
Ηράκλειο

Ιούνιος 2011

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ

ΑΝΑΠΤΥΞΗ ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΓΛΩΣΣΑΣ ΓΙΑ ΤΗΝ

ΔΙΑΔΙΚΑΣΙΑ ΑΔΕΙΟΔΟΤΗΤΗΣ ΣΕ ΠΕΡΙΒΑΛΛΟΝΤΑ

ΔΙΑΧΥΤΗΣ ΝΟHΜΟΣΥΝΗΣ

ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Γενιτσαρίδη Ειρήνη

 ii

 iii

An Authorization Language in Ambient Intelligence Environments

Genitsaridi Eirini

Master of Science Thesis

Computer Science Department, University of Crete

Abstract

Ambient Ιntelligence (AmI) is a new wave of information technology that integrates

microprocessors into everyday objects in order to improve the quality of everyday

life. The information is distributed among various devices that collect, process,

change and share it.

As a new paradigm of information technology, Αmbient Ιntelligence has introduced

new research challenges in many areas including the field of authorization. The

implementation of authorization policies is vital in order to develop a secure AmI

system. Every Αmbient Ιntelligence device should be able to specify access rights

policies to the resources that it controls. However, the distributed and often imperfect

information, the open and dynamic nature of AmI environments and the special

characteristics of the involved devices make the enforcement of authorization policies

problematic.

Previous work by Bikakis et. al. presented Contextual Defeasible Logic (CDL), a fully

distributed approach for reasoning with conflicts in Αmbient Ιntelligence systems.

Here we extend this approach to address authorization issues in distributed

environments. We present Distributed Environment Authorization Logic (DEAL), a

formal high level logic-based language to specify access control policies in open and

dynamic distributed systems. The language has rich expressive power supporting

negative authorizations, rule priorities, hierarchical category authorizations and

nonmonotonic reasoning. We define the language semantics through Defeasible

Logic. We also demonstrate DEAL authorization policies in two concrete

implemented Αmbient Ιntelligence scenarios.

 iv

Ανάπτυξη και Υλοποίηση Γλώσσας για την Διαδικασία

Αδειοδότησης σε Περιβάλλοντα Διάχυτης Νοημοσύνης

Γενιτσαρίδη Ειρήνη

Μεταπτυχιακή Εργασία

Τμήμα Επιστήμης Υπολογιστών

Περίληψη

Η Διάχυτη Νοημοσύνη είναι ένα νέο κύμα τεχνολογίας πληροφοριών που

ενσωματώνει μικροεπεξεργαστές σε καθημερινά αντικείμενα προκειμένου να

βελτιωθεί η ποιότητα της καθημερινής ζωής. Οι πληροφορίες είναι κατανεμημένες

μεταξύ διάφορων συσκευών που τις συλλέγουν, επεξεργάζονται, μεταβάλλουν και

μοιράζονται. Ως νέο παράδειγμα τεχνολογίας πληροφοριών, η Διάχυτη Νοημοσύνη

έχει δημιουργήσει νέες προκλήσεις σε πολλές ερευνητικές περιοχές

συμπεριλαμβανομένου του τομέα της αδειοδότησης. Η εφαρμογή των πολιτικών

αδειοδότησης είναι ζωτικής σημασίας για την ανάπτυξη ενός ασφαλούς συστήματος

Διάχυτης Νοημοσύνης. Κάθε συσκευή Διάχυτης Νοημοσύνης πρέπει να είναι σε

θέση να προσδιορίσει πολιτικές δικαιωμάτων πρόσβασης στους πόρους που ελέγχει.

Εντούτοις, οι κατανεμημένες και συνήθως ελλιπείς πληροφορίες, η ανοικτή και

δυναμική φύση των περιβαλλόντων Διάχυτης Νοημοσύνης και τα ειδικά

χαρακτηριστικά των εμπλεκόμενων συσκευών δημιουργούν προβλήματα στην

επιβολή των πολιτικών αδειοδότησης.

