(a,omega)

funcb = func(b,omega)

c = (b * funca - a * funcb) / (funca - funcb)

#print(c)

while abs(f := func(c,omega)) > epsilon:

a = b

b = c

funca = func(a,omega)

funcb = f

c = (b * funca - a * funcb) / (funca - funcb)

#print(c)

count += 1

#print(count)

return c

odd_b = np.zeros(N, dtype= complex)

even_b = np.zeros(N, dtype = complex)

k = 0.01+0j

l = 0.012+0j
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for i in trange(1,N):

sol = temn(k,l,f,1e-3,wnorm[i])

#while (np.abs(sol - odd_b[i-1]) > 100):

# k += 0.00001

# l += 0.00001

# sol = temn(k,l,f,1e-6,wnorm[i])

odd_b[i] = sol

k = odd_b[i] + dw*(odd_b[i]-odd_b[i-1])/(wnorm[i] - wnorm[i-1]) + 0j

l = k + 0.02

k = 0.01+0j

l = 0.012+0j

for i in trange(1,N):

sol = temn(k,l,g,1e-6,wnorm[i])

#while ( np.abs(sol - even_b[i-1]) > 100):

# k += 0.00001

# l += 0.00001

# sol = temn(k,l,g,1e-6,wnorm[i])

even_b[i] = sol

k = even_b[i] + dw*( even_b[i]-even_b[i-1])/( wnorm[i] - wnorm[i-1]) + 0j

l = k + 0.5

#f(0.5149 ,0.5) ,g(0.5149 ,0.5)

# In[4]:

odd_index = (odd_b.real > 0) * (odd_b.real < 10)

even_index = (even_b.real > 0) * (even_b.real < 10)

odd_realb = odd_b.real[odd_index]

odd_realw = wnorm[odd_index]

even_realb = even_b.real[even_index]

even_realw = wnorm[even_index]

plt.plot(odd_realb ,odd_realw ,’--’,color = ’green’,label = ’odd mode’)

plt.plot(even_realb ,even_realw ,’--’,color = ’orange ’, label = ’even mode’)

plt.plot(wnorm ,wnorm ,’--’, color = ’black’,label = ’Light line’)

plt.xlabel(r’${ c }/{ _p }$’)
plt.ylabel(r’ $ / _p$ ’)

#plt.xlim (0,3)

#plt.ylim (0 ,0.71)

plt.legend ()

plt.grid()

#plt.savefig (" multilayer_disp_relation_MIM.png")

plt.show()

[15]
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