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Adaptive Control of Body Posture and Movement in
Quadruped Robots

Abstract

One of the primary advantages of legged robots lies in their ability to navigate
through complex and unstructured environments, such as outdoor fields, sewers
and construction sites, which often feature a variety of challenging terrains. This
capability opens the door to employing legged robots in applications that might
pose risks to humans, including search and rescue missions, inspection tasks and
maintenance in critical infrastructure facilities.

In addition to the structural intricacies of these environments, they also present
dynamic challenges, with varying terrain friction being a prominent concern. Legged
robots frequently encounter the issue of partially or globally slippery terrains, which
can result from conditions like mud, wet surfaces, oil or ice. The slippage of any
leg relative to the supporting surface can introduce unpredictable and unmodeled
dynamics, potentially compromising trajectory tracking performance or even leading
to the robot’s instability from loss of contact with the supporting surface.

In such conditions, maintaining stability and precise control becomes paramount.
Ensuring that the robot follows desired trajectories with accuracy is not only
essential for its own safety but also critical for successfully executing dexterous
maneuvers in these challenging settings. Task space trajectory tracking plays
a central role in achieving these objectives, as it enables the robot to adapt to
the dynamic nature of its surroundings, react to unanticipated disturbances, and
minimize the risk of falls or instability. By focusing on accurate tracking of task
space trajectories, we aim to equip quadruped robots with the capability to operate
with confidence and reliability in the face of environmental uncertainties.

Driven by the challenges posed by agile maneuvers and locomotion in rough
and slippery terrains, we introduce an adaptive controller termed as the Body
Posture and Movement Controller (BPMC) designed specifically for such conditions.
BPMC comprises two key components: an adaptive trajectory tracking controller,
referred to as “Body Posture”, and an adaptive reaching-target controller that
initiates locomotion, called “Body Movement”.

The former, namely Body Posture controller, comprises a robust adaptive
trajectory tracking controller that consists of two prioritized layers of adaptation
aimed at maintaining stability during dynamic contact events of one or more
supporting legs. The main objective of the proposed adaptive controller is to induce
a robust reactive behaviour of a quadruped robot when it experiences unstable
contacts while executing a trajectory without sacrificing the spatial properties of
the task.

The Body Movement controller, serving as an adaptive reaching controller,
plays a pivotal role in initiating locomotion tasks and executing agile maneuvers,
particularly in challenging terrains marked by slipperiness and dynamic obstacles.
The core of the Body Movement controller lies in its initial layer, in which the



control effort is distributed among all stance legs, meaning all legs except the
swinging leg. The latter is accomplished by assigning an exceptionally high weight
to a specific leg, designated as the swinging leg. In that way, the swinging leg task
is attained while, at the same time, the robot keeps its stability and controllability
during locomotion.

On top of that, the Body Movement controller offers an additional layer that can
be activated at the user’s discretion, taking into account the probability of detecting
slip events. This extra layer draws inspiration from the approach used in the first
layer of the Body Posture controller. It dynamically adjusts the effort distribution
among all legs based on the slip probability of each foot. This multifaceted approach
not only introduces innovative concepts for agile movements but also ensures the
stability of the robot’s dynamic maneuvers. It represents a crucial step in advancing
the adaptability and robustness of the overall system.

The proposed methods constitute novel, lightweight analytical solutions that
assume no prior knowledge of the friction properties of the supporting surface. This
is accomplished by considering the slippage probability as extracted by our previous
work on contact state estimation in order to avoid non-controllable conditions.

Our experimental outcomes, stemming from both simulations and real-world
tests, highlight the approach’s effectiveness. It substantially enhances system
robustness, minimizing leg slippage while maintaining robot stability and control
even in challenging conditions. These advances mark significant milestones in
enhancing quadruped robot capabilities for diverse real-world scenarios.



Προσαρμοστικός ΄Ελεγχος Πόζας Σώματος και

Κίνησης Τετράποδων Ρομπότ

Περίληψη

΄Ενα από τα κύρια πλεονεκτήματα των τετράποδων ρομποτικών συστημάτων είναι η

δυνατότητά τους να πλοηγούνται σε πολύπλοκα και μη δομημένα περιβάλλοντα, όπως

εξωτερικοί χώροι, αποχετευτικά δίκτυα και εργοτάξια, τα οποία συχνά περιλαμβάνουν

εδάφη που είναι δύσκολα στην προσπέλαση. Αυτή η ικανότητα τους οδηγεί στη χρήση

των τετράποδων ρομπότ σε εφαρμογές που χαρακτηρίζονται επικίνδυνες για τον άν-

θρωπο, συμπεριλαμβανομένων αποστολών έρευνας και διάσωσης και εργασιών ελέγ-

χου και συντήρησης σε εγκαταστάσεις κρίσιμης υποδομής.

Εκτός από τις δομικές περιπλοκές αυτών των περιβάλλοντων, ενίοτε παρουσιάζουν

και δυναμικές προκλήσεις, με τη μεταβλητή τριβή του εδάφους να αποτελεί ένα ση-

μαντικό θέμα. Τα ρομπότ με πόδια συχνά αντιμετωπίζουν το πρόβλημα ολισθηρών

εδαφών, που μπορεί να οφείλεται σε συνθήκες όπως λάσπη, υγρές επιφάνειες, λάδι

ή πάγο. Η ολίσθηση ενός ποδιού σε σχέση με την επιφάνεια στήριξης μπορεί να

επιφέρει δυναμικές που αφενός είναι απρόβλεπτες και αφετέρου δεν μπορούν να μο-

ντελοποιηθούν. Τα παραπάνω μπορεί να οδηγήσουν στη μη ακριβή παρακολούθηση

της τροχιάς κίνησης από το ρομποτικό σύστημα ή ακόμα και στην απώλεια ελέγχου

του σε περίπτωση που χαθεί η επαφή κάποιων ποδιών του ρομπότ με την επιφάνεια

στήριξης.

Σε τέτοιες συνθήκες, η διατήρηση της ευστάθειας και του ελέγχου του ρομπότ

αποκτά πρωταρχική σημασία. Επιπρόσθετα, η εξασφάλιση της ακριβούς παρακολούθη-

σης της ζητούμενης τροχιάς κίνησης παίζει σημαντικό ρόλο όχι μόνο στην επίτευξη

επιδέξιων ελιγμών και χειρισμών αλλά και στην ασφάλεια του ίδιου του συστήματος.

Κατά συνέπεια, με την βελτίωση των σχετικών μεθόδων που αποσκοπούν στην πιστή

παρακολούθηση τροχιάς, το ρομποτικά συστήματα εξελίσουν τις δυνατότητες τους

ως προς εργασίες που αφορούν δύσκολα περιβάλλοντα. Συγκεκριμένα, αναπτύσουν

δυνατότητες που αφορούν την προσαρμογή τους σε δυναμικές αλλαγές του περιβάλλο-

ντος, εξαλείφοντας απρόβλεπτες διαταραχές, ενώ την ίδια στιγμή ελαχιστοποιούνται

περιπτώσεις έλειψης ελέγχου και αποφεύγονται ακόμα πιθανές πτώσεις του συστήμα-

τος. Διασφαλίζεται έτσι η ευστάθεια και η αξιοπιστία των ρομποτικών συστημάτων

σε περιπτώσεις όπου υπάρχει μεγάλη αβεβαιότητα στο περιβάλλον.

Οι προκλήσεις που παρουσιάστηκαν παραπάνω σχετικά με την επίτευξη επιδέξιων

ρομποτικών κινήσεων και βάδισης σε ανώμαλα και ολισθηρά εδάφη λειτούργησαν ως

το έναυσμα της έρευνας στην παρούσα εργασία. Το σημαντικότερο αποτέλεσμα αυ-

τής είναι ένας προσαρμοστικός ελεγκτής ‘Πόζας Σώματος και Κίνησης’ (BPMC ).
Ο τελευταίος αποτελείται από δύο κύρια μέρη: έναν προσαρμοστικό ελεγκτή παρα-

κολούθησης τροχιάς, που αναφέρεται ως ‘Πόζα Σώματος’, και έναν προσαρμοστικό

ελεγκτή προσέγγισης στόχου, που αναφέρεται ως ‘Κίνηση Σώματος’ και αφορά την

βάδιση του ρομποτικού συστήματος.

Ο πρώτος, δηλαδή ο ελεγκτής ‘Πόζας Σώματος’, περιλαμβάνει έναν προσαρμοστι-

κό ελεγκτή παρακολούθησης τροχιάς που αποτελείται από δύο επίπεδα προσαρμογής,



με στόχο τη διατήρηση της ευστάθειας και του ελέγχου κατά τη διάρκεια που ένα,

παραπάνω ή και όλα τα πόδια του ρομποτικού συστήματος γλιστρήσουν. Ο κύριος

στόχος του προτεινόμενου ελεγκτή είναι να προσδώσει συμπεριφορά αντίδρασης στο

τετράποδο ρομπότ όταν αντιμετωπίζει ασταθείς επαφές κατά την εκτέλεση της παρακο-

λούθησης τροχιάς, χωρίς να θυσιάσει τις χωρικές ιδιότητες της ζητούμενης εργασίας.

Ο ελεγκτής Κίνησης Σώματος, που αποτελεί έναν ελεγκτή προσέγγισης στόχου,

εισάγει την βάδιση του τετράποδου ρομπότ ενώ την ίδια χρονική στιγμή έχει την

δυνατότητα να εκτελέσει επιδέξιους ελιγμούς, ειδικά σε απαιτητικά εδάφη που χαρα-

κτηρίζονται από ολισθηρότητα και δυναμικά εμπόδια.

Το βασικό επίπεδο του ελεγκτή Κίνησης Σώματος αφορά την κατανομή της απαι-

τούμενης δύναμης σε όλα τα πόδια τα οποία στηρίζουν το ρομπότ κατά τη διάρκεια

της βάδισής του, δηλαδή όλα τα πόδια εκτός του ποδιού που βρίσκεται σε κίνηση

τροχιάς (αιωρούμενο πόδι). Αυτό επιτυγχάνεται με την ανάθεση εξαιρετικά υψηλών

τιμών βάρους σε ένα συγκεκριμένο πόδι, που στην συγκρκριμένη σχεδίαση αφορά το

αιωρούμενο πόδι. Με αυτόν τον τρόπο, επιτυγχάνεται η εκτέλεση της εργασίας από

το πόδι που κινείται, ενώ ταυτόχρονα το ρομπότ διατηρεί τη ευστάθεια του κατά τη

διάρκεια της κίνησης.

Επιπλέον, ο ελεγκτής Κίνησης Σώματος προσφέρει ένα επιπρόσθετο επίπεδο που

μπορεί να ενεργοποιηθεί κατόπιν επιλογής του χρήστη, λαμβάνοντας υπόψη την πι-

θανότητα ανίχνευσης γλιστρίματος μεταξύ κάποιου ποδιού και του εδάφους. Αυτό

το επιπρόσθετο επίπεδο βασίζεται στην προσέγγιση που χρησιμοποιείται στο πρώτο

επίπεδο του ελεγκτή Στάσης Σώματος. Προσαρμόζει ανάλογα την κατανομή της δύνα-

μης μεταξύ όλων των ποδιών με βάση την πιθανότητα ολίσθησης κάθε ποδιού. Αυτή

η πολυδιάστατη προσέγγιση δεν εισάγει μόνο καινοτόμες έννοιες για ευέλικτες κι-

νήσεις, αλλά εξασφαλίζει επίσης την ευστάθεια των δυναμικών κινήσεων του ρομπότ.

Αποτελεί έτσι ένα κρίσιμο βήμα για την προώθηση της προσαρμοστικότητας και της

ανθεκτικότητας του συνολικού συστήματος.

Οι προτεινόμενες μέθοδοι αποτελούν καινοτόμες, χαμηλού υπολογιστικού κόστους

αναλυτικές λύσεις που δεν βασίζονται σε προηγούμενη γνώση σχετικά με τις ιδιότητες

τριβής της επιφάνειας στήριξης ούτε απαιτούν εκτίμηση αυτών. Αυτό επιτυγχάνεται

λαμβάνοντας υπόψη την πιθανότητα ολίσθησης, όπως αυτή εξάγεται από προηγούμενη

εργασία μας σχετικά με την εκτίμηση κατάστασης επαφής, προκειμένου να αποφευ-

χθούν μη ελεγχόμενες καταστάσεις σε ολισθηρά εδάφη.

Η παρούσα εργασία υποστηρίζεται από ιδιαίτερα ενθαρρυντικά πειραματικά αποτε-

λέσματα. Τα τελευταία προέρχονται τόσο από προσομοιώσεις όσο και από πειράματα

σε πραγματικά ρομποτικά συστήματα και αναδεικνύουν την αποτελεσματικότητα της

προτεινόμενης προσέγγισης. Πιο συγκεκριμένα, η αξιοπιστία της μεθόδου δοκιμάζεται

και κατά την εκτέλεση παρακολούθησης τροχιάς καθώς και κατά την διάρκεια βάδισης

σε δύσκολα εδάφη. Σε όλες τις πειραματικές δοκιμασίες παρατηρούμε ότι οι ελεγκτές

προσαρμόζονται μειώνοντας σημαντικά την ολίσθηση των ποδιών, ενώ διατηρείται η

ευστάθεια και ο έλεγχος του τετράποδου ρομπότ ακόμα και σε απαιτητικές συνθήκες.

Τα παραπάνω αποτελέσματα αποτελούν σημαντικά ορόσημα στην ενίσχυση των δυνα-

τοτήτων των τετράποδων ρομπότ για ποικίλα πραγματικά σενάρια.
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Chapter 1

Introduction

In this chapter, we will delve into the realm of mobile robots, with a particular
focus on legged robots, and more specifically, quadrupedal robots. These robots
hold significant importance in various applications, as elaborated in this chapter.
Our exploration will include an introductory overview of mobile robots, a compre-
hensive definition of legged robots in a broader context, and a detailed analysis
of the importance of agile maneuvers and locomotion in challenging terrains for
quadrupedal robots, which serves as the primary motivation for this work.

Subsequently, we will present the contributions of this thesis, which involve
open-source software developed during this master’s thesis, references to related
publications, and an outline of the remaining content in this document.

1.1 Ground-based mobile robots

Within the field of ground-based mobile robotics, a common categorization places
these robots into three key groups: wheeled, tracked and legged robots. Legged
robots, notably, stand out due to their intricate design and sophisticated con-
trol systems, yet they excel in holonomic motion1, maneuverability and versatile
applications.

Unlike their counterparts as stated above, legged robots showcase the ability
to adeptly navigate through complex, uneven terrains, surmount obstacles and
ascend stairs efficiently while minimizing their impact on the ground. Among
modern legged robots, which include bipeds, e.g (Fig. 1.1b) quadrupeds (Fig. 1.1a),
hexapods and octopods, quadrupedal robots emerge as particularly noteworthy.