Προηγούμενη έρευνα (Bikakis et. al.) παρουσίασε την Αναιρέσιμη Συλλογιστική

Περιβάλλοντος (Contextual Defeasible Logic ή CDL), μια πλήρως κατανεμημένη

προσέγγιση για συλλογιστική με συγκρούσεις σε περιβάλλοντα Διάχυτης

Νοημοσύνης. Εδώ επεκτείνουμε αυτήν την προσέγγιση ώστε να χειρίζεται ζητήματα

αδειοδότησης σε κατανεμημένα περιβάλλοντα. Παρουσιάζουμε την Γλώσσα

Αδειοδότησης Κατανεμημένου Περιβάλλοντος (Distributed Environment

Authorization Logic ή DEAL), μια επίσημη υψηλού επιπέδου λογική γλώσσα για να

προσδιορίζουμε πολιτικές πρόσβασης πόρων σε ανοικτά και δυναμικά κατανεμημένα

 v

συστήματα. Η γλώσσα έχει πλούσια εκφραστική δύναμη υποστηρίζοντας αρνητικές

άδειες, προτίμηση σε αντικρουόμενους κανόνες, άδειες σε ιεραρχημένες κατηγορίες

και μη μονοτονικό συλλογισμό. Ορίζουμε τη σημασιολογία της γλώσσας μέσω της

Αναιρέσιμης Συλλογιστικής. Περιγράφουμε επίσης την εφαρμογή πολιτικών

αδειοδότησης σε δύο συγκεκριμένα υλοποιημένα σενάρια Διάχυτης Νοημοσύνης.

Επόπτης Καθηγητής:

