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Abstract

Over the years, ballistocardiography (BCG) has emerged as a unob-

structive, non-invasive, and safe technique that can be used for cal-

culating the heart rate of a patient. As the heart rate is an essential

element not only for the differential diagnosis process but also for mon-

itoring patients, various scholars have conducted research on possible

applications and use for the BCG signal. Among these, sleep apnea

has gained a lot of interest as it benefits greatly from the unobstructive

nature of the BCG recording. Compared to Polysomnography (PSG),

the golden standard used today, BCG bears the advantage of record-

ing the heart rate and the respiration rate without physically touching

the patient, thus removing the discomfort of the multiple attached

wires and sensors which are needed during the PSG. This is crucial,

as for an accurate diagnosis, multiple hours of recordings have to be

acquired and most of the time the procedure has to be repeated for

more than one night. By removing the discomfort for the patient we

could obtain more accurate results and people would be less hesitant

to undergo the diagnosis procedure. Furthermore, as the BCG sensor

is a very small and portable device, at home monitoring could also be a

possibility. With the present thesis we aim to assess the possibility of

monitoring the heart rate and respiration rate of a patent using solely

a BCG recording. Additionally, the possibility of developing a system

which can utilize the calculated physiological signals and automat-

ically detect Obstructive Sleep Apnea Events during patient’s sleep,

using machine learning and Artificial Intelligence techniques is also

explored hoping that the system will, in the long run, help in reducing

diagnostic ambiguity and also in creating more concise and realizable

results.
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Chapter 1

Introduction

1.1 Motivation and Objectives

Over the past few decades research has recognized Obstructive Sleep

Apnea (OSA) as a major risk factor for numerous health problems, in-

cluding hypertension, stroke, cardiomyopathy, heart failure, diabetes,

and heart attacks [5]. Unfortunately, to this day, OSA and sleep disor-

ders are generally discarded and not given proper attention. In a sur-

vey conducted in the USA in 2002, it was estimated that even though

OSA affects approximately 20% of the population, 90% of them are un-

diagnosed [6]. However, as in the case of any disease, early diagnosis

and treatment can play a critical role in the success of a treatment,

faster recovery, and offer more chances of longer survival. This high-

lights the need for simpler, specialized diagnostic techniques that can

aid the doctors during a diagnostic procedure by providing more data

and thus more insight into a patient’s health condition.

One of the most promising techniques for diagnosing OSA is ballisto-

cardiography. The technique is aptly named; it is comprised of the

word ϐαλλισµός (ballism) which is used to describe the spasmodic

movement, καρδιά (heart), and γράφος (graph). It is a technique for

producing a graphical representation of repetitive motions of the hu-

man body arising from the sudden ejection of blood into the great ves-

sels with each heartbeat. Some of the main advantages of this method

are that the recording device is unobstructive, simple to use, and of

low cost. Most importantly though, it has the potential to offer highly
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1.2. THE GOLDEN STANDARD CHAPTER 1. INTRODUCTION

accurate results for OSA detection as the signal holds information for

both the respiration, as well as the heat rate of the patient.

Heretofore, the golden standard for diagnosing sleep apnea is PSG,

which is predominantly based on the visual observation of the recorded

signals by well-trained doctors. This means that the patient will have

to stay overnight at the hospital with a couple of sensors and electrodes

attached as well as a nose tube. It is often that the discomfort of the

process deters patients from seeking diagnosis and of course, lurks

the possibility of interfering with the results. To overcome this prob-

lem, research has focused on alternative recording techniques which

can produce reliable results. Unfortunately, to this day there is no

established standardization in the recording device nor the measured

parameters in the BCG signal or other signals, and for that reason, it

is a very active research field. The rapid advancement of technology in

recent years has offered more interesting signal processing techniques

and maybe in the future home diagnosis will be possible.

The topic of this thesis is the digital processing of the BCG signal to

accurately compute the heart rate and the respiration rate of the pa-

tient. Additionally, the possibility of identifying sleep apnea events

using machine learning and AI techniques is explored to assess BCG

as a potential solution for monitoring a patient’s sleep that in the fu-

ture, could be an alternative to PSG.

1.2 The Golden Standard

Polysomnography, also known as a sleep study, is a diagnostic proce-

dure used for diagnosing and monitoring sleeping disorders. During

the procedure, the brainwaves, the oxygen levels in a patient’s blood,

heart rate, breathing as well as eye and leg movements are recorded

by multiple sensors attached to the patient. PSG is conducted in hos-

pitals or specialized sleep clinics. During PSG a specialized person

monitors:

• Brain waves (EEG)

• Eye movements (EOG)

• Chin muscle activity (EMG)
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1.2. THE GOLDEN STANDARD CHAPTER 1. INTRODUCTION

• Heart rate (ECG)

• Breathing pattern

• Blood oxygen level

• Body position

• Chest and abdominal movement

• Limb movement (EMG)

• Snoring and other noise that a patient may make during sleep

To record this data, the technician places a series of electrodes on the

patient’s scalp, temples, chest, and legs. Additionally, an elastic belt

is placed around the patient’s chest and stomach area, and a small

oximeter is clipped on the patient’s finger. Finally, the recordings of

the multiple physiological signals are evaluated by a doctor or a sleep

technician who annotates them as different sleep stages and sleep dis-

order events. To identify sleep apnea, the sleep specialist will check the

frequency of the apnea episodes, meaning the frequency of episodes

where the patient’s breath stopped for more than 10 seconds, or the

frequency of hypopnea episodes, meaning the frequency of episodes

where the patient’s breathing was partially blocked. The frequency

of these events is then used to calculate the apnea-hypopnea index

(AHI) which is used to classify the severity of the sleeping disorder.

Particularly,

• AHI<5, normal breathing

• 5<AHI<15, mild sleep apnea

• 15<AHI<30, moderate sleep apnea

• 30<AHI, severe sleep apnea

Some of the advantages that PSG has are the following,

• A technician is always present and can adjust sensors for optimal

recording

• The whole sleep is recorded

• Other conditions may be observed

7
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However, the PSG has also many disadvantages. Some of them are:

• The recordings require multiple wires,belts, electrodes and sen-

sors attached to the patient’s body which may cause discomfort

• The recording is performed in an unfamiliar environment

• It is an expensive procedure

• The waiting list for an appointment can be very long, especially

during pandemic periods

It is because of these disadvantages that people have looked into al-

ternative diagnostic procedures for OSA. A huge effort has focused on

identifying the smallest subgroup of recorded signals than can be used

to accurately identify sleep apnea. Limited Channel Monitoring is one

of the suggested approaches and focuses only on breathing and blood

oxygen levels. This test also has the advantage that it can be per-

formed at home, but it has a greater failure rate.

The BCG was first suggested by Isaac Starr [7] in 1939. When it was

first proposed, it attracted a lot of interest from the scientific society,

however, it was soon abundant due to a lack of physiological interpre-

tation of the signal and the development of the ECG, a more reliable

and easier to interpret diagnostic device.

Recently, the BCG has resurfaced and has once again gained a lot of

interest due to recent technological developments in the biomedical

field. New types of sensors combined with more powerful signal pro-

cessing techniques show promising results and they open up the road

to new applications.

