
Multi-layer bipartite structural
features to analyze YouTube Social

Network

Maria Oikonomidou

Thesis submitted in partial fulfillment of the requirements for the

Masters’ of Science degree in Computer Science and Engineering

University of Crete
School of Sciences and Engineering

Computer Science Department
Voutes University Campus, 700 13 Heraklion, Crete, Greece

Thesis Advisor: Associate Prof. Polyvios Pratikakis

This work has been performed at the University of Crete, School of Sciences and Engi-
neering, Computer Science Department.

The work has been supported by the Greek GSRT through the project ETAK, with
project ID T1EDK-01800





University of Crete
Computer Science Department

Title: Multi-layer bipartite structural features to analyze YouTube
Social Network

Thesis submitted by
Maria Oikonomidou

in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science

THESIS APPROVAL

Author:
Maria Oikonomidou

Committee approvals:
Polyvios Pratikakis
Associate Professor, Thesis Supervisor

Ioannis Tollis
Professor, Committee Member

Charalampos Saridakis
Associate Professor, Committee Member

Departmental approval:
Polyvios Pratikakis
Associate Professor, Director of Graduate Studies

Heraklion, February 2022





Multi-layer bipartite structural features to

analyze YouTube Social Network

Abstract

This work investigates interactions on YouTube, concerning predicting miss-
ing or unseen interactions on multi-layer bipartite networks. More precisely,
given a set of own interactions between YouTube users and videos, we measure
how accurately we can predict comment interactions. We propose structural
bipartite features, which enhance the performance of simple prediction mod-
els, to find missing or unseen links. Experimental validation of the proposed
approach is carried out on multi-layer networks formed on YouTube. We have
crawled an extensive dataset of YouTube videos, the channels that own them,
and the authors of their comments. Using a machine learning framework, we
find that we can predict future and unseen comment interactions on YouTube
videos with precision 99%. We also show that to predict a day’s comment
interactions it suffices to account network information generated 1 day prior.
Our set-up is implemented on the MapReduce model. We propose two MapRe-
duce algorithms, one that counts the bitruss number of an edge and one that
clusters edges into blooms in a bipartite network.



Contents

1 Introduction 1

2 Related work 3

3 Design 5
1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 MapReduce Algorithms . . . . . . . . . . . . . . . . . . . . . . . 8
3 Bipartite Graph Features . . . . . . . . . . . . . . . . . . . . . . 14

4 Implementation 17
1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2 Future Link Prediction . . . . . . . . . . . . . . . . . . . . . . . 18
3 Missing Link Prediction . . . . . . . . . . . . . . . . . . . . . . 19

5 Results 21
1 Future Link Prediction . . . . . . . . . . . . . . . . . . . . . . . 21
2 Missing Link Prediction . . . . . . . . . . . . . . . . . . . . . . 22
3 Set-up & Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Conclusion 25

Bibliography 27

i



List of Tables

3.1 Multi-layer bipartite edge graph embedding features. . . . . . . 16

4.1 Structural characteristics of the 5 dataset used for the link pre-
diction task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.1 Future Link prediction results for the 5 dataset, when trained
with base and enhanced model. . . . . . . . . . . . . . . . . . . 22

5.2 Missing Link prediction results for the 5 TrainSet2 dataset, when
trained with base and enhanced model. . . . . . . . . . . . . . . 23

iii



List of Figures

1.1 A user-video bipartite network with 2 butterflies (dotted edges). 2

2.1 Multi-layer bipartite graph with 2 layers. . . . . . . . . . . . . . 4

3.1 A bipartite network with 2 butterflies and the bitruss count of
each edge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Bloom construction out of a bipartite network. . . . . . . . . . . 7
3.3 The 6 structural types of multi-layer butterflies. . . . . . . . . . 8
3.4 Illustration of the Algorithm 1 with input the Graph of figure 3.1. 10
3.5 Illustration of the Algorithm 2 with input the Graph of figure 3.2. 13

v



Chapter 1

Introduction

In this study, we investigate the comment interaction on the YouTube so-
cial network. The goal is to predict which YouTube user is commenting on
what video. We approach this comment prediction task as an edge prediction
problem for multi-layer bipartite graphs. We propose multi-layer structural
features and compare their predictive power over simple structural features, on
the YouTube bipartite networks.

YouTube is an online video sharing and social media platform. It is the
second most visited website, with more than one billion monthly users [1].
YouTube users can watch, like, share, comment, put into a playlist, and upload
their videos. Prior research studies on the social media platform have focused
primarily on analyzing existing content and providing statistical insights for
the platform [9, 21, 27, 28]. There is very little work related to predicting
interactions on the platform solely.

The task of predicting interactions fits naturally in a graph framework. For
that reason, we use bipartite graphs (bigraphs) to model relations between
users and videos on YouTube. More precisely, we represent in a bigraph the
relation ‘own’, which is user owns video and the relation ‘comment’, which
is user comments video. Following, with the use of the topological features
emerging from the ‘own’ and ‘comment’ graph, we answer the question ‘which
user is going to comment on what video’.

