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Abstract

We present the sampling and decoding algorithm and the VLSI implemen-
tation of a high-speed UART (Universal Asynchronous Receiver-
Transmitter) library cell to be used in custom or semi-custom VLSI chip
designs. Our approach to data recovery, which is based on signal prepro-
cessing and an innovative decoding algorithm, operates with as few as 2
samples per bit time, thus achieving a high communication rate. Using a
clock of frequency f MHz, this UART can transmit and receive at a rate of
up to f Mbits/s, without any internal multiplication of the clock frequency.

The current design, that was submitted for fabrication operates at data rates
up to 25 Mbits/s (ES2 1.5 μm CMOS standard cell technology), while
extensive simulations for a higher performance technology (1 μm gate-
array) verify that our cell operates at data rates up to 60 Mbits/s. We are
currently performing post-fabrication testing, and some preliminary results
show that the prototypes operate succesfully at the data rate of 20 MHz.
The resulting cell is small and flexible, making it suitable to be used as a
building block in chip designs. It can serve as an interface between serial
asynchronous communication links, or as a building block for fast and
inexpensive networks.
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Abstract

We present the sampling and decoding algorithm and the VLSI implementation of a high-

speed UART (Universal Asynchronous Receiver- Transmitter) library cell to be used in custom

or semi-custom VLSI chip designs. Our approach to data recovery, which is based on signal

preprocessing and an innovative decoding algorithm, operates with as few as 2 samples per bit

time, thus achieving a high communication rate. Using a clock of frequency f MHz, this UART

can transmit and receive at a rate of up to f Mbits/s, without any internal multiplication of the

clock frequency.

The current design, that was submitted for fabrication operates at data rates up to 25 Mbits/s

(ES2 1.5 μm CMOS standard cell technology), while extensive simulations for a higher perfor-

mance technology (1 μm gate-array) verify that our cell operates at data rates up to 60 Mbits/s.

We are currently performing post-fabrication testing, and some preliminary results show that the

prototypes operate succesfully at the data rate of 20 MHz. The resulting cell is small and flexible,

making it suitable to be used as a building block in chip designs. It can serve as an interface

between serial asynchronous communication links, or as a building block for fast and inexpensive

networks.
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Chapter 1

Introduction and Overview

In the area of serial asynchronous communications, the RS-232 physical layer protocol is the

most frequently used standard, as implemented by the UART chips. These chips recover the

transmitted data by oversampling the incoming serial stream with a fast clock. Therefore, the

need for such a fast clock is the reason that limits their highest achievable speed of operation.

We have designed a UART cell, based on purely digital techniques, that can be used in custom or

semi-custom VLSI chip designs. The approach adopted in the design of our UART cell, was to

recover the transmitted data by preprocessing of the serial input and a ‘‘smart’’ decoding algo-

rithm. This method overcomes the limitations of the standard UART cells and has the advantage

of being capable to operate at high frequencies. In this introduction, section 1.1 will state the

framework of serial communications, and briefly describe the RS-232 interface standard. Section

1.2 discusses the main problem of serial communications, the clock recovery, and the usual

methods for achieving it. Finally, Section 1.3 presents an overview of the UART cell that was

designed.

1.1 Serial Communication
In the area of digital communications, bits of binary data are commonly transferred by changes in

current or voltage. The two primary distinctions of the type of transfer on the physical medium,

is between serial and parallel transmission. In serial communication, the transmitted informa-

tion is carried over a single line, while in parallel, bits of data are sent simultaneously either over

separate lines or on different carrier frequencies on the same communication line. Parallel data

transfers are motivated by high speed requirements in short distances. However, as the distances

between interconnected devices increase, the timing skew between the multiple signals becomes
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the critical factor. Also, the cost of multiple cabling and equipment must be considered: serial

transmission achieves to reduce the number and cost of equipment needed. Another reason for

using serial communications is the interfacing with available data transmission media, e.g. tele-

phone lines. Since there is only one line available, data of parallel form are sent using time mul-

tiplexing. The receiver and transmitter pair serialize the bits that represent the data, send them

over a single line, and reassemble them in parallel at the other end of the cable.

Since in digital communications, there exists timing skew between the data and clock sig-

nal, the synchronization between receiver and transmitter can not be done assuming that the two

nodes run under the same clock. The existing synchronization schemes distinguish the data links

in synchronous, where the clock is sent together with the data, and in asynchronous, in which the

data do not carry any clocking information. In synchronous interconnect, the exact departure or

arrival time of each bit of information is predictable, but in asynchronous, the data arrive to the

receiver asynchronously to its local clock, at non-uniform rates. Moreover, synchronous mode of

transmission is used for time-constrained applications such as voice and real-time traffic, while

traffic without specific constraints is transferred in asynchronous mode. The majority of serial

communication links in use are asynchronous.

In asynchronous transmission, no clock signal is sent with the data. For this reason, the

transmitter and receiver must agree upon all the parameters of the bit format, including the nomi-

nal bit time, parity, number of data bits for each frame, and number of stop bits. The transmis-

sion is controlled by start and stop patterns at the beginning and the end of each data character.

In short, protocols of serial asynchronous links operate as follows: When the transmitter is idle,

the line is maintained in a continuous ‘‘mark’’ (idle) state. A data transmission may be initiated

at any time by sending a start bit, followed by the bits of data, and finally the stop bit, as shown

in figure 1.1. After that, the transmitter may immediately send a new start bit, if another charac-

ter is available, or maintain the mark (idle) state as long as it is idle.

�������������������������������������������������������������������������������
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Figure 1.1: Asynchronous Data Character format.
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The most common physical layer protocol for serial asynchronous communication is the

RS-232 protocol. It was originally developed as a specification for connecting devices using the

telephone network as an intermediate medium, through modems. Later, it became widely

adopted to connect computers with ASCII terminals or computers with other computers through

serial RS-232 ports. Its specification includes the electrical signal characteristics, the interface
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mechanical characteristics (connectors and interfacing cables), a functional description of the

interchange circuits, and recommendations and explanatory notes. The RS-232 standard uses

bipolar modulation, that is, it uses two voltage signs (polarities), in contrast to unipolar modula-

tion which uses only one voltage sign. The bit 0 is represented by a voltage value V in the range

[+3V, 25V], and bit 0 is represented by a voltage -V. The other main specifications of the proto-

col are:†

(1) Driver output impedance with power off should be less than 300 ohms.

(2) Driver output voltage with open drain less than 25V.

(3) Driver slew rate less than 30V/μs.

(4) Receiver output with +3V input should be space (logic 0)

(5) Receiver output with -3V input should be mark (logic 1).

(6) The capacitance of the driven circuit should not exceed 2500 pF, including the cable capaci-

tance.

However, the above specifications are not strictly followed in the various implementations

of the protocol. The reasons for the relaxed adherence to the rules are mainly the problems

resulting from the electrical specifications. For example, the limit of the capacitance of the

driven circuit can be met only for cable lengths up to 15 meters since common cables have

capacitances of 50-100 pF/m.

The most popular and widely used implementations of the RS232 protocol is provided by

the UART (Universal Asynchronous Receiver Transmitter) chips. Commercially available

UART chips, offer bit rates from 50 b/s up to 153 Kb/s.

1.2 Existing Methods for Clock Recovery
In serial asynchronous communications, no clocking information is transmitted with the data,

and no common clock is distributed to the receiver and transmitter. The clock recovery prob-

lem exists here in the sense of generating a clock with which the input serial stream should be

sampled. The main approaches to the clock recovery are the use of Phase Locked Loops (PLL),

and oversampling.

A Phase Locked Loop (PLL) is a circuit that synchronizes a periodic output signal (gen-

erated by an oscillator) with a reference input signal in frequency as well as in phase [Best85].

In the synchronized ‘‘locked’’ state, the phase error between the oscillator’s output signal and

the reference signal is zero, or very small. If a phase error builds up, a control mechanism acts
������������������
Selected from the detailed protocol specification as it appears in [McNam88].
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on the oscillator in such a way that the phase error is again reduced to a minimum. In such a

control system, the phase of the output signal is locked to the phase of the reference signal. The

functional blocks of a typical PLL are: a voltage-controlled or current-controlled oscillator, a

phase detector, and a loop filter. PLLs are classified depending on the type of phase detector

(PD) used. The most frequently used PDs are of linear type which are built from analog com-

ponents, and digital type, which are built from digital components and operate only on binary

signals. However, in a DPLL system that uses a digital PD, the rest of the components (filters,

VCOs, CCOs) may be analog, and thus generate intermediate analog voltages. There exist also

all-digital PLLs, which are built exclusively from digital components. These are slower than

analog PLLs, and are used for low frequencies, in the range of KHz. The performance of a PLL

is characterized by its lock range, that is the range of frequencies over which phase lock is

achieved. Normally, the lock range is the operational range. The majority of the commercial

PLLs are built in NMOS or CMOS technologies, and can be used at low frequencies, up to

several MHz; PLLs built in TTL technologies operate up to about 25 MHz, while ECL circuits

cover the range up to several GHz. In the recent literature, implementations of all-digital PLLs

appear to require complicated hardware, and their operation range is limited up to several KHz,

as in [HaPu91]. On the other hand, implementations of linear PLLs built in advanced CMOS

processes (˜0.8 μm channel length), like the one appearing in [JoHu88], operate at higher fre-

quencies, in the range of MHz’s. Apart from requiring high design expertise and fine tuning,

these designs occupy considerable silicon area.

Available implementations of the asynchronous serial communication protocol by UART

chips, determine the value of incoming bits by sampling the serial bit stream with a sample

clock; the bit value is determined by a unique sample taken with this sample clock. In order to

get a ‘‘safe’’ sample, the sampling must occur at the middle of the bit, as far as possible from

transitions near the bit boundaries. Thus, the problem of determining the bit values is

equivalent to generating a sample clock with edges at the center of bits. The receiver generates

this sample clock by using another, fast clock, of frequency K x data-rate; usually K =16. Fig-

ure 1.2 illustrates the timing of the sample clock generation for a primary clock of 4x data-rate

(b), and 16x data-rate (d). As soon as a start bit is detected as a change of the serial input from

1 to 0 (in the example figure at t=t0), a down-counter is loaded asynchronously with K/2.

When the counter reaches 0, a sample clock pulse is produced.

In the ideal case, the timing of the sample pulse should be at the center of the bit, but since

the receiver clock runs asynchronously to the Serial Input, this does not usually happen. The

distance between the sampling point and the center of the bit is the sampling error, and in the

worst case, the maximum sampling error is equal to the receiver (fast) clock period. To limit

this error, a high resolution of the receiver’s clock is required, since the higher the clock fre-

quency is relative to the baud-rate, the greater resolution of the Serial input is.
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Figure 1.2: The effect of clock frequency on Sample clock generation

in conventional UARTs.
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Thus, conventional UARTs need fast clocks in order to determine with accuracy the center

of the input bits, and their values. This fact ends up being limiting factor for their highest

achievable speed of operation. As we move to higher speeds, the distortion of the input pulses

gets worse, and the sampling error has to be very small in order to achieve correct results. So,

the receiver clock should be many times higher than the data-rate. However, with the current

technologies, realistic clock rates are up to 100 MHz; above this rate, many problems arise from

the large interconnect delays and skews. Using this value, we can estimate the maximum com-

munication rate to be 6.2 MHz or 3.2 MHz, for K =16 or 32, respectively.

1.3 Cell Overview
In the previous sections, we have seen the serial communications standards, and discussed about

methods of clock recovery from a serial input stream. We have presented the commonly avail-

able implementations of asynchronous serial protocols, and their inefficiency for high speed

operation. In order to overcome these limitations, we have designed a UART cell that employs

purely digital techniques, and can operate at high rates based on a ‘‘smart’’ decoding algorithm.

By preprocessing the serial input, and owing to its decoding algorithm, our cell eliminates the

need for very fast sampling clock or complex analog components. Furthermore, the decoding

algorithm copes with the signal distortion inherent at high frequencies, and enables the opera-

tion at high data rates. The designed cell is small and flexible, and can be easily used as a build-

ing block in custom or semi-custom chip designs.

Our UART cell can operate at any of the fixed baud rates of conventional UARTs, but can

also send and receive data at much higher rates. Using an external reference clock of frequency
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fclk, it derives its internal transmit and receive clocks, setting the communication rate to any

integer submultiple of twice that clock’s frequency fclk. More precisely, the communication

rate can be set to 2fclk /N bits/s, where N can take any integer value between 2 and 1,048,576

(220−1), resulting to a very wide communication range. For example, assuming an external

clock of 25 MHz, the data rate can be set between 47 bits/s and 25 Mbits/s.

