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Abstract

In this work we present a C++11 library implementation of the futures program-
ming model for distributed memory. Our implementation uses an interface similar
to the C++11 standard library's one. The user can use the futures interface to
express parallelism and synchronize his code, while the underlying runtime system
schedules the functions the user issues to be run in parallel. Our runtime cur-
rently uses the MPI one-sided communication interface, to achieve asynchronous
communication. We evaluate our runtime's performance and conclude that, in it's
current state, it is only suitable for handling coarse grain tasks. We also share our
experience using the MPI one-sided communication interface for implementing a
high-performance runtime.





Περίληψη

Σε αυτή την εργασία παρουσιάζουμε την υλοποίηση μιας βιβλιοθήκης C++ του
προγραμματιστικού μοντέλου των ϕυτυρες για Distributed Memory περιβάλλοντα.
Η υλοποίησή μας χρησιμοποιεί ένα ιντερϕαςε παρόμοιο με αυτό της C++ standard
library. Ο χρήστης μπορεί να χρησιμοποιήσει το interface των futures για να εκϕράσει
παραλληλισμό και να συγχρονίσει την εϕαρμογή του, ενώ το υποκείμενο σύστημα
runtime μας είναι υπεύθυνο για τον καταμερισμό της εργασίας και συνχρονισμό των
διαϕορετικων διεργασιών. Το συστημά μας βασίζεται στην one-sided communication
βιβλιοθήκη του MPI, για την επίτευξη ασύγχρονης επικοινωνίας. Αξιολογώντας τις
επιδόσεις του runtime μας, καταλήγουμε στο συμπέρασμα ότι η τρέχουσα υλοποίηση
είναι κατάλληλη μόνο για τον χειρισμό coarse-grain εργασιών. Επιπλέον, αξιολογούμε
την χρηστικότητα του MPI one-sided communication interface χρησιμοποιώντας το
για την υλοποίηση ενός runtime συστήματος υψηλών επιδόσεων.
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Introduction

We present an implementation of the future programming model for distributed
memory, using MPI-2's one-sided communication. The interface is implemented
as a runtime library that allows the user to expose parallelism, by issuing callable
functor objects asynchronously. The future object is used like a simple communi-
cation channel, where the worker process will send through it the return value of
the functor object. A future object is also used for synchronization. Such an object
can be accessed at any time during execution. The process accessing it will block
until the worker process �nishes the execution of the functor object, and transmits
the result to the future object.

Traditionally futures are implemented using threads in shared memory environ-
ments. In this work we show that the C++11 standard future interface [1] can be
implemented meaningfully for distributed memory machines. We have chosen to
build our system using the MPI-2 one-sided communication library, so that we can
explore and evaluate it's potential to provide a completely asynchronous commu-
nication scheme. Another reason for using an MPI library is that it is the most
commonly message passing library available on distributed and shared memory
machines alike. The contributions of this work can sum up to:

� Implementation of a uni�ed C++ futures interface for both shared and dis-
tributed memory machines, as a runtime system.

� Performance Evaluation of the our implementation.
� Evaluation of the MPI-2 one-sided communication interface, for implement-
ing an advanced runtime system.

� Exploration of the potential of implementing a runtime on distributed mem-
ory using shared memory scheduling techniques.

Our evaluation shows that the interface implementation is possible, but, performance-
wise, our implementation is only able to o�er some speedup only when we use
coarse grain tasks, due to the high cost of issuing functions asynchronously and/or
ine�cient synchronization schemes. Moreover, MPI-2 one-sided communication
interface is not as versatile as we would like, especially regarding �ne grain syn-
chronization.
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The rest of this report is organized as follows: In chapter 1, we present the
current state and trends in parallel computing. We brie�y introduce the concept
of asynchronous execution models and present the futures programming model.
At the end of the introduction, we describe MPI's one-sided communication inter-
face. In chapter 2 we discuss other projects related with our work, and present
their approach to asynchronous communication. In chapter 3 we present in de-
tails our system's design and implementation. In chapter 4 we assess our e�orts in
building the C++11 interface using MPI's one-sided communication and use some
microbenchmarks and real applications to evaluate the performance of our runtime
system. Finally, in chapter 5 we give our concluding remarks regarding our library
along with our suggestions for its improvement.



Chapter 1

Background

1.1 Parallel Computing

High performance computing is today strongly related with parallel program-
ming. On one end, computer architectures have been developing parallel machines
or network con�gurations for clusters of machines in order to increase performance,
and on the other, researchers have been trying to develop programming models
that will allow programmers to develop or port e�ciently their applications to
these emerging technologies. When developing parallel applications the two most
dominant and widely used programming models are threads and message passing.

The threads model is commonly used on shared memory machines, where the
communication scheme would have one thread writing to a memory location and
another thread reading the data from that location. This model does not require
data to be transferred among threads but can lead to race conditions when two
threads try to access the same data at the same time, if a thread does not respect
RAW and WAR dependencies. In order to ensure correct program execution, the
user must synchronize memory access by the threads using mutexes, semaphores,
locks, barriers etc. Correct synchronization has proven to be a daunting and error-
prone task for programmers, and often synchronization bugs in application can be
the cause for erroneous results, or even worse, deadlocks. Pthreads and OpenMP [2]
are two commonly used libraries that are used to program threads on shared mem-
ory machines. With Pthreads the user can create and launch threads, where each
thread will have a speci�c work to do. The library also o�ers a variety of synchro-
nization primitives such as locks, barriers, mutexes etc. OpenMP o�ers a higher
abstraction level interface, where the programmer uses special #pragmas to anno-
tate code sections that should be executed in parallel. These pragmas can denote
loops that should be run in parallel or even organize parallel work into tasks [3],
while the library takes care of creating and launching threads. However, the user
is again responsible for synchronizing data accesses.

5
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In contrast with the threads model, applications using the message passing
model, use messages to share data between di�erent processes and also for syn-
chronization. The usual scheme requires a matching pair of send and receive op-
erations where both application will have to eventually block at some point until
the message has been received. Although the message passing model is considered
more di�cult to program than programming with threads on shared memory, it is
easier to reason about data locality, thus message passing can potentially achieve
very good performance. Moreover, message passing libraries are usually the only
available option on large scale distributed machines, where di�erent physical nodes
do not share a global address space. A drawback of most message passing imple-
mentations is that two-sided communication is required when exchanging messages.
This means that both sender and receiver must take active part in the communi-
cation, which usually means that they both need to block at some point, until the
message is sent/received.

An alternative from the usual message passing two-sided communication model,
is the one-sided communication model, where one process can remotely write or
read from the address space of another process, while the latter is not required to
take active part in the transaction. ARMCI [4] LAPI [5] and MPI-2 provide library
implementations of such one-sided communication interface. OpenSHMEM [6] is
an e�ort to standardize the SHMEM model. An attractive property of this model,
is that communication can happen asynchronously, which also means however that
the programmer needs to explicitly synchronize processes as in the shared memory
model, using barriers and fences.

The emergence of the one-sided communication model has made it possible to
develop libraries and languages that follow the PGAS (Partitioned Global Address
Space) programming model. In this model, a virtual global address space is exposed
to the programmer, when in fact, this address space is distributed among the
di�erent nodes or a logical partition dedicated to a single thread. This model tries
again to exploit the bene�ts of the message passing's SIMD model while providing
an easy way to address data as in the shared memory models. UPC, Chapel and
Fortress are languages that use the PGAS model and are built on top of an one-
sided communication library. Global Arrays [7] is also an API that follows the
PGAS model and is built on top on ARMCI [4].

Because all of the previous models are either considered di�cult to program or
error prone, a lot of higher level programming models have been suggested in the
literature, that are implemented on top of one of the previous, lower level, ones.
The concept of organizing parallel work in functions that can be run concurrently
has lead to the development of many task-based programming models [3, 8] in
the shared memory environment and to similar models in distributed memory like
Remote Procedure Calls (RPC) [9, 10, 11] or Remote Service Request (RSR)
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[12]. Although this higher level abstraction makes it easier to organize parallel
code in tasks, it is still up to the programmer to explicitly synchronize data ac-
cesses between tasks, using barriers, etc. To address and simplify synchronization
problems, a lot of systems have been suggested in the literature, that provide im-
plicit synchronization. In the scope of task based parallel models, these systems
usually require some sort of task memory footprint description from the program-
mer [13, 14] and/or have the compiler statically infer dependencies among tasks
[15, 16]. This scheme usually allows the programmer to describe the data-�ow re-
lations between di�erent parallel tasks, while an underlying runtime systems will
explicitly synchronize them. The drawback here is that there is usually additional
overhead from the runtime system . Moreover, the automatic (dynamic or static)
analysis used to automatically synchronize the code, is often conservative in order
to maintain correctness, which harms performance.