The advantages of legged locomotion hinge on various factors, including postures,
the number of legs and leg functionality, as reviews on quadrupeds explain [1, 2, 3].
While wheeled and tracked robots are suitable for (almost) flat terrain, they

1The ability of a mobile system, to move freely and instantaneously in any direction within its
workspace.

2https://bostondynamics.com/products/spot/
3https://agilityrobotics.com/robots

1

https://bostondynamics.com/products/spot/
https://agilityrobotics.com/robots
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(a) Quadrupedal robot
Boston Dynamics2

(b) Bipedal robot
Agility Robotics3

Figure 1.1: Advanced industrial quadrupedal and bipedal robots.

often struggle in cluttered, complex, or hazardous environments. In contrast,
legged robots possess the potential to navigate across diverse terrains, much like
humans and animals. Animals utilize their legs for fast and reliable movement in
various terrains, exhibiting exceptional locomotion and agility. They can adapt to
environmental conditions with high speed and efficiency. From both stability and
efficiency perspectives, the number of legs is by far significant.

Among legged robots, quadruped robots are particularly favored for their
mobility and stable locomotion. Deploying four legs is more manageable in terms
of control, design, and maintenance when compared to two or six legs. Researchers
have been inspired by biological locomotion, particularly running gaits, which allow
quadruped robots to handle significant payloads and maintain balance. Achieving
real-time speed and natural movement, akin to animals like cows, dogs and cheetahs,
necessitates the development of control systems and dynamic gait generation for
quadruped robots.

1.1.1 Legged robots definition

Legged robots leverage their limbs for locomotion, as authors in [4] present, offering
the unique benefit of an active suspension system [5]. The latter employs sensors
and control algorithms to continuously adjust the leg movements and stiffness in
real-time, enhancing stability and adaptability. This design allows for the robot’s
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primary body to be detached from the terrain’s profile, providing exceptional
adaptability to different landscapes. During each step, a leg is momentarily lifted
from the ground, enabling the robot to navigate through rough or intricate terrain,
effectively reaching otherwise inaccessible areas.

Typically, legs are composed of articulated rigid structures that establish contact
with the environment primarily through their end-effectors. This contact is often
one-sided, meaning that the robot can apply pushing forces but lacks the capability
to exert pulling forces on contact surfaces. In certain scenarios, supplementary grip
mechanisms like grasping, suction cups, magnets, adhesive materials or miniature
spine arrays are implemented to enhance the robot’s interaction with surfaces [1, 6].

In the pursuit of adapting wheeled vehicles to challenging terrains, a creative
approach involves the integration of both wheels and legs [7], as Fig. 1.2 illustrates.
These combinations can encompass various configurations of passive or active
wheels and passive or active legs, capitalizing on the flexibility of articulated legs
for traversing difficult terrain and the efficiency of wheels on smoother, level surfaces.
Moreover, when confronted with steep slopes, legged robots have the option to
employ rappelling as a technique to prevent potential tumbling incidents [8].

Figure 1.2: Force distribution among the legs of the quadruped robot.

1.1.2 Applications

Legged robots, particularly quadrupedal robots, have found diverse and valuable
applications, with a strong emphasis on enhancing search and rescue operations
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and inspection tasks. Versatile robotic systems excel in traversing challenging and
hazardous environments, such as disaster-stricken areas, where traditional wheeled
or tracked robots may struggle. Their four-legged design provides stability on
uneven terrain, and their ability to climb over debris and navigate through cluttered
spaces makes them ideal for locating and rescuing survivors in disaster scenar-
ios. Additionally, quadrupedal robots are well-suited for industrial inspections,
including inspections in confined spaces, hazardous environments, or infrastructure
monitoring. Equipped with advanced sensors and autonomous capabilities, these
robots are capable of collecting critical data and imagery, enhancing efficiency,
safety, and precision in various inspection tasks. For instance, Cognite4 and Aker
BP5 used Boston Dynamics’ Spot robotic dog on the Skarv FPSO in the Norwegian
Sea, e.g. Fig. 1.3. They employed Cognite’s Cognite Data Fusion software as the
data infrastructure for tasks such as autonomous inspection, data collection and
report generation, sharing the collected data with Aker BP through a dashboard.
As technology continues to advance, quadrupedal robots are poised to play an even
more significant role in improving safety and efficiency in critical applications.

Figure 1.3: The Spot during inspection on the Skarv FPSO in the Norwegian Sea.

Legged locomotion has been studied and designed for the last couple of decades.
Recent advances in both software and hardware have triggered the transition from
experimental platforms used under laboratory conditions to (semi)autonomous
machines deployed in real-world scenarios, e.g. on industrial sites for inspection [9]
or in underground mines for exploration and mapping [10].

4A Norwegian software company that specializes in industrial data management and digitaliza-
tion solutions

5A Norwegian oil exploration and production company
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1.2 Trajectory tracking and locomotion in rough ter-
rains

The main advantage of legged robots against other mobile robots, as previously
mentioned, is their ability to discretize space [11], which enables them to traverse
rough terrains, climb stairs and navigate in cluttered environments. Robots working
in natural, urban and industrial settings need to be able to navigate challenging
environments, safely, while keeping stability and controlability.

1.2.1 Motivation

Robotic locomotion in rough terrains presents a challenging research spectrum.
During exploration, robots may inadvertently interact with structurally unstable
and curved or spherical-shaped objects, such as pipes, which can lead to a loss of
control. Additionally, navigating terrains featuring unpredictable friction properties,
notably in low-friction settings like industrial areas with oil spills, poses another
significant challenge.

In order to carry out tasks like navigating challenging terrains or attaining a
particular body posture, it is crucial to carefully plan and implement a series of
ground contacts, as highlighted in earlier research [12, 13]. Thus, achieving both
nimble body postures and fluid movement requires the constant real-time assessment
of each foot’s contact status, that is, how securely it is positioned on the ground.
At the same time, when considering the contact status, one must incorporate this
information for recovery and adapt the overall body effort appropriately. This
approach ensures both stability and the achievement of the desired task.

Detecting slippage right at its onset and swiftly regaining traction is a critical
factor for maintaining body stability and can be the decisive factor in situations
where falling is not a viable option. In fact, most locomotion and trajectory tracking
controllers are built on the foundational assumption that the feet in contact with the
ground are not experiencing slippage. Nonetheless, there are numerous instances
during terrain exploration when slippage may arise, either due to slippery surfaces
or as a result of the specific task’s configuration.

In our research we introduce an adaptive controller for Body Posture and
Movement, which overcomes the last mentioned restrictions. This controller factors
in the contact status and guarantees stability by distributing effort based on
weighted priorities, all while executing the desired task (trajectory tracking or
locomotion) without sacrificing the spatial properties of the task.

1.3 Thesis contributions

The main contributions this work are:

■ An adaptive trajectory tracking controller that equips the robot with a robust
reactive behavior when it experiences slippage while ensuring its stability
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and controllability without sacrificing the spatial properties of the desired
trajectory.

■ The proposed controller is theoretically proven to yield an asymptotically
stable behavior.

■ A novel target reaching controlling scheme that initiates agile movements and
locomotion, through weighted pseudo-inverse matrix for stance foot selection.

■ An adaptive target reaching controller that equips the robot with a robust
reactive behavior when it experiences slippage while ensuring its stability and
controllability during locomotion.

■ We have performed extensive experimental evaluation of the proposed ap-
proach in various settings in both real and simulated scenarios with Unitree’s
GO1 quadruped robot (Fig. 1.4).

Figure 1.4: Unitree’s Go1 quadruped robot dog.

Thesis Assumptions Significant contemporary research is devoted on improving
the stability of robots while executing different gaits. A robot’s stability can be
characterized by its Center of Mass (CoM) location during static walking and Zero
Moment Point (ZMP) during dynamic walking. A robot’s posture is stable if its
ZMP lies within a support polygon formed by the contact points of the legs in
stance phase [14]. If the robot’s body is close to the ground and its accelerations
are small, we can approximate the ZMP location with the projection of the CoM
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on the ground. Another assumption we make is the robot walks on a horizontal
ground plane and its body attitude is kept horizontal. In that way, we can describe
the projection of CoM as the current position of the CoM (pc,x, pc,y). In this work,
unmodeled joint friction of motors, which has not been considered in the control
scheme, serves as a disturbance to the system.

1.3.1 Open-source Software

In order to promote research and foster the incorporation of the proposed adap-
tive controller in body manoeuvres and locomotion schemes, this work has been
released as an open-source module in ROS/C++ coined as “Maestro”. The name
“Maestro” is inspired by the conductor of an orchestra, representing its central role
in controlling and coordinating a legged robot’s functions. The above-mentioned
previous work on slip detection, namely the probabilistic contact estimator, can be
found in “Probabilistic Contact Estimator”:

■ ROS/C++: Adaptive Body Posture and Movement Controller (Maestro)
Author: Despina-Ekaterini Argiropoulos
https://github.com/despargy/maestro/ [15]

■ ROS/Python: Probabilistic Contact Estimation (PCE)
Author: Michael Maravgakis
https://github.com/MichaelMarav/ProbabilisticContactEstimation

[16]

1.3.2 Reference Publications

The first part of this thesis, the Adaptive Body Posture controller, has been accepted
at the “Humanoids” conference scheduled for December 12− 14, 2023 [17].

Despina-Ekaterini Argiropoulos, Dimitrios Papageorgiou, Michael Maravgakis,
Drosakis Drosakis and Panos Trahanias, “Two-layer adaptive trajectory
tracking controller for quadruped robots on slippery terrains”, 2023 IEEE-
RAS International Conference on Humanoid Robots, Austin, Texas.

The research about probabilistic contact detection [16] was presented in ICRA
2023 conference, May 29 – June 2, 2023:

Michael Maravgakis, Despina-Ekaterini Argiropoulos, Stylianos Piperakis,
Panos Trahanias, “Probabilistic Contact State Estimation for Legged Robots
using Inertial Information”, 2023 International Conference on Robotics and
Automation (ICRA) , London, England.

In a relevant field of trajectory reconstruction and generalization, the following
research work [18] has been presented in the 31st IEEE International Conference
on Robot and Human Interactive Communication (RO-MAN) 2022, Aug. 29 – Sep.
2, 2022:

https://github.com/despargy/maestro/
https://github.com/MichaelMarav/ProbabilisticContactEstimation
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Dimitrios Papageorgiou, Despina Ekaterini Argiropoulos, Zoe Doulgeri,
“Dirichlet-based Dynamic Movement Primitives for encoding periodic motions
with predefined accuracy”, 2022 IEEE International Conference on Robot
and Human Interactive Communication (RO-MAN) , Naples, Italy.

A recent work submitted for presentation in ICRA 2024 about a novel method
for path planning is the following:

Submitted for presentation:
Michael Maravgakis, Despina-Ekaterini Argiropoulos, Emmanouil Papadakis
and Panos Trahanias, “Ray Casting and Diffusion Model for Path Planning of
Mobile Robots in Static Environments”, 2024 IEEE International Conference
on Robotics and Automation (ICRA), YOKOHAMA, Japan.

1.4 Thesis outline

The outline of this thesis is structured into the following chapters, as explained
below:

1. Chapter 1 - Introduction: This chapter serves as an introduction to
legged robots, highlighting their significance and the challenges associated
with traversing challenging terrains.

2. Chapter 2 - Literature Review: In this chapter, we provide a compre-
hensive review of recent works relevant to the field of this thesis.

3. Chapter 3 - Methodology: This constitutes the main chapter that features
a detailed presentation of the proposed methodology.

4. Chapter 4 - Experiments: This chapter presents all the simulated and
real experiments conducted to support the findings of this work.

5. Chapter 5 - Conclusions: In this final chapter, we discuss the outcomes
and implications of this work and present ideas for future work.

6. Chapter Appendix - Appendix: This additional chapter contains proofs
supporting the proposed method.



Chapter 2

Literature Review

Approaches for addressing trajectory tracking, agile manoeuvres and locomotion in
challenging terrains, can be broadly categorized as either model-based or learning-
based. In this chapter, we conduct an in-depth analysis of the strategies employed
for task accomplishment in challenging terrains when firstly we present the problem
description and our research focus. We take a multifaceted approach, starting with
an exploration of how path planning methods tackle the challenge of traversing
rough terrains. Following that, we delve into motion planning techniques. We also
consider the role of proprioceptive feedback as a model-based approach in addressing
this challenge through exploration of slip detection and recovery. Furthermore, we
mention learning-based methods for tackling the complexities of terrain navigation.
Additionally, we present recent advancements in trajectory tracking, which rely
on the same underlying principle of successfully working in challenging terrains
while accomplishing specific tasks, whether that entails safe walking or intricate
maneuvers. Finally, we briefly present some conclusions regarding recent approaches
to the problem of accomplishing tasks in challenging terrain.

2.1 Problem delineation and our research focus

One of the main advantages of legged robots is their capability to transverse
unstructured environments, such as sewers or construction sites, which may involve
a variety of challenging terrain types. This capability enables the utilization of
legged robots in applications potentially dangerous for humans, such as search and
rescue operations, inspection missions and maintenance in critical asset facilities.
Further to their structural complexity, such difficult-to-transverse environments
also impose dynamic challenges, with the most dominant being the variation of
the friction coefficient of the terrain. Partially or globally slippery terrains are
considered to be one of the most frequent problems faced by legged robots, which
may arise in case of mud, wet floor, oil or ice [19]. Slippage of any leg with respect
to the supporting surface could trigger unknown and unmodelled dynamics which
would in turn worsen the trajectory tracking performance or even lead to robot’s

9
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instability; e.g. it could lead to singular configurations or to configurations in which
the contact with the supporting surface is lost.

Slippage occurs when the magnitude of the tangential contact forces are outside
the static friction cone, determined by the ratio of tangential to orthogonal force
magnitudes (static friction coefficient). This coefficient, however, is difficult to
model, varies in space and therefore, in most cases, is considered to be unknown a
priori. To tackle the problem of identifying the slippage phenomenon, contemporary
methods in literature propose the utilization of machine learning [20, 21, 22],
classical estimators such as Extended/Unscented Kalman Filters [23, 24] and
model-based estimators [25] which commonly utilize proprioceptive information to
yield an estimate of the probability of stable contact, as proposed in our recent
work [16].

Upon identification of slippage of one or multiple legs, a reactive behavior needs
to be defined for ensuring the stability and controllability of the system. Common
practices involve the utilization of estimators for slippage alongside with an online
trajectory generation mechanism for slippage recovery.