In order for the Receiver to run at high frequencies, we followed an approach different

from that of traditional UARTs. As we have seen, conventional UARTs oversample the incom-

ing data with a fast clock (usually 16x or 32x data-rate), and use the middle sample as the value

of the bit, i.e. they neglect the samples near the bit boundaries, where transitions happen, and

use only the ‘‘safe’’ sample from the middle of the bit. Our approach is to first shape the

incoming signal through preprocessing filters, and then feed all acquired samples to an FSM

that decides the bit value. The receiving algorithm implemented by the FSM can operate with

very few samples per bit time, and thus avoids the need for a very fast sampling clock, and

enables operation at high data rates. In the extreme case, we need only 2 samples per bit, which

is the theoretical minimum to reconstruct a signal from its samples, as stated by the Sampling

Theorem, [Op83].

Our cell was designed using primitive cells from the ES2 Standard Cell Library. The

UART consists of two independent parts, the Transmitter and the Receiver. Each part of the

UART was designed as a macrocell, in order to be used as a building block in custom or semi-

custom VLSI chip designs. The transmitter constists of 650 gates, and occupies 1.8 mm2, while

the receiver consists of 850 gates, occupying 2.7 mm2. We have included both the Transmitter

and the Receiver into a chip, together with all necessary logic, to form a fully operational

UART, that has been submitted for fabrication through EUROCHIP. This chip consists of 1.5

Kgates, occupying an area of 16 μm2, including the I/O pad ring. It is packaged in a 28-pin

DIL-type DIP, and powered with 0V and 5V supply voltages.

The current design, for the rather conservative 1.5 μm CMOS standard-cell process of

ES2, was simulated to operate at 25 MHz, giving a data rate up to 25 Mbits/s. We have also

tested the speed-up of our design, when implemented with a higher performance technology:

using a differently optimized CMOS gate-array technology of 1.0 μm, we verified through

extensive simulations that the UART operates at data rates up to 60 Mbits/s, using an external

clock source of 60 MHz.

Preliminary tests of the fabricated devices verify that the chip operates at data rates up to

20 Mbits/s both in loopback mode and when two UART devices are interconnected through a

100 meter coaxial cable (see also see § 4.4 on testing) Tests at frequencies between 20 and 25

Mbits have not yet been performed.
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Thus, instead of using oversampling that limits the operation range, or complex and area

consuming analog techniques, we recover the clock using a decoding algorithm that tolerates

distortion. In the next chapters, we will present the sampling and decoding algorithm, the VLSI

implementation of the UART cell, the design methodology followed in the design and the test-

ing of the fabricated devices, and conclusions and possible extensions of this work.



Chapter 2

The Sampling and Decoding Algorithm

In this chapter we present the sampling and decoding algorithm of the asynchronous receiver.

The first section focuses on the pulse distortion patterns observed when transmitting at high fre-

quencies, while the second section presents the preprocessing circuits and discusses how they

modify the expected pulse distortion. In the next section after that, we present the decoding

algorithm, and in the last section we derive its distortion tolerance.

2.1 Pulse Distortion Patterns
The method that conventional UARTs use for data recovery is oversampling the input serial sig-

nal with a fast clock, trying to accurately locate the middle of a bit pulse. At that point, they

take a unique sample that determines the bit value. As we have seen in section 1.2, the key

point for the operation of this method is the existence of an external clock which is much faster

than the data rate. Hoewver, the need for such a fast clock proves to be the major drawback of

this method, since it restricts the highest achievable operation speed, and practically sets its

upper limit to the range of a few MHz.

In our work, we tried to overcome these limitations, and build a cell that provides the

functional requirements of a standard UART, and furthermore, can communicate at much

higher speeds. To accomplish our intentions, a completely different method than that of stan-

dard UARTs was adopted. First, the serial input signal is preprocessed through filters in order

to counteract the distortion that the signal bears, due to the propagation through the physical

medium. Then, the transmitted data are recovered in an algorithmic way: a finite state machine

that implements the decoding algorithm decides on the value of the bits seen, taking into

account all acquired samples. The receiving algorithm implemented by the FSM achieves to
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operate with very few samples, and thus enables the operation at high data rates. More

specificly, the communication rate is determined through setting of the bit length parameter, N,

expressed as an integer multiple of the half clock frequency. The communication rate is defined

as 2fclk /N, where fclk is the external clock frequency. The minimum value of N is 2, giving a

data rate equal to the external clock frequency.

Given the main capabilities and overview of our cell, and before examining in detail its

parts and operation, let us focus on the background of this work. A useful abstraction in the

area of digital communications, is the notion of the edge or transition of a signal. This abstrac-

tion, that ignores the rise-time effects, holds in the cases where the rise times are very short in

relation to the interval between edges. However, as clock rates increase, the signal behavior due

to underlying physical phenomena, and ignored by this abstraction, becomes very important. A

problem that is accentuated when we transmit at high frequencies is the distortion of the signal.

This distortion is due to the non-linearities of the transmitter driver, to the transfer characteris-

tics of the physical medium (different attenuation at different frequencies), and to the threshold

point of the receiver sampler. The result is that the width of a received pulse is different from

that of the transmitted one.

Initially, in order to study the frequency response of the RG58/U type coaxial cable, we

ran spice simulations, where we transmitted digital square pulses at 50 MHz through a 100m

cable. The coaxial cable was cut into 1m pieces, each of them modeled as a transmission line

by a capacitor and an inductor. The values of these elements were the RG58/U coax cable

parameters, that is, nominal impedance z =53.5Ohms, capacitance C =72.29pf /m, inductance

L =0.35μh/m, and attenuation 4.65db/100ftat100MHz. The transmitted pulse had a 5 ns rise

time and a 5 ns fall time, and resulted to a received sinusoidal. Since the additive property

holds for the signal amplitude, the compound effect of consecutive transmitted pulses is the sum

of amplitudes of the partial signals. The ‘‘tails’’ of previous pulses add up to the current pulse,

and depending on their polarity either amplify or lower the curve peaks. As a result, the pulses

are ‘‘spreading’’ over the time axis.

As a second step we ran experiments where we found that pulses of one of the two binary

values are favored by the transmission medium, the driver and the sampler, i.e. they expand,

while pulses of the other binary value correspondingly shrink.

Figure 2.1 shows our experimental set-up. In this experiment, we transmitted digital,

unmodulated, TTL-level pulses, at frequencies between 25 and 50 MHz, through 85-meter long

coaxial cable of type RG58. With the use of an oscilloscope, we observed that the strong, high

voltage pulses expanded by about 2 to 5 ns, at the expense of the low pulses. We measured the

maximum change of a (single) pulse width to be 19% for the high pulses, and 27% for the low

pulses. Since the total width of a long group of pulses must be the same before and after

transmission, the expansion of one type of binary pulse should be at the expense of the other
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Scope
74F04 Type RG58 coaxial cable

85 meters

Xmitter

50 MHz

Figure 2.1: Experimental set-up for measuring signal distortion.

Digital pulses generated at frequencies between 25 and 50 MHz, go through FAST inverters in
series (to enhance signal transitions), and are transmitted in a 50 Ohm coaxial cable (RG58) 85
meters long by a LH63 amplifier (for TTL to 50 Ohm conversion). The receiving amplifier
was a FAST 74LS04 Schmitt trigger.
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type, and the altering should be the same for the two types. The difference between the above

two is due to the transmitted pulses being unbalanced. That is, the width of the high and the

low pulses were not the same. This was due primarily to the tester that generated the patterns,

and secondarily to the amplifier. If we relate the distortion to the effective frequency of the

transmitted pulses, the the maximum distortion of the low pulses (27%) actually corresponds to

a 60 MHz signal.
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Table 2.1: Pulse width change for high and low pulses at frequencies 25-50 MHz��������������������������������������������������������������������������������������
f T transmitted transmitted received received 1-pulse width 1-pulse width

MHz ns 1-pulse 0-pulse 1-pulse 0-pulse distortion distortion
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50 20 23 17 27.2 12.8 +4.2 18%
40 25 23.2 16.8 27.7 12.3 +4.5 19%

35.7 28 34.6 21.24 38.16 17.6 +3.56 10%
31.2 32 39.4 24.6 42 22 +2.6 6.5%
27.7 36 41.7 30.3 44.8 27.2 +3.1 7.4%
25 40 44.5 35.5 46.6 33.4 +2.1 4.7%���������������������������������������������������������������������������������������
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Table 2.1 summarizes our results. One can observe that the pulse distortion is worse for

high frequencies. As we move to lower frequencies, the change of the pulse width gets smaller in

absolute numbers, and so does the percentage of the width change. However, there are some irre-

gularities in this transition: for the transmission frequency of 50 MHz we get better results than

for the frequency of 41.6 MHz. This may be due to the correlation of some signal frequencies

with the cable length, resulting from reflections.

When many pulses of the same value are transmitted next to each other, a single wider

pulse results. Then, it becomes important to know whether the aggregate-pulse distortion is a

function of the original clock frequency or of the total width of the ‘‘concatenated’’ pulse. We

found that no clear and observable changes in the distortion of the short-pulses due to long-
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pulses: If we transmit the pattern "0111111" repeatedly, the 0-pulse distortion is the same as for

the pattern "011" at the same base frequency. In summary, we found that high pulses at frequen-

cies between 20 and 50 MHz expand by a rather constant value of 2 to 5 ns, and the low pulses

shrink by the same amount. In general, we can say that digital pulses of one of the binary values

expand while those of the other binary value correspondingly shrink. We will call the former

strong, and the latter weak pulses.

As an example of signal distortion, let us assume that the bit length N =3, and examine how

the bit sequence "10110" is transmitted, applying the above experimental results. The duration of

a single pulse is defined as NT, where T is the half-clock period; thus, in our case, a bit is

transmitted as a 3T wide pulse, as shown in waveform (a) of figure 2.2. After propagation delay

Δ, this signal arrives at the receiver. The received waveform is shown in (b); instead of delaying

the waveform, we have shifted the ticks on the time axis by Δ. As shown in (b), the strong high-

voltage pulses have expanded at the expense of the weak low-voltage pulses; also the signal is

now asynchronous relative to the local clock. The little vertical arrows indicate the moments

where sampling occurs. The samples seen by the receiver are shown in (c). One can observe that

the sampling outcome is 2 to 4 samples per bit, depending on the bit pulse width and on the point

where the sampling occurs, e.g. for the ‘‘contracted’’ last 0-bit we can get 2 or 3 samples,

depending on the "shifting" of the signal on the time axis. That is, the number of samples

obtained for each bit is variable, and depends on the value of the pulse, strong or weak, and on

the phase difference between the received signal and the sampling clock.

�������������������������������������������������������������������������������
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Figure 2.2: Example of signal distortion and sampling effect on pulse width ((N=3).

Part (a) shows the transmitted signal for "10110" and N=3, part (b) is the received signal (no-
tice that the time axis was shifted by the transmission delay Δ) and sampling instants (asyn-
chronous to transmitter and to waveform), and (c) shows the samples seen at the receiver.

�������������������������������������������������������������������������������
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2.2 Signal Preprocessing Filters
The Receiver handles the input signal distortion in two ways: using pulse preprocessing circuits,

and a ‘‘smart’’ finite-state machine (FSM) that tolerates and correctly interprets numbers of sam-

ples that are not integer multiples of "N". The operation of the preprocessing circuits is outlined

below, while the detailed circuits description is given in section 3.3. First, the input signal is

preprocessed by a Variable Input Threshold Inverter. The Threshold Input Voltage of an inverter,

Vth , is defined as the point where the output voltage equals the input voltage. By changing the

value Vth we change the transition point of the inverter, thus for the same input pulse and for dif-

ferent values of Vth we get longer or shorter pulses at the output. Briefly, the operation of this cir-

cuit is the following: a user-settable mask provides the gate input to each of the transistors of the

circuit; by setting certain bits in that mask, we selectively turn on and off transistors in the circuit;

the equivalent circuit is an inverter with variable w/l ratio of the pmos and the nmos transistors;

since the Vth depends on this ratio, we can change this voltage. The circuit consists of 3 pmos

transistors and 3 nmos transistors. Each type of transistors is made with w/l ratios of 1, 2, and 4.

The combinations of the transistors that are turned on result to the equivalent inverter circuit hav-

ing ratio of the
(w/l)n

(w/l)p������=
B
A�� , where A,B =1,2,3,..,7.

�������������������������������������������������������������������������������

Figure 2.3: Simulation Results for the Variable Input Threshold circuit.
�������������������������������������������������������������������������������

Figure 2.3 presents spice simulations of the Variable Threshold stage for different values of

the pmos to nmos ratio. The input pulse, shown with the solid line, is representative of the

expected received signal: it is similar to the output of the coaxial cable when we transmit succes-

sive high and low pulses at 50 MHz using our experimental setup. The resulting pulses are drawn

with dashed lines, and, starting from the wider to the narrower, they correspond to pmos to nmos
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ratio of 7:1, 7:3, 7:5, 5:6, 2:4, and 3:7. We can see that the output pulse of the inverter can be

modified significantly.