1.2 Futures and Promises

Experience with parallel programming has shown that common synchronization
techniques like barriers do not scale well on massively parallelization machines [17],
with thousands of workers. One would like to use �ner grain synchronization, but
reasoning about the exact point an operation will complete is virtually impossible
in a parallel environment. An alternative is to use asynchronous programming
models, which allows the programmer to write programs where a thread or process
can be oblivious to what actions the other threads/ processes are doing. However,
he should still be able to retrieve the results of concurrent work and produce the
correct result.

The futures (or promises) model is such an asynchronous programming model. A
future is a special variable which may or may not have a value at the time that it is
referenced in program. Usually a future is coupled with a promise. A promise is a
special construct that is associated with a future and can be used by another thread
or process to set the value of the future variable. Usually, the future is used only
to read the variable value, while the promise is used to write to the same variable,
thus de�ning a data-�ow relation between di�erent threads/processes. The promise
construct is often hidden from the programmer. Instead he will have to declare
a callable object (function, functor, etc). The library will o�er a mechanism to
use this callable object to set the future through the promise, after executing the
user's callable object. Such is the use of the async function in the C++11 standard,
where the user can issue a function or functor object and retrieve a future object
using the async call. The async will be run by a thread, and the return value of the
function or functor will be used to set the future object associated with thatasync
call.

An important design decision for any futures implementation, is what happens
when a future is referenced, while its value is not yet available. A common choice,
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Figure 1.1: The futures execution model of the blocking schematics.

is to have the caller block until the future value is resolved or implicitly try to
resolve the future at the reference time (as with lazy evaluation schemes). Figure
1.1 shows the execution model of the blocking scheme. The green color is the time
a thread spends doing useful computation, while the red color is the idle time a
thread spends on waiting for the result of the future. This is the scheme used by
C++11, an alternative is the Scala future implementation [18], where the user can
set a callable object to be called when the future will be set, or if the future throws
an exception (failure), using the callback mechanism. This scheme has the bene�t
that there will be no blocking at any point of the code, allowing true asynchronous
execution. The C++11 standard, as most blocking future implementations, o�er
the option to ask whether a future is ready before referencing its value, in order to
avoid any blocking if possible.

1 int �bonacci (int n) {
2 if (n == 0) return 0;
3 if (n == 1) return 1;
4 return �bonacci(n-1) + �bonacci(n-2);
5 }

Figure 1.2: A sequential �bonacci implementation

1 int �bonacci (int n) {
2 if (n == 0) return 0;
3 if (n == 1) return 1;
4 future<int> �b1 = async(�bonacci, n-1);
5 future<int> �b2 = async(�bonacci, n-2);
6 return �b1.get() + �b2.get ();
7 }

Figure 1.3: A �bonacci implementation using the C++11 futures interface
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Other than their asynchronous execution model, we believe that futures o�er an
easily programmable and expressive user interface. As a motivation to the reader,
we present in �gure 1.3 a Fibonacci function implementation, using the C++11
standard threads library [1] future interface. Figure 1.2 also shows the sequential
equivalent. The parallel version simply requires the recursive calls to be issued
using the async function, and the use of the get method on the future objects in
order to retrieve the return values, of the recursive calls. Note, that the call to the
get method here is blocking.

1.3 MPI one-sided communication

One of the most controversial features of MPI-2 is it's one-sided communication.
Although PGAS programming models and languages have become widely accepted
for developing code in large scale machines, programmers consider the MPI one-
sided communication interface to be generally di�cult to understand and use. In
this section we try to familiarize the reader with the main concepts of the interface.

In order to perform remote access operations on some data, this data, residing
on one process, needs to be exposed to the other processes, through an MPI_Window

object. Thus, all processes need to create an MPI_Window that will expose part of
their local address space to all other processes. MPI_Windows are created using
the MPI_Win_create function. Figure 1.4 shows how a window can be created
on line 13. This functions requires a pointer to a local address space, that was
allocated with MPI_Alloc_mem. The rest of the arguments to MPI_Win_create are
the number of elements and type size of the data to be shared, an MPI info �ag,
an MPI communicator and the window. This is a collective operation over a group
of MPI processes. Each process can expose di�erent size of data (or none) to the
window. Note that only the processes in the group will be able to perform a remote
operation on the created MPI_Window.

The two main operations that can be performed are MPI_Put and MPI_Get, which
allow a process to remotely write and read some data respectively. In the example
in �gure 1.4 there are multiple calls to both MPI_Put and MPI_Get. A bu�er that
data will be written from or to has to be provided. The size of the local bu�er must
be de�ned as well as its MPI datatype. The same must be done for the remote
bu�er on the process on the other end of the communication. In order to target the
correct remote bu�er, the id of the target process and the window related to that
bu�er must also be provided. Another operation available is the MPI_Accumulate,
that can be used to apply some action on the data that is remotely read and the
local data on the process. An operation must also be supplied to this function.

In contrast to the two-sided communication interface, in the one-sided inter-
face, get and put operation need not be paired and non-blocking. Synchronizing
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processes that perform these remote operations must be explicitly done by the
programmer. Synchronization in the MPI one-sided communication interface is
achieved using "epochs", that de�ne the start and end of an operation. All one-
sided operations must happen in one "epoch". MPI provides two di�erent ways to
de�ne "epochs", called active target and passive target.

In the active target mode both processes are required to take part in the synchro-
nization. The programmer need to declare the beginning and end of an "epoch"
in the origin process, by explicitly calling MPI_Win_start and MPI_Win_complete,
respectively. On the target process, MPI_Win_post/wait must be used to declare
the beginning and end of the "epoch". MPI_Win_start needs to be paired with
an MPI_Win_post and MPI_Win_complete must be paired with an MPI_Win_wait.
Moreover, an "epoch" can be de�ned by using a pair of MPI_Win_fence calls to
declare the start and end of the "epoch". This function is used for collectively
synchronizing remote operations. All these functions require an MPI_Window to
be provided as an argument.

The passive target mode requires only the origin process to de�ne the start
and end of an "epoch", by using MPI_Win_lock/unlock respectively. Again, the
window on which the operation is performed is required to be passed as an argument
along with the rank of the target process. An MPI_Win_lock/unlock can be either
shared or exclusive. A shared lock allows concurrent operations to take place in the
same "epoch", while the exclusive will force them to happen in di�erent "epochs".
However, note that concurrent con�icting accesses to the same MPI_Window can
be erroneous, and MPI locks are not to be confused with mutual exclusion schemes.

In the example in �gure 1.4 we use the passive target scheme to de�ne the
"epoch". Each remote operation is surrounded by a pair of MPI_Win_lock, MPI_Win_unlock.
The master process �rst will send the ping message to the worker process. This is
done in one matching "epoch" on both processes. At the �rst call of MPI_Win_unlock
at line 21, the master process is required to have �nished sending the data to the
worker process. Respectively, at line 32, the worker process will need to receive the
data before moving on. Note that this can happen asynchronously. In the second
"epoch" the worker will send a pong message to the master, in the same fashion.
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1 #include <stdio.h>
2 #include "mpi.h"
3
4 int main(int argc, char∗∗ argv) {
5 int rank, procs , msg_size;
6 char ∗shared_bu�, ∗message;
7 MPI_Win win;
8
9 MPI_Init(&argc, &argv);
10 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
11
12 MPI_Alloc_mem(sizeof(char)∗msg_size, MPI_INFO_NULL, &message);
13 MPI_Win_create( message, msg_size, sizeof(int),
14 MPI_INFO_NULL, MPI_COMM_WORLD, &win);
15
16 if (rank == 0) { //master code
17 message = strdub("ping");
18 //epoch 1
19 MPI_Win_lock(MPI_LOCK_EXCLUSIVE, 1, 0, win);
20 MPI_Put(message, msg_size, MPI_CHAR, 0, 1, msg_size, MPI_CHAR, win);
21 MPI_Win_unlock(target_rank, win);
22 //epoch 2
23 MPI_Win_lock(MPI_LOCK_EXCLUSIVE, 1, 0, win);
24 MPI_Get(shared_bu�, msg_size, MPI_CHAR, 0, 1, msg_size, MPI_CHAR, win);
25 MPI_Win_unlock(target_rank, win);
26 }
27 else { //worker code
28 message = strdub("pong");
29 //epoch 1
30 MPI_Win_lock(MPI_LOCK_EXCLUSIVE, 0, 0, win);
31 MPI_Get(shared_bu�, msg_size, MPI_CHAR, 0, 0, msg_size, MPI_CHAR, win);
32 MPI_Win_unlock(target_rank, win);
33 //epoch 2
34 MPI_Win_lock(MPI_LOCK_EXCLUSIVE, 0, 0, win);
35 MPI_Put(message, msg_size, MPI_CHAR, 0, 0, msg_size, MPI_CHAR, win);
36 MPI_Win_unlock(target_rank, win);
37 }
38
39 MPI_Win_free(&win);
40 MPI_Free_mem(message);
41 MPI_Finalize();
42 }

Figure 1.4: Simple "ping pong" example using MPI's one-sided communication
interface
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Chapter 2

Related Work

2.1 MPI one-sided communication Evaluation

Dinan et al [19] have implemented the Global Arrays (GA)[7], a PGAS model,
over the one-sided communication interface of MPI. In their work they ported
GA's low-level ARMCI [4] one-sided communication librari using the MPI API and
compared it to ARMCI. Although, they succesfully delivered a high-performance
runtime, they are critical on both interface usability and performance of MPI one-
sided interface. Bonachea in his report [20] also supports that the MPI one-sided
interface is not �t to be used for the implementation of PGAS languages. There
are however examples [21, 22] where MPI's one-sided interface has been succesfully
used to implement high-performance applications.