1.2.1 BCG Signal

The BCG signal is defined as a measure of the ballistic forces generated

by the blood being pumped by the heart. A typical BCG signal is

characterized by 3 distinct peaks, I, J, and K which help characterize

the functional waves of the heart. These three describe the systolic

wave and they can also be preceded by a point G which marks the

beginning of the pre-systolic wave and they can be followed by two

more points, L and M which show the diastolic wave. The three points
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1.2. THE GOLDEN STANDARD CHAPTER 1. INTRODUCTION

that mark the systolic wave are the ones that we are most interested

in and can be correlated to the QRS peaks of an ECG signal.

The characteristic morphology of a BCG signal is presented in the

following schematic alongside the corresponding ECG signal.

Figure 1.1: Electrocardiogram (ECG) and Ballistocardiogram (BCG) signals. BCG

lags ECG because the electrical activity causes mechanical action. Image acquired

by [1]

1.2.2 BCG Sensors

A wide variety of sensors can be used to record the BCG signal. The

most commonly used ones are Piezoelectric Polyvinylidene Fluoride-

base sensors, Electromechanical film-based sensors, Pneumatic-based

sensors, Strain-gauge based sensors, Hydraulic-based sensors, and

Fiber Optic-based sensors [8]. The sensors are usually integrated into

various everyday used items like beds, chairs, and weighing scales so

that their use is easier.
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Figure 1.2: Devices that can be used for the recording BCG. Image acquired by [2]

Each type of sensor presents different advantages and disadvantages

and of course, requires different preprocessing steps to improve the

quality of the signal.

It is important to note that though there is a very wide variety of sen-

sors, only a few of them have FDA approval or CE marking, which is

very important when developing biomedical sensors.

MuRata company is one of the few companies that offers FDA-approved

sensors for recording the BCG signal. The company first developed

the 3-axis inclinometer BCGMCU. Recently, they launched the sec-

ond generation of the sensor which is now offered as part of the pre-

programmed microcontroller BMGMCU-D01, which can extract heart

rate and other vital signs from the signal.

Casana is another start-up company that is currently undergoing the

FDA clearance process for the heart seat device that they have devel-

oped. The company has integrated into a toilet seat an ECG, a BCG,

and a PPG sensor that can monitor a patient’s health without inter-

rupting it. The sensors are powered by a battery that can last for
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1.3. THESIS INNOVATION CHAPTER 1. INTRODUCTION

several years without recharging and they upload the recorded signals

to the cloud using a WiFi connection.

Drowzle company has developed a very innovative mobile app that can

record and analyze sleep breathing patterns. Though it does not of-

fer the possibility to diagnose sleep apnea, it can help detect cases

when a consultation with a doctor is needed. The app has a monthly

subscription fee of 400$ and can monitor up to 5 patients with that

subscription.

WatchPAT company is the only company at the moment which offers

an at-home solution for diagnosing sleep apnea. To do so, the com-

pany supplies the patient with a device that is comprised of three parts,

one sensor placed on the patient’s chest, one placed on their finger,

and the main component of the device which is placed on the patient’s

wrist. The company promises an accuracy of 89% and the device has

a cost of approximately 400$.

1.3 Thesis Innovation

As the medical field embraces new applications of computer science,

digital signal processing can produce innovative analysis methods

which can have a huge impact on the medical field. The present

thesis aims to contribute to the further development of the field by

exploring the potential use of BCG signals obtained during patient’s

sleep to monitor physiological signals and identify apneic events using

machine learning and artificial intelligence techniques.

1.4 Outline Of Thesis

The present thesis is divided into 4 chapters. Chapter 2 presents

the literature review on current research conducted on detecting sleep

apnea. In Chapter 3 we present the algorithmic pipeline for the evalu-

ation of the heart rate and the respiration rate and finally, in Chapter

4 we present the acquired results for the proposed methodology and

the machine learning models.
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Chapter 2

State Of The Art

In this chapter I introduce the bibliographic research conducted on the

processing and analysis of the BCG signal. We also include a sum-

mary of the theoretical background for each studied method, as well

as their main advantages and disadvantages.

Our survey started more generally by looking into research papers fo-

cusing on detecting OSA events using PSG signals. Then we narrowed

the research to methodologies developed for detecting OSA using BCG.

This included more traditional signal processing approaches, as well

as more modern ones that employ machine learning and artificial in-

telligence techniques.

2.1 Proposed Methodologies Using PSG Sig-
nals

2.1.1 PSG Signals

The work of Koley et al. [3], was very useful for this part of the bib-

liographical research. The authors of the paper proposed a method-

ology based on the oronasal airflow signal of the patient. The re-

searchers segmented the signal using 8s windows with a 2s step,

creating smaller, overlapping segments of the signal. For each seg-

ment, 24 features were calculated, both in the time and frequency

domain.

13
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CHAPTER 2. STATE OF THE ART

Figure 2.1: List of the extracted features Koley et al. Table acquired by [3]

Then, using an SVM classifier, they classified the segments into nor-

mal breathing ones and segments where an abnormal breathing event

takes place. Afterwards, using a second SVM classifier, they distin-

guished the segments between apnea and hypopnea events. Their

algorithm was assessed using a dataset which comprised of 28 air

recordings, out of which, 18 were used for training the algorithm and

10 were used for external validation. Additionally, a separate group

of 8 patients was used for online testing. The results were very im-

pressive as they managed to achieve an accuracy of 94.9% and 91.8%

accuracy for the online classification. Furthermore, their approach

allows real-time monitoring and it can adapt to different users auto-

matically.

Another promising approach is that of Lazazzera et al. [9]. The au-

thors selected the oxygen saturation and the photoplethysmography

(PPG) signals to develop their methodology. Both signals are acquired

using an oxygen-desaturation and a DAP detector, respectively, placed

14
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on the index finger of the patients. Initially, both signals are prepro-

cessed by downsampling and detrending. The PPG is then further

processed and the envelope of the signal is calculated, based on which

the researchers can identify sudden drops in the signal based on an

adaptive threshold. This way they are able to identify DAP events

(reductions in amplitude fluctuation of PPG) and also they can calcu-

late the pulse rate variability. As for the SpO2 signal, initially, outlier

values are removed. Afterwards, in an extended window around the

DAP event, a Sleep Disruptive Breathing Event (SDBE) is detected if

there is a difference of 1% - 3% between the maximum and the min-

imum value of the SpO2 signal in that window. The two signals are

then segmented into 1-minute long segments and 37 features are cal-

culated which include PPG features, SpO2 features, pulse rate time

domain features and pulse rate frequency domain features (computed

by using the smooth pseudo Wigner-Ville distribution (SPWV) and the

Lomb periodogram). The researchers compared the performance of 25

machine learning algorithms on a dataset of 96 overnight recordings.

Fine Gaussian SVM performed best, with an accuracy of 92.6% for

separating central from obstructive apnea, 83.7% for central apnea

and central hypopnea, and 82.7% for obstructive apnea and obstruc-

tive hypopnea. A major advantage of this method is that it can classify

4 possible breathing abnormalities using very low-cost equipment.

In 2020, Yonn et al. [10] proposed a methodology based on the oxy-

gen saturation level drops of a patient. In particular, the researchers

placed a MARS, type 2001 pulse oximeter on the index finger of the

non-dominant hand of the patients to measure the SpO2 levels. The

digitalized SpO2 values were provided every 1 sec. with 1% resolution

and is processed using the Motion Artifact Rejection System (MARS)

algorithm. Afterwards, the researchers defined 3 distinct points on the

acquired signal. The first one, point A, refers to a signal drop rate of

1-3% per second. The second one, point B, refers to a signal drop rate

of at least 3% compared to point A. The third one, point C, refers to a

drop rate by 1% smaller than that of point A or 3% higher than point B.