Trajectory tracking is essential for dynamic locomotion on unstructured and
slippery terrains. By tracking desired joint angles, foot positions and other kinematic
variables, the robot can minimize energy consumption, improve speed and enhance
maneuverability while maximizing stability and adaptability to different terrains.

2.2 Traversing rough terrains

Path Planning perspective Relying solely on path planning for terrain naviga-
tion does not entirely eliminate the risk of encountering challenging contact events.
For instance, a recent study introduces an innovative approach that combines vision
and proprioception to enhance legged robot navigation, particularly in quadrupedal
robots[26]. While considering environmental conditions is crucial, it may not
guarantee precise detection of forthcoming terrain conditions necessary for robot
adaptation. Even with onboard range sensors such as laser range, time-of-flight, and
stereo cameras, a robot can collect data on the terrain’s geometry, yet it may not
foresee potential contact between its end-effector and the ground. Moreover, these
methods can be sensitive to environmental factors, including adequate lighting and
the availability of visual or geometric features.

Motion planning Numerous motion planning strategies have been explored to
address the challenge of rough terrain locomotion with quadrupedal robots, such
as [27]. One approach centers on the identification of secure footholds and the
execution of collision-free swing-leg motions, primarily by leveraging terrain map-
ping techniques[28]. In a recent development, terrain-aware motion optimization
has emerged. This method jointly optimizes the robot’s base pose and footholds,
incorporating a height map and implementing a graduated optimization technique
to circumvent local optima[29]. However, despite the promise shown by these
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techniques in selecting appropriate footholds, they do not guarantee the prevention
of potential slippage, which may lead to situations beyond the robot’s control.

Proprioceptive feedback A model based work [30] presents a methodology for
slip detection and estimation of the friction parameters, plus a recovery strategy
which exploits the capabilities of a whole body controller, implemented for locomo-
tion, which optimizes for the ground reaction forces. The estimation makes use
only of proprioceptive sensors (no vision) as we use in this work. The recovery
strategy is implemented at the force level and the idea behind the strategy is to
correct the surface normal toward the estimated one resulting in ground reaction
forces which were back inside the real friction cone.

One major limitations regarding the last mentioned method, is that as they
say explicit, the estimated friction coefficient can only decrease during locomotion.
Indeed, if the robot enters in a less slippery terrain after coming from a slippery
one, it will keep the previous friction coefficient which will be too conservative.
However, the same does not hold true for the state of locomotion, as robots often
transition onto surfaces with varying friction levels.

Optimization techniques On the other hand, a multitude of studies have
introduced optimization techniques to tackle the challenge of task accomplishment
in diverse and challenging environments. In this context, many works have ex-
plored the use of (Hierarchical) Quadratic Programming methods for addressing
dynamic functions with multiple constraints associated with a robot’s stability and
controllability.

Recent advancements in optimization methodologies, specifically those involving
quadratic programming, have been well-documented. Notable contributions in this
field can be found in references such as [31], [32], and [33].

In a work back in 2017[32], a trajectory optimization method for quadrupedal
locomotion was introduced, capable of generating motion plans for different gaits,
including walk, trot, and gait transitions. By integrating simple state-feedback
laws and a hierarchical whole-body controller during motion execution, the robot
could follow motion plans, even in the presence of disturbances or perturbations.

These methods are distinguished by their high complexity, relying on specific as-
sumptions to reduce complexity and minimize computational requirements, thereby
facilitating real-time application performance. Nonetheless, a noteworthy limitation
of this approach is the need for pre-estimating the friction cones for upcoming
contact point surfaces. Frequently, the friction coefficient remains unknown, posing
challenges in accurate prediction before ground contact. Consequently, certain
assumptions must be made regarding the friction cones, which may not be ideal
for handling uncertain terrains with unknown surface types.

Learning models In the realm of learning-based approaches, novel methods
have been devised to enhance the efficiency of quadrupedal robot locomotion across
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challenging terrains, encompassing both indoor and outdoor environments such as
icy surfaces, forests, and rocky landscapes. One notable contribution introduces
a solution for integrating exteroceptive and proprioceptive perception in legged
locomotion. The encoder is trained end-to-end, enabling the seamless fusion of
diverse perception modalities without the need for heuristic methods. This results in
a highly robust and speedy legged locomotion controller[34]. Additionally, a recent
study proposes a learning-based technique to reconstruct local terrain information
for mobile robots navigating urban settings. This approach leverages a continuous
stream of depth measurements from onboard cameras, coupled with the robot’s
trajectory, to estimate the topography in the robot’s immediate vicinity[35]. From
motion planning approach, a study introduces a real-time foothold adaptation
strategy that uses visual feedback and relies on onboard computers and sensors.
This strategy continuously adjusts foot landing positions during leg swing phases
and integrates a self-supervised foothold classifier based on a Convolutional Neural
Network (CNN)[36].

In recent years, learning methods for locomotion have gained traction, yet they
come with certain drawbacks. These include the need for substantial volumes of
data to train models and a critical limitation - the absence of a foolproof formula
to ensure desired outcomes; instead, we rely on learning metrics.

Model Predictive Control (MPC) MPC is a control strategy with the ability
to predict future system behavior and make control decisions based on those
predictions. It formulates an optimization problem to minimize a defined cost
function while adhering to system constraints.

A comprehensive controller utilizing MPC was introduced in [7]. This work
presents a whole-body MPC for hybrid locomotion, enabling online gait sequence
adaptation. This approach optimizes the robot’s torso and wheel motion as a single
task, simultaneously optimizing joint velocity and ground reaction forces based on
a kinodynamic model with moving ground contacts.

The framework presented in work [37] focuses on CoM control for position-
controlled quadruped robots using a static walking gait. It utilizes MPC to manage
the CoM’s desired dynamics, with a key advantage being its ability to anticipate
future states. This includes predictions of support polygon movements, allowing
for adjustments to the CoM reference in anticipation of events such as leg liftoff.

Furthermore, there are works that combine MPC and learning methods, as
seen in [38]. In their research, Reinforcement Learning is employed to establish
a gait policy that adapts to diverse environmental conditions. MPC is then
used to implement the chosen gait. To enhance locomotion robustness, a model
adaptation policy is developed, dynamically optimizing input parameters for the
MPC controller, ensuring adaptability and stability in various scenarios.

MPC stands as an advanced technique, supplying the controller with invaluable
predictive insights for future control actions. Yet, the promise of amalgamating
the dynamic model with real-time sensor data feedback and aligning the controller
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accordingly holds the potential for substantial enhancements in adaptive control.

In contrast to MPC, we emphasize that real-time data processing enables us to
adapt the robot’s control effort promptly and ensure stability without the need to
anticipate future time steps, as demonstrated by MPC methods.

2.2.1 Trajectory tracking

One study introduces a trajectory tracking control method aimed at enhancing
the precision of tracking the trunk’s CoM trajectory and foot-end trajectory in a
fully electrically driven quadruped robot [39]. This method is composed of two
main components: the trunk balance controller (TBC) and the swing leg controller
(SLC). In the TBC, the method utilizes a dynamic model of the quadruped robot
to determine the optimal foot-end force, which follows the trunk’s CoM trajectory
based on the MPC principle.

However, it’s worth noting that this study does not consider the possibility
of foot slippage. While the MPC method has the capability to anticipate future
time-steps, it does not guarantee that the controller will have sufficient time to
react and make adjustments in the event of unexpected contact, such as potential
foot slippage, which may occur with one of the stance feet.

To the best of our knowledge, although some works tackle the problem of
trajectory tracking for quadruped robots, such as [40] in joint space and [39] in task-
space, the control problem is not explicitly addressed considering the operation on
a partially or globally slippery terrain without sacrificing the task space trajectory.

2.2.1.1 Swinging leg trajectory

In this subsection, we will present pertinent references pertaining to the design of the
swinging leg trajectory. This aspect holds significant significance as it constitutes a
pivotal task in the locomotion that robots must undertake. Efficiency, encompassing
considerations of time, energy utilization, and adaptability for foothold adjustments,
is of paramount importance in this context.

In this paper[41], a swing leg trajectory optimization for a humanoid robot
locomotion is presented. It is presented a straightforward and efficient approach to
finding an optimal swing leg trajectory while adhering to physical joint limitations,
employing a dynamic programming method. The trajectory’s optimality is assessed
based on a step traversal time criterion and accounts for the velocity and acceleration
constraints of leg joints. These derived walking primitives, considering various
walking parameters such as hip height, step size, and time, serve as a foundation
for obtaining an optimal desired walking primitive with maximum robot velocity,
all while adhering to predefined environmental constraints.

An other research, combing learning method, introduces an innovative high-
level control system for dynamic quadruped robot locomotion [42]. It merges the
rhythmic capabilities of Central Pattern Generators (CPGs) with foot trajectory
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generation using Bézier curves. In that system, CPG output signals serve as driving
parameters for a foot trajectory generator based on Bézier curves.

Bézier curves are commonly employed in numerous studies, including our
current work, to define swinging leg trajectories. This choice is motivated by the
advantageous properties of Bézier curves, particularly their derivative, which allows
for the adjustment of foot speed during swing-leg retraction. This adaptability
is beneficial in mitigating energy losses during running, as noted in the study by
Haberland [43]. The utilization of Bézier curves in this context is instrumental in
optimizing leg movement for improved energy efficiency during locomotion.

2.3 Conclusions

After conducting an extensive literature review on locomotion and agile maneuvers
in challenging terrains, it becomes evident that there is a multitude of interesting
works. The complexity of the problem and its multi-perspective nature make it
challenging to encompass all potential failure cases in the real world.

Nonetheless, our proposed method, which integrates an adaptive body posture
and movement controller, stands out as a novel approach. It not only minimizes
the likelihood of slip detection but also introduces a new adaptive controller that
takes into account the possibility of slippage with each step.
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Methodology

In this chapter, we present a comprehensive analysis of the proposed adaptive
BPMC. The rest section begins with an overview of the problem statement, followed
by introducing the conceptual solution for the BPMC, which we will subsequently
detail in two distinct sections, as we will clarify later on. The primary objectives of
the BPMC are twofold: firstly, to facilitate precise trajectory tracking in challenging
slippery terrains, taking into account the slippage probability as discussed in our
prior work[44], and secondly, to enable agile maneuvers and locomotion lying is
the very same conceptual framework, as the first case, for slip detection.

The BPMC comprises two key components. The first is the “Body Posture
Controller” for slippery terrains, which acts as a two-layer adaptive trajectory
tracking controller for managing the CoM pose based on the given desired trajectory.
The second component, known as the adaptive “Body Movement Controller”, lays in
the same conceptual framework to facilitate various movements and, simultaneously,
initiate locomotion, even in simple or slippery terrains.

Both components of the adaptive BPMC controller exhibit the capacity to
adapt and recover in response to slip detections, ensuring that safety is maintained
and the successful completion of the desired task is not compromised.

3.1 Problem Formulation

Consider the quadruped robot depicted in Fig. 3.1, having n ∈ N joints in each
leg and let qi,j ∈ R, i = 1, ..., 4, j = 1, ..., n be the joint position variables of the
i-th leg. Let q ≜ [q1,1 q1,2 ... q4,n−1 q4,n]

⊺ ∈ R4n be the vector of the total joint
variables of the robot. Furthermore, let {C} be the frame placed at the CoM
of the robot (as depicted in Fig. 3.1) and cpi(qi,1, ..., qi,n) ∈ R3 be the position
of the tip of each leg with respect to {C}. The position and the orientation of
{C} with respect to the world frame {0} is denoted by pc ∈ R3 and Rc ∈ SO(3)
respectively. The world frame {0} refers to a known inertial frame, or to the initial
pose of the robot, namely {C} at t = 0. Let fc ∈ R3 and τ c ∈ R3 be the force and
torque at the CoM respectively. The mapping between the ground reaction forces

15
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fi ∈ R3, i = 1, ..., 4 applied to the tip of each leg and the corresponding generalized
force Fc ≜ [f⊺c τ ⊺

c ]⊺ ∈ R6 at the CoM, is the following:

Fc = G(q)Fa, (3.1)

where

G(q) ≜

[
I3 I3 I3 I3

S(pc1) S(pc2) S(pc3) S(pc4)

]
(3.2)

and

Fa ≜ [f⊺1 f⊺2 f⊺3 f⊺4 ]
⊺ ∈ R12, (3.3)

with pci(qi,1, ..., qi,n) ≜ Rc
cpi(qi,1, ..., qi,n), i = 1, ..., 4, I3 ∈ R3×3 the identity

matrix and S(.) : R3 → R3×3 the skew symmetric mapping. Notice that G(q)
belongs to R6×12, and therefore the problem of solving for Fa given Fc from (3.1)
is redundant. The mapping between the force applied to the tip of the i-th leg and
the corresponding torques at the joints of the leg, is given by:

τ i = (Rc
cJi(qi,1, ..., qi,n))

⊺ fi, (3.4)

where cJi(qi,1, ..., qi,n) ∈ R3×n is the position part of the Jacobian of the leg with
respect to the CoM and τ i ∈ Rn the torques at the joints of the leg.

Figure 3.1: Force distribution among the legs of the quadruped robot.

Remark 1. When less than four tips are in contact with the environment, G(q)
has to be modified accordingly to involve only the legs that are in contact with the
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supporting surface. A representative example is in case of locomotion, in which one
or more legs are in swing phase.

The dynamic model of the system, assuming that the inertia of the legs is
negligible as compared to the inertia of the rest of the body, is given by:

HcV̇c +CcVc + gc = Fc, (3.5)

where Vc ≜ [ṗ⊺
c ω⊺

c ]⊺ ∈ R6 is the generalized velocity of {C}, ωc ∈ R3 being its
angular velocity, Hc ≜ diag(mI3, Ic) ∈ R6×6 is the positive definite inertia matrix
of the robot, gc ∈ R6 the gravity vector and Cc ≜ diag(03×3,S(Icωc)) ∈ R6×6 the
Coriolis-centrifugal matrix, with Ic ≜ RcIR⊺

c ∈ R3×3 and I ∈ R3×3 the inertia
tensor of the main body of the robot. In case the z-axis of the inertial frame is
aligned to the gravity direction, gc = [0 0 mrg 0 0 0]⊺, with mr ∈ R+ being the
mass of the robot and g ∈ R+ the constant acceleration due to gravity. Notice that

a⊺
(
Ḣc − 2Cc

)
a = 0,∀a ∈ R6, which is the so called skew-symmetric property of

the Lagrangian systems.
Consider a torque controlled robot which accepts joint torque commands τ i(t),

where τ i(t) ∈ Rn, i = 1, ..., 4 are joint torques of the i-th leg. For solving the
task-space trajectory tracking problem, one has to solve (3.1) with respect to Fa,
i.e. compute the inverse mapping, to calculate the forces that each leg should apply
in order to render the commanded force in the task-space, Fc, as follows:

Fa = G†(q)Fc, (3.6)

where G† ∈ R12×6 is the right pseudo-inverse of G. In this point, there are
multiple options regarding the pseudo-inverse. Some of them are the right Moore-
Penrose pseudo-inverse, given by G† ≜ G⊺(GG⊺)−1, which will result in an equal
distribution of control effort among the four legs (minimum norm solution), or the
right weighted pseudo-inverse, given by:

G† ≜ W−1G⊺(GW−1G⊺)−1, (3.7)

with W ∈ R12×12 being a positive definite weight matrix. The latter will result
in distributing the control effort based on the selected weight matrix W. More
specifically, in this case, by selecting a positive definite diagonal matrix W ≜
diag(w1,1, w1,2, w1,3, ..., w4,3), the higher the wi,m, the less the force appended to
the m-th direction of the i-th leg’s tip; for instance a high value of w3,2 as compared
to the other wi,m-s, will result in appending less force along the y-direction (m = 2)
of the third leg (i = 3). After computing the corresponding force in each leg, i.e. fi
which is included in Fa, one can compute the commanded torques from (3.4).