The second stage of preprocessing is a programmable leading edge delay circuit. By setting

an 8-bit mask, we select to delay by 0 to 6 units the rising or the falling edge of pulses. The

effect of this circuit is illustrated in figure 2.4. The input signal (the output of the Variable Thres-

hold circuit) is shown in (a). The waveforms (b), (c) and (c) result from the input signal by delay-

ing it by 1, 2, and 3 units, by passing it through multiplexors. The select mask controls the multi-

plexors that choose the delay amount, and finally the delayed signal gets ANDed or ORed with

the original input. The result of this ANDing is the delay of the positive edges of pulses, while

the ORing delays the negative edges of pulses. In this way, we enlarge one polarity of pulses at

the expense of the durations of pulses of the opposite polarity. In figure 2.4(e) we see graphically

how the leading edge of the negative pulse was delayed by 3 units by ORing the signal (d) with

the input (a). The inverse effect of the AND gate is shown in part (f).

�������������������������������������������������������������������������������

Δ

2Δ

3Δ

(a) input pulse Sin

(b) 1-unit delayed

(c) 2-units delayed

(d) 3-units delayed

(e) Sin OR 3-delayed

(f) Sin AND 3-delayed

Figure 2.4: The effect of preprocessing of the Programmable Edge Delay circuit.
�������������������������������������������������������������������������������

As we saw, using the two preprocessing circuits we can shape the input signal. The

required transformation of the input signal depends on the bit time N, as will be analyzed in the

"Decoding Algorithm" section. When N is odd we want the pulse shaping to restore strong and

weak pulses to their original integer-NT width, while when N is even we want it to transform

them to a width equal to NT ±
2
T�� . In a possible configuration, there could be an initialization

phase of a communication where the preprocessing circuits are calibrated to counteract the signal

distortion. During this phase, the preprocessing parameter values are set, and then the system is

tested in order to measure the effect of these setting, then the parameters are corrected, and so on.
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2.3 The Sampling and Decoding Algorithm
We have seen that the serial input stream is first preprocessed by the Variable Input Threshold

and the Programmable Leading Edge delay filters. The aim of the preprocessing is to minimize

the effects of signal distortion. After the preprocessing, the signal is sampled, and the resulting

samples are fed to a finite-state-machine (FSM). This FSM decides what data bits are likely to

have been transmitted, based on the number of identical samples seen in the serial input and on

the value N of the bit length, according to the following algorithm:

Decoding Algorithm

Assume that we have received a continuous pulse of binary value V, of duration S samples.

Find the unique integer number n such that:

if N is odd if N is even����������������������������������������������������������������

nN −
2
N�� ≤ S < nN +

2
N�� if V is the weak value

�����������������������������������������nN −
2

N −1����� ≤ S ≤ nN+
2

N−1�����

nN −
2
N�� < S ≤ nN +

2
N�� if V is the strong value

������������������������������������������������������������������
�
�
�
�
�
�

��
�
�
�
�
�
�

Then, decide that n data bits of value V have been received.

The general idea of this decoding is to tolerate a pulse distortion of up to ±
2
1�� . (bit −time). When

N is odd (e.g. N=5), this is an unambiguous criterion: tolerate up to
2

N −1����� (e.g. 2) samples more

or less than what the integer-NT pulse width would imply. When N is even, however, the ques-

tion arises of what to decide when exactly ((n+
2
1��) . N) ( or equivalently ((n +1)−

2
1��) . N )

samples have been seen. In that case, strong pulses are counted as n bits (because presumably

they started as nNT-long, and they expanded to (n+ε) . NT ), while weak pulses are counted as

(n+1) bits (because presumably they started as (n+1)NT-long, and then shrank to (n+1−ε) . NT ).

2.4 Derivation of the Pulse Distortion Tolerance
Based on the above algorithm and on the expected distortion by the physical medium, we can

now compute the overall distortion that the FSM can tolerate. We have to distinguish between

odd or even cases, as above.

Case I: N is odd

In this case, the receiver FSM interprets strong or weak pulses in the same way. Since the

single bit width is NT, n bits of the same value are transmitted as a pulse nNT wide. On the
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other hand, the receiver interprets a pulse as n bits, iff it sees a number of samples in the

range:

N . (n −
2
1��+

2N
1���) ≤ samples ≤ N . (n +

2
1��−

2N
1���).

We will compute the maximum pulse distortion that can be tolerated without resulting in an

error in the receiver by computing equivalently the minimum shrinkage that can produce an

error, as illustrated in figure 2.5(a). This is the case where the pulse width is

N . (n −
2
1��+

2N
1���) . T − 2ε, where ε∼∼0, and two sampling points occur just outside the pulse.

This results in receiving only N . (n −
2
1��+

2N
1���) − 1 samples, which are incorrectly inter-

preted as n −1 bits.

������������������������������������������������������������������������
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(b) Minimum expansion to produce an error

Figure 2.5: Minimum distortion that produces an error, for N odd.

������������������������������������������������������������������������

In an analogous way, the minimum expansion that can produce an error is given by a pulse

of width N . (n +
2
1��−

2N
1���) . T + 2ε (ε∼∼0), and for the sampling instant alignment of figure

2.5(b). In this case, the distorted pulse results in N . (n −
2
1��+

2N
1���) + 1 samples being

received, which are incorrectly interpreted as n +1 bits. Combining the above cases, we

deduce that the minimum pulse width change that can produce an error (with "favorable"

sampling instant alignment) is ± N . (
2
1��−

2N
1���) . T, in either direction of distortion (shrink-

age or expansion). As a result, the amount of distortion that the receiver can handle for

correct reception is: | pulse distortion | <
2

NT���� . (1−
N
1��). A point that must be emphasized is

that in this case (N odd) pulse shaping should exactly equalize (eliminate) the average

strong/weak distortion, since the FSM treats both types of pulses in the same way.

Case II: N is even

In this case, the FSM treats strong and weak pulses differently. Let us first study the case of
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strong pulses. The transmitter transmits n strong bits as a pulse of duration nNT. The

receiver interprets correctly a strong pulse as n bits iff it sees a number of samples in the

range: N . (n −
2
1�� +

N
1��) ≤ samples ≤ N . (n +

2
1��), according to the decoding algorithm.

Following the same analysis as in case I, the minimum shrinkage that can produce an error

is the one resulting in a pulse of duration N (n −
2
1��+

N
1��)T, while the minimum expansion to

produce an error is when a pulse of duration N (n +
2
1��)T results. We can now find the

requirements for correct reception: If we define the change of the pulse duration as

Δt = Durationat receiver − Durationat transmitter , then the rule for correct reception is:

−
2

NT���� . (1−
N
2��) < Δt <

2
NT���� . In this case (N even), we arrange the pulse shaping (prepro-

cessing) so that the transmission distortion plus the preprocessing of the strong pulse con-

tribute Δtpp=T /2. Now, the change of the pulse width, as seen by the receiver, is due to ran-

dom noise and to the preprocessing, that is Δt=Δtpp+Δtrandomnoise . From the above formu-

lae, we get an expression for the noise: Δtrandomnoise = Δt −
2
T�� =>

−
2

NT���� .(1−
N
2��) −

2
T�� < Δtrandomnoise <

2
NT����−

2
T�� => | Δtrandomnoise | <

2
NT���� .(1−

N
1��).

For the weak pulses, we follow the same analysis as before, but here the preprocessing plus

the transmission distortion contribute Δtpp= −T/2- the opposite of the strong value prepro-

cessing. For correct reception, the following equation holds: −
2

NT���� < Δt <
2

NT���� .(1−
N
2��).

Then we have:

Δtrandomnoise = Δt +
2
T�� => −

2
NT����+

2
T�� < Δtrandom noise <

2
NT���� .(1−

N
2��)+

2
T��

As a result we get | Δtnoise | <
2

NT����(1−
N
1��), which is the same expression as the one for

strong pulses, as well as for odd values of N.

We see that in all cases - odd or even N - the maximum tolerated width distortion for a

pulse of n contiguous data bits of the same value is given by the same formula :

| pulse width distortion | < NT
2

1−
N
1��

������ =
2

1−
N
1��

������ .(bit time) =
2

bit time������� −
2
T�� .

Table 2.2 shows numerical examples for the duration that can be tolerated, for various values of

N, and for T =
2f
1���=8.33 ns, for a clock of frequency f =60 MHz:

As a further example let us examine the extreme and most interesting case where the bit

duration is equal to the clock period, i.e. the bit length is N=2. In this case, we achieve the max-

imum rate of communication, by receiving based on 2 samples for each bit, sampling both on the
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�������������������������������������������������������������
Table 2.2: Tolerable Distortion of the width of a contiguous-bit pulse

(f=60 MHz, T=
2f
1���=8.33 ns, bit-time=NT )

�������������������������������������������������������������
bit-time signaling rate Tolerated pulse width distortion

N
ns Mb/s as % of bit-time in ns�������������������������������������������������������������

2 16.7 60 25% 4.2
3 25 40 33% 8.3
4 33.3 30 37% 12.5
5 42 24 40% 16.7�������������������������������������������������������������
6 50 20 42% 21
7 58 17.1 43% 25
8 67 15 44% 29�������������������������������������������������������������
12 100 10 46% 46
24 200 5 48% 96
60 500 2 49% 246
120 1000 1 49.6% 496��������������������������������������������������������������������������������������������������������������������������
1875 15.6 μs 64 Kb/s 50% 7.8 μs
6122 51 μs 19.6 Kb/s 50% 25.5 μs��������������������������������������������������������������
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positive and the negative edge of the clock. The decoding algorithm for N =2 is presented in

figure 2.6. We can see that if the receiver sees 2 or 3 samples of the strong value it considers

them as one bit, 4 and 5 samples as two bits, and so on. For the weak value, 1 or 2 samples are

interpreted as 1 bit, 3 or 4 samples as 2 bits, and so on.

The behavior of the algorithm in this case, is based on the following observation. Provided

that the pulse width after preprocessing is longer than 1 clock period, T, (the nominal width is

2T), there will be at least one sampling instant in the pulse, and we will get at least one sample of

that bit.

�������������������������������������������������������������������������������

one bit two bits three bits

one bit two bits three bits

:After Random Noise
and Sampling

:After Transmission
& Preprocessing

After Decoding:

1 2 3 4 5 6

1 2 3 4 5 6

two bits three bitsone bit

one bit two bits three bits

one bit two bits three bits

After Decoding:

:

:

After Random Noise
and Sampling

After Transmission
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7
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Figure 2.6: Samples distribution by the receiver FSM, for bit length = 2.
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The overall system operation, for N=2, is exemplified in figure 2.7. We assume that the

strong value is the 1, and that the bit sequence "101101" is transmitted. Part (a) shows the

transmitter output, which is synchronous to the clock. Part (b) shows the raw and preprocessed

input to the Receiver, as well as the sampling points. The raw input signal, drawn with the

dashed line, is preprocessed through the pulse shaping circuit, and results to the signal drawn

with the solid line. Part (c) shows the samples taken at the sampling instants (arrows), which are

subsequently fed to the FSM. According to figure 2.6, the FSM will correctly recognize the

sequence.
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Figure 2.7: The effect of signal distortion and sampling on pulse width for N=2.
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Chapter 3

Transmitter and Receiver Implementation

In this chapter we present the organization of the transmitter and the receiver. First, we present

and evaluate the available standard cell library. Next, the transmitter circuits are discussed, fol-

lowed by a presentation of the preprocessing and sampling circuits. Finally, we give an analysis

of the receiver implementation, and the receiver’s two-bit-per-clock Finite State Machine.

3.1 Available Cells
Our chip was designed using the 1.5 μm CMOS, double-metal standard cell process of ES2

(European Silicon Structures). The standard cell library of ES2 contains primitive cells, i.e. cells

that are layout, and low to medium complexity macro cells, i.e. cells that are built up from primi-

tive cells. More specificly, the primitive cell library contains all basic gates with up to three

inputs, OAI and AOI structures, D flip-flops and latches with reset, clear, tristate drivers, 2 to 1

multiplexor, and strong inverting buffers. Some of the cells are also available as quadruples, i.e.

four 2-1 multiplexors with common select, and a four-bit register. Gates with greater than 3 fan-

in exist as macrocells. The macrocell library contains equivalents of popular parts from the 74LS

library, several types of flip-flops (JK, T, SR latches), gates with large drive strengths, shift regis-

ters, counters, multiplexors and, demultiplexors. Large macrocells, that is PLAs, ROMs, RAMs,

and multipliers are generated using predesigned layout cells. However, there is no generator for

building variable size adders.