Γρηγόρης Αντωνίου

Καθηγητής Τμήματος Επιστήμης Υπολογιστών

Πανεπιστημίου Κρήτης

 vi

List of Figures

Figure 1.1: Related areas to Ambient Intelligence ... 5

Figure 1.2: Context information flow in the AmI hospital scenario 8

Figure 1.3: Context information flow in the AmI university scenario 12

Figure 2.1: The request-pair of a simple Ambient Intelligence example. 17

Figure 2.2: An authorization example in language [29]. .. 18

Figure 2.3: Two query examples of service requests. ... 18

Figure 2.4: An example of conflicting rules in language of [29]. 22

Figure 3.1: An authorization policy with negative authorizations. 25

Figure 3.2: Context information flow in the scenario ... 26

Figure 3.3: An authorization policy that requires rule priorities. 27

Figure 3.4: An example of user hierarchical categories. .. 28

Figure 3.6: An example of action hierarchical categories. ... 29

Figure 3.7: An example of object hierarchical categories. ... 29

Figure 3.8: An authorization policy with nonmonotonic reasoning. 31

Figure 4.1: Model of authorization in Woo, Lam approach [45]. 37

 vii

List of Tables

 1

Table of Contents

List of Figures .. vi

List of Tables .. vii

1. Introduction .. 4

1.1 Ambient Intelligence ... 4

1.2 Authorization in Ambient Intelligence .. 5

1.3 Motivating Scenarios... 7

1.3.1 Ambient Intelligence Hospital Scenario .. 7

1.3.2 Ambient Intelligence University Scenario ... 10

1.4 Approach ... 14

1.5 Thesis Contribution ... 15

1.6 Thesis Organization ... 15

2. Basic Concepts of the Authorization Problem .. 17

2.1 Request-Pair .. 17

2.2 Authorization ... 17

2.2.1 Service.. 18

2.2.2 Grantor ... 19

2.2.3 Grantee ... 19

2.3 Authorization Conflict ... 19

2.4 Authorization Policy ... 21

3. Desirable Characteristics of an Authorization Language 24

3.1 Negative Authorization ... 24

3.2 Rule Priorities .. 25

3.3 Hierarchical Category Authorization .. 28

3.4 Nonmonotonic Reasoning ... 30

 2

4. Related Work ... 32

4.1 Non logic-based Authorization Approaches ... 35

4.2 Logic-based Authorization Approaches .. 37

4.2.1 Centralized Authorization Approaches .. 38

4.2.2 Decentralized Authorization Approaches .. 39

5. Background Information... 40

5.1 Defeasible Logic ... 40

5.1.1 Proof Theory .. 42

5.2 Multi-Context Systems .. 43

5.3 Contextual Defeasible Logic ... 45

5.3.1 Representation Model .. 45

6. A Distributed Environment Authorization Language: DEAL 47

6.1 Language Syntax ... 47

6.1.1 Alphabet of DEAL Language .. 47

6.1.2 Rules of DEAL Language .. 50

6.1.3 Characteristics of DEAL Language ... 53

6.2 Language Semantics .. 57

6.2.1 DEAL alphabet transformation .. 57

6.2.2 DEAL rules transformation .. 58

6.3 Contextual Defeasible Logic Extensions .. 61

6.4 Motivating Scenarios Implementation .. 71

6.4.1 Implementation of AmI Hospital Authorization Scenario 71

6.4.2 Implementation of AmI University Authorization Scenario 75

7. Conclusion .. 79

7.1 Synopsis .. 79

7.2 Future Directions ... 80

 3

8. Appendix A ... 82

A.1 TuProlog Reasoner .. 82

A.2 Defeasible Logic Metaprogram ... 82

A.3 DEAL Metaprogram .. 84

9. Bibliography ... 86

Chapter 1

 4

Introduction

Access control is the ability of a system to prohibit unauthorized entities to consume

specific system services. In physical security, the term access control refers to the

practice of restricting entrance to physical objects such as a property, a building or a

room to authorized persons (e.g. ticket inspector in a bus). In computer security,

access control refers to any mechanism that manages the admission to computer

services such as accessing system information or performing some action to system

resources (e.g. update information in a Web server).

 Access control is a very important topic in the development of nowadays

computer applications. Companies usually require access control in order to grant

access to areas and information only to individual users and groups with the

appropriate permission level. Access control is crucial in systems that include

sensitive data such as medical information in hospital facilities, political beliefs in

online voting systems, bank account passwords in e-commerce systems or religion

and sex preferences in social networks.

 Access control involves various measures such as biometric scans and metal

locks, digital signatures, encryption, camera monitoring and others. Moreover access

control consists of three basic processes, Authentication, Authorization and Auditing

(AAA). Authentication is the process of verifying if the identity that a requester

provided is authentic. Authentication answers the question: Is the requester who he

claims to be? Authorization is the process that determines if a requester is permitted to

consume a specific service according to various system policies. Authorization

answers the question: Is the requester permitted to consume this service?

Accountability is the process of maintaining a record of actions performed by every

requester (successful or failed attempts to consume services). In this research we

study the process of authorization in the Ambient Intelligence domain.

1.1 Ambient Intelligence

Ambient intelligence (AmI) is a new wave of information technology that typically

integrates microprocessors into everyday objects in order to improve the quality of

everyday life. AmI environments include heterogeneous intelligent devices that

Chapter 1

 5

communicate by means of ad-hoc wireless networks. Every intelligent device acts as

an autonomous entity that controls resources, handles requests and sends requests to

other entities. The core difference between AmI and traditional computer systems is

their user centric approach. AmI systems adapt and respond to people by

acknowledging their presence and gestures instead of the other way around. Therefore

an Ambient Intelligence system can be seen as the most evolved form of a computer

system that requires the minimal user interaction in order to adjust to the user's needs.

A simple example of Ambient Intelligence is a house with the ability to acknowledge

human presence in a variety of places and adjust the light accordingly.

 Ambient Intelligence is a multidisciplinary approach as presented in [1, 4],

since it requires the convergence of many areas in Computer Science in order to fulfill

its purpose. The relevant areas are depicted in Figure 1.1.

Figure 1.1: Related areas to Ambient Intelligence

1.2 Authorization in Ambient Intelligence

Ambient Intelligence systems aim at providing the right information or behavior to

the right users, at the right time, in the right place. In order to achieve this, a system

must have a thorough knowledge and, as one may say, "Understanding" of its

environment, the people and devices that exist in it, their interests and capabilities,

Chapter 1

 6

and the tasks and activities that are being undertaken. All this information falls under

the notion of context. Dey et al. [6] described context as "any information that can be

used to characterize the situation of an entity. An entity is a person, place or object

that is considered relevant to the interaction between a user and application, including

the user and applications themselves". Other context definitions can be found in [7-9].