Remark 2. When the i-tip is in swinging phase or not in contact with the envi-
ronment, one can assign infinitely large weights, denoted as wi,1, wi,2, wi,3 to guide
it towards the desired behavior. In such a case, there is no requirement to adjust
G(q) to specifically include only the legs in contact with the supporting surface.
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3.1.1 The problem of slippage

From a control’s perspective, dynamic contact events usually result in loss of
controllability of the robotic system. In particular, slippage could lead a) to
singular configurations, in which the rank of cJi(qi,1, ..., qi,n) will be decreased,
b) reaching the joint limits or c) losing contact in one or multiple legs without
accounting for it, which is required for the validity of (3.6). As long as the force
applied by each leg, i.e. fi, is within the friction cone, no slippage of the tip occurs,
with respect to the supporting surface. More specifically, for a given terrain with
constant static friction coefficient µ ∈ R+, the static friction cone, which is the
area in which there is not slippage, is expressed by:

C ≜ {fi ∈ R3 : µ|n⊺fi| > ||(I3 − nn⊺)fi||} (3.8)

where n ∈ S2, with S2 ≜ {x ∈ R3 : ||x|| = 1}, is the normal to the supporting
surface vector.

Figure 3.2: Convergence of the control effort of each leg towards the friction cone.

However, due to the fact that µ is not easy to measure or estimate and most of
the times it is considered to be unknown, one cannot assess a priori, i.e. before
commanding fi to the leg, whether the leg’s tip would slip or not.



3.1. PROBLEM FORMULATION 19

3.1.2 The problem of agile movements

In the domain of control theory for agile movements and locomotion, ensuring
stability revolves around the precise management of the robot’s CoM in relation to
the surface constructed by the tips of a quadruped robot’s legs in contact with the
ground. The geometric area outlined by the contact points of a quadruped robot’s
legs with the ground is called “support polygon”. Ensuring that the projection
of the CoM onto this support polygon remains within its boundaries is a pivotal
factor in ensuring stability during the robot’s agile movements and locomotion[45].

Mathematically, the support polygon can be described as a convex1 polyhedron
defined by the contact points between the robot’s supported feet and the ground.
Let S be the support polygon, and pc,i ∈ R3, for each i that refers to a supported
feet with the ground. In Fig. 3.4, we may observe examples of the S area highlighted
in blue, representing two different scenarios: (a) when all four feet are in contact
with the ground, and (b) when the rear right leg is not in contact. At the same
time, in each of the above cases, the center of support polygon changes, so the
target we have selected for the CoM changes too, as we will later explain in more
detail. Within Fig. 3.4, the variation in the position of the CoM is depicted as a
green dot for each of these cases.

Figure 3.3: Support polygon definition with all supported legs on the ground.

The robot maintains stability during its motion as long as the projection of the
position pc of CoM onto the surface formed by the tip points remains within the
boundaries of the support polygon. As the distance between the projection of the
CoM and the center of the support polygon increases, the criticality of maintaining
stability becomes more pronounced. A greater separation between these points

1Considering valid robot configurations limits
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amplifies the challenges of balance and control, underscoring the need for precise
and responsive control strategies to ensure the robot’s stability during dynamic
movements.

Ensuring that pc remains within the support polygon during dynamic move-
ments involves the design of control algorithms that regulate joint torques or control
inputs in real-time. These algorithms utilize sensory feedback and predictive models
to make rapid adjustments, ensuring that the robot’s CoM stays well-positioned
within the support polygon, thus preserving stability while enabling agile motions.

Figure 3.4: Center of Polygon example for cases: (a) 4, and (b) 3 supporting legs.

3.2 Concept Solution

Adaptive Body Posture Controller For the part of the adaptive Body Posture
Controller, we propose a novel trajectory tracking control scheme featuring a
two-layer online adaptation, based on the stable contact probability (counter
proportional to the probability of slippage) derived from our previous work [44].
The first layer of adaptation introduces a weighted distribution of the control effort
to the legs, by adjusting the 3D applied forces to the tip of each leg. The adaptive
law utilizes the online-computed weights, based on the slippage probability of each
leg. The rationale behind the first layer of adaptation law is to induce smaller
tangential forces to the robot’s end-effectors with large slippage probability in order
to attract the force towards the fiction cone and prevent further slippage.

Furthermore, when the aforementioned force distribution cannot guarantee the
elimination of slippage, we introduce the dynamic time-scaling of the trajectory in
order to slow down the motion, namely, the second adaptation layer, which will
consequently yield a reduced control effort magnitude in general. The complete
adaptive control scheme is shown in Fig. 3.5.
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Figure 3.5: Block diagram of the Body Posture proposed adaptive scheme.

Body Movement Controller This section presents an innovative approach
to agile movements and locomotion. We introduce an adaptive controller that
leverages an unified concept for force distribution among the legs of a quadruped
robot.

The Body Movement controller, serving as an adaptive reaching controller,
plays a pivotal role in initiating locomotion tasks and executing agile maneuvers,
particularly in challenging terrains marked by slipperiness and dynamic obstacles.
The core of the Body Movement controller lies in its initial layer, in which the
control effort is distributed among all stance legs, meaning all legs except the
swinging leg. The latter is accomplished by assigning an exceptionally high weight
to a specific leg, designated as the swinging leg. In that way, the swinging leg task
is attained while, at the same time, the robot keeps its stability and controllability
during locomotion.

Throughout this process, the controller consistently ensures stability by directing
the CoM towards the center of the support polygon. The determination of the
polygon’s center takes into account only the legs that are in contact with the ground
(stance legs) and the swinging leg is temporarily excluded from force distribution.

On top of that, the Body Movement controller offers an additional layer that
can be activated at the user’s discretion, taking into account the probability
of detecting slip events. This extra layer draws inspiration from the approach
used in the first layer of the Body Posture controller. It dynamically adjusts the
effort distribution among all legs based on the slip probability of each foot. This
multifaceted approach not only introduces innovative concepts for agile movements
but also ensures the stability of the robot’s dynamic maneuvers. It represents a
crucial step in advancing the adaptability and robustness of the overall system.
The complete adaptive control scheme for the Body Movement controller is shown
in Fig. 3.6.
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Figure 3.6: Block diagram of the Body Movement proposed adaptive scheme.

3.3 Adaptive Body Posture Controller

A novel trajectory tracking control scheme is proposed for quadruped robots,
incorporating two prioritized layers of adaptation for minimizing possible slippage
of one or multiple legs. The first layer of adaptation distributes the control effort
among the legs without affecting the task performance, exploiting the redundancy
of the quadruped robot. The second layer, which is activated only if the problem
cannot be solved by the first layer, performs time-scaling of the trajectory which
affects only the temporal properties of the task, without distorting the path followed
by the robot. In other words, when the control effort distribution is not enough
for tackling the problem of minimizing the slippage, the temporal scaling of the
trajectory, meaning to slow down the motion, will lead to an overall reduction
of the control effort that has to be applied by the robot’s legs. Moreover, the
proposed control framework builds upon our previous work[44] on contact state
estimation and does not depend on friction cone estimates, as it would possibly
require exploratory procedures which is one of the main advantages from methods
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involving hierarchical quadratic programming and/or optimization with stack-of-
tasks in general.

3.3.1 Proposed Scheme

Given a reference trajectory pd(t) ∈ R3 and Rd(t) ∈ SO(3) for frame {C} in
position and orientation respectively, we consider the trajectory tracking problem,
i.e. the problem of minimizing the Euclidean norms of the following errors in time:

ep ≜ pc(t)− pd(t), eo ≜ log
(
Rc(t)R

⊺
d(t)

)
, (3.9)

where log(R) ≜ kθ ∈ R3 the logarithmic mapping, with θ ∈ [0, π] being the angle
and k ∈ S2 being the axis of rotation of a given R. The trajectory pd(t), Rd(t)
could represent the motion of the main robot’s body during its locomotion, or even
dexterous motions for avoiding collisions in unstructured environments, e.g. the
case of passing through a narrow opening.

Considering the system dynamics given in (3.5), the control objective can
be achieved by applying the following state-feedback control law with gravity
compensation, representing the commanded generalized force that should be applied
to the CoM:

Fc ≜Hc

[
p̈d

d
dt

(
RcR

⊺
dωd

)]+Cc

[
ṗd

RcR
⊺
dωd

]
−
[
kpep
koeo

]
−Kvev + gc,

(3.10)

where

ev ≜ Vc −
[

ṗd

RcR
⊺
dωd

]
, (3.11)

kp, ko ∈ R+, Kv ∈ R6×6 are constant positive control gains and ωd ∈ R3 is the
reference angular velocity which can be calculated by S(ωd) = ṘdR

⊺
d. The proof of

global asymptotic stability of the origin of the state-space, corresponding to zero
error in position and velocity, under the application of the control law (3.10), is
proven in Appendix 5.1.

3.3.2 Slippage detection

For the slippage detection mechanism, stable contact is considered to be the
state in which the robot’s foot is in touch with the ground whilst there is no
relative motion between them. To estimate the stable contact probability, a 6D
Inertial Measurement Unit (IMU) sensor is mounted on each foot of the robot. By
exploiting the uncertainty of the inertial measurements, we employ Kernel Density
Estimation (KDE) to approximate the Probability Density Function for each axis
of the IMU and consequently the per axis stable probability over a small interval,
as dictated in [44]. The method, practically estimates the probability that the
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inertial measurements are close to zero and finally, since they are independent, the
total stable probability is acquired via multiplication. Finally, in order to detect
when the foot touches the ground, one can utilize force measurements, haptic or
dedicated contact sensors. To this end, in this work we exploited the vertical force
measurement (fi,z > 0).

3.3.2.1 First layer of adaptation: Adaptive effort distribution

Based on the above slippage detection mechanism, we propose the following adaptive
law for the weights wi,m,m = 1, 2 (the x − y coefficients) of the tangential force
directions of the i-th leg:

ẇi,1 = ẇi,2 ≜ αPi,

wi,1(0) = wi,2(0) ≜ w0

(3.12)

where α ∈ R+ is a tunable constant adaptation gain, w0 ∈ R+ the initial value of
the weights in x− y direction and Pi ∈ [0, 1] the probability of slippage of the i-th
leg. Notice that the normalization of wi,m, i = 1, ..., 4,m = 1, 2, 3 is not required,
as (3.6), (3.7) do not assume constraints for the values of W.

Remark 3. As the update law (3.12) involves only positive derivatives of the
weights, the weights require re-initialization between consecutive footholds, as the
surface properties of the new contact point are considered unknown.

Remark 4. Notice that (3.12) assumes the orthogonality between the supporting
surface and the gravity direction, for the sake of simplicity of presentation. However,
the generalization to inclined surfaces can be easily done by considering a non-
diagonal W matrix.

Remark 5. Given (3.12), the weights will increase only as long as slippage is
estimated, which means that the weights will eventually reach the value in which
the control effort appended to the specific leg does not yield any slippage. The
increase of these weights (i.e. the weights corresponding only to the tangential
forces) will result in decreasing the magnitude of forces appended towards these
directions. Therefore, the appended force fi will converge to the friction cone C, as
graphically depicted in Fig. 3.2.

3.3.2.2 Second layer of adaptation: Trajectory time-scaling

When all supporting legs are slipping, the first adaptation layer may be insufficient
to restore the robot’s stability. Hence, to handle this type of occasions, we propose
the time-scaling of the trajectory which sacrifices the temporal accuracy of the task
for guaranteeing stability and controllability, maintaining however accuracy with
respect to the spatial properties of the path.

Let pd(tv),Rd(tv) be the time-parametric trajectory, with tv(t) ∈ R+ being
the scaled time parameter and β ∈ [0, 1] the time-scaling coefficient. Hence, the
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evolution of the scaled time parameter is characterized by ṫv(t) = β(t). For instance,
setting a constant β = 1 would result in tv = t and consequently would lead to
the execution of the trajectory on a nominal speed, while setting β < 1 would
slow down the motion. To tackle the problem of global slippage, we propose the
utilization of the following time-scaling coefficient:

β(t) ≜
w0

min(w1,1, w2,1, w3,1, w4,1)
. (3.13)

The rationale behind (3.13) is to reduce the speed (reflected by β) when slippage
has occurred in all four legs, an occasion which is signified by the increase of the
weights of all four legs due to (3.12). For instance, if at least one of the legs does
not face any slippage, then min(w1,1(t), w2,1(t), w3,1(t), w4,1(t)) will be equal to w0

and therefore β will be 1, which means that no time scaling would occur.

As the online time scaling is considered, the trajectory should be generated
online from tv, which is calculated by the integration of ṫv = β(t) in real-time.

Notice that, in such a case ṗd(t) = β(t)dpd(tv)
dtv

, Ṙd(t) = β(t)dRd(tv)
dtv

. The complete
algorithm of the proposed control scheme is given in Algorithm 1.

Remark 6. Notice that if the trajectory is generated online by a dynamical system
(e.g. a Dynamic Movement Primitives model [46]), the application of the afore-
mentioned idea is straight forward, as in that case β would correspond to the time
scaling parameter of the dynamical system.