To make comment predictions on YouTube, we translate the problem to
a link prediction task. Given a network at a specific period of time, the link
prediction problem is considered as a task of discovering unseen links or pre-
dicting new ones that will occur in a future time. In this work, we use the
link prediction as a binary classification problem, where first-order structures
such as the node degree, edge existence, and the high-order structures such as
the butterfly, the bloom, and the multi-layer topological structures are used as
features.
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2 CHAPTER 1. INTRODUCTION

A butterfly , also known as rectangle [2, 19, 20, 25, 24], is a complete 2 x 2
biclique and is considered as an analogue of a triangle in unipartite graphs. Fig-
ure 1.1 shows a user-video bipartite network with 2 butterflies formed, marked
in dotted lines. We also use the bloom [26] as a structural feature to infer
information about the bipartite network. Blooms can be considered clusters
of butterflies. An example of bloom construction out of a bipartite graph is
in figure 3.2. As high-order structural features, we also consider the topolog-
ical features emerging when combining the ‘own’ and ‘comment’ interactions.
These two YouTube interactions characterize nodes and their connections on
two different relations. This setting is also known as multi-layer network ,
and we take it into account to make more sophisticated predictions.

Figure 1.1: A user-video bipartite network with 2 butterflies (dotted edges).

Overall, this study makes the following contributions:

• We compare the predictive power of first-order to high-order structures
on the missing link task on a multi-layer bipartite network.

• We compare the predictive power of first-order to high-order structures
on the formation of future links on a multi-layer bipartite network.

• We show that to predict a day’s comment interactions suffices to consider
data generated one day prior.

• We implement a MapReduce algorithm that counts the bitruss number
of an edge in a bipartite network.

• We implement a MapReduce algorithm that clusters edges of a bipartite
network into blooms.



Chapter 2

Related work

Given a network at a specific time, the link prediction problem is a task of
discovering unseen links or predicting new ones that will occur in a future time.
The link prediction has been extensively studied in unipartite and bipartite
networks [17, 4, 18, 15, 22, 6, 5, 16, 13]. Al Hasan et al. [3] introduce the
link prediction problem as a binary classification task, where various similarity
metrics and data outside the graph topology scope were used as features. The
same supervised classification approach has also been used by [10, 23, 7].

In unipartite graphs, link prediction algorithms make the assumptions of
Triangle closure and Clustering [14], which cannot be in use on bipartite graphs.
Technically, unipartite link prediction algorithms can apply to bipartite graphs,
but they will not perform well because they are based on the triangle closure.
For that reason, the link prediction algorithms need to be fine-tuned to match
the structure of bipartite graphs.

In this study, we approach the link prediction problem as a binary classifi-
cation task. We adopt multi-layer higher-order topological features that have
application only on bipartite graphs. In contrast, authors of [6, 8] adapt some
topological measures used in unipartite graphs for predicting links in bipartite
graphs. They also transform bipartite graphs into unipartite and perform link
prediction. The work of Allali et al. [5] propose a link prediction method that
is based on the notion that if two nodes have a common neighbor in the graph,
they will probably acquire more in the future.

We expand the idea of the triangle closure and build upon the analog struc-
ture for bipartite graphs, which is the butterfly. A butterfly (also known as
rectangle), is a complete 2 x 2 biclique [24, 19, 25]. Besides the butterfly struc-
ture, we use the notion of the Bloom structure and bitruss number [26] of a
link for our bipartite graph embedding. To enhance the predictive features, we
also leverage structural features emerging when considering multi-layer graphs.

Multi-layer networks characterize multiple types of interactions not possible

3



4 CHAPTER 2. RELATED WORK

to represent by using a traditional monolayer network approach. Figure 2.1
shows an example of a multi-layer bipartite network. Each layer represents a
bipartite network, whose vertices are divided into two disjoint and independent
sets, such that every edge connects a vertex from one set to the other [11]. In
figure 2.1, there is a set with circle vertices and a set with square vertices
represented on two networks, on Layer 1 and on Layer 2. For example, Layer
1 can represent the ‘own’ relations and Layer 2 can represent the ‘comment’
relation.

Figure 2.1: Multi-layer bipartite graph with 2 layers.

Close to our work lies the framework proposed in [22], where they study
user interactions on Twitter. They use multi-layer directed networks and show
that features involving triads turn out to be important for accurate predictions.
There is little work regarding multi-layer bipartite link prediction. The study
of [12] propose a community detection-base measures for link prediction.To
the best of our knowledge, we are the first to address the multi-layer bipar-
tite link prediction while taking into account multi-layer features on YouTube.
We create a graph embedding with first-order and high-order structural fea-
tures, which consists of multi-layer butterfly motif structures on the YouTube
comment and own network.



Chapter 3

Design

In this section, we describe the set-up for the multi-layer link prediction in
bipartite graphs, to predict the comment action on YouTube. We model the
bipartite link prediction problem as a binary classification task, where each
data point corresponds to a pair of vertices in the network. Vertices are divided
into two disjoint and independent sets U and V, such that they compose an
edge connecting a vertex in U to one in V.

The link prediction problem corresponds to two tasks, one to predict future
links and one to predict missing links in a network. In our set-up we explore
both prediction tasks. We need to create a graph embedding to perform both
link prediction tasks. For this study, the graph embedding for these tasks is the
same and is a vector that contains structural information for every edge/link in
the network. Specifically, the vector contains first-order and high-order struc-
tural features of the multi-layer bipartite network. The first-order structural
features are the degree of a node and the existence of an edge in the different
layers. The high-order structural features we use in this study emerge from
the butterfly motif and are the blooms, the bitruss number, and the multi-layer
butterflies.

1 Definitions

Our problem is defined as an undirected bipartite graph G(U, V,E), where
U(G) denotes the set of vertices in partition U and V (G) denotes the set of
vertices in partition V with U(G) ∩ V (G) = ∅, and E(G) ⊆ U(G) × V (G)
denotes the edge set. An edge between two vertices a and b in G is denoted as
(a, b) or (b, a).