Some comments on the primitive cells of the library are that:

1) The commonly used NOR gates have low drive strengths and are slow compared to the

equivalent NAND gates, for the same load. For example, the 3-input NOR has a maximum
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propagation delay of 3.9 ns, while this delay is 2.3 ns for the 3-input OR, and 1.5 ns for the

3-input NAND gate! Thus, one must be aware of the characteristics of the library before

designing. ‘‘Blind’’ selection through a menu may result to large and slow circuits.

2) All types of flip-flops have both the primary output as well as the complementary output.

However, only in very few cases are both of these outputs used, and even in these cases the

user could just generate the second of them with an inverter. A flip-flop with a single out-

put would be more compact and thus a better cell for the library.

3) The PLA layout synthesizer generates very slow PLAs, compared to the equivalent logic

built up from basic cells.

4) The library includes only edge-triggered flip-flops, but not dynamic latches. Dynamic

latches do not usually appear in standard cell libraries; however, they are much smaller than

edge triggered flip-flops and their use would significantly reduce the occupied area, and

they also give more flexibility and control over the design.

Throughout our design, we used mainly the basic cells and some of the lower level macrocells.

This type of design was preferred over designing with macro-cells, because it gives an under-

standing of the lower structures and better control over the expected result. Also, it is necessary

if high-speed operation of the circuit is desired, since the standard cell library is not always the

optimum design in terms of speed. In one case, full-custom layout was necessary, for the pro-

grammable threshold voltage stage; it was designed at the lowest level, according to the design

rules of ES2.

3.2 The Transmitter Part
"Half" of the UART cell (the easier half) is the Transmitter. It works independently from the

Receiver. The Transmitter accepts parallel data from an external interface, converts them to a

serial bit stream, inserts the appropriate start, stop and optional parity bits, and outputs the com-

posite serial data on the SerialOut port. Its operation is programmable through the setting of

parameters for the parity, character length, and baud rate. The rate of transmission can be any

integer submultiple of twice the clock frequency, up to fclk. This is achieved by being able to

switch the output value on either the rising or the falling edge of the clock. In the next para-

graphs we describe the interface to the external circuits and the implementation of the

Transmitter.
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3.2.1 Interface to external circuits.

The Transmitter communicates with the external circuits via two groups of signals: the

configuration setting signals, and the data and status output signals. The configuration signals

include input parameters and load enable signals. For each parameter there is a separate load sig-

nal, so that it can be configured independently from other parameters. We preferred having each

parameter loaded separately, instead of loading all parameters in parallel, because the former fits

better to the case of loading values through a bus. The parameters are Xbitlen, Xchlen, and Xpar-

ity, and the corresponding load enable signals are Xld_bitlen, Xld_chlen, and Xld_par, as shown

in figure 3.1.

�������������������������������������������������������������������������������
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Xld_chlen Xld_bitlen
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Transmitter

SerialOut
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8

Figure 3.1: Transmitter interface signals.
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The other group of signals consists of data, request-acknowledge, and status signals. The

Xsh_empty and Xfull signals are status signals, produced by the transmitter’s control logic. As

illustrated in the transmitter’s block diagram, in figure 3.3, external data are double buffered; first

they are loaded in the hold register, and then they are moved to the shift register and get transmit-

ted, as soon as this becomes empty. The Xfull signal denotes that the hold register contains data,

while the Xsh_empty signal denotes that the shifter is empty of data. The negative of the Xfull sig-

nal can be used as a "request for data". The external circuit responds to this request for data, sup-

plying the next data byte on the char input lines, and asserting the Xld_char signal. The timing

of these signals is illustrated in figure 3.2, for bit length N =3. Input data are latched on a nega-

tive clock edge, when Xld_char is asserted. The Xsh_empty signal is synchronous to the transmit

clock xclk; it is reset when the start_bit of a character is being transmitted, and it is set at the end

of the transmission, when the stop bit is being transmitted. The Xfull signal is asserted when new

data are loaded in the hold register, and it is deasserted on the first rising edge of clk after the

start of transmission.
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Xld_char

Figure 3.2: Transmitter interface timing, for bit length N =3.

The external clock source clk is divided by 3N/2 and the resulting clock xclk is used as the
transmit clock. Initially, at t=0, the transmitter is in the idle state, where it has nothing to
transmit; in this case, the Xfull signal is low, and the Xsh_empty signal is high. We assume
that at t=1, the external circuit asserts the Xld_char signal in order to give the 8-bit character
A for transmission. Input data are latched in the hold register on the negative clk qualified
with the negative Xld_char signal. The Xfull signal is asserted synchronously to the data
loading, and in the following xclk cycle (t=3) the Xsh_empty signal goes low, as the
transmission of A begins.
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As mentioned in the above paragraph, the Xsh_empty signal goes high before the end of

character transmission, when the stop bit is being transmitted. This signal timing is one cycle

"early", in order to let us prepare for a new transmission, if another character is ready in the hold

register. If so, the transmission of the new character will start immediately after the end of the

current one, with no intermediate delay. That is, the transmitter works in a continuous,

pipelined-way; this feature is especially useful for transmitting data bursts. In order to have two

characters transmitted "back-to-back", the external circuit must load the second character in any

of the intermediate cycles between the deassertion of Xfull and the assertion of Xsh_empty. The

latest time that a character can be loaded and be transmitted with no intercharacter delay, is on

the clk cycle(s) after the assertion of Xsh_empty. If the external circuit forces a character loading

when the Xfull signal is high, data in the hold register will be overwritten.

3.2.2 Transmitter Circuit Description

A general block diagram of the Transmitter is shown in figure 3.3, while the detailed schematics

are given in the Appendix A. The Transmitter contains 5 blocks:
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Figure 3.3: Transmitter block diagram.
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Xset

The Xset block holds the parameters for the Transmitter operation, i.e. parity, character length,

and bit time duration. Specificly, it contains a 2-bit register for Xparity_enable and

Xparity_odd_even, a 4-bit register for character length, Xchlen, that can take one of the values

5,6,7 or 8, and a 20-bit register for the bit length Xbitlen, expressed as a multiple of the external

clock clk half-period. The external circuit can load each register by setting the appropriate load

signal Xld for each parameter. Loading through an 8-bit bus is supported, and thus, for parame-

ters wider than 8 bits, e.g. for the 20-bit Xbitlen, multiple load signals are provided, e.g.

Xld_bitlen [0:2]. Moreover, the data pins are available all in parallel, and the connections to the

bus are left to be made outside the macrocell. This makes the macrocell suitable for

configurations where a wider bus (e.g. a 32-bit bus) is present; in this case, several load signals

will be tied together.

Xclk

The Xclk block generates the transmit clock xclk, whose period is equal to the bit time. The xclk

is produced by dividing the external clock clk by Xbitlen, which is variable and ranges between 2

and 220−1. The transmit clock period, and thus the bit interval, is given by Xbitlen*
2

Text���� , where

Text is the period of the external clock clk. For example, for an external clock of 25 MHz, the

transmit rate can vary between 25 Mbaud and 47 baud.

The division of the clock frequency could be made using a binary counter that would count

on both the rising and the falling edge of the clock. When reaching a count of Xbitlen, it would
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produce an xclk pulse. However, such a circuit is not available in the standard cell libraries, so it

has been synthesized from other cells. Its main part is a 19-bit down-counter, with carry look-

ahead, that counts on the rising edge of clock, and that is loaded asynchronously with the value

2
Xbitlen������� . The desired counter is simulated by appropriately loading this counter: it is loaded by

the transmit clock, xclk, rather than by the external clock, clk. Other parts of the circuit are two

flip-flops, the cnt_unit and cnt_zero, that keep the information whether the current counter value

is "1" and "0". These flip-flops are negative-clock-edge triggered, thus they track the counter

value shifted by half clk cycle. To describe the operation of this circuit, we have to distinguish

between two cases:

1) if the bit length is even (the easy case): after the counter counts
2

Xbitlen������� periods (which is

an integer), it is asynchronously loaded. The load condition is expressed as: cnt_unit*clk,

which is the same as loading the counter when it is zeroed. This case is depicted in figure

3.4(a):

�������������������������������������������������������������������������������

2 2121

0 2 4 6 8 10
t

xclk

2 1 0 12 21 cnt

cnt_unit

cnt_zero

start_phi1

0 2 4 6 8 10

clk
t

cnt

xclk

clk

cnt_unit

(a) N even

(b) N odd

Figure 3.4: Timing waveforms of Xclk block for bit length (a) even (N=4), and (b) odd (N=5).

The xclk signal is the transmit clock, generated by dividing the external clock source clk by
N/2. The contents of the 19-bit counter are depicted by the cnt signal, and the cnt_unit and
cnt_zero are the omonymous flip-flop contents.
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2) if the bit length is odd, then we have to count N half clk periods, or equivalently (N −1)/2

clk full periods and one clk half period. Let us assume that initially, we load the counter on

the rising edge of the clock with the value (N −1)/2, that is with the 19 MS bits of the bit

length value. This occurs at t=0 in the example of figure 3.4(b), and for N =5. After

(N −1)/2 cycles (at t=4 in the figure), the counter reaches zero. Counting one half-period

remains to complete the counting cycle; this is accomplished by reloading the counter when

the clk goes low. The next counting cycle begins at t=5, and at t=6 we have already
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counted the half-period and what remains is counting (N −1)/2 full periods. We keep the

information of whether counting begins on the high clk half-period or on the low one in the

start_phi 1 latch. The above conditions for the counter loading are expressed by:

(cnt_zero*start_phi 1) + (cnt_unit * !start_phi 1 * clk).

Xtiming

The Xtiming block implements the FSM of the Transmitter states, and produces the timing sig-

nals indicating the start of a transmission, the parity bit time, and the end of transmission. The

circuit’s operation can be represented by the two FSMs of figure 3.5. The first FSM generates the

Xfull signal, according to the state of the hold register, while the second represents the transmit

cycle. The communication point between the FSMs is the init_x signal. The init_x signal initial-

izes a new byte transmission, and is produced when the shifter is idle and a new character is

available in the hold register; it is given by the expression Xsh_empty*Xfull. Parity bit transmis-

sion is enabled by the xmit_parity signal, produced in the Xparity state of the FSM. Finally, the

eocx signal, produced in the EOCX state, means the end of a character transmission. The transmit

FSM is implemented by a decrementor, which is loaded with the character length on init_x, and

counts down with the rising edge of xclk.
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Figure 3.5: Timing Finite State Machine.
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Xparity

The Xparity block generates the parity bit, to be transmitted if parity is enabled (Xparity_enable

HIGH). It is implemented as a sequential circuit with a D flip-flop and 4 logic gates, rather than

as an 8-input combinatorial (parallel) parity generator. At the initialization phase of a character

transmission (init_x HIGH), the flip-flop is loaded with 0 or 1, if parity is even or odd, respec-

tively. After that, the flip-flop is repeatedly reloaded with its contents XOR-ed with the bit

currently transmitted. In this way, in case of even parity, the bits of the character are xor-ed

together (the initially loaded 0 does not affect the result). In the case of odd parity, the XOR’ing
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of the character bits is inverted by the initial 1, which is equivalent to an NXOR gate producing

odd parity.

Xshifter

The Xshifter block converts the parallel input data into serial, as well as inserting the start bit, the

stop bit, and optionally the parity bit. It is implemented as a 9-bit shift register, with the last

stage modified for parity bit insertion, as illustrated in figure 3.6. It is loaded synchronously, by a

init_x pulse, when a new transmission begins.
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Figure 3.6: Transmitter Shifter circuit.
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The serial input of the shifter is hardwired to the supply, to provide a logic 1 for the stop

bit(s) of a character. The parallel input of the shifter consists of the variable number of character

bits, padded with 1’s to 8 bits, if required (that is for character lengths 5,6 or 7). This padding is

done by OR’ing the data bit with one condition. If the condition holds, then the bit is padded

with "1". For the data bit i (the LS bit is 0), the condition is "Xchlen>i", and is easily evaluated

from specific bits of the Xchlen value, as shown in figure 3.6. The least significant bit is right-

most and it is the first one to be shifted out. The stop bit does not hold a stage in the register, but

is rather shifted in by the serial input sin of the register. Thus, while the character is shifted out,

the register is filled with 1’s from left to right, and, at the end of the transmission, its output will

remain to logic HIGH, which is the idle state. Upon RESET, the shifter is automatically initial-

ized to 111..1, in 9 xclk cycles, using the serial_in input.

The last output stage of the register includes a mux for inserting the start bit and the parity

bit. The parity bit is calculated during character bit transmission, selected by the xmit_parity sig-

nal and loaded in the last D flip-flop. The mux is placed before the FF and not after it, so that the
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duration of all output pulses is constant, generated always by the xclk clocking this last flip-flop.