2.2 Distributed Futures Implementations

High Performance ParalleX (HPX) [23] is a parallel runtime system implemen-
tation of the ParalleX[24] execution model. One of ParalleX's many features is
the futures synchronization model. The adopted futures interface is similar to the
C++11 standard library one and is available for both shared and distributed mem-
ory. The model o�ers additional abstractions to the futures interface, that can be
used to describe data-�ow relations and asynchronous computations. In contrast
with our work, it does not use an MPI library for communication, but a di�erent
batch system.

2.3 Other asynchronous distributed systems

Other high-performance systems that support Remote Method Invocation (RMI),
RSR and RPC share similar speci�cations with our runtime system, regarding asyn-
chronous execution.

13
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ARMI[9] is a low-level hybrid (using both threads and message passing) commu-
nication library, which supports RMI. In ARMI, objects are shared between threads
and processes, but requires manually setting the aggregation factor in order to have
an object's data e�ectively distributed on processes that do not share a common
address space. On such case, method calls of the object are done using the library's
RMI primitives. These primitives are implemented on top of MPI and although
they share similar asynchronous charasteristics with our system's implementation,
they emulate asynchrony by polling at certain time intervals.

Tulip[10] is another object-parallel system. It provides implementations of re-
mote access put/get and RPC primitives over di�erent hardware setups and re-
quires a compiler to create the handlers used in RPC and Active Messages. In
some cases, these primitives are implemented using the MPI library and polling for
messages, if DMA is not available for communication between processes.

Charm++ [25] is an parallel object-oriented extension to the C++ language. It
is based on the Actors [26] but di�erentiates sequential and parallel objects. It
uses a Message driven execution model, di�erent from the traditional send/receive
pairing, where computations begin when a message is received. The parallel, work
unit in Charm++ is called a chares and di�erent chares can communicate between
themselves. Instead of RPC, it uses a futures implementation that provides the
same interface for local and remote invocation, in order to have overlapping com-
munication and computation. This implementation however is not based on MPI
or another one-sided communication interface.

The RSR sheme from Nexus[12] is similar to the RPC. The user needs to de�ne a
handler for the RSR that is going to be run remotely, and the data the handler will
operate on. The underlying system will decide on the mechanism used that the data
will be communicated. Nexus o�ers a variaty of methods to achieve asynchronous
commonucation in order to remotely execute RSR handlers, depending on available
OS and/or hardware. We will discuss these di�erent techniques shortly, at the end
of this section.

Active-Messages is another communication model, where data that is transfered
between processes is paired with a handler, which is an action that is performed
upon the arrival of data on a process. This scheme shares some common asyn-
chronous characteristics with the RPC model. AMMPI[27] is an Active-Messages
implementation over MPI two-sided communication interface and LAPI [5] is a low-
level communication library, that o�ers an interface similar to Active Messages.

Most of these systems require asynchronous communcation to be e�ective. There
is a number of known solutions as to how to implement such systems in the lit-
erature. The two most commonly used methods are polling for work requests
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[10, 9, 12, 28] and hardware interrupts. Polling would require a worker process
to poll for incoming messages/work at certain time intervals. Extra care must be
taken to de�ne the polling period, since if polling happens too often, it can dom-
inate computation, but infrequent polling could render the system unable handle
requests in time. [9, 5]. Alternatively, a hardware interrupt could be sent to no-
tify a process of an incoming message. This method however, is avoided because
interrupts have to go through the OS, which has a signi�cant cost. [9, 5, 12, 28].
The Nexus system [12], also suggests dedicating threads only for communication.
These threads can either probe for pending messages or block (depending on the
underlying communication library and OS capabilities). How responsive this im-
plementation can be depends on the thread implementation and OS (for example
if the OS supports priorities). A detailed discussion and comparison between using
threads for communication versus probing or interrupts can be found in [12].

In our implementation, we use none of these methods, instead we use MPI's one-
sided communication interface. The bene�t of using a one-sided communication
interface, lies in the fact that we can have real asynchronous execution. In contrast
with polling, the the system can react without any delay (polling period), while
it will not su�er from costly interrupts or the extra overhead and reponse delay
of having a thread running, as we discussed above. However, synchronization in
such a system can become a serious performance problem, as with shared memory
models (fences, barries mutexes).
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Chapter 3

Design and Implementation

In this chapter we describe the interface and the implementation details of our
futures library. Our interface allows the programmer to issue callable objects,
referred to as jobs from now on, to be executed asynchronously by other processes.
In C++ a callable object is any language struct that can be treated as a function
(function pointers, functors etc). An asynchronous call of such an object will return
a future object instead of its normal return value. This future object can be used
by any other process to retrieve the encapsulated value. If the functor has not
been executed yet, the reference to the future's value will block 1 until it becomes
available.

We designed our system to be modular, so that di�erent aspects of the runtime
library, such as process communication, hide its underlying implementation (e.g.
MPI), thus di�erent implementations of the same module should not interfere with
other components of the library. Figure 3.1 shows the di�erent component hierar-
chy.

Our system consists out of three main modules:

� The communication module, which is the backbone of the system and used
by all other components in order to exchange messages and create a shared
address space.

� The Shared Memory Manager, which is an allocator for the shared ad-
dress space between the processes.

� The Scheduler, which is responsible of handling how jobs are send/received
between processes and also decides which process will run a job.

All the above modules are initialized, �nalized and managed by a system en-
vironment, an instance of which is present at every process. Note that it is not
necessary for all processes to keep identical environments, which means that other

1. as we'll see in section 3.4, only the master process blocks while other processes will try to
run any functor objects that are scheduled to be run.

17
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Figure 3.1: Overview of our futures library design.

than the initialization and �nalization, processes are only responsible for their local
environment, no updates are necessary.

Figure 3.3 shows the program �ow for processes 0 and 1, of the simple hello
world example in �gure 3.2. Before any call to the library is made, the futures
environment must be initialized, which in turn initializes all other library modules
(e.g. communication, scheduler, memory manager). All processes execute the
main function, but only the master process will return from it and continue with
the user program execution. All other processes will run our runtime's scheduler
code and wait to receive jobs. The async function can be called from any process
and within other async calls, thus allowing recursive algorithms to be expressed.
In the example, process 0 issues a job by calling async(f). It will then return from
the call and continue until the message.get() call, at this point the process will
either retrieve the message value or block until it's set.

The job is then scheduled to be executed by process 1. The worker process,
here process 1, will wait until a job is send and then run it. When done, it will
set the future's value and resumes waiting for other jobs or until it is terminated
by the master process. When process 0 retrieves message's value, it prints it and
continues until it reaches the Futures_Finalize() routine. At this point it will signal
all other processes that the program has reached it's termination point and �nalize
the futures environment. All other processes will do the same after receiving the
terminate signal.
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1 class helloWorld {
2 public:
3 helloWorld() {};
4 ~helloWorld() {};
5 int operator()() {
6 int id = Futures_Id();
7 cout << "- Worker" << id << ":Hello Master" << endl;
8 return id;
9 };
10 };
11
12 FUTURES_SERIALIZE_CLASS(helloWorld);
13 FUTURES_EXPORT_FUNCTOR((async_function<helloWorld>));
14
15 int main(int argc, char∗ argv[]) {
16 Futures_Initialize(argc, argv);
17 helloWorld f ;
18 future<int> message = async(f);
19
20 cout << "- Master :Hello " << message.get() << endl;
21
22 Futures_Finalize();
23 };

Figure 3.2: A simple hello world implementation using the distributed futures
interface. The output of the program on process 0 would be "- Master :Hello 1".

In the rest of this chapter, we will present the future interface in section 3.1 and
discuss our implementations of the the communication, shared memory manager
and scheduler modules in sections 3.2, 3.3 and 3.4 respectively.