Butterfly (Rectangle): Given a bipartite graph G (single layer) and four
vertices (a, b,∈ V (G) and c, d ∈ U(G)), a butterfly induced by the vertices a,

5



6 CHAPTER 3. DESIGN

b, c, d is a (2,2)-biclique of G; that is, a and b are both connected to c and
d, respectively, by edges (a, c), (a, d), (b, c), (b, d) ∈ E(G). For example in fig-
ure 3.1 there are 2 butterflies. One butterfly is supported by the edges((U1,V1),
(U1,V2), (U2,V1), (U2,V2)) and the other is supported by the edges((U2,V2),
(U2,V3), (U3,V2), (U3,V3)).

Bitruss number: Given a bipartite graph G, the bitruss number of an
edge e, denoted as b(e), is a number k that indicates how many butterflies e
supports. Figure 3.1 shows that the dotted edge(U2,V2) has bitruss number
equal to 2, because this edge supports 2 butterflies, the solid edges((U1,V1),
(U1,V2), (U2,V1), (U2,V3), (U3,V2), (U3,V3)) have bitruss number = 1, and
the dashed edges((U4,V3), (U4,V4), (U4,V5)) have bitruss number = 0 because
they do not support any butterfly.

Figure 3.1: A bipartite network with 2 butterflies and the bitruss count of
each edge.

Bloom: Given a bipartite graph G, a bloom [26] is a cluster of butterflies.
Blooms concentrate a set of edges that support butterflies that share at least
one edge. Each edge in G can only be part of one bloom. The bipartite network
in figure 3.2 has only one bloom with id V1U1. The bloom V1U1 is supported
by the edges of butterflies made by the vertices [U1, U2, V1, V2] and [U2, U3,
V2, V3].
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Figure 3.2: Bloom construction out of a bipartite network.

Multi-layer Butterfly: Given two bipartite graphs G1 (Layer 1), G2

(Layer 2) and 4 vertices connected with 4 edges. A multi-layer butterfly extends
the criteria of the single-layer butterfly and has two properties regarding the
butterfly edges. First property is to have 1 edge at one layer and the remaining
3 at the other layer, and the second property is to have 2 edges at one layer
and the remaining 2 at the other layer. In total, we define six structural types
of multi-layer butterflies shown in figure 3.3. We set Layer 1 (G1) to be the
relation ‘own’, marked in dotted lines and Layer 2 (G2) to be the relation
‘comment’, marked in solid lines. For example the Type 3 multi-layer butterfly
structure from the figure 3.3 indicates that the two users own a video and that
these two users have commented on each other’s video.
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Figure 3.3: The 6 structural types of multi-layer butterflies.

2 MapReduce Algorithms

For the bipartite link prediction implementation, we use the MapReduce pro-
gramming model to scale out the problem. More specifically, we use Apache
Spark, which uses the MapReduce distributed computing framework as its
foundation. Spark is a multi-language engine for executing data engineering,
data science, and machine learning on a single-node machine or clusters.

Following. we present the MapReduce pseudocode to describe the algo-
rithms we use for the Edge Bitruss Count (algorithm 1) and the Edge Bloom
Identification (algorithm 2) in a bipartite graph.

Given a bipartite network, the Edge Bitruss Count Algorithm 1 com-
putes the bitruss number of an edge b(e), for b(e) ≥ 1. The bitruss number of an
edge represents the number of butterflies the edge supports. The algorithm 1
returns a list of edges with their bitruss number.

For example, given as input to the algorithm 1 the Graph of figure 3.1, in
line 1 we gather all nodes from set V of the graph G, so we get src set ←
[V1,V2,V3,V4,V5], also shown in figure 3.4(i). In line 2, we declare a function
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named N(n), which for every given node n it returns a list with its neighbors.
In line 3, we declare the function count butterflies(list), that given a list it
returns its size minus 1. This is because 2 source nodes can have butterfly
support equal to the number of their common neighbors minus 1. In line
4, we performe a cartesian product to all the node of set V of src set where
Vi 6= Vj, so src cartesian ← [(V1,V2), (V1,V3), (V1,V4), (V1,V5), (V2,V3),
(V2,V4), (V2,V5), (V3,V4), (V3,V5), (V4,V5)], also shown in figure 3.4(ii).

In lines 5-7, we calculate the potential butterflies for each pair created
in src cartesian, if they have more or equal to 2 neighbors. This condition
is because two source nodes must have at least two common neighbors to
form a butterfly. So butterflies ← [((V1,V2),(U1,U2)), ((V2,V3),(U2,U3))],
also shown in figure 3.4(iii). In lines 8-11, we select the first source node
from the pair of source nodes, with all the destination nodes in the list of
common neighbors, so as to construct an edge, and compute the bitruss num-
ber of them with the function count butterflies. So for our example we get
bitruss src1 ← [(1,(V1,U1)), (1,(V1,U2)), (1,(V2,U2)), (1,(V2,U3))], shown
in figure 3.4(iv). Next we do the same for the second source node and we
get bitruss src2 ← [(1,(V2,U1)), (1,(V2,U2)), (1,(V3,U2)), (1,(V3,U3)], also
shown in figure 3.4(v). Following in lines 12-13, we join the bitruss src1 and
bitruss src2 and we get a set that has a pair of source and destination node,
which is an edge of G and its bitruss number. So bitruss ← [((V1,U1),1),
((V1,U2),1), ((V2,U1),1), ((V2,U2),1), ((V2,U3),1), ((V2,U2),1), ((V3,U2),1),
((V3,U3),1)]. Last in line 14, for each edge in the bitruss set we sum (re-
duce) their bitruss number and we get the result set that contains edges and
their total bitruss number. For our example in this step we get edge bitruss←
[((V1,U1),1), ((V1,U2),1), ((V2,U1),1), ((V2,U2),2), ((V2,U3),1), ((V3,U2),1),
((V3,U3),1)], as shown in figure 3.4(vi).