3.3 The Preprocessing and Sampling circuits
The receiver is able to tolerate a considerable amount of distortion. This is accomplished first by

preprocessing the input pulses, and secondly by a smart FSM. In this section, we discuss in detail

the preprocessing and the sampling circuits. The first stage of input signal processing consists of

a variable threshold voltage circuit. It is essentially an inverter, acting as an amplifier, with pro-

grammable (
l
w��) ratios of the pull-up and the pull-down transistors.

The Input Threshold Voltage Vth is a characteristic point of the transfer function of the

CMOS inverter, where the input voltage equals the output voltage ( Vin=Vout ) [Uyem88], i.e. a

point "at the middle" of the narrow range of input voltages across which switching of the output

between the high and the low state occurs. At this point of operation, both the nmos and the

pmos transistors are in saturation. Then, by equating the currents in the two transistors we have:

kP
. (Vdd−Vin− | VTP | )2 = kN

. (Vin−VTN)2 => . . . => √��kN

kP��� =
(VDD−Vin− | VTP |

Vin−VTN���������������

Since Vin=Vout=Vth , the above equation results in the following expression for the input voltage:

Vin =

1+√��kN

kP���

VDD− | VTP | √��kN

kP��� +VTN

���������������������.

Substituting the values of VTP =−1.1V and VTN =0.7V for the ES2 1.5 μm typical process, we get:

Vin=
1+β

3.9β + 0.7��������� , where β=√��kN

kP��� = √����������(w/l)p /(w/l)n .

From the above expression we can see that the input threshold voltage depends on the ratio of the

(w/l) of the pmos and the nmos transistors. By changing this ratio we can change the Vth and

thus, we can set the time during the (slow) input transition when the amplifier inverter switches.

The variable Vth circuit is shown in figure 3.6. It consists of 3 pairs of pmos (M1-M2, M3-

M4, M5-M6), and 3 pairs of nmos transistors (M7-M8,M9-M10,M11-M12). Within each

pair,e.g. in the M1-M2 pair, one of the transistors (M2) serves as a switch that connects or discon-

nects the other transistor (M1) in the circuit. In this way, by setting the select signals,

sp0,sp1,..sn0, sn1,.., we can selectively cut off or use certain branches. The transistors with com-

mon gate input are equivalent to an inverter whose pmos (w/l) equals the sum of the w/l ratios of

the participating pmos branches, and whose nmos transistor has (w/l) equals the sum of the w/l

ratios of the participating nmos branches. By drawing the transistors ratioed in powers of 2, i.e.

1,2,4, we can synthesize an inverter with w/l of the form
B
A�� where A,B =1,2,3,..,7. For example,
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to have effective w/l of the equivalent inverter equal to 3/7, we must set sn1,sn2,sn4 to 5V and

sp5 to 0V.

�������������������������������������������������������������������������������

outRaw

serial input

sp1

sn1 sn2 sn4

sp4sp2

2w/lw/l

w/l 2w/l

4w/l

4w/l

4w/l

4w/l

2w/lw/l

w/l 2w/l

M7

M2

M1 M3 M5

M6M4

M8 M10

M9 M11

M12

Figure 3.7: Variable Input Threshold Stage.
�������������������������������������������������������������������������������

This cell has been laid using the design rules of the ES2 1.5 μm technology. The resulting

cell dimensions are 45 x 60 microns. Each enable transistor in a pair is matched to the other

transistor, so that it does not affect the above calculations. A comment should be made on the

position of the transistors within a pair. Since the serial input is a signal with fast changes, the

transistors whose gates are connected to this signal switch very often between conductance and

cut-off. On the contrary, the enable transistors are usually in the same state, because the select

signals are set once in the beginning and remain stable afterwards. In our design, we put the

enable transistors on the side of the output. The benefit of this configuration is that: (1) it minim-

izes the Miller-effect capacitance on the input line due to non-participating branches, and (2) it

minimizes the capacitance on the output line due to the same branches.

The next step of pulse preprocessing is the programmable edge delay (for either the positive

or the negative edges), which is done by the Rmod_pulse circuit, as shown in figure 3.8. This cir-

cuit receives its input, min, from the Rvthresh unit, and its output, mout, feeds the synchroniza-

tion circuit Rsync. It consists of a chain of multiplexors, m 7 to m 1, each of which selects an

input either from the serial input or from its previous multiplexor output in the chain, according

to the modmaski select signal.

If we define as 1-unit delay the delay introduced to the original input by one stage of this

circuit (one mux), the total delay of the original input signal through the chain is programmable

between 0 to 6 (+ 2 inverter delay) units. The delayed signal, md, is ANDed and ORed with the

original signal. The AND gate has the effect of delaying the positive edges by the amount of
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Figure 3.8: Receiver Programmable Edge Delay circuit.
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delay that the md signal bears. The OR gate delays the negative edges by the same amount. The

last multiplexor, m 0, selects which of the two types of edges will be delayed. In some cases, no

edge delay may be desired. To enable this, we use the mp multiplexor that is placed in parallel to

m1, and "equalizes" the delay of that multiplexor.
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Figure 3.9: Rsync Synchronizing circuit.
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The next step is the sampling of the input signal, and the synchronization of the samples to

the receiver clock. The receiver’s clock runs at approximately the same average frequency as that

of the transmitter, but not exactly the same; this is a ‘‘plesiochronous’’ synchronization scheme,

as defined in [Mess90]. The main problem that is inherent to the plesiochronous type of intercon-

nect is the metastable behavior. Metastability is defined as the anomalous behavior of all bistable

devices, in which the device gets stuck in an unstable equilibrium between the two states for an

indeterminate period of time. In our case, it occurs because a signal that was generated as syn-

chronous to the transmitter clock, is sampled using the receiver’s clock. The signal can change at

any time, and its sampling can occur during a transition, resulting in a metastable flip-flop state.

In order to keep the probability of metastable condition acceptably low, we pass the signal

through a chain of flip-flops, [Mess90]. (Note: these flip-flops are not of the dynamic CMOS

type; they are made of cross-coupled devices with positive feedback, which is necessary in order

for this circuit to switch away from the metastable state).
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Another feature of the Rsync synchronizer is that is collects 2 samples per cycle, sampling

on both the rising and the falling edge of the clock. The upper chain of flip-flops, D1 and D2,

sample on the rising edge, while D3 and D4 produce a sample on the falling edge of the clock.

The D5 flip-flop delays the output of D4 by an extra half cycle, so that both samples be available

to other circuits on the rising edge of clk.

3.4 The Receiver Circuits
Apart from the transmitter, the other "half" of a UART cell is the Receiver. This unit takes input

from the serial stream "Serin", removes the start and stop bits, and converts the rest into byte

words, detecting at the same time possible transmission errors. The Receiver works in a

configurable manner, where parameters can be set by the external circuit. Besides the charac-

teristics of a conventional UART receiver, it has a wide working range; the maximum receive

rate equals the frequency of the external clock source, while the minimum receive rate is the quo-

tient of the external clock source divided by 220−1.

3.4.1 Interface to external circuits.

The external interface of the receiver is illustrated in figure 3.10.
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Figure 3.10: Receiver block diagram with interface signals.
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On the left side of the block, are shown the configuration parameters and their load signals.

The value and the load-enable wires are separate for each parameter, so that the user of this

receiver cell has the freedom to load them either one-by-one through a narrow bus, or all in paral-

lel from a wide connection. The narrowest such bus assumed is 8-bit wide. Thus, for parameters

that are wider than one byte, multiple load signals are provided. For example, the load enable

Rld_bitlen that corresponds to the 20-bit Rbitlen parameter, consists of 3 signals, each of them
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enabling the MS byte, the next MS byte and the LS 4 bits of the input value. The configuration

parameters are the Rvthresh, Rmodmask, Rbitlen, Rchlen, Rparity, and Rstrongval, while the

corresponding enable signals are the Rld_vth, Rld_mod, Rld_bitlen, Rld_chlen, Rldpar, and

Rld_str.

The data output of the receiver is the char output which contains the character last received.

If the character length is less than 8 bits, the MS unused bits are set to 0. Together with the char

register, 3 bits of status information report whether a parity error, a frame error, or a break condi-

tion were detected during reception. The R_rdy signal is a notification signal to the external cir-

cuits, and is asserted when a new, valid character has been received and appeared on the char out-

put. More specificly, it is asserted on the falling edge of the recovered clock rclk when the stop

bit of a character is being received. The char_read input is the acknowledge of the external cir-

cuit that the received character has been read. The char_read also clears the R_rdy output (see §

3.4.2 Rstatus, for details on the timing of this signal).
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Figure 3.11: Receiver block diagram.
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3.4.2 Receiver Circuit Description

A general block diagram of the Receiver is shown in figure 3.11, while the detailed schematics

are given in the Appendix A. The Receiver contains 5 blocks:

Rset

The Rset block holds the settable parameters for the Receiver operation, that is:

Rvthreshold, a 7-bit parameter that is used by the Rvthrsh preprocessing circuit. The 3 MS

bits select the N-type transistors with increasing w/l, the next 3 bits select the P-type

transistors, and the LS bits selects to bypass or not the Rvthresh circuit.
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Rmodmask, the 8-bit mask for the Rmodpulse programmable edge delay circuit. The 7 LS

bits of modmask, denoted modmask[6:0], are used to select the delay amount, which can

take values between 0 and 6 as shown in Table 3.1.
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Table 3.1: Receiver Programmable Edge Delay amount specification
widen positive pulses widen negative pulses�����������������������������������������������������������

widen by 0 units 1 1000000 0 1000000
1 1 0100000 0 0100000
2 1 0010000 0 0010000
3 1 0001000 0 0001000
4 1 0000100 0 0000100
5 1 0000010 0 0000010
6 1 0000001 0 0000001�������������������������������������������������������������
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Rbitlen is a 20-bit parameter for the bit length, in units of the external clock clk half-

periods.

Rchlen for the character length. This can be one of 5,6,7 or 8 bits.

Rparity for the selected parity. It consists of 2 bits, the MS indicating if parity is enabled,

and the LS indicating the parity type, i.e. odd or even.

Rstrongval, is a 1 bit parameter used by the Finite State Machine. It denotes the binary

value that was favored by the transmission medium. That is, if the 1-pulses expand during

transmission this value must be set to 1.

Rshifter

The Rshifter block, presented in figure 3.12, converts the serial recovered bit stream into parallel.

If the bit length is less than 8 bits, it inserts 0s in the unused MS bits. It is implemented by a 5-bit

shifter and 3 separate D-type flip-flops. In front of each flip-flop, a multiplexor selects between

the output of the previous flip-flop, and the serial input. In this way, we build a variable length

shifter, where the serial input selectively bypasses some of the first stages. The flip-flops that are

bypassed are cleared. The shifter continuously shifts its contents, every rclk cycles. It is in the

responsibility of the control logic to generate the signals that latch the shifter’s parallel output

into the holding register.

Rtiming, Rstatus, Rhold

The Rtiming block generates the timing signals used in the Rstatus and Rhold blocks. Upon

reset, the FSM of this block (figure 3.13) goes to the initial wait state; this is also the state that it

stays in during intercharacter idle time, where continuous 1’s are received. When the first 0 (start

bit) is received, the receive cycle begins and the FSM moves to the Rstart state. In the following

cycles, the FSM moves successively through the Rdata states, counting the data bits being

received, starting from the LS bit. The Rdata cycles are as many as stated by the character length
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bit stream

recovered

Shift
4-bits

clear clear clear1
0

char length<8 char length<7 char length<6

1 1
00

rclk

5

Hold register

8-bits

load

eodb * !clk

Figure 3.12: Receiver shifter circuit.
�������������������������������������������������������������������������������
parameter. In the last data cycle, RdataMS, the eodb (End of Data Bits) timing signal is gen-

erated. The following state is the Rparity, for the parity bit reception, or the Rstop, for the stop

bit reception, depending on the parity enable parameter. In the final state, Rstop, the check_parity

and eodb signals are generated -the check_parity is generated only if parity is enabled-. In the

next paragraph we will see where these signals are used.

�������������������������������������������������������������������������������

Rdata
MS

Rstart Rdata
LS

Wait

Rstop

currentBit=0

reset parity_enable

!parity_enable

Rparityeocr

Figure 3.13: Receiver Timing finite state machine.
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The Rstatus block detects some of the possible transmission errors. These errors include

parity errors, frame errors and break condition. We have a parity error when the received parity

bit is not the same as the one computed according to the received data and the parity type. The

frame error is detected when a zero value is received at the time when the stop bit (high value)

was expected. A break condition is detected when all bits of a character are 0, including the par-

ity and stop bit(s).