3.1 Futures Interface

An important goal of this work is to provide a uni�ed interface for both dis-
tributed and shared memory machines. To meet this end we decided to replicate
the C++11 futures interface from the standard threads library, with which the
C++ community is already familiar and works well with generic programming.
We had to make some additions to the interface and impose some restrictions, but
they do not limit the capacity of the programmer to express parallelism, while still
keeping the interface as simple as possible to use (we will discuss them shortly).
Figure 3.5 shows a recursive implementation of the �bonacci function using our fu-
ture implementation. The user can issue callable objects to be run asynchronously
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Figure 3.3: The control �ow of the hello world program in �gure 3.2.

by other processes, using the async function and passing the callable object, along
with its arguments, as the async's arguments. Note, that in our implementation,
the callable object can only be a functor object. No normal functions, or function
pointers, etc can be used here, which is the major restriction our implementation
has, compared to the C++11 standard library. The reason for this is that we send
the callable object through the communication module, using messages. We do not
use a compiler, or require the programmer to identify the functions that are to be
run asynchronously and provide a mapping of them to all processes. Instead, we
serialize the functor object and send through the message passing library.

This restriction implies the one major limitation of our interface, which is that
the functor object, as well as all of its arguments, must be serializable. Back
to our example in �gure 3.5, note that �b1 and �b2 are both functor objects.
The user can either provide the serialization routines himself (see [29] for more
details on how to serialize a C++ object with Boost serialization library 2.), or

2. We use the boost serialization library [29] and the input/output archives from the boost
mpi library [30]
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use the FUTURES_SERIALIZE(F), here F is a functor object, which will create the
necessary serialization routines automatically. The former is only recommended
for very simple functors that have to state (members). Moreover, the user needs to
expose the functor type to the underlying serialization library. This is done with
the macro command FUTURES_EXPORT_FUNCTOR(async_function<fib, int>) in
our example. Here the type declaration must be wrapped in the async_function
type, which is the library internal template class for all jobs. The template type here
is the functor type, �b, and the argument types that will be passed when calling
the functor, here int. Instantiation of the async_function class, using C++
templates meta-programming capabilities, generates the appropriate routines, for
setting the future's value, according to the functor's return type. It also facilitates
all necessary information that are needed to be transferred to the worker process.
Figure 3.4 shows the de�nition of the async_function class.

A call to the async function is non-blocking and returns a future<T> object
immediately, where T is the return type of the encapsulated functor object, passed
to async. If the return value is an array, a pointer or any other form of con-
tainer, the user should instead call a variation of the async function, async(N, F,

Args...), where N is number of elements that will be returned In order to retrieve
the value, the owner of the future needs to call the get() method. This method
is blocking, so calling it will cause the process to block until the value of the fu-
ture becomes available. Alternatively, the future owner can call the is_ready()

method, which is none blocking, to check if the value can be retrieved, and if not
continue running user code until the future's value becomes available at a later
point. Also, note that before using the futures library, the user has to explicitly
call the Futures_Initialize() and Futures_Finalize(), which will initialize and
�nalize the futures environment, respectively.

3.2 Communication

The communication module is responsible for message exchange between all of
the processes in our system, as well as providing the infrastructure for a shared
address space. In our implementation the communication module uses MPI-2'S
one-sided communication library and Boost MPI's input and output archives, for
object serialization.

The communication module acts as a layer of abstraction between the various
system component and the MPI library. It acts as a simple wrapper for initializing,
�nalizing MPI and simple send/receive operations. It is also capable of providing
information of the MPI environment to the other components of our system (e.g.
number of process, rank e.t.c.). Moreover, it can be used to expose part of a
process' address space to other processes in the same communication group.
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1
2 template<typename F, typename... Args>
3 class async_function : public _job {
4 ... //we have ommited here all the serialization routines
5 public:
6 int src_id;
7 int dst_id;
8 Shared_pointer ptr;
9 int data_size;
10 int type_size;
11 F f ;
12 std :: tuple<Args...> args;
13 typename std::result_of<F(Args...)>::type retVal;
14 async_function();
15 async_function(int _src_id, int _dst_id,
16 Shared_pointer _ptr,
17 int _data_size, int _type_size,
18 F& _f, Args ... _args);
19 ~async_function();
20 void run();
21 };

Figure 3.4: The async_function function class de�nition. All jobs in our system
are instances of this class. The base class _job is used for serialization purposes as
well.

3.2.1 Shared Address Space

In our implementation, the underlying message passing library used is MPI-2,
thus we use MPI windows to expose such space among processes. Exposing part of
process' address space in the MPI-2 schema, requires that the some space will be
locally allocated to a pointer using the MPI_Alloc_mem, and then exposed to other
processes through creating an MPI window that is correlated to the pointer with
MPI_Create_Win (See section 1.3). A drawback in MPI is that a window can be
created only collectively over an MPI communicator, and in turn, a communica-
tor can be created, again, only collectively over an existing parent communicator.
In our design, this requires that either all windows are created a priori at initial-
ization, since when issuing a job, only the sender and receiver should take part
in the communication. In order to overcome this limitation, we implemented the
algorithm presented in [31], which requires only the processes that will join the
communicator to take part in the communicator creation process. The algorithm
needs an MPI group as input and progressively creates two adjacent groups of
processes. If a process' id is even, then the process is added to the right group,
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1 class �b {
2 public:
3 �b () {};
4 ~�b() {};
5 int operator()(int n) {
6 if (n == 0) return 0;
7 if (n == 1) return 1;
8 �b f ;
9 future<int> �b1 = async(f, n-1);
10 future<int> �b2 = async(f, n-2);
11 return �b1.get() + �b2.get ();;
12 };
13 };
14
15 FUTURES_SERIALIZE_CLASS(�b);
16 FUTURES_EXPORT_FUNCTOR((async_function<�b, int>));

Figure 3.5: A �bonacci implementation using the distributed futures interface

if the process' id is odd it is added to the left. Every time a process is added
to either group, an inteprocess communicator is created and then merged with
the adjacent group's interprocess communicator. The algorithm's pseudocode can
be found on [31, p.287 ]. Employing this algorithm we can dynamically allocate
windows between any two processes that compose an MPI group.

The communication library also provides the routines needed to write and read
data from an address space shared though an MPI window, using the special
Shared_pointer construct (see section 3.3). This pointer keeps information of
where the data is located within an MPI window in addition to the total size
of the data associated with this pointer during its allocation. Figure 3.6 shows
a simpli�ed version for setting a future's value. The ptr variable has informa-
tion on the location we need to write the data to on an MPI window. The
shared_space[ptr.page_size] is a map that contains MPI windows. Section
3.3 explains how MPI windows are organized in this map, according to the page
sized used during allocating space for a future. Note that the variable datatype,
MPI_Datatype in this implementation, is inferred statically using template routines
from the Boost MPI library, when instantiating the async_function class. The
second overloaded set_data method is used for when the future's value is not a
primitive data type and requires serialization. In the latter scenario, we need to
store information on the archives size, thus the actual data is indexed at location
ptr.base_address+DATA_OFFSET.
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1 void set_data(void∗ val, int dst_id, Shared_pointer ptr,
2 Datatype datatype) {
3
4 MPI_Win_lock(MPI_LOCK_EXCLUSIVE, dst_id, 0,
5 shared_space[ptr.page_size ]);
6
7 MPI_Put(val, ptr. size , datatype, dst_id, ptr .base_address,
8 ptr . size , datatype, shared_space[ptr.page_size ]);
9
10 MPI_Win_unlock(dst_id, shared_space[ptr.page_size]);
11 };
12
13 void set_data(boost::mpi::packed_oarchive& ar, int dst_id,
14 Shared_pointer ptr) {
15
16 MPI_Win_lock(MPI_LOCK_EXCLUSIVE, dst_id, 0,
17 shared_space[ptr.page_size ]);
18
19 MPI_Put(&ar.size(), 1, MPI_INT, dst_id, ptr.base_address,
20 1, MPI_INT, shared_space[ptr.page_size]);
21
22 MPI_Put(ar.address(), ar . size (), MPI_PACKED, dst_id,
23 ptr .base_address+DATA_OFFSET,
24 ar . size (), MPI_PACKED, shared_space[ptr.page_size]);
25
26 MPI_Win_unlock(dst_id, shared_space[ptr.page_size]);
27 };

Figure 3.6: The function used to set a future's value. The �rst version is for
primitive data types, where as the second is for serializable objects.