The time period between point A and point I should be between 10 and

90 sec. Finally, the signal is segmented into 1 min parts, and using

a regression model which employed the Hill function, the researchers

15
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calculated the AHI in the total recording. To test their proposed algo-

rithm, the researchers used a dataset of 15 overnight recordings and

they calculated the accuracy of the approach at 87.5%. A major bene-

fit of their proposal is that they can have a near real-time detection of

hypopnea events.

Another interesting approach to detecting OSA events is that of Tom

Van Steenkiste et al. [11], published in 2018. The methodology

was very innovative as they proposed the use of a Long Short Term

Memory Neural Network, which they trained using as few PSG signals

as possible. The selected signals were the ECG recording of the patient

and the respiration signal which was recorded by placing an elastic

belt on the chest of the patient that records its movement. The signals

were pre-processed using a low pass filter to remove the noise, as

well as a moving average filter to remove outlier values caused by

limb movement. Then the signals are segmented into 30 sec long

signals using a step of 1 sec to create overlapping segments. A sleep

technician was responsible for labeling the smaller segments. The

problem with this approach was that they created a very unbalanced

dataset as the duration of apneic events is significantly smaller than

normal breathing. To tackle this problem, the researchers performed

balanced bootstrapping, which uses all of the segments with a sleep

apnea label and an equal number of segments of normal breathing,

selected randomly. The researchers used a dataset of 1008 female

and 1092 male subjects with 6 h or more of useful recording. Some

of the advantages that the proposed method has have been that the

LSTM model is very robust to noise and the granularity of the detection

can be increased to a per-second basis. The final accuracy result they

were able to achieve was 77.2%, which outperformed the ANN, LR and

RF, and it was achieved when the respiratory belt was placed below the

lower edge of the left rib cage. A disadvantage of this method is that

because the decision is made on a per sec basis, shorter respiratory

events may be identified as apneas. Additionally, as the annotations

are performed by a sleep technician, the positions may not be labeled

with a granularity precision to seconds.This can cause the model to
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detect apnea events with a time delay.

A recent and promising paper that came up during the bibliographic

research was by Moridani et al. [4] published in 2019, who also used

neural networks to detect apnea events. The researchers used the

EEG, ECG, and EMG signals recorded during a PSG and performed

wavelet analysis for 3 levels on all 3 signals. For each signal, the

following 8 features were calculated and normalized.

Figure 2.2: List of the extracted features Moridani et al. Table acquired by [4]

To reduce the feature dimensions, the researchers used PCA and the

selected features were entered into an MLP neural network. The pro-

posed algorithm was tested on a dataset of 14 overnight recordings

and it performed with a 96.87% accuracy. A major advantage of this

algorithm is that it can achieve a near real-time detection of apnea

events.

To make it easier to summarize and compare the aforementioned stud-

ies, we created the following table.
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Author Year Signals

Used

Objective Accuracy

Koley et al. 2013 Oronasal

Airflow

Signal

OSA

Classifi-

cation

94.9%

Lazazzera et al. 2021 SpO2 and

PPG

OSA

Classifi-

cation

92.%

Yonn et al. 2020 SpO2 OSA

Classifi-

cation

87.5%

Tom Van Steenkiste et al 2018 PSG Sig-

nals

OSA

Classifi-

cation

77.2%

Moridani et al 2019 EEG,

ECG, and

EMG

OSA

Classifi-

cation

96.87%

Though all the aforementioned proposals present very promising re-

sults, they are based on signals recorded during a PSG examination.

This means that these signals are measured intrusively, causing dis-

comfort to the patient and interfering with the examination results.

This is probably why the datasets in which the algorithms were tested

were relatively small. Additionally, they require very expensive equip-

ment for the recording, as well as a trained person who monitors them

throughout the duration of the examination. A promising solution is

the use of the BCG signal to identify apnea events.

2.2 Proposed Methodologies Using The BCG
Signal

In this section of the report, we will present proposed methodologies

in the literature which used the BCG signal as the primary source of

information. The vast majority of the methodologies have focused on

accurately detecting the heart rate of a patient from the BCG, as to

this day this is still an open issue. Other studies have focused on
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calculating the respiration rate based on the BCG signal, while very

few have moved on to try to detect OSA events.

2.2.1 Heart Rate Detection

Cardiovascular changes accompany every apnea event, which high-

lights the need for calculating the heart rate using a BCG signal. In

particular, studies have shown that during apnea, relative bradycar-

dia can be observed which is immediately followed by tachycardia as

the respiration of the patient reverts.

Kortelainen et al. in their work [12] used a method commonly found in

voice analysis applications to detect the heartbeat of a patient from a

BCG signal. In particular, their proposal is based on the calculation of

the Cepsrum, which is the inverse Fourier transform of the logarithm

of the signal’s spectrum. This way they were able to calculate the

periodicity of the signal and extract the heart rate. The algorithm was

tested using 15-night recordings from 6 male subjects and achieved a

relative error of 0.35%. A major drawback of the method is that due to

the patient’s movement during sleeping, a lot of data is discarded and

not handled in a different way.

An interesting approach was suggested by He et al. [13] in 2019 to

determine if the time delay between the R peak of the ECG signal and

the J peak of the BCG signal can be used to as an alternative to the

pulse transit time (PTT). This way, a cuffless blood pressure estima-

tion could be possible. The researchers used the ECG (dry electrodes

was mounted on both the left and right index fingers), BCG (capacitive

wristband placed on the left wrist), PPG sensors (optical sensor placed

on the left patient’s wrist) and the reference continuous BP cuffs to

record the respective signals for 10 healthy individuals.

Initially all of the signals are filtered using a Type I band-pass filter with

different band ranges for each signal in order to remove out-of-band

components. Additionally, a 60Hz notch filter was used to remove the

powerline noise.

The researchers used a peak detection algorithm based on local max-
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ima to identify peaks on the ECG and PPG signals. Finally, to deter-

mine the peaks in the BCG signal, they applied a J peak detection

algorithm which uses the J peaks detected in the ECG signal as refer-

ence points. In particular, the algorithm works in the following way:

• Peak detection is performed based on local maxima

• Based on estimated pulse duration, the BCG is segmented and

the local maxima of each segment is calculated.

• The ECG R peak is used as an indicator to detect the J peak of

the BCG, as it usually follows the QRS complex with a time delay

of 0.22 to 0.26 sec.

• RJ intervals, meaning the time delay between an R peak of the

ECG and J peak of the BCG, and PTT, meaning the time delay

between the R peak of ECG and P peak of PPG are calculated.

Based on these calculations, the researchers calculated the SBP of

each subject which can provide information on the BP variability. The

method was tested on a dataset of 15-minute recordings of 10 healthy

subjects and showed very promising results. The researchers used

the correlation coefficient, mean absolute difference (MAD) as well as

root mean standard deviation (RMSD) to assess the performance of

the suggested methodology and the mean results they acquired were

0.626, 2,819 and 3.465 respectively. However, as the calculations

were optimized for each subject in the dataset, the researchers would

like to use machine learning models in the future to have a better

estimation of the accuracy of the algorithm.