The parity bit is computed using a parity accumulator, which is similar to the equivalent cir-

cuit of the transmitter. At the parity bit time, the current contents of the accumulator are XOR’ed

with the currently received bit. If the result of this operation is 1 then we have a parity error, and
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in the last cycle, or equivalently in the Rstop state of the FSM, this result will be loaded in a latch

by the check_parity enable signal. The frame error detection is straightforward: we set a latch

with the current bit value, using as load enable the eocr signal. Finally, the break condition is

detected using a similar accumulator as for the parity, except that in this case the contents of the

accumulator are OR’ed with the current bit value. The result of this operation is also latched

when the eorc signal is asserted.

Finally the Rhold circuit implements the double buffering. It includes an 8 bit register for

the data, loaded from the shifter as soon as all data bits are received, using the eodb as load

enable signal. The error bits are also loaded in a 3-bit register clocked by the eocr signal

qualified with the negative transmit clock rclk. At the same time, the R_rdy signal is asserted.

The external circuits, can read the value and clear the R_rdy latch by asserting the read_char sig-

nal. In case the received character is not read until the next character is received, it is overwrit-

ten.

3.5 The Receiver Bit FSM
The Receiver Bit FSM processes 2 samples at a time. Its inputs are the nominal bit length N, and

the two samples acquired in each clock period, while its outputs are the value of a received bit,

and a receive clock pulse, rclk, synchronous to the received data. Before describing the operation

of the implemented FSM, we will first examine the operation of an equivalent FSM with 1 sam-

ple per clock period, since it is simpler.

3.5.1 The Receiver Bit FSM operating on 1 sample per clock period.

Table 3.2 presents the operation of this simplified FSM that processes 1 sample per clock cycle.

The input row contains the samples received in successive clock cycles, while the next row shows

the number of received samples for a specific bit value. A double vertical line draws the limits

between bits. The start of a new bit is signaled either by a transition of the input, ch ("change"),

(i.e. at clock cycle 1 we start receiving a bit of value S instead of the previous bit S
�
), or when the

nominal number of samples for a bit has been seen; this is the case exemplified at clock cycle N,

where all N samples of a bit of value S have been received, and thus, a new bit starts in the next

cycle.

The FSM operation is based on a 20-bit decrementor, named cnt (counter), which is used to

track the number of samples seen up to now for the current bit value. When the FSM sees a

change of the input pulse, this decrementor is synchronously loaded with the value of the bit

length N minus 1. Thus, in the next cycle the decrementor ’s value will be N −1, indicating that
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Table 3.2: Operation of the Receiver’s Finite State Machine with 1 sample per clock cycle

S S S S S S S S S S S Sinput

# samples

cnt

asserted
signals

1 2 3 K

N-1 N-2
N+1
-K

K+1

N-K 2 1

N-1 N...

...

...

... 2 1

N-1 N ...

... 0 N-K

...

...

1 2

N-1

ch

1 2

N-10

K+1

N-K

...

...

1 2

N-1

K samples = half bit

rclk rclk
rclk

time
0 1 2 3 K K+1 N-1 N N+1 N+2 N+K+1 2N-1 2N 2N+1 2N+2(in clk cycles)

ch

S S S S S S S S S S

2N+K 2N+K
+1 +2

"N −1 samples remain to be received for the current bit". As soon as we have received the

minimum number of samples for one bit, "K", and the decrementor has reached a count of N −K,

a pulse of the receive clock rclk is output together with the value of the received bit. In the fol-

lowing paragraphs, we will refer to the count of the decrementor that produces an rclk pulse as

cntrclk. When the decrementor reaches zero, then the nominal number of samples has been

received and the reception of a new bit is initiated. In table 3.2, at clock cycle 2N +K +1, we see

the limit case where the decrementor has reached a count of N −K, and at the same time we see a

transition of the input. In this case, the receiver FSM outputs an rclk pulse, since the cnt value of

N −K means that K samples have been received in the previous K cycles, and it initializes the

reception of a bit of value S
�
.

Below, we will calculate the value of cntrclk, that is the condition to decide that "one more

bit has been received". Remember from section 2.3, that the minimum number of samples that

constitute a bit is K, where

K =

�
�
�
�
�
�
�
�
	

2
N +2����� , if N =even and S =strong

2
N��, if N =even and S =weak

2
N +1����� , if N =odd

Since cntrclk=N−K, we can find the equivalent expression for cntrclk:

cntrclk =

�
�
�
�
�
�
�
�
�
�
	

N −
2

N +2����� =
2

N −2����� =
�
�

 2
N��

�
�
�
−1, if N =even and S =strong (iii)

N −
2
N�� =

2
N�� =

�
�

 2
N��

�
�
�
, if N =even and S =weak (ii)

N −
2

N +1����� =
2

N −1����� =
�
�

 2
N��

�
�
�
, if N =odd (i)
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The value of
�
�

 2
N��

�
�
�

is easily produced by shifting right by 1 bit position the 20-bit parameter N.

So, on every cycle, the decrementor’s value is compared to the number
�
�

 2
N��

�
�
�
; if the comparison

yields equal for N =odd or S = weak, then an rclk pulse is produced. In the case of N=even and

S = strong, an rclk pulse is produced in the following clock cycle, provided that one more sample

of the same value is seen. If an incrementor were used instead of the decrementor cnt, then we

would have to calculate the value of K=
2

N +1����� , which requires an addition. The circuit imple-

menting FSM operating on 1 sample per cycle is shown in figure 3.14.

�������������������������������������������������������������������������������

-1

F/F

?=

F/F

N

2

?= 0

xor
ch OR cnt=0

cnt

input

and

rclk

0 1

ch

shift right previousInput
ch

N

N=even AND S=strong N=odd OR S=weak

by one

decrement

clk

Figure 3.14: Circuit of the simple Receiver’s Bit FSM, operating on 1 sample per clock cycle
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A note should be made on an alternative solution to the counting sequence. In the current imple-

mentation the decrementor is initialized to N −1, counts down to 0, while when K samples have

been seen (cnt=N −K) it outputs an rclk pulse. An alternative solution would be to load the decre-

mentor to K −1, and count down to 0 for the first bit of a sequence, while for the subsequent bits,

it would load the decrementor with N −1 and count down to 0. This alternative solution produces

the rclk pulse when the decrementor reaches 0. It has the advantage that it compares cnt to 0,

which is implemented by a large NOR gate, instead of using a comparator as in the current imple-

mentation. However, it needs an additional 20-bit multiplexor to select between K and N in order
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to load the cnt decrementor.

3.5.2 The Receiver Bit FSM operating on 2 samples per clock period.

This FSM, i.e. the one implemented in the chip, operates on two samples per clock period.

The main idea in the two-bit FSM implementation is to combine pairs of columns of the table 3.2

so that the values of the decrementor as well as the decisions made are the same as those of the

simple FSM previously described. The patterns of the table 3.2 which produce an rclk pulse are

summarized in figure 3.15. Note that in case (b), the rclk pulse may equivalently be produced in

the cycle i +1 instead of cycle i +2, since the current sample will cause cnt to decrement by one.

�������������������������������������������������������������������������������

N

2

N

2
-1N

2

input

cnt

decision

S Sinput

cnt

decision rclk

S

rclk

(a) N=odd OR  S=weak (b) N=even AND S=strong

cycle i i+1 i+2cycle i i+1

Figure 3.15: Input patterns which result to rclk.
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Since, the FSM operates on two samples, the counter should count for one or two samples,

depending on how many identical samples are received. The problem that arises here is that it

may skip the critical value of cntrclk, where the rclk is produced, e.g. for N=odd, it may count

directly from N −K +1 to N −K −1. This problem is solved by checking the cnt for ≤ against N −K,

instead of =. However, the operation of ≤ is equivalent to an addition. In order to avoid this full

comparison which has a propagation chain of 20 bits and would further delay the time critical

FSM operation, we used the following optimization: we check for equality of the decrementor to

N −K and any of the values N −K +1 or N −K −1. If equality to N −K is found, the cases (i) and (ii)

in the above formula for cntrclk are satisfied, and if equality to N −K −1 is found, all three cases

are satisfied. Also, if equality to N −K +1 is found and there is no transition in the input, in the

next cycle we know that we will reach a count of N −K −1. For the above comparisons, only one

comparator and some small logic is required. One of the numbers N −K −1 and N −K +1 can be

found without substraction: it differs from N −K at the LS bit position. Thus, if at a given cycle,

we detect the equality of cnt to N −K +1, then in the next cycle we will have a count of N −K or

N −K −1 depending on the amount of decrement (1 or 2).

Another situation that must be considered is when we have not yet decided on the current

bit and there is a transition at the second sample. The first sample may be critical for deciding for

the current bit, and it would be wrong to neglect it. For example, let us assume that a bit of value
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S is being received, and that the samples acquired during this cycle are [S,S
�
], where S is a sample

of the same value as the current bit, and S
�

is a sample of the different value. Let us further assume

that no decision has been made, or can be made in this cycle for the current bit. Then, the ques-

tion is whether in this cycle we should keep on with the current bit by counting the S sample, or

initialize the reception of a new bit of value S
�
. In these cases, the FSM counts for the first sample

by decrementing by 1, and carries the second sample to be counted in the next period, by setting

the special flag, Carry. The flag indicates that "one sample from the previous cycle remained to

be counted with the samples of the current cycle".

Table 3.3 presents the cases where an rclk pulse is produced, based on the FSM current state

and the received samples. In this table, an "X" stands for "don’t care".
����������������������������������������������������������������������

Table 3.3: Receiver’s Two Sample per cycle FSM decision on rclk��������������������������������������������������������������������������������������������������������������������������������������������
Current State Samples seen now Decision���������������������������� ��������������� ��������������������

cnt value Value of S Carry��������������������������������������������������������������������������������������������������������������������������������������������
S,X one S bit seen

Weak X S
�
,X -�����������������������������������������������������������

S,X one S bit seen if N odd
=N −K +1

Strong X S
�
,X -��������������������������������������������������������������������������������������������������������������������������������������������

Weak X X,X one S bit seen�����������������������������������������������������������
S,X one S bit seen

0 S
�
,X one S bit seen IF N=odd������������������������������������������������

=N −K
Strong

1 X,X one S bit seen IF N=odd��������������������������������������������������������������������������������������������������������������������������������������������

=N −K −1 X X X,X one S bit seen
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In some cases, the conversion from the single sample FSM to the two-sample FSM presents some

conflicts. These cases are shown in figure 3.16, and they both occur for the minimum bit length

N=2.

�������������������������������������������������������������������������������

N

2

N

2

strong strongweak
input

cnt

decision rclk rclk

N = 2

S SS

cycle i+1i

conflict

N

2

N

2

input

cnt

decision rclk rclk

N = 2

S SS

cycle i+1i

conflict

strong weak weak

Figure 3.16: Conflicts in conversion from 1 sample/cycle to two sample/cycle FSM.
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The conflict is presented because the decision that an S
�

strong bit has been received is made on

cycle i +1, and in the same clock cycle the single sample/cycle FSM decides that a weak bit S was

also received, since it has seen N −1=
�
�

 2
N��

�
�
�
=1 samples of S. The result is that two rclk pulses
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should be output for this clock period. In our implementation, at clock cycle i +1, the rclk pulse

corresponding to the first strong bit S
�

is output, and the FSM starts counting the samples of the S

bit. In the first case of figure 3.16, the decrementor will count for the S sample, and the Carry

signal will be asserted signifying that an S
�

sample remain to be counted with the samples of the

next cycle; in the second case, the decrementor will count for the two S samples. In both cases,

an rclk pulse corresponding to the S bit will be output on the next cycle i +2. If "short pulses"

consisting of 1 weak sample and 2 strong samples continue being received, then the Carry bit

will "overflow" and some incoming bit will be lost, since we cannot receive at a rate of >1

bits/clock period.

Figure 3.17 presents the circuit implementing the FSM operating on 2 samples per clock

cycle. The next state logic block decides on the next FSM state. Its operation is given in the fol-

lowing table 3.4. This logic decides when to initialize a new bit reception when a change of the

input is seen, and it also sets the Carry bit. The value of the current bit is toggled when an

change of the input is observed. The decision logic block, described previously in table 3.3,

decides if a bit has been received and outputs an rclk pulse together with the corresponding

bit value. It also sets a latch, to prevent next false rclk pulses for the same bit. The decrementor,

impelemented as a carry look ahead decrementor in stages of 4 bits, decrements by 1, 2, or 3

depending on the signals decr1 and decr2; if both signals are asserted, it decrements by 3.
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Figure 3.17: Circuit of the Receiver 2 sample/cycle Bit FSM
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The next table 3.4 shows the next state of the FSM, implemented by the nextstate block in figure

3.17, based on the current state, the received samples, and the value of the Carry bit. Note that in

some cases, the decrementor decrements by 3; this is when a Carry bit is of the same value as the

two currently received samples, e.g. the entry in the table 3.4 where n ≤k −2, S=weak, Carry=1,

and the samples seen now are S
�
, S
�
.