3.2.2 Mutexes

In order to synchronize accesses to shared memory addresses and other critical
sections in our system, designed a mutex library, with the same interface as the
standard C++ mutex library, which is implemented for shared memory. The only
di�erence is that a call to lock, unlock or try_lock requires the user to specify the
id of the target process. We have adopted MPICH's implementation of mutexes
in our design. A mutex is a shared vector through an MPI window. Each vector
element is a byte value corresponding to one process. When a process wants to
hold the mutex lock, it sets its vector value at one and iterates through the rest of
the vector to check if another process wants or has acquired the lock. If the lock
is acquired or another process waits for it, then the current process blocks until it



3.3. SHARED MEMORY MANAGEMENT 25

receives a message. When unlocking, a process sets its vector value to zero and
then iterates through the vector to �nd and send a message to next process that
is waiting to acquire the lock.

3.3 Shared Memory Management

The Memory Manager module is responsible for managing the systems shared
address space. It uses the communication module to create address spaces that are
visible by all processes in our system and use the Shared_pointer construct to de-
scribe a location in such shared memory. This modules provides the functionality
of allocating and freeing space, from the shared address space among all processes.
Our allocator is implemented using free lists in order to track free space as described
in [32, p. 185-187]. However, we keep di�erent free lists for di�erent page sizes to
deal with memory segmentation. Figure 3.7 shows how the memory manager keeps
a map of free lists indexed by a memory page size. The shared address space is
allocated a priori using the communication module, to create MPI windows in our
current implementation. This is of-course transparent to the Shared Memory Man-
ager module, since it uses Shared_pointers to describe memory location, size etc.
The Shared_pointer is a tuple ptr<ID, BA, SZ, PSZ, PN, ASZ>, where ID is the
id of the process whose address space we want to address, BA is the base address
that the data is located in a shared address space, SZ is the size of the data we
want to allocate, PSZ is the page size the allocator used to allocate for this data,
PN is the number of pages used and ASZ is the the actual size, which is PN*PSZ. The
information tracked by a Shared_pointer can be e�ectively used by the communi-
cation module to read/write data. The Shared Memory Manager modules simply
holds a mapping of the shared address space, the actual local addresses are handled
by the underlying communication library (MPI in our case). So, each freeList in
�gure 3.7 is actually a list of Shared_pointers to a corresponding MPI window.
We choose to keep separate windows for each free list because when acquiring an
epoch access to an MPI window, the whole window is locked, so even though we
do not have overlapping accesses 3 (see section 1.3).

3.3.1 Memory Allocation/Deallocation

When a process issues an async function, it needs to allocate space in its shared
address space, for the worker process to store the future's value. To allocate such
space, the host process makes use of the shared memory manager module. The
shared memory allocator tries to �nd the best page size �t for the data size (the
one that is closest to the data's total size), and searches the corresponding free list,
using a �rst �t algorithm [32, p. 185-187] to �nd a large enough space for the new
data. If no �tting page size is found then the allocator uses a special freeList, which

3. only one process needs to write to a future's shared address, since only one future is asso-
ciated with one job.
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Figure 3.7: Shared Memory Manager keeps a map of free lists, indexed by the page
size. For page size that do not match any prede�ned ones, we use the other page
size free list.

does not use a prede�ned page size, but instead uses the data size to �nd free space.
If not enough free space is found in the correct free list, then the allocator can try
to �nd data in another free list, of di�erent page size. Figure 3.8 shows a free list,
before and after allocating a data object. The �rst �t algorithm will iterate the list
from the start until it �nds a large enough space for the object. Each node in the
free list, is a Shared_pointer, which describes how much continuous space there is
available. When the allocator �nds a large enough node, it removes from that node
the size and number of pages it needs and sets its base address value accordingly.
It then returns a new Shared_pointer, that describes the memory space that will
be now occupied from the data object. In the example in �gure 3.8, the �rst list
node has enough space to �t an 128 size data object. Removing the reserved now
space, from the beginning of the list, will leave us again with two free nodes, but
the �rst one will now have 512 bytes left and the base address will be moved at
the 128th byte.

As soon as a process retrieves a future value, it makes a local copy of it, and
frees any shared address space that is associated with the future. In order to free
shared space, a process needs to provide the Shared_pointer that was returned by
the allocator routine. The Shared_pointer keeps information of the page size used
to allocate space, thus �nding the correct free list is trivial, we just need to use the
page size as an index. We then insert the Shared_pointer in the free list in a sorted
fashion, using the base address for comparison. This way, all free lists are sorted
lists of Shared_pointers by base address, so that if we �nd continuous space, we
merge the list elements, resulting in larger block of free space. Figure 3.9 shows a
free list, before and after freeing some shared memory. Because freeing 128 bytes
at base address 512 creates a continuous space from byte 0 to byte 640, the two
list nodes will be merged into one.
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Figure 3.8: During allocation, when a large enough space is found, the allocated
page is removed from the node.

Figure 3.9: By freeing data at base pointer 512, creates a continuous space between
base pointer 0 and base pointer 640, causing the list nodes to merge into one.

3.4 Scheduler

In order to have a distributed memory interface similar to the shared memory
one, we chose to implement a scheduler, which is responsible for deciding who
will execute which job. If the user was responsible for distributing jobs among the
processes, he would need to reason about dependencies between jobs and retrieving
future values, else the program could easily end up in a deadlock.
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Figure 3.10: Job stacks for running �b(3) on the left and �b(5) on the right.
Matching colors denote that jobs are spawned from the same recursion path.

To make our case clear, consider the �bonacci example in �gure 3.5. In our
example, let's say we have 3 processes, one of them is the master process. Figure
3.10 shows how the job stacks would look like, for running �bonacci with argument
3 and 5 respectively. The arrows show how jobs depend upon each other. A job
blocks and waits until the job that the arrow points to �nishes. Running �b(3),
process 0, the master process issues async(f, 1) to process 1 and async(f, 2) to
process 2. Process 2 issues async(f, 1) to process 1. In this scenario the program
will execute correctly without any problems, since any of the processes' call to
get() will eventually retrieve the future value. But consider we want to compute
fib(5). Process 1 may have to run async(f, 4) while process 2 will have to run
async(f, 3). At some point, process 1 issues async(f, 3) to process 2, while
process 2 issues an async(f, 2) to process 1. Both processes will return from the
async calls and proceed calling get() to retrieve the value but will actually block
forever, since neither process will be able to resolve the dependencies as shown in
�gure 3.10. This scenario is not a problem if processes are dynamically spawned,
but if we have a static number of processes, which is common for MPI programs,
we need to address this issues.

Since it is not always trivial to reason about such dependencies, we have imple-
mented our own job scheduler. We use MPI-2's one-sided communication library
(via the communication module) to implement job stacks, similar to their shared
memory counterparts. We choose to implement a stack because it suits better
future logic, we need to execute the latest issued job in order for the get() not to
block inde�nitely in recursive algorithms. Using one-sided communication, only
the issuer needs to copy the functor object to the workers stack, as in a shared
memory environment. Figure 3.11 shows how a job stack is structured. Note that
an entry is composed by the functor object, its arguments (they are considered one
object) and the size of the entry. This is necessary since di�erent functors and/or
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Figure 3.11: Shared stack where a worker process keeps its pending jobs. Entries
can have varied sizes, this size is stored at the beginning of the entry and can be
used to retrieve the corresponding job. Information for the speci�c stack,like size
and head, are stored at the beginning of the shared space, so that other processes
can access them.

di�erent arguments result in varying entry sizes. Thus, the exact location of a job
is calculated using the stack head and functor object size values 4. Moreover, at
the beginning of the shared space, the size and current head values are stored, so
all processes can push jobs.

Figure 3.3 shows a control �ow graph for the master and worker processes. The
master simply initializes the futures environment and issues async functions while
executing user code. At the end it �nalizes the futures environment and calls the
terminate routine from the scheduler. The workers initialize the futures environ-
ment, which must happen collectively among all workers and master and then enter
a loop, looking for pending jobs in their stacks until their terminate routine returns
true, in which case they exit the loop, �nalize again collectively with all other pro-
cesses and exit the program, without ever returning to the main function. The
scheduler is responsible for providing the functionality of the terminate routines.
In our implementation the workers poll a local variable which they expose through
the communication module as a shared variable. The master, when calling his ter-
minate routine, will check the status of every worker. A process can be either idle,
busy or terminated. Process status is again exposed by a shared variable on each

4. functors and arguments are send/received as output/input archives, using boost.serialize
library.
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process. The master will check the status of all the processes and if all of them are
in idle status, he will set the terminated �ag to true on all of them. If a process
is still busy, meaning executes some job or has still pending jobs in its stack, the
master must wait till all jobs are �nished and then set the terminated �ags.

When running user code or a job and an async call is made, the process will
address the scheduler in order to get the id of the next available process and
allocates enough space for the return value to be stored. Then it asks the scheduler
to send the job to the worker process. In our implementation the scheduler pushes
the job int the process' stack. Our scheduler distributes jobs in a round robin
fashion (excluding the master process, which should run user code).