Algorithm 1 Implementation of the control loop - Body Posture

1: Select values for: kp, ko,Kv, w0

2: W := w0I12, β := 1, tv := 0 ▷ Initialization
3: while control is enabled do
4: Get current state of the robot pc,Rc, ṗc,ωc

5: Estimate Pi, ∀i = 1, ..., 4 ▷ Slip. prob. estimator
6: Compute ẇi,1, ẇi,2, ∀i = 1, ..., 4 from (3.12)
7: Integrate ẇi,1, ẇi,2, ∀i = 1, ..., 4 to update W
8: Compute β from (3.13)
9: Integrate ṫv = β to update tv

10: Compute pd(tv), ṗd(tv), p̈d(tv),Rd(tv),ωd(tv), ω̇d(tv)

11: Compute Fc from (3.10)
12: Compute Fa (includes the fi-s) from (3.6), (3.7)
13: Compute τ i,∀i = 1, ..., 4 from (3.4)
14: Command τ i, ∀i = 1, ..., 4 to the joints
15: end while

Remark 7. To additionally account for tasks that involve deliberate contact loss
of the foot, such as swinging, during trajectory tracking, we propose the utilization
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of the following smooth fade-out function for the weights of the specific leg (the i-th
leg) that is about to elevate:

wi,m(t) =

{
wi,m(0) + atanh

(
t
tf

)
, for t ≤ tf

∞, otherwise
(3.14)

where tf ∈ R+ is the predefined fading-out duration and m = 1, 2, 3; we consider
t = 0 being the instance at the start of the event. Based on (3.14), after tf , the
i-th leg will not be taken into account for the solution of (3.1) and it will not be
considered within the minimum function of (3.13), as its weights will reach infinity.

3.4 Body Movement Controller

In this section, we delve into an elaborate explanation of the Body Movement
controller, which shares the same foundational concept as its predecessor. This
controller assumes the dual role of overseeing agile motions and initiating locomotion,
all while upholding stability by guiding the CoM towards the center of the support
polygon.

The central idea here is a controller that seamlessly balances stability and
the execution of specific tasks for individual legs, such as locomotion. To achieve
this balance, we employ a dynamic weight adjustment strategy for the designated
swinging/task-desired leg j, represented as wj,1, wj,2, wj,3. By driving these weights
towards a notably high value, the corresponding leg effectively exits the torque
distribution solution (3.6).

In the context of this controller, we have defined a free gait, to determine the
order of swinging each leg to initiate locomotion. During this phase, the leg in
the swinging motion is controlled using a Closed-Loop Inverse Kinematics (CLIK)
approach and follows a given desired swinging trajectory. Throughout this process,
the controller consistently guarantees stability, enabling the swinging legs to execute
the desired motions with precision and reliability, while the CoM is reached the
center of the support polygon.

3.4.1 Proposed Scheme

Given a desired target pt ∈ R3 and Rt ∈ SO(3) for frame {C} in position and
orientation respectively, we consider the reaching target problem, i.e. the problem
of minimizing the Euclidean norms of the following errors in time:

ep ≜ pc(t)− pt, eo ≜ log (Rc(t)R
⊺
t ) , (3.15)

where log(R) ≜ kθ ∈ R3 the logarithmic mapping, with θ ∈ [0, π] being the angle
and k ∈ S2 being the axis of rotation of a given R. The target pt, Rt could represent
the center of support polygon of the main robot’s body during its locomotion or
agile movements.
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Considering the system dynamics given in (3.5), the control objective can
be achieved by applying the following state-feedback control law with gravity
compensation and integral term, representing the commanded generalized force
that should be applied to the CoM:

Fc ≜−

ki,p · sat
(∫ t

0
epdt

)
ki,o · sat

(∫ t

0
eodt

)
− [

kpep
koeo

]
−Kvev + gc, (3.16)

where
ev ≜ Vc, (3.17)

kp, ko, ki,p, ki,o ∈ R+, Kv ∈ R6×6 are constant positive control gains and sat() a
saturation function to bound the position into the support polygon bounds.

In contrast with the previous controller, in this scenario, there is no desired
velocity and acceleration, as we have a reaching problem. Then, the initial two terms
in equation 3.10 are no longer relevant. This implies that p̈t = 0, ṗt = 0,ωt = 0.
Additionally, we’ve introduced a integration term, denoted as ki. This parameter
is set to unity for both position, denoted as ki,p, and orientation, denoted as ki,o,
to aid in achieving the target objective.

Firstly, the integral gains ki,p,ki,o in the Proportional Integral Derivative (PID)
controller are exceptionally handy for dealing with persistent errors that linger
even after changes in the system. It continually adds up these errors over time and
helps make the necessary adjustments to steer the system toward its target, even
when there are hiccups or uncertainties.

Additionally, the integration feature in the PID controller acts like a safety net
to ensure that the control commands don’t go beyond certain limits. This is vital
in systems with physical boundaries or safety requirements. It ensures that the
system’s actions stay in a safe and stable range, avoiding situations where things
go too far or get too unstable.

3.4.1.1 Adaptive weights towards an exceedingly high value

In the scenario where leg j is engaged in a specific task(e.g., swinging), whether
in joint or task space, to maintain the robot’s stability, the control effort of the
posture controller should be directed to all legs except for j-th leg.

As pointed out in Remark 1, this would typically entail manual adjustments to
G(q), where only the legs in contact with the ground are considered. However, as
proposed in Remark 2, a more streamlined approach can be adopted. Instead of
altering G(q), we simply adjust the weights associated with leg j to an exceedingly
high value. In this situation, these weight adjustments tend toward a considerably
high value, effectively minimizing the control effort distribution for leg j.

In greater detail, the goal for the adaptive weights associated with the selected
leg is to gradually approach a considerably high value during a specified time window
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when the robot is actively performing the designated task for that leg. During this
period, the control effort is redirected to the other legs, as previously mentioned.
To achieve this dynamic behavior, we utilize the super-Gaussian function, which
enables the weights to rapidly rise to predetermined levels, wmax, within the defined
time window before reverting to their initial values w0.

Super-Gaussian

• Performance Customization: Super-Gaussian functions provide more
flexibility in shaping their performance characteristics. Unlike the classic
Gaussian function, which has a fixed and symmetrical shape, super-Gaussian
functions can be adjusted to take on various shapes and behaviors. This
adaptability allows us to fine-tune the function to better suit the requirements
of the task for the selected leg.

• Controlled Asymptotic Behavior: Super-Gaussian functions are par-
ticularly useful when you need precise control over the rate at which the
function approaches its peak value, as we currently need for the adaptive
weights. By modifying the function’s higher-order moments, one can control
the shape of the curve, influencing how quickly it reaches a chosen value and
how it behaves in the tails. This control is valuable for modeling various
distributions and characteristics. The final scenario occurs when we need to
execute a task rapidly and with precise adaptability using the selected leg.
For instance, in a scenario where a leg needs to start swinging, the rate at
which control is transferred may determine how quickly the leg transitions
from its current state to the swinging motion, or how smoothly it assumes
control of the swinging action. This rate can be adjusted based on the specific
requirements of the task and the robot’s performance goals.

• Time Window for Performance: One notable advantage associated with
the super-Gaussian function is its capability to attain specific values within
specified time intervals. This sets it apart from the Gaussian function, which
maintains a consistent standard deviation regardless of the desired value. In
contrast, super-Gaussian functions can be tailored to swiftly reach a targeted
value within a defined time frame. This feature holds significant importance in
applications where time-sensitive responses are critical, such as tasks involving
leg swinging. The performance within this time window plays a pivotal role
in determining the duration of the swinging leg’s motion.

The duration or lifespan of a super-Gaussian function is determined by its
specific mathematical formulation and parameters. In this implementation, we use
the super-Gaussian function, of the following form (3.18), as it is presented and
well explained in [47]:
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G(x, y) = A ·

b
−
(

d(x,y)2

r2

)P
 (3.18)

where A, b, P , r =
A

b
are parameters ∈ R+ and d(x, y) is a distance function.

Furthermore, it can be observed that G(d = r) =
A

b
. The properties of the

super-Gaussian function are illustrated in Fig. 3.7.

Figure 3.7: Profile of the super-Gaussian beam for various values of parameter P.

The super-Gaussian function presents a plateau-shaped top, featuring a smooth
Gaussian decay along the directions of increasing distance represented by the
function d(x, y). Within this context, specific parameters assume distinct roles:

1. The parameter P plays a pivotal role in governing the sharpness of the plateau.
It essentially controls how swiftly the function transitions from zero to its
peak and subsequently returns to zero.

2. In parallel, the coefficient A serves as a determinant of the plateau’s height,
signifying the function’s maximum value at its peak.

3. Furthermore, the radius parameter r carries notable significance, as it defines
the length from the plateau’s center to a point within the fall-off region. This
length is expressed as a ratio of the height A divided by the base parameter
b.

In essence, these parameters collectively shape the distinct features of the
super-Gaussian function, including the sharpness of its plateau, its peak height,
and the dimensions of its fall-off region concerning its center.
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In this particular implementation aimed at initiating locomotion, we have
selected specific parameter values: A = 1, b = 10, and n = 13. The resulting
performance is illustrated in Fig. 3.8. Let tphase be the current time for the phase
of swinging leg, t0 signifies the time at which the super-Gaussian function starts
activating and reaches a small value of 0.1, and thalf represents the midpoint of the
high-value time window within the function. Thus, the super-Gaussian function
that was selected for the Movement controller is given by:

superG(tphase) = A ·

b
−
(

(tphase−thalf )2

(thalf−t0)
2

)n·(thalf−t0)
 (3.19)

Figure 3.8: Desired Super-Gaussian performance.

The desired performance for the adaptive weights can be described as follows.
When the j-th leg is selected as the swinging or task-desired leg, its initial weight
is denoted as w0. As indicated in Remark 2, this weight needs to be adjusted,
transitioning from the initial value w0 to a significantly higher value wmax and
then returning to w0 once the desired task is completed. To implement this weight
adaptation, we utilize the following equation, incorporating the super-Gaussian
function described in Equation (3.19):

wj,m = w0 + wmax · superG(tphase) (3.20)

where m = 1, 2, 3 for each axis x, y, z. The desire performance of weights over
a high value during one cycle of locomotion is displayed in Fig. 3.9:

,where w0 = 35, wmax = 3500 for x-axis. It’s important to note that this
identical performance applies to both the y-axis and z-axis as well.



3.4. BODY MOVEMENT CONTROLLER 31

Figure 3.9: Adaptive weights during one cycle of locomotion.

3.4.1.2 Swinging phase

The assessment of our approach’s effectiveness in agile movements and locomotion
primarily revolves around the task of leg swinging. As detailed in the forthcoming
“free gait” section (Section 3.4.1.3), we have devised a comprehensive gait planning
strategy to initiate locomotion. This locomotion process is partitioned into four
distinct phases, each corresponding to a specific leg. Within this chapter, our
focus revolves around the comprehensive performance analysis of swinging leg j.
This analysis serves as a foundational step that can subsequently be extended to
encompass the evaluation of each of the robot’s legs.

In the swinging phase, we’ve chosen to utilize (a) a cycloid trajectory and (b)
a 3-rd order Bezier curve as swinging trajectory, to govern the movement of each
leg’s end-effector.

Each trajectory is defined by a specific time duration. We introduce cycloid tra-
jectory since its simplicity, and when, the choice of a Bezier trajectory for swinging
legs is coming as a strategic decision aimed at optimizing motion quality, energy
efficiency, timing coordination, mechanical durability, and stability—all essential
factors in achieving effective agile movements and locomotion for quadruped robots
[43], as it is explained in details in the following paragraph of “Bezier curve”.

It’s important to emphasize that our primary interest lies in the tip’s trajectory
along the x and z axes. We specifically focus on the two-dimensional desired
swinging trajectory that the tip follows within this plane.
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Cycloid trajectory This trajectory, which unfolds in the x-z plane, is character-
ized by Equations 3.21:

x(tphase) =r1 ·
(
2 · π · freq swing · (tphase − t0,swing)

− sin
(
2 · π · freq swing · (tphase − t0,swing)

))
z(tphase) =r2 ·

(
1− cos

(
2 · π · freq swing · (tphase − t0,swing)

))
(3.21)

where r1, r2 ∈ R are distance parameters, freq swing ∈ R is the frequency
of the cycloid trajectory. Consider tphase ∈ R as the time counter of a single
swinging phase for leg j, and let tswing slot ∈ R represent the target duration for
each swinging phase. Consequently, tphase ∈ [0, tswing slot] since it resets to zero at
the commencement of each new phase, signifying the cyclic nature of the swinging
leg transitions. One can define t0,swing as the specific moment when the cycloid
trajectory is intended to become active.

Fig. 3.10 illustrates the time-dependent cycloid trajectory over x and z axis, as
an example, where tswing slot = 2.9, t0,swing = 0.6, freq swing = 0.5, r1 = 0.01, r2 =
0.02.

Figure 3.10: Desired swinging leg trajectory, refer. CoM.

Through differentiation, one can determine the desired velocity corresponding
to the cycloid trajectory, as expressed in Equation 3.22.
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ẋ(tphase) = r1 · 2 · π · freq swing ·
(
1− cos

(
2 · π · freq swing · (tphase − t0,swing)

))
,

ż(tphase) = r2 · 2 · π · freq swing · sin
(
2 · π · freq swing · (tphase − t0,swing)

)
(3.22)

Bezier curve Bezier curves are widely used as foot-end trajectories for quadruped
robots with advantages, such as simple control, high descriptive power and eased
generation for complex smooth curves. The Bezier curve can be expressed as follows
[48]:

BZ(t) =

n∑
i=0

(
n
i

)
ti(1− t)n−iPi, 0 ≤ t ≤ 1, (3.23)

where Pi are elements of Rk, k ≤ n, and called Bezier points [49].
The 2D Bezier curve employed in this implementation is defined by the control

points Pk(x, z), where P0(0.0, 0.0), P1(0.08, 0.1), P2(0.09, 0.1), P3(0.07, 0.0). Sub-
sequently, the desired Bezier Curve for the swinging leg’s x and z axes can be
computed with respect to frame Tj of the swinging leg j as:

xBezier(t) = (1− t)3 · P0,x + 3 · t · (1− t)2 · P1,x + 3t3 · (1− t) · P2,x

+ τ3i · P3,x,

zBezier(t) = (1− t)3 · P0,z + 3 · t · (1− t)2 · P1,z + 3t3 · (1− t) · P2,z

+ τ3i · P3,z

(3.24)

Taking the first derivative of the aforementioned equations allows us to calculate
the desired tip velocity relative to the frame Tj as follows:

ẋBezier(t) = 3 · (1− t)2 · (P1,x − P0,x)

+ 6 · t · (1− t) · (P2,x − P1,x) + 3t2 · (P3,x − P2,x) ,

żBezier(t) = 3 · (1− t)2 · (P1,z − P0,z)

+ 6 · t · (1− t) · (P2,z − P1,z) + 3t2 · (P3,z − P2,z)

(3.25)

Notice that in Equations (3.24) and (3.25), t s not the time but a parameter to
introduce time. Then, the above equations are expanded for the desired duration
of the swinging leg, as t ∈ [0, 1]. Fig. 3.11 illustrates the desired 2D Bezier curve
with respect to the CoM:

Transformation Additionally, we denote the initiation time of a phase concerning
the total experiment duration as t0,phase ∈ R. When a new phase commences at
t0,phase, we record the position of leg j’s tip with respect to the world frame, as



34 CHAPTER 3. METHODOLOGY

Figure 3.11: Bezier Desired swinging leg trajectory, refer. CoM.

p0j ∈ R3. This position serves as a reference point for the start of desired swinging
trajectory of each phase. In the context of the swinging leg, the previously described
desired swinging trajectory and velocity pertain to frame {Tj}. Frame {Tj} is
characterized by its position indicated as p0j and shares the same axis orientation
as the global frame {0}. To enhance clarity, an example of these frames is depicted
in Fig. 3.12. In Fig. 3.12a, we depict frame poses using a realistic representation of
the robot model. In contrast, Fig. 3.12b offers a simplified view by superimposing
these frame poses onto a bounding box or skeletal structure for enhanced clarity
and simplicity.