�������������������������������������������������������������������������
Table 3.4: Receiver’s Two Sample per cycle FSM transitions��������������������������������������������������������������������������������������������������������������������������������������������������

Current State Samples seen now Next State�������������������������� ��������������� ������������������������
Value of value of Carry Sample Value of

cnt S value cnt Carry��������������������������������������������������������������������������������������������������������������������������������������������������
S,S S cnt −2 0
S,S

�
S cnt −1 1

S
�
,S
�

S
�

N −2 00

S
�
,S S cnt −2 0����������������������������������������������������

S,S S cnt −3 0
S,S

�
S cnt −2 1

S
�
,S
�

S
�

N −3 0

Weak

1

S
�
,S S

�
N −2 1�������������������������������������������������������������

S,S S cnt −2 0
S,S

�
S
�

N −1 0
S
�
,S
�

S
�

N −2 00

S
�
,S S

�
N −1 1����������������������������������������������������

S,S S
�

N −1 1
S,S

�
S
�

N −1 0
S
�
,S
�

S
�

N −3 0

>N −K +1

Strong

1

S
�
,S S

�
N −2 1��������������������������������������������������������������������������������������������������������������������������������������������������

S,S S cnt −2 0
S,S

�
S
�

N −1 0
S
�
,S
�

S
�

N −2 00

S
�
,S S cnt −2 0������������������������������������������������������
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Weak

1 same as for n ≤k −2�������������������������������������������������������������
0 same as for n ≤k −2����������������������������������������������������

S,S S N −1 1
S,S

�
S
�

N −2 1
S
�
,S
�

S
�

N −3 0

=N −K +1

Strong
1
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,S �
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S
�

N −2 1��������������������������������������������������������������������������������������������������������������������������������������������������
0 same as for n = k −1����������������������������������������������������

S,S S cnt −3 0
S,S

�
S
�
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�
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��������������������������������������������������������������������������
Table 3.4: Receiver’s Two Sample per cycle FSM transitions (continued)����������������������������������������������������������������������������������������������������������������������������������������������������
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Chapter 4

Design Methodology and Post-Fabrication Testing

In this chapter we discuss the general design methodology that was followed throughout the

design of the chip. The design flow is presented in section 1, while section 2 gives the main

characteristics of the macrocell and describes the design of the power distribution network. In

section 3, we give details on the simulations, fault simulations, and patterns for test of the chip,

while in section 4, we describe the post fabrication testing setup and the performed tests. Finally,

in section 5, we evaluate the design environment and present some general thoughts on CAD

tools for VLSI.

4.1 Design Flow
Our chip was designed using the Cadence Design Environment, and the European Silicon Struc-

tures (ES2) SOLO2030 configuration for its 1.5 μm process. First, the schematic entry together

with functional simulations were performed. These two tasks are interrelated, since the simula-

tion tests the correct operation of the circuit and serves as a guide for changes in the schematic.

The design was built using symbol parts from the ES2 ecpd15 library, in an hierarchical form.

Each subpart was simulated separately for correctness, before being used in the design. Also, a

library with macrocells was developed. When the whole design was complete, and its operation

was verified through extensive simulations, fault simulation was performed to generate vectors

for post-fabrication testing (see also § 4.3 on verification).

The next step was the placement and routing. We ‘‘flattened’’ the hierarchical schematic,

and translated all symbols from the library into their abstract representations. The abstract

representation is an intermediate model between the symbol of a cell used in a schematic, and the

layout of this cell: it contains the outline and the external connections of the layout cell, that is,
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all information needed for the placement routines and routers. Besides the abstract representa-

tions of the library cells, the flattened design included also the variable-input-threshold cell which

was independently laid out by hand. The next step was to assign high priorities to the critical sig-

nals, that is clocks, reset signals, and some signals in the receiver’s FSM which go through a long

path. Also, the widths of the important nets were specified as a multiple of the default width of

the metal in which the signal is routed. We assigned a width of 40 to the core ground and power

signals, and 2.3 to the external clock signals, and 2.2 to the generated clock signals. The clock

signals were assigned a width twice the default one, because the default width is only suitable for

short distance interconnects that carry very small currents. Since the clock wires are distributed

and used all over the chip, the load capacitance of the driven transistors is much greater than the

wire capacitance. A wider wire is needed in order to carry the current of the clock drivers.

For the placement phase, we defined regions and groups of signals that go to each region.

The placement tool of the Cadence system does ‘‘comprehensive placement’’, that is, it finds

locations of components as well as the assignments of nets to pins and logical gates to physical

gates, [PrLo88]. For each region, certain parameters are defined, such as number of rows, height

of each row, and alignment of cells. One or two preliminary runs of the placement tool, give a

‘‘feel’’ for the congestion areas and appropriate values for the placement parameters. The routing

was done in two steps. First the global router was used to define routing regions, the channels,

and allocate specific nets to each channel. The global router implemented in the Cadence

environment is a hierarchical router, that works on the tree of horizontal and vertical channels.

The global routing is done in a combined manual and automatic way. The supply nets, clocks,

reset, and critical signals to the internal circuits of the chip were routed manually, while the rest

of the nets were routed automatically. The next step was the detailed routing, which created the

physical geometries in the channels according to the assignments specified by the global router.

The detail router creates the connections and vias required. It routes each channel independently

from the others, and it may compact or expand the channel to route all signals specified by the

global routing phase. Once the physical layout of the chip has been completed, the actual sizes of

the routed signals were known, and the paracitic capacitances could be extracted. We used the

values of the capacitances to run a full ‘‘loaded’’ simulation with the same test stimuli as before.

The foundry interface is a set of utilities to prepare the design for manufacturing. It

includes generation of vectors for operational simulation, tester interface, that is translation of the

vectors to the tester format, and packaging utilities. The final outcome of the process of fault

simulation are the test vectors and the results of the simulation, i.e. the values of the output sig-

nals for each test period. Besides the operational simulations ran at different process speeds

(min, typ, max), two faults simulations were run, one with slow silicon and the other with fast,

and their results were compared to verify that the test vectors discover all possible faults in all

ranges of speeds. The test vectors and the corresponding expected outputs were translated to the



44 A High-Speed UART VLSI Library Cell

tester format, in order to be applied by the tester onto the fabricated device to verify if it is a

fault-free or faulty die. Finally, using the Packaging utilities of the SOLO2030, we chose a suit-

able package for the design and checked the pad ring power and ground connections.

4.2 Macrocell Characteristics
The macrocell designed consists of about 1500 gates, of which 650 are for the transmitter and 850

for the Receiver, or equivalently 2600 transistors for the transmitter, and 3400 transistors for the

receiver. The chip that contains the transmitter and receiver blocks, is a square of side 4.15 mm,

and is shown in figure 4.1. The core area dimensions are about 2.9 mm on each side making a

total of 8.4 mm2, while the area occupied by the pads is 2 mm2. Inside the core, the receiver

occupies is 2.7 mm2, while the transmitter takes 1.8 mm2. The rest of the core area is comprised

by the select logic that arbitrates the 8-bit I/O bus †, 0.2 mm2, by the tristate drivers of the output

signals on the 8-bit I/O bus, 1.3 mm2, and by interconnect space. The receiver cells are placed in

10 rows, and the transmitter cells are ordered in 7 rows. The drivers block is made up of 21 rows

of cells. The percentage of the chip area that is dedicated to interconnect is about 45%.
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Figure 4.1: Chip floorplan (without I/O pads).
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The pad ordering and the power and ground supply network are shown in figure 4.2. The

chip is packaged in a 28-pin DIL. Four of the pads are dedicated for ground and power supplies

for the core and the output pads separately. The remaining pads are:
������������������
This 8-bit bus is used to load parameter values and to provide a path to the internal points of the chip for the purposes of
testing.
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Table 4.1: Description of the chip pads��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Number of
pads

I/O Name Polarity Description
����������������������������������������������������������������������������������������

5 Input Bsel[0:4] high bus select signals
8 I/O IObus[0:7] low I/O pads for the byte-wide bus
1 Input Bio high for input pad that determines the direction of the bus pads����������������������������������������������������������������������������������������
1 Input Xclk high Transmitter’s external clock source
1 Input Xreset low Transmitter’s reset
1 Output Serout low Serial Output of the Transmitter
1 Output Xsh_empty high Transmitter’s shifter empty
1 Output Xfull high Transmitter’s hold buffer full����������������������������������������������������������������������������������������
1 Input Rclk high Receiver’s external clock source
1 Input Rreset low Receiver’s reset
1 Input Serin high Serial input
1 Output R_rdy low there is one received character
1 Input char_read low received character read by the external circuits������������������������������������������������������������������������������������������
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The pads that correspond to the receiver are placed on the left side of the chip, so they can be

connected directly to the receiver block. The transmitter’s pads are placed on the bottom-left side

of the chip, close to the transmitter block. The select pads are placed on the left side of the chip,

because they are used in the select block that generates control for both the receiver and

transmitter. Finally, the I/O pads of the 8-bit bus, which are larger than the other pads, are placed

on the right and bottom sides.
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Figure 4.2: Pad arrangement and supply network of the UART chip.
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Separate power and ground cells have been used to provide power supplies to the

input/output pads and the core of the chip. The benefits of this configuration is that output buffer

switching noise does not affect the core and input buffers. The core supply nets are placed in

‘‘comb’’ style, where the main lines are drawn in the vertical direction, and the secondary hor-

izontal lines supply the rows of components. The supply lines inside a row run through the cells

since the supply pins of adjacent cells overlap. For the large central blocks, we have used sup-

plies from both left and right sides, so that the voltage drop of the supply track along a com-

ponent row is minimized.

4.3 Analysis and Verification
Two of the steps of digital design are circuit analysis and circuit verification. Analysis is the pro-

cess of modeling the behavior of the circuit and testing whether the circuit behaves according to

the requirements. In this process we check the logic (logic simulation), as well as the critical

paths and timings (timing simulation). Verification is the process of generating the test patterns

that will be applied after fabrication to verify that the physical circuit behaves the same as its

simulated representation. This is the step where we check the correctness of the manufactured

circuit.

For our chip the logic simulation was done using mainly the Silos gate level simulator

[Silos89]. Since Silos is a very low-level simulator, taking input in the form of test vectors only,

we have used the Cadence STL interpreter as a front end. STL is a high level description

language for the generation of test vectors, and provides variables, iteration, conditional state-

ments and procedures. The about 10.000 test vectors tested in detail the behavior of the receiver

and transmitter for many combinations of the configurable parameters, and for expected input

patterns. More specificly, we simulated the transmitter’s behavior for bit length values of 2, 3, 4,

15, 32, and 1356, for all nominal values of character length and parity, for pipelined transmission

of successive characters, and for asynchronous loading of characters. Similarly, the receiver was

simulated for bit lengths of 2, 3, 4, 5, 21, and 1022, all valid values of character length and parity,

and for distortion of the input signal of 33% in case of bit length equal to 2, up to 50% for bit

length equal to 1022. In the receiver’s simulation we did not include in the path the Variable

Threshold Unit, since we had already tested it through spice simulation, and modeling it in Silos

would very complicated. Additional simulations were carried out using the Verilog gate level

simulator [Gate89] for the 1.0 μm standard cell library of ATMEL [Atmel90]. In these simula-

tions, we used two representations of the UART cell: the netlist of the schematic using the

models of the basic cells supplied by ATMEL extracted for Verilog, and a hand-built behavioural

model of the receiver and of the transmitter. We applied the same test stimulus concurrently, to

both the behavioural and the functional model, and verified that in all cases we get the same
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results. Apart from evaluating our design with another manufacturing process, the flexibility and

power of the Verilog simulator helped us in debugging the early design.

Timing simulations were ran after the placement and routing of the design. In the early

stages of the design, the timings of the logic simulations were not exact, since they were based on

the estimated delays due to interconnect loads, that are built in the Silos models of the com-

ponents. The final lengths and widths of the wires are made known after the placement and rout-

ing. In this stage, the exact capacitive and resistive loads of the wires can be computed, and the

true delays are known. The critical timings were identified by inspecting the graphical waveform

output, since the Silos simulator does not have any advanced timing capabilities. The most time

critical part of the circuit was the receiver’s FSM. By successive placement+routing runs fol-

lowed by loaded timing simulations, we found the better placement in terms of compactness and

performance.

The process of verification involved two tasks, and the addition of specific hardware that

provides access to internal paths, and the fault simulation of the circuit. Fault simulation of a

digital circuit is the modeling of the network’s behavior in the presence of faults which can be

caused by physical defects or environmental influences. To make the simulation concrete, some

specific assumptions are made about the faults present; this step is known as ‘‘fault insertion’’.