An example of context information in a computer application for a hospital can be

information about the role of a person as doctor, patient or nurse.

 A special characteristic of Ambient Intelligence environments is the imperfect

nature of context information. Henricksen and Indulska in [10] characterize four types

of imperfect context information: unknown, ambiguous, imprecise, and erroneous.

Sensor or connectivity failures (which are inevitable in wireless connections) result in

situations, that not all context data is available at any time. When data about a context

property comes from multiple sources, then context may become ambiguous.

Imprecision is common in sensor-derived information, while erroneous context arises

as a result of human or hardware errors.

 Another special characteristic of AmI environments is their open and dynamic

nature. In an open and dynamic environment participating entities enter or leave the

environment regularly and cannot be predetermined. The entities that operate in an

Ambient Intelligence environment are expected to have different goals, experiences

and perceptive capabilities. They may use distinct vocabularies and they may even

have different levels of sociality. Moreover, due the unreliable and restricted (by the

range of the transmitters) wireless communications, not all entities are present at a

specific time instance and direct communication with all of them may be impossible.

 The special characteristics of ambient intelligence environments have

introduced new research challenges in many areas, as presented in [1-5], including the

field of authorization. The implementation of authorization policies is vital in order to

develop a secure Ambient Intelligence system. Every AmI device should be able to

specify access right policies to the resources that it controls. However, the imperfect

nature of context information and the open and dynamic characteristics of AmI

environments make the enforcement of authorization policies problematic.

 The following questions highlight some of the implications that AmI

environments create to authorization as part of a system's security.

◊ How to adjust security according to context changes?

Chapter 1

 7

◊ How to protect recourses from entities when they cannot be predetermined?

◊ How to adjust security that relies on other entities when they leave the

environment?

1.3 Motivating Scenarios

In this section we describe two concrete application scenarios in ambient intelligence

environments that demonstrate the special requirements and challenges of

authorization in such environments. Both scenarios require the specification of

authorization policies for accessing sensitive information. The first takes place in an

Ambient Intelligence hospital environment and focuses on the protection of medical

data, while the second takes place in an Ambient Intelligence university and focuses

on the access control of secretarial services. In section 6.4 there is a full technical

description of these two interesting types of scenarios that served as motivations for

our research.

1.3.1 Ambient Intelligence Hospital Scenario

A hospital usually consists of several autonomous departments that are responsible for

diagnosing and treating different diseases. The motivation for this scenario is based on

the fact that a doctor may send a patient to different departments for medical tests in

order to diagnose his disease. The results of the exams are distributed in the different

departments. Doctors usually must visit the departments periodically to ask if the

results of their patients are ready. In order to automate this process, we simulated an

Ambient Intelligence hospital environment and handled the raised authorization

issues.

 The hospital of the scenario consists of three autonomous departments, the

Cardiology, the X-ray and the Gastroenterology. The Cardiology department provides

medical care and performs medical procedures to patients who have problems with

their heart or circulation. The X-ray department provides a full range of diagnostic

imaging services such as MRI (Magnetic resonance imaging) scanning. The

Gastroenterology department investigates and treats gastrointestinal diseases. Every

Chapter 1

 8

department is equipped with an intelligent computer that acts as an autonomous entity

in the environment and includes information about the performed procedures.

 The hospital includes also a management office which is equipped with an

intelligent device that handles information about the employees (doctors, trainees,

nurses etc.) and the patients that are hospitalized there. Moreover, the office maintains

a variety of information about diseases. The doctors can be informed from the office

about whether there is an outbreak of a specific disease or if there are disease

incidents more than a specific number in order to take precaution meters. The office is

also responsible for communicating with the departments in order to be updated about

the exam results of the patients.