The desired swinging trajectory vector of the tip j with respect to frame {Tj},
is called pd,Tj

∈ R3 and accordingly the velocity ṗd,Tj
∈ R3, respectively given by:

in case of cycloid trajectory (3.26) and (3.27):

pd,Tj
(tphase) = [x(tphase), 0.0, z(tphase)]

⊺ (3.26)

ṗd,Tj
(tphase) = [ẋ(tphase), 0.0, ż(tphase)]

⊺ (3.27)

in case of cycloid trajectory (3.28) and (3.29):

pd,Tj
(tphase) = [xBezier(tphase), 0.0, zBezier(tphase)]

⊺ (3.28)
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(a) Realistic representation (b) Skeletal structure representation

Figure 3.12: Visualization of Multiple Frame Poses

ṗd,Tj
(tphase) = [ẋBezier(tphase), 0.0, ż(tphase)]

⊺ (3.29)

Notice that y axis is 0.0 since the trajectory is about x and z axis only.
As a final step, we can obtain both the desired swinging trajectory and its

corresponding desired velocity relative to the {C} frame. It’s worth noting that
this procedure is essential for implementing CLIK, enabling the derivation of the
desired joint values, denoted as q, for each joint, effectively transitioning from task
space to joint space.

Then, the trajectory with respect to the inertial frame is given by:

0pd(tphase) = H · [pd,Tj
(tphase)

−⊺, 1]⊺ (3.30)

,where 0pd(tphase) ∈ R4 and H ∈ R4×4 is the homogeneous transformation
matrix (3.31). Notice, that we extract only the first 3 elements from the vector
0pd(tphase) ∈ R4, as it pertains to a homogeneous transformation.

H =

[
I3 p0j
0 1

]
(3.31)

Consequently, the desired velocity is also expressed to the respect of world
frame, denoted as 0ṗd(tphase).

CLIK CLIK represents a control methodology specifically designed for legged
robots. CLIK combines the principles of compliance and inverse kinematics to
orchestrate precise and adaptable leg movements. This approach serves as a
pivotal link between high-level trajectory planning and the nitty-gritty details of
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joint control. By infusing compliance into the control framework, CLIK equips
legged robots with the ability to not only follow predetermined trajectories with
precision but also gracefully adapt to varying terrains and external disturbances.
This adaptability is essential for achieving stable locomotion and executing agile
maneuvers in challenging real-world environments.

As we possess a predefined trajectory for the end-effector of the swinging leg j,
our objective is to implement a mechanism to ensure its adherence to this trajectory.
For this purpose, we have opted for the CLIK approach to govern the tip’s behavior
in joint space. CLIK’s seamless integration into the control framework allows us to
bridge the gap between trajectory planning and precise leg control, enhancing our
robot’s ability to execute tasks with both accuracy and compliance.

The CLIK equation is presented as follows in Equation 3.32:

q̇ = J−1
j · (ṗd,C,j − kclik · (pc,j − pd,C,j)) (3.32)

where, J−1
j ∈ R3×3 represents the inverse Jacobian matrix pertaining to the

selected leg indexed as j, and pc,j denotes the position vector of the tip of leg j
relative to the frame of the CoM, which is denoted as C.

To further elucidate, let ṗd,C,j and pd,C,j denote the desired velocity and
position, respectively, for the desired swinging trajectory of the swinging leg. These
values are expressed in the CoM frame C.

The output of the CLIK process, as given by Equation 3.32, provide us with
a joint velocity vector q̇, which corresponds to the velocity of the swinging leg’s
tip. By utilizing Euler integration, we yield the joint position commands for the
swinging leg at discrete time intervals dt:

qk+1 = qk + q̇ · dt (3.33)

This process enables us to derive the trajectory of the swinging leg based on
the desired position and velocity in the CoM frame, leveraging the inverse Jacobian
matrix associated with the chosen leg.

Subsequently, we initiate a position control mechanism for the swinging tip j,
transmitting exclusively the q values associated with that specific tip. Meanwhile,
the remaining three legs receive their command signals based on the computed
torque of control efforts, a critical step aimed at preserving the robot’s stability
and equilibrium during its motion.

3.4.1.3 Accomplishing free gait

In the context of assessing and triggering locomotion in this study, building upon the
backdrop of agile movements, we introduce a notable locomotion pattern known as
free gait. The adoption of accomplishing free gait in this context carries a multitude
of advantages and merits that are worth highlighting and exploring further. We
opted for the free gait pattern to assess the performance of our proposed body
movement controller in the context of free gait locomotion. As part of potential
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future work, we can explore the integration of environmental sensors, such as
terrain maps, to enable adaptive locomotion tailored to the specific environmental
conditions.

i) Terrain Adaptability: Free gait excels in adapting to diverse terrains by
utilizing real-time adjustments in leg movements and body posture. This
adaptability allows the robot to conform to the specific demands of the terrain
it encounters. For example, on rough or uneven terrain, free gait can modify
leg movements to ensure stable locomotion, while on flat surfaces, it can
optimize for efficiency.

ii) Obstacle Handling: Free gait’s key feature is its ability to dynamically
adjust leg movements and body posture in response to obstacles. When the
robot encounters an obstacle, it can autonomously adapt its gait to step over,
around, or even onto the obstacle. This flexibility in obstacle negotiation
ensures that the robot can navigate complex environments with agility and
precision.

iii) Energy Efficiency: Free gait optimizes energy usage by tailoring its gait
patterns to the specific requirements of the task. For instance, when traversing
flat and even terrain, it can adopt a more energy-efficient gait pattern.
However, when facing steep inclines or rough terrain, it can adjust its gait
for stability and performance. This adaptability ensures efficient energy
utilization.

iv) Dynamic Stability: Free gait provides dynamic stability through real-time
adjustments. When the robot encounters disturbances, such as unexpected
terrain variations or external forces, it can swiftly adapt its leg movements
and body posture to maintain balance. This dynamic response minimizes the
risk of falls and ensures the robot remains stable in challenging situations.

v) Gait Variability: Unlike fixed gaits that are rigid and predefined, Free gait
offers a high degree of flexibility in selecting and adapting gait patterns. This
flexibility allows the robot to choose the most suitable gait for the current
situation. For example, it can switch between walking, trotting, or even
crawling gaits, optimizing its performance and adaptability based on task
requirements.

vi) Sensor Integration: Free gait is designed with the flexibility to incorporate
advanced sensors seamlessly. These sensors provide real-time environmental
feedback, such as terrain roughness or obstacle detection. By integrating this
sensor data into its control algorithms, Free gait can make informed decisions,
adjust its gait, and respond intelligently to its surroundings.

vii) Versatile Applications: Free gait’s adaptability and agility make it suitable
for a wide range of applications. In agriculture, it can navigate crop fields
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with ease. In exploration, it can traverse challenging terrains, including rocky
landscapes or uneven surfaces. In surveillance, it can negotiate obstacles
during patrols. In disaster response, it can reach disaster-stricken areas
efficiently. Its versatility allows it to excel in diverse tasks and environments,
making it a valuable choice for various applications.

The array of benefits associated with free gait position it as a versatile and
promising locomotion strategy that suits a variety of scenarios. The choice to
employ free gait, even in an early stage, in this specific context aligns with its
aptness for navigating demanding terrains and challenging environments for future
work.

In the general process of moving forward using free gait, a quadruped can follow
the straightforward sequence :

a) Initial Stance: All four legs are initially in contact with the ground, provid-
ing stability.

b) Leg Selection: The quadruped selects one of its raised legs to begin the
movement. For instance, the front-right leg.

c) Swing and Land: The chosen leg goes through a swinging motion, lifting
off the ground and then landing in a position that supports forward motion.

d) Weight Transfer: As the leg lands, the quadruped shifts its weight onto
this leg, slightly lifting one of the previously supporting legs.

e) Repeat and Rotate: The quadruped repeats this process by selecting and
moving a different leg. This rotation ensures that only one leg moves at a
time while the others provide stability.

f) Continuous Motion: By continually selecting and moving legs in a coordi-
nated manner, the quadruped achieves forward movement while maintaining
balance.

This straightforward approach allows the quadruped to move forward without
adhering to a specific gait pattern. It’s a simple yet effective method adaptable to
various terrains and scenarios.

In this study, we’ve adopted the following leg sequence: (1.) Front-Right (FR),
(2.) Rear-Left (RL), (3.) Front-Left (FL), (4.) Rear-Right (RR). The locomotion
cycle is structured into four distinct phases, each corresponding to the selection
of one of these legs (FR, RL, FL, RR). In the context of our research, we define
“Phase j” as the combined stance and swing phase of leg j. To provide a clearer
understanding of this locomotion pattern across one complete cycle, the forthcoming
diagrams will illustrate it comprehensively.

In each “Phase j” of locomotion, the sequence of swinging legs follows the
predetermined order we established earlier. Consequently, we calculate the updated
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Figure 3.13: Initial configuration of Locomotion

center of the Support Polygon for the ongoing “Phase j” as our target. This
recalculated center of Support Polygon then acts as an attractor for the CoM under
the control of the Body Movement controller. Over time, since we have adapted
the weights of the swinging leg j, wj,0, wj,1, wj,2, the swinging leg executes the
prescribed swinging trajectory, and we gradually approach the target configuration,
preparing for the subsequent phase to advance our locomotion process. Figure
3.13 illustrates the initial configuration prior to the commencement of locomotion.
Subsequently, Figures 3.14, 3.15, 3.16, and 3.17 depict the sequential progression
through each of the four phases within a single locomotion cycle.

In Phase 0, we designate the FR leg as the swinging leg. The objective is to
align the projection of the CoM with the center of the support polygon, while
excluding the FR leg as a contact point. Throughout the stance phase, the CoM is
directed towards this target, as depicted in the left section of Figure 3.14 and the
support polygon is indicated by the blue-shaded area on the right side of Figure
3.14.

During Phase 1, the RL leg takes on the role of the swinging leg. The support
polygon comprises the contact points of the FR, FL, and RR legs, excluding the
RL leg. The process for guiding the CoM to the target and subsequently swinging
the RL leg remains the same, Fig. 3.15.
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Figure 3.14: Phase 0

Figure 3.15: Phase 1

During Phase 2, illustrated in Fig. 3.16, the FL leg becomes the swinging leg,
while the remaining legs provide support through effort control.
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Figure 3.16: Phase 2

In the last phase for a single locomotion cycle, Phase 3, as Fig. 3.17 presents,
the RR leg is the swinging leg.

Figure 3.17: Phase 3
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3.4.1.4 Slip detection during locomotion

So far, we have introduced the adaptive Body Movement controller, which employs
a unified conceptual approach involving the weighted pseudo-inverse, denoted as
G† (3.7) by adaptive the weights wj,m m ∈ 1, 2, 3 of the j-th swinging leg to a
significant high value, for locomotion. This approach enables the controller to
simultaneously achieve target reaching and execute desired tasks, such as swinging
leg. What is more, the slip detection method described in Section 3.3.2 can be
seamlessly integrated into this controller in order to detect if a foot slips during
locomotion. To elaborate further, the first layer of adaptation can be adjusted
during the locomotion phase while the robot is in the process of reaching its target.
It’s worth noting that the input for slippage probability from Equation (3.12) is
considered for all legs, so ∀i = 1, ..., 4 , with i ̸= j where j is the swinging leg.

So one can adjust the block diagram of the proposed scheme of the adaptive
Body Movement controller in case of slip detection in enabled to:

Ultimately, one can find the comprehensive algorithm for the Body Movement
controller presented in Algorithm 2.
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Algorithm 2 Implementation of the control loop - Body Movement

1: Select values for: kp, ko, ki,Kv, w0, wmax, freqswing, thalf
2: W := w0I12 ▷ Initialization
3: Phase:= “Target”, tphase := 0 ▷ Control phase
4: while control is enabled do
5: Get current state of the robot pc,Rc, ṗc,ωc

6: if tphase > tswing then
7: Phase:=“Target” ▷ End of current swinging phase
8: end if
9: switch Phase do

10: case “Target”
11: Select next j-th as swinging leg ▷ Free gait sequence
12: pT ← center of SP ▷ New target
13: tphase := 0 ▷ Reset phase time
14: Phase:=“Swing” ▷ Change state

15: case “Swing”
16: if Slip detection is enabled then
17: Estimate Pi, ∀i = 1, ..., 4 i ̸= j ▷ Slip. prob. estimator
18: Compute ẇi,1, ẇi,2, ∀i = 1, ..., 4 from (3.12)
19: Integrate ẇi,1, ẇi,2, ∀i = 1, ..., 4 to update W
20: end if
21: Compute wj,m for m = 1, 2, 3 from(3.20), update W
22: Compute Fc from (3.16)
23: Compute Fa (includes the fi-s) from (3.6), (3.7)
24: Compute τ i, ∀i = 1, ..., 4 from (3.4)
25: Command τ i,∀i = 1, ..., 4 to the joints
26: Compute q from (3.33) for the j-th leg’s joints
27: Command q to the j-th leg’s joints

28: end while
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3.4.2 Conclusion

In this work, we propose an adaptive “Body Posture and Movement” controller,
explained in two different sections. The Body Posture controller is an adaptive
trajectory tracking controller which is proposed for quadruped robots and it involves
two prioritized layers of adaptation for minimizing the slippage of one or multiple
legs. The first adaptation layer considers the dynamic distribution of the control
effort among the legs, given the slippage probability for each leg. The second layer,
which is enabled only if the problem cannot be solved by the dynamic distribution
of the effort, which may occur when all four legs slip, acts on the time-scaling of the
trajectory by dynamically and smoothly slowing down the motion, without affecting
the spatial properties of the task. The “Body Posture” proposed method is proven
to be asymptotically stable. The “Body Movement” controller is characterized as an
adaptive controller primarily focused on target-reaching tasks. It shares a common
conceptual foundation with the adaptive “Body Posture” controller, employing the
adjustment of weights for the swinging leg to facilitate the onset of locomotion
within the framework of an accomplished free gait pattern. Additionally, it offers a
notable advantage by incorporating slip detection and recovery during locomotion.
This capability harnesses the first layer of adaptation from the previously mentioned
adaptive “Body Posture” controller, facilitating the dynamic allocation of control
effort among the robot’s supporting legs.