3.5 Extra Features

3.5.1 Additions to the User Interface

Up to this point, the interface we have described includes only the very basic
routines of the std futures interface. Other futures interfaces, such as HPX and
boost have enriched their interfaces with additional routines. One routine we found
to be useful, is the make_future routine. In our library, the make_future routine
is used to create a future variable and initialize it with a value. This is useful in
cases we would like to have a future value but we already know the value it should
hold, while we would like to use this variable at a later point of the code as an
actual future.

In section 3.4 we described our scheduler module. This modules mainly facili-
tates the necessary infrastructure to send jobs between processes asynchronously,
but also it is responsible for making a decision on how jobs will be distributed
among these processes. Although a simple scheduler policy, like Round Robin,
can be su�cient for many scenarios, it is possible that a more elaborate work or
data distribution scheme is required for better performance. Especially in a dis-
tributed environment, we would like to be able to distribute data in fashion that
takes advantage of data locality and/or avoid excessive data transmission through
the network. For this reason, we have added a variation of the async function,
async_on, which is identical to an async with the addition of the target process
id. The async_on function still makes use of the scheduler infrastructure the same
way the default async, it simply skips the step where the scheduler decides which
process will receive the new job.

3.5.2 Future Serialization

An important addition to our futures library, is the serialization of a futures
object. By serializing a future object, we can practically pass it as an argument the
async function. This is important, because this way a future created on one process,
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1 template <class T>
2 class future {
3 private:
4 ... // serialization routine omitted
5 int ready_status;
6 T data;
7 int src_id, dst_id;
8 Shared_pointer status_ptr;
9 Shared_pointer data_ptr;
10 int type_size;
11 int data_size;
12 public:
13 ... //constructors and destructors omitted
14 bool is_ready();
15 T get();
16 };

Figure 3.12: The future object de�nition.

can be transferred to another one, thus synchronization can take place on the
worker process, which allows �ner granularity when synchronizing task. Consider
the two examples in �gures 3.13a and 3.13b, where we can observe a pipeline scheme
implemented without future serialization and with future serialization. In �gure
3.13a at pipeline loop stage2, the master process will have to wait on res1[0], even
if re1[n], where n > 0, is available before res1[0]. This forces sequential issuing of
the stage2 async, which can limit performance and breaks the pipelining scheme.
Now consider �gure 3.13b, in this example each stage function will only need to
wait on its corresponding future, even if previous futures in the arrays res1 and
res2 are not available, a stage function can proceed normally its execution. This
time we have an accurate pipeline implementation.

In our implementation, a future object is de�ned as shown in 3.12. The variable
ready_status is the current status of the future which is true if the value has been
set or false otherwise. Data, is a local storage for the the future's value, once the
future has been set by the remote process. The variables src_id and dst_id hold
the id value of the owner of the future and the process that will set the future
value respectively. The data_ptr and status_ptr variables are Shared_pointers
(see section 3.3), which hold all the information needed for the owner of the future
to retrieve the data and the future status from his shared address space. Finally,
data_size and type_size are the number of elements and the type size of the data
the future wraps around. A future object can be trivially serialized by serializing
each of its member using the boost serialization library. One however must be aware
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1 ...
2 for(int i=0; i < N; i++) {
3 res1 [ i ] = async(stage1);
4 }
5
6 for(int i=0; i < N; i++) {
7 res2 [ i ] =
8 async(stage2, res1[ i ]. get ());
9 }
10
11 for(int i=0; i < N; i++) {
12 res3 [ i ] =
13 async(stage3, res2[ i ]. get ());
14 }
15 ...

(a) Pipeline without seril-
izable futures

1 ...
2 for(int i=0; i < N; i++) {
3 res1 [ i ] = async(stage1);
4 }
5
6 for(int i=0; i < N; i++) {
7 res2 [ i ] = async(stage2, res1[i ]);
8 }
9
10 for(int i=0; i < N; i++) {
11 res3 [ i ] = async(stage3, res2[i ]);
12 }
13 ...

(b) Pipeline with seriliz-
able futures

Figure 3.13: Di�erent implementations of a pipeline scheme using our futures .

that when a new future is created the Shared Memory Allocator module will �rst
allocate the memory needed for the future's data and status in the shared memory
segment of the original future owner. This is done for performance reasons, since
accessing local variables costs considerably less than accessing remote ones, and
the way the get method is implemented requires regular polling on the status_ptr
variable. However, when we serialize a Shared_pointer variable, it will still point
on the same memory, on the original owner. This implies, that the new owner will
have to access the data_ptr and status_ptr using the underlying communication
library of our implementation. The reason for this limitation is that changing
the data's and status' location to another process, would require an update to all
other processes that are associated with that future. This would require signi�cant
synchronization and communication. In practice, the original owner of the future,
will act as a proxy between the new future owner and the process that will set its
value. Also note that it is possible for the user to still retrieve the future value from
the original owner, or have it sent to multiple processes, since the actual data will
always reside on the same place for everyone. This means that our future object
behaves just like C+11's shared_future object.



Chapter 4

Evaluation

In this chapter, we asses our e�ort to implement the C++11 standard future
library, as a uni�ed interface for both shared distributed memory environments.
We also evaluate the performance of our runtime system.

4.1 Interface Assessment

Figures 1.3 and 3.5 show an implementation of the �bonacci function using
C++11 standard futures and our futures library, respectively. The interface used
to express parallelism is identical. An async call is used to send asynchronous jobs
for execution, while the return value is encapsulated in a future object. The return
value can be retrieved in the same fashion in both libraries, using the get method.
Our future object behaves also like a shared_future from the C++11 standard
library, which means that it can be accessed by di�erent processes concurrently.

One di�erence to the interfaces is that our implementation requires the data
size of a job's return value to be de�ned. This is limited only to the case where
the return value is dynamically sized object or a pointer. However, this does not
require signi�cant e�ort, from the programmers part. Another di�erence between
the two interfaces is that only functor objects can be issued by the async func-
tion and that the programmer has to explicitly identify the functors as jobs, in
order to expose their type and arguments to our runtime system. This has min-
imal impact on the user interface. It is done very easily just by adding an extra
line of code, in the example in �gure 3.5 this is done with the macro command
FUTURES_EXPORT_FUNCTOR(async_function<fib, int>). The implications of this
are discussed further in 4.1.1.

At this moment, the interface lacks some secondary features, like de�ning a
launch policy and timing out after a period of time upon waiting on a future value.
Note however, these features are trivial to implement and of little interest to us at
this point. Another feature that we have neglected to implement is the ability to

33
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return an exception instead of the functor's return value. On the other hand, we
have added a couple of features (see 3.5). The make_future functions can be found
both in the Boost futures library and in HPX. Moreover, the async_on function
allows greater �exibility to the programmer. He can easily override the default
scheduler and use a custom distribution scheme that matches his needs.

4.1.1 Limitations

The core limitation of our interface is that all jobs must be functor objects,
whereas in the C++11 standard, it is possible to use any callable object (func-
tions, function pointer, functors, lambda function etc.). This of-course, does not
limit our library's expressiveness, when it comes to parallelization. A programmer
can easily wrap any callable object in a functor object. The programmer's extra
burden here is not note-worthy. On the other hand, the functor object, its return
value and its arguments must be serializable, as well. This limitation manifests
itself in our interface, both as an additional burden to the programmer and as
a potential limitation, when porting codes with lots of pointers and maybe non-
serializable objects to work with our library. To better understand the implications
here, we share our experience when we tried to port Ferret, a benchmark from the
PARSEC [33] suite, using our library.

Ferret is a content-based similarity search engine toolkit for feature rich data
types (video, audio, images, 3D shapes, etc). Ferret uses a pipeline model for
parallelization, with a thread pool at each stage. A queue exist for each stage and
whenever there is an entry on that queue, a thread from the thread pool will pop
it, and start execution. When it's done, the tread will push an entry on the next
stage's queue and so no. This scheme can be expressed with futures extremely
easily. Figure 3.13b shows how a pipeline scheme with futures would look like.
We tried to implement this using both C++11 standard futures and our library.
The algorithm was relatively easily modi�ed to work with C++11 standard futures.
However, in order to work with our version, we needed to modify the original queue
entries, which our now the arguments to the async functions, in order for them to
be serialiazable. This, proved to be quite a challenge. First, the original code was
in C language and used void* extensively. All these pointers had to be encapsulated
in C++ vector<unsigned char> objects. The challenge here is that we needed to
modify most of the functions of the whole Ferret library, either to work with vectors
instead of void pointers or simply to modify a number of functions to return the
allocation size for each void pointer, in order to convert them to vector objects. In
this example, this has proven to include a large number of functions (ferret counts
more than 3000 LOC), as a result we have not yet completed its porting. We report
this in order to show a case, where the requirement to serialize arguments, return
values etc, can have a signi�cant impact on ease of use. Of-course, as a counter
argument here, it is still easier to use our interface instead of re-writing the whole
ferret code to use a message passing library like MPI directly. It should also be



4.2. PERFORMANCE EVALUATION 35

noted, even with a message passing library, serialization or manually manipulating
the data of the void pointers would still be required.