Figure 1.2: Context information flow in the AmI hospital scenario

 The doctors and trainees of the hospital are provided with smart PDA

computers that communicate with the management office in order to be informed

about the status of the patients’ exam results and the diseases information. The

information flow of the scenario is depicted in figure 1.2. Essentially, the context

information flow illustrates that requests about disease information (disease outbreaks

Chapter 1

 9

and disease incidents) are answered by the management office and requests about the

status of exam results are forwarded by the management office to the appropriate

department in order to be answered.

 This scenario arises various authorization issues. First of all, the departments

require authorization policies in order to protect their medical exams information. The

authorization policy of each department is trivial, because they communicate only

with the management office. Thus, departments should process requests made only by

the office. Secondly, the management office should restrict its information only to

requesters which are doctors that fulfill concrete attributes. The management office

requires a rich and extendable authorization policy that consists of the following

statements:

1. A person should be authorized to be informed about the status of a

patient’s exam results if he is a doctor that cures this patient.

2. A person should be authorized to be informed about the status of a

patient’s exam results if he is a trainee and a doctor that cures this patient

permits it.

3. A person should not be authorized to be informed about the status of a

patient’s exam results if he is a doctor that is retired.

4. Statement 3 is preferred to statement 1.

5. A person that is a doctor or trainee belongs to the category “Doctors”.

6. The persons that belong to the category “Doctors” should be authorized to

be informed about a disease outbreak.

7. The persons that belong to the category “Doctors” should be authorized to

be informed about disease incidents.

In order to simplify the scenario we considered a simple authorization policy

for the departments. However, the scenario is easily extended to support different and

more complicated authorization policies for each department. Moreover, the number

of departments can be increased to fulfill the requirements of a real hospital facility.

The individuals that take part in the scenario are three doctors Bob, Trudy and

Alice. The management office has the following information about these doctors:

• Bob is a doctor cures two patients Mary and George.

• Trudy is a doctor that was recently retired.

Chapter 1

 10

• Alice is a trainee doctor.

• Bob permits Alice to be informed about the status of George’s exam

results.

When Bob enters the hospital, he decides to be informed about the status of

Mary’s exams and tells his trainee doctor Alice to be updated about the status of

George’s exams. Bob uses his PDA to make a request to the management office about

whether Mary’s cardiology exam results are ready. The management office should

authorize Bob due to statement 1 and the request should be forwarded to the

Cardiology department in order to be answered. Bob also decides to make a request

about if there is an outbreak of the disease ‘H1N1’. The management office should

conclude that Bob is authorized for this request too, due to statement 5, 6 and answer

it.

 Alice uses her PDA to make two requests to the management office about

whether George’s X-ray and Gastrointestinal exam results are ready. Alice should be

granted by the management office due to statement 2 and the requests should be

forwarded to the appropriate departments in order to be answered. Alice also decides

to make a request about if there are more than 4 incidents of ‘H1N1’ in the hospital.

The management office should conclude that Alice is authorized for this request too,

due to statement 5, 7 and answer it.

Trudy was responsible for Bob's patient George before she was retired. Trudy

decides to make a request with her PDA to the management office about whether

George’s X-ray exam results are ready. The management office should conclude that

Trudy is not authorized for this request due to statement 1, 3 and 4.

 The implementation of the above authorization statements requires an

expressive language with specific characteristics that is able to support access control

policies in Ambient Intelligence environments.

1.3.2 Ambient Intelligence University Scenario

A university consists of several areas where classrooms, laboratories, the office of the

university secretary and administrative offices are located. These areas are used by

individuals such as students, professors and university staff. The students and

professors usually must visit the office of the university secretary in order to make

Chapter 1

 11

various requests. The motivation for this scenario is the automation of several

procedures that take place in the university in order to achieve a better management of

the university recourses, an easier use of the provided university services, and a

decrease of the work amount in the secretary office. We simulated an Ambient

Intelligence university environment where the secretary office and the individuals are

 equipped with intelligent computer devices that are able to communicate via wireless

networks. Moreover, we handled the authorization issues that are raised from this

scenario.