A very recent proposal is that of Zaid et Al. [14] in 2021. The authors,

after pre-processing the BCG signal with a low-pass filter, used a 2
nd

degree polynomial to smooth the BCG signal. Then, they identified the

R peaks on the ECG recording using the Pan-Tompkins algorithm and

for each time interval identified by two consecutive peaks, a maximum

peak was identified in the BCG signal. This way they were able to

calculate the time interval between R peaks in ECG and J peaks in

BCG, commonly known as TEB, which is an important marker for

20



2.2. PROPOSED METHODOLOGIES

USING THE BCG SIGNAL

CHAPTER 2. STATE OF THE ART

ventricular contractility. The researchers tested their algorithm on a

dataset of 3 10-minute recordings from 8 subjects out of which 6 were

patients of SICU and 2 were healthy individuals. The method proved to

be robust to the position of the patient on the bed and is very promising

for monitoring patients in ICUs. However, the only assessing method

conducted by the researchers was the use of boxplots to determine the

outlier values of the distance of the highest BCG value to the first R

peak of the ECG signal (TEB).

The previously mentioned works present very interesting results using

the BCG signal. However, the analysis of the BCG signal heavily relies

on the corresponding ECG recording or it is not used to detect possible

OSA events. In the present thesis, the ECG recording is only used as

ground truth to assess the produced results. Once the methodology is

established and properly assessed, it can run completely independent

of the ECG and the rest of the recorded PSG signals offering truly an

invasive way of monitoring sleep apneas.

2.2.2 Respiration Detection

Tavakolian et al. [15] focused on the respiration information that the

BCG signal holds. The objective of their study was to produce a

methodology for averaging the recorded BCG signal, in order to provide

a better signal that could be used as a device output. The researchers

based their methodology on the averaging of the BCG signal. In par-

ticular, the inspiration and expiration points were first identified as

well as the R peaks on the recorded ECG. R-R intervals which were

shorter by 75% of the average R-R were removed. Then, a linear re-

gression line was fitted to each detected respiration cycle. Finally, the

inspiration and the expiration points in the cycle were averaged, thus

creating an inspiration and expiration BCG template. The proposed al-

gorithm was tested on a dataset containing 45 recordings of subjects

without any heart-related pathologies before and after running on a

treadmill. To evaluate the algorithm, a measure of similarity was es-

tablished by cross-correlating the inspiration and the expiration cycles

of all subjects. After performing statistical analysis, a p-value smaller

than 0.01 was calculated between the respiration and the expiration
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averages.

Another interesting work is that of Liu et Al. [16] presented in 2016.

The researchers used the BCG signal to identify respiratory patterns

which then were used to identify OSA events. After preprocessing

the BCG signal, they used the 7th wavelet approximation to detect

signal arousals. Based on them, they identified potential events and

segmented the BCG signal accordingly. For each segment, a feature

extraction step was performed and out of the calculated features, 5

fine-grained were selected to classify the segments. In particular, the

features used were: Sample Entropy (SampEn), Zero Crossing Rate

(ZCR), Mean Number of Extreme Points (MNEP), Average Signal Turns

Count (ASTC), and Average Cumulative Amplitude Change (ACAC). Fi-

nally, the classification was performed using a back propagation neu-

ral network. The researchers tested their proposal on a dataset that

was comprised of one night’s sleep recordings from 38 subjects and

were able to achieve a 94.6% accuracy when they validated their model

using 10-fold classification.

2.2.3 Heart Rate and Respiration Rate

Wang et al. [17] was one of the first published papers that focused on

the calculation of a patient’s heart rate from a BCG signal. The re-

searchers developed a new PVDF sensor and acquired 1-hour record-

ing of the BCG signal. To process the signal, the researchers used

Wavelet decomposition of the signal to separate the heartbeat and

respiration components. In particular, the researchers used the 6th

approximation is used to detect respiration peaks using a time-variant

adaptive threshold. As for the detection of the heartbeat, the re-

searchers calculated the first level approximation of the signal. After

squaring the signal, the envelope of the signal is calculated using a

moving average smoothing algorithm, and using an adaptive thresh-

old, the peaks of the signal are identified. To improve the peak detec-

tion, a judgment method is introduced based on which if two consecu-

tive peaks are identified with a time delay smaller than 0.25 sec, then

the one with the highest value is considered the true positive and the

second is discarded. An error rate of 1.25% is calculated, however,
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the dataset is very small and further testing should be performed to

accurately access the performance of the algorithm.

A more recent work that was published in 2021, is that of Nasr et

al. [18]. The researchers used machine learning techniques to access

a patient’s sleep. In particular, based on their previously published

work, after calculating the heart rate and the respiratory rate of the

patient, they calculated two additional features: the spectral flatness

measure and the spectral centroid. To achieve this, the BCG signal

was segmented using equal length segmentation and then the Gaus-

sian Mixture Model to classify the data into 7 classes: normal activity

in a still position, coughing, post-coughing, holding breath, expiration,

movement, and others. A binary classification method that used KNN

was then used to determine a relation between the multiple classes

and the functions of the human body. This way two binary flags

were created, a CAD/NoCAD, to describe the cardiac activity, and

RAD/NoRAD, to describe the respiratory activity. The proposed algo-

rithm was tested on 5 min recordings of 3 male and 3 female subjects.

The algorithm was evaluated and a 98% accuracy was calculated for

classifying CAD events, however, a 33% misclassification for NoCAD

events, a 95% for classifying RAD events, and a misclassification of

28% for the case of NoRAD events.

To make it easier to summarize and compare the aforementioned stud-

ies, we created the following table, which contains the basic charac-

teristics of each study. It is also worth noting that most of them were

tested in very small populations using a small dataset.
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Author Year Signals Objective Accuracy

Kortelainen et al. 2007 BCG HR Calcula-

tion

94.9%

He et al. 2019 ECG & BCG Blood Pres-

sure estima-

tion

r:0.626

MAD:2,819 ,

RMSD:3.465

Zaid et Al. 2021 BCG TEB Consis-

tency

not calcu-

lated

Tavakolian et al. 2008 BCG & ECG BCG

Recording

improve-

ment

p-

value:0.01

Liu et al. 2016 BCG OSA Classi-

fication

94.6%

Wang et al. 2017 BCG HR Calcula-

tion

98.75%

Nasr et al. 2021 BCG OSA Classi-

fication

98%
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Chapter 3

Proposed Methodology for Evaluation
of BCG Signal

The methodology proposed for this thesis addresses two separate points.

The first one is to assess the accuracy of the calculated physiological

features, the heart rate, and the respiration rate from the BCG signal.

As the BCG signal record is affected by every single motion of the pa-

tient during their sleep, such as limp motion, respiration, heart beat-

ing, etc, it is important to first examine the precision of the extracted

physiological signals. The reason for this is that currently, there is not

a determined protocol on how to record and process the BCG signal

in order to have physiological values extracted from it. Additionally,

during apneic events, the patient presents bradycardia followed by

tachycardia as the respiration returns to normal patterns [19], a pat-

tern which would be very useful to utilize when performing the OSA

event detection. For that reason, it is only after establishing the ac-

curate calculation of the physiological features (HR and RR) that the

second part uses these as well as a number of other selected features to

perform classification of the signal into normal and apneic events.

3.1 The Datasets

For the development and testing of the proposed methodology, multi-

ple datasets were used.