Following we descrive the space complexity of the Edge Bitruss Count
Algorithm 1. For input we have a graph G=(U,V,E), where V are the nodes in
set V, U are the nodes in set V and E are the edges between nodes of set U and
set V. In line 1 we have |src set| = |V |. In line 2 we declare a function N that
gets a node n and returns its neighbors. In our case we give as input the nodes
of set V, so we have N(n) ⊆ U . We also have that

∑
n∈src set

|N(n)| = |E|. In

line 4 we get |src cartesian| = |V |2 − |V | = O(|V |2). For lines 5-7, we have
|butterflies| ≤ |src cartesian|+O(|V |2). We get bitruss src1 ≤ O(|V |2 ∗ |E|),
in lines 8-9. We have the same complexity for bitruss src2 ≤ O(|V |2 ∗ |E|),
in lines 10-11. In lines 12-13 we get bitruss ≤ O(|V |2) ∗ |E|+O(|V |2) ∗ |E|,
since is the union of bitruss src1 and bitruss src2. Last step in line 14 we
have edge bitruss ≤ |E|.
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(i) Algorithm 1 - line 1 (ii) Algorithm 1 - line 4

(iii) Algorithm 1 - lines 5-7 (iv) Algorithm 1 - line 8

(v) Algorithm 1 - lines 10 (vi) Algorithm 1 - line 14

Figure 3.4: Illustration of the Algorithm 1 with input the Graph of figure 3.1.
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Algorithm 1 Edge Bitruss Count

Input: GraphG = (U, V,E)
1: src set← V (G) /* V(G) are the source nodes */
2: N(n) /* Returns the neighbor set of node n */
3: count butterflies(list) /* Gets a list of destination nodes and returns list.size-1 */

/* The number of butterflies 2 source nodes support, is equal to the number of their
common neighbors - 1 */

4: src cartesian← src set× src set where Vi 6= Vj

5: butterflies← (∀(src1, src2) ∈ src cartesian).map((src1, src2),
6: N(src1) ∩N(src2)).
7: filter(N(src1) ∩N(src2) ≥ 2)

/* To compose a butterfly 2 source nodes must have at least 2 common neighbors */

8: bitruss src1 ← butterflies.map(count butterflies(N(src1) ∩N(src2)) :
9: BitrussNumber, src1 ×N(src1) ∩N(src2))

10: bitruss src2 ← butterflies.map(count butterflies(N(src1) ∩N(src2)) :
11: BitrussNumber, src2 ×N(src1) ∩N(src2))

12: bitruss← bitruss src1 ∪ bitruss src2.
13: map((src, dst) : Edge,BitrussNumber)

14: edge bitruss← bitruss.reduce(Edge,BitrussNumber)

15: return edge bitruss

Given a bipartite network, the Bloom Identification Algorithm 2 finds
and constructs the blooms that exist in the network. Blooms concentrate a set
of edges that construct butterflies that share at least one edge. We give an id
to the bloom based on the vertices it concentrates.

For example, given as input to the algorithm 2 the Graph of figure 3.2, in
line 1 we gather all nodes from set V of the graph G, so we get src set ←
[V1,V2,V3,V4,V5], also shown in figure 3.5(i). In line 2, we declare a function
named N(n), which for every given node n it returns a list with its neighbors.
In line 3, we performe a cartesian product to all the node of set V of src set
where Vi 6= Vj, so src cartesian ← [(V1,V2), (V1,V3), (V1,V4), (V1,V5),
(V2,V3), (V2,V4), (V2,V5), (V3,V4), (V3,V5), (V4,V5)], also shown in fig-
ure 3.5(ii). In lines 4-6, we calculate the potential butterflies for each pair
of src cartesian, if they have more or equal to 2 neighbors. This condition is
because two source nodes must have at least two common neighbors to form
a butterfly. So butterflies ← [((V1,V2),(U1,U2)), ((V2,V3),(U2,U3))], also
shown in figure 3.5(iii). In lines 7-9, we create the potential blooms. We
construct a potential bloom id by selecting the minimum id between the two
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source node ids and the minimum id from the neighbor’ nodes of these source
nodes and append it to the set of butterflies. So we have potential bloomids←
[(V1U1,(V1,V2),(U1,U2)), (V2U2,(V2,V3),(U2,U3))], also shown in figure 3.5(iv).
Following in lines 10-13, we select the bloom id and the source nodes with
all the destination nodes in the list of common neighbors and create all the
potential edges with the bloom id they are given in the previous step. First we
take the first node from the two source node, so we get edge src1 bloomids←
[(V1U1,(V1,U1)), (V1U1,(V1,U2)), (V2U2,(V2,U2)) (V2U2,(V2,U3))], which
is shown in figure 3.5(v). Next we do the same for the second node from
the two source node pair and we get edge src2 bloomids← [(V1U1,(V2,U1)),
(V1U1,(V2,U2)), (V2U2,(V3,U2)), (V2U2,(V3,U3))], shown in figure 3.5(vi).
In lines 14-15, we take edge src1 bloomids and edge src2 bloomids, and con-
struct the union of these two and as a result we get a set that has a bloom id
and an edge of G. So in our example we get edge bloomids← [((V1,U1),V1U1),
((V1,U2),V1U1), ((V2,U2),V2U2), ((V2,U3),V2U2), ((V2,U2),V1U1),
((V3,U2),V2U2), ((V3,U3),V2U2),((V2,U1),V1U1)]. In the edge src2 bloomids
set in our example, the edge (V2,U2) has two bloom ids assigned the V1U1 and
the V2U2. To distinguish which bloom id to assign to similar cases we do the
following steps. In lines lines 16-17 we group by edge the edge src2 bloomids
set. We have edge belong blooms ← [((V1,U1),[V1U1]), ((V1,U2),[V1U1]),
((V2,U2),[V1U1,V2U2]), ((V2,U3),[V2U2]), ((V3,U2),[V2U2]),
((V3,U3),[V2U2]), ((V2,U1),[V1U1])], as shown in figure 3.5(vii) In lines 18-
19, we now as last step we group by the bloom ids of the edge belong blooms
set. From the result of grouping we select from the bloom ids set the minimum
id. The minimum id is now the unique identifier of the bloom and the set
of edges that belong to it. So we have blooms ← [V1U1,((V2,U2),(V3,U2),
(V2,U3), (V3,U3),(V1,U1), (V2,U1), (V1,U2))], as shown in in figure 3.5(viii).