Chapter 4

Experimental Results

An extensive series of experimental evaluations has been conducted to thoroughly
assess the efficacy of the proposed adaptive BPMC across a wide range of scenarios.
These assessments encompass both simulated and real-world settings, employing
the Unitree’s GO1 quadruped robot as the primary test platform (as depicted in
Fig. 4.1). Within this chapter, we will delve into a comprehensive presentation of
the results obtained through the utilization of the adaptive BPMC. These results
are categorized into two distinct sections, each addressing a crucial aspect of the
controller’s performance. Section 4.1 provides a detailed analysis of the “Body
Posture” controller’s outcomes, while Section 4.2 delves into the results pertaining
to the “Body Movement” controller. The segregation of results allows for a
comprehensive examination of the BPMC’s performance under various conditions,
encompassing both simulated studies and real-world experiments.

4.1 Adaptive Body Posture Control

4.1.1 Simulation Study

To assess the performance of the proposed adaptive “Body Posture” control scheme,
we consider five simulation scenarios: a) a simple point-to-point motion to evaluate
the trajectory tracking performance, b) a scenario involving the tracking of a
periodic motion with the rear right foot contacting a slippery surface, c) a scenario
involving the tracking of a periodic motion with global slippage, i.e. all four
legs are contacting a slippery surface, d) a scenario in which one foot contacts a
slippery surface and another foot is lifted to initiate walking and e) simulations of
different terrain type conditions. For the simulations, the model of a Unitree Go1
robot is utilized in the Gazebo environment, right part of Fig. 4.1, and a control
cycle of 2ms is considered. The parameters utilized are kp = 3000, ko = 15,Kv =
diag(550I3, 55I3), w0 = 35, α = 150.

45



46 CHAPTER 4. EXPERIMENTAL RESULTS

Figure 4.1: The initial configuration of the real and simulation experiments when
the front left foot slips. Blue area of the simulation part represents the slippery
surface.

4.1.1.1 Scenario 1: Point to point motion

For this scenario, a terrain with a static friction coefficient of 1.4 is considered,
representing a non-slippery terrain. The desired trajectory is generated online
by the following first order dynamical system: ṗd(t) = pd(t) − pT , with pT =
pd(0)+ [0.1 0.05 −0, 005]⊺ being the constant target. The initial actual and desired
values are p(0) = [−0.043 − 0.0037 0.356]⊺m and pd(0) = [−0.023 0.0063 0.355]⊺m
in order to impose an initial position error of ep = [−2 −1 0.1]⊺cm. In Fig. 4.2 the
actual position evolution is compared to the desired trajectory, in which one can
notice the tracking performance. Notice that the tracking performance is affected
by the unmodelled joint friction that acts as a disturbance to the system, with the
z-direction being the most disturbed direction, due to the manipulability ellipsoid
of the given robot’s configuration. One could possibly reduce this steady state
error by further tuning the control gains (as no extensive tuning was performed),
or by incorporating an additional integral term to the controller.

4.1.1.2 Scenario 2: One-foot slippage

For the second scenario, the rear right foot of the robot (i = 3) is considered
to contact a slippery surface having a static friction coefficient of 0.4, which is
considered to be unknown for the controller. For the rest of the feet a non-slippery
surface is considered. For comparison, two tests are performed, namely one with
the adaptive mechanism and the other without it. The desired trajectory involves
a periodic sinusoidal motion, executing an ellipse on the x− z plane, for position
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Figure 4.2: [Scenario 1: Point-to-point motion] Time evolution of the actual and
desired position.

and a periodic rotation around the x-axis for orientation. The frequency of the
periodic trajectory is 0.7Hz and 0.2Hz in position and orientation respectively. The
weights of distribution along the x direction of each leg (which is equal to the ones
along the y direction), i.e. wi,1, are depicted in Fig. 4.3, alongside with the slippage
probability provided by the estimator, i.e. 1 − Pi. Notice the rise of the value
of w3,1 (the leg that slips), which results in appending less force along the x− y
directions of the third leg. Further notice that the third leg stops slipping after
the adaptation which means that the force converged to a value within the friction
cone and the system reaches a stable steady-state condition.

In Fig. 4.4, the position and orientation errors are depicted, with and without
the proposed adaptive scheme for comparison purposes. Notice that without the
proposed adaptation mechanism, the system is not able to maintain its stability,
as the robot loses contact with the environment at t ≈ 4.5s. Last, notice that
β = 1 during the whole simulation, due to equation (3.13) and the fact that
wi,1 = 35,∀i = 1, 2, 4, which means that the first adaptation layer can sufficiently
provide a solution by dynamically distributing the control effort.

4.1.1.3 Scenario 3: Global slippage

For this scenario, all four legs of the robot are considered to contact the slippery
surface having a static friction coefficient of 0.4. For comparison, we performed
two tests, namely one with the adaptive control scheme and one without it and
the same trajectory with that of the second scenario is considered. The weights of
distribution along the x direction of each leg (which is equal to the ones along the
y direction), i.e. wi,1, as well as the time-scaling parameter β(t) are depicted in
Fig. 4.5, alongside with the stable contact probability provided from the estimator,
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Figure 4.3: [Scenario 2: One-foot slippage] Weight adaptation due to the first layer
(the second layer is not enabled).
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Figure 4.4: [Scenario 2: One-foot slippage] Position and orientation error norms
with and without adaptation.

i.e. 1 − Pi. Notice the rise of the values of all wi,1, i = 1, ..., 4, which results in
slowing down the motion, which is reflected by the reduction of β(t) which converges
to the value of β ≈ 0.77 after t ≈ 5s. In Fig. 4.6, the evolution of the position of
the CoM in time is depicted both with and without the proposed control scheme.
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Notice that without the proposed adaptation mechanism, the system is, also in
this case, not able to maintain the stability of the system as the robot, signified by
the drop of the CoM in Fig. 4.6. Last, notice the smooth online time-scaling of the
trajectory occurred after t ≈ 5s.

Figure 4.5: [Scenario 3: Global slippage] Weight adaptation due to the first and
second layer.

4.1.2 Scenario 4: Elevation of the right-front foot

For this scenario, the rear right foot of the robot is considered to contact the slippery
surface (similarly to the second case), while the front right leg is deliberately lifted
at t = 3s, in order to potentially initiate a walking procedure. The weights of
distribution along the x direction of each leg, i.e. wi,1, alongside with the stable
contact probability provided from the estimator, as well as the norm of the position
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Figure 4.6: [Scenario 3: Global slippage] Evolution of the position of the CoM in
time, with and without adaptation.

error are depicted in Fig. 4.7, with and without adaptation. For the motion of the
swinging leg, a simple joint-space trajectory is designed, which is followed by a
simple joint-space PD controller (only for this foot).

Notice the rise of the weight corresponding to the lifted foot, i.e. w1,1, which
evolves according to (3.14). Further, notice how the weights of the other legs are
affected during the contact loss of the rising foot when the adaptation is enabled,
which keeps the robot stable, as opposed to the case in which no adaptation is
considered.

4.1.2.1 Scenario 5: Testing in different terrain type combinations.

For this experiment, five different combinations of terrain types are tested, i.e.
slippery and not-slippery. In particular, the five cases tested involve a slippery
terrain for a) all the feet of the robot, b) the three feet, c) the front feet, d) the
two diagonal feet and e) only one feet. The maximum deviation among all the feet
from the initial point of contact is given for each use-case in Table 4.1, with and
without employing the adaptation mechanism proposed in this work. It is clearly
shown that the proposed controller is able to maintain stability in any one of the
aforementioned use-cases and ensure that the foot-tip will maintain close to the
initial contact point.

4.1.3 Experimental Validation

The evaluation of the proposed adaptive controller is performed on a real Unitree
Go1 quadrupedal robot. In order to validate the performance of the first layer
of the adaptation mechanism , a 6DOF IMU is attached to the second leg of
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Figure 4.7: [Scenario 4: Elevation of the right-front foot] Weight adaptation during
deliberate contact loss.

Table 4.1: Maximum deviation of the foot tips from the initial contact point, i.e.
max∀i (max∀t≥0 (||pci(t)− pci(0)||)) .

Slipping feet No adaptation* Proposed*

All 0.984m 0.026m

3 feet 1.09m 0.023m

2 front 0.627m 0.048m

2 diagonal 1.032m 0.018m

1 foot 1.055m 0.035m

*Green color indicates a stable operation and red color indicates instability.

the robot, as shown in Fig. 4.1, which is in contact with a slippery surface, (i.e.
lubricant is utilized to emulate the slippery area below the second leg), while the
pose of the robot is found online via an external camera with an off-the-shelf
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visual odometry system1 and therefore initial robot’s pose is considered as the
world frame for the experiment. The proposed adaptive scheme parameters are
set to kp = 2400, ko = 15,Kv = diag(280I3, 28I3), w0 = 35, α = 1000. The robot
was commanded to move along the x-axis with a similar to the second simulation
periodic trajectory for the axis of motion, having a frequency of 0.4Hz. The left
part of Fig. 4.1 depicts the experimental setup with the robot being in the initial
configuration, while in Fig. 4.8, the weight corresponding to the x− y directions of
the second leg is given, alongside with the slippage probability estimate; the weights
of the rest of the legs remained unaltered during the experiment. In Fig. 4.9 the
evolution of position in time is depicted utilizing the adaptive scheme and without
its utilization, for comparison. Notice that the activation of the first adaptation
layer results in maintaining stability, while when executing the same scenario
without enabling the adaptation mechanism the robot is not able to maintain
stability at t ≈ 14.6s. Further, notice that without the adaptation mechanism the
tracking performance is affected by the slippage of the second leg, as it triggers
unmodelled dynamics.
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Figure 4.8: The second weight during the experimental validation.

1https://github.com/IntelRealSense/librealsense/blob/master/doc/t265.md
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Figure 4.9: Evolution of the position of the CoM in time, with and without
adaptation.

4.2 Adaptive Body Movement Control

4.2.1 Simulation

The effectiveness of the adaptive “Body Movement” controller was assessed through
testing in two distinct simulated locomotion scenarios utilizing the Unitree GO1
robot within the Gazebo environment. Both scenarios aimed to evaluate the
controller’s performance during forward locomotion, with each commencing in
different types of terrain: (a) a flat, non-slippery surface, and (b) a flat terrain
with slippery sections and a cylindrical obstacle. In both scenarios, the results
demonstrated the excellent performance of the proposed controller.

In the initial (a) experiment, the “Body Movement” controller demonstrated
its capability in successfully executing the locomotion task. In the second (b)
experiment, we compared the performance of forward locomotion in slippery and
rugged terrains, both with and without adaptation. The findings revealed that
without adaptation, the robot would lose balance when it encountered the cylindrical
obstacle. However, in the adaptation scenario, where slip detection was activated,
the robot successfully identified the slippery surface of the cylinder and, by adjusting
its control efforts, effectively overcame the disruptive obstacle.

For each of the upcoming experiments, we specify the parameters as follows. In
the Gazebo environment, the control cycle for the Unitree GO1 robot is set to 2 ms.
The controller’s gain parameters are assigned as follows: kp = 1300.0, ko = 15.0,
ki = 50.0, Kv = diag(100I3, 10I3), and w0 = 35. The locomotion design includes
parameters such as freqswing = 1.0 Hz, t0,swing = 1.2 s, and tswing = 2.5 s.

Regarding the Super Gaussian, the parameters are defined as follows: A = 1.0,
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b = 10.0, t0 = 1.0 s, and thalf = 1.7 s. Additionally, the 2D Bezier curve used in
this implementation is characterized by control points Pk(x, z), where P0(0.0, 0.0),
P1(0.08, 0.1), P2(0.09, 0.1), and P3(0.07, 0.0) as shown in Figure 3.11.

4.2.1.1 Locomotion in simple terrain

In this simulation scenario, the terrain is characterized as a flat surface devoid of
any slippery conditions. The primary objective is to achieve forward locomotion,
building upon the “accomplishing free gait” concept introduced in the previous
chapter 3.3. It’s important to observe that this controller operates with a target-
reaching approach, where the target for the CoM changes in every new phase.
Figure 4.10 illustrates the current and target positions of the CoM along each
axis. It’s evident that, by the end of the cycle, the target positions in both the x
and y axes are effectively reached. However, it’s important to acknowledge that
the reaching target performance is influenced by unaccounted joint friction, which
serves as a disruptive force in the system. The most notable disruption occurs in
the z-direction due to the demands of the locomotion task.

Figure 4.10: Current and target position for each axis of CoM, during forward
locomotion.

Figure 4.11 displays the positional error observed during locomotion. Notably,
the error pattern exhibits a consistent trend, which aligns with expectations due
to the symmetrical nature of the gait. It’s evident that higher error values occur
each time a new target is established, coinciding with the initiation of a new phase
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(indicated by red vertical dots to demarcate phase cycles). Subsequently, the error
gradually diminishes and converges towards lower values.

For a more detailed examination of the mentioned performance characteristics,
Figure 4.12 presents a zoomed-in version of a specific cycle, allowing for a closer
inspection of these behaviors.

Figure 4.11: Error in position for the CoM, during forward locomotion.

Figure 4.12: Error in position for the CoM, during a single phase in locomotion.

In the context of the locomotion task, our primary focus does not include
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the target orientation because it has a relatively minor impact on the overall
stability during the initiation of locomotion. Simultaneously, slight adjustments
in the robot’s orientation are necessary to facilitate the robot’s configuration for
movement, thereby contributing to its role in free gait locomotion, Fig. 4.15. Figure
4.13 illustrates the orientation performance during locomotion, with an average
error measuring 0.044 and a maximum error of 0.10.

Figure 4.13: Error in orientation for the CoM, during forward locomotion.

Throughout the locomotion study, we have recorded the position of the end-
effector relative to the world frame. Figure 4.14 reveals that the controller has
effectively demonstrated an exceptional capability in achieving precise end-effector
desired tracking for the swinging leg, ensuring that the tip is consistently positioned
as intended.
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Figure 4.14: End-effector position of FR leg, with respect to 0 frame, during forward
locomotion.