The university in this scenario includes a secretary office which is equipped

with an intelligent device that handles information about individuals and university

resources. More specifically, the computer maintains information about the students

that have gotten a scholarship, the students that have successfully taken all lessons

and the students that have presented the thesis. Furthermore, the device has

knowledge of the persons that have completed and signed the university registration

form that is required every semester. Finally, the computer maintains information of

the scheduled presentations in the university classrooms.

The secretary office computer is able to provide individuals with various

services. The computer provides a service that informs a student about whether he has

fulfilled the requirements to get the degree (successfully taken all lessons and

presented the thesis). Additionally, another service informs a student about whether

he has gotten a scholarship. Moreover, the computer provides a service that informs a

professor about whether a classroom is available at a specific time (there is not a

scheduled presentation in the classroom at that time). Finally, another service informs

the administrator about whether there is enough memory space (used memory below

80%) in the computer of the office.

 The students and professors of the university are provided with smart PDA

computers that communicate with the management office. The students use their PDA

computers in order to be informed about scholarships and degree requirements while

the professors use the devices in order to be updated about classroom reservations.

 The information flow of the scenario is depicted in figure 1.3. Essentially, the

context information flow illustrates that the secretary office answers requests from

professors, students and administrators. In order to simplify the scenario we

considered a limited set of online services that are provided by the secretary office.

Chapter 1

 12

However, the scenario is easily extended to support a larger number of services that

fulfill the requirements of real university facilities.

Figure 1.3: Context information flow in the AmI university scenario

This scenario arises various authorization issues. The secretary office requires

an expressive and extendable authorization policy in order to restrict its online

services only to professors, students and administrators that fulfill concrete attributes.

The authorization policy of the secretary office consists of the following statements:

1. The service that informs a student about whether the requirements to get

the degree have been fulfilled belongs to the category “StudentServices”.

2. The service that informs a student about whether he will get a scholarship

belongs to the category “StudentServices”.

3. A person that is a student should be authorized to consume any service that

belongs to the category “StudentServices”.

4. A person that is a student should not be authorized to consume any service

that belongs to the category “StudentServices” if there is not any

knowledge that he has signed and completed the registration form that is

required every semester.

5. Statement 4 is preferred to statement 3.

6. A person should be authorized to be informed about whether a classroom

is available at a specific time, if the person is a professor of the university

and there is not any knowledge that he is retired.

7. A person should be authorized to be informed about whether there is

enough memory space in the computer of the office, if the person is an

administrator of the university.

Chapter 1

 13

The individuals that take part in the scenario are professor Antoniou and three

students Bob, Alice and Trudy. The secretary office has the following information

about the individuals, the scheduled classroom presentations and the computer’s

memory status:

• Bob is a student that is registered for the current semester and has gotten a

scholarship.

• Alice is a student that is registered for the current semester, has passed all

the lessons of the master degree and recently presented her master thesis.

• Trudy is a student that is not yet registered for the current semester.

• Antoniou is an active professor of the university.

• The university classroom “RA201” has scheduled presentation at 5

o’clock.

• Smith is an administrator of the university computer systems.

• The computer has consumed below 80% of the memory space.

Bob decides to be informed about whether he has gotten a scholarship this

semester. Bob uses his PDA to make the appropriate request to the secretary office.

The secretary office should authorize Bob for this request due to statements 2, 3, 4, 5

and the information that the office maintains. Thus, the secretary office should

proceed in processing the request. The information about Bob leads to a positive

answer for his request. Therefore, Bob should receive a positive reply.

Alice decides to be informed about whether she has fulfilled the requirements

to get the master degree. Alice uses her PDA to make the appropriate request to the

secretary office. The secretary office should authorize Alice for this request due to

statements 1, 3, 4, 5 and the information that the office maintains. Thus, the secretary

office should proceed in processing the request. The information about Alice (passed

all lessons and presented master thesis) leads to a positive answer for her request.

Therefore, Alice should receive a positive reply.