Following we descrive the space complexity of the Bloom Identification
Algorithm 2. For input we have a graph G=(U,V,E), where V is the nodes in
set V, U is the set of nodes in set V and E are the edges between the nodes of U
set and V set. In line 1 we have |src set| = |V |. In line 2 we declare a function
N that gets a node n and returns its neighbors. In our case we give as input the
nodes of set V, so we have N(n) ⊆ U . We also have that

∑
n∈src set

|N(n)| = |E|.

In line 3 we get |src cartesian| = |V |2 − |V | = O(|V |2). For lines 4-6, we
have |butterflies| ≤ |src cartesian| + O(|V |2). We get edge src1 bloomids ≤
O(|V |2∗|E|), in lines 10-11. We also have edge src2 bloomids ≤ O(|V |2∗|E|),
in lines 12-13. In lines 14-15 we get edge bloom ≤ O(|V |2) ∗ |E|+O(|V |2) ∗
|E|, since is the union of edge src1 bloomids and edge src2 bloomids. Next in
lines 16-17 we have edge belong blooms ≤ |E|. Last step in line 18-19 we
have blooms ≤ |butterflies in the G|.
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(i) Algorithm 2 - line 1 (ii) Algorithm 2 - line 3

(iii) Algorithm 2 - lines 4-6 (iv) Algorithm 2 - line 7-9

(v) Algorithm 2 - lines 10-11 (vi) Algorithm 2 - line 12-13

(vii) Algorithm 2 - lines 16-17 (viii) Algorithm 2 - line 18-19

Figure 3.5: Illustration of the Algorithm 2 with input the Graph of figure 3.2.
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Algorithm 2 Bloom Identification

Input: Graph = (U, V,E)
1: src set← V (G) /* V(G) are the source nodes */
2: N(n) /* Returns the neighbor set of node n */

3: src cartesian← src set× src set where Vi 6= Vj

4: butterflies← (∀(src1, src2) ∈ src cartesian).map((src1, src2),
5: N(src1) ∩N(src2)).
6: filter(N(src1) ∩N(src2) ≥ 2)

/* To compose a butterfly 2 source nodes must have at least 2 common neighbors */
7: potential bloomids← butterflies.map(([src1, src2].min,
8: (N(src1) ∩N(src2)).min) : BloomId,
9: src1, src2, (N(src1) ∩N(src2)))

10: edge src1 bloomids← potential bloomids.map(BloomId,
11: (src1 ×N(src1) ∩N(src2)).combinations(2) : Edge)

12: edge src2 bloomids← potential bloomids.map(BloomId,
13: (src2 ×N(src1) ∩N(src2)).combinations(2) : Edge)

14: edge bloomids← (edge src1 bloomids ∪ edge src2 bloomids).
15: map(BloomId,Edge)

16: edge belong blooms← edge bloomids.groupBy(Edge).
17: map(Edge, Set(BloomId) : BloomIds)

18: blooms← edge belong blooms.groupBy(BloomIds).
19: map(BloomIds.min, Set(Edges))

20: return blooms

3 Bipartite Graph Features

In this section, we describe the 34 bipartite graph features we use to perform
the multi-layer link prediction. We perform two tasks of the link prediction
in a bipartite network. The first task is to predict future interactions, and
the second is to predict unseen interactions. Since link prediction is a typical
binary classification task, we use a simple logistic regression model to make
predictions.

For both tasks, we create a graph embedding that is composed of the 34
bipartite graph features described in table 3.1. Besides the simple first-order
structural features from no 1 to 10 on table 3.1, we propose the high-order
structural features of the multi-layer bipartite network that are from no 11 to
28 and features emerging from the butterfly motif that are from no 29 to 34
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in the table. To the best of our knowledge, these high-order features have not
been used before in the literature for the bipartite link prediction problem.