The first dataset that we used is provided by the Scientific Challenge
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Competition of the Health Informatics Working Group of the IFMBE

(https://www.icbhi2022.com/call-for-sc/) and will be referred to as

dataset 1. It contains 4-5 min. ECG and BCG recordings for 47

healthy volunteers and patients suffering from Atrial fibrillation. For

the recording of the signals, the subjects were sitting in an EMFi-

fitted chair for measuring BCG and wearing 3 ECG electrodes for a

1-derivation ECG record. Both signals were acquired simultaneously.

In the dataset, both the ECG and the BCG signals are provided and

additionally, the locations of the ECG R peaks are annotated.

The second dataset used is an open access dataset published on the

IEEE Data Port [20], created under Kansas State University IRB proto-

col 9386 and will be referred to as dataset 2. The dataset was originally

used by the researchers in order to study the possibility of monitoring

changes in systolic blood pressure and stroke volume using the BCG

signal. The BCG signals were collected from a custom, bed-based bal-

listocardiographic system comprised of four electromechanical films

and four load cells. Affiliated cardiopulmonary signals were acquired

using a GE Datex CardioCap 5 patient monitor (which collected ECG

and PPG data) and a Finapres Medical Systems Finometer PRO. To

accurately measure these changes the researchers used the ECG’s J

peaks positions and identified the most prominent peak in the BCG

signal in a window of 100 and 400 ms after the J peak, making their

developed methodology highly dependent on the ECG signal.

The first and second datasets were solely used for assessing the cal-

culation of the HR using the BCG signal compared to the calculated

HR of the ECG signal.

Dataset 3 [21] was recorded for the work of Wang Z et al. [17]. The

public dataset contains 136 overnight BCG sleeping recordings of 41

healthy individuals, 23 mild sleep apnea patients, 34 moderate sleep

apnea patients, and 38 severe sleep apnea patients. The recordings

have a minimum duration of 6h and a maximum of 9h. For the record-

ing, a micro-movement sensitive mattress was used (MSM), an AD

converter, and a terminal PC, while the sampling frequency is set to

100Hz. For each recording, information on the duration and the po-

sition of the apnea event is also available. The additional information

that it brings is the labeling of apnea events on the BCG signal, which
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was vital for classifying the BCG segments into apneic and normal.

Finally, the methodology was also tested on data collected from the

FORTH institute which will be referred to as dataset 4. The dataset is

comprised of 16 PSG examinations of adult patients. The recordings

were performed in the sleep lab of the University General Hospital of

Heraklion "PAGNI" and were approved by the hospital’s Ethical Com-

mittee, while all of the patients gave signed consent for the use of their

data. Alongside the PSG, a BCG recording is also available for each

patient. The dataset, though small, is the most complete for the pro-

posed work, as it offers both the PSG signals used for ground truth as

well as apnea events labeling.

3.2 HR & RR Calculation

3.2.1 Signal Preprocessing

Due to the different acquisition techniques used for the recording of the

BCG signal, it was necessary to preprocess each dataset in a different

way in order to achieve the best possible results. For the calculation of

the heart rate, the preprocessing methodology described by flowchart

A was used for datasets 1-3, while for dataset B, the preprocessing

steps are described by flowchart B in the figure below.
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Figure 3.1: A:preprocessing flowchart of datasets 1-3 B:preprocessing flowchart of

dataset 4
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The datasets contained BCG recordings of the following form:

Figure 3.2: Original BCG signal with OSA annotations

Outlier Removal

A very common problem with the BCG signal is the existence of outlier

values which are caused by limb movement. For the given dataset

these values represent approximately 2.5% of the signal. Given that

the percentage of these values is relatively low, a moving median filter

is used to remove them. The window length of the filter is set to 15

minutes, while an outlier value is defined as any value greater than 3

stds. After applying the filter the outlier percentage is calculated to be

lower than 0.8%.
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Figure 3.3: Outlier removal results Blue: Original signal, Orange: Signal after filter-

ing

Butterworth Filtering

For datasets 1-3, the BCG signal is firstly filtered using a Butterworth

pass band filter with f lower
stop = 2Hz and f higher

stop = 15Hz. After these

preprocessing steps, the BCG signal has the following form

Figure 3.4: Small time frame of preprocessed signal and signal after band-pass

filtering

3.2.2 Heart Rate Calculation

It is quite obvious that the current form is not ideal for performing

peak detection especially for calculating the heartbeat of a patient.

Based on the fact that the ĲK complex of the BCG signal bears high
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resemblance to the QRS complex of the ECG recording which in its

turn resembles the ’sym4’ wavelet, we used the maximal overlap dis-

crete wavelet transform (MODWT) to enhance the J peaks in the BCG

waveform in order to improve the peak detection. Figure 3.5 shows

the scales 1-6 of the BCG signal. The level 4 approximation has the

closest morphology to an ECG signal and that is why it is used for the

reconstruction of the BCG signal.

Figure 3.5: Wavelet analysis of signal

Finally, the negative values of the signal are set to zero and the signal

is then squared in order to use a peak detection algorithm.
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Figure 3.6: BCG signal with removed negative values and squared

For the peak detection, the minimum value is set equal to the mean value of the

signal and the minimum distance between two consecutive peaks is set equal to half

of the sampling frequency.

Figure 3.7: BCG detected peaks (red) vs Q-peak positions of ECG signal (green)

As for dataset 4, because the recordings were noisier, a different ap-

proach was used in order to identify the heart rate. Firstly, the BCG
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recordings are downsampled from the original frequency of 1 kHz to

200Hz, as the respective ECG also has a sampling frequency of 200Hz.

Then, outlier values, meaning points with a value more than three

scaled median absolute deviations (MAD) away from the median of

the signal, are removed using a moving median filter with a window

length of 15 minutes. The upper envelope of the signal is afterward

calculated, using spline interpolation over local maxima separated by

at least 15 samples. Finally, the signal is reconstructed using the 4th

Wavelet approximation and is normalized so that the mean value is

equal to zero before applying a peak detection algorithm. For peak

detection, the parameters are the same as for datasets 1-3.

After detecting the peaks, the time intervals between the peaks were

calculated in order to calculate the detected heart rate. In particular,

given that a normal heart rate is between 60 and 100 bpm, then if a

time interval between two convective peaks is smaller than 1 bps then

the segment between the peaks is labeled as tachycardia, if it is be-

tween 1 and 1.67 bps it is labeled as normal and finally if it is greater

than 1.67 then it is labeled as bradycardia.

An extra step is then taken in order to eliminate the detection of

very small segments of abnormal heart rate (about 2 to 3 consecu-

tive peaks). In particular, we detect a pattern of normal heart rate,

abnormal heart rate, and then normal heart rate again. If the abnor-

mal heart rate is smaller than 25% of the total duration of that pattern,

then it is discarded and considered as peak misidentification.

The signal with the annotated heart functionality eventually takes the

following form.
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Figure 3.8: BCG signal with annotated heart functionality and detected peaks

Finally, the peak detection was assessed for datasets 1,2, and 4 with

the following formula as described by the Scientific Challenge Competi-

tion of the Health Informatics Working Group of the IFMBE (www.icbhi2022.com).