4.2.1.2 Adaptive forward movement

The “Body Movement” controller’s performance was also assessed in adaptive mode,
with slip detection enabled to mitigate potential slippage and maintain the robot’s
stability. In this experiment, we examine a scenario where the robot lifts its right
front (FR) foot to navigate around a cylindrical object, as it is shown in Fig. 4.16.
Subsequently, we will compare the controller’s performance both with and without
the adaptation mechanism.

As demonstrated, the robot experiences a loss of stability when the adaptation
mechanism is not in use. However, when the adaptation is enabled, the robot
successfully maintains its stability and continues walking. The parameters utilized
in this experiment remain consistent with those described in the initial section of
this chapter, with the addition of the parameter α = 150, needed for the adaptation
mechanism.

In Figure 4.17, the position of the CoM along each axis during locomotion is
depicted. The red color represents the actual CoM position during locomotion
without adaptation, while the gray line corresponds to the target position. It’s
particularly evident in the z-axis that, as the robot steps onto the cylinder object,
it loses contact with the ground and falls.

In contrast, the blue and dark plot, which corresponds to the same variables
with the adaptation mechanism in place, effectively maintains the robot’s stability



58 CHAPTER 4. EXPERIMENTAL RESULTS

Figure 4.15: Robot configuration in each phase, during one cycle of forward
locomotion.
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Figure 4.16: Simulation configuration involving a cylinder in Gazebo environment.

without compromising its gait and intended task.

Figures 4.18 and 4.19 provide insight into the errors in position and orientation.
As previously explained in the context of the experiment for locomotion in uncom-
plicated terrains, the error is more pronounced at the beginning of each new phase
when the target for the new phase is established. Subsequently, the position error
decreases, with exception being the cylinder contact event for the non-adaptive
case of the “Body Movement” controller.

Both Figures 4.18 and 4.19 illustrate the loss of control over the robot following
the contact of the end-effector with the cylinder object.

In terms of the positioning of the FR leg during this locomotion experiment,
the adaptive movement controller, as proposed, effectively maintains the robot’s
stability and accomplishes the intended task for the end-effector, even in the face
of an unforeseen event at t = 23.5s. Conversely, the proposed controller without
adaptation initially experiences a loss of tip position in the y-axis, and over time,
it leads to subsequent deviations in the x and z axes of the FR end-effector at
t = 27.0s.

Figure 4.21 presents the adaptive weight distribution across each foot. It’s
important to note that the high-value windows have been configured to allow
the swinging leg to effectively manage the desired task, through super Gaussian
function.

Furthermore, the smaller values of weight adaptation, indicate that the system
is receiving a higher probability of slippage as input. In this regard, the controller
effectively maintains stability even in contact events, such as when placing the
end-effector against a cylinder.
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Figure 4.17: Current and target position for each axis of CoM, during adaptive
forward locomotion.

Figure 4.18: Error in position for the CoM, during adaptive forward locomotion.
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Figure 4.19: Error in orientation for the CoM, during adaptive forward locomotion.

Figure 4.20: End-effector position of FR leg, with respect to 0 frame, during
adaptive forward locomotion.
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Figure 4.21: Adaptive weights of slip probability and super Gaussian adaptation
for locomotion.

4.2.2 Conclusion

In this work, an adaptive trajectory tracking controller is proposed for quadruped
robots, which involves two prioritized layers of adaptation for minimizing the
slippage of one or multiple legs. The first adaptation layer considers the dynamic
distribution of the control effort among the legs, given the slippage probability for
each leg. The second layer, which is enabled only if the problem cannot be solved
by the dynamic distribution of the effort, which may occur when all four legs slip,
acts on the time-scaling of the trajectory by dynamically and smoothly slowing
down the motion, without affecting the spatial properties of the task.

This approach has been established as asymptotically stable, guaranteeing the
gradual convergence of the system to a stable state over time. Moreover, the
combination of simulations and real-world experiments unequivocally demonstrates
the method’s capacity to enhance system robustness. It excels in minimizing leg
slippage, consequently fostering both the stability and controllability of the robot.

In the context of the locomotion task, we observe that in the case of non-slippery
terrains, the controller excels in tracking the desired position for the CoM, thereby
ensuring stability. Furthermore, the consistent achievement of the desired CoM
target in each instance ensures that the swinging leg precisely follows its intended
path. This evidence underscores the “Body Movement” controller’s effectiveness as
a precise torque command controller, enabling agile movements, particularly in the
context of locomotion.
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Furthermore, when encountering terrain irregularities, such as slippery surfaces
or even cylindrical objects on the ground, the suggested adaptive “Body Movement”
controller demonstrates remarkable proficiency in overcoming these unforeseen cir-
cumstances. It has been observed that the robot lacking the adaptation mechanism
does not have sufficient time to recover from such instances of slippage, resulting
in a loss of control.

Overall, it is shown through simulations and experiments that the method
equips the system with robustness, as it is able to minimize the slippage of the legs
and it ensures the stability and controllability of the robot during agile manoeuvres
and locomotion.
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Chapter 5

Conclusions

Throughout this master’s thesis we focused on enhancing the adaptivity of con-
trollers when confronted with challenging terrains, particularly in scenarios involving
slipping surfaces. Our objective encompassed the refinement of both trajectory
tracking and reaching controllers to furnish them with the capability to swiftly
adapt to external disturbances, especially during unmodeled contact events. The
motivation behind this endeavor stems from our overarching goal of addressing
the complex issues associated with agile maneuvers and locomotion across sur-
faces characterized by uncertain low-friction conditions, such as those defined by
low-friction cones.

Building upon the foundation established in the preceding work, “Probabilistic
Contact State” (referenced as [16]), we have undertaken the development and
comprehensive exploration of diverse applications. These applications encompass
a range of functions, including the optimization of body postures and the fine-
tuning of body movements, with a central emphasis on harnessing the probabilistic
information related to contact states. This approach extends our understanding
of how probabilistic contact state data can be effectively leveraged across various
aspects of our research and development endeavors.

In this research project, we introduce a novel set of adaptive trajectory tracking
and locomotion controllers meticulously designed to address the unique challenges
posed by quadruped robots navigating slippery terrains, with a particular emphasis
on the innovative BPMC platform. These controllers represent a groundbreaking
approach to enhance the robot’s adaptability and performance, enabling it to
traverse challenging environments with a heightened level of agility and precision.

The core objective of this work is to develop controllers that empower quadruped
robots, such as those based on the BPMC, to navigate and operate effectively in
conditions characterized by low friction, uneven surfaces, and potential slipping haz-
ards. This is a critical endeavor, as it extends the capabilities of quadruped robots
beyond controlled environments and into real-world scenarios where unpredictable
terrains and conditions demand advanced locomotion strategies.

By proposing adaptive trajectory tracking and locomotion controllers, we are not

65



66 CHAPTER 5. CONCLUSIONS

only advancing the state-of-the-art in robotics but also contributing to the field of
autonomous navigation and mobility. These controllers are carefully engineered to
optimize the robot’s movement in slippery terrain, thus broadening the spectrum of
potential applications, from search and rescue missions in challenging environments
to the efficient exploration of complex terrains.

In more detail, the adaptive “Body Posture” controller, serving as the trajec-
tory tracking controller, comprises two prioritized layers of adaptation aimed at
minimizing slippage in one or multiple legs. The first adaptation layer takes into
account the dynamic distribution of control effort among the legs, factoring in the
slippage probability for each leg. The second layer, which becomes active when
dynamic effort distribution alone cannot address the issue, intervenes by adjusting
the time-scaling of the trajectory. This adjustment is executed in a dynamic and
smooth manner, slowing down motion without affecting the spatial properties of
the task.

Importantly, the proposed method demonstrates asymptotic stability. Simula-
tions as well as real experiments validate its effectiveness in reducing leg slippage
while ensuring the robot’s stability and controllability. Notably, this is achieved
without compromising the task space trajectory, a critical feature for applications
in visual and depth-based Simultaneous Localization and Mapping. Stable and
precise movement is paramount for the success of such approaches.

The “Body Movement” controller, serving as an adaptive reaching controller,
plays a pivotal role in initiating locomotion tasks and executing agile maneuvers,
particularly in challenging terrains marked by slipperiness and dynamic obstacles.

The core of the “Body Movement” controller lies in its initial layer, which
ensures the equitable distribution of forces among all legs. Notably, this layer
allows for the assignment of an exceptionally high weight to a specific leg, often
designated as the swinging leg. This strategic assignment effectively excludes the
swinging leg from the overall force distribution equation.

Throughout this process, the controller diligently maintains stability by accu-
rately computing the center of the support polygon, aligning it with the CoM. This
calculation takes into account only the legs in contact with the ground, commonly
referred to as ’stance legs.’ Significantly, the swinging leg remains uninvolved in
the distribution of control effort, contributing to precise and stable locomotion.

On top of that, the “Body Movement” controller offers an additional layer that
can be activated at the user’s discretion, taking into account the probability of
detecting slip events. This extra layer draws inspiration from the approach used
in the first layer of the “Body Posture” controller. It dynamically adjusts the
effort distribution among all legs based on the slip probability of each foot. This
multifaceted approach not only introduces innovative concepts for agile movements
but also ensures the stability of the robot’s dynamic maneuvers. It represents a
crucial step in advancing the adaptability and robustness of the overall system.

Furthermore, it is important to note that our approach avoids making the
assumption that the surface in front of the robot consistently exhibits a uniform
friction coefficient. In each new step, we re-evaluate the consideration of swing foot
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weight, ensuring adaptability to varying surface conditions.

An adaptive locomotion controller of this nature is versatile and suitable for
navigating through challenging terrains, be it indoor or outdoor environments. It
offers enhanced adaptability and performance for a wide range of locomotion tasks.

Additionally, our research includes an extensive program of experimental eval-
uation, which has been conducted in a range of settings. We have meticulously
tested our approach in both real-world and simulated scenarios, employing the GO1
quadruped robot as the primary test platform. This comprehensive assessment al-
lowed us to gain valuable insights into the real-world applicability and performance
of our method.

The outcomes of our experiments, derived from both simulated trials and real-
world tests, underscore the effectiveness of our approach. We found that the method
significantly enhances the system’s robustness, making it capable of minimizing leg
slippage. Moreover, it ensures the robot’s stability and controllability, even in chal-
lenging conditions. This robustness and reliability represent significant milestones
in advancing the capabilities of quadruped robots, making them better equipped
to handle a wide array of real-world scenarios with precision and confidence.

In summary, our research represents a significant step forward in the realm of
quadruped robot locomotion, introducing a set of adaptive controllers that promise
to revolutionize the way these robots interact with and navigate slippery terrains,
with the ultimate goal of making them more versatile, reliable, and robust in various
real-world scenarios.

5.1 Future work

In our ongoing research endeavors we are actively exploring challenging, yet promis-
ing topics. A central aspect regards the generalization of terrains that are traversed
by quadrupeds. In other words, we plan to extend our approach to the case of
uneven and rough terrains characterized by varying inclinations. Our ultimate
goal is to enhance both of the proposed controllers to accommodate the above
mentioned terrains, utilizing as input 3D maps of the latter.

We are also actively exploring the integration of adaptive controllers with MPC.
This collaborative approach aims to extend the temporal perspective, effectively
lengthening the decision horizon for future steps in locomotion tasks. This strategic
integration holds the potential to unlock a wide range of new possibilities, including
the seamless incorporation of auxiliary tasks, such as pushing or carrying objects.
The initiative, uniting the adaptability of our controllers with MPC, promises to
significantly expand the spectrum of tasks and capabilities that our system can
handle.

Another strand of our research involves the creation of a probability map that
quantifies the risk associated with potential footholds. Our proposed approach
leverages the power of machine learning, drawing insights from data acquired
through depth cameras and 3D simulations. Our objective is to train a robust model
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capable of distinguishing between secure footholds and those with a heightened risk
probability. Through the amalgamation of depth data and simulations incorporating
external forces, we aim to equip our robotic system with the capacity to identify
secure and stable footholds, thus significantly enhancing navigation in challenging
terrains and bolstering the overall safety of robotic locomotion tasks.

Lastly, we’re in the process of refining our current approach for “Body Move-
ment”, specifically concerning the trajectories of swinging legs until they make
contact with the ground. This refinement draws inspiration from related work
developed for humanoid robots, as documented in [50].
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[49] P. E. Bézier and S. Sioussiou, “Semi-automatic system for defining free-form
curves and surfaces,” Computer-Aided Design, vol. 15, no. 2, pp. 65–72,
1983. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
0010448583901707

[50] A. A. Saputra, A. S. Khalilullah, I. A. Sulistijono, and N. Kubota, “Adaptive
motion pattern generation on balancing of humanoid robot movement,” in
2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering
(CCECE), 2015, pp. 1479–1484.

[51] L. Koutras and Z. Doulgeri, “Exponential stability of trajectory tracking
control in the orientation space utilizing unit quaternions,” in 2021 IEEE/RSJ
IROS, 2021, pp. 8151–8158.

https://www.sciencedirect.com/science/article/pii/0010448583901707
https://www.sciencedirect.com/science/article/pii/0010448583901707


74 BIBLIOGRAPHY



Appendix

Global asymptotic stability (3.10)

After substituting (3.10) in (3.5), we get the following closed loop system dynamics:

Hcėv = −(Cc +Kv)ev −
[
kpep
koeo

]
, (5.1)[

ėp
ėo

]
=

[
I3 03
03 Jl(eo)

]
ev, (5.2)

where Jl(eo) ∈ R3×3 the matrix mapping the orientation part of ev to ėo, as detailed
in [51], for which the following holds: J⊺

l eo = Jleo = eo (as shown in [51]).

Theorem 1. The origin of the state-space of the system (5.1), i.e. (ep, eo, ev) =
(0,0,0), is globally asymptotically stable.

Proof. Consider the following candidate Lyapunov function:

L =
kp
2
|ep|2 +

ko
2
|eo|2 +

1

2
e⊺vHcev. (5.3)

By taking its time derivative, we get L̇ = kpe
⊺
pėp + koe

⊺
oėo +

1
2e

⊺
vḢcev + e⊺vHcėv.

After substituting Hcėv from (5.1) and utilizing the skew symmetric property, i.e.

e⊺v
(
Ḣc − 2Cc

)
ev = 0, we get:

L̇ = kpe
⊺
pėp + koe

⊺
oėo + e⊺v

(
−Kvev −

[
kpep
koeo

])
. (5.4)

By utilizing (5.2) and the property J⊺
l eo = Jleo = eo, (5.4) becomes: L̇ =

−Kve
⊺
vev,which is less or equal to zero for all ep ̸= 0, eo ̸= 0, ev ̸= 0. Hence,

by invoking the LaSalle theorem we can conclude that the origin is globally
asymptotically stable.
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