In our set up given 2 graphs, Layer 1 (G1) and Layer 2 (G2), we aim to
make link predictions for both tasks on Layer 2. For every edge in Layer 1
and Layer 2 we calculate the features in table 3.1 and compose the multi-layer
graph embedding. The multi-layer graph embedding is given as input to the
Logistic regression model to make predictions for both tasks.
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Structural
Features no. Feature Name Value Description

1 EdgeinLayer1 1 | 0 Edge exists in Layer 1
2 EdgeinLayer2 1 | 0 Edge exists in Layer 2
3 SrcDegreeLayer1 N Degree of source node in Layer 1
4 SrcinLayer1 1 | 0 Source node exists in Layer 1

first-order 5 SrcDegreeLayer2 N Degree of source node in Layer 2
6 SrcinLayer2 1 | 0 Source node exists in Layer 2
7 DstDegreeLayer1 N Degree of destination node in Layer 1
8 DstinLayer1 1 | 0 Destination node exists in Layer 1
9 DstDegreeLayer2 N Degree of destination node in Layer 2
10 DstinLayer2 1 | 0 Destination node exists in Layer 1

11 MultiButType1 N Number of times the Edge is part of Multi-Layer Butterfly
Structure Type 1

12 MultiButType2 N Number of times the Edge is part of Multi-Layer Butterfly
Structure Type 2

13 MultiButType3 N Number of times the Edge is part of Multi-Layer Butterfly
Structure Type 3

14 MultiButType4 N Number of times the Edge is part of Multi-Layer Butterfly
Structure Type 4

15 MultiButType5 N Number of times the Edge is part of Multi-Layer Butterfly
Structure Type 5

16 MultiButType6 N Number of times the Edge is part of Multi-Layer Butterfly
Structure Type 6

17 MultiButSrcNodeNumType1 N Number of times the Source node is part of Multi-Layer Butterfly
Structure Type 1

18 MultiButSrcNodeNumType2 N Number of times the Source node is part of Multi-Layer Butterfly
Structure Type 2

19 MultiButSrcNodeNumType3 N Number of times the Source node is part of Multi-Layer Butterfly
Structure Type 3

20 MultiButSrcNodeNumType4 N Number of times the Source node is part of Multi-Layer Butterfly
Structure Type 4

21 MultiButSrcNodeNumType5 N Number of times the Source node is part of Multi-Layer Butterfly
Structure Type 5

high-order 22 MultiButSrcNodeNumType6 N Number of times the Source node is part of Multi-Layer Butterfly
Structure Type 6

23 MultiButDstNodeNumType1 N Number of times the Destination node is part of Multi-Layer
Butterfly Structure Type 1

24 MultiButDstNodeNumType2 N Number of times the Destination node is part of Multi-Layer
Butterfly Structure Type 2

25 MultiButDstNodeNumType3 N Number of times the Destination node is part of Multi-Layer
Butterfly Structure Type 3

26 MultiButDstNodeNumType4 N Number of times the Destination node is part of Multi-Layer
Butterfly Structure Type 4

27 MultiButDstNodeNumType5 N Number of times the Destination node is part of Multi-Layer
Butterfly Structure Type 5

28 MultiButDstNodeNumType6 N Number of times the Destination node is part of Multi-Layer
Butterfly Structure Type 6

29 BitrussLayer1 N Edge Bitruss Number in Layer 1
30 BitrussLayer2 N Edge Bitruss Number in Layer 2
31 SrcinNumberBloomsLayer1 N Number of Blooms source node is part of in Layer 1
32 SrcinNumberBloomsLayer2 N Number of Blooms source node is part of in Layer 2
33 DstinNumberBloomsLayer1 N Number of Blooms destination node is part of in Layer 1
34 DstinNumberBloomsLayer2 N Number of Blooms destination node is part of in Layer 2

Table 3.1: Multi-layer bipartite edge graph embedding features.
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Chapter 4

Implementation

In this study, we measure the effectiveness of the simple first-order and the
higher-order structural features (table 3.1), for the link prediction problem.
We compare the structural features’ predictive power over multi-layer bipartite
graphs on YouTube.

To evaluate these features’ predictive power, we use them in two settings.
The first setting predicts the formation of future links. To predict a day’s links
on the YouTube network, we examine two cases. In case one, we gather one
day’s prior dense sample of the YouTube network, and in case two, a sample
of two prior consecutive days. We then compare these two cases’ predictions
and find that to predict a day’s interactions, it is better to take into account
network information generated one day prior, i.e., most information can be
found on the previous day. For the second setting, we predict missing links
from the network. We use a YouTube network sample and hide 30% of its
links. Then with the information of the rest of the network, we predict these
hidden links. We found that the higher-order structural features can predict
with 99% precision missing and future interactions in the comment network.

1 Dataset

We use the YouTube Data API to monitor YouTube traffic generated between
19 of July 2020 and 22 of September 2020 on videos related to the US 2020
elections. To gather the topic-specific videos, we first use the Twitter API to
obtain tweets that contain hashtags and keywords related to the US elections.
From the corpus of those tweets, we extract the YouTube video links and
gathered a dense sample of the YouTube graph, instead of a sparse random
sample of the whole graph. The dataset collection is explained in detail in [21].

The resulting dataset contains 12,538 videos. Those videos have 3,091,176

17
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unique commenters and 27,927,909 comments and replies. From this YouTube
dataset, we extract 2 bipartite graphs. The first graph represents the relation
‘own’, is a directed bipartite graph of user owns video, we define this graph
to be the Layer 1. The second graph represents the relation ‘comment’, is a
directed bipartite graph of user comments video, we define this graph to be the
Layer 2. YouTube video and comment objects returned by the YouTube API
are dated.

In this work, we explore both link prediction tasks, the prediction of the
formation of future links, and the missing links predictions in a network. For
both tasks, the goal is to predict if a user is to comment on a video. Specifically,
we predict links on the YouTube ‘comment’ network, the Layer 2 in our setting.

2 Future Link Prediction

To predict the formation of future links, we randomly selected five different
days of the gathered YouTube dataset between the three months of 19/7/20
and 22/9/20. To evaluate the predictive power of the proposed first and higher-
order structural features (table 3.1), for each day of the five days, we construct
3 data sub-sets:

• we extract all data gathered for the day and call it the PredictSet ,

• we extract all data gathered for the previous day and call it the TrainSet1,

• we extract all data gathered for the two previous days and call it the
TrainSet2.