The locations of the R peaks are provided by datasets 1 and 2 and the

∆R denotes the distance between two consecutive peaks. The J peaks

are the ones detected on the BCG signal based on the methodology

described and ∆J is the distance of two consecutive J peaks.
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Figure 3.9: Assessment of peak detection

Basically, to assess the peak detection of the BCG signal we compare

the durations of the ∆R to the estimated ∆J , taking into consideration

the three scenarios as depicted in the schematic above. The goal is to

minimize the calculated score which can be achieved by detecting the

same number of J peaks as R peaks with the same distance in between

the peaks. The reason for using this way of assessment is the lag that

the BCG signal presents compared to the ECG signal which makes it

impossible to detect peaks at the same position. The global score is

calculated using the formula
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score = 1

n−1

∑n−1

i=1
scorei.

The number of the detected peaks in each 30 sec segments multiplied

by 2 represents the heart rate of the patient and can be used as a

feature in order to identify sleep apnea events.

3.2.3 Respiration Rate Calculation

During the polysomnography procedure, one of the recorded signals

is the oronasal airflow measurement using a thermistor. Alongside

the use of respiratory inductive plethysmography (RIP) belts, it is cur-

rently the golden standard for monitoring the respiration of patients

during their sleep. A recent study [22] showed promising results for

calculating the respiration rate (RR) of the patient using only the flow

recordings. In particular, the proposed method filters the flow signal

using a bandpass filter and segments it into 30-sec intervals, and cal-

culates the most predominant frequency in its frequency spectrum.

To estimate the accuracy of the calculation of the RR from solely

the BCG signal, we will compare the results of our proposed method

against the results of using the flow signal.

The lower frequency components of a BCG signal have been associated

with the respiration of a patient [23], as the normal RR for adult peo-

ple is between 12 to 20 breaths per minute. Those rates correspond

to a frequency bandwidth of 0.13–0.5 Hz, however, in our proposed

methodology the BCG signal is filtered with a band-pass filter of 0.1 to

2 Hz. Afterward, the BCG signal is downsampled to a new frequency

of 200Hz, a moving average is used to smooth the signal, and then the

signal is segmented into 30-sec segments. Subsequently, the signal is

centered around zero, its negative values are set to zero and the rest

are squared. Finally, a peak detection algorithm is used and the RR is

calculated as the number of peaks detected in the segment multiplied

by 2 as usually the RR is measured in breaths per minute.
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Figure 3.10: Respiration Rate calculation flowchart

The figure below shows the changes in the signal before performing

the peak detection to calculate the respiration rate.
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Figure 3.11: Respiration Rate Calculation steps

Finally, below follows an image depicting the original BCG signal with

the OSAs annotated and the filtered BCG signal with the annotations

of segments with slow (<12 breaths per min.), normal (12-20 breaths

per min.), and fast breathing segments (>20 breaths per min.).
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Figure 3.12: Calculated Respiration Rate using BCG signal

To assess the respiration rate the following formula was used:

score = 1

N

∑N−1

i=0
|RRflow − RRbcg|

where N is the number of segments.

3.3 OSA Classification

3.3.1 Signal Segmentation

In dataset 3, the duration of the labeled OSA events has the following

distribution 3.13, with a mean duration of 28 sec. For the calculation

of the selected features, each recorded BCG signal is divided into 30sec

non-overlapping segments. Initially, if more than 75% of the segment

is in an annotated OSA event, the whole segment was labeled as 1,

otherwise, it is labeled as 0. Afterward, we tested the performance of

the models by changing the percentage of the OSA duration laying in

each segment and the results are presented in table 4.2.1.
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Figure 3.13: Length of OSA events

3.3.2 Feature Extraction

Unfortunately, after a statistical analysis of the OSA events and non-

OSA events, it became evident that statistical features of the signal

could not be used to identify OSA events because they are very similar

to the non-OSA, which would lead to an inaccurate classification of the

events. For that reason, the use of frequency features was explored as

well as non-linear features such as entropy.

3.3.3 PSD Of OSA & NON-OSA

A very promising feature of non-stationary biological signals is the

Power Spectrum Density. As it is evident from the following figure, the

PSD of OSA events tends to have a lower amplitude compared to the

normal segments. For that reason, there are a few PSD-based features

that could be used for the successful classification of the events.
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Figure 3.14: PSD of OSA and NoOSA events

A total of 12 features are calculated for each segment. In particular,

based on the heart component of the BCG signal, the following were

calculated

• Signal mean and std

• Skewness

• Kurtosis

• Entropy

• Approximate Entropy

• Sample Entropy

• Hurst Exponent

Then, some additional features based on the PSD of that signal were

also calculated:

• PSDlow/total ratio.

• PSDhigh/total ratio.

where,

• PSDlow for frequency range 0-1 Hz.
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• PSDhigh for frequency range 10-50 Hz.

• PSDtotal for frequency range 0-50 Hz.

The final 2 features that were calculated were the heart rate variability

and the respiration rate detected in the segment. Heart Rate Variability

was calculated as the standard deviation of the distances between

consecutive peaks in the segment while respiration rate is the number

of respirations detected in the segment multiplied by 2 in order to have

the breaths per minute.

3.3.4 Dataset Balancing

Since the OSA events have a significantly smaller duration compared to

the healthy segments in a BCG recording, it was necessary to balance

the dataset before training the models to avoid overfitting. To achieve

that, we randomly select a number of healthy segments equal to the

number of the OSA labeled events to create the total observations used

for the classification.

3.3.5 Machine Learning

Machine Learning Models

The selected features were used to train 23 machine learning models

which include:

• Fine Tree

• Medium Tree

• Coarse Tree

• Linear Discriminant

• Quadratic Discriminant

• Logistic Regression

• Linear SVM

• Quadratic SVM

• Cubic SVM
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• Fine Gaussian SVM

• Medium Gaussian SVM

• Coarse Gaussian SVM

• Fine KNN

• Medium KNN

• Coarse KNN

• Cosine KNN

• Cubic KNN

• Weighted KNN

• Boosted Trees

• Bagged Trees

• Subspace Discriminant

• Subspace KNN

• RUSBoosted Trees

Machine Learning Validation

K fold cross-validation is a statistical method commonly used to assess

the performance of the machine learning models. The parameter k

determines the number of groups that the dataset is split into. Then,

you run k learning experiments where each time a different group is

used as the testing set and the rest k-1 groups are used for the training

of the model. Finally, the acquired results are averaged to obtain the

accuracy of the model.

In the present thesis, 5-fold cross-validation was used to validate the

performance of the models. The reason for using cross validation is

that the datasets are relatively small and also we wanted accomplish

a less biased model as every observation has the chance of appearing

in both train and test sets. This is very important as our dataset is

comprised of data coming from different patients.

It is important to note that for a segment to be labeled as OSA event, a
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specific percentage of it had to overlap with an annotated OSA event.

Various thresholds were tested for that percentage and the accuracy

of the models was calculated for each one of them. This resulted in

also having a different size of a dataset as out of the total observations

used, half of them correspond to normal recordings, and the other half

to OSA events. The bigger the percentage necessary to label a segment

as OSA event, the smaller the acquired dataset.
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Chapter 4

Discussion

In the present chapter, we present the results of the methodology

per dataset as well as the main conclusions and future work sug-

gestions.

4.1 Dataset 1 and 2

4.1.1 HR Calculation

The first and second datasets were only used for the assessment of the

HR calculation. The following results were obtained when using the

scoring algorithm described in figure 3.9.

Dataset Mean Score Score std

1 43.88 31.58

2 45.26 65.96

The mean score of the first dataset was calculated at 43.88. When

divided by the sampling frequency of the dataset fs = 100Hz, it gives

a mean difference of 0.44 sec in the duration of the detected ∆J seg-

ments compared to the ∆R segments.

The histograms of the mean HR calculated for each signal in the

dataset are depicted below in figure 4.1.
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(a) Dataset 1 (b) Dataset 2

Figure 4.1: Histogram of Mean HR Calculated

As we can see from the histograms, the results are very satisfactory.

The mean HR calculation varies within normal ranges, especially for

dataset 1. For dataset 2, the results are not as accurate as in the

case of dataset 1. This is because the algorithm can detect peaks

that are very close to each other, thus giving a very small heart rate

value, increasing the variation of the results. This could be improved

by adding further preprocessing steps to the BCG signal, however,

as we wanted to keep the process as similar as possible, no further

investigation to improve the results was made. Finally, we have to keep

in mind that for the collection of the BCG signals, different recording

techniques were used for the two datasets, thus we expect a difference

in the results.

4.2 Dataset 3

4.2.1 OSA Classification Results

Due to the fact that the third dataset didn’t have the corresponding

ECG and flow recordings, we weren’t able to assess the HR and the RR

calculations.

However, compared to Datasets 1 and 2, Dataset 3 provided labelings

for the OSA and NON-OSA events on the BCG signal, thus it was used

for the binary classification of the signal segments.

46



4.2. DATASET 3 CHAPTER 4. DISCUSSION

One of the biggest challenges when developing the proposed algorithm

was determining the percentage overlap of a labeled OSA event with

the fixed-length segments under investigation in order to classify it as

an OSA event. For that reason, we decided to test different overlapping

percentages and acquire accuracy results. The biggest disadvantage

that is presented as the overlapping percentage increases, the size of

the dataset decreases. The reason for that is that for a larger overlap-

ping percentage, less fixed-length segments are labeled as OSA events,

and respectively, less healthy fixed-length healthy segments are se-

lected to create the training and testing dataset.

Below follow the accuracy results calculated for the 23 machine learn-

ing models.
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Accuracy

Model label 20% label 30% label 40% label 50%

Fine Tree 65.2% 66.3% 63.8% 63.2%

Medium Tree 64.3% 65.6% 63.5% 63.4%

Coarse Tree 62.8% 64.3% 62.0% 60.9%

Linear Discriminant 59.8% 61.8% 59.3% 59.6%

Quadratic Discriminant 51.3% 51.9% 51.4% 51.2%

Logistic Regression 58.8% 63.5% 59.2% 60.3%

Linear SVM 61.4% 64.1% 61.3% 60.8%

Quadratic SVM 62.6% 48.7% 64.3% 63.5%

Cubic SVM 49.5% 49.9% 49.7% 49.8%

Fine Gaussian SVM 66.6% 67.3% 65.7% 65.4%

Medium Gaussian SVM 65.3% 66.4% 64.6% 64.0%

Coarse Gaussian SVM 63.5% 65.5% 63.0% 62.6%

Fine KNN 59.7% 59.5% 59.7% 58.7%

Medium KNN 63.9% 64.0% 63.6% 62.7%

Coarse KNN 65.2% 66.0% 64.6% 64.1%

Cosine KNN 64.2% 63.9% 63.3% 62.5%

Cubic KNN 63.2% 63.8% 63.4% 62.5%

Weighted KNN 63.4% 63.8% 65.1% 62.6%

Boosted Trees 65.3% 66.5% 65.8% 64.6%

Bagged Trees 65.6% 66.8% 59.4% 64.8%

Subspace Discriminant 59.5% 61.8% 62.8% 59.5%

Subspace KNN 63.7% 64.2% 62.8% 62.5%

RUSBoosted Trees 64.3% 65.6% 63.5% 63.4%
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Accuracy

Model label 60% label 70% label 75% label 80%

Fine Tree 61.1% 59.7% 63.8% 58.6%

Medium Tree 60.7% 59.2% 63.5% 58.7%

Coarse Tree 59.7% 57.5% 62.0% 58.2%

Linear Discriminant 60.0% 58.4% 59.3% 56.7%

Quadratic Discriminant 51.3% 51.7% 51.4% 51.2%

Logistic Regression 60.3% 59.4% 59.2% 57.1%

Linear SVM 60.8% 59.4% 61.3% 56.5%

Quadratic SVM 62.6% 61.6% 64.3% 59.5%

Cubic SVM 50.0% 49.6% 49.7% 49.3%

Fine Gaussian SVM 62.6% 62.5% 65.7% 60.6%

Medium Gaussian SVM 63.1% 62.4% 64.6% 60.5%

Coarse Gaussian SVM 62.0% 59.6% 63.0% 57.5%

Fine KNN 57.7% 57.0% 59.7% 56.5%

Medium KNN 61.6% 61.0% 63.6% 58.8%

Coarse KNN 62.6% 62.4% 64.6% 59.6%

Cosine KNN 61.6% 60.5% 63.3% 59.4%

Cubic KNN 61.3% 61.1% 63.4% 58.7%

Weighted KNN 61.2% 61.0% 65.1% 59.1%

Boosted Trees 63.5% 61.3% 65.8% 60.7%

Bagged Trees 62.8% 62.5% 59.4% 61.3%

Subspace Discriminant 59.7% 58.0% 62.8% 56.6%

Subspace KNN 61.5% 60.3% 62.8% 58.5%

RUSBoosted Trees 60.7% 59.1% 63.5% 58.9%

Fine Gaussian SVM outperforms the other models in most cases and

it is the one that also performs best for the segmentation that labels

the segment as an OSA event when 30% of it is labeled as OSA. It is

important to note that as the normal segments are randomly selected,

the accuracy results might slightly vary on consecutive runs.
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Figure 4.2: SVM model results A:Model Parameters B: Confusion Matrix Plot C:ROC

Curve D: Parallel Coordinates

The parallel coordinates plot helps us compare the significance of the

features in the classification process, as the data is normalized. With

orange are depicted OSA labeled segments and with blue are labeled

healthy segments. As it is evident, the healthy segments tend to have

bigger values for almost all of the selected features, with the exception

of the PSD total and the ratio of the PSD high to the total. This gives a

good indication that the selected features are appropriate for the final

classification. However, we could consider reducing the feature space

by two.

One of the possible reasons for the SVM model to outperform the other

ones is that generally, the SVM models perform well in binary classifi-

cation problems, such as the present one. Additionally, all of the fea-
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tures are real calculated values, meaning that no categorical features

were used for the classification. One of the most important advantages

that the SVM models have is that because their decision boundaries

are simple, there is no problem with overfitting the model. This is vital

as this is a medical application problem and we would like to perform

the same regardless of the patient that the recordings come from.

What we can see from the ROC curve, the AUC is calculated at 0.73

which means that it performs better than a random classifier which

would have an AUC of 0.5. As this classification refers to a medical

classification problem, we also have to consider this result and not fo-

cus only on the accuracy obtained. The reason for that is that the ROC

curve depicts the True Positive Rate (TPR) to the False Positive Rate

(FPR), two very important parameters when assessing a medical appli-

cation. The TPR, also referred to as sensitivity, is given by TP/TP+FN

and expresses the probability that an actual positive will test positive.

Respectively, the FPR, is given by FP/FP+TN and expresses the proba-

bility that an actual negative will test positive. We could fine-tune the

model in a way that minimizes as much as possible the false negative

results. This would mean that we aim for a higher true positive rate

(TPR), which would have as a trade-off a higher False Positive Rate

(FPR).

Below, we present the results of the SVM model more analytically.

Additionally, we present the calculated accuracy for each different

percentage for segmenting the label and the number of observations

detected. Out of the total observations, half of them correspond to

normal recordings, and the other half to OSA events. As we can see

in the figure below, the greatest accuracy results are calculated for

the largest number of observations. Additionally, we can see that the

accuracy results present an almost linear relationship to the size of

the dataset.
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Figure 4.3: Accuracy and number of observations with respect to OSA percentage

4.3 Dataset 4

The fourth dataset was used for assessing the HR calculation as well

as the RR calculation, as it was the only one out of the 4 datasets

which had available data on the ECG, the airflow of the patient, the

OSA labelings and the apnea events classification. The only disadvan-

tage of this dataset is that it is significantly smaller compared to the

other 3 ones.

4.3.1 HR calculation

For the HR calculation (based on the process described in section

3.2.2), the results were a mean difference of 0.43 sec in the duration

of the detected ∆J segments compared to the ∆R segments.

Below follows the histogram of the mean HR calculated for each signal

in the dataset.
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Figure 4.4: Dataset 3 Mean HR calculations

4.3.2 RR calculation

For the RR calculation, when assessed according to 3.11, the final

score had a mean difference of an additional 0.06 detected respirations

in the BCG signal compared to the airflow signal of the patient. This

would correspond to a maximum of one extra breath detected to a

segment, which is an adequate performance.

The calculated respiration rate of the signal can also be observed on

the following histogram. Given that for a healthy adult the normal

respiration rate is 12-20 bpm, the results are satisfactory.

Figure 4.5: Histogram of Respiration Rate
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4.3.3 OSA Classification Results

The calculated accuracy results of the 23 machine learning models

are presented in the following table. Since we had already established

that the label that leads to the highest accuracy results is the one that

contains at least 30% OSA event, we only tested the algorithm for that

percentage. Using this percentage, a total of 1996 samples was used

to train the models, out of which 998 were normal segments and 998

were OSA-labeled segments.

Model label 30%

Fine Tree 75.6%

Medium Tree 77.4%

Coarse Tree 79.6%

Linear Discriminant 74.8%

Quadratic Discriminant 65.9%

Logistic Regression 74.8%

Linear SVM 76.9

Quadratic SVM 79.3

Cubic SVM 78.7

Fine Gaussian SVM 75.4%

Medium Gaussian SVM 80.5%

Coarse Gaussian SVM 78.7

Fine KNN 73.4

Medium KNN 78.7

Coarse KNN 79.1

Cosine KNN 77.7

Cubic KNN 78.3

Weighted KNN 79.4%

Boosted Trees 74.0%

Bagged Trees 79.6%

Subspace Discriminant 74.0%

Subspace KNN 62.5%

RUSBoosted Trees 77.8%

It is clear that Medium Gaussian SVM performed best compared to the
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rest of the models, with a training time of 12.78 sec and accuracy that

reached 80.5%.

The Fine Gaussian SVM and the Medium Gaussian SVM are both

kernel-based Gaussian SVM Models. Their difference is the size of the

kernel. In the case of Fine Gaussian SVM, the kernel size is set at
√

P/4, while for the Medium Gaussian, the kernel size is set at

√
P,

where P is the number of predictors. Both of these models have the

disadvantage of having very hard interpretability, however, they are

both much more flexible compared to the Linear SVM model.

Figure 4.6: Medium Gaussian SVM model results A:Model Parameters B: Confusion

Matrix Plot C:ROC Curve D: Parallel Coordinates
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In this case, we can see that the AUC has a value of 0.85 which is better

than the 0.73 that we got after training the models with dataset 3. We

could again choose to fine-tune the model in a way that minimizes

as much as possible the false negative results because it refers to a

medical application. We can also observe that in this case, the curve

is steeper which is generally preferred as it is better to have very low

FPR for a reasonably high TPR.

4.4 Conclusions

It is evident that the results for the FORTH dataset far surpass the re-

sults of dataset 3. This was expected as the FORTH dataset also comes

with information from the PSG examination of the patient and we were

able to access the accuracy of the calculated features, while for dataset

3 we could only qualitatively assess them using well-established med-

ical standards. Unfortunately, the FORTH dataset is a very small

dataset and ideally, the methodology should be further tested using

more subjects.

Generally, the acquired results for the 4th dataset are satisfying but

could be further improved. However, the options for improving the

results with such a small dataset are very limited. Additionally, one

of the major challenges is the fact that there are many types of apnea

that can be manifested in a couple of different ways and can inter-

fere with the BCG recording. Apnea, which is a period of at least 10

seconds during which there is a complete or near complete pause in

breathing. Hypopnea, which is a decrease in airflow lasting at least 10

seconds as well and respiratory effort related arousal (RERA), which is

a limitation in breathing that results in increased respiratory effort and

culminates in an arousal [24]. Additionally, a patient can be suffering

from Mixed Sleep Apnea, then showcase both OSA symptoms as well

as Central Sleep Apnea Symptoms. The main difference of the sec-

ond one is that is caused by a central nervous system disorder where

the brain fails to trigger the signal to inhale and exhale [25]. Both

cases can influence the results and in future work, these cases could

be further explored and for example, instead of performing a binary

classification, we could classify apneas in more detail.
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4.5 Proposed Future work

As in every case of machine learning applications, one of the most

important aspects is the size of the dataset. Further testing of the

methodology would be of great importance, ideally on a set with a

structure similar to the FORTH dataset, meaning having both the BCG

as well as PSG recordings. Furthermore, as there are many different

types of apneas, the dataset could provide further information on the

type of apnea and the classification could extend to multiple classes

instead of the binary case that this thesis studies. Additionally, by

having a larger dataset, the use of neural networks could be explored

in identifying apneic episodes. Moreover, body measurements of the

patients could also be very useful and could be recorded, as the BMI of

a person has been strongly linked to them suffering from obstructive

apneas [26].

For the current state of the work, as this is intended to be a medical

purpose application, it is important to further reduce the false nega-

tives. By observing the confusion matrix of the trained models 4.3 and

4.6, we can see that the false negatives are quite high, compared to the

other classes. Data augmentation and the use of probabilistic classifi-

cations in combination with multiple thresholds for multiple different

actions may produce a better outcome.

Another point that could be improved is the segmentation of the sig-

nal. As the apnea events have a very short duration compared to

an overnight recording, the produced segments rarely are containing

solely apnea or normal recording. By using a more targeted segmen-

tation method, for example by first identifying possible points of an

OSA event and then segmenting the signal, a better result could be

achieved.

Finally, one of the major problems of BCG applications is the lack of

standardization in the recording settings, which is very unfortunate

considering that the BCG recording is directly affected by the place-

ment of the sensor. Further studying should be conducted on best

practices when acquiring a BCG signal. This would also minimize the

need for different preprocessing methods, as the registered data would

be more uniform.
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Abbreviations and acronyms

The next list describes several abbreviations and acronyms that were

used within the body of the document

AI Artificial Intelligence

BCG Ballistocardiography

HR Heart Rate

HRV Heart Rate Variability

OSA Obstructive Sleep Apnea

PSG Polysomnography

RR Respiration Rate
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