We performed fault simulation using the Fsilos simulator, an extension to the Silos simulator,

together with the fault models for the parts of the ES2 library. Fsilos follows the gate-level ‘‘sin-

gle stuck-at’’ model, which is the fault-model most commonly used. This model assumes that

each net in the circuit is stuck-at either the logic 1 or the logic 0, and such a fault is the only one

in the circuit. For each fault, a simulation is run. The fault is said to be detectable, if the output

of the simulation with the specific fault differs from that of the fault-free simulation. The model

limits the number of faults to one at a time, for reasons of computability; for a network contain-

ing N nodes, where each node can be in one of the 3 states, ‘‘stuck-at-1’’, ‘‘stuck-at-0’’ and

fault-free, 3N cases should have to be considered if this simplification were not made!

The aim of the test-generation process is to derive a set of vectors that covers as many faults

as possible. We measure the effectiveness of the test vectors by calculating the fault coverage

which is defined as the ratio of the number of faults detectable by the patterns to the total number

of faults assumed present in the circuit. Thus, we are trying to reach 100% fault coverage,

although in many cases a lower percentage may be acceptable, due to practical difficulties in test-

ing. In the fault simulations that we run, we used as a starting point the logic simulation patterns,

and modified them appropriately in order for them to reach a high fault coverage. This involved

extending the test vectors to include more combinations of the input data. By running activity

analysis, which determines the number (and percentage) of the nets toggled by the simulation

vectors, we had a first estimate of the effectiveness of our test stimuli, since the full fault simula-

tion is a time consuming process. We obtained a fault coverage of 93% with our final test
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vectors. This percentage would increase if we triggered all states of the 20-bit counters. There-

fore with the existing test length limitation of a maximum of 64000 test vectors, and with the

need to have divisions of the clock cycle to simulate asynchronous signals, this was not feasible.

Also, a higher fault coverage does not always result in fault diagnosis. By its nature, the existing

fault model does not help fault diagnosis, since different faults can cause the same observable

errors, and the most common failures are the gate-to-drain and gate-to-source short circuits,

[Holl88].

The testability of digital circuits can be increased by adding special hardware. Many

approaches have been proposed in literature, the main of them being: latch-scanning arrange-

ments, e.g. scan-path, switching of I/O ports, and internal, pattern-generation and response com-

paction, e.g. built-in tests, [Tsui87]. In our design, we have used the simpler and clearer of these

methods: switching of I/O ports. We used the already existing 8-bit I/O bus through which input

parameters are loaded, and provided paths from internal points to this bus through tristate drivers.

The pads with the select signals for the bus arbitration were increased to 5, and a 5-to-32 coder

was used to select which path drives the bus. This approach was preferred to the scan-path circui-

try, because it is clearer, and makes internal points immediately observable. Also in our case

where the design was not pad limited, we could easily add 2 more pins to the initially needed 3

for the select logic.

4.4 Post Fabrication Testing
In this section we will describe the post fabrication tests that were performed until today (end of

July 1992) and those that will be performed in the next weeks. Some preliminary results show

that the chip operates successfully both at the data rate of 115.2 Kb/s when interfaced to a com-

mercial UART chip, as well as at 20 Mb/s in loopback mode through a 100m coaxial cable. The

testing is following two independent plans: i) testing on a 50 MHz, 64-pin VLSI-tester brand

Tektronix model LV500, and ii) developing a prototype board where a microprocessor is used to

interface to our chip.

The prototype board includes one UART chip, the intel-8031 microcontroller, and some

glue logic. The 8031 is responsible for the setup of the UART by writing to the chip registers the

parameter values, for generating the signals to load a character for transmission in the UART

transmitter, and for reading the received characters from the UART receiver. An external clock

source is fed to the UART, and also serves as the microcontroller’s clock divided by 2. We have

tested the UART chip at 10 and 20 MHz, but we have not gone above 20 MHz, because of the

limitation that the 8031 clock has to be a submultiple of 10 MHz, and of the difficulty in finding

high frequency crystals.
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In one of the tests performed, the UART is used in loopback mode. More specificly, we are

sending individual characters through the serial port of a PC to the 8031, which in turn sends

them to the UART transmitter. The serial output is fed to the serial input, and when a full charac-

ter has been received, the UART interrupts the microcontroller which reads the character and

gives it back to the PC.

In the second test, the loopback cable is a 100m coaxial cable of type RG58. An LH63

amplifier is used for converting TTL signals to drive 50 Ohms, while the raw serial input is

directly fed to the receiver.

Another test was to connect the serial output of our chip directly to the serial port of the PC,

and the inverse test where our UART receiver takes input from the PC’s serial port. We verified

that it worked successfully at the PC’s maximum allowable data rate of 115.2 Kbaud. Finally,

the fault testing on the VLSI tester will be done in the next weeks.

4.5 Evaluation of the Design Environment
In this section we will evaluate the design environment, and present some thoughts in the area of

CAD systems for VLSI. All stages of the design were done under the Cadence OPUS design sys-

tem. The Cadence environment is one of the latest and most complete design systems currently

available for VLSI design. The philosophy of large design systems like Cadence is the integra-

tion of tools under a unified environment, and provision of a general framework that can be

configured according to the wills of the user. The OPUS system contains a schematic editor,

extraction tools, supports many simulators like Silos, Spice, Hspice, Verilog, and is open to be

configured to support any other simulator. It also provides placement tools, routers, layout editor,

symbolic layout, physical design verification tools, and others. Thus, it is obvious that it supplies

with all the tools that a designer needs. However, the extended configurability is obtained at the

expense of simplicity. It takes a lot of time to learn how to use the system. One has to go

through dozens of manuals, and to cross check redundant pieces of information in them, in order

to find out how a simple job is done. On the other hand there are tools like "Magic" (of the

Berkeley VLSI Tools Suite), which may not be so sophisticated but are easy-to-use and powerful.

As a conclusion, we would prefer a CAD system having all the tools integrated, but retaining its

simplicity.

Some additional notes on the weak points of the system follow, focusing on the layout edi-

tor and the simulation process. The layout editor does not have automatic Design Rule Checking

(DRC). The tool is optimized for automatic synthesis, and the orientation is to use symbolic lay-

out, which resembles to stick diagrams without following exact design rules, and then compact-

ing the design automatically. However, DRC is a very useful feature when the layout is done
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manually. Another weak point is the simulation process. In order to run a logic simulation, the

design must be extracted to establish connectivity, the new design must be extracted to obtain its

flattened netlist, the simulation is run and the results are shown graphically. This is a dull pro-

cess, repeated many times when we do small changes in the schematic and we want to quickly get

the results. A better system would include the capability, to automatically detect changes in the

schematic, simulate and update its output, without making the user go through the above steps.

This is realistic and can be done in real time, for small designs where the run time of the simula-

tion is small.

In our design, we had to use the ES2 configuration that included the libraries, models for the

Silos simulator, and many routines for netlist extraction, simulation, and foundry interface. This

configuration was not well prepared, and it was full of errors, which we had to correct in order to

continue our design. For example, the capacitances and resistances of metal as given in the tech-

nology files were wrong. Moreover, the "include" files for "loaded simulation" with the actual

paracitic capacitances did not take them into account at all. If someone followed the ES2 user’s

manual without checking, absolutely wrong results would be obtained. Another drawback was

that the library part models of the ecpd15 library that we used were given only for the Silos simu-

lator, which is very primitive. Thus, we had to write the simulation stimuli in an intermediate

language and then translate it to Silos. Configuring the system for the Verilog simulator, would

have been a far better choice.



Chapter 5

Conclusions, Extensions

In the context of serial asynchronous communications, clock recovery by oversampling (e.g. 16x)

is not applicable to high communication rates, while clock recovery using phase-locked loops

(PLL) requires considerable silicon area and considerable design expertise. Our approach to data

recovery using a minimal number of samples per bit (as few as 2) is simple and allows inexpen-

sive serial communication at very high rates.

The major advantage of our cell over clock recovery using PLL is that it occupies a small

area. Moreover, it can be implemented using standard cell components, and it can be easily

ported to various technologies and processes with standard cells, without requiring high expertise

and design effort. If we compare our cell with the commercially available UART cells, we find

that our cell has better distortion tolerance, and thus performs better than other UARTs under

noisy conditions. Assuming an equivalent setup, where a conventional UART uses a 16x clock

and we use N =16 samples per bit, the conventional UART tolerates sampling error of 43.7% of

the single pulse width, while our method tolerates 46.8% of the pulse width.

All the above features make our cell appropriate to be used as a building block in full-

custom or semi-custom VLSI designs that need to interface between serial asynchronous com-

munication links. One of the possible uses would be in interfacing with standard RS232 links,

where the operation speed is limited by the other end device. In such cases, a standard 1488/89

driver/receiver pair for RS232 can be used, together with low cost cable. If our cell is used at

both ends of the communication link, it can send and receive at its maximum rate. Then, a driver

such as the LH63 amplifier could be used together with good quality, shielded, 50 Ohm coaxial

cable that enables connections up to 100m.

Another use of our cell would be in building a fast and inexpensive network interface.

Since the receiver and transmitter blocks are small in size, several of them can be integrated in
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one chip together with buffer memory and routing control, thus implementing the lower levels of

a ring or star network topology with point to point links, or a combination of the above. As a

conclusion, our cell is small and flexible, and can be used in a wide range of communication

applications.

The work presented here can be extended in several directions, three of which are:

� a pulse shaping circuit for the clock

� balanced transmission of 1s and 0s

� application of the decoding algorithm to synchronous protocols

The clock signal that is fed to our chip may not have a duty cycle of 50%, that is its two half-

periods may not be of equal length. A solution to this problem would be a pulse shaping circuit

that shapes the clock signal. A preprocessing circuit analogous to the one presented in § 2.2 can

be used to selectively expand or shrink one of the clock subperiods.

A future addition to the chip protocol would be to send a balanced number of 1s and 0s, in

the long term. This would help with the ground reference problem, present when the two inter-

connected devices are physically situated apart one from another. In these cases, the reference

ground voltage may be different in the two places, resulting to a current flowing between the two

interconnected sites through the ground signal wire. This in its turn results to a voltage drop

which may cause a different (wrong) interpretation of the signal applied by the transmitter driver

at the receiver end. To solve this problem, a circuit with decoupling capacitors (or an equivalent

with inductors) can be used for semi-differential mode of transmission. The capacitor lets only

the ac-part of the signal pass through it, while the dc-part remains stable. A problem arises when

many 0s or 1s are sent: the load which accumulates in the capacitor biases the dc-part of the sig-

nal, and limits the voltage swing. If the transmitter could send in the long term a balanced

number if 1s and 0s this problem would be solved. This can be implemented by sending a special

synchronization pattern of successive 1s and 0s at the idle periods.

Our decoding algorithm is of general nature and can also be applied to synchronous proto-

cols, such as Ethernet (Manchester encoding), FDDI (4B/5B encoding), and X-25 (bit-stuffing)

[Walr91], etc. In the Machester encoding scheme, the receiver synchronizes its clock using the

transition inside the bit interval. The 4B/5B and the bit-stuffing codes, use more bits than those

necessary to carry the information in order to ensure that there is at least one transition in groups

of 3 bits or 5 bits respectively. The transition is necessary to keep the receiver’s PLL locked.

Here also, our decoding algorithm can be used for data recovery, instead of the PLL. Thus, our

decoding algorithm can be an alternate solution to the synchronization by PLL, having the advan-

tage of small and easy implementation.
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Appendix A
Appendix A presents the detailed schematic diagrams of the transmitter and receiver blocks.



Figure A.1: Overview of chip schematic



Figure A.2.1: Transmitter General Block Diagram



Figure A.2.2: Transmitter Circuit for Setting of Parameters



Figure A.2.3: Transmitter Clock Generation Circuit



Figure A.2.4: Transmitter Timing Signals Circuit



Figure A.2.5: Transmitter Shifter Register Circuit



Figure A.2.6: Transmitter Parity Generation Circuit



Figure A.3.1: Receiver General Block Diagram



Figure A.3.2: Receiver Circuit for Setting of Parameters



Figure A.3.3: Receiver Variable Input Threshold Inverter



Figure A.3.4: Receiver Programmable Edge Delay Circuit



Figure A.3.5: Receiver Input Signal Synchronization Circuit



Figure A.3.6: Receiver Bit Finite State Machine



Figure A.3.7: Receiver Timing Signal Generation circuit



Figure A.3.8: Receiver Shifter Register



Figure A.3.9: Receiver Status and Error Cicruits



Figure A.3.10: Receiver Double buffering of Character and Status