4.2 Performance Evaluation

We evaluated our runtime's implementation performance by running some mi-
crobenchmark applications and three small applications (�bonacci, quicksort, LU).
We run all benchmarks on two Intel(R) Xeon(R) CPU E5645@2.40 GHz with 6
available cores on each machine, totaling to 12 cores connected through a network
socket. We have compiled the runtime and application code using g++ version
4.6.3 with level 3 optimization enabled. For the MPI library we used OpenMPI
version 1.4.3.

4.2.1 Microbenchmarks

Our �rst microbenchmark is a ping pong application, which is used to measure
the time needed to send a message from the master to a worker node and the
time needed for the worker node to respond back to the master. Using the future
interface, the master simply calls async with a functor that takes a string argu-
ment ("ping") and returns only a string value ("pong"), without doing any other
computations in the functor's body. We run the ping pong microbenchmark using
the con�guration described in 4.2 and the message was received by the master in
0.8ms.

The rest of our microbenchmarks, aim to help us understand better the time
needed to issue a job from one node to another. To achieve this, we designed one
microbenchmark application, where the master node issues a functor, with only a
return statement in his body, which takes a variable number of arguments, each
argument can be either a scalar value or a vector container. In �gure 4.1 we report
the time needed to issue a job that takes a variable number of scalar arguments
comparing it with the time needed to issue a variable number of vector objects of
one element. Although the vector object arguments are more complex to serialize,
we see that the di�erence in execution time is marginal. Moreover, we see that
the number of arguments has that need to be transferred, have minimal impact on
execution time. Figure 4.2 shows the execution time of issuing functor objects with
di�erent vector argument sizes. In all cases the total number of elements totals to
1,200,000 (e.g. 1 vector of 1,200,000 elements or 4 vectors of 300,000 elements).
Figure 4.3 shows the time for issuing 1 vector of di�erent size. One can observe
that there is a signi�cant raise in cost as the number of elements reaches 1,000,000.
The numbers reported are the median values of 20 runs. The cost di�erences here
are again insigni�cant.
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4.2.2 Real Application Benchmarking

In order to evaluate our runtime's performance we have implemented three al-
gorithms using our future's interface.

Fibonacci: This is a simple implementation of the �bonacci function. Figure 3.5
shows our implementation. This recursive version is ideal to demonstrate the ease
of use of the future's interface. We have modi�ed the �bonacci code to run the
sequential version of the code for values smaller than 30, so that each async function
can have some amount of work. We run the �bonacci function with 45 as an
argument.
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Quicksort: Figure 4.6 shows our implementation. The QsSequantial function
itself is a pretty standard implementation of the common quicksort algorithm.
Parallelization is extracted at the quicksort function, where the original array
is partitioned and asynchronous quicksort functions are called until the min_unit

value of elements is reached, where from that point on the sequential version of the
quicksort algorithm is called on each partition. Notice that for the asynchronous
branch of the code, we need to copy each partition in order to send it over the
worker process and also merge the results of the async functions into the original
array. This additional overhead along with the communication overhead makes it
necessary to sort small sub arrays sequentially. For our experiments we sort an
array of 100,000 doubles.

Tiled LU: We have implemented an LU factorization kernel using the Tiled
LU algorithm as described in [34]. Figure 4.7 shows a simpli�ed version of the
tiled LU algorithm written in C++ style. All arrays are organized in tiles, each
tile is a smaller sub array. Array A is the input array. In the �rst step an LU
factorization is run on tile A[k][k] (dgetrf function). The resulting arrays are the
lower triangular L, the upper triangular U, both of which are stored in A[k][k],
and the transmutation matrix P[k][k]. The dgessm function applies the L and
U transformations on all tiles on row k, updating tiles L[k][k...TOTAL_TILES].
dtstrf function performs a block LU factorization on the array formed by coupling
the upper triangular part of A[k][k] with A[k][k]. This function returns an upper
triangular array, stored in A[k][k], a lower triangular array stored in A[m][k] and a
permutation array P[m][k]. The dssss function updates the subarray formed by tiles
A[k+1...TOTAL_TILES][k+1...TOTAL_TILES] by applying the transformation
computed by dtstrf of the coupled array of the upper triangular part of A[k][n]
and array A[m][n]. For the kernels dgetrf, dgessm, dtstrf and dssssm, we use the
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Figure 4.4: 3x3 example execution of our parallel tiled LU algorithm. The dark
blue color denotes the dgetrf kernel. Red and green denote dtstrf and dgessssm
kernels respectively. Light blue denotes dgssssm and gray denotes tiles that have
completed.

implementation found in the Plasma project [35].

Figure 4.8 shows a simpli�ed version of our parallel implementation. Figure 4.4
shows how the di�erent kernels are applied at each tile for every step. It also
shows how di�erent tiles are depended upon each other. The example here is an
array that contains 3x3 tiles. The master process starts by executing the dgetrf
function. As soon as it completes, we can apply the dgessm function on the rest of
the tiles on row k (k being the step index we are currently working on). Function
dgessm only requires the L and U factors from dgetrf applied on A[k][k], thus we
can issue them asynchronously, since all dependencies are met. We use here a
special array of futures fA to hold the return value dgessm. Next, we apply the
blocking LU transformation (dtstrf ) on the rest of the tiles on column k. Here,
because each dtstrf requires the updated A[k][k] tile from the previous application
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Figure 4.5: Job graph for tiled LU 3x3 example.

of dtstrf, we cannot issue them in asynchronously. Instead, after running a dtstrf
we immediately issue asynchronous calls to dssssm. This function needs to wait
from the dtstrf that is applied on the �rst tile on the row, for the dgessm function
that will be applied on the �rst tile of the column, and from the previous, if any,
application of dgessssm on the tile just above the current one, that dgessssm is
applied. Because dssssm modi�es two arrays, we use a struct to represent the
coupling of tile A and the upper triangular array U. The variable cpldAU, is an
array of futures of that struct type. The parallelization strategy described, allows
us to work on each column asynchronously. Figure 4.5 shows the job graph for the
Tiled LU 3x3 example. Jobs on the same step can run in parallel. The arrows
represent the data dependencies among the jobs. Note, that in �gure 4.4 steps 4
and 5 can be merged, since all data dependencies on tile A11 are resolved. We run
the tiled LU kernel for and array of 2000x2000 elements and block size of 200x200
elements.

In �gure 4.9 we report the execution times for running the three applications on
the machine setup we described in section 4.2. We measure only the algorithm and
no initialization and �nalization times of the runtime system, etc. We observe that
we do not manage to get any speedup on quicksort and Tiled LU, on the contrary we
get a slowdown (�gure 4.10). We get a small speedup in Fibonacci when using more
than 4 processes. In �gure 4.11 we show the breakdowns for the master application
and the slaves, for running the applications on 6 cores. Job issue time is the time
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needed to send a job from one process to another. This time includes time spend
in the scheduler, to �nd the next worker. It also includes time spend on serializing
and sending the job object and its arguments to a worker process. Job execution
time is the time spent on running the actual code of the job that was issued via an
async call. User code time is the time the master process spends running code that
is not related with the runtime (only for master). Idle time is time spend waiting
to retrieve a future value and for the workers, it's also time spent waiting for a
job to become available in their stacks. Rest of time is the rest of the overhead
that is imposed by the runtime. This fraction of time can be for example the time
needed to send the return value of the asynchronous execution of a job and copies
of objects done after deserialization on the workers. Figure 4.12 shows the same
breakdowns with �gure 4.11, with the addition of initialization and �nalization
times. The initialization and �nalization include the creation and �nalization of the
communication module (in our experiments that's MPI), creation and destruction
of the shared memory (MPI Windows) and scheduler. The initialization time is
constant on all applications, since it mainly depends on the number of processes,
while the �nalization time is negligible. Compared to the useful job execution and
user code times, the overhead is much greater. Job issue time or rest of time are
the greatest sources of overhead, while a fair amount of time is also spent on idle
time. The idle time is more a concern of the algorithm implementation of each
benchmark, and explicitly related to our runtime's overhead. However, runtime
overheads can implicitly be the cause for the idle time. Factors like how jobs are
distributed among processes and delay in issue time can play a signi�cant role in
this. In order to �nd the main source of overhead in our system, we used the
callgrind tool to pro�le our code.