Trudy decides to be informed about whether she has fulfilled the requirements

to get the master degree. Trudy uses her PDA to make the appropriate request to the

secretary office. The secretary office should not authorize Trudy for this request due

to statements 1, 3, 4, 5 and the information that the office maintains. Thus, the

Chapter 1

 14

secretary office should not proceed in processing the request. Therefore, Trudy should

receive neither a negative nor a positive reply.

Professor Antoniou needs a classroom to make a presentation and decides to

be informed about whether classroom “RA201” is available at 5 o’clock. The

professor uses his PDA to make the appropriate request to the secretary office. The

secretary office should authorize Antoniou for this request due to statement 6 and the

information that the office maintains. Thus, the secretary office should proceed in

processing the request. The information about classroom “RA201” leads to a negative

answer for his request. Therefore, the professor should receive a negative reply.

Administrator Smith decides to be informed about whether there is enough

memory space left in the computer of the secretary office. The administrator uses his

PDA to make the appropriate request to the secretary office. The secretary office

should authorize Smith for this request due to statement 7 and the information that the

office maintains. Thus, the secretary office should proceed in processing the request.

The information about the computer leads to a positive answer for his request.

Therefore, the administrator should receive a positive reply.

This scenario makes also clear the demand for a flexible and declarative

authorization language for Ambient Intelligence environments that is able to support

policies of this kind.

1.4 Approach

Our work builds on previous work [31, 32, 33] for distributed contextual reasoning in

ambient intelligence environments, called Contextual Defeasible Logic (CDL).

Although CDL provides a flexible language for reasoning about context in distributed

environments, it does not address authorization issues. In this work we propose the

Distributed Environment Authorization Language (DEAL), a language that enables

the specification of authorization policies in Ambient Intelligence environments. The

implementation of the language on top of CDL framework provides two main

advantages. Firstly, CDL is enriched with the ability to address authorization issues of

intelligent devices in AmI environments. Secondly, CDL enables DEAL to specify

authorization policies that require integration of knowledge from heterogeneous

information sources. The language has rich expressive power by supporting negative

Chapter 1

 15

authorizations, rule priorities, hierarchical category authorizations and nonmonotonic

reasoning.

1.5 Thesis Contribution

The theoretical contribution of this work is summarized in the following points.

• We provide a thorough description of the authorization problem in

Ambient Intelligence environments by introducing the basic notions of the

problem.

• We analyze the desirable features of a language that addresses the

authorization problem in Ambient Intelligence environments. More

specifically, we describe the characteristics of negative authorization, rule

priorities, hierarchical category authorization and nonmonotonic

reasoning.

• We present the Distributed Environment Authorization Language (DEAL).

DEAL is a formal, high level, logic based language that is able to handle

authorization issues of Ambient Intelligence environments. We provide the

language’s syntax and semantics.

• We extend the basic algorithm of CDL in order to support DEAL policies.

The practical contribution of this work is summarized in the following points.

• We provide the implementation of DEAL rules and the basic extensions to

CDL framework in order to fully support DEAL language.

• We implement real application scenarios that aim on illustrating the

expressive power of DEAL in association with CDL for addressing the

authorization issues of Ambient Intelligence systems.

1.6 Thesis Organization

The rest of this Thesis is organized as follows:

 Chapter 2 presents basic concepts involved in the authorization problem in

Ambient Intelligence environments. More specifically, it introduces the notions of

Chapter 1

 16

request-pair, grantor, grantee, service, authorization conflict, authorization policy,

authorization rule and conflicting rules.

 Chapter 3 describes the desirable features of a powerful authorization

language in Ambient Intelligence environments. This chapter analyzes the importance

of negative authorization, rule priorities, hierarchical category authorization and

nonmonotonic reasoning as characteristics of a logic-based authorization language for

AmI environments.

 Chapter 4 presents related research on the authorization problem. This chapter

describes the limitations of other logic-based and non-logic based approaches that aim

on addressing the authorization problem. The logic-based approaches are

distinguished into centralized and decentralized.

 Chapter 5 provides background information on contextual reasoning. Firstly, it

presents Defeasible Logic and the concept of Multi-Context systems. Secondly, it

describes Contextual Defeasible Logