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Abstract

The aim of this thesis was to develop advanced new microscopic non-invasive techniques as novel
diagnostic tools for cancer research. The past decades have seen the rapid development of imaging
techniques that limited in visualizing the vasculature and organ structures. Until now the observation
in cellular level requires tissue isolation and appropriate treatment for immunohistochemical, protein
or molecular analysis. Non-linear microscopy offer non-invasive visualization in subcellular level,
without the need of any preparation of the samples e.g. fixation or staining.

The main objective of this dissertation is the discrimination of cancer cells and tissues by de-
veloping non-destructive, label free microscope techniques. First , quantitative discrimination of the
different subtypes of human breast cancer cell lines was achieved as compared to peripheral blood
mononuclear cells (PBMCs) based on their lipid content. These results combined with Fourier Trans-
form Infrared (FTIR) spectroscopy and provided additional valuable chemical information on breast
cancer cells, correlating Third Harmonic Generation (THG) signal to lipid drafts . Furthermore, non-
linear microscopy techniques were used as novel digital pathology methods in human breast cancer
tissues. It was shown that the quantification of THG signals can differentiate malignant from normal
breast tissue samples and distinguish the different grades of cancer. This study has a significant clini-
cal potential since it can monitor quantitative changes in cellular behavior in healthy and pathological
human tissues. Finally, the detection of mouse T cells activation achieved by using THG imaging
in an attempt to follow the immune response development. THG signal was correlated with Raman
Spectroscopy and implemented during T cell activation in the presence of higher concentration of
cholesterol and lipids.

This essay provided an important opportunity to advance the understanding of cancer research
by utilizing non-invasive innovative spectroscopic modalities. Both qualitative and quantitative ap-
proaches were employed in these investigations in case of cancer diagnosis and immunotherapy. The
findings of this thesis revealed that non-linear microscopy techniques could be used as promising tools
in the future for the determination of cancer limits at subcellular level during surgery.
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Περίληψη

Στο πλαίσιο της διδακτορικής διατριβής αναπτύχθηκε μια νέα διαγνωστική/ απεικονιστική μη πα-
ρεμβατική τεχνική για την επίτευξη διαχωρισμού μεταξύ καρκινικών και φυσιολογικών κυττάρων. Η
διακριτική ικανότητα των μέχρι σήμερα χρησιμοποιούμενων απεικονιστικών τεχνικών in vivo περιο-
ρίζεται στο επίπεδο του οργάνου και της αγγείωσης αυτού χωρίς να μπορεί να διεισδύσει σε κυτταρικό
επίπεδο. Η όποια μελέτη σε επίπεδο κυττάρου επιβάλλει την απομόνωση του ιστού και την κατάλληλη
επεξεργασία για ανοσοϊστοχημική, πρωτεϊνική ή μοριακή ανάλυση. Η μη γραμμική μικροσκοπία πα-
ρέχει μια μη παρεμβατική απεικόνιση των υποκυττάριων δομών. Επιπλέον δεν υπάρχει αναγκαιότητα
μονιμοποίησης ή χρώσης του κυττάρου.

Στη παρούσα διατριβή πραγματοποιήθηκαν απεικονιστικές μετρήσεις σε μη σημασμένες καρκι-
νικές κυτταρικές σειρές, αντιπροσωπευτικές τριών διαφορετικών υποτύπων καρκίνου μαστού για να
ταυτοποιηθεί το προφίλ του μη γραμμικού σήματος Γένεσης Τρίτης Αρμονικής (THG) συχνότητας
από τα υπό ακτινοβόληση δείγματα (Κεφάλαιο 5). Παρατηρήθηκε ότι με τη χρήση THG απεικόνισης
ως καινοτόμου διαγνωστικού εργαλείου μπορεί να γίνει κατηγοριοποίηση των διαφόρων υποτύπων
των καρκινικών σειρών με βάση τη ποσότητα των ενδοκυττάριων λιπιδικών εναποθέσεων ανά επιφά-
νεια κυττάρου. Παράλληλα έγινε έλεγχος του προφίλ της THG απεικόνισης σε μονοπύρηνα κύτταρα
περιφερικού αίματος (PBMCs) φυσιολογικών αιμοδοτών έτσι ώστε να γίνει σύγκριση και διαφορο-
ποίηση των καρκινικών σειρών από τα φυσιολογικά κύτταρα.

Για τη διάκριση των φυσιολογικών κυττάρων από τα καρκινικά χρησιμοποιήθηκε ένας αλγόριθ-
μος (MATLAB) βασισμένος στα συλλεγόμενα σήματα THG . Πιο συγκεκριμένα ο αλγόριθμος αυτός
μελετά την κατανομή, το μέγεθος και τη σύσταση των ενδοκυττάριων λιπιδικών σωματίων με στόχο
να γίνει η διάκριση των φυσιολογικών κυττάρων του περιφερικού αίματος από τα καρκινικά κύτταρα.
Τα αποτελέσματα έδειξαν ότι με τη μέθοδο της THG μπορεί να γίνει στατιστικά σημαντική διάκριση
και σαφής διαχωρισμός των διαφόρων υποτύπων των καρκινικών σειρών από τα φυσιολογικά κύτταρα
ως προς την ποσότητα των ενδοκυττάριων λιπιδικών εναποθέσεων.

Στη συνέχεια διεξήχθησαν βιοχημικές μετρήσεις με τη μέθοδο φασματοσκοπίας υπερύθρου FTIR
με στόχο τη συσχέτιση και επεξήγηση των αποτελεσμάτων της ποσοτικοποίησης του συλλεγόμενου
σήματος της τρίτης αρμονικής με βιοχημικές πληροφορίες. Τα αποτελέσματα αυτής της μελέτης έδει-
ξαν ότι υπάρχουν χημικές αλλαγές στις λιπιδικές εναποθέσεις που συμβάλουν στη διαφοροποίηση
μεταξύ καρκινικών σειρών σε σχέση με τα φυσιολογικά κύτταρα. Πιο συγκεκριμένα το υψηλότερο
σήμα της τρίτης αρμονικής συσχετίστηκε με τις λιπιδικές σχεδίες (lipid rafts) στις κυτταρικές μεμβρά-
νες λόγω της αυξημένης συγκέντρωσης της χοληστερόλης. Η εφαρμογή της προτεινόμενης έρευνας
θα οδηγήσει στην ανάπτυξη νέας τεχνολογίας όπου ο συνδυασμός της μη-γραμμικής μικροσκοπίας με
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άλλες τεχνικές θα μπορεί να οδηγεί στο διαχωρισμό των καρκινικών κυττάρων έναντι των φυσιολογι-
κών στην περίπτωση καρκινικών κυκλοφορόντων κυττάρων (CTCs).

Στην συνέχεια χρησιμοποιώντας την αποκτηθείσα γνώση και εμπειρία, έγινε προσπάθεια διά-
κρισης ενεργοποιημένων και μη Τ λεμφοκυττάρων από σπλήνα ποντικού και ποσοτικοποίηση των
διάφορων σταδίων ενεργοποίησης τους μέσω της καταγραφής του σήματος THG (Κεφάλαιο 7). Πιο
συγκεκριμένα χρησιμοποιήθηκαν δυο διαφορετικοί τρόποι ενεργοποίησης με την χρήση της μιτογό-
νου ουσίας concanavalin-A; (ConA) και του ειδικού αντιγόνου human serum albumin; (HSA) για την
παρακολούθηση τους στο μη γραμμικό μικροσκόπιο. Οι ποιοτικές και ποσοτικές αναλύσεις μέσω της
THG έδειξαν στατιστικά σημαντική αλλαγή στον αριθμό των ενδοκυττάριων λιπιδικών εναποθέσεων
κατά την ενεργοποίηση των Τ λεμφοκυττάρων σε σχέση με τα μη ενεργοποιημένα κύτταρα. Επιπλέον
για την συσχέτιση του σήματος της τρίτης αρμονικής με χημική πληροφορία πραγματοποιήθηκαν με-
τρήσεις φασματοσκοπίας Raman και απέδειξαν σημαντικές αλλαγές στους διαφορετικούς τρόπους
ενεργοποίησης καθώς και στην συσχέτιση με τα μη ενεργοποιημένα κύτταρα. Ειδικά η ανάλυση με
γραμμική προσαρμογή (linear fitting) έδειξε υψηλή συσχέτιση του σήματος τρίτης αρμονικής με δε-
σμούς λιπιδικών εναποθέσεων, χοληστερόλης όμως όχι τριγλυκεριδίων . Η μελέτη αυτή αναμένεται να
προσφέρει σημαντικές καινοτόμες πληροφορίες για τις βιολογικές διεργασίες των Τ λεμφοκυττάρων,
ενώ ταυτόχρονα θα μπορεί να προσφέρει τον άμεσο εντοπισμό των ενεργοποιημένων κυττάρων στη
διαγνωστική της ανοσοθεραπείας.

Παράλληλα, χρησιμοποιήθηκε η τεχνολογία της μη γραμμικής μικροσκοπίας στη μελέτη καρκι-
νικών και φυσιολογικών ιστών μαστού (Κεφάλαιο 6). Ειδικότερα, χρησιμοποιήθηκαν τα μη γραμμικά
φαινόμενα γένεσης δεύτερης αρμονικής (SHG) για την παρακολούθηση της κατανομής του κολλα-
γόνου και τρίτης αρμονικής (THG) για την αποκάλυψη λιπιδικών εναποθέσεων, ανομοιογενειών και
διεπιφανειών στον ιστό. Οι ιστοί που μελετήθηκαν είναι από φυσιολογικούς μάρτυρες (control) και
από ασθενείς σε διαφορετικό στάδιο ανάπτυξης του καρκίνου (grade I-III) . Τα πειραματικά αποτελέ-
σματα από την ποσοτική ανάλυση μέσω τρίτης αρμονικής είναι ιδιαιτέρως ενθαρρυντικά και έδειξαν
ότι μπορεί να γίνει διάκριση των καρκινικών κυττάρων στον ιστό βασιζόμενη στις μεμβράνες και
στις λιπιδικές εναποθέσεις και η διαφοροποίησή τους από τα φυσιολογικά κύτταρα. Παράλληλα επι-
τεύχθηκε διαχωρισμός των διάφορων σταδίων (grade I-III) του καρκινικού ιστού μαστού βασιζόμενο
στις λιπιδικές εναποθέσεις και τις ανομοιογένειες .

Συμπληρωματικά, βασιζόμενοι στα εξαγόμενα μορφολογικά χαρακτηριστικά των κυττάρων, χω-
ρίς την χρήση καμίας χρώσης μόνο με την συλλογή των μη γραμμικών σημάτων, υπολογίστηκε ο λόγος
της επιφάνειας του πυρήνα προς την επιφάνεια του κυτταροπλάσματος που είναι ένας από τους ευ-
ρέως γνωστούς τρόπους διάγνωσης καρκινικών ιστών από τους παθολογοανατόμους. Επιπλέον, μέσω
της συλλογής των μη γραμμικών σημάτων (ένταση, αριθμός λιπιδικών εναποθέσεων και όγκος κυτ-
τάρου) έγινε διάκριση των καρκινικών κυττάρων στην περιοχή σάρωσης και εκτίμηση του ποσοστού
των καρκινικών κυττάρων στον ιστό.

Στην συνέχεια πραγματοποιήθηκε μελέτη φασματοσκοπίας FTIR στους ιστούς για την συσχέτιση
των μη γραμμικών σημάτων με βιοχημική πληροφορία. Η συσχέτιση αυτή υπέδειξε ότι βασιζόμενοι
σε συγκεκριμένους λιπιδικούς δεσμούς μπορεί να υπάρξει συσχέτιση του μη γραμμικού σήματος της
Τρίτης αρμονικής με τα λιπίδια και να επιτευχθεί η διάκριση του καρκινικού από το φυσιολογικό ιστό.
Στο τελευταίο μέρος της διατριβής, έγινε προσπάθεια σάρωσης μεγαλύτερης επιφάνειας του ιστού (σε
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επίπεδο χιλιοστού) μέσω της μη γραμμικής μικροσκοπίας.
Η σημαντικότητα της έρευνας αυτής είναι ότι η χρήση μη γραμμικών απεικονιστικών μετρήσεων

χωρίς κάποια ιδιαίτερη προετοιμασία του δείγματος ή την χρήση σημάνσεων (markers) στον ιστό,
προσφέρει τη δυνατότητα διαχωρισμού των φυσιολογικών από τους καρκινικούς ιστούς, σε αντίθεση
με τις έως τώρα μοριακές μεθόδους που χρησιμοποιούνται στις κλινικές. Η μέθοδος της μη γραμμικής
μικροσκοπίας προτείνεται ως ένα νέο καινοτόμο διαγνωστικό εργαλείο που θα μπορεί να χρησιμοποι-
ηθεί για τον έλεγχο των υγιών ορίων σε επίπεδο κυττάρου κατά την διάρκεια επέμβασης.
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Chapter 1

Introduction

Light was found to be useful for medical purposes quite a long time ago. Diagnostics using tissue
transillumination with light has been used for breast cancer tumor detection since 1929. Medical
examination and treatment methods involving light were developed and gained popularity after the
invention of the first laser in 1960. Today, after more than fifty years of development, laser is used
in innumerable every-day medical applications. During the recent years, medical laser techniques are
developing rapidly to meet medical demands for alternative and improved methods of diagnostics as
well as therapy. In this essay, a laser microscopy technique based on the nonlinear optic theory was
employed [1].

Although nonlinear optics (NLO) theory was described in relatively early stage, their application
as a research field started only when lasers were invented . NLO is the result of a laser beam interaction
with materials and has already be proved to play a major role in the emerging photonic technology. The
impact of NLO on science is widely understood and has enabled at least nine Nobel prizes in physics
and chemistry [2].

In particular, in 1905 Albert Einstein proposed the idea that two photons can combine their energy
to produce an excitation to the level of the sum of the two. This theory afterwards led to his nobel prize
among the photoelectric phenomeno in 1921. There have been 85 years from the physical conception
to the first practical biological application by Denk et al 1990 [3].

Along with this discovery and the spirit of scientific development, Maria Goppert – Mayer re-
ported in her doctoral dissertation the quantum mechanical formulation of two- photon molecular ex-
citation in 1931. And yet, another 30 years had to pass before bright enough lasers deliver the necessary
energy to a molecule for absorption of two photons. This theoretical foundation was the chain of sci-
entific and technology developments that led to the nonlinear optical microscopy application in several
biomedical studies . Nonlinear processes are inherently ‘weak’ and many biomedical applications of
nonlinear optics could not be feasible without the input of ultrashort laser pulses, microscope objectives
with a high numerical aperture (NA) and high sensitivity detectors [4].

Nonlinear optical microscopy (NLOM) is an enabling technology that allows the visualization
and measurement of biological processes uniquely, often with unprecedented performance. NLOM
features have emerged as important techniques with ever-increasing numbers of applications in clini-
cal medicine for diagnostics and guidance of surgery [5]. Among the various applications of nonlinear
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optical imaging, its utility is the most significant in the field of preclinical and clinical cancer research
[6, 7]. The information from a simple microscope is provided as a snapshot and gives qualitative infor-
mation about the specimen. On the contrary, NLOM can generate three dimensional real-time images
with fine sub-cellular details having a comparable resolution to confocal imaging microscope, with-
out having to rely on exogeneous labels. Since NLOM is based on non-linear interaction of photons
with the imaged sample, emission occurs only in the focal plane, resulting in reduced photobleaching
and photodamage. Furthermore, the use of longer imaging wavelengths in the near infrared range by
NLOM enables deeper tissue imaging. Due to these merits, NLOM is rapidly emerging as a viable
non-invasive diagnostic tool for biomedical research.

Recent advancements in the field of biomedical sciences have led to an increased demand for
chemical and structural information on biological materials. This essay relies on multidisciplinary re-
search, involving physics, chemistry, biology and medicine, while embracing light based technologies,
such as nonlinear optical imaging and vibrational spectroscopy to biomedicine.

The application of nonlinear optical imaging was another milestone in biological imaging, since
it enabled researchers to move from cultured cells deep into tissues and whole organs, even in live
animal models. Over the past years, life science interdisciplinary research has routinely used nonlin-
ear microscopy techniques. In the present thesis, a combination of nonlinear optical modalities was
applied for the production of structural maps of complex biological systems. NLOM techniques al-
low inspecting the assembly of single cells, tissues, and organs as well as monitoring structural and
chemical changes related to cellular activation mechanisms as well as diseases.

Nonlinear optical microscopy enables stretching of the resolution limit in high scattering ma-
terials, and gives a chance to investigate inherent processes without destroying the sample. Second
and Third harmonic generation signals are produced from the intrinsic properties of the sample. In
the case of SHG, the signal is originated mostly from non-centrosymmetric molecules such as colla-
gen, myosin, amylopectin and tubulin, while in the case of THG, the generated signal is due to the
heterogeneities in the sample (change of the refractive index or change of third order susceptibility
values) such as membranes and lipid bodies (LBs). In the case of multiphoton excitation fluorescence
(MPEF), a fluorescent staining is required. However, these, alternative approaches take also advantage
of endogenous fluorescent molecules, such as tryptophan, NADH, NADPH, flavins, as well as and the
effects of relevant biochemical processes on their fluorescent properties.

The main objective of the present thesis was to explore the potential of label-free NLOM as a non-
invasive imaging modality in diagnosis and therapy and application to clinical practice. In particular,
in this essay, nonlinear optical microscopy enabled quantitative diagnosis between breast cancer and
healthy cells, based on THG signals contingent on lipid structures. The results of this analysis were
correlated for the first time with vibrational spectroscopy techniques (FTIR) and revealed the presence
of specific chemical structures corresponding to precise membrane formations (lipid rafts).

Furthermore, this work extrapolated the study of breast cancer cells to breast cancer tissue di-
agnosis. NLOM discriminated successfully benign from malignant breast tissues and could grade
malignancy based on the amount of LBs and inhomogeneities. The output of this analysis was further
correlated with FTIR spectroscopy for obtaining chemical information. Finally, the NLOM technol-
ogy was applied in the diagnosis of immune cells during inflammation. The nonlinear signals were
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CHAPTER 1. INTRODUCTION

correlated with Raman spectroscopy and revealed that activated cells display distinct differences as to
on their LB profiles.

The present research emphasizes on nonlinear microscopy modalities on different biological ap-
plications in diagnosis and therapy and the potential of this field towards clinical applications and
adaptation of application-driven instrumentation. The various studies described in this thesis can be
outlined as following:

Chapter 2 gives a comprehensive review concerning nonlinear optical imaging modalities, focus-
ing on THG, SHG, MPEF optical techniques along with a general introduction to their basic theory
and their applications respectively.

Chapter 3 briefly summarizes the background of molecular vibrations, which is fundamental to
the understanding of vibrational spectra. In this chapter the basic principles of FT-IR and Raman
techniques are being determined and the difference between IR and Raman spectroscopy is explained.

Chapter 4 describes the methods used within this thesis, the biological sample preparation and
the different experimental setups. Thus, the application of nonlinear microscopy techniques, such as
THG, SHG and MPEF in biomedicine, as well as various spectroscopic techniques such as FTIR and
Raman spectroscopy combined with nonlinear signals for additional chemical information, are being
discussed. This study examined different types of cells, including breast cancer cell lines and T cells
as well as breast tissues.

Chapter 5 focuses on THG modality and it‘s capability to visualize the lipid profiles of various
breast cancer cells in a non-invasive, label-free manner. The collected THG signal arises mostly from
the lipid bodies and themembrane lipid bilayer. A quantitative approach of THG imagingmodality was
employed to offer additional information of the specimen. Quantification of THG signal indicated that
it can accurately distinguish cancer cells from normal cells. Further analysis using Fourier transform
infrared (FTIR) spectra was correlated to THG signal outputs for further chemical information.

Chapter 6 describes the application of nonlinear microscopy utility in a more complex environ-
ment of cells, namely in human breast cancer tissues. In particular, non-linear microscopy was applied
to differentiate and categorize the different breast tissues. Herein, the main objective of this effort
was to define new diagnostic tools for the recognition and grading the tumor samples using nonlinear
microscopy, without the need of staining or further processing and damaging of the tissues. Quan-
tification analysis of THG signals, based on THG area and THG intensity, successfully differentiated
malignant from normal tissue samples and distinguished between the different tumor grades. Addi-
tionally, FTIR spectroscopy methods were used to obtain chemical information on the different tissues
and correlated with THG signals.

Chapter 7 focuses on the development of a non invasive label free imaging technique for real time
monitoring T cell activation. After studying how nonlinear microscopy could be a useful diagnostic
tool in cancer, in this final chapter the possibility of using nonlinear microscopy in evaluating the
effectiveness of an immunotherapy treatment was investigated. Therefore, the distinction between
activated and resting T cells was examined, using THG imaging as the diagnostic tool. Qualitative
and quantitative analysis showed statistically significant increase of THG mean area and THG signal
intensity in activated versus resting T-cells. Different types of activation were tested. Moreover, the
connection of THG imaging to chemical information (lipids, cholesterol distribution) was achieved
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using Raman spectroscopy.
Chapter 8 provides an overview of the results and subsequent conclusions of the studies described

in this thesis. Additionally, a brief outlook on the future use of nonlinear optical microscopy for cancer
diagnostics is covered.
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Chapter 2

Nonlinear Optical Microscopy

The word “microscope” originates from the Greek words for “small” and “to view” , which describe
exactly what microscopy is: viewing something small. This is achieved by magnifying the object
and increasing the resolution of the image. Microscopy measurements can reveal unique molecular
features of microscopic objects that are otherwise obscured by the ensemble – averaged measurements.
In optical microscopy, the object is exposed to light and the transmitted, reflected, or emitted signal is
analyzed.

The constant evolution of optical microscopy over the past century has been driven by the desire
to improve the spatial resolution and image contrast with the goal to achieve a better characterization
of smaller specimens. Nonlinear optical microscopy shares several inherent benefits compared with
other optical techniques. It possesses intrinsic depth resolution due to the multiphoton nature of the
process. Illumination is performed using near-infrared light, which penetrates deeper into tissue on
the one hand and induces less damage on the other. Nonlinear optics has been applied to a variety of
imaging tasks and has now become the technique that offers unique information without the use of
staining.

In this context, nonlinear optical measurements that are used in conjunction with microscopy
observation have created new opportunities. Nonlinear optical microscopy is quickly becoming a
standard tool for determining the molecular mechanisms of complicated biological processes. The
number of publications focused on nonlinear microscopy developments indicates that it has created its
own field of research. Also, given the status of femtosecond laser advancements, it is to be expected
that these techniques will be utilized for high resolution microscopy in a variety of applications. The
applications of nonlinear optical microscopy as a diagnostic tool in a variety of biological samples will
extensively be discussed.

The nonlinear optics studies the interaction of electromagnetic waves with atoms and molecules.
In this case only the electric field will act on atoms or molecules by distorting or polarizing them.
The induced polarization will follow the driving oscillating external driving field, and will build up
for frequencies matching a transition in the atom or molecule (Figure 2.1 depicts the main light matter
interactions).
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Figure 2.1: Description of the interaction of light with matter.

This chapter gives a background to nonlinear optical microscopy techniques, focusing in THG,
SHG andMPEFmodalities along with a general introduction to their basic theory and their applications
respectively.

2.1 Nonlinear Optics Background

The term ’nonlinear’ originates from the relation between a dielectric material and incoming light.
Nonlinear optical phenomena occur when the response of a material to the applied optical field depends
nonlinearly on the strength of the field. The applied field may cause changes in the distribution or
motion of the internal electric charges such as electrons, ions, or nuclei within a molecular system,
resulting in a field-induced electric dipole moment which, in turn, acts as a new source to emit a
secondary wave. This is the fundamental process of optically field-induced polarization in a molecular
system and re-emission of a secondary electromagnetic wave.

The induced polarization in a medium depends on the strength of the applied field and can be
written as:

P = ε0χ(1)E (2.1)

where ε0 is the vacuum permittivity and the constant χ(1) is the first-order electric susceptibility
characterizing the medium. The electric susceptibility χ(1) is dimensionless and indicates the ability of
the electric dipoles in a dielectric environment to align themselves with the electric field. The equation
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2.1 is linear, as long as the field strength E is moderate. However, if the field strength becomes too
high, the oscillating charges will reach a saturated level; their response can be expressed as a power
series expansion:

P = ε0(χ(1)E +χ(2)E2 +χ(3)E3 + ...) (2.2)

where the quantities χ(2), χ(3) are known as the second and third-order nonlinear electric suscep-
tibilities, respectively. The first term describes linear absorption, scattering, and reflection of light;
the second term describes SHG and optical rectification and the third term describes two– and three-
photon absorption, third harmonic generation, and stimulated Raman processes such as CARs. The
linear susceptibility is much larger than the nonlinear terms, which is the reason for the high intensities
needed for nonlinear optical processes. The susceptibilities χ(n) are bulk quantities and are related to
the microscopic quantities α (polarizability), β (first order hyperpolarizability), and γ (second-order
hyperpolarizability). In the case of a harmonic light wave of the form:

E = E0 sinωt (2.3)

the equation 2.2, after using some trigonometric identities, can be written as:

P = ε0[χ(1)E0 sinωt +
χ(2)E0

2

2
(1− sin2ωt)+

χ(3)E0
3

4
(3sinωt + sin3ωt)+ ...] (2.4)

As we can observe, equation 2.4 is described by an infinite sum of oscillating terms with angular
frequencies that are integer multiples of ω . Specifically, the first term in equation 2.4 constitutes the
linear response of the medium in the applied time-varying field. The second term is consisted of two
components; the first component represents a constant quantity, which depends on the square of the
field amplitude and the second component presents a dependence on the cos2ωt function, which shows
that the angular frequency is the double of the fundamental field frequency. The double frequency
as well, represents the second harmonic irradiation, which is generated. Correspondingly, the third
term of equation 2.4 shows that polarization contains a component, which oscillates at an angular
frequency 3ω; hence, it is responsible for the re-radiation of the incident field energy as third harmonic
generation light [1, 2]. SHG is a second order process whereas THG and TPEF are both third order
processes. Notably, equation 2.4 shows that the same excitation source can induce several nonlinear
effects simultaneously.

The property of nonlinear harmonic generation via virtual states leaves no residual energy in the
medium and the emitted photon has exactly the same amount of energy as that of the absorbed photons.
The conservation of energy in such a nonlinear process provides the noninvasive property of imaging
in the microscope applications of biological material.
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Figure 2.2: Jablonski diagram one photon fluorescence, two-photon excitation fluorescence (TPEF),
second-harmonic generation (SHG) and third harmonic generation (THG). Note that in SHG and THG
no actual electronic excitation takes place.

Multiphoton absorption is one of several possible nonlinear interactions. Another possibility in-
cludes optical-harmonic generation, in which two or more photons are ‘simultaneously’ scattered,
generating a single photon of exactly twice (thrice, and so on) the incoming quantum energy (Fig-
ure 2.2). Harmonic generation requires no actual absorption but is enhanced near a resonance, albeit
at the expense of parasitic absorption. It also differs from multiphoton absorption in that it is a coher-
ent, phase-preserving process, which causes speckles, possible cancellation, predominantly forward-
directed emission and supralinear dependence on the chromophore density.

However, the nonlinear polarization can efficiently produce an output signal only if a certain
phase-matching condition is satisfied. Phase matching conditions and optical harmonics generation
could be achieved by using birefringent materials. These materials have an index of refraction, which
depends on the polarization and propagation direction of the incident light. Nevertheless, in case of
biological samples harmonic generation occurs in the presence of a large wavevector mismatch, which
is leading to a greatly reduced efficiency of the whole process. Nonetheless, the conversion efficiency
is typically sufficient enough to produce a signal that can be detected by extremely sensitive photo-
multiplier devices. As a result, harmonic generation is useful as a method to study certain biological
structures (e.g. collagen myosin lipids).

When the energy density at the focal spot of a microscope is sufficiently large, nonlinear optical
effects such as, harmonic generation, sum-frequency generation, coherent anti-stoles Raman scatter-
ing, parametric oscillations, and multi-photon fluorescence can be observed. These optical phenomena
can be used in a nonlinear optical microscope to study the biological material. Nonlinear optical mi-
croscopy may be divided into incoherent and coherent modes. Incoherent microscopy produces an
optical signal whose phase is random and whose power is proportional to the concentration of radi-
ating molecules. In this case, they produce optical signals whose phase is rigorously prescribed by a
variety of factors including the excitation light phase and the geometric distribution of the radiating
molecules. Fluorescence is a common example of an incoherent signal. Nonlinear versions of flu-
orescence microscopes are based on the simultaneous absorption of two or more photons, the most
well-known being two-photon excited fluorescence (TPEF) microscopy. On the other hand coher-
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ent signal power is proportional to the square of the concentration of radiating molecules. Nonlinear
versions of coherent microscopy are based on the simultaneous scattering of two or more photons.
Examples of such modalities include second-harmonic generation (SHG), third -harmonic generation
(THG) and coherent anti-Stokes Raman scattering (CARS) microscopy.

One motivation for using nonlinear effects and in particular harmonic generation in microscopy
is to provide enhanced transverse and longitudinal resolution. The resolution is enhanced because
nonlinear effects are excited most efficiently only in the region of maximum intensity of a tightly
focused laser beam. Microscopy based on harmonic generation also offers the advantage that the signal
is far removed in frequency from the unwanted background light that results from linear scattering of
the incident laser beam. For effective nonlinear harmonic generation effect, the specimen must be
relatively transparent to the wavelength of fundamental illumination light usually located in the near
infrared (NIR) region of the spectrum.

Near-infrared light (700–1100 nm) can penetrate biological tissues such as skin and blood cells
more efficiently than visible light because these tissues scatter and absorb less light at these longer
wavelengths.

Figure 2.3: Absorption spectra of major intracellular absorbers. The molecular extinction coefficients
of oxygenated haemoglobin and melanin and the absorption coefficient of water are shown. Most
animal cells and tissues are considered to be nearly transparent in the spectral range from about 700
nm to 1100 nm owing to the lack of efficient one-photon absorbers.

Both scattering and absorption are wavelength dependent, and the components water, melanin and
hemoglobin have low absorption coefficients for wavelengths between 700 and 1100 nm, see Figure
2.3 [3]. This spectral range is called “the optical window” as the tissue is literally an open window at
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this region.
In addition, light, at a wavelength sufficiently long that it will not damage biological materials,

can be used to achieve a resolution that would normally require a much shorter wavelength due to the
nonlinearity. Harmonic generation microscopy can either make use of the intrinsic nonlinear response
of biological materials or can be used with materials that are labeled with chromophores [1, 4].

Second and third harmonic generations (SHG and THG, respectively) and two-photon excitation
fluorescence (TPEF) are currently the most widely used contrast mechanisms in nonlinear optical mi-
croscopy. The nonlinear contrast is based on second and third-order nonlinear light-matter interactions
that are induced at the focus of a high numerical aperture (NA) microscope objective. Since these non-
linear optical effects are proportional to the second or third power of the fundamental light intensity,
essentially, only the light at the focal plane of the optic efficiently drives the nonlinearity. This effec-
tively eliminates out-of-focus contributions and results in the optical sectioning inherent to nonlinear
imaging techniques. Therefore, it is a straightforward task to generate a sharp, two-dimensional (2D)
image when nonlinear optical signals are utilized. The excitation beam is simply raster scanned across
the focal plane, and the signal intensity (from the desired optical nonlinearity or nonlinearities) is mea-
sured as a function of this beam position. Extrapolation to three-dimensional (3D) images requires
only one further step recording a series of these images as a function of depth by either scanning the
specimen through the focal plane (stepping axially) or vice versa [5].

The combination of SHG, THG and the method of two-photon excitation laser scanning mi-
croscopy can be used for complementary information of the examining specimen. One of the ad-
vantages of the aforementioned nonlinear optical techniques is that only one illuminating source is
required. In addition, the emitted signals differ significantly and can be separated to different detec-
tors. Thereafter, a brief introduction to each of the three main contrast mechanisms used in nonlinear
microscopy is discussed. Each section includes a review of the applications that have been demon-
strated in biological systems. Furthermore applications of recent developed multimodal nonlinear
microscopes will be mentioned.

2.2 Two Photon Excitation Fluorescence

The invention of two-photon fluorescence light microscopy by Denk, Webb and co-workers revolu-
tionized three-dimensional (3D) in vivo imaging of cells and tissues. In 1931, the theoretical basis of
two-photon excitation was established, by Maria Goppert - Mayer, and this photophysical effect was
verified experimentally by Kaiser and Garret in 1963. Two-photon excitation is a fluorescence process
in which a fluorophore (a molecule that fluoresces) is excited by the simultaneous absorption of two
photons (Figure 2.4). The compression of the pulse and the simultaneous increase of the intensity lead
to an increase the intensity of two photon excitation fluorescence. The familiar one-photon fluores-
cence process involves exciting a fluorophore from the electronic ground state to an excited state by a
single photon. This process typically requires photons in the ultraviolet or blue/green spectral range.
However, the same excitation process can be generated by the simultaneous absorption of two less en-
ergetic photons (typically in the infrared spectral range) under sufficiently intense laser illumination.
This nonlinear process can occur if the sum of the energies of the two photons is greater than the energy
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gap between the molecule’s ground and excited states. Since this process depends on the simultaneous
absorption of two infrared photons, the probability of two-photon absorption by a fluorescent molecule
is a quadratic function of the excitation radiance. Under sufficiently intense excitation, three-photon
and higher photon excitation is also possible and deep UV microscopy based on these processes has
been developed.

Figure 2.4: A demonstration of the localization of two-photon excitation volume. For two-photon
excitation using a second objective with the same numerical aperture, fluorescence excitation occurs
only from a 3D localized spot.

Although the possibility of nonlinear excitation was recognized in 1978 (Sheppard and Kompfner,
1978), two-photon microscopy was not demonstrated until 1990 [6, 7]. The investigators noted that the
two-photon process could be exploited to implement microscopy imaging in three dimensions. Depth
discrimination is one of the most important properties of two-photon microscopes equipped with high
numerical aperture objectives. For a spatially uniform specimen, fluorescence signals are generated
equally from each z-section above and below the focal plane for one-photon excitation. In contrast,
over 80 % of the total fluorescence signal can be confined to a region 1 µm thick about the focal point
using two-photon excitation. This depth discrimination results from the quadratic dependence of the
fluorescence probability on the spatial distribution of the excitation radiance. Appreciable two-photon
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fluorescence occurs only at the microscope focal volume, where the photon density is high; negligible
fluorescence is excited outside of this volume (Figure 2.4).

TPEF microscopy is already widely used for characterization of biological samples [7–9], be-
cause of its many advantages compared with other microscopy methods. This optical technique offers
sectioning of planes in 3-D imaging, minimizes photobleaching and photodamage, has the capability
of deep imaging and can be combined with other optical modalities.

2.3 Second Harmonic Generation

As already mentioned, SHG is based on an interaction between two photons of equal energy which
produces a third photon of exactly twice the energy, i.e. half the wavelength, of the incoming light 2.5.

Figure 2.5: Second Harmonic generation. (a) Geometry of the interaction, (b) Spatial confinement of
signal generation with nonlinear excitation (c) the wavelength description.

In Figure 2.6, two photons of frequency ω are converted into one photon of twice the frequency
at 2ω . The energy levels, represented by solid lines,are atomic or molecular levels and dotted lines
represent the virtual states. These virtual energy states are combined states of the molecular system
and the photons of the incident radiation.
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Figure 2.6: a. Energy level description of SHG b. Schematic diagram depicting ordered molecules at
a small spherical surface. An ultrafast pump laser pumps light with frequency ω which generates light
at 2ω from the locally non-centrosymmetric media [10]

Second-harmonic (but not third-harmonic) generation depends on the absence of inversion sym-
metry, which not only requires that individual molecules are inversion-asymmetric (as some biological
molecules are) but also that they are spatially ordered Figure 2.6.

Since SHG is a second-order nonlinear optical process, it can arise only from media lacking a
center of symmetry. This is because, if the SHG wave is a vector quantity and the induced polarization
in a centrosymmetric sample (such as dye molecules in solution) were equal and opposite and vector
would sum to zero. It is well known that this criterion can be satisfied at interfaces and by anisotropic
crystals. This constraint can also be met by structural protein arrays because the dipole moments of
the molecules align in a highly ordered fashion, and additionally, because the chirality in the helices
increases the overall asymmetry of the assembly.

The intensity of Second Harmonic Generation (SHG) has the form

ISHG =
ω2

1 [χ(2)]2I1
2L2

2n12n2ε0c3 sinc2(
∆kL

2
) (2.5)

where n1 is the refractive index of the medium for the incident beam, c is the speed of light, χ(2)

is the second order susceptibility, L is the length of the interaction region, intensity of the laser beam
I1, angular frequency ω and ∆k=k2ω - 2kω is the phase mismatch.

Conversion efficiency in SHG relates to spatiotemporal overlap of waves at fundamental and sec-
ond harmonic frequencies, as well as to their group and phase velocity matching. For effective energy
transfer from the fundamental wave to the second harmonic waves, both the energy (h̄ω0+h̄ω0=h̄2ω0,
where h̄= h

2π with h being Planck’s constant) and momentum conservation (h̄k0 + h̄k0=h̄2k0) must be
satisfied. These two conservation requirements lead to phase matching requirement for the refractive
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index of the nonlinear medium at the two frequencies as n2ω = nω . For isotropic materials, this con-
dition is not satisfied, since n2ω > nω in a normal dispersion. This condition is satisfied only for an
anomalous dispersion or in a birefringent crystal Figure 2.7.

Figure 2.7: Phase matching condition for SHG. a) Low-efficiency frequency doubling of light in a
positive-index medium without phase-matching (k2ω ̸= 2kω , n2ω ̸= nω ). b) phase-matching for SHG
(k2ω = 2kω ), where the fundamental and harmonic waves possess the same index of refraction. The
red- and blue-colored lines in the schematics represent the fundamental and second-harmonic waves,
respectively. [11]

Second harmonic generation (SHG) is produced in birefringent crystals or in biological tissues
with non�centrosymmetric structure. Although theoretically predicted by Maria Göpert�Mayer in
1930s, the experimental SHG demonstration arrived with the invention of the laser in the 1960s. SHG
was first obtained in ruby by using a high excitation oscillator. After that starting point, the harmonic
generation reached an increasing interest and importance, based on its applications to characterize
biological samples using multiphoton microscopes.

Biological SHG imaging was first reported in 1986, when Freund investigated the polarity of
collagen fibers in rat tail tendon at a resolution of!50 µm. In 2002, Mohler and Campagnola reported
practical implementation of tissue imaging at high resolution and rapid data acquisition using laser
scanning, and since then, SHG microscopy has been an increasingly used imaging tool [12].

Significant progress has been made in establishing SHG as a viable microscopic imaging technol-
ogy for biomedical applications, both in terms of exploration of its physical principles, development
of the technology, and identification of practical applications.
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Figure 2.8: Endogenous second-harmonic-generation (SHG) imaging. (a)SHG image from skeletal
muscle (b) SHG image from a mature rat tail tendon collagen (c) SHG imaging of starch grains in
chloroplasts, (d)SHG arises from mitotic spindles and from interphase microtubule ensembles in red
blood cells.

Many animal tissue structures can be imaged via SHG microscopy, by virtue of intrinsic contrast
generated by filamentous proteins: collagen fibrils in connective tissues [13–18], tubulin [19–21], and
the actomyosin lattice of muscle cells [19, 22–25] (Figure 2.8).

In addition a major characteristic of SHG signal is the dependence on the orientation, polarization,
and local symmetry properties of chiral molecules [26]. Based on this capability, SHG microscopy
was used for the investigation of the dependence between the incident laser beam polarization and the
emitted SHG signals. Until now, an amount of studies [17, 27–29] combined nonlinear microscopy
and polarization to detect changes in collagen arrangement and has been proposed to characterize
collagen – based tissues. SHG intensity has been reported to exhibit structural anisotropy in type -I
collagen fibers that can be characterized by the ratio of hyperpolarizabilities or polarization anisotropy
= xxx/xyy, which provides information about the internal collagen structure.

Moreover, recent research from our group focused on polarization sensitive second harmonic
generation measurements that can quantitatively discriminate aged from fresh starch based glues, used
for conservation or restoration of painted artworks or papers and books of cultural heritage (see Figure
2.9) [30].
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Figure 2.9: Forward detected polarization second harmonic generation imaging microscopy obtained
from a fresh flour paste sample. The excitation linear polarization rotates counterclockwise between
0–170°, in steps of 10°. Arrows indicate the incident polarization. Scale bar is 10 µm.

SHG microscopy has several advantages that make it ideal for imaging tissues in situ. A particu-
larly strong attribute is that SHG microscopy directly visualizes the tissue structure, since the contrast
is produced purely from endogenous species. SHG signals arise from an induced polarization rather
than from absorption, which leads to substantially reduced photobleaching and phototoxicity relative
to fluorescence methods (including multiphoton). In addition, laser fundamental wavelengths typi-
cally lie in the NIR spectral range (700-1000 nm), and consequently, SHG microscopy can achieve
high resolution imaging, to depths of several hundred microns.

2.4 Third Harmonic Generation

Third-harmonic generation (THG) is one of the basic nonlinear-optical processes, which have been
intensely studied during the early days of nonlinear optics. In THG microscopy, third harmonic light
is generated at the focal point of a tightly focused ultra-short pulsed laser beam. As already mentioned,
it relies on coherent nonlinear process in which three infrared photons (typically between 900nm and
1.5µm) are coherently scattered by a molecule to produce one harmonic photon, as illustrated in Figure
2.10. Due to the coherent nature of THG, no net signal is obtainedwhen focused inside a homogeneous,
normally dispersivemedium. This is because of the Gouy phase shift, experienced by the excitation
beam near the focus point, that will be explained further in this section [31–33]. However, when
the nonlinear medium is not uniform, either in the refractive index or in the nonlinear susceptibility
χ(3), the THG signaldoes not vanish, and significant THG output can be obtained. This coherent
nature of the THG process, renders THG microscopy highly sensitive to in homogeneities and the
efficiency of signal generation strongly depends on the relative size of the in-homogeneity and the
focal volume. This specificity makes THG microscopy useful as a tool for sub cellular biological
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material characterization.

Figure 2.10: Third Harmonic generation. (a) Geometry of the interaction, (b) Spatial confinement of
signal generation with nonlinear excitation and (c) the wavelength description.

In contrast to the Second Harmonic Generation (SHG), which requires a non-centrosymmetric
medium, Third Harmonic Generation (THG) can appear to every kind of material. Nevertheless, the
optical harmonic signal is obtained only if the phase matching condition is fulfilled, which means that
the individual generated harmonic waves are added totally constructively, when the excitation light
propagates through the material. It is necessary to clarify the meaning of the term phase matching, by
introducing some equations. In case of a focused laser beam, the generation of harmonics can display
quite different behavior. In such a situation, the peak amplitude AN of the generated Nth harmonic
wave is related to the peak amplitude A1 of the fundamental wave by:

AN(z) =
iNω
2nc

χN(A1)
NJN(∆k,z0,z) (2.6)

where JN(∆k,z0,z) represents the integral

JN(∆k,z0,z) =
∫ z

z0

e(i∆kz′)

1+( 2iz′
b )(N−1)

dz′ (2.7)

and z0 expresses the value of z at the entrance to the nonlinear medium, b =
2w2

0
λ1

is the confocal
parameter of the fundamental laser beam, and w0 is its beam radius measured to the 1

e amplitude point.
For the case of a beam that is tightly focused into the bulk of the interaction region, the limits of

integration can be replaced by ±∞ , and the integral can be evaluated

JN(∆k,z0,z) =

⎧
⎨

⎩
0, ∆k " 0
b
2

2π
(N−2)!(

b∆k
2 )(N −2)e−

∆k
2 , ∆k > 0

(2.8)

This result shows that harmonic generation vanishes whenever ∆k " 0, which, however, is the
usual case of normal dispersion. The vanishing of the harmonic generation is a result of destructive
interference between the contributions to the harmonic field from both sides of the beam waist.

The efficiency of THG depends mainly on the third order susceptibility χ(3) of the medium and
the phase – matching conditions. The total generated THG intensity by a laser beam with intensity I1
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and angular frequency ω in a medium is given by

IT HG =
9ω2

1 [χ(3)]2I1
3L2

16n13n3ε02c4 sinc2(
∆kL

2
) (2.9)

where η1 is the refractive index of the medium for the incident beam, c is the speed of light and ∆k
= (n33ω

c −3 n1ω)
c is the phase mismatch. In a homogeneous medium with a positive phase mismatch ∆k,

the term sinc2(∆kL
2 ) in equation 2.9 goes to zero and no THG is produced, irrespective of the magnitude

of I1 and χ(3). Partial phase matching can be achieved by introducing a small inhomogeneity at the
focus, resulting in a finite THG signal.

The intensity distribution is not the only change. By considering a Gaussian excitation beam, the
field distribution near the focal point (Figure 2.11), also exhibits a progressive phase slippage along
the optical axis z, known as the Gouy phase shift that results in an overall π radian phase difference,
between a plane wave and a focused beam. The Gouy phase shift is particularly significant for THG
phase matching and makes the phase matching conditions derived for a plane wave invalid, in the case
of a focused beam [2].

Figure 2.11: Intensity and phase distribution of a focused Gaussian beam. 2D distribution of intensity
and phase near the focus.

An explanation of the signal-generation mechanism of THG microscopy was provided by Cheng
at al. [34], who considered the interaction between a focused Gaussian excitation beam and a harmonic
plane wave propagating along the same axis. The projection on the propagation axis of the phase
difference between two beams can be expressed as

∆k = k(3ω)−3(k(ω)+ kG) (2.10)

where kG represents the Gouy phase shift an is negative.
Consequently, the non-linear polarization will be unable to couple efficiently to the generated

wave of amplitude unless a wave vector mismatch ∆k is introduced to compensate for the phase shift
due to passage of the incident wave through its focus. The reason why ∆k should be positive, can be
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understood intuitively looking at the Figure 2.12.

Figure 2.12: For a material presenting a perfect dispersion compensation between frequencies ω and
3ω (implying that the phase matching condition ∆k = 3(k(ω)+ kG)− k(3ω)= 0 is satisfied), the mo-
mentum conservation of the respective photons can be met. However, no signal is generated due to
destructive interference of THG waves. For common normal dispersive material (n3ω > nω ), momen-
tum conservation condition cannot be met in any manner; and therefore, effective THG is not possible.
If n3ω < nω , efficient THG can occur since the angularly spread wave vectors of the focused fun-
damental beam can be added effectively so that the total momentum before and after the non-linear
interaction is conserved [35]

Third harmonic generation is the most closely related non-linear contrast mechanism, to SHG.
Like SHG, THG is also a non-resonant, coherent process and has been used as a tool, to up-convert
lasers to shorter wavelengths. Although, THG is a much weaker process as compared to SHG, it
is more versatile, because it does not requires a specific asymmetry of the structure to be imaged.
While both SHG and THG have been used to image membranes, they consequently do so, through
different mechanisms. For example, THG probes the volume around a membrane, whereas interfacial
SHG probes the two dimensional membrane itself [36]. THG signal is elicited by different types of
materials, particularly phase transitions, such as water-lipid interfaces [37, 38].

During the first attempts of THGmicroscopy applications in biology, researchers visualized chara
plant rhizoids [32]. Subsequently, laser scanning THGmicroscopy was utilized for demonstrating live
neurons in cell culture and internal organelles in yeast cells [39]. Afterwards, the development of
high power lasers, the optimization of objective lens and photomultipliers of high sensitivity, enabled
numerous applications of THG microscopy in biological systems.

Specifically, THG has been used to image red blood cells [27, 40, 41], embryonic development
[42–45], neurons [46], skin biopsy samples [47, 48], muscle fibers [49], collagen [50], lipid bodies
[37, 38, 51], bones [52, 53] and tissues [54–56].
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Figure 2.13: THG optical microscopy applied in different biological models.

THGmicroscopy has been tested to date on a variety of biological specimens (Figure 2.13). Many
studies are showing that THGmicroscopy yields detailed images of multi-cellular and single cell spec-
imens without any prior treatment, and with no observable damage.

2.5 Multi-contrast non-linear optical microscopes

Non-linear microscopy has made great advances during the past few years. Owing to their similari-
ties and differences, two photon excitation fluorescence(TPEF), second and third harmonic generation
(SHG and THG) imaging microscopy techniques have the potential to provide complementary infor-
mation about functions and processes of several biological systems in vivo [57–59].

Multi-photon excitation fluorescence (MPEF), SHG and THG signals can be generated simul-
taneously from the focal spot of the biological sample providing complementary information. The
development of compact, user-friendly, push-button, long term stable femtosecond laser sources, not
requiring highly trained laser operators and extreme technical support, facilitates the widespread adop-
tion of non-linear imaging microscopy for biological research. Multi-photon microscopes are now
commercially available and can be easily upgraded for the detection of additional non-linear signals
(SHG, THG). These optimizedmicroscopes are flexible and easy to use systems. A single femtosecond
laser beam is required for the realization of the non-linear measurements (MPEF, SHG, and THG), in
contrast to other more complicated label free microscopy techniques such as CARS (two synchronized
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picosecond sources, four wave mixing modality).
Recently, researchers have established intravital non-linearimaging for elucidating pathways in

biological processes [50, 53, 60, 61]. The versatility of non-linear microscopy for tracking cellular
events in vivo and detecting structural changes of tissues is a major enabling advance for clinical
applications. Figure 2.14 depicts some applications that proved the complementarity of the different
non- linear imaging modalities in various biological samples.

Figure 2.14: Multi-contrast non-linear imaging modalities (SHG, THG , TPEF) applied in different
biological models.
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Chapter 3

Vibrational Spectroscopy

Spectroscopy is the study of the interaction of electromagnetic radiation with matter. When matter is
energized (excited) by the application of thermal, electrical, nuclear or radiant energy, electromagnetic
radiation is often emitted as the matter relaxes back to its original (ground) state. The spectrum of
radiation emitted by a substance that has absorbed energy is called an emission spectrum, and the
science dealing with such phenomena is appropriately called emission spectroscopy. Fluorescence
spectroscopy (one or multi photon excitation) was discussed in a previous chapter.

Vibrational spectroscopy is the collective term to describe two analytical techniques: infrared (IR)
and Raman spectroscopy. IR and Raman spectroscopy are non invasive tools that provide information
about the molecular composition, structure and interactions within a sample. The sample spectrum
is unique, like a fingerprint, and vibration spectroscopy is used for identification, characterization of
structure, reaction monitoring as well as quality control and quality assurance matters [1, 2].

Due to its unique fingerprinting capability, vibrational spectroscopy plays a significant role in
providing structural and mechanistic information. At present, vibrational spectroscopy is undergoing
a renaissance stimulated by many new developments in infrared and Raman instrumentation, such as
high sensitive low noise detectors, laser excitation sources, array detectors, step-scan technique, fiber
optics, mapping and imaging in the field of microscopy, time resolved and surface enhanced methods
- in order to mention some of these significant improvements. Of course this progress in vibrational
spectroscopy is closely connected with the enormous development in computer science. These devel-
opments have created novel applications of IR and Raman spectroscopy in various scientific disciplines
ranging from chemistry and physics to bioscience and medicine [3].

Nowadays, many analytical laboratories are equipped with an infrared (IR) and a Raman spec-
trometer. Raman and IR spectra provide images of molecular vibrations that complement each other
and thus both spectroscopic techniques together are also known as vibrational spectroscopy. The dipole
moment μ of the molecule changes as the molecule vibrates in case of IR, whereas in case of Raman
active sample, the polarizability α of the molecule must change during vibration. Thus IR and Raman
spectroscopies provide unique complementary information. Vibrational spectroscopy (IR and Raman)
offers certain advantages over other spectroscopic techniques and are used for the determination and
identification of molecular structures.

Infrared and Raman spectroscopy involve the study of the interaction of radiation with molecular

31



vibrations, but differ in the manner in which photon energy is transferred to the molecule by chang-
ing its vibrational state. IR spectroscopy measures transitions between molecular vibrational energy
levels as a result of the absorption of mid-IR radiation. This interaction between light and matter is a
resonance condition involving the electric dipole mediated transition between the vibrational energy
levels. Raman spectroscopy is a two-photon inelastic light-scattering event. Here, the incident pho-
ton is of much greater energy than the vibrational quantum energy, and loses part of its energy to the
molecular vibration, with the remaining energy scattered as a photon with reduced frequency. In the
case of Raman spectroscopy, the interaction between light and matter is an off-resonance condition
involving the Raman polarizability of the molecule. This elemental difference is shown in Figure 3.1.

Figure 3.1: Illustration of the different vibrational methods; absorption and Raman scattering [4].

Atoms within a molecule are constrained bymolecular bonds to move together in certain specified
ways, called degrees of freedom that can be: electronic, translational, rotational and vibrational. In
electronic motion, the electrons change energy levels or directions of spins. The translational motion
is characterized by a shift of an entire molecule to a new position. The rotational motion is described
as a rotation of the molecule around its center of mass. When the individual atoms within a molecule
change their relative position, then we say that the molecule vibrates.

The easiest way of modelling molecular vibrations is to imagine the atoms in a molecule as
spheres, and the chemical bonds connecting them as massless springs. Molecular vibrations can be
excited via two physical mechanisms: the absorption of light quanta and the inelastic scattering of
photons (Herzberg 1945). Direct absorption of photons is achieved by irradiation of molecules with
polychromatic light that includes photons of energy, matching the energy difference h νk between
two vibrational energy levels, the initial (i, e.g., ground state) and the final (f, e.g., first excited state)
vibrational state.

hνk = hν f −hνi (3.1)

As these energy differences are in the order of 0.5 and 0.005 eV, light with wavelengths longer than
2.5 mm, that is infrared (IR) light, is sufficient to induce the vibrational transitions. Thus, vibrational
spectroscopy that is based on the direct absorption of light, quanta is denoted as IR absorption or IR
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spectroscopy.

Figure 3.2: Illustration of the excitation of molecular vibrations in IR and Raman spectroscopy. In IR
spectroscopy, the vibrational transitions are induced by absorption of light quanta from a continuous
light source in IR spectral region. Vibrational Raman transitions correspond to inelastic scattering (νR
scattering (ν0) is represented by thick arrow. This is an example of SO2 which is both IR and Raman
active molecule.

In contrast to IR spectroscopy, the scattering (Raman) mechanism for exciting molecular vibra-
tions requires monochromatic irradiation. A portion of the incident photons is scattered inelastically
such that the energy of the scattered photons (hνR) differs from that of the incident photons (hν0). Ac-
cording to the law of conversation of energy, the energy difference corresponds to the energy change of
themolecule, which refers to the transition between two vibrational states. Thus, the energy differences

hν0 −hνR = hν f −hνi (3.2)

where hνi is the initial and hν f the final vibrational state, lie in the same range as the transitions
probed by the direct absorption of mid-IR quanta, although photons of UV, visible, or near-infrared
light are used to induce scattering. This inelastic scattering of photons was first discovered by the
Indian scientist C. V. Raman in 1928 and is thus denoted as the Raman Effect.

The IR andRaman vibrational bands are characterized by their frequency (energy), intensity (polar
character or polarizability), and band shape (environment of bonds). The frequencies of these molec-
ular vibrations depend on the masses of the atoms, their geometric arrangement, and the strength of
their chemical bonds. The spectra provide information on molecular structure, dynamics, and environ-
ment. Despite Raman and IR spectroscopy can be combined to provide complementary information
of molecular vibrations, these are generally different techniques with different operations, and for this
reason they will be further discussed separately in the following section.

Depending on the molecule, the same or different vibrational transitions are probed in IR and Ra-
man spectroscopy and both techniques provide complementary information in many instances (Figure
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3.2). Hence, IR and Raman spectra are usually plotted in an analogous way to facilitate comparison.
The ordinate (y axis) refers to the extent of the absorbed (IR) or scattered (Raman) light. In IR ab-
sorption spectroscopy, the amount of absorbed light is expressed in units of absorbance. In contrast,
Raman intensities are measured in terms of counts per second, i.e., of photons detected per second. As
this value depends on many apparatus-specific parameters, in most instances only relative intensities
represent physically meaningful quantities. Thus, the Raman intensity scale is typically expressed in
terms of arbitrary units. The energy of the vibrational transition, expressed in terms of wavenumbers
(cm−1), is given on the abscissa (x axis), corresponding to the frequency of the absorbed light nabs
in IR spectroscopy and to the frequency difference between the exciting and scattered light, ν0-νR, in
Raman spectroscopy.

The applications of vibrational spectroscopy are extremely diverse and the techniques are making
a contribution to many areas of science. Perhaps the most interesting areas are in materials science and
in biomedical research where the early detection of cancer is the primary goal [5]. Since various
vibrational spectroscopic techniques were used for the present thesis, the basic principles of FT-IR and
Raman techniques are discussed in the next section.

3.1 FT-IR spectroscopy

There is a rapid expansion in the development of new spectroscopic techniques satisfying the require-
ments of the increasingly more diverse studies. Infrared spectroscopy and specifically Fourier Trans-
form Infrared (FT-IR) spectroscopy is one of the most widely used analytical technique in a whole
range of fields, from biological samples to tough minerals. Today, there are large numbers of commer-
cial FT-IR spectrometers on the market that are used for different applications of FT-IR spectroscopy,
such as: quantitative analysis of complex mixtures in liquid, solid or gaseous state, determination of
the quality of a sample, biological and biomedical spectroscopy etc.

A major breakthrough in IR spectroscopy was the introduction of FT-IR spectrometers, which
used an instrument called interferometer that was discovered almost a century ago byAlbertMichelson.
At the time of the construction of the Michelson interferometer (1891), Lord Rayleigh recognized that
the output from an interferometer could be converted to a spectrum using a mathematical operation
that was developed by the French mathematician Fourier in the 1820s. The combination of those
discoveries led to the development of a whole new technology for measuring and calculating the IR
spectrum which was used in FT-IR spectrometers [6, 7].

A typical setup of Michelson interferometer requires two mirrors, an infrared light source, an in-
frared detector and a beamsplitter. The beamsplitter reflects about half of incident light beam while
simultaneously transmitting the remaining half. One half of this split light beam travels to the inter-
ferometer’s moving mirror, while the other half travels to the interferometer’s stationary mirror. The
two mirrors reflect both beams back to the beamsplitter, where each of the two beams is again half
reflected and half transmitted. Two output beams result: one travels to the detector as the other travels
to the source. When the two beams return to the beamsplitter, an interference pattern, or interferogram,
is generated. This interference pattern varies with the displacement of the moving mirror, that is, with
the difference in path length in the two arms of the interferometer. The interference pattern, detected
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by the infrared detector as variations in the infrared energy level, is what ultimately yields spectral
information (Figure 3.3).

Figure 3.3: Schematic diagram of Michelson Interferometer

In contrast to Michelson interferometer that uses monochromatic source, FT-IR has infrared light
source that consists of different frequency components. Each individual component contributes to
the interferogram a wave with frequency inversely proportional to its wavelength. For this type of
measurements it is convenient to introduce a wavenumber ν [cm−1] that represents the number of full
waves of a particular wavelength per cm of length. When the interferogram is measured, it must be
assured that the sampling intervals Δx are of equal size. For that purpose, the interference pattern of
the monochromatic light of a He-Ne laser measured simultaneously with the IR interferogram is used
to control the change of the retardation. The interferogram measurement starts from the point at zero
retardation, where the signal has its maximum intensity and is sampled precisely at the zero crossings
of the laser interferogram. In that way the accuracy of the sample spacing Δx is determined only by
the precision of the laser wavelength. Once the interferogram is measured, it is transformed into a
spectrum with the use of the mathematical operation known as Fourier Transform (short FT) which
decomposes the measured signal (interferogram) into the frequencies that make it up.

Fourier transform infrared spectroscopy (FT-IR) is a technique that has been used over the years
in chemical analysis for the identification of a variety of substances and it is now one of the techniques
that may be applied to their characterization. There are many different methods of FT-IR spectrometers
transmission, including attenuated total reflectance (ATR), diffuse reflectance (DRIFTs) and specular
reflectance.

FT-IR spectroscopy measures absorption of IR radiation, which is related to the changes of the
vibrational energy states of molecules. For a molecule to be IR active there must be a change in dipole
moment µ as result of the vibration that occurs when IR radiation is absorbed. Dipole moment is a
vector quantity and depends on the orientation of the molecule and the photon electric vector. The
dipole moment changes as the bond expands and contracts. Absorption occurs for the vibrations that
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displace the dipole along z. Dipole moment in a heteronuclear diatomic molecule can be described as
uneven distribution of electron density between the atoms. One atom is more electronegative that the
other and has a negative charge.

The dipole moment can be expressed as

µ = er (3.3)

The relationship between IR intensity and dipole moment is given as

IR ∝ (
dµ
dQ

)2 (3.4)

IR is the intensity of the IR radiation, μ is the dipole moment and Q is the vibrational coordinate.
In this study, transmission and attenuated total reflectance (ATR) spectroscopy methods were

used, and their brief description is following respectively. Moreover FTIR microspectroscopy was
used to focus in specific areas of samples and offered high spatial resolution spectra in transmission
mode.

In case of transmission methods, the measurement of radiation is expressed as transmittance or
it can be easily expressed as absorbance. From the Beer- Lamperts law, transmittance (T) is the ra-
tio of radiant power (I) transmitted by the sample to the radiant power (I0) incident on the sample.
Absorbance is the logarithm to the base 10 of the reciprocal of the transmittance.

A = log10(
1
T
) =− log10(T ) =− log10(

I
I0
) (3.5)

In the reflection method the measurement of the radiation reflected from sample is

I = I0e−
z

dp (3.6)

where z is the distance to the optical interface and dp is the penetration depth. The penetration
depth is proportional to the wavelength and inversely proportional to the refractive index of the sample.
A typical value is dp < 10 µm.

3.1.1 Transmission method

Transmission spectroscopy is the oldest and most straightforward infrared method. This technique is
based upon the absorption of infrared radiation at specific wavelengths as it passes through a sample.
It is possible to analyze samples in the liquid, solid or gaseous forms, when using this approach (Figure
3.4). An important consideration in the choice of infrared cells, where the sample is deposited, is the
type of window material. The latter must be transparent to the incident infrared radiation and alkali
halides are normally used in transmission methods. In our study we used KBr that is soluble in water
and BaF2 slide respectively.
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Figure 3.4: Demonstration of FT-IR spectrometers in transmission method.

3.1.2 Reflectance method ATR

Reflectance techniques may be used for samples that are difficult to analyze by the conventional trans-
mittance methods. The most common reflectance method is an attenuated total reflectance cell in
contact with the sample.

Figure 3.5: Schematic of a typical attenuated total reflectance cell. The diagram shows how the in-
frared light is directed into the ATR crystal, where it is totally internally reflected before passing to the
detector. The sample is placed directly on top of the crystal as shown.

Attenuated total reflectance (ATR) spectroscopy utilizes the phenomenon of total internal reflec-
tion (Figure 3.5). A beam of radiation entering a crystal will undergo total internal reflection, when
the angle of incidence at the interface between the sample and crystal is greater than the critical an-
gle, where the latter is a function of the refractive indices of the two surfaces. The beam penetrates
a fraction of a wavelength beyond the reflecting surface and when a material that selectively absorbs
radiation is in close contact with the reflecting surface, the beam loses energy at the wavelength where
the material absorbs. The resultant attenuated radiation is measured and plotted as a function of wave-
length by the spectrometer and gives rise to the absorption spectral characteristics of the surface of the
sample [8].

3.1.3 FT-IR microspectroscopy

FT-IR microspectroscopy combines chemical imaging with high spatial resolution and can either be
mapping or imaging; mapping experiments take individual spectra sequentially across a defined region
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of the sample, whilst in imaging experiments a focal plane array (FPA) detector is used to simultane-
ously record multiple spectra across the imaging area. High spatial resolution of 5 – 10 µm can be
achieved, allowing imaging of individual cells or even organelles.

3.2 Raman spectroscopy

An alternative and complementary form of vibrational spectroscopy to IR is Raman. Raman spec-
troscopy is based on scattering, rather than absorption, of photons as is the case for IR spectroscopy.
Raman scattering is inelastic scattering. The phenomenon of inelastic scattering of light was first pos-
tulated by Smekal in 1923 and first observed experimentally in 1928 by Raman and Krishnan. Since
then, the phenomenon has been referred to as Raman spectroscopy. In the original experiment, sun-
light was focused by a telescope onto a sample which was either a purified liquid or a dust-free vapor.
A second lens was placed by the sample to collect the scattered radiation. A system of optical filters
was used to show the existence of scattered radiation with an altered frequency from the incident light
– the basic characteristic of Raman spectroscopy [9–12].

Raman spectroscopy differs principally from IR spectroscopy in that it is based on the scattering
of photons by molecules, rather than on the absorption of photons. When a molecule is positioned in
a electric field E⃗ an electric dipole is induced

p⃗ = αE⃗ (3.7)

where α is the polarizability. This quantity, which is actually α tensor, varies with time as it
describes the response of the electron distribution to the movements of the nuclei that oscillate with
the normal mode frequency ν . Polarizability indicates how easily the charge distribution of a molecule
can be distorted.

If a molecule is interacting with an electromagnetic wave with the electric field vector oscillating
with the frequency ν0

E⃗ = E⃗0 cos(2πν0t) (3.8)

The oscillating electric field can induce a dipole in the molecule, and equation 3.7 can be simply
expressed as

p⃗(ν) = p⃗1(ν0)+ p⃗2(ν0 −ν)+ p⃗3(ν +ν0) (3.9)

The sum on the right side includes three terms corresponding to polarizabilities that depend on
different frequencies, which are the frequency of the incident radiation v0 and the frequencies (ν0-
ν) and (ν+ν0) that differ from (ν0) by the frequency on the normal mode. Scattering that leaves the
frequency of the incident light unchanged is referred to as elastic or Rayleigh scattering, whereas
the frequency shifted (inelastic) scattering is referred to as Raman scattering (Figure 3.6). When the
frequency of the scattered light is lower than (ν0), themolecule remains in a higher vibrationally excited
state m > n for the transition n→m. This process is denoted as Stokes scattering, whereas anti-Stokes
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scattering refers to (ν+ν0) and thus to m < n. At ambient temperature, thermal energy is lower than
the energies of most of the normal modes, such that molecules predominantly exist in the vibrational
ground state and Stokes scattering represents the most important case of Raman scattering [13].

Figure 3.6: Energy diagram representing the elastic Rayleigh scattering and the inelastic anti-Stokes
and Stokes Raman scattering.

Incident light interacts with molecules causing transitions to higher virtual energy levels. In non-
resonant Raman, the frequency of the excitation light is such that a molecule is excited to an unstable
virtual energy level and quickly re-emits the photon. Resonant Raman is a special case in which the
excitation frequency is much closer to that of a molecular electronic transition. Relaxation occurs by
emission of light of the same frequency as the incident light (elastic scattering), or of higher or lower
frequency (inelastic scattering). If the light emitted is of a lower frequency the molecule returns to a
higher energy level than the initial state, this is Stokes scattering. Anti-Stokes scattering occurs when
the emitted light is higher frequency than the incident light, because the molecule returns to a lower
energy level than the initial state.

Although the basis of Raman spectroscopy has similarities to IR spectroscopy, the information
produced is complementary due to different selection rules. This often results in normal vibrations that
are strong in Raman being weak in IR, and vice versa.

Incident light in Raman spectroscopy is typically laser light in the visible, UV or near-IR region.
The use of near-IR wavelengths reduces the inherent fluorescence that is usually present and can mask
the weak Raman signals of interest. The light source of a Raman spectrometer is in general a laser with
a specific wavelength. The laser’s wavelength can range from the ultraviolet to the visible and near-
Infrared range depending on the application. The light beam is focused on a dichroic filter. The filter
reflects the light beam to the sample at a right angle. The resulting Raman scattering is focused back
to the dichroic filter. Usually, It serves as a band�stop filter whereby the incident light from the light
source is nearly completely attenuated. Only light with a different wavelength, i.e. Raman scattered
light can pass the filter unaltered. The measured light is redirected by mirrors to a monochromator,
which uses grating to diffract the beam into a narrow band of wavelengths (analyze the light). The
photo current from each wavelength section is then measured at the detector. In general, a sensitive
CCD detector (charged-coupled device) is used to convert the measured photo current into electric
current. Finally, the measured data can be saved and evaluated on a computer by using appropriate
software (Figure 3.7).
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Figure 3.7: Typical setup for a Raman spectrometer with a laser attached to a microscope [14].

In Raman spectra, the intensity of measured Raman scattering is plotted versus the Raman shift.
The Raman shift is defined as difference between themeasured frequency of scattered light and incident
light beam. Hence, Raman spectra are independent of the wavelength of the light source. However,
instead of using the wavelength, the Raman shift is given as change of the wavenumber n (cm−1)

which is inversely proportional to the wavelength. Intensities of Raman spectra are!0.001 % of laser
intensity and therefore the detection of Raman spectra is more difficult than IR. Intensity of Raman
peak depends on the polarizability of the molecule, the intensity of the laser and the concentration of
the active group.

IRaman ∝ Plaserν0
4α2 (3.10)

A major advantage of Raman in biology is that water is a poor scatterer and does not have a
strong signal in Raman spectra, in contrast to its strong bands in IR spectra. However, inelastic light
scattering in non-resonant Raman is a rare event so Raman signals are very weak in comparison to
absorbance signals. Resonant Raman generally produces stronger signals than non-resonant Raman,
but the interference from the simultaneously collected high fluorescence signals becomes more of a
problem. Figure 8 depicts an example of Raman spectra of T cells.

Figure 3.8: An example of Raman spectra of a sample where interfere fluorescence (red) and normal
Raman spectra (black) are shown for comparison.
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Chapter 4

Methods

This chapter presents the methods used within this thesis and describes the biological sample prepa-
ration and the different experimental setups. This thesis accomplished an interdisciplinary study of
chemistry, biology, medicine and physics. Specifically this essay focused on the application of non-
linear microscopy techniques, such as THG, SHG and MPEF in biomedicine. Moreover, various spec-
troscopic techniques such as FTIR and Raman spectroscopy were combined with non-linear signals
for additional chemical information. This study examined different type of cells, such as breast cancer
cell lines and T cells and breast tissues as well.

4.1 Biological sample preparation

4.1.1 T cells

The biological sample was prepared in the immunology lab of Prof. Irene Athanassakis in the Bi-
ology Department at the University of Crete. The samples were prepared and provided from Dr.
Ioanna Zerva. In this research, the activation of mouse T-cells was achieved either with the use of
Concanavalin-A (Con-A), or with human serum antigen (HSA). Concanavalin-A was used a mitogen,
while HSA was used as specific antigen. The T-cells were stained with the selected antibodies and
either activated with Con-A, or placed in co-culture with macrophages activated with HSA.

However, the problem that had to be faced in this set of experiments was the morphological
similarity between T-and B-cells, which are both present in the spleen cell preparation used in these
studies. Normally, flow cytometry testing is used for specific lymphocyte population counts. For this
reason, a fluorescence staining procedure was used for the distinction-isolation of the two cell types
(Figure 4.1).
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Figure 4.1: Cells preparation for the performance of the non-linear imaging measurements.

Animals BALB/c inbred mice were purchased from Charles River (Milan, Italy) and bred in the
animal facility of the Department of Biology at the University of Crete (Crete, Greece, EL91-BIObr-
09) under standard conditions of temperature (18-25 °C), humidity (45-50%) and photoperiod of 12h
light and 12h dark. Males and females 4-8 weeks of age were handled according to the international
and national bioethical rules and conformed to the bioethics regulations following the EU Directive
2010/63/EU for animal experiments. Mice were sacrificed by cervical dislocation and spleens were
removed under antiseptic conditions.

Cell cultures Spleen cells were cultured for 24 h in 10 mm petri dishes (Sarstedt, Numbrecht, Ger-
many) at the concentration of 1x106 cells/ ml in DMEM culture medium (Biosera, Kansas City, USA)
supplemented with 10% fetal bovine serum (FBS, Biosera ) at a final volume of 10 ml. Upon elimi-
nation of adherent cells, the remaining cells were washed twice in HBSS (Biosera) and submitted to
a mitogenic or antigenic stimulus. For the mitogenic stimulus, non-adherent cells were re- plated at
the concentration of 1× 106 cells/ ml in DMEM-FCS culture medium in the presence of 10 µg/ml
concanavalin-A (Con A, Sigma, Germany). For the antigenic stimulus, non-adherent cells were co-
cultured with antigen activated macrophages. To this extend, macrophages were incubated with 1
µg/ml human serum antigen (HSA, Sigma) for 24 h, and after antigen elimination and washing with
DMEM-FCS, 1×106 lymphocytes/ ml were added to the cultures.

T cell processing Two days after culture or co-culture initiation the non-adherent cells consisting of
B and T lymphocytes were submitted to immunostaining or purification procedures in order to be able
to distinguish T from B lymphocytes for application in the non-linear optical microscopy or isolate
T cells for Raman spectroscopy, respectively. Thus, upon culture termination, the cells were fixed
with 4% paraformaldehyde, washed and reacted with anti-mouse CD19-PE conjugated monoclonal
antibody (Immunotools, Friesoythe, Germany), which specifically recognizes B lymphocytes and can
be easily detected by TPEF measurements. In another set of experiments, upon culture termination, T
cells were magnetically isolated by negative selection using a rat anti-mouse CD45R antibody. Thus,
the cells were reacted with 1 µg/ml rat anti-mouse CD45R (surfacemarker of B cells, EurobioSciences,
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Germany) in PBS-BSA 0.1% for 40min. After washing the cells were incubated with Dynabeads M-
280 Sheep anti-Rat IgG (Invitrogen, Life Technologies AS, Norway) for 30min with gentle stirring
and applied to a magnet for negative T cell selection and processing for Raman spectroscopy.

4.1.2 Breast cancer cell lines

The biological sample was prepared in the laboratory of Translational Oncology at medical school of
University of Crete, cooperating with Prof. Agelaki Sofia and Prof. Vassilils Georgoulias. The prepa-
ration of cells was accomplished by Mrs. Haris Markomanolaki. Luminal (T47D, MCF7), Her2+
(BT474, SKBR3) and triple negative (MDA-MB231, Hs578t) human breast cancer cell lines were
purchased from ATCC (Rockville, Maryland, USA) and maintained at 37 °C in a humidified atmo-
sphere of 5% CO_2 in air. MDA-MB231 and Hs578t cell lines were cultured in DMEM medium
(GIBCO 61965-026, Grand Island, NY) supplemented with 10% FBS (GIBCO-BRL) and 50 µg/mL
penicillin/streptomycin (GIBCO-BRL). For MCF7 and T47D cell cultures, the above medium was
supplemented with 16 ng/mL and 11ng/mL insulin, respectively. SKBR3 cells were cultured in Mc-
Coy’s medium (GIBCO-BRL) supplemented with 10% FBS and 50mg/mL penicillin/ streptomycin.
BT474 cells were cultured in DMEM/Ham’s F12 medium (GIBCO-BRL) supplemented with 10%
FBS, 2mM L-glutamine (GIBCO-BRL), 1mM sodium pyruvate (GIBCO-BRL) and 50mg/mL peni-
cillin/streptomycin. For sub-cultivation cells were detached using 0.25% trypsin and 5mmol/L EDTA
(GIBCO-BRL). All experiments were carried out during the logarithmic growth phase. The passage
number remained stable for all cell lines. Non- tumorigenic MCF10a human breast cells were cultured
in DMEM/Ham’s F12 medium supplemented with 5% horse serum (GIBCO), 50mg/mL penicillin/
streptomycin, 100µL EGF, 250µl hydrocortisone, 50 µl cholera toxin, and 16ng/mL insulin.

Peripheral blood mononuclear cells (PBMCs) were isolated from healthy blood donors (n=3).
Peripheral blood (10 ml) was placed on a Ficoll-Hypaque density gradient (d = 1,077 g/mol) and upon
centrifugation at 1800 rpm for 30 minutes, PBMCs were collected from the interface and washed three
times with PBS by centrifugation at 1500 rpm for 10 minutes.

For lipid droplet staining, cells were fixed with PFA 4% (Sigma- Aldrich Co., MO, USA, 158127),
permeabilized with PBS-Triton X-100 0.025% (Sigma, X100) and stained with Nile Red (10μg/ml,
Sigma, N3013).

SEManalysis SEM images obtained with the kindly helpMrs. A. Siakouli at Biology Department of
UOC. Upon culture termination, samples were washed with 0.1M sodium cacodylate buffer (SCB) and
then incubated in the same solution for 15 min, twice. Samples were fixed using a 2% glutaraldehyde,
2% formaldehyde in SCB fixative buffer for 1 h at 4 °C. All surfaces were then washed twice (from
15 min per time) with SCB 0.1M at 4 °C, dehydrated using serially graded ethanol immersions (from
30, 50, 70, 90 to 100%) and incubated for 15 min in dry 100% ethanol twice. The samples were then
critical point dried (Bal-Tec CPD 030). Prior to electron microscopy examination the samples were
mounted on appropriate stubs and sputter coated (Bal-Tec SCD 050) with a 10 nm gold layer. SEM
analysis was processed with a JEOL JSM 6390LV Scanning Electron Microscope operated at 15KV
and for high definition analysis a JEOL FESEM 7000F field emission scanning electron microscope
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with an acceleration voltage of 15 kV.

4.1.3 Breast Tissues

Tissue samples were prepared by Prof. Maria Tzardi group in the pathological anatomy lab of medical
school of University of Crete.

Patients Control healthy and cancerous tissues were obtained from different patients (Table 4.2).
The number of patients was 15. Tissue cancer C3 and control 1 was from the same patient, a normal
and cancerous region of breast tissue. Moreover, cancer A4 and B3 were from the same patient with
different grades of tumor. All tissues tested herein were provided from the University Hospital at
Heraklion, Crete and their use was approved by the Ethical Committee of the Institution.

Figure 4.2: Tissues included in the present research

Tissue processing Tissue samples were embedded in paraffin, sliced in 5 µm-thick histological sec-
tions and routinely stained with hematoxylin and eosin (H&E) for optical microscopy examination. For
THG imaging, serial tissue slices were placed on special very thin (0.07mm) round glass microscope
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slides of 3.5cm diameter to provide a flat sample surface.

4.2 Experimental Setups

This thesis was performed in the nonlinear microscopy lab (NLM) of Dr. George Filippidis at IESL-
FORTH. A custom-made nonlinear optical microscope was used as the main setup in this thesis and
was coupled with spectrometers (Raman, FT-IR in Dr George Kenanakis’s lab) to obtain complemen-
tary information of the samples. Raman spectroscopy was used for additional information during T
cell measurements, while FT-IR spectroscopy was used for breast cancer cell lines and breast tissues,
respectively.

4.2.1 Nonlinear Microscope

The experimental apparatus consisted of an Yb-based femtosecond (fs) laser oscillator emitting at a
central wavelength of 1028nm (Amplitude Systemes, t-pulse, 200fs, 50MHz, 1Watt) combined with a
modified upright microscope (Nikon Eclipse ME600D) (Figure 4.3).

Adjustable neutral density filters (New Focus) were utilized to control the power at the sam-
ple plane. The laser beam passes through mirrors and is directed on a pair of galvanometric mirrors
(Cambridge Technologies). Galvanometric mirrors were employed in order to perform the fast raster
scanning in the selected xy plane of the sample. The focal plane was adjusted by using a motorized
translation stage (Standa Ltd. 1µm minimum step). A telescope system was used to expand the beam
diameter in order to fill the back aperture of the objective lens. The beam was tightly focused on
the sample by employing a high Numerical Aperture (NA) objective lens (Carl Zeiss, C-Achroplan
32x, NA 0.85, water immersion). By employing diffraction limited focused fs laser beams, nonlin-
ear phenomena at the sample plane of the biological specimens could be created. Using such setup it
was possible to collect simultaneously two different nonlinear signals, one in the transmission (THG)
and the other in the reflection mode (TPEF) or (SHG) by adjusting the suitable filter, providing thus
the opportunity to perform co-localization measurements. On the transmission mode THG signal was
recorded, after passing through a condenser lens (Carl Zeiss, PlanNeofluar, 40x, 0.75 NA, air im-
mersion) and a coloured glass filter (U 340-Hoya), from a photo multiplier tube (PMT, Hamamatsu
H9305-04). On the reflection mode, TPEF or SHG signals were detected by using a second PMT
(Hamamatsu, R4220) by employing an appropriate short pass filter ,(SPF 700nm, CVI) or bandpass
interference filter (CVI 514 nm) respectively.

A computer controlled both scanning and data acquisition procedures. The samples were placed
between two very thin round glasses (70 µm, Marienfeld) separated by a copper spacer (100 µm
thickness) to avoid damage the cells. A CCD camera (PixeLINK) was used for the optical observation
of our specimens.

The alignment and the optimization of the system performed via the collection of the maximum
THG signals from the air/glass and glass/air interfaces from a coverslip. The maximum intensity of
the THG signals emitted from the cells were always one order of magnitude lower in comparison with
the ones detected from the glass/air interface of the second coverslip, which used to hold the sample.
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Figure 4.3: Nonlinear optical setup photograph (a) and the schematic diagram (b)

For all the studies presented herein, the laser power on the sample plane was adjusted at 38 mW.
The described setup scanned 500x500 pixels THG and TPEF or SHG image around in one (1) second.
The lateral (radial) resolution of this system was almost∼0.6µm and the axial resolution was around 2
µm. A critical component to create nonlinear phenomena at the focal plane was to achieve high inten-
sities by employing tightly focused fs laser beams. The energy per pulse is the average power divided
by the repetition rate and was calculated to be around 0.77 nJ. The peak power is the energy per pulse
divided by the pulse width and in the experiments presened here, it was around 4kW. Moreover, the
peak intensity at focal plane was around 242 GW/cm2, the power density 2.3 MW/cm2 and the fluence
46mJ/cm2. In case of breast cancer cell lines and breast tissues studies the images had resolution 11.111
pixels/µm. For imaging T cells, which represented a smaller sample for observation, the resolution
was adjusted to 18.52 pixels/µm. To improve the signal to noise ratio (SNR), 20 scans were averaged
for each final image. To further improve image quality, a series of 2D optical sections were obtained
at 1µm intervals (z stack) and projected (maximum intensity projection) onto a single plane. Image J
software was used for data viewing and processing (NIH, ).

4.2.2 Raman Spectrometer

Raman measurements were performed at room temperature using a commercial Horiba LabRAM
HR Evolution confocal micro-spectrometer, in backscattering geometry (180 °), equipped with an
air-cooled solid state laser operating at 532 nm with 100mW output power (Figure 4.4). The laser
beam was focused on the samples using a 50x Olympus microscope objective (NA= 0.50), providing
a ∼18mW power on each sample. Raman spectra over the 300-3200 cm−1 wavenumber range (with
an exposure time of 20 sec and 5 accumulations) were collected by a Peltier cooled CCD (1024 x 256
pixels) detector at -60 °C, with a resolution better than 1 cm−1, achieved using a 600 grooves/mm
grating and an 800 mm focal length.
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Figure 4.4: Horiba LabRAM HR Raman setup

Test measurements were carried out using different optical configurations, exposure timings,
beam power and accumulations, in order to obtain sufficiently informative spectra using a confocal
hole of 100µm, but ensuring to avoid alteration of the biological sample. The high spatial resolution
of the system allowed us to carefully verify that cells remained intact after irradiation. The Raman shift
was calibrated automatically using LabSpec 6 software (Horiba) using zero order line and Si line of a
Si reference sample (520.7 cm−1). The acquired spectra were compared with scientific published data
and reference databases, such as Horiba LabSpec 6 (Horiba). For observation, T cells were mounted
on CaF_2 coverslips. To remove the autofluorescence, baseline correction was implemented to the
recorded spectra.

4.2.3 FTIR spectrometer

Breast cancer cells were deposited on IR transparent KBr windows (approximately 20 µl with 104-
105 cells). FTIR experiments were carried out using a Bruker Vertex 70v commercial spectrometer
equipped with a KBr beamsplitter and a room temperature broad band triglycine sulfate (DTGS) de-
tector in absorption mode (Fig4.5). Interferograms were collected at 4 cm−1 resolution (8 scans),
apodized with a Blackman-Harris function, and Fourier transformed with two levels of zero filling, in
order to yield spectra encoded at 2 cm−1 intervals. Before scanning, KBr background was recorded
and each sample spectrum was obtained by automatic subtraction of the background.

Correspondingly, breast tissues were mounted on BaF2 coverslips, bearing a width of 1cm. The
collected spectra were set at region 3500-750 cm−1 wavenumbers. For the breast tissue study, FT-IR
microspectroscopy in absorption mode, Attenuated Total Reflectance (ATR) spectroscopy and FTIR
analysis in absorption mode was used. FTIR microspectroscpy was utilized in absorption mode, where
the beam was focused with objective lens (15x, N.A 1.2) and N_2 was used for the detectors. In
ATR spectroscopy, crystal was adjusted to be in touch with the tissue and collect surface chemical
information at room temperature. Moreover, for each tissue, FTIRmeasurements in transmissionmode
were performed at room temperature and covered the whole tissue region. However, the obtained
information of this utility was limited.

49



4.3. DATA ANALYSIS

Figure 4.5: FT-IR experimental setup - Bruker Vertex 70v spectrometer

The spectra were processed by using the software supplied by the instrument manufacturer (OPUS
software package; Bruker Optics, Germany). The FTIR spectra alongwith their first and second deriva-
tive curves were used to highlight the components of different spectral regions and to determine the
approximate values of the peak positions of the components. This data processing allowed the estima-
tion of the concentration of the corresponding chemical bonds.

4.3 Data analysis

4.3.1 Signal’s mean total area calculation

All the samples were imaged under constant irradiation conditions (mean energy per pulse, linear po-
larization of the incident beam at the sample plane, dimensions of the scanning region, number of
pixels, amplification of the PMT units). THG intensity values were collected from the photomulti-
pliers’ tubes (PMTs), stored in 2D 500 by 500 matrices and represented a single slice image of the
sample. Image J software was used for image processing and thresholding. THG signal quantification
was performed by setting a constant threshold in the obtained normalized 8-bit slice images, so that
regions generating high levels of nonlinear signal were solely detected and isolated. The threshold was
set to allow only the percentage of the THG signal of the sample area to be analyzed and measured.
The obtained calculated area corresponded mainly to the cellular membrane, the nucleus membrane
and the lipid droplets of each cell.

4.3.2 Signal’s intensity calculation

For the quantification of the mean THG intensity, the values of a number of N cells were firstly normal-
ized to a standard THG intensity value. Then the values were quantified by setting again a constant
threshold, so that only the regions that provide high THG signals could be examined (mainly intra
cellular lipid droplets, cellular and nucleus membranes). An algorithm designed and programmed in
MATLAB environment was employed for the selection of representative cell areas of each slice and
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estimation of their mean pixel value. The integrated THG intensity over the total pixel area for each
slice of a sample was calculated by multiplying the representative area with the mean intensity value of
the corresponding pixels. The weighted mean pixel value of each specimen was obtained by repeating
this procedure for the representative slices of each sample.

4.3.3 Statistical analysis

For multi group comparisons, one-way analysis of variance (ANOVA) with a post hoc Tukey test was
used. Data were analyzed with SPSS 16.0 software.
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Chapter 5

Distinction between breast cancer cell
subtypes using third harmonic generation
microscopy

The objective of this chapter focuses on THG modality and it‘s capability to non-invasive, label-free,
visualization of the lipid profiles of various breast cancer cells. The collected THG signal arises mostly
from the lipid droplets and the membrane lipid bilayer. A quantitative approach of THG modality
was employed to offer additional information of the constitution of the specimen. Quantification of
THG signal indicated that it can accurately distinguish cancer from normal cells. Further analysis
using Fourier transform infrared (FTIR) spectra was performed correlating THG imaging to chemical
information.

5.1 Breast cancer

Cancer refers to any one of a large number of diseases characterized by the development of abnormal
cells that divide uncontrollably and have the ability to infiltrate and destroy normal body tissue. Cancer
is caused by changes (mutations) to the DNA within cells. DNA is packaged into a large number of
individual genes, each of which contains a set of instructions telling the cell what functions to perform,
as well as how to grow and divide. Errors in the instructions can cause the cell to stop its normal
function and may allow a cell to become cancerous. Cancer is one of the leading causes of death
worldwide. But survival rates are improving for many types of cancer, thanks to improvements in
cancer screening and cancer treatment.
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Figure 5.1: Illustration of the different vibrational methods; absorption and Raman scattering [1].

Breast cancer (Figure 5.1) is now the leading cause of cancer in women worldwide and the most
common cause of cancer-related deaths. It occurs when cells in the breast start to grow out of pro-
portion and invade neighboring tissues or spread throughout the body. According to the world health
organization (WHO) more than 1.6 million women per year are diagnosed with breast cancer. It is
estimated that 1 in 8 women worldwide will be diagnosed with breast cancer at some point in their life.
Specifically, in Greece 6000 new cases are reported with breast cancer each year.

Breast cancer is not a modern illness. To the contrary this type of cancer has probably been around
as long as the human race. It is not surprising that written records and illustrations of breast cancer
date back to antiquity, since the location of the organ permitted easy identification. The Edwin Smith
Surgical Papyrus, dating back to 3,000–2,500 B.C., and possibly attributable to Imhotep (the Egyptian
physician-architect), provides authentic accounts of breast cancer. A case was deemed incurable, if the
disease was “cool to touch, bulging and spread all over the breast”. In ancient Greece, a divinity was
exhorted to offer relief from breast maladies, as evidenced by votive offerings in the shape of breasts in
Greek temples that housed Asclepius, the god of medicine. Carcinoma (karkinoma), scirrhous (hard,
Greek skirros) and cacoethes (malignant disease, Greek kakoethes) in the medical lexicon owe their
origins to Hellenistic writings. Hippocrates’ theory in c. 400 B.C. of the imbalance of humours (blood,
phlegm, and yellow and black bile) as a cause of disease, and his classic descriptions of the progressive
stages of breast cancer, represent early hypotheses on the cause of cancer [2].

Until now, breast cancer affects a large portion of the global population and constitutes a substan-
tial public health burden, for this reason it has generated a considerable amount of research interest.
Breast cancer often characterized by a lack of early symptoms, which results in late detection of the
disease. Detection at advanced stages of the disease implies that the treatment is more difficult and
uncertain. The appropriate screening methods could help for significant early breast cancer detection.

As with most cancers, early diagnosis of the disease radically increases survivorship. Conse-
quently, researchers have had the laborious task of increasing the accuracy and precision of their di-
agnoses. The last two decades have witnessed significant developments in breast cancer detection
and diagnosis. Imaging plays a major role in the diagnosis, treatment, and follow-up of breast cancer.
While imaging tests, such as X-rays, are helpful in detecting masses or areas of abnormality, they alone
can’t differentiate cancerous cells from noncancerous cells. For the majority of cancers, the only way
to make a definitive diagnosis is to perform a biopsy to collect cells for closer examination.
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Breast cancer is a heterogeneous disease with multiple subtypes, variable size, grade, metastatic
potential and with varying prognosis. Hence, the choice of therapy for patients with breast cancer is
to some extent defined by information provided by the pathological assessment. Diagnostic testing
involves tests and procedures to confirm the presence of disease and identify the correct tumor type,
location, extent and stage. The examination of the standard haematoxylin and eosin (H&E)-stained
section is still an efficient, cost-effective and powerful mode of providing information to inform clas-
sification and hence clinical management . The pathological subtype (e.g. tubular versus metaplastic),
grade (1 versus 3), size, vascular permeation and nodal status will provide informative data to de-
fine the likeliest outcome for patients with breast cancer and the need for adjuvant systemic therapies.
Nonetheless, developments in our understanding of the molecular and cellular basis of cancer initiation
and progression are providing tools for refining the taxonomy of breast cancer and opening up new
avenues for the classification and treatment of breast cancer.

However, the standard histopathology of breast tissue, the primary means of disease diagnosis,
involves manual microscopic examination of stained tissue by a pathologist. Because this method
relies on qualitative information, it can result in inter-observer variation. Furthermore, for difficult
cases the pathologist often needs additional markers of malignancy to help in making a diagnosis. A
wide variety of tumormarkers viz. uPA, BRCA1& 2, Ki76, ER, PR, HER etc. are used for establishing
the type of breast carcinoma. However, each marker has its own prognostic value and not all breast
cancer patients have the same clinical picture. Though proposed, only few markers are used in clinical
practice and research studies are still ongoing to identify and establish new biochemical parameters/
markers. However, these biomarkers for disease detection and monitoring are time-consuming and
complicated processes. In this thesis, we proposed nonlinear imaging modalities as a new label free
non-invasive method for detection of breast cancer.

The majority of breast cancer research is conducted using established breast cancer cell lines as
in vitro models. Breast cancer cell lines are likely to reflect, to a large extend, the features of cancer
in vivo. As will be presented in the present thesis, the application of nonlinear microscopy modality
may be used for the accurate distinction between cancer and control cells.

5.2 THG microscopy as diagnostic tool for breast cancer cell lines

Early detection is one of the most important strategies to improve survival of breast cancer patients.
New techniques in imaging, tissue diagnosis and cytobiological assessments are being developed, and
promise to improve early detection and identify potentially high risk women suffering from the disease
[3]. Emerging techniques using the analysis of tumor cells show promising results in predicting and
identifying breast cancer in patients. Specifically, the establishment of robust detection techniques the
last years shifted the interest towards the circulating tumor cells that are detected in blood of breast
cancer patients. During metastasis, the first step is the dissemination of cancer cells in the blood (when
cancer cells detach from the primary tumor and intravasate), while micrometastasis in a distant organ,
like the bone marrow, reflects a more advanced stage. The early detection of circulating breast cancer
cells by morphologic methods is currently being challenged by multiple methods [4, 5]. Molecular
detection methods suggested a prognostic impact of circulating cancer cells in early breast cancer pa-
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tients. Moreover, researchers employed cytological approaches (e.g. CellSearch) to detect circulating
cancer cells but did not report a significant prognostic impact [6].

In this essay, we proposed nonlinear microscopy modalities as a first approach for detection and
discrimination of cancer cells during breast cancer. To achieve that, we employed human breast cancer
cell lines and compared them to human peripheral blood mononuclear cells (PBMCs) .

Non linear optical imaging has taken a rapid progress in the biomedical field. The past decade non
linear imaging techniques proved relevant in the research of life sciences studies, revealing valuable
and complementary information about the specimen under investigation [7–14]. The efficiency to
investigate in vivo cellular and subcellular activities, without any damage of the biological specimen,
and provide valuable information have made non linear imaging techniques a perfect tool for early
diagnosis and treatment of several diseases.

These techniques are increasingly promising for clinical diagnostics and the monitoring of serious
diseases, as they can probe the biological sample with high resolution. During the last decade non linear
optical techniques have been used as diagnostic tools for cancer research. Chang et al., developed lipid-
enclosed CdSE quantum dots (LEQDs) and linked them with anti- Her 2 antibodies, as a new type of
contrast in THG microscopy in breast cancer [15]. Later on, the same research group studied blood
oxygen by measuring the THG spectra of oxy- and deoxyhemoglobin in order to detect tumor growth
at early stages [16]. Adur et al., demonstrated that multi-contrast non linear optics microscopy can
detect pathological changes of tissue associated with ovarian cancer [17]. Tsai et al., studied complex
immune responses among different types of leukocytes by using label free THG imaging [12]. Wu et al.
usedmultiphotonmicroscopy to distinguish breast cancers from normal tissues and benign lesions [18].
Moreover,Wu et al., quantified the structural changes of collagen inmelanomawithin amouse utilizing
SHG and THG microscopy [19]. Recently, Weigelin et al. monitor tumor cells during apoptosis by
using THG modality (Figure 5.2) [20].

Figure 5.2: Cellular morphologic changes upon apoptosis inductions in tumor cells. MPEF in orange
and THG in cyan [20].

For use in life sciences, THG signal can be enhanced by the presence of a multilayered structure
as found in membranes and the lipid bodies. Recent evidence indicate that in THG images, the primary
sub-cellular source of contrast are lipid bodies (LBs) [21, 22]. The advantage of this approach is that
it can be used to study lipid bodies in complex environments.

Lipids bodies (LBs), also named lipid droplets (LD) or adiposomes, are cytoplasmic organelles
involved in lipid storage and metabolism, cell signaling and inflammation. Although LBs are largely
associated with lipid storage, during the last years they are recognized as dynamic and functionally
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active organelles, involved in a variety of functions such as lipid metabolism, cell signaling, and in-
flammation [23–25]. Increased cytoplasmic lipid accumulation in cells has been observed in a number
of clinical and experimental metabolic diseases [23, 26–28]. The shape and the localization of the LBs
appear to correlate with the development of metabolic disorders [29].

Nowadays, there is a general consensus that cancer cells display metabolic reprogramming com-
pared to healthy cells, related not only to mechanisms of ATP synthesis through glycolysis (Warburg
effect) but also to de novo lipid synthesis, with fatty acid synthase and sterol regulatory element-binding
protein family as key players in many human cancers. Under physiological conditions, normal cells
tend to maintain lipid levels under control, by regulating uptake, synthesis, and mobilization from in-
ternal storages. By contrast, tumor cells are able to uptake larger amount of lipids, as well as to enhance
lipogenesis and CH production, and to increase fatty acid β -oxidation [26, 30, 31].

Manymodern technologies, includingmass spectrometry (MS), nuclearmagnetic resonance (NMR)
and microfluidic devices, are utilized to identify, quantify, and understand the structure and function
of lipids in biological systems [29]. However these are complex techniques and the performance of
LBs need the use of fluorophores and fixation. In contrast, THGmodality can distinguish LBs without
any labelling and can give much information about their structure and their position, which are distinct
advantages over other techniques. This capability of THG imaging is enabling label free examination
of the samples, minimizing photobleaching and photoxicity phenomena.

The need for greatly improved new diagnostic tools in biomedical studies has driven demand for
non linear microscopy. THG is successfully applied to diverse biological questions with the goal of
reaching a comprehensive description of biological processes. THG microscopy is a relatively simple
non linear imaging technique, since it requires a single fs laser beam as excitation source. Only a
few seconds of exposure are needed to collect different non linear signals that provide complementary
information for the biological sample. Third harmonic generation does not involve energy deposition
to the sample and therefore biological specimens do not suffer from side effects (e.g. photobleaching).
A benefit of THG microscopy over conventional techniques is that it provides 3D imaging and deeper
penetration in scattering samples.

The application of THG imaging quantification analysis based on lipid profiles has been used in
a variety of biological samples from our group [32–34]. THG imaging via lipid profile assays enables
this process as an ideal tool for examination of many biological issues.

Application of this technology has been successfully extrapolated to BV2 cells [22]. BV-2 cells
are resident glial cells that play a significant role in Central Nervous System (CNS) and are connected
to many pathological conditions. The activation of these cells is connected to many serious CNS
inflammations such as Alzheimer’s, Parkinson’s, Huntington’s and schizophrenia. BV2 cell activation
was performed by using lipopolysaccharide (LPS).

In this research, the THG technique was used in order to visualize and quantify the intracellular
structures of glia cells. Firstly, THG technique was employed as a tool to delineate and quantify the
structures. TPEF and THG signals were collected simultaneously to identify the subcellular structures
by using fluorescent dyes for staining lipid bodies, mitochondria and endosomes (Figure 5.3). For the
quantitative evaluation of co-localization between the stained structures and THG signals, a Pearson
Correlation Coefficient (PCC)-based analysis has been performed (Figure 5.4). This procedure has
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been implemented for all three different staining dyes for control and activated BV-2 cells. The analysis
showed, a strong correlation (45–65%) of lipid droplets with high THG signal (Figure 5.4a), a very
weak correlation (4 - 8%) for mitochondria (Figure 5.4b), while in the case of late endosomes, no
co-localization was detected (∼1% very weak positive correlation, Figure 5.4c) in both resting and
activated cells. The obtained results are in perfect agreement with previous studies, which have shown
that lipid droplets are the main contributors of THG signals from biological samples [21].

Figure 5.3: Identification of sub-cellular organelles of BV-2 cells that produce high THG signals.
THG and TPEF images were collected simultaneously. (a) 2D image (500 x 500 pixels) of a BV-2 cell
stained with nile red (THG in blue-green, TPEF in magenta, (b) 2D image of a BV-2 cell stained with
Mitotracker red fm (THG in blue-green, TPEF in red), (c) 2D image of a BV-2 cell stained with Alexa
488 (THG in blue-green, TPEF in yellow). Scale bars denote 5 µm.
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Figure 5.4: Quantitative correlation of TPEF and THG threshold images based on PCC analysis. The
same stained control BV-2 cells as in Fig. 3 were implemented. (a) Nile red (lipid droplets, 53%
correlation), (b) Mitotracker (mitochondria, 8% correlation), (c) Alexa 488 (late endosomes 0.4% cor-
relation). Scale bars denote 5 µm.

Except from the qualitative information of THG imaging, THG quantification of the intracellular
structures – mostly lipid bodies was achieved. By using THG microscopy, it was possible to evaluate
the difference between control and activated cells. It was shown that through THG images it could
be easily observed that the amount of lipid bodies during cell activation was greater than these of the
control cells (Figure 5.5). The quantification of the recorded signals was shown that the mean total
area of THG values of the cells after activation was almost ten times bigger than these of non-activated
cells. Therefore, the amount of lipid bodies during activation increased in BV2 cells. These results
made THG microscopy technique to seem as the proper tool for the illustration and discrimination of
BV2 glia cells during activation procedures [22].

Figure 5.5: THG images of BV-2 cells (a) control (b) activated. The scale bar depicts 5 µm.

Although various studies have shown the potential of label free non linear imaging for cancer re-
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search and inflammation, this is the first time in the present thesis that THGmicroscopy was employed
for the accurate imaging and quantification of the lipid content in breast cancer cells.

Indeed, a considerable part of our knowledge on breast carcinomas is based on in vivo and in vitro
studies performedwith breast cancer cell lines. These provide an unlimited source of homogenous self-
replicating material, free of contaminating stromal cells, and often easily cultured in simple standard
media [35]. Tremendous advances in our understanding of the biology of breast cancer have been
made over the past several decades using breast cancer cell lines [36]. Scientists study the behavior
of isolated cells grown in the laboratory for insights into how cells function in the body in health and
disease. Experiments using cell lines are useful in developing new diagnostic tests and new treatments
for diseases. The first human cell line HeLa, named after Henrietta Lacks who had cervical carcinoma,
was established 50 years ago .This breast cancer cell line paved the way for cell culture as we know
it today, allowing its widespread development into an important experimental tool in cancer research.
One of the major benefits of using cultured cell lines in cancer research is that they offer an infinite
supply of a relatively homogeneous cell population that is capable of self-replication in standard cell
culture medium [36].

Breast cancer cell lines are used as experimental models and put forward suggestions for improv-
ing their use in translational breast cancer research. Due to breast cancer heterogeneity, breast cancer
cells are classified into at least five subtypes: Luminal A, Luminal B, Basal – like (triple negative),
HER-2. Each subtype has different prognosis and treatment response.

Using representative cell lines corresponding to the different breast cancer subtypes, the aim of the
present study was to evaluate whether THG imaging could detect qualitative and quantitative differ-
ences between the different subtypes of breast cancer cells and control cells. As aforementioned, THG
imaging could distinguish between resting and activated microglia, where lipid bodies were shown to
be the major signal emitting intracellular organelles [22]. Taking into consideration the activation state
of cancer cells, the present work evaluated THG signaling from various breast cancer cell lines and
upon quantification attempted to correlate signal levels to specific types of breast cancer.

THG imaging provides unique structural, anatomical and morphological information in various
biological samples at cellular and sub-cellular level. Figure 5.6 depicts an example of THG image
of a cancer cell. In THG imaging, one can easily detect nucleus, which is generally presented as a
black area in the cell (no THG signal) due to the dense chromatin structure, the increased amount of
intracellular signal (mainly arising from LDs) and cellular and nuclear membranes.
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Figure 5.6: 2D THG image of a cancer cell. Scale bar depicts 5 µm.

In this essay, we used some of the widely used breast cancer cell lines (MCF-7, T-47D, BT-474,
SK-BR-3, MDA-MB-231, Hs578T) as tumor models. This breast cancer cell line system that we
used allowed the assessment of similarities and differences between the cell lines and primary human
breast tumors. Breast cancer cell lines can be classified in terms of Luminal, HER2 positive and Basal
like (triple negative) (Table 5.1). Luminal type cell lines, characterized by the expression of estrogen
and/or progesterone receptors, and represented by MCF7 and T4TD cells showed intracellular and
membrane THG signal. The HER2 positive breast cancer cells type of breast cancer, characterized
by HER2 expression -positive cells and represented by the BT474 and SKBR3 cell lines cells showed
mainly intracellular THG signal, while the triple negative cell type of breast cancer as represented by
MDA-MB-231 and Hs578t cells showed mainly nuclear and cellular membrane signal (Figure 5.7).

Table 5.1: Molecular classification of breast cancer cell lines by using immunohistochemistry (IHC)
markers. Ki67 nuclear protein, estrogen receptor (ER), progesterone receptor (PR) and human epider-
mal growth factor 2 (HER2) are markers used as prognostic parameters in breast cancer.

Classification Immunoprofile Other characteristics Cell lines used

Luminal ER+, PR+, HER2− Ki67 low MCF-7, T47D
Basal like (Triple

Negative)
ER−, PR−, HER2− Ki67 low MDA-MB231,

Hs578t
HER2 ER−, PR−, HER2+ Ki67 high SKBR3

ER+, PR+/−, HER2+ BT474

Figure 5.7: THG signal distribution (maximum z projections) of different cell types. Scale bar depicts
5 µm.
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For comparison, peripheral blood mononuclear cells (PBMCs) from healthy donors andMCF10a,
which represent non-tumorigenic breast epithelial cells, were exploited as controls. However, none of
these two cell types can readily be considered as control of the malignant cancer cells. PBMCs have
a different cell origin, while MCF10a, which represent non-tumorigenic breast epithelial cells, have
been isolated from a Caucasian female with fibrocystic disease. Therefore, these cells were only used
as benchmarks for comparison reasons.

Following this, six different breast cancer cell lines, classified as luminal, HER2 positive and
triple negative [37], were cultured and submitted to THG imaging. Each cell line presented a spe-
cific THG signaling pattern. Thus, luminal cell lines (MCF7 and T47D) showed both intracellular
and membrane THG signal, HER2 (BT474 and SKBR3) showed mainly intracellular signal, while
triple negative (MDA-MB231 and Hs578T) cells showed mainly nuclear and cellular membrane sig-
nal. Non-tumorigenic MCF10a cells displayed both membrane and intracellular signal, while PBMCs
displayed essentially intracellular THG signaling (Figure 5.8). In contrast to PBMCs, where nuclei
were visualized as regular black areas in the cell due to the dense chromatin structure, cancer cells
showed irregular nuclear shapes with enlarged nucleoli (Figure 5.8, arrows).
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Figure 5.8: THG images (z-projection) of breast cancer cell lines and control cells. Luminal (MCF7
and T47D), HER2 positive (BT474 and SKBR3), triple negative (MDA-MB231 and Hs578T) cancer
cell lines as well as non-tumorigenic MCF10a breast cells and control PBMCs were submitted to THG
imaging as described in chapter methods The yellow arrows depict the amorphous nucleus and the
enclosed nucleolus of cells. Scale bar depicts 5 µm.

Interestingly, membrane signalling was specifically observed in the most aggressive MDA-MB-
231 and Hs5787 cells. Indeed, previous studies have indicated that membranes play a crucial role in
tumour cell dissemination and metastasis [38–40]. Similarly to the cell membrane, nuclear envelope
also consists of a lipid bilayer and it has been shown that alterations in the nuclear membrane affect
the behaviour and phenotype of tumour cells [41]. Membrane constitution has been considered to
play an important role in breast cancer cell function. During cell activation, microdomains to the cell
membrane cluster together proteins and specific lipids involved in the regulation of various cellular
processes, many of which are altered in cancer cells. In addition, lipid rafts are influenced by nutrition
[42]. It has been shown that fatty acid supplementation sensitises human mammary tumour cells to
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the cytotoxic effects of anti-cancer agents [43]. Thus, lipid rafts have been considered to play a role in
cancer initiation, progression and cell migration [44]. Additional information as to the breast cancer
cells studied here was provided by the nuclear shape. In THG imaging, nucleus is generally presented
as a black area in the cell, due to the dense chromatin structure which does not allow the nonlinear
light scattering. All cancer cells studied here were characterized by irregular size and shape, enlarged
nucleus and nucleolus, which are in agreement with previous studies (Figure 5.8) [45–49].

Figure 5.9: SEM images of characteristics cells

Complementary information as to the morphology of cancer cell lines was obtained through scan-
ning electron microscopy (SEM) measurements. Cells were let to adhere for 24 hours on glass cover
slips and processed to SEM analysis, thereafter. An expected observation was that none of the cell
lines tested comprised homogeneous cell populations. Interestingly, most cells within cancer cell lines
showed limited membrane irregularity as compared to controls and limited numbers of adhesion points
(arrows Figure 5.9). Such observation could be in accordance with the metastatic ability of these cells.
Indeed, SKBR3 cells, which represent the most aggressive line tested here, showed the smallest num-
ber of adhesion points as compared to the other cancer cell lines. In addition, after the 24-hour culture,
cancer cells showed only limited number of exosomes as compared to controls. Although this was
an expected observation because of the lack of additional stimulus, it was important for the evalua-
tion of THG signal, which under these circumstances could not originate from extra-cellular exosomal
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structures.
In order to evaluate the lipid droplet origin of the intracellular high THG signal, the cells were

stained with Nile red (lipid droplet staining) and THG and TPEF signals were recorded simultaneously
(Figure 5.10). The multimodal merged images revealed significant co-localization of THG signal and
lipid droplet staining, confirming that lipid droplets were the main sub-cellular structures generating
high THG signals. These results endorse the findings in the literature that main intrinsic signal in cells
originates from LDs [21].

Figure 5.10: 2D THG images of MCF-7, SKBR3 and MCF10a cells (cyan) and 2D TPEF images of
the same cells stained with Nile-Red (red). In the merged images (third column), the co-localization
of THG-TPEF signals is presented in white color. The scale bar depicts 5 µm.

5.3 Quantification of THG signaling in breast cancer cell lines

In this essay, it was possible to further utilize the THG modality for getting quantitative information.
In an attempt to quantify THG signaling, THG intensity values were collected, stored and processed
using the Image J software (see Chapter 4).

THG signal quantification was performed by setting a constant threshold, so that regions gener-
ating high levels of nonlinear signal were exclusively detected (Figure 5.11). The threshold was set to
allow only 30% of the THG signal of the cell area to be analyzed and measured. The quantification of
mean THG area was calculated from the 10 central sequential z slices of each cell. For this quantifi-
cation analysis, forty (40) cells were tested in each case. Significance levels were set at the p<0.005
levels using the ANOVA test. Data statistical analysis was performed using SPSS 16.0 software.
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Figure 5.11: Quantification of THG signals using threshold images: (a) sequential 2D THG images of
a cancer cell and below their threshold image respectively.

Figure 5.12 a provides the intercorrelations of THG area among the eight different cell types.
From the graph below, we can see that the mean total area (mean number of pixels above an intensity
threshold) of THG values of PBMCs reported significantly lower THG area (p<0.05) than the cancer
cells. In addition both HER2-positive BT474 and SKBR3 breast cancer exhibited significantly higher
values as compared to all other cells.
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Figure 5.12: THG signal quantification depicted as (a)mean total area, (b)mean THG total area divided
by the surface cell area. Data represent mean values ± S.E.M. (n=40 each case). The ∗ ∗ ∗ denotes
p<0.005 statistical significance.

Taking into consideration the cell size (normalization by dividing the mean total area by the sur-
face cell area of each cell type), HER2 positive cells were still demonstrating significantly increased
levels of THG signal (p<0.05; Figure 5.12b). These results indicated that THG signal quantification
could distinguish HER2 cells from the other types of breast cancer. This finding is in agreement with
prior studies that denote the increased cytoplasmic lipid accumulation detected in cells during inflam-
mation and infectious diseases [26, 27, 31].

Moreover, the division of THG area by the cell surface area revealed that cancer cells could be
categorized as to their subtype. However, one should not normalize the results as to cell area, because
size is an important feature of cancerous versus physiological cells.

Dissecting THG signal quantification into the different cellular compartments, while maintaining
the same threshold, there was an attempt to isolate the THG signal acquired from the cell surface
membrane, the intracellular compartments as well as the nuclear membrane (Figure 5.13). For the cell
compartmental quantification, cellular, nuclear membrane and intracellular signaling were isolated
manually and measured using Image J software.
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Figure 5.13: z projection THG images of cancer cell’s parts (a) whole cell (b) cellular membrane (c)
nucleus area and (d) intracellular area. Lower their threshold images are shown respectively. Scale bar
depicts 5 µm.

Figure 5.14: THG area of the different cellular compartments (intracellular organelles, cellular mem-
brane, nucleus) divided by the total area of each cell.

Quantification of the THG signal in the different sub-cellular regions demonstrated that BT474
cells mostly displayed intracellular localization of the signal, while in MDA-MB231 cells the cellular
membrane was the major source of THG signal. In normal PBMCs, signal mostly originated from nu-
clear membranes, whereas in SKBR3 cells THG signal was emitted by surface membrane, intracellular
area as well as the nucleus (Figure 5.14).

Moreover, THG intensity signal quantification analysis was performed in breast cancer cell lines
and PBMCs. This quantification analysis was normalized to a standard THG intensity value and then
quantified by setting a constant threshold so that only the regions that provide high THG signals would
be examined (see Chapter 4). The weighed mean pixels value of each cell was obtained by repeating
this procedure for the 10 central slices of the sample. THG intensity quantification revealed that all
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breast cancer cell lines displayed significantly higher values as compared to PBMCs (p<0.005) (Figure
5.15).

Figure 5.15: THG intensity. Data represent mean values± S.E.M. (n=40 each case). The ∗∗∗ denotes
p<0.005 statistical significance.

Summarizing the above results in a 3D graph can easily be concluded that THG microscopy has
the potential to discriminate between breast cancer cells of different subtypes and could therefore be
used for the label-free detection of breast cancer cells among PBMCs (Fig. 16). Thus, quantification
of the THG signal provides an objective classification pattern.
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Figure 5.16: 3D graph for the distinction between cancer and PBMCs cells via THG signals quantifi-
cation. THG area/ surface area of the cell in x-axis, THG intensity values in y-axis and cell surface area
in z- axis. The Her2 positive cancer cells (BT474 and SKBR3) and the PBMCs normal cells appeared
clearly as separable sub populations of spots in the scatter plot (N=20 for each cell type).

5.4 FTIR spectroscopy and correlation to THG signal of breast cancer
cell lines

In an attempt to correlate THG signalling to chemistry, one representative cell line from each subtype
type of breast cancer cells was submitted to FTIR analysis. FTIR spectroscopy has been identified
as a viable method for lipid analysis [50–52]. Due to their complex chemical composition, lipids ab-
sorb in many different regions of the FTIR spectrum. Specifically, characteristic lipid bands, such as
the aliphatic group stretching (2800-3000 cm−1) and (900-1800 cm−1) permit qualitative and quan-
titative analysis of lipid content. Given that each lipid possesses an IR signature uniquely defined
by its chemical composition and structure, IR spectroscopy further offers a means of qualitative lipid
discrimination.

For FTIR analysis, a smaller sample of breast cancer cell lines was chosen because of the difficulty
of obtaining the numbers of cells needed (see Chapter 4). Figure 5.17 depicts the obtained FTIR spectra
of the breast cancer cell lines (BT474, MCF7, MDA-MB231) and control cells (PBMCs). As it can
been seen, the spectra of PBMCs present lower absorbance values compared with breast cancer cell
lines. Appendix A shows the complement collected data of FTIR peaks for each cell type.

70



CHAPTER 5. DISTINCTION BETWEEN BREAST CANCER CELL SUBTYPES USING THIRD
HARMONIC GENERATION MICROSCOPY

Figure 5.17: FTIR spectra of cancer cell lines (BT474, MCF7, MDA-MB231) and control cells
(PBMCs).

Focusing on MCF7, MDA-MB231, BT474 cells and PBMCs, the FTIR spectra analysis could
clearly distinguish between cancer cells and control PBMCs, which were always showing lower ab-
sorbance levels (Figure 5.17). However, except from the absorbance amplitude, analysis of FTIR
spectra could not reveal any specific wavelengths differentiating PBMCs from cancer cells. The com-
plete spectral analysis is shown in Appendix A.

A qualitative inspection between the cells revealed several characteristic features of the FTIR
spectra. In particular, specific FTIR spectra were presented only in cancer cells. However, the distinct-
ness between the different cancer cell lines and PBMCs was minimal. Consequently, further analysis
of spectra derivative was accomplished. The first order derivative analysis was acquired and could
not reveal any specific features differentiating PBMCs from cancer cells. For this reason, second or-
der derivative analysis was accomplished on cancer cell lines and PBMCs. As was pointed out, FTIR
spectra were obtained from cells for possible complementarity of THGmeasurements. Thus this thesis
focused on 2nd derivative analysis of lipid bodies and specifically concentrated on spectra character-
izing cholesterolsphingomyelin rich regions, as a simulation to lipid rafts.

Figure 5.18: Schematic diagram of lipid raft.
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Except from lipid bodies which have been considered to play an important role in the tumorigenic
process, lipid rafts have also been shown to be involved in cell adhesion and migration of tumour
cells [53]. Lipid rafts are cholesterol-enriched microdomains of the cell membrane and possess a
highly dynamic nature (Figure 5.18). Lipid rafts have been implicated in cell survival, proliferation,
invasion, cell adhesion, protein sorting, and cholesterol metabolism [54]. A significant number of
proteins involved in cancer development are associated with lipid rafts. The most important properties
of lipid rafts are that they are small, dynamic and heterogeneous, and can include or exclude proteins to
variable extents. There is growing interest in the possibility of targeting lipid rafts for cancer treatments
due to their role in the regulation of many steps of tumour transformation and progression, such as the
apoptotic pathways [44]. To evaluate whether membrane acquired THG signal could correspond to
lipid rafts, FTIR analysis was performed and correlated to THG signalling.

Calculation of second order derivative indicates the rate of change of curvature with respect to
wavelength and offers additional information about the spectra. Upon acquisition of 2nd derivative, the
calculation of the 2nd derivative mean area of FTIR spectra, unwrapped some significant differences
between the different breast cancer cell lines and PBMCs (Figure 5.19).

Figure 5.19: 2nd derivative of FTIR spectra of cancer cell lines (BT474, MCF7 , MDA-MB231) and
control cells (PBMCs) specified in lipid regions a (3000-2800 cm−1), b(1800-1450 cm−1).

Concentrating on the 2nd derivative spectral peaks 1737 cm−1 (lipids), 1746 cm−1 (lipids), 2845
cm−1 (lipids, cholesterol/phospholipids), 2853 cm−1 (lipids/phospholipids), 2910 cm−1 (cholesterol/phospholipids)
mainly corresponding to lipid rafts, it could observed that BT474 cells displayed significantly higher
mean areas as compared to MCF7, MDA-MB231,and PBMCs (p<0.005) (Table 5.2) (Figure 5.19).
Table 5.2 summarizes the chemical information [52] of these specific peaks and the corresponding
mean integrated area of breast cancer cell lines and PBMCs, respectively.
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Table 5.2: Integrated 2nd derivative spectra depict the concentration (spectra peak area) of specific
chemical bonds that presented in breast cancer cell lines and PBMCs.

Wavenumber (cm−1) Chemical Information BT474 MCF7 MDA-MB231 PBMCs

1737 C=O band, C=O stretch-
ing lipids

0.52 0.25 0.14 0.08

1746 v(C=C) lipids, fatty acids 0.49 0.23 0.21 0.08

2845 Stretching C-H (choles-
terol, phospholipids)

0.40 0.23 0.22 0.15

2853-8 Symmetric stretching vi-
brations of CH2 of acyl
chains (lipids), Asymmet-
ric CH2 stretching mode
of the methylene chains in
membrane lipids

0.73 0.11 0.08 0.09

2910-2 Cholesterol, phos-
pholipids. Stretching
vibrations of CH2 and
CH3 of phospholipids.

0.63 0.23 0.13 0.01

In Figure 5.20 the fraction of FTIR 2nd derivative area of breast cancer cell lines and PBMCs
(N-3 respectively for each cell type) can been seen.

Figure 5.20: Percentage of FTIR 2nd derivative spectrum area at wavelengths 1737, 1746, 2845, 2853
and 2910 cm−1. Data representing mean values of three single experiments of the five different peaks
mainly correspond to lipid rafts. BT474 cells appear higher values as compared to MCF7, MDA-
MB231 breast cancer cells and PBMCs. SEM is in the order of 25% of the values (not shown) due to
the limited number of FTIR measurements (n=3 in each case).
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After the descriptive FTIR analysis, the obtained FTIR integrated area that corresponds to the
concentration of the respective chemical bonds was correlated to THG signals. Specifically, the results
of Table 5.2 correlated to THG mean lipid surface area and THG signal intensity (Figure 5.21).

Figure 5.21: Correlation of FTIR 2nd derivative spectra with THG (a, left column) mean area divided
by the surface cell area and (b, right column) mean THG intensity values for specific peaks of spectrum
of lipid regions. With exception of the mean THG intensity at 2853 cm1 (R2

2853 = 0.4474, Figure
5.21b4), in all other cases, satisfactory fitting values were obtained.

These results correlated to the mean THG area divided by the cell surface (R2
1737= 0.9958, R2

1746

=0.9592, R2
2845 =0.9675, R2

2853 =0.9198, R2
2910 =0.9954, Figure 5.21A) and to THG intensity (mean

pixel value for each slice of a cell was calculated by multiplying the representative area with the
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mean intensity value of the corresponding pixels, R2
1737 =0.7264, R2

1746 =0.8017, R2
2845 =0.7436, R2

2853

=0.4474, R2
2910 =0.8922, Figure 5.21B).

The above findings showed that the mean area of 2nd derivative spectra was correlated with
THG signal mean area and intensity. Therefore, the results presented here showed for the first time a
correlation between THG imaging and FTIR analysis, relating thus THG imaging to chemistry. Other
techniques, such as Coherent Anti – stokes Raman Scattering (CARS) microscopy has been proposed
as a promising possibility tool in chemical imaging with the benefit of providing chemical information.
However, CARS has not gained widespread adoption for routine visualization of lipid depositions for
two main reasons; first the cost of acquiring CARS microscopy instrumentation is substantial and
second setting up and operation of a CARS microscope requires considerable expertise in nonlinear
optics and attentive maintenance, including frequent fine-tuning and precise alignment of two tightly
synchronized, mode-locked, ultra-fast laser light sources [55–57]. In contrast THG imaging requires
a single pulsed-laser light source, alleviating the technical challenges of implementing more complex
techniques to detect fat stores in living cells.

5.5 Conclusion

Nonlinear optical imaging techniques shed new light in the delineation of various biological and
biomedical processes while providing a strong impact on early detection of diseases [18, 22, 58].
In this thesis, THG microscopy was used as a new, label free, easy to use, non-destructive imaging
technique for the classification of different subtypes of breast cancer cell lines and their distinction
from non-cancer cells. The discrimination between the different types of cells was based on the quan-
tification of collected THG signals and their correlation to FTIR spectra. It was observed that breast
cancer cells displayed an increased lipid content compared to normal cells, which correlated to FTIR
2nd derivative mean spectra area of cholesterol/ spingomyelin rich areas that possibly correspond to
lipid rafts.

Previous studies had shown that THG imaging could distinguish between activated and non-
activated microglia cells [22]. Breast cancer cell lines, which are expected to display a constantly
metabolically activated profile, were shown to provide higher levels of THG signal in terms of both
intensity and mean signal area, as compared to controls. Surprisingly, each cell subtype showed differ-
ent THG signal location. Luminal cell lines showed intracellular and membrane THG signal, HER2+
cells lines depicted mainly intracellular THG signal, while triple negative cell lines showed mainly
nuclear and cellular membrane signal.

The cytoplasmic structures were demonstrated to co-localize with LDs, which is in agreement
with previous observations [21, 22, 25]. Indeed, increased numbers of LDs have been correlated to
various pathologic conditions. Thus, increased cytoplasmic lipid accumulation in leukocytes and other
cells has been observed in a number of clinical and experimental inflammatory and infectious diseases
[23, 26, 27, 30].

Correlating THG imaging to organelle chemistry would be a quite important feature to the analysis
of biological samples. Since THG signal is generated from the refractive index changes and dispersion,
it can be hypothesized that chemical changes to the membranes could affect THG signalling. Indeed,
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aromatic hydrocarbons cause dilation of the intracellular space, altering thus intra-cytoplasmic vac-
uoles [17, 59, 60]. The correlation of THG signal area and intensity to C-H, C=O stretching, cholesterol
and phospholipid spectra indicates that THG signal could reflect the presence of aromatic hydrocarbons
and cholesterol. In addition, cholesterol and the carbonyl group of sphingomyelin is obscured by the
complexity of different possible hydrogen bonding and coupling between the N–H and the C=O group
vibrations, apparent in lipid rafts [50]. Thus, the increased THG signal observed in activated cells
could be extrapolated to increased lipid raft content of the membranes. Further studies using artificial
membranes with variable hydrocarbon, sphingomyelin and cholesterol constitution are needed to def-
initely demonstrate such correlation. The correlation of THG signalling to chemistry could open new
areas of research and technology, where fast label free imaging could provide valuable information on
the malignant area of the cells or tissues.

The presented work has a significant clinical potential, since it perceives quantitative changes
in healthy and malignant human cells. Understanding the intracellular lipid droplet distribution and
membrane morphology could provide information on lipid metabolism in tumour cells for exploitation
as therapeutic targets [23–25]. Althoughmore research is needed to understand the correlation between
lipids and cancer pathology and automate the segmentation analysis, the nonlinear imaging modality
of THG has the potential to discriminate among the different cancer cell types [58]. THG microscopy
assesses lipid andmembrane changes in healthy, cancer cells and tissues ex vivo by absolute parameters
that quantify inflammatory damage. This paves the way for novel, label free methods to quantify
therapeutic response in cancer and computerize histological examinations in terms of digital pathology.
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Chapter 6

THG microscopy in breast tissue

In the previous chapter, THGmicroscopy used to differentiate and categorize the different breast cancer
cell subtypes of control cells. Herein, nonlinear microscopy utility was integrated in the case of human
breast cancer tissues. The main object of this research was to find a new diagnostic tool to recognize
and grade the tumor type using nonlinear microscopy, without the need of staining the preparation or
damage of the tissues. Quantification analysis of THG signals successfully differentiated malignant
from normal tissue samples and discriminated the different grades of tumor tissues based on their
THG area and THG intensity signals. Additionally, FTIR spectroscopy operated with three different
methods, was able to provide chemical information about the different tissues and correlated with THG
signals.

6.1 Breast cancer and diagnosis

Nonlinear microscopy has already been successfully utilized as diagnostic tool for the distinction of
cancer cells from control cells. In this chapter, nonlinear microscopy will focus on the analysis of
multicellular layers, namely breast tissues. In tissues, the cells are committed to collaboration by
sending, receiving and interpreting a highly developed set of extracellular signals that can be seen as
social control dictating to each cell, how to act. Thus, cancer could be defined as the disease in which
certain cells cease to respond to normal stimuli.

An abnormal cell that grows and divides out of control and escapes immunosurveillance will give
rise to a tumor. A tumor that has spread beyond the layer of the tissue in which it developed, and is
growing into surrounding healthy tissues is called invasive. As long as the tumor cells do not become
invasive, the tumor is said to be benign. A tumor is considered as cancer (malignant), only if tumor
cells have the ability to invade the surrounding tissue. The invasiveness allows cancer cells to break
loose, enter blood or lymph vessels and form secondary tumors called metastases. The abnormal cell
growth and division together with invasiveness is what makes cancers especially dangerous.

Breast cancer is defined as a malignant growth that originates from breast tissue, mostly from
breast epithelium. Epithelial tissue surrounds the cavities and surfaces of many structures throughout
the body. Its location defines the borders between the internal and external environments and conse-
quently epithelial cells are constantly exposed to mechanical damage. To be able to replace lost cells
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and maintain their integrity, epithelial cells display very good proliferative properties. Indeed, many
of the different cancers throughout the body are in fact the result of uncontrolled proliferation of ep-
ithelial cells. Breast epithelial include the milk- secreting cells in the alveoli, and the ductal cells of
the ducts. Most breast tumors originate from the ductal epithelium, while only a minority originates
from the lobule epithelium. Non-invasive breast cancers stay within the milk ducts or lobules in the
breast, whereas invasive cancers grow into or invade the surrounding healthy tissues or beyond breast,
establishing tumor sites at other locations throughout the body. Most breast cancers are invasive.

Breast cancer is one of the most common malignancies in females worldwide, which caused by a
combination of genetic and environmental factors. Numerous risk factors associated with breast cancer
have been recognized. Nonetheless, not all breast cancer patients have the same clinical picture, but it
believed that some factors increase a woman’s risk of breast cancer more than others [1].

Breast cancers encompass a heterogeneous array of tumor cell types that are classified according
to their histological and molecular characteristics. Currently, breast cancers are sorted into one of at
least four subtypes, although classification methods are being refined as molecular profiling techniques
improve. Each subtype is associated with a different prognosis and course of treatment. Therefore, to
generate the most effective treatment options, investigators need in vitro research tools that represent
the heterogeneity of breast cancers in vivo.

Early detection of breast cancer both primary and recurrent is of considerable clinical importance,
and it can be used to make treatment decisions. Until now, the use of molecular biomarkers assures
that breast cancer (BC) patients receive treatment. Tumor markers play a crucial role in diagnosis,
monitoring response to therapy, early detection of metastasis and determination of recurrence in pa-
tients with breast cancer. However, the real usefulness of tumor markers in the management of breast
cancer has been questioned because of the low diagnostic sensitivity and specificity.

In literature, several studies have demonstrated the relevance of the use of biomarkers obtained
from tissue samples for classification and assessment of tumor development. Although molecular
markers, such as hormone receptors (estrogen receptor [ER]/progesterone receptor [PR]), HER2 and
Ki67 have been used to classify the heterogeneous disease into categories, to predict the prognosis and
determine the treatment modalities, current diagnoses and therapies are incomplete because numerous
patients die of relapsed disease. Thus, improved diagnosis using novel methods for cell evaluation to
decide therapeutic strategy is required [2–5].

Currently, there are not ideal tumor markers that can be specific and sensitive for evaluating the
disease for all cancer patients. Consequently, there is an ongoing search for new tools to reduce recalls
and unnecessary biopsies while maintaining or improving cancer detection rates.

The idea of this research is to specifically use the intrinsic optical property of the tissue to re-
veal qualitatively and quantitatively information of cells in breast cancer tissues by using nonlinear
microscopy.

6.2 Nonlinear microscopy in cancer studies

As previously referred in detail, label-free nonlinear optical microscopy produces high-resolution im-
ages with rich functional and structural information based on intrinsic molecular contrast. Several
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studies have shown that nonlinear optical microscopy provides high probing sensitivity and makes it
a potential imaging method for early detection of cancer and inflammations [6–14].

The last decade, nonlinear optical modalities have been used to detect the response in neoadjuvant
therapy during cancer [15–17] and to define surgical margins in tissues [9, 15, 18]. Recently, the
application of this technology has been proposed for clinical studies, whereas it has been used for
intravital imaging of biological models [19–21].

The last decade, nonlinear optical modalities have been used to detect the response in neoadjuvant
therapy during cancer [15–17] and to define surgical margins in tissues[9, 15, 18]. Recently, the appli-
cation of this technology has been proposed for clinical studies, whereas it has been used for intravital
imaging of biological models [19–21].

THG is a striking technique that can potentially be translated as a diagnostic tool for the early
detection of cancer and inflammatory disorders ??. In contrast to other nonlinear imaging techniques,
THG not only enables recording of label free images of the biological samples but also potentially
provides quantitatively information of the samples [6, 8, 14, 22, 23]. THG signal can be enhanced by
the presence of a multilayered structure, found in membranes and the lipid bodies [24](see Chapter 5).
Moreover, the THG technique is enabling label free examination of the samples without photobleach-
ing and photoxicity.

6.3 Lipid Bodies as indicators in cancer

During the last decade, LBs were drawn an increased attention by the scientific community. LBs are
considered dynamic and functional organelles and seem to be involved in inflammation and cancer.
Nowadays, there is a general consensus that cancer cells displaymetabolic reprogramming compared to
healthy cells, related not only to mechanisms of ATP synthesis through glycolysis (Warburg effect) but
also to de novo lipid synthesis, with fatty acid synthase (FASN) and sterol regulatory element-binding
protein (SREBP) family as key players in many human cancers. Under physiological conditions, nor-
mal cells tend to maintain lipid levels under control, by regulating uptake, synthesis, and mobilization
from internal storages. In contrast, tumor cells are able to uptake larger amount of lipids, as well as to
enhance lipogenesis and CH production, and to increase FA β-oxidation [25–27].

6.4 Non-linear imaging of breast tissues

The goal of this study is to develop a novel system for determining, as an “imaging pen”, the malignant
tissue limits intravitally during surgery. Thus, as a first approach, nonlinear microscopy was applied
to breast cancer tissues collected from different patients.

Although various studies have shown the potential of label free nonlinear imaging for cancer re-
search, this is the first time in the present study that THG microscopy was employed for the accurate
imaging and quantification of the lipid content and inhomogeneities in breast cancer tissues. In partic-
ular, based on THG signal (mean lipid area, cell volume and intensity ) we could evaluate the tumor
state, the malignant or benign nature of the outgrowth, and further define the grade of cancerous tissue.

Multimodal nonlinear imaging is an emerging microscopy approach gaining widespread use in a
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variety of biomedical applications. It harnesses and integrates the unique capabilities of nonlinear pro-
cesses such as multiphoton fluorescence, second- and third-harmonic generation (SHG and THG) and
combines them seamlessly into a single, unified microscopy platform. A combination of label-based
(e.g. H&E staining) and label-free imaging modalities enables simultaneous acquisition of comple-
mentary structural information within individual cells and elucidates the health of biological tissue at
the submicron level. Figure 6.1 depicts a multimodal nonlinear image of breast cancer tissue. With a
single beam, without the need of any staining, multiple morphological information of the tissue can be
obtained, including autofluorescent proteins (MPEF), inhomogeneities and LBs concentration (THG)
and collagen distribution (SHG). It has to be mentioned that the detected autofluorescence signals is a
combination of 2-photon and 3-photon excitation procedures. NADH (reduced form of nicotinamide
adenine dinucleotide) elastin fibers and flavin adenine dinucleotide (FAD) are the main contributors
to the recorded MPEF signals from the tissue [28]. Moreover, we can detect the cell nucleus in the
tissue as the black area in the cells, which because of its homogeneity makes THG signal to achieve a
destructive interference.
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Figure 6.1: a) Schematic diagram of collecting multimodal nonlinear signal of breast tissue, b) Multi-
modal nonlinear image (MPEF, THG, SHG) . SHG (in red) indicates collagen ,THG (in cyan) reflects
inhomogeneities of the sample and lipid droplets while MPEF (in yellow) distributes autofluorescence
of the tissue. Scale bar depicts 100 µm.

Changes within the tissue concerning its surface, volume, the nucleus/cytoplasm ratio, shape and
density, as well as structure and homogeneity are indicator for cancer [29]. Nonlinear imaging offers
the capability to demonstrate tissue morphology (cells, nucleus, LBs and collagen) without the need
of staining.

In this research, breast tissues from different patients (N=15) were obtained from the hospital
university of Crete. The tissues tested were benign (control) and malignant, characterized to be at
different grades (grade I, grade II, grade III), with a thickness of ∼ 10 µm (see Table 6.1). The grade
of a cancer is representative of the “aggressiveness” of the tumor, where a low grade is considered less
aggressive than a high. The determination of grading from the pathologist is mainly based on three
criteria. The tubule formation, which is the percent of normal duct structures within the tumor; the
nuclear grade, which is the abnormality in size and shape of tumor cells compared to normal cells,
giving a higher grade to cells that are larger, darker and more irregular than normal cells; and last but
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Table 6.1: List of the investigated breast tissues

Subtype Grade

Cancer A1 ER+/PR+

Grade I (N=4)Cancer A2 ER+/PR+
Cancer A3 ER+/PR+
Cancer A4 ER+/PR+

Cancer B1 ER+/PR-

Grade II (N=5)
Cancer B2 ER+/PR-
Cancer B3 ER+/PR-
Cancer B4 ER+/PR+
Cancer B5 ER+/PR+

Cancer C1 ER+/PR+

Grade III (N=4)Cancer C2 ER+/PR+
Cancer C3 ER+/PR-
Cancer C4 ER-/PR-

Control 1 - Normal (N=2)Control 2 -

not least, the mitotic rate, which is a measure of the rate of tumor cells growth and division.

Figure 6.2: Illustration of human breast (a) and the different cases of ductal carcinoma in situ (b).[30]

In this study, most of the cancerous tissues were diagnosed from the pathologists as ductal car-
cinoma (Figure 6.2). Ductal carcinoma in situ (DCIS) is characterized by cancerous cells that are
confined to the lining of the milk ducts and have not spread through the duct walls into surrounding
breast tissue. If DCIS lesions are left untreated, over time cancer cells may break through the duct and
spread to nearby tissue, becoming an invasive breast cancer [31].

Thus the present study included tissues from four patients in grade I and grade III, five patients
in grade II and two control cases. Moreover, in each case, serial sections were submitted to H&E
(Hematoxylin/Eosin) staining for additional evaluation of the tissues (Figure 6.3).
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Figure 6.3: Characteristic H&E stained images of the investigated breast tissues

Figure 6.4 depicts the capability of nonlinear microscopy to visualize large areas of breast cancer
tissue (grade II) approximately in the scale of millimeters. Moreover Figure 6.4c depicts the comple-
mentarity of nonlinear image -SHG in red and THG in cyan- to the H&E staining of the tissue section.

Figure 6.4: Nonlinear images (a. SHG, b. THG) of breast cancer tissue and the multimodal nonlinear
image with the corresponding sequential tissue section image of H&E stained. Scale bars denotes 100
µm

Figure 6.5 demonstrates representative THG and SHG images and their corresponding H&E
stained images (serial tissue sections) of control tissue samples, grade I, grade II and grade III. These
characteristic nonlinear images show the cells, their intracellular organelles (mainly LBs) as well as
inhomogeneities in the tissue through THG signal in cyan and collagen distribution and organization
through SHG signal in red. In control tissues, the cells are oriented along with collagen and depict
regular cell size and nucleus. Morphologically, the cancerous cell is characterized by a large nucleus,
having an irregular size and shape, as depicted by THG images as well. Moreover, the collagen SHG
signal in control tissues is higher as compared to malignant tissues. As tumor progresses, we can see
cell proliferation with irregular nucleus and cell size as well as collagen degradation. The structural
alterations of the collagen in the presence of malignancy has been investigated in numerous studies
[32–34].
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Figure 6.5: H&E images and the corresponding nonlinear images (SHG & THG) of benign and ma-
lignant (grade I, grade I , grade III) breast tissues. Characteristics THG images of tissues indicate
LBs and inhomogeneities and SHG images collagen. Scale bar of nonlinear images depicts 5 µm.
The squares in H&E images indicate the regions that were scanned via the performance of nonlinear
imaging measurements.

6.5 Calculation of nuclear to cytoplasmic ratio

Because of the heterogeneous nature of breast tissue classification using cytomorphology and biolog-
ical markers have been attempted to predict the behavior of the different lesions so far. Irregularities
in both nuclear shape and size (‘pleomorphism’), coupled with changes in chromatin amount and dis-
tribution, remain the basic microscopic criteria for a cytologic diagnosis of cancer [35]. In this study,
THG utility can provide new insights and offer numerical analysis of the nuclear to cytoplasmic ratio
(N/C ratio) that is an indicator of cancer prognosis for pathologists. Appendix B presents in detail the
individual cell detection and isolation from the tissues via the performance of THG measurements.

Irregular nuclei, increased N/C ratio and conspicuous single prominent nucleoli were depicted
in cases of cancerous tissues by utilizing THG imaging (Figure 6.6). In particular, the cells in lower
grade showed moderate variation in nuclear size and shape. On the other hand, the cells in higher
grades indicated variation in nuclear size and shape (pleomorphism) with a high nuclear- cytoplasmic
ratio (N/C).
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Figure 6.6: Morphological characteristics of the cell in benign and cancerous tissues respectively via
THG imaging.

Morphologically, the cancerous cell is characterized by a large nucleus, having an irregular size
and shape, the nucleoli are prominent and the cytoplasm area is reduced. The nucleus of neoplastic
cells plays through its changes a main role in the assessment of tumor malignancy. Changes concern its
surface, volume, the nucleus/cytoplasm ratio, shape and density, as well as structure and homogeneity.
Figure 6.7 depicts irregularities of nuclear that detected via THG imaging in characteristic cells of
cancerous tissues [29]. In addition, THGmeasurements of cells can offer precise images of the nucleoli
due to the presence of an interface between nucleus and nucleoli (inhomogeneity) (Figure 6.8).

Figure 6.7: THG images of cancerous tissues. Arrows depict the irregular nuclear (distributed as black
area) of cells.

Figure 6.8: THG images of cells in cancerous tissues. Arrows depict the nucleoli located in nuclear
area (interface of nucleus and nucleoli).

Moreover, THG utility can offer structural information about the nuclear/cytoplasmatic ratio that
is an indicator of cancer prognosis for pathologists. Nuclear morphometry successfully differentiates
benign from malignant tissues and grading the different cancerous cases [36].

Following morphometric features of the cells, it was calculated based on THG signals, the mean
nuclear area (MCA), mean cytoplasmic area (MCA) and the nucleus to cytoplasmic ratio (N/C ratio)

89



6.6. QUANTIFICATION ANALYSIS

respectively (Table 6.2). The results showed increased values of N/C ratio as increasing the grade
of cancer (Figure 6.9) with significant statistically differences. These results are in agreement with
previous related studies [37].

Table 6.2: Comparison ofmean nuclear area (MNA) ,mean cytoplasmic area (MCA) andmean nuclear
to cytoplasmic ration (N/C ratio) in the various categories (N=150 cells for each case)

Category) Number of cases MNA±SEM (µm2) MCA±SEM (µm2) N/C ratio±SEM

Control 2 82.54 ± 0.67 267.47 ± 0.67 0.254 ± 0.005
Grade I 4 58.82 ± 0.47 161.38 ± 1.30 0.352 ± 0.003
Grade II 5 77.35 ± 1.51 186.62 ± 0.62 0.392 ± 0.002
Grade III 4 64.11 ± 0.52 145.32 ± 1.17 0.443 ± 0.002

Figure 6.9: Calculation of N/C ratio of cells in benign (control) and cancerous tissues (grade I,II, III).

6.6 Quantification analysis

Except of the morphologically evaluation of the unstained tissues offered by the THG modality, THG
also enables potentially quantitative information on the investigated tissues. In this study, nonlinear
images could provide further details related with THG signal area, THG signal intensity and also the
volume of each cell in the tissue.

As an initial step, after setting a constant threshold, cell detection and isolation was separately
handled in order to perform quantification analysis (Figure 6.10). The identification was manually ac-
quired using the Image J program. After isolating the cells from each tissue, these were then submitted
to quantification processing. In this study, the cell volume, the mean THG signal area of each cell and
the mean THG intensity signal of the tissue area, were calculated.
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Figure 6.10: Illustration of THG tissue processing. The isolation of individual cells for quantification
analysis (based on their LBs, membranes and inhomogeneities). Scale bar depicts 5 µm

THG signal area that represents the amount of LBs and inhomogeneities in the tissue was shown
to differ in benign and malignant tissues (Figure 6.11a). In particular, the cells from control tissues
depicted significant lower values of THG signal are as compared to cells of cancerous tissues. More-
over, B1 and C3 tissues that belong to subtype ER+/PR- showed higher values as compared to the other
tissues. When pooling the results of the different samples following their grade, a significant linear
increase of THG signal area could be detected along with cancer progression (higher grades) (Figure
6.11b).

Figure 6.11: Quantification of THG signal area of breast tissues (N=40 cells of each tissue)

In addition, the calculation of cell volume in the different tissues showed that cancer cells dis-
played increased volume as compared to cells in control tissues. In addition, samples in grade III
presented high deviations of the cell volume, also indicating the dissimilarity of the cells in case of a
progressive cancer (Figure 6.12).
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Figure 6.12: Quantification of cell volume (N=40 cells of each tissue)

When the number of THG signal area of each cell was divided by the respective cell volume
(normalization by dividing the mean total area by the cell volume of each cell), significant difference
between the cells of control and cancer tissues was detected (Figure 6.13). In particular, the cells in C4
tissue sample presented statistically significant higher values that may be connected to the profile of
aggressiveness (ER-/PR-). Such analysis that takes into consideration the cell volume, confirms that
independently of the cell volume, there is an increase of THG signal area.

Figure 6.13: Quantification of mean THG signal area divided with cell volume (N=40 cells of each
tissue)

Moreover, it is apparent from the data presented in Figure 6.14 that control tissues can be differen-
tiated from breast cancer tissues, based on THG signal intensity. It has to be noted that in this analysis
the quantification was based on the total area of the tissue but not in particular cells as previously
shown, therefore a higher deviation between the same grade of tissues was observed.
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Figure 6.14: Quantification of THG signal intensity (N=40 cells from each tissue).

Summarizing the obtained results concerning mean THG signal area, mean THG area divided by
the cell volume and THG intensity for N=40 cells of a characteristic tissue of each grade, it can be
easily seen that THG undoubtedly enables discrimination of the different sample categories (Figure
6.15).

Figure 6.15: 3D graph for the distinction between cancerous and control tissues via THG signals
quantification. THG area/ cell volume area of the cell in x-axis, THG intensity values in y-axis and
mean THG area in z- axis. The grade III cancer tissue and the control tissue appeared clearly as
separable sub populations of spots in the scatter plot (N=40 for each tissue type).

Such analysis could also be applied to follow up the progression of breast cancer in a patient. In
this study, tissues C3 and control 1 are from the same patient in control and cancerous (grade III) states
respectively. Comparing these tissues, it can be seen that cells of the different tissues can be easily
discriminated (Figure 6.16).
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Figure 6.16: 3D graph for the distinction between cancerous and control area tissues of a patient via
THG signals quantification. THG area/ cell volume area of the cell in x-axis, THG intensity values in
y-axis and mean THG area in z- axis. N=40 cells for each tissue.

By the same token, A4 and B3 samples represent the progression of grade I to grade II in the same
patient. In this analysis, there is a relevant discrimination of the grades but not significant between the
samples (Figure 6.17).

Figure 6.17: 3D graph for the distinction between cancerous and control tissues of same patient via
THG signals quantification. THG area/ cell volume area of the cell in x-axis, THG intensity values in
y-axis and mean THG area in z- axis. N=40 cells for each tissue.

In addition, THG signal analysis could gauge the number of cells that were detected in the scanned
region of each tissue section. Thus, in a scanning region (45 µm × 45 µm) of almost 0.002 mm2, ∼
7 cells could be detected in control tissues, ∼ 13 cells in grade I tissues, ∼ 21 cells in grade II tissues
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and ∼ 40 cells tissues in grade III tissues.
Finally, in the elucidation of cancer cells included in a tissue and the estimation of the percentage

of control cells in malignant tissues was carried out. Based on THG signal area and cell volume, we
could evaluate the percentage of control cells in the cancerous tissues. The output of this analysis
indicates that for the examined tissues, in 0,1 mm2 area, grade I samples included of 39% of control
cells, grade II comprised 24% control cells, while grade III samples showed 23% of control cells. This
result implies that for greater grades of cancerous tissues, cancer cell proliferation is increasing, while
the amount of control cells is decreased.

6.7 FTIR spectroscopy in breast tissues

FTIR spectroscopy has proved to be a powerful tool for the study of biological molecules and the
application of this technique to biological systems is continually expanding. Biological elements,
including lipids, proteins, peptides, biomembranes, nucleic acids, tissues and clinical samples, have
all been successfully studied by using infrared spectroscopy. This technique, within the last decade
has rapidly given rise in the number of studies of more complex systems, such as breast cancer tissues
[38–43].

Previously we employed FTIR spectrometer to examine breast cancer cell lines. In this chapter,
FTIR spectra were acquired in two different configurations, namely absorption and attenuated total
reflection (ATR). The tissue samples were deposited on infrared transparent windows of barium flu-
oride. Initially, absorbance spectra measurements of the total tissue region were recorded by using
Bruker Vertex 70v FT-IR spectrometer. In this case, spectra analysis did not indicate any significant
difference between the tissues. Therefore, the samples were then analyzed using a Bruker HYPERION
2000 FT-IR microscope which is attached in a Bruker Vertex 70V FTIR spectrometer and provides the
possibility to collect spectra at specific regions of the tissue (∼ 50 µm).
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Figure 6.18: Stack graphs of characteristic FTIR spectra of breast tissues.

By using the FTIR microscope with an IR source, it was possible to focus in specific cancer-
ous areas of the sample and acquire the absorbance only from the specific tissue region (Figure 6.18).
However, due to tissue heterogeneity, each sample revealed a specific spectra fingerprint, and therefore
no significant differences could be obtained. For this reason, quantification analysis calculated FTIR
spectra, revealing the concentration of the chemical compounds. To quantitate the differences between
control and cancerous tissues, integration of FTIR spectra was carried out focusing in lipid regions (Ta-
ble 6.3). From each sample tested, an average the spectra of N=15 different regions was obtained. In
addition, for each category of the cancer tissues investigated herein, samples from 2 patients (N=2)
were analyzed. The results showed that cancer tissues displayed higher concentration of lipid com-
pounds in 1085 cm−1 (membrane phospholipids, amide III), 1399 cm−1 (vibrational modes of methyl
and methylene groups of proteins and lipids and amide groups) , 1469 cm−1 (CH_2 bending of the acyl
chains of lipids), 1646 cm−1, 1653 cm−1, 1736 cm−1,1750 cm−1 (1600-1800 cm−1 C=O stretching of
lipids), 2848 cm−1 (Stretching vibrations of CH2 &CH3 of phospholipids and cholesterol ), 2873 cm−1

(Symmetric stretching vibration of CH3 of acyl chains (lipids)), 2916 cm−1 (Stretching vibrations of
CH2 & CH3 of phospholipids, cholesterol) and 2956 cm−1 (asymmetric stretching vibration of CH3 of
acyl chains (lipids)).
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Table 6.3: Integrated FTIR spectra The integrated spectra peak area depicts the concentration of
chemical bonds of lipids for control, Grade I, Grade II and Grade III tissue samples.

Wavenumber (cm−1) Description Control Grade I Grade II Grade III

1085 Mainly from membrane
phospholipids (amide III).

0.016 0.025 0.036 0.027

1399 CH2 wagging vibration of
the acyl chains (phospho-
lipids)

0.028 0.036 0.063 0.029

1469 CH2 bending of the acyl
chains of lipids

0.322 0.529 0.540 0.550

1646 C=O stretching (lipids) 0.004 0.006 0.006 0.006
1653 C=O stretching (lipids) 0.011 0.015 0.023 0.023
1736 C=O stretching (lipids) 0.013 0.018 0.028 0.024
1750 C=O stretching (lipids) 0.025 0.028 0.031 0.032
2848 Stretching vibrations of

CH2 & CH3 of phospho-
lipids, cholesterol

7.903 9.952 11.270 10.250

2873 Symmetric stretching vi-
bration of CH3 of acyl
chains (lipids)

0.008 0.032 0.0097 0.024

2916 Stretching vibrations of
CH2 & CH3 of phospho-
lipids, cholesterol

15.441 18.979 23.237 17.992

Figure 6.19: Characteristic ATR spectra of breast tissues (control and cancerous). One representative
area for each tissue is shown (N=2 patients for each state of tissue).

Platinum ATR unit with a single reflection diamond crystal. ATR spectroscopy could provide
information at the tissue surface (∼ 2 µm). Figure 6.19 depicts a characteristic spectrum from each
tissue. First, spectra measured in reflectance mode were converted using the Beer – Lamberts law to
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absorbance. Comparing ATR spectra from control and cancerous tissues it was shown that controls dis-
played lower amplitude of absorbance than cancerous samples. However, except from the absorbance
amplitude, no significant differences were recorded. For this reason, integration of ATR spectra could
provide a quantitative evaluation of particular chemical bonds, which correspond to specific chemical
compounds (Table 6.4). The obtained results of this analysis showed that only minimal changes could
be depicted between control and cancerous tissues, mainly in 1063 cm−1 (C-O-C stretching of phos-
pholipids), 1085 cm−1 & 1237 cm−1 (membrane phospholipids, amide III) , 1646 & 1653 cm−1 (C=O
stretching of lipids), and 2873 cm−1 (Symmetric stretching vibration of CH3 of acyl chains (lipids).
Interestingly, the results obtained from the integrated areas (lipid compounds) of both ATR and FTIR
microscopy analysis showed some common peaks and quite similar differences between control and
cancerous tissues at 1085 cm−1, 1646 cm−1 , 1653 cm−1 and 2873 cm−1.

Table 6.4: Integrated ATR spectra

Wavenumber (cm−1) Description Control Grade I Grade II Grade III

1063 C-O-C stretching (phos-
pholipids).

0.003333 0.003667 0.009333 0.004

1085 Mainly from membrane
phospholipids (amide III).

0.009 0.009333 0.017778 0.012667

1237 C-O-C stretching (phos-
pholipids).

0.039333 0.045 0.041667 0.0515

1646 C=O stretching (lipids) 0.660167 0.775333 0.962444 1.4285
1653 C=O stretching (lipids) 0.002 0.002333 0.003889 0.004333
2873 Symmetric stretching vi-

bration of CH3 of acyl
chains (lipids)

0.004667 0.008667 0.006556 0.007167

In order to obtain supplementary information on the tissues, 2nd derivative analysis of ATR spec-
tra was applied (Figure 6.20). Such calculation showedminimal differences in the lipid regions of grade
III samples, as compared to the rest of the tissues (Table 6.5). Particular differences were observed
at 1453cm−1 CH3 bending vibration (lipids and proteins), 2846 cm−1 stretching vibrations of CH2 &
CH3 of phospholipids & cholesterol, 2857 cm−1 (asymmetric CH2 stretching mode of the methylene
chains in membrane lipids), 2872 cm−1 (symmetric stretching vibration of CH3 of acyl chains (lipids)),
2915 cm−1 (Stretching vibrations of CH2 & CH3 of phospholipids, cholesterol), 2926 cm−1 (vas CH2

lipids) and 2957cm−1 (vas CH3 lipids). However, this method lacks of specificity because ATR spec-
trometer provides mainly information of the surface of the tissue (around 2 µm), as compared to the
corresponding spectra region which extends to some milimeters. In contrast FTIR microspectroscopy
provides the capability to scan smaller tissue regions.
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Figure 6.20: 2nd derivative integrated area of ATR characteristic spectra.

Table 6.5: Integrated 2nd derivative ATR spectra

Wavenumber (cm−1) Description Control Grade I Grade II Grade III

1453 CH3 bending vibration
(lipids and proteins).

0.0005 0.0005 0.0001 0.0008

2846 stretching vibrations of
CH2 & CH3 of phospho-
lipids & cholesterol

0.02267 0.01683 0.01283 0.02617

2857 asymmetric CH2 stretch-
ingmode of themethylene
chains in membrane lipids

0.004667 0.003833 0.0030 0.005667

2872 symmetric stretching vi-
bration of CH3 of acyl
chains (lipids)

0 0 0 0.00167

2915 Stretching vibrations of
CH2 & CH3 of phospho-
lipids, cholesterol

0.015 0.012 0.009 0.018

2926 vas CH2 lipids 0.0040 0.0033 0.0027 0.0052
2957 vas CH2 lipids 0.0028 0.002 0.0015 0.0033

6.8 Correlation of THG signal with FTIR spectra

Many studies have dealt with cancer cells and their need for large amounts of lipids used for cellular
membrane generation due to high cell proliferation rates [44]. The previous analysis of THG signal area
that is mainly originated from LBs showed that LBs could differentiate control from cancerous tissues
and that tumor progression correlatedwith THG signal area increase. Since a significant contribution to
the calculated THG signal area arising from LBs, it was then attempted to define the lipid compounds
in the THG area by correlating THG area signal to FTIR integrated data. Because of breast cancer
heterogeneity, such analysis focused only on lipids bonds specified in peaks 1399 cm−1, 1469 cm−1,
1736 cm−1, 1750 cm−1, 2873 cm−1 and 2956 cm−1.
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Figure 6.21: Correlation of FTIR spectra correlated with mean THG area in specific lipid bonds.

Indeed, the results of such analysis indicated that there is a significant correlation between the
mean THG signal area and the integrated FTIR spectra of lipid compounds (R2 ∼0.81) (Figure 6.21).

Figure 6.22: Correlation of FTIR spectra with mean THG area divided by cell volume in specific lipid
bonds.

Additionally, when the relation of cell volume with the integrated FTIR spectra of lipid com-
pounds was examined, a significant correlation was also detected (R2 ∼0.87) (Figure 6.22).

6.9 Conclusion

Cancer is a disease caused by a combination of genetic and environmental factors. Currently, most
types of cancer are recognized when a tumor mass develops and becomes palpable by feel. However,
recent advances in imaging and screening methods have led to the earlier detection of cancer, which
may lead to more effective therapy, significantly reducing the morbidity and mortality rates. Early
detection is one of the most important strategies to improve breast cancer survival, since it gives for
choosing the appropriate therapy and in case of surgery secures the margins of the malignant tissue
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for safe removal. The diagnosis of cancer patients relies on the accuracy of the detection of cancerous
sites in the body.

Determining the malignancy of a tumor using the established diagnosis protocols can take sev-
eral weeks because it includes visits to an oncologist, obtaining a tissue sample (biopsy), and further
histopathological analysis of the biopsied material. A late or missed diagnosis of a primary cancerous
tumor increases the chances that cancer cells will enter the blood circulation, where a single cancer cell
may lead to a secondary tumor; this significantly lowers the patient’s survival. There are two primary
risks associated with the above-described diagnosis protocol that increase the probability of metastasis.
First, if a patient has a malignant tumor at the time the tumor is diagnosed, the tumor may grow into
a blood vessel and cancer cells may be released into the blood circulation. Secondly, there is a risk
associated with the invasiveness of biopsy; during a surgical cut or puncture, parts of biopsied tissue
can come into direct contact with a blood vessel.

In cancer diagnosis, there is a growing need for the development of a multimodal imaging based
diagnostic tool, to objectively evaluate morphological features with subcellular resolution, and molec-
ular compositions that are closely associated with tumor malignancy. Under this perspective, NLOmi-
croscopy was proven to be useful in cancer research. These techniques have emerged as a valuable tool
for high�resolution, nondestructive imaging of tumors. Following the need for novel non-destructive
techniques in diagnosis of breast cancer, nonlinear optical imaging and FTIR spectroscopy were car-
ried out to differentiate cancerous of benign tissues. Nonlinear optical modalities such as SHG, THG
and MPEF provide unique morphologically information of the tissues, such as collagen (SHG), intra-
cellular structures and inhomogeneities (THG) and autofluorescence proteins (MPEF) with a single
fs laser beam. In this research, THG imaging modality was used to quantify further differences be-
tween benign and malignant tissues. The THG imaging method provides unique capabilities over other
techniques, since it offers visualization of intracellular structures (LBs) and inhomogeneities without
the need of staining. Quantification analysis of THG signals classified the identified regions as nor-
mal or cancerous and discriminated the malignant areas into different cancer grades, based on their
inhomogeneities and LBs content. Complementary FTIR spectra could correlate specific chemical
information of the different tissues. FTIR analysis showed an increased lipid content during cancer
progression. In addition, 2nd derivative analysis of ATR spectra revealed an increased lipid content
of grade III tissues. Correlating the findings of FTIR measurements with mean THG signal area, the
linear regression analysis showed perfect agreement with the increased LB profile during tumor pro-
gression. The data presented here are complementary of existing clinical diagnostic approaches and
can be used as a procedure to confirm the disease and evaluate its severity and treatment efficacy.

NLO images provided comparable results to standard H&E staining and enabled the evaluation of
cell size, cell shape, nuclear shape and intracellular organelles (LBs) without any staining preparation.
This technology was proved sensitive to detect cancer cells in tissues and could aid the surgeon to pre-
cisely excise as an “imaging pen” the unhealthy or precancerous margins of malignant lesion in order
to minimize recurrence. The current scope of in vivo NLOMwould be to determine the requirement or
the best location of an invasive biopsy on a suspect region, rather than to provide an accurate pathol-
ogy diagnosis. Moreover, this would help in reducing the number of unnecessary invasive biopsies
considerably benefitting the patient and the pathologist.
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6.9. CONCLUSION

In conclusion, the sensitivity and specificity of nonlinear optical imaging based diagnosis is com-
pared to conventional histopathology. The deeper penetration of the tumor with nonlinear microscopy
as compared to other techniques (e.g. confocal microscopy) provides three-dimensional imaging and
function deep within the tumor, which could result in new types of therapeutics for tumor biology.
The implementation of this study could be applicable to clinical diagnostic and could be supplement
hitherto existing diagnostic techniques. Automated detection of clinically meaningful malignant re-
gions of interest is an essential step for diagnosis. More broadly, research is also needed to develop a
machine learning algorithm that will be able to predict automatically cancer cells in tissues based on
cell volume, THG area and intensity signal and therefore, categorize the grade of cancer tissue.
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Chapter 7

Detection of the T cell activation state
using non-linear optical microscopy

The final target of this thesis was the development of a non invasive label free imaging technique for
real time monitoring of T cell activation. After studying how nonlinear microscopy could be a useful
diagnostic tool in case of cancer, in this final chapter it was inquired whether nonlinear microscopy
could provide valuable information during treatment. Immunotherapy is an effective and promising
treatment option for cancer. This final chapter describes the study of T cells activation by using Third
Harmonic Generation (THG) imaging as diagnostic tool. Qualitative and quantitative analysis showed
statistically significant increase of THG mean area and THG signal intensity in activated versus rest-
ing T-cells. Moreover, the correlation of THG imaging to chemical information (lipids, cholesterol
distribution) was achieved using Raman spectroscopy.

7.1 T cells

The immune system (from the Latin word immunis, meaning: ”free” or ”untouched”) protects the
body like a guardian from harmful environmental influences and is essential for survival. The adaptive
immune system is crucial for many diseases. The acquired immune system, mainly composed by T and
B lymphocytes, plays a key role in protecting the host from infection. It is important and technically
challenging to identify immune cell types and their activation status in living and intact state, without
staining or fixation. The last years tremendous progress has been made in terms of understanding not
only how the immune system acts, but also how new therapies targeting the immune system might
enrich the strategies which can be used to manage a devastating disease [1–3]. The immune system
works in a coordinated manner to monitor the body for germs or substances that might cause problems.
The immune system is probably the most disseminated and mobile system of the body, consists of
individual cells that are in continuous circulation endlessly surveying peripheral tissues for possible
infection and returning to mount defenses.
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Figure 7.1: Image of a T cell.

T cells that are also known as T lymphocytes (Figure 7.1), are a type of white blood cells that
plays a key role in the immune system. Specifically, the function of T cells is to recognize specific
“non-self” antigens, during a process known as antigen presentation. Once they have identified an in-
vader, they generate specific responses that are tailored to maximally eliminate specific pathogens or
pathogen-infected cells. T cells are the basic type of cells that maintain homeostasis in all systems of an
organism, including hematopoietic, nervous, reproductive and hormonal. T cell activation indicates
the body’s reaction to exogenous and endogenous stimuli. The goal of such activation is primarily
the defense of the organism against exogenous infectious pathogenic microorganisms, or against en-
dogenous oncogenic targets (control of cancer/ mutant cells). In contrast to the beneficial effect of T
cells, the uncontrolled impel triggering them, leads to auto-inflammatory reactions, auto-immunities
and immune deficiencies.

Much of recent focus has been concentrated on the role of the activated immune response and in-
flammation in many physical disorders, including cancer. Tumors use many strategies to evade the host
immune response, including downregulation or weak immunogenicity of target antigens and creation
of an immune- suppressive tumor environment. In recent years, tumor-induced immunosuppression
mediated by factors and cells has been extensively studied. The major targets of immunosuppression
are effector T cells. Tumors develop various mechanisms to escape T cell attack. Thus, tumor cells
can influence T cell trafficking by upregulating adhesion molecules, evade T cell recognition by down-
regulating major histocompatibility complex class I and class II antigens, impact T cell metabolism
through production of indoleamine 2,3-dioxygenase, arginase, inducible NO synthase mostly by acti-
vating myeloid-derived suppressor cells, dysregulate T cell function by inducing suppressive factors
(gangliosides, interleukin-10, transforming growth factor-β, prostaglandin E2, etc), induce T cell apop-
tosis through stimulation of programmed death-1/ programmed death ligand-1 (PD-1/PDL-1), FasL etc
[4].

The goal of cancer therapies is to destroymalignant cells, without damaging healthy tissues. Thus,
many immune therapies are designed to take advantage of the specificity and cytotoxic capacity of T
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cells. T cell adoptive therapies for immune-mediated regression of cancers have attracted a great deal
of recent attention [2, 3, 5].

As our understanding of the immune system has advanced, increasing numbers of innovative
therapies are being developed that utilize the cells of the immune system and optimize their disease-
targeted response through genetic modification. Recently, strategies to genetically modify T cells
either through altering the specificity of the T cell receptor (TCR) or through introducing antibody-
like recognition in chimeric antigen receptors (CARs) have made substantial advances (Figure 7.2).
Specifically, tumor immunotherapy lies on T cell blocking parameters and targets on T cell activation
against tumor cells. Such therapies include inactivation of the PD-1/PDL-1 system as well as blockage
of CTLA-4 by specific antibodies [3].

Figure 7.2: Schematic diagram of personalized T cell therapy.

T-cell therapy has become an increasingly attractive modality for the treatment of cancer (Figure
7.3), and has been suggested as a clinical path to a more effective cancer treatment for patients with
metastatic disease [6].

Figure 7.3: Image of killer T cells attacking a cancer cell.
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7.2. STUDY OF T CELL ACTIVATION VIA THG MICROSCOPY

Despite its clinical success, it is being shown that each type of tumor and each individual is
subjected to specific regulatory mechanisms, which make the choice of treatment unpredictable. Many
efforts focus on defining molecular markers to predict the responsiveness of each patient to specific
immunotherapies, but no definite results have been obtained so far [1–3]. Yet, a common goal of all
these treatments would be the modulation of T cells from the non-energetic to the active state.

Although the manipulation of the patient’s immune system against the tumor is one of the most
promising practices, the susceptibility and/or responsiveness to a specific therapy cannot be evaluated
before or during treatment, but it can only be appreciated after completion of the therapy, which in the
case of non-responsive patients can be fatal because of precious time consumption. It becomes thus
mandatory to define diagnostic tools monitoring the activation state of T cells during the treatment.

Despite the wealth of knowledge of the molecular and physiological aspects of the immune sys-
tem, we know surprisingly little of how cells coordinate the initiation of suppression of an immune
response. Specifically at the molecular level, T cell activation is a very complicated issue to address.
Multiple markers can be expressed, miscellaneous products can be secreted, most of which are not
sufficiently studied, and thus detection of a limiting number of stimulatory markers could not ensure
the overall T cell activation. A pressing need has existed for non invasive techniques that overcome
these issues and permit real-time observation of single cells. The present study attempted to define a
universal method for detecting T cell activation, without concentrating on specific marker expression.
Thus, the capacity of non-linear optical imaging microscopy, in obtaining quantitative information for
T cells activation, was investigated. This information has the potential to correlate the stage of T cell
activation with the response to a specific treatment.

7.2 Study of T cell activation via THG microscopy

The application of non-linear microscopy techniques and especially THG microscopy has enabled a
revolution in biomedical studies [7–12]. As already aforementioned, the efficiency of these modalities
is that they offer valuable and complementary information on the specimen under investigation.

THG advantage is that it provides unique structural, anatomical and morphological information in
various biological samples at cellular and sub-cellular level. THG excitation occurs predominantly at
interfaces that are formed between aqueous interstitial fluids and lipid-rich structures, such as cellular
membranes and lipid droplets [10, 12–14].

Previous studies have shown that lipid bodies are the main intracellular sources for the high THG
signals [7, 15], while others have indicated that polarized THG microscopy can discriminate triacyl-
glycerols from cholesteryl esters in intact mammalian cells [16]. There have been a number of lon-
gitudinal studies from our group that have utilized THG optical imaging for quantification analysis,
which is mainly based on the lipid contents of different biological samples. Specifically, these studies
concentrated on the efficiency of THG signal quantification to be used as an innovative diagnostic
tool in the follow-up of mouse embryo development, and in distinguishing mouse BV2 microglia cell
activation [17].

In previous chapters it was quoted that in biological samples, THG signal is enhanced by the
presence of multilayered structures, like membranes and lipid bodies. In particular, cancer cells were
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embedded with nile red, staining of LBs, and revealed significant colocalization with THG signals.
Moreover, another research has shown that in THG imaging, the primary sub-cellular source of con-
trast, are lipid bodies (LBs) [15]. Therefore, such approach can be used to study lipid bodies in complex
environments.

7.3 Lipid Bodies and Inflammation

In addition, it was denoted that LBs or LDs have engendered considerable recent interest and consid-
ered as dynamic and functionally active organelles. Over the past years substantial progress has been
made to demonstrate that lipid body biogenesis is a highly regulated process that culminates in the com-
partmentalization of a specific set of proteins and lipids. Specifically, in leukocytes lipid bodies are
considered to be inducible cytoplasmic organelles with roles in cell signaling and activation, regulation
of lipid metabolism, membrane trafficking and control of the synthesis and secretion of inflammatory
mediators [18]. Furthermore, active LBs biogenesis is observed in vivo during inflammatory reactions
of different causes. Increased cytoplasmic lipid accumulation in leukocytes and other cells has been
observed in a number of clinical and experimental inflammatory and infectious diseases [19].

In leukocytes, lipid bodies are functionally active organelles with central roles in inflammation
and are considered as structural markers of inflammatory cells in a range of diseases. Lipid bodies
were shown to characteristically increase both in size and number in vivo in cells associated with in-
flammatory diseases. Studies of leukocyte lipid bodies are providing functional, ultrastructural and
protein compositional evidence that lipid bodies are not solely storage depots of neutral lipids [18].
Recently, researchers have shown an increased interest in investigating the mechanisms of lipid bod-
ies in cancer progression and how they affect cancer biology [20–22]. The knowledge of how lipids
orchestrate the complex interactions between transformed epithelial cells and the surrounding stromal
cells is crucial for understanding tumor evolution, progression and metastasis. However, the identi-
fication of lipid bodies has methodological limitations because lipid bodies dissipate upon drying or
dissolve upon fixation and staining with alcohol-based reagents [21].

7.4 Non-linear microscopy applications in immunological studies

The development of microscopic apparatuses to detect leucocytes and to delineate their key role in im-
mune system has gained a lot of attention during the last years [19, 23]. The application of nonlinear
microscopy techniques has enabled a revolution in immunological studies. The last decade nonlin-
ear optical microscopy and specifically multiphoton microscopy have been applied to observe T cell
behavior [24]. T cells are involved in many different types of immune response during infection, can-
cer, autoimmunity and allergic diseases. In 2002, Miller et al. visualized for the first time lymphocyte
motility and response during infection by using two photon excitation fluorescence (TPEF)microscopy
[25]. Thereafter, the same authors focused their research on the visualization of single cell dynamics
and concentrated on CD4(+) T cell activation by dendritic cells in lymph nodes [26]. Using intravi-
tal epifluorescence and two photon microscopy imaging, Hoeller et al. visualized the cutaneous T cell
lymphoma migration to the skin in vivo [27]. Recently, Rossi et al. studied immune response develop-
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ment in Central Nervous System (CNS) using live imaging by two photon laser scanning microscopy
[28].

Previous research of our group concentrated on non-linear microscopy techniques for detecting
lipid droplet-mediated cell activation. Specifically, THG microscopy has been employed to discrim-
inate the activation state of the BV-2 microglia mouse cell line by quantifying the amount of lipid
droplets. In BV-2 microglia cells, it was shown that the number of LBs significantly increased upon
activation with lipopolysaccharide [17]. Furthermore, based on the amount and size of LBs as well as
the signal emitted by the cellular membranes, THG microscopy allowed quantitative discrimination of
the different types of human breast cancer cell lines as compared to peripheral blood mononuclear cells
(PBMCs) (see Chapter 5). Combining these findings with Fourier Transform Infrared (FTIR) spec-
troscopy additional valuable chemical information on breast cancer cells was provided, correlating
THG signal to lipid rafts [7].

In addition, THG microscopy has been implemented as label free diagnostics tool for immuno-
logical studies. Tsai et al. demonstrated the granularity differences of mouse leucocytes based on THG
signal [29]. In addition, Wu et al. developed a label-free imaging cytometry based on THGmicroscopy
combined with a clustering algorithm in human leucocytes [30].

7.4.1 Discrimination between B and T cells

The methodological approach taken in this study is a combined methodology of the previous research
(see Chapter 5). The main objective of this essay was to develop a novel system based on the collection
of non-linear signals that provides information as to the activation state of T cells. Using a mitogenic
or a specific antigenic stimulus for T cells, the present work inquired whether in the absence of any
specific marker immunostaining, THG imaging and Raman spectroscopy could provide information
as to the activation state of the cells.

Spleen cells from naïvemice were submitted to amitogenic T cell response using Concanavalin-A
(Con A) in order to evaluate maximal activation and an antigen- specific response using human serum
albumin (HSA) to evaluate minimal single antigen-specific activation (see in detail the procedure in
Chapter 4) (Figure 7.4).
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Figure 7.4: Cell preparation for the performance of the non-linear imaging measurements.

However, the problem that had to be faced was the morphological similarity between T-and-B-
cells, which are both present in the spleen cell preparations used in these studies. Normally, flow
cytometry testing is used for specific lymphocyte population counts. For this reason, a fluorescence
staining procedure was used for the distinction-isolation of the two cell types.

Because of the interference of TPEF/THG signals, T cells were negatively distinguished from
B cells. The discrimination of B cells was based on the specific expression of CD19, which was
detected using anti-CD19-PE antibody through TPEFmeasurements, while also recording THG signals
(Figure 7.5). Using phycoerythrin (PE) as a detection marker it was feasible to identify the specific
antigen (CD-19) expressed on the surface of B cells via TPEF measurements. At the same time THG
imaging could detect a polarized signal, which as previously shown reflects LBs in the cells, while
also identifying nucleus, characterized by the absence of any THG signal due to its homogeneous
distribution (Figure 7.5). Such approach allowed B cell distinction in the sample and their exclusion
from further processing.
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Figure 7.5: Discrimination T cells of B cells by using anti-CD19PE staining. The first two (a, b) are B
cells while the last present T cell (c) as not TPEF signal detected. Cells are visualized by THG imaging
(first column), and TPEF imaging (second column). Merged signals are shown in third column. Scale
bar depicts 2 µm.

7.4.2 T cell activation

Upon exclusion of B cells, a combination of qualitative and quantitative approaches of T cell activation
was used in this essay for data analysis. T cell activation was achieved using two different methods:
a mitogenic stimulation with concanavalin A (Con A), which is a potent non-specific stimulator of
T cells and a specific antigenic challenge with human serum albumin (HSA). At the first glance, it
could be easily demonstrated that activated T cells, both with Con A and HSA, were bigger in size and
contained more intracellular organelles as compared to resting T cells (Figure 7.6). The nucleus in the
antigen-stimulated cells was placed centrally and THG signal showed a uniform polarized distribution.
However, the mitogen-stimulated cells displayed a large and expanded cytoplasmic area with sparsely
distributed LBs, while the nucleus was pushed to the cellular pole, indicating the active secretory ability
of these cells.

Figure 7.6: THG images of T cells (a) control, (b) HSA activation and (c) Con A activation. A char-
acteristic example of one cell out of at least 40 in each case is shown here. The white arrows depict
nuclei while blue arrows show intracellular LBs. Scale bar depicts 2 µm.
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7.4.3 Quantification of THG signal area

THG modality is not limited to visualization, since it also allows quantitative analysis and testing of
specific mechanisms and activities of high biological significance. Thus, except from the difference
in size, which can be successfully detected using common technologies as well, the important infor-
mation provided by THG imaging is the significant changes in signal emission by the activated cells,
in the absence of any specific immunostaining. However, the application of this technology in diag-
nosis needs quantitative measurements in order to be subjectively applied to clinic. After setting the
threshold for THG intensity and area (Figure 7.7), the mean THG area, THG intensity and THG area
per cell volume were evaluated.

Figure 7.7: THG images and the corresponding threshold images for THG intensity and THG area
quantification. Scale bar depicts 3 µm.

Quantification analysis for mean THG area was accomplished under constant irradiation condi-
tions (mean energy per pulse, linear polarization of the incident beam t the sample plane, dimensions of
the scanning region, number of pixels, amplification of the PMT units) for all samples. THG intensity
values were collected from the photomultipliers’ tubes (PMTs), stored in 2D 500 by 500 matrices that
represented a single slice image of the sample. Image J software was used for image processing and
thresholding. THG signal quantification was performed by setting a constant threshold in the obtained
normalized 8-bit slice images, so that regions generating high levels of non-linear signal were solely
detected and isolated. The threshold was set in a way to allow only 33% of the THG signal of the cell
area to be analyzed and measured. The obtained calculated area of each cell corresponded mainly to
lipid bodies. The quantification of mean THG area was calculated from the 5 central sequential z slices
of each cell. Forty cells were tested in each case (control, ConA activated cells, HSA activated cells).

The statistical analysis of T cell quantification applied for multi group comparisons and two-tailed
unpaired Student’s T-test respectively. P-values < 0.05 were considered significant (*), values < 0.01
were considered very significant (**), and values < 0.001 and < 0.0001 were considered highly sig-
nificant (∗∗∗ and ∗∗∗∗). Statistics were performed using GraphPad Prism 6.01 (Graphpad Software,
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La Jolla, CA).
The results showed that the Con A-activated T cells displayed a statistically significant 4-fold

larger mean THG area (mean number of pixels above an intensity threshold, p < 0.0001) as compared
to controls (Figure 7.8), while T cells activated with HSA displayed a statistically significant 2-fold
bigger area (p < 0.0001) as compared to resting cells. Apparently, the mitogenic stimulation, which
corresponds to a robust activation of the cells, could correspond to the maximal activation state, while
the single antigenic stimulus could correspond to a regular activation state of the cells.

Figure 7.8: Quantification of mean THG area of T cells before and after activation. N=40 for each
case.

Taking into consideration the cell size (normalization by dividing the mean total area by the cell
volume of each cell type), activated cells still demonstrated significantly increased levels of THG sig-
nal as compared to controls (p < 0.0001 and p = 0.00317 for Con A and HSA stimulation respectively;
Figure 7.9). Cell volume was calculated by multiplying the cell surface of each layer with the number
of stacks for each cell. These results indicated that THG signal quantification could distinguish be-
tween activated and resting T cells, independently of the cell volume increase. However, the mitogenic
stimulus showed a 63% higher THG signal area/cell volume as compared to the antigenic stimulus (p
< 0.0001), observation that supports the mitogen-induced generalized cell activation process.
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Figure 7.9: Quantification of mean THG area divided by cell volume of T cells before and after acti-
vation . N=40 for each case.

For THG intensity quantification, the values of a number of N cells were normalized to their
maximum THG intensity value. Then the values were quantified by setting again a constant threshold,
so that only the regions that provide high THG signals could be examined (mainly intra cellular lipid
bodies). An algorithm that was designed and programmed inMATLAB environment was employed for
the manual selection of representative cell areas of each slice and estimation of their mean pixel value.
The integrated THG intensity over total pixel area for each slice of a cell was calculated by multiplying
the representative area with the mean intensity value of the corresponding pixels. The weighted mean
pixel value of each cell was obtained by repeating this procedure for the 5 central slices of the sample.

Figure 7.10 depicts the results of mean THG intensity signal values for control and activated T
cells respectively. Quantification of THG intensity signals showed a statistically significant differ-
ence between activated and resting cells (p = 0.0001 and p < 0.0001 for Con A and HSA stimulation
respectively), while an approximately 10% increase of THG intensity signals for HSA- as compared
to Con A-activated cells was observed (p = 0.0014; Figure 7.10). Such difference is in favor of an
antigen-specific stimulation and could be linked to potential changes in the chemical constitution of
antigen- and mitogen-stimulated T cells.

Figure 7.10: Quantification of mean THG area divided by cell volume of T cells before and after
activation. N=40 for each case.
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Moreover, in this research it was possible to quantitatively evaluate the activation of T cells. The
numerical analysis of the percentage of activation by Con A or HSA respectively was calculated by
developing an algorithm in MATLAB. This algorithm was determined to set at the same time, the
threshold values of the mean volume area and mean lipid area of control cells. The cells were counted
as activated when both values of Con A- or HSA-treated cells exceeded the defined thresholds. This
analysis showed that in all experiments, the Con A mitogenic stimulus activated approximately 66%
of the cells, while HSA activated 54% of the cells. Thus, the obtained results showed that T cell
activation not only induced the formation of a bigger amount of subcellular structures, mostly lipid
droplets, but also increased cell volume and non-linear intensity signals. THG imaging could be a
potential diagnostic tool on distinguishing resting from activated T cells.

7.5 Raman Spectroscopy of resting and activated T cells

Raman spectroscopy provides intrinsic biochemical insights of molecular vibration modes with char-
acteristic frequencies, which can provide information related to molecular species, composition and
concentration. The recent years, Raman spectroscopy is gaining popularity for diagnostic applications
in the analysis of cellular dynamics [31, 32]. This technique was used to discriminate among differ-
ent lymphocyte cell lines without labeling [33] and to define the immune cell state and detect dynamic
changes in single mouse cells [34]. Moreover, Raman spectroscopy combined with digital holographic
microscopy were employed to identify individual immune cells in humans [35].

During activation, T cells are characterized by accumulation of active molecules at the immune
synapse in rich in cholesterol lipid raft structures of the membrane. In order to obtain additional bio-
chemical information on T cell activation, Raman spectroscopy was applied on control and activated
with Con A or HSA T cells (Figure 7.11). Fifteen cells were tested for each case.

Raman spectra was recorded using a Horiba LabRAMHR spectrometer from at least five points of
the cytoplasmic area of T cells, also reflecting membrane chemical structure; Figure 7.11 presents the
average Raman spectrum, for each cell. In this case T cells were separated fromB cells usingmagnetic-
bead negative section protocols (see chapter methods). Raman spectra of activated and control cells
were quite similar, however, distinctive differences were observed in some peaks in lipid regions [36].
Specifically, activated cells – both with Con A and HSA- showed higher peaks at 1336 cm−1 (CH2 /
CH3 in lipids), 1441-5 cm−1 (CH2 & CH3 in lipids, and cholesterol esters) and 2848 cm−1 (CH2 of
lipids). Only within the case of Con A activation, higher peaks at 1078 cm−1, which correspond to
phospholipids as well as 1379 cm−1 and 1652 cm−1, which are also assigned to lipids, were detected.
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Figure 7.11: Characteristic Raman spectra and brightfield images of control and activated (Con A,
HSA) T cells. One representative cell out of N=15 cells for control and for the two different ways of
activation is shown here.

All types of cells showed a wide peak at 2876-910 cm−1 corresponding to the CH2 of lipids
and at 1453 cm−1 linked to the CH2/CH3 deformation of phospholipids. Furthermore, integration
of Raman spectra could provide a quantitative evaluation of the particular chemical bonds, which
consequently correspond to specific compounds (Table 7.1). Table 7.1 illustrates the integrated Raman
spectra depicting the concentration (spectra peak area) of chemical bonds for lipids, cholesterol and
triglycerides for the three states of cells (control, Con A-activated, HSA-activated). Moreover, Table
7.1 presents the ratios of activated and control cells.

Table 7.1: Integrated Raman spectra Integrated Raman spectra depict the concentration (spectra peak
area) of chemical bonds for lipids, cholesterol and triglycerides for the three states of cells (control,
Con A-activated and HSA-activated). The last three columns presented the ratios of Con A/ control,
HSA/control and Con A/HSA cells respectively. Fifteen cells were used in each experimental condition.

Peak (cm−1) Description Control Con-A HSA ConA/Control HSA/Control

ConA/HSA

614
Cholesterol es-
ters

3.42 17.03 12.12 4.98 3.54 1.41
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980
=CH bending
(lipids)

6.05 13.80 7.57 2.28 1.25 1.82

1057 Lipids 6.07 15.84 10.22 2.61 1.68 1.55

1073
Triglycerides
(fatty acids)

5.85 15.13 8.22 2.59 1.41 1.84

1076-8

v(C-C) or
v(C-O), phos-
pholipids (lipid
assignment)

11.39 48.65 15.39 4.27 1.35 3.16

1123

C-C stretching
mode of lipids
& protein, C-N
stretch

10.47 28.81 44.80 2.75 4.28 0.64

1264
Triglycerides
(fatty acids)

10.47 28.81 44.80 2.75 4.28 0.64

1270
Typical phos-
pholipids

7.66 22.21 12.17 2.90 1.59 1.82

1302

CH2/CH3 twist-
ing or bending
mode of lipid,
δ (CH2) twist-
ing, wagging,
phospholipids
(lipid assign-
ment)

4.91 4.72 11.53 0.96 2.35 0.41

1336

Tryptophan,
CH2/CH3 wag-
ging, twisting
&/or bending
mode of colla-
gens & lipids,
CH2/CH3

wagging &
twisting mode
in collagen,
nucleic acid &
tryptophan

5.16 14.44 14.10 2.80 2.73 1.02
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1379
δ (CH3) sym-
metric (lipid
assignment)

5.77 16.47 7.49 2.85 1.30 2.20

1437 δ (CH2) lipids 2.08 9.61 11.21 4.62 5.39 0.86

1441

CH2 scissoring
& CH3 bend-
ing in lipids,
Cholesterol &
its esters, C-H
bending mode
of accumulated
lipids

5.23 15.12 24.12 2.89 4.62 0.63

1444-5

Cholesterol
band, δ (CH2),
δ (CH3), lipids,
phospholipids,
fatty acids

2.68 22.42 9.59 8.37 3.58 2.34

1453

Overlapping
asymmetric
CH3 bend-
ing & CH2

scissoring (in
associated with
phospholipids)

23.48 16.32 18.11 0.70 0.77 0.90

1465 Lipid 4.74 11.96 11.32 2.52 2.39 1.06

1652
Lipid (C=C
stretch)

8.09 16.32 8.79 2.02 1.09 1.86

1656

Amide I C=C
(lipids) ,
triglycerides
(fatty acids)

4.96 14.96 2.28 3.02 0.46 6.56

1669
Cholesterol es-
ters

8.73 12.25 14.08 1.40 1.61 0.87

1736
Esters, C––O
stretching
(lipids)

5.52 11.40 5.76 2.07 1.04 1.98
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1743
Carbonyl fea-
ture of lipid
spectra

6.41 14.22 4.28 2.22 0.67 3.32

1745
Phospholipids,
v(C––O)

5.37 11.41 20.69 2.12 3.85 0.55

2848
CH3 symmetric
stretch of lipids

5.19 15.57 15.48 3.00 2.98 1.01

2850
vsCH2 lipids ,
fatty acids

6.60 13.14 3.38 1.99 0.51 3.89

2919
CH stretch of
lipids

7.50 14.76 3.58 1.97 0.48 4.12

Thus, activated T cells (both Con A and HSA stimulation) presented enhanced peaks at 1336
cm−1, 1437 cm−1, 1465 cm−1 and 2848 cm−1 as compared to controls. In addition, activated T cells
showed increased triglyceride concentration at 1264 cm−1 and cholesterol esters at 614 cm−1, 1444
cm−1 and 1669 cm−1 respectively.

Figure 7.12: Line chart represents the concentration of lipid and phospholipids bonds of control and
activated (Con A & HSA) T cells. Data represents mean values of N=15 cells for each case. Activated
T cells appear higher values of lipid concentration as compared to control cells in most of the peaks.

As can been seen from the line chart in Figure 7.12, Raman spectra integration revealed that
Con A activation displayed an increased concentration of lipids as compared to control and HSA-
activated cells . Specifically, increased levels were observed at 980 cm−1 which is attributed to =C-H
bending of lipids, at 1057 cm−1 attributed to lipid regions, at 1076-8 cm−1 which is assigned to v(C-C)
phospholipids, at 1270 cm−1 corresponding to the amide III area of phospholipids, at 1379 cm−1 for
δ (CH3) , at 1445 cm−1 for CH2 and CH3 phospholipids, at 1652 cm−1 for C=C stretching, at 1736 and
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1743 cm−1 for C=O ester in lipids, at 2850 cm−1 for CH2 symmetric stretching of lipids and fatty acids
and at 2919 cm−1 for CH stretching of lipids (Figure 7.12). Moreover, Con A activated T cells showed
an accumulative concentration of triglycerides (fatty acids) at 1073 cm−1 and 1656 cm−1 (Figure 7.13).

Figure 7.13: Line chart represents the concentration of cholesterol (614 cm−1, 1441 cm−1, 1444-5
cm−1, 1669 cm−1) and triglycerides (1073 cm−1, 1264 cm−1, 1656 cm−1) bonds of control and acti-
vated (ConA or HSA) T cells. Data represents mean values of N=15 cells for each case.

The HSA-activated T cells were shown to display enhanced peak concentrations at 1123 cm−1

corresponding to C-C stretching in lipids and proteins as well as C-N stretching , at 1302 cm−1 corre-
sponding to δ (CH2) in phospholipids and at 1745 cm−1 corresponding to v(C=O) and phospholipids,
as compared to control cells (Figure 7.12). In addition, regarding cholesterol bonds, which were ob-
tained at 1441 cm−1 and 1669 cm−1, the HSA activation provided higher concentrations as compared
to control and Con A-stimulated T cells (Figure 7.13).

7.6 Correlation THG signals with Raman spectra

Based on the above observations, it was then inquired whether lipid bodies could be correlated to
the triacylglycerol-enriched structures and cholesteryl esters. These compounds are of great interest
because are the most clinically relevant lipid constituents found in cells and tissues and are hallmarks
of the most common lipid – related disorders [16]. Data from table 7.1 can be compared with the data
of THG area and intensity respectively. Thus, correlation analysis of the mean THG area and the mean
of Raman spectrum area of lipids, cholesterol esters and triglycerides was performed. In this case, the
ratios of Con A-stimulation/control, HSA-stimulation/control and ConA/HSA stimulation of mean THG
and Raman spectra areas were examined (Figure 7.14). Linear fitting analysis showed high correlation
of THG area with cholesterol and lipid compounds (R2 sin 0.91, R2 sin0 .94), but not with triglycerides
(R2 sin 0.02).
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Figure 7.14: Correlation of Raman spectra with mean THG area in lipids, cholesterol and triglyceride
peaks respectively. The mean values of fractions for ConA/control, HSA/control and ConA/HSA were calculated
from Table 7.1 for Raman spectra and from Figure 7.8 for THG area.

Moreover the correlation between mean THG intensity signal and mean Raman spectrum area of
lipids, cholesterol esters and triglycerides was tested. Figure 15 presents the correlations between the
ratios of ConA/control, HSA/control and ConA/HSA. The outcome of this correlation (Linear fitting analysis re-
vealed moderate correlation of THG intensity with lipid compounds (R2 sin 0.83) poor with cholesterol
(R2 sin0.58) and no correlation with triglycerides (R2 sin 0.10).

Figure 7.15: Correlation of Raman spectra with mean THG signal intensity in lipids, cholesterol and
triglyceride peaks respectively. The mean values of fractions for ConA/control, HSA/control and ConA/HSA

were calculated from Table7.1 for Raman spectra and from Figure7.10 for THG intensity signal.

Interestingly, the correlation analysis suggested that there is an association between THG area
and the Raman spectra corresponding to cholesterol and lipid bonds, during activation (better quality
of linear fitting Figure 7.14). The data supports the assumption that the detected increase of THG area
during T cell activation may be correlated to the concentration of cholesterol and lipid compounds.
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However, it has to be noted that no significant correlation between mean THG intensity signals and
mean Raman spectra area could be observed in cholesterol and triglyceride compounds except from a
moderate correlation to lipid bonds (Figure 7.15).

7.7 Conclusion

This project was undertaken to develop a diagnostic optical tool to evaluate T cell activation. The evi-
dence of this study suggests that liposome storage is of great importance in cellular defensemechanisms
since by trapping fatty acids they protect the cell from liposuction and lipotoxicity. Such liposome ac-
tivity is correlated with the function of immune system, observation that is based on the accumulation
of leukocytes at inflammatory sites during infections, cancer or allergies. The present study aimed
to correlate T cell activation with LB cellular content and specific membrane compound accumula-
tion in the context of a marker-free evaluation system, which would be very useful in immunotherapy.
Choosing a mitogenic stimulus for maximal T cell activation and an antigen specific response for
regular activation, THG imaging showed that except from increasing cell size, T cell activation sig-
nificantly increased the formation of subcellular structures, mostly lipid droplets. Interestingly, the
mitogenic activation showed higher mean THG area values which was correlated to specific Raman
spectra corresponding to cholesterol and lipids in favor to the T cell activation profile.

This assay extents our knowledge during immunotherapy, and provides information as to whether
the patient is responsive to the therapeutic protocol, which is of great importance for the management
of the disease. Activation of T cells by the means of marker expression is a very complicated and not
fully exploited manner. Previous studies have shown that THG imaging could distinguish between ac-
tivated and non-activated microglia cells based on the significant increase of LDs, largely reflecting the
energetic state of the cells[17]. Yet, different types of activation states do exist and it is therefore im-
portant to be able to distinguish even a minimal antigen specific response. Therefore, the present study
concentrated on a mitogenic and a specific antigenic response, considering that these would represent
a maximal and a minimal type of stimulation. Con A binds and cross-links co-stimulatory molecules
of the T cell receptor (TCR) in the immune synapse [37], therefore activating in a non-specific man-
ner all TCR bearing cells. On the other hand, HSA activates only specific T cell populations bearing
HSA-specific TCRs and for this reason the activation ranges at lower levels.

Following the permanent need for novel diagnostic non-destructive label free tools in biomedical
studies at subcellular level, THG imaging and Raman spectra analysis were used to evaluate the acti-
vation state of T cells. THG modality presents distinct advantages over other techniques since it can
visualize intracellular structures (lipid bodies) without any labeling and without affecting the viability
of the biological sample. THG imaging is a valuable technique particularly for cellular imaging and
quantification analysis studies and it is being increasingly employed in a number of different biolog-
ical applications [7, 17, 30]. Thus, T cell activation could be visualized and quantified using THG
imaging through the detection of the LB content of the cells. Mean THG area values were higher in
Con A-stimulated cells and lower in HSA-activated T cells, but in both cases statistically significantly
higher than resting T cells. The recorded results suggest that the different activation pathways can pro-
vide different quantitative information, based on the number of lipid depositions, distinguishing thus,

125



7.7. CONCLUSION

in a reliable and accurate manner, the condition of the cells in each case of activation. Specifically,
the comparison between a mitogenic and an antigen-dependent activation can provide information on
the different use of co-receptors and activators. Moreover, the increase of THG signal intensity dur-
ing activation, although not perfectly correlated with the recorded Raman spectra, could be linked to
potential changes in chemical constitution of the cells. The increase of THG signal intensity during
activation with HSA as compared to resting and Con A-stimulated T cells could be correlated with the
increased concentration of cholesterol specific bonds at 1441 cm−1 and 1669 cm−1.

Additionally, Raman spectroscopy measurements correlated specific chemical information to the
increased THG signal during activation of the cells. Raman analysis enables the determination of
chemical alterations of cellular components during the different ways of activation. Raman analysis
showed an increased lipid content during Con A activation that is in perfect agreement with the results
obtained with the THG technology. The quantification of the recorded THG signals provides reliable
biological criteria, through a novel non-destructive label free approach, for the investigation of the
activation state of T cells. The implementation of this study could be applicable to clinical diagnostic
practice. This technique could act synergistically with flow cytometry for obtaining complementary
information related to the activation state of cells during immunotherapy. However, for clinical use,
these findings should be validated employing human PBMCs. Simple blood sampling would pro-
vide immediate reliable information on the immune system activation status which could be useful
in autoimmune diseases, allergies, vaccines, as well as antitumor therapies. It should be noted, that
by employing unstained samples the cost of diagnosis is significantly reduced, resulting in long term
economic benefits. Furthermore, one could foresee the development of a compact apparatus integrat-
ing nonlinear microscopy and Raman spectroscopy modalities to a single instrument. Such optimized
system would be extremely useful as a new, nondestructive diagnostic tool for the simultaneously ac-
quisition of structural sub-cellular information, lipid content quantification and chemical analysis of
various cell types.

The results in this research indicate that THG microscopy provides a unique tool for assessing
the activation state of a cell via the detection of lipid bodies. By evaluating lipid body modifications
during T cell activation the present work achieved discrimination between control and mitogen- or
antigen-activated T cells based on the THGmean total area, cell surface area and THG intensity signals.
Although non-linear imaging cannot directly provide specific chemical information, further analysis
using Raman spectroscopy has correlated the recorded THG signals of control and activated T cells to
lipids and cholesterol. The detection of T cell activation is an important issue in cancer immunotherapy
as it allows easy following–up of immune response development. It is thus anticipated that in near
future, non-linear optical imaging of immune cells could be extended to screening and understanding
the action of immunosuppressive drugs, infections, tumor immunotherapy and autoimmune diseases.

126



Bibliography

[1] Richard S. Hotchkiss, Guillaume Monneret, and Didier Payen. “Immunosuppression in sep-
sis: a novel understanding of the disorder and a new therapeutic approach”. In: The Lancet
Infectious Diseases 13.3 (2013), pp. 260–268. issn: 1473-3099. doi: https : / / doi . org / 10 .
1016 / S1473 - 3099(13 ) 70001 - X. url: http : / /www . sciencedirect . com / science / article / pii /
S147330991370001X.

[2] Padmanee Sharma and James P. Allison. “The future of immune checkpoint therapy”. In: Science
348.6230 (2015), pp. 56–61. doi: 10.1126/science.aaa8172. url: http://science.sciencemag.org/
content/sci/348/6230/56.full.pdf.

[3] Michaela Sharpe and Natalie Mount. “Genetically modified T cells in cancer therapy: oppor-
tunities and challenges”. In: Disease Models & Mechanisms 8.4 (2015), pp. 337–350. doi: 10.
1242/dmm.018036. url: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4381333/.

[4] A. A. Wu et al. “Reprogramming the tumor microenvironment: tumor-induced immunosup-
pressive factors paralyze T cells”. In: Oncoimmunology 4.7 (2015), e1016700. issn: 2162-4011
(Print) 2162-4011. doi: 10.1080/2162402x.2015.1016700.

[5] S. Gottschalk et al. “T cell therapies”. In: Ernst Schering Found Symp Proc 4 (2006), pp. 69–82.
[6] Kunyu Li et al. “Adoptive cell therapy with CD4(+) T helper 1 cells and CD8(+) cytotoxic T

cells enhances complete rejection of an established tumour, leading to generation of endogenous
memory responses to non-targeted tumour epitopes”. In: Clinical & Translational Immunology
6.10 (2017), e160. doi: 10.1038/cti.2017.37. url: http://www.ncbi.nlm.nih.gov/pmc/articles/
PMC5671987/.

[7] Evangelia Gavgiotaki et al. “Distinction between breast cancer cell subtypes using third har-
monic generation microscopy”. In: Journal of Biophotonics 10.9 (2017), pp. 1152–1162. doi:
10.1002/jbio.201600173. url: http://dx.doi.org/10.1002/jbio.201600173.

[8] N. V. Kuzmin et al. “Third harmonic generation imaging for fast, label-free pathology of human
brain tumors”. In: Biomedical Optics Express 7.5 (2016), pp. 1889–1904. doi: 10.1364/BOE.7.
001889. url: http://www.osapublishing.org/boe/abstract.cfm?URI=boe-7-5-1889.

[9] T. Meyer et al. “Accumulating advantages, reducing limitations: multimodal nonlinear imaging
in biomedical sciences - the synergy of multiple contrast mechanisms”. In: J Biophotonics 6.11-
12 (2013), pp. 887–904. issn: 1864-063x. doi: 10.1002/jbio.201300176.

[10] AaronM. Streets et al. “Imagingwithout Fluorescence: Nonlinear OpticalMicroscopy for Quan-
titative Cellular Imaging”. In: Analytical Chemistry 86.17 (2014), pp. 8506–8513. issn: 0003-
2700. doi: 10.1021/ac5013706. url: https://doi.org/10.1021/ac5013706.

[11] G. J. Tserevelakis et al. “Femtosecond laser nanosurgery of sub-cellular structures in HeLa cells
by employing Third Harmonic Generation imaging modality as diagnostic tool”. In: J Biopho-
tonics 5.2 (2012), pp. 200–7. issn: 1864-063x. doi: 10.1002/jbio.201100055.

127



BIBLIOGRAPHY

[12] B. Weigelin, G. J. Bakker, and P. Friedl. “Third harmonic generation microscopy of cells and
tissue organization”. In: J Cell Sci 129.2 (2016), pp. 245–55. issn: 0021-9533. doi: 10.1242/jcs.
152272.

[13] Jeff Squier and Michiel Müller. “High resolution nonlinear microscopy: A review of sources
and methods for achieving optimal imaging”. In: Review of Scientific Instruments 72.7 (2001),
pp. 2855–2867. issn: 0034-6748.

[14] Warren R. Zipfel, Rebecca M. Williams, and Watt W. Webb. “Nonlinear magic: multiphoton
microscopy in the biosciences”. In: Nature Biotechnology 21 (2003), p. 1369. doi: 10.1038/
nbt899. url: http://dx.doi.org/10.1038/nbt899.

[15] D. Debarre et al. “Imaging lipid bodies in cells and tissues using third-harmonic generation
microscopy”. In: Nat Methods 3.1 (2006), pp. 47–53. doi: 10.1038/nmeth813.

[16] Godofredo Bautista et al. “Polarized THG Microscopy Identifies Compositionally Different
Lipid Droplets in Mammalian Cells”. In: Biophysical Journal 107.10 (2014), pp. 2230–2236.
doi: 10.1016/j.bpj.2014.10.009. url: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4241439/.

[17] E. Gavgiotaki et al. “Third Harmonic Generation microscopy as a reliable diagnostic tool for
evaluating lipid bodymodification during cell activation: The example of BV-2microglia cells”.
In: Journal of Structural Biology 189.2 (2015), pp. 105–113. doi: https://doi.org/10.1016/j.jsb.
2014.11.011. url: http://www.sciencedirect.com/science/article/pii/S1047847714002627.

[18] Patricia T. Bozza, Kelly G. Magalhães, and Peter F. Weller. “Leukocyte lipid bodies — Bio-
genesis and functions in inflammation”. In: Biochimica et Biophysica Acta (BBA) - Molecular
and Cell Biology of Lipids 1791.6 (2009), pp. 540–551. doi: https://doi.org/10.1016/j.bbalip.
2009.01.005. url: http://www.sciencedirect.com/science/article/pii/S1388198109000080.

[19] Rossana C. N.Melo et al. “Lipid Bodies in Inflammatory Cells: Structure, Function, and Current
Imaging Techniques”. In: Journal of Histochemistry and Cytochemistry 59.5 (2011), pp. 540–
556. doi: 10 . 1369 / 0022155411404073. url: http : / /www .ncbi . nlm . nih . gov / pmc / articles /
PMC3201176/.

[20] P. T. Bozza and J. P. Viola. “Lipid droplets in inflammation and cancer”. In: Prostaglandins
Leukot Essent Fatty Acids 82 (2010), pp. 243–50. doi: 10.1016/j.plefa.2010.02.005.

[21] Rossana C. N. Melo et al. “Imaging Lipid Bodies Within Leukocytes with Different Light Mi-
croscopy Techniques”. In: Methods in molecular biology (Clifton, N.J.) 689 (2011), pp. 149–
161. doi: 10.1007/978-1-60761-950-5_9. url: http://www.ncbi.nlm.nih.gov/pmc/articles/
PMC3659330/.

[22] L. Tirinato et al. “An Overview of Lipid Droplets in Cancer and Cancer Stem Cells”. In: Stem
Cells International 2017 (2017), p. 17. doi: 10.1155/2017/1656053. url: https://doi.org/10.
1155/2017/1656053.

[23] Matan M. Winer et al. “In vivo noninvasive microscopy of human leucocytes”. In: Scientific
Reports 7.1 (2017), p. 13031. issn: 2045-2322. doi: 10.1038/s41598-017-13555-1. url: https:
//doi.org/10.1038/s41598-017-13555-1.

[24] M. D. Cahalan et al. “Two-photon tissue imaging: seeing the immune system in a fresh light”.
In: Nat Rev Immunol 2.11 (2002), pp. 872–80. doi: 10.1038/nri935.

[25] Mark J Miller et al. “Two-photon imaging of lymphocyte motility and antigen response in intact
lymph node”. In: Science 296.5574 (2002), pp. 1869–1873.

[26] M. J. Miller et al. “Imaging the single cell dynamics of CD4+ T cell activation by dendritic cells
in lymph nodes”. In: J Exp Med 200.7 (2004), pp. 847–56. doi: 10.1084/jem.20041236.

128



BIBLIOGRAPHY

[27] Christoph Hoeller et al. “In vivo imaging of cutaneous T-cell lymphoma migration to the skin”.
In: Cancer research 69.7 (2009), pp. 2704–2708.

[28] B. Rossi and G. Constantin. “Live Imaging of Immune Responses in Experimental Models of
Multiple Sclerosis”. In: Front Immunol 7 (2016), p. 506. doi: 10.3389/fimmu.2016.00506.

[29] Cheng-Kun Tsai et al. “Imaging granularity of leukocytes with third harmonic generation mi-
croscopy”. In: Biomedical Optics Express 3.9 (2012), pp. 2234–2243. doi: 10.1364/BOE.3.
002234. url: http://www.osapublishing.org/boe/abstract.cfm?URI=boe-3-9-2234.

[30] Cheng-HamWu et al. “Imaging cytometry of human leukocytes with third harmonic generation
microscopy”. In: Scientific reports 6 (2016), p. 37210.

[31] Rachael Smith, Karen L. Wright, and Lorna Ashton. “Raman spectroscopy: an evolving tech-
nique for live cell studies”. In: Analyst 141.12 (2016), pp. 3590–3600. issn: 0003-2654. doi:
10.1039/C6AN00152A. url: http://dx.doi.org/10.1039/C6AN00152A.

[32] Henk-Jan van Manen et al. “Single-cell Raman and fluorescence microscopy reveal the associ-
ation of lipid bodies with phagosomes in leukocytes”. In: Proceedings of the National Academy
of Sciences of the United States of America 102.29 (2005), pp. 10159–10164. doi: 10.1073/
pnas.0502746102. url: http://www.pnas.org/content/pnas/102/29/10159.full.pdf.

[33] Alison J. Hobro et al. “Raman spectroscopy as a tool for label-free lymphocyte cell line discrimi-
nation”. In:Analyst 141.12 (2016), pp. 3756–3764. issn: 0003-2654. doi: 10.1039/C6AN00181E.
url: http://dx.doi.org/10.1039/C6AN00181E.

[34] Taro Ichimura et al. “Non-label immune cell state prediction using Raman spectroscopy”. In:
Scientific Reports 6 (2016), p. 37562.

[35] Naomi McReynolds et al. “Multimodal discrimination of immune cells using a combination
of Raman spectroscopy and digital holographic microscopy”. In: Scientific Reports 7 (2017),
p. 43631. issn: 2045-2322. doi: 10.1038/srep43631. url: http://www.ncbi.nlm.nih.gov/pmc/
articles/PMC5335250/.

[36] Zanyar Movasaghi, Shazza Rehman, and Ihtesham U. Rehman. “Raman Spectroscopy of Bio-
logical Tissues”. In: Applied Spectroscopy Reviews 42.5 (2007), pp. 493–541. issn: 0570-4928.
doi: 10.1080/05704920701551530. url: https://doi.org/10.1080/05704920701551530.

[37] A Weiss et al. “Ligand-receptor interactions required for commitment to the activation of the
interleukin 2 gene.” In: The Journal of Immunology 138.7 (1987), pp. 2169–2176.

129





Chapter 8

Outlook and future aspects

The core of this thesis was the application of nonlinear microscopy to biomedical studies in diagnosis
and treatment, and the combination of nonlinear signals with vibrational spectroscopy for obtaining
additional chemical information.

As has been described and exemplified in the previous chapters, the advantages of these tech-
niques are numerous, namely high depth penetration (due to near infrared (NIR) laser), intrinsic 3D
sectioning and 3D resolution (due to the increased spatial confinement of the signal to the laser fo-
cus), multiple nonlinear processes summed to the possibility to detect several endogenous molecular
structures, and low phototoxicity. All these advantages allow us to postulate that in the near future
the NLO techniques together with nonlinear signal processing methods can be very useful in the field
of medical diagnosis. In combination with sophisticated animal models and computer-assisted data
analysis, NLO microscopy techniques and image processing methods are opening new doors to the
study of cancer and inflammation disorders, facilitating the development of new strategies for early
tumor diagnosis and other diseases. Additionally, the possibility of obtaining images at high speed and
their correlation with methods providing chemical specificity makes NLO microscopy a powerful tool
to evaluate the dynamic behavior of in vivo disease progression.

In this thesis nonlinear microscopy techniques, in combination with advanced image analysis ap-
proaches and vibrational spectroscopy modalities, represented a powerful tool to investigate biological
processes. This capability may allow the implementation of new diagnostic procedures for early de-
tection of various diseases. The integration of a set of microscopy techniques is one of the evolving
areas in bioimaging that promises to have a strong impact on the understanding and early detection of
diverse pathologies.

In translational research, NLO microscopy has demonstrated the ability to diagnosing diseases.
This essay provides a perspective on how nonlinear optical imaging can potentially be applied for
cancer diagnostics and therapy. These advances ensure efficient cancer detection in a non-invasive
manner with improved sensitivity and specificity. In addition, in this study NLOM has been efficiently
combined with other emerging vibrational techniques such as Raman and FTIR spectroscopy. As
a result, anatomical, physiological as well as biochemical details can now be jointly obtained from
these multimodal imaging techniques with increased sensitivity. In this manner, the limitations of this
particular optical imaging technique are countered by the other complimentary spectroscopy modality.
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For successful translation of nonlinear optical imaging as a diagnostic tool in the clinic, it is essential to
integrate this study in vivo and automate the analysis procedure with advanced computational methods.

Today, the application of multimodal nonlinear imaging is highly appreciated in basic biological
research and biomedical sciences; however, regular applications in clinics are still rare, mainly be-
cause of the lack of personnel for its operation. So, mainly technological progresses are required for
miniaturization, enhancement of the ease of control, automated data processing, and extraction of sig-
nificant information. To achieve this goal, the modification of typical clinical endoscopes for in vivo
multimodal nonlinear imaging is necessary. The development of nonlinear optical endoscopy, which
allows imaging under conditions in which a conventional nonlinear optical microscope cannot be used,
will be the primary goal to extend applications of nonlinear optical microscopy toward clinical prac-
tice. There are several key challenges involved in the pursuit of in vivo nonlinear optical endoscopy.
A few of them are the necessity of obtaining efficient ultrashort pulse laser liberations into a remote
place, the need to enhance scan rates for faster monitoring of biological processes, and the miniatur-
ization of the laser�scanning mechanisms to the millimeter scale. Finally, the design of a nonlinear
optical endoscope based on micro�optics with great flexibility, and compact enough to be incorpo-
rated into endoscopes, will become an evolution of these microscopy platforms. With the continuous
advancement in this endoscopic technique and new laser sources, we have reason to believe that these
particularly promising techniques in conjunction with efficient image analysis algorithm will open up
many new possibilities for the diagnosis and treatment of different diseases in the near future.

132



Appendices

133





Appendix A

Appendix A

A.1 FTIR analysis in breast cancer cells

Table A.1: Peak analysis of absorbance (FTIR spectra) of breast cancer cell lines in lipid regions(900-
1800 cm−1, 2800-3000 cm−1). The symbols depict the different experiments. (PBMCs-control,
BT474-HER2+, MDA-MB231-triple negative, MCF7-Luminal) N=3 measurements for each cell line.
(∗)1st experiment , (o) 2nd experiment , (x) 3rd experiment, 4th experiment (#) ,(@)

Cell line /
Wavenumber
(cm−1)

Assignment PBMCs BT474
MDA-
MB231

MCF7 Comments

1016 $ √
Ring Stretching vibra-
tions mixed strongly
with CH in plane bend-
ing

1020 DNA ∗ $ ox

1077
Symmetric
phosphate
stretching

√ $

1084-5

Mainly
from phos-
pholipids
(mem-
brane)

∗
√ $ xo ∗ xo xo

1163

C–O
stretching
band of
collagen

√ $
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1180
Amide III
region

√ $

1224

Collagen
Sym.
stretch-
ing of
phosphate
groups in
phospho-
lipids

√ $

1340
CH2

wagging
/Collagen

∗ $ √
xo∗ x xo

1388 ∗
√ $ xo x x

1439 ∗ $ √
1400-500 cm−1 Ring
stretching vibrations
mixed strongly with
CH in-plane bending

1448
√ $

1449

Asymmetric
CH3 bend-
ing of the
methyl
groups of
proteins

xo x $ xo Only in cancer cells

1474 xo x $ xo

1491 ∗
√ $ o $

1541-2

Amide II
absorption
(primarily
an N–H
bending
coupled
to a C–N
stretching
vibrational
mode)

xo x $ xo
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midrule 1570 Amide III o o
Only cancer cells -
appear peaks (MCF,
BT474)

1576
C––N
adenine

∗

1578
Ring C–C
stretch of
phenyl

o o

1597
C––N, NH2

adenine
∗

1624 o
1600-1800cm−1
C––Ostretching lipids

1632-3

Ring C–C
stretch of
phenyl,
C––C
uracil,
C––O

o o
1630-1700cm−1
Amide I region

1826 ∗
√ $

1920-5 $ ox x$ xo Only in cancer cells

1943 $ xo x$ xo

1944-5 o o

1969 x x x

1971 o o

1992-3 xo x xo

2018 o o

2031 o

2359 ∗
√ $ Only in control cells

2761 CH3modes ∗ Only in control cells

2764
Streching
N–H
NH3

+

√

2772
√

2777 $
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2781
√

2790-2 o

2848 o o o

2851-4
CH2 sym-
metric
(lipids)

∗ $ xo ∗ xo $ xo
2800-3000 cm−1 C-H
Lipid region CH3 CH2

lipid & proteins
2855 o o o
2856 $ ox ox ox
2857 ox ox ox

2858 o o o

2846-80 cm−1 C-
H stretching band
Stretching C-H, νs

CH2, lipids, fatty acids
Symmetric stretching
of CH2 of acyl chains
lipids

2859 o o o

2860
Stretching
C–H

o o o

2916

Cholesterol,
phospho-
lipids and
creating
(higher
in normal
tissues)
Stretching
vibrations
of CH2

& CH3

of phos-
pholipids,
choles-
terol and
creatine

∗ x x x

2800-3100 cm−1

C-H stretching vibra-
tions of methyl CH3 &
methylene CH2 groups
& olefins

2917
Stretching
C–H

∗ x x x

2918
Stretching
C–H

∗ x x x
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2919
Stretching
C–H

∗ x x x

2920 ∗ x x x

2921 ∗ x x x

Cholesterol, phospho-
lipids and creating
(higher in normal
tissues) (2916)

2922

Asymmetric
stretching
vibration
of CH2 of
acyl chains
(lipids)

∗ x x$ x

2923

2923-33
cm−1 C–H
stretching
band in
malignant
tissues

∗ x x$ x

2924 ∗ xo xo$ xo

Stretching vibrations
of CH2 & CH3 of
phospholipids, choles-
terol and creatine

2925

C–H
stretching
bands in
normal
tissues νas

CH2 lipids

∗ xo ∗ xo $ xo

2926 StretchingC–H ∗ xo xo xo
2927 ∗ xo xo xo

2928 ∗ xo xo xo
Stretching C-H
(2923/8)

2930 o o o
2962 CH3 modes o $

2964-5
Stretching
C-H

∗ o $
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3016
CH2 aro-
matic
stretch

o

Asymmteric stretching
vibration of CH2 of
acyl chains (lipids)
(2922)
νas CH2 of lipids
(2925)

3055
Amid B
(N–H
stretching)

∗

3086 ∗

3100 ∗

3340 ∗
√ $ ∗ Only in control cells

3435
Stretching
O–H
asymmetric

o $ ox

3451 ∗
√ $ x

3458-9 ∗xo ∗x
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B.1 Cell segmentation

The scanning region for quantification analysis was 45×45 µm2 (x-y), resolution 500×500 pixels, 20
accumulation per image, acquisition time ∼ 20 sec/image. Moreover, to obtain total information of
the tissue (3D image) was scanned in z dimension (1 µm step). First the images were normalized with
maximum global value for all slices of each tissue in MATLAB. Then the stacks were imported to the
Image J program.

Figure B.1: Characteristic scanning region of tissue.
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Image J was used to remove the noise and smooth the tissues.

Figure B.2: Smoothing of tissue

After processing the tissues, the cell segmentation was performed. Cell limits were then recog-
nized manually in the tissue, by looking at all the z slices of the tissue.

Figure B.3: Cell segmentation
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The unwanted signal was then excluded.
Continuously, a threshold was adjusted, in order to calculate only the higher THG signal ( almost

25%).

Figure B.4: Set threshold

Particles were then measured and analyzed. In this analysis the number of values and their mean
pixel values were calculated.

Figure B.5: Measure mean area of particles

This result was saved in an excel format and then using a MATLAB script the mean area THG
value was calculated for all the slices of each cell.

B.2 THG intensity quantification

This analysis did not require cell segmentation as previously described. In this case all the tissue area
was calculated after setting a constant threshold (see Chapter 4).
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