These 3 data sub-sets include Layer 1 and Layer 2 relations, for the ‘own’ and
‘comment’ network, respectively.

We use TrainSet1 to generate an embedding using the structural features
shown in table 3.1. We then train a Logistic regression model on the embedding
and evaluate the predictive power over the PredictSet. We repeat the same
procedure for TrainSet2.

Table 4.1 shows the structural characteristics of the five sets of data for
the task of predicting links in the future. The first column (No.) refers to
the dataset id. The second column (Day (2020)) is the date of each dataset.
The third column (Datset) is the name of each data sub-set. The fourth and
seventh columns (V(G)L1, V(G)L2) shows the number of nodes in Layer 1
and Layer 2, respectively in the set V. The fifth and eighth columns (U(G)L1,
U(G)L2), shows the number of nodes in Layer 1 and Layer 2, respectively, in
the set U. The sixth and ninth column (EdgesL1, EdgesL2) shows the number
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of edges in Layer 1 and Layer 2, respectively. The tenth column ButterfliesL2

shows the number of butterflies in Layer 2. The eleventh column BloomsL2

shows the number of blooms in Layer 2. There are no records in the table for
butterflies in Layer 1 because the relation ‘own’ cannot form this motif in the
network, as one video cannot be owned by multiple users. Since there are no
butterflies in Layer 1 there are no Bloom structures either.

We train two Logistic Regression models, one embedding containing only
the first-order structural features and we call it the ‘base model’, and one with
both first-order and high-order structural features, and call it the ‘enhanced
model’. Following, we evaluate and compare the predictive power of the two
models and found that the enhanced model performs better. Specifically, for
the future link prediction task the base model’s precision is 97%, and the
enhanced model’s precision is 99%.

No. Day (2020) Dataset V(G)L1 U(G)L1 EdgesL1 V(G)L2 U(G)L2 EdgesL2 ButterfliesL2 BloomsL2

07/08 PredictSet 1,082 2,568 2,568 143,678 2,568 179,306 1,573,999 4,144
1 06/08 TrainSet1 1,076 2,457 2,457 141,665 2,457 178,945 1,496,857 4,493

05/08 & 06/08 TrainSet2 1,286 2,999 2,999 263,575 2,999 365,717 8,734,962 10,439
30/08 PredictSet 1,316 3,500 3,500 111,391 3,500 136,837 2,097,625 2,827

2 29/08 TrainSet1 1,284 3,439 3,439 112,213 3,439 133,618 338,131 2,862
28/08 & 29/08 TrainSet2 1,582 4,240 4,240 227,028 4,240 302,026 3,537,029 9,199

19/09 PredictSet 1,451 4,005 4,005 149,229 4,005 4,005 1,929,368 5,884
3 18/09 TrainSet1 1,433 4,031 4,031 166,709 4,031 219,055 2725,572 6,932

17/09 & 18/09 TrainSet2 1,785 5,136 5,136 286,263 5,136 416,425 10,365,662 16,070
04/09 PredictSet 866 501 866 10,059 866 10,296 35 15

4 03/09 TrainSet1 454 795 795 12,655 795 12,916 247 24
02/09 & 03/08 TrainSet2 4,315 1,523 4,315 269,916 4,315 403,965 8,107,893 13,325

24/07 PredictSet 899 1,796 1,796 95,570 1,796 112,827 661,254 1,803
5 23/07 TrainSet1 866 1,725 1,725 80,839 1,725 92,214 383,554 1,188

22/07 & 23/07 TrainSet2 2,141 1,080 2,141 156,443 2,141 189,557 1,637,450 3,477

Table 4.1: Structural characteristics of the 5 dataset used for the link
prediction task.

3 Missing Link Prediction

For the missing link task, we select from the 5 random days described above,
the data of TrainSet2 (table 4.1). We split each of the 5 datasets into 70%
train-set and 30% predict-set. For both sets we generate an embedding using
the structural features shown in table 3.1 and train a Logistic regression model.

Following, we compare the predicting performance of the model trained
only with an embedding containing the first-order structural features (‘base
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model’), to the model (‘enhanced model’) trained with all the features from
table 3.1. We found that the precision of ‘base model’ is 95%, and the precision
of the ‘enhanced model’ is 99%. Having more information about the YouTube
network with the ‘enhanced model’, is better to find missing link interactions
on the YouTube network.
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Results

1 Future Link Prediction

For the future link prediction problem, we address the following two questions:

• ‘How many prior days’ (1 or 2) of data are needed to predict if a user is
going to comment on a video tomorrow?’

• ‘What is the extra predictive value of the higher-order structural features
over the first-order structural features?’

Table 5.1 shows the results for the five experiments and their average (Avg)
values for Precision, F1 score, and Execution time in seconds, which includes
Train and Predict time. When we train with one day’s data (TrainSets1)
for the base model, which only includes first-order structural features, we get
97% precision and the execution time takes 55 seconds. For TrainSets2, which
have two days’ data on the base model we get an average precision of 97%
and the execution time is 59 seconds. When we make predictions with the
enhanced model, which includes first and high-order structural features, for
the TrainSets1 average precision is 99%, and the execution time is around 8
hours. For the TrainSets2, we get average precision equal to 99%, and the
execution time is around 18 hours.