In the Fibonacci application the master spends most of his time waiting for the
result on the get method. He does not make any useful work and only waits for
the workers to �nish. Callgrind reports that the workers spend 52% running useful
code. They also spend a high amount (33.3%) of time on the scheduler trying
to �nd the next available worker. However, out of the 33.3% only a very small
fraction of time (around 3%) is spend on actual scheduler work. The rest 30% is
spend waiting to acquire the lock of the distributed mutex implementation. One
can see that the mutex implementation has a considerable cost.

The master process in quicksort spends 57% waiting for its workers to complete.
It is again expected, since most of the work is supposed to be done by the workers,
as in Fibonacci. The workers on the other hand, spend around 25% trying to
acquire or release locks (distributed mutex) and 32% on vector allocations. Half of
the 32% is called from within the serialization routine, which amounts to the total
of 16% of total execution time. The rest of the vector allocation time is caused by
copies of the get method's return value and local copies of the async function's
argument, after deserialization.
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For tiled LU, callgrind reports that the master spends 71% of its time trying
to schedule/send jobs to the workers. It should be reminded, that all issuing
happens by the master in this application, compared to the rest of our benchmarks.
To quantify this statement, 330 jobs are issued by the master. Except a very
small fraction (around 1% of the total execution time) is spend exclusively on the
serialization routines. The master also spends 13% of its time on the get method,
but 11% (of the total execution) is again deserialization of the return values (data
send by the workers). The serialization routines here are indeed a vast amount of
overhead. This implicitly causes the worker processes to be idle for a signi�cant
amount of time (46%). Around 11% is spend on serialization routines and 15.7%
on useful work.

Boost serialization and the distributed mutex library can be identi�ed as the
two main causes of overhead in our system. Note that Fibonacci makes minimal
use of the serialization routines, since it can directly send data (return values and
arguments) as MPI datatypes. Serialization is required only for the job object.
Thus �bonacci only su�ers from the overhead caused by the distributed mutex
library. The high cost of the distributed mutex library was expected, and we tried
to use such locks only when completely necessary. It would be preferable to have
a native MPI implementation of mutexes, but none of the MPI synchronization
primitives can be used to de�ne a critical region. Moreover, �gure 4.11 shows
that even if �bonacci, that there is some performance bene�t, the overhead is
considerable. One can also see that the �bonacci had a lot more useful work to
complete compared to tiled LU and quicksort. We believe that the runtime can be
only useful for coarser grain work, with the current implementation.
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1 /∗ a sequential qs ∗/
2 void QsSequential(vector<double>& array, const long left, const long right){
3 if ( left < right){
4 const long part = QsPartition(array , left , right );
5 QsSequential(array , part + 1,right );
6 QsSequential(array , left , part - 1);
7 }
8 }
9
10 /∗∗ A task dispatcher ∗/
11 class quicksort {
12 public:
13 quicksort () {};
14 ~quicksort () {};
15 vector<double> operator()(vector<double> array, const int deep) {
16 const int left = 0;
17 const int right = array. size () -1;
18 if ( left < right){
19 if ( array . size () > min_unit) {
20 const long part = QsPartition(array , left , right );
21 vector<double> subarrA((right)-(part+1)+1), subarrB(part-1-left+1);
22 Copy(subarrA, array , part+1, right+1);
23 Copy(subarrB, array , left , part );
24 quicksort qsort ;
25 future<vector<double> > res1, res2;
26 res1 = async2(subarrA.size (), qsort , subarrA, deep-1);
27 res2 = async2(subarrB.size (), qsort , subarrB, deep-1);
28 subarrA = res1.get ();
29 subarrB = res2.get ();
30 Merge(array, subarrB, subarrA);
31 }
32 else {
33 const long part = QsPartition(array , left , right );
34 QsSequential(array , part + 1,right );
35 QsSequential(array , left , part - 1);
36 }
37 }
38 return array;
39 }
40 };

Figure 4.6: A quicksort implementation using the distributed futures interface
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1 for(int k = 0; k < TOTAL_TILES; k++) {
2 dgetrf (A[k ][k ], P[k ][ k ]);
3 for(int n = k+1; n < TOTAL_TILES; n++) {
4 dgessm(A[k][n ], A[k ][k ], P[k ][ k])
5 }
6 for(int m = k+1; m < TOTAL_TILES; m++) {
7 dtstrf (A[k ][k ], A[m][k] , P[m][k ]);
8 for(int n=k+1; n < TOTAL_TILES; n++) {
9 dssssm(U[k][n ], A[m][n], L[m][k ], A[m][k ], P[m][k ]);
10 }
11 }
12 }

Figure 4.7: The tiled LU kernel implementation

1 for(int k = 0; k < TOTAL_TILES; k++) {
2 A[k][k] = cpldAU[k][k]. get ().A;
3 dgetrf (A[k ][k ], P[k ][ k ]);
4 for(int n = k+1; n < TOTAL_TILES; n++) {
5 A[k ][n] = cpldAU[k][n].get ().A;
6 fA[k ][ n] = async(dgessm, A[k][n], A[k][k ], P[k ][ k ]);
7 }
8 for(int m = k+1; m < TOTAL_TILES; m++) {
9 A[m][k] = cpldAU.get().A;
10 dtstrf (A[k ][k ], A[m][k ]. get() , P[m][k ]);
11 for(int n=k+1; n < TOTAL_TILES; n++) {
12 if (m == k+1)
13 A[k ][n] = fA[k][n ]. get ();
14 else
15 A[k ][n] = cpldAU.get().U;
16 A[m][n] = cpldAU.get().A;
17 cpldAU[m][n] = async( dssssm, A[k][n], A[m][n],
18 L[m][k ], A[m][k ], P[m][k ]);
19 }
20 }
21 }

Figure 4.8: The tiled LU parallel kernel implementation
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Figure 4.11: Breakdowns of master and worker execution time graph for �bonacci,
quicksort and LU
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Chapter 5

Conclusions and Future Work

In this work we presented an implementation of the futures programming model
as a C++ library, for distributed and shared memory machines. We implemented
our system using the MPI one-sided communication library for communication. We
adopted shared memory scheduling techniques to implement our scheduler, making
use again of the MPI one-sided interface. In terms of interface, we showed that
it is possible to implement the shared memory C++11 standard interface. There
are only minimal di�erences between the two interfaces, none of which limits the
the expressiveness and usability of the futures model. Our performance evaluation
of the system shows that the current implementation su�ers from signi�cant over-
heads, making it unsuitable for �ne grain parallelization. For the most part, the
high overhead can be mainly attributed to the serialization routines and the MPI
based mutex library we use.

At this point, from our experience with the MPI one-sided communication inter-
face, we believe that there exist some fundamental limitations in its design. These
are:

1. MPI_Window creation is a collective operation over a group of MPI pro-
cesses. In order to dynamically allocate data and share through a window,
all processes must synchronize, calling the MPI_Window_create routine.
For our asynchronous system this is a serious limitation, especially when we
only want to create windows between only two processes at a time. The only
solution to this problem would be to create a priori all possible groups for all
pairs of processes, which can be costly. Instead, we were forced to preallocate
a bu�er for each process, that is shared through a window.

2. The active mode "epoch" de�nition scheme, requires both processes to take
part in the communication, which we believe to be counter intuitive for an
one-sided communication interface. What's more, we �nd that it is unusable
in our asynchronous communication system.
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3. The locking schematics of the passive mode "epoch" de�nition scheme, do
not de�ne well what happens when a window is concurrently accessed, which
can cause erroneous results. This forced us to implement our own mutexes
to synchronize data accesses on the same window. Moreover, acquiring an
exclusive lock on a window will block other processes from accessing it, even
if they access di�erent, non-overlapping addresses in that window. The later
constraint, limits �ne grain locking. In our system, this is a very common sce-
nario, where processes, di�erent asynchronous jobs, need to write to di�erent
parts of the same window of the process owning the associated futures.

4. The lack of synchronization primitives, with the same schematics as their
shared memory counterparts limits the usability of the model. Native im-
plementations of such primitives, could o�er much better performance than
implementing them on top of the MPI library.

In the future we plan to address the performance issues of our system. Currently
we use the Boost serialization library, which is not tuned for performance. We
could try alternative serialization routine that could possibly match our needs.
The overhead caused by the mutex library though, is tougher to address, while
still using the one-sided communication Interface. Unless MPI will not provide a
native mutex implementation, alternative one-sided communication libraries, like
ARMCI, should be used. Less high pro�le goals include implementing all the
secondary features of the C++11 futures library. We are also interested in exploring
the potential of having a hybrid model with a uni�ed interface. Jobs that run on the
same machine will use a shared memory runtime, while jobs that run on di�erent
machines, will have to make use of the distributed memory runtime. Our main
goal is to deliver a high performance runtime system.
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