We found that to make predictions for a day’s interactions, suffice to ac-
count for network information generated 1 day prior. When making predictions
with the enhanced model, which includes the higher-order structures, the av-
erage precision is 99% for the five experiments. It is more time-efficient to
make predictions with 1 day’s data. With 1 day’s data, the prediction is on
average 56% faster than with 2 days’ data in the enhanced model. We also
found that the higher-order structural features perform 2% better with 99%

21
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average precision, compared to the first-order features with average precision
97%.

From the above, we infer for the YouTube network the following:

• for more precise future link predictions is better to use the enhanced
model (all structural features) with precision 99%,

• the base model (only first-order structural features) can make predictions
with 97% precision, and

• using one additional day’s worth of data does not increase precision while
adding 128% of running time when training with two days’ data.

Base model Enhanced model
No. Dataset Precision F1 score Execution Time* Precision F1 score Execution Time*

1 TrainSet1 0.98 0.98 58 0.99 0.99 42,963
TrainSet2 0.98 0.98 60 0.99 0.99 78,061

2 TrainSet1 0.97 0.97 62 0.99 0.99 30,019
TrainSet2 0.97 0.97 66 0.99 0.98 60,496

3 TrainSet1 0.98 0.99 58 0.99 0.99 51,787
TrainSet2 0.98 0.98 58 0.99 0.98 92,921

4 TrainSet1 0.98 0.98 45 0.98 0.98 844
TrainSet2 0.98 0.98 55 0.99 0.98 65,991

5 TrainSet1 0.96 0.97 54 0.99 0.99 19,788
TrainSet2 0.96 0.97 58 0.99 0.99 33,959

Avg Precision Avg F1 score Avg Exec Time* Avg Precision Avg F1 score Avg Exec Time*
TrainSets1 0.97 0.98 55 0.99 0.99 29,080
TrainSets2 0.97 0.98 59 0.99 0.99 66,285

* Execution Time in seconds

Table 5.1: Future Link prediction results for the 5 dataset, when trained with
base and enhanced model.

2 Missing Link Prediction

For the missing link prediction problem, we address the questions ‘What is the
extra predictive value of the higher-order structural features over the first-order
structural features?’

In this task, we select from the 5 random days described in section 2, the
data of TrainSet2 (table 4.1) and splitted each of the 5 datasets into 70% train-
set and 30% predict-set. We selected the data of TrainSets2 because it contains
more information about the network to test the higher-order features to the
first-order features.
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Table 5.2 shows the results for the five experiments and their average (Avg)
values for Precision, F1 score, and Execution time in seconds, which includes
Train and Predict time. For this task, we only use the dataset TrainSet2 that
includes 2 days’ network information.

In this predicting task, we again compare the base model, which only in-
cludes first-order structural features, to the enhanced model, which includes all
of the structural features. When predicting with the base model we get an av-
erage precision of 95% and the running time is 35 seconds. With the enhanced
model, the average precision is 99% and the execution time is around 9 hours.

We found for this task on the YouTube comment network on two days’
interactions, is better to use the enhanced model, which includes the higher-
order structures. The higher-order structural features perform 4% better than
the first-order structural features with an average precision 99%.

From the above, we infer for the YouTube network the following:

• for more precise missing link predictions is better to use the enhanced
model (all structural features) with precision 99%,

• using the enhanced model increases precision while adding a 99% increase
of running time.

Base model Enhanced model
No. Dataset Precision F1 score Execution Time* Precision F1 score Execution Time*

1 TrainSet2 0.94 0.96 34 0.99 0.99 59,165
2 TrainSet2 0.96 0.97 38 0.99 0.99 41,357
3 TrainSet2 0.95 0.96 36 0.99 0.99 27,399
4 TrainSet2 0.95 0.96 33 0.98 0.99 24,682
5 TrainSet2 0.95 0.97 34 0.99 0.99 21,649

Avg Precision Average F1 score Avg Exec Time* Avg Precision Avg F1 score Avg Exec Time*
TrainSets2 0.95 0.97 35 0.99 0.99 34,850

* Execution Time in seconds

Table 5.2: Missing Link prediction results for the 5 TrainSet2 dataset, when
trained with base and enhanced model.

3 Set-up & Tools

For our experiments, we used a cluster of 5 servers with 32-core Intel(R)
Xeon(R) E5-2630 CPUs and 256GB of main memory each, configured as 1
Spark Driver and 4 Spark Workers containing 3 Executors each. Each Execu-
tor used 83GB of memory and 10 cores, resulting in 120 total cores. Nodes
connect with a 40Gb network.
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Chapter 6

Conclusion

In this study, we measure how accurately we can predict comment interactions
on the YouTube bipartite network, concerning predicting missing or unseen in-
teractions. We propose high-order structural bipartite features, which enhance
the performance of simple prediction models, to find missing or unseen links,
which have never been used prior in the literature. Through experimentation
on multi-layer networks, we find that we can predict future and unseen com-
ment interactions on YouTube videos with precision 99%. We show that to
predict a day’s comment interactions it suffices to account network informa-
tion generated 1 day prior. Finally, we implement 2 MapReduce algorithms,
one that counts the bitruss number of an edge, and one that identifies blooms
in bipartite networks.
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[11] Mikko Kivelä, Alex Arenas, Marc Barthelemy, James P. Gleeson, Yamir
Moreno, and Mason A. Porter. Multilayer networks. Journal of Complex
Networks, 2(3):203–271, 07 2014.

[12] Maksim Koptelov, Albrecht Zimmermann, Bruno Crémilleux, and Lina
Soualmia. Link prediction via community detection in bipartite multi-
layer graphs. In Proceedings of the 35th Annual ACM Symposium on
Applied Computing, pages 430–439, 2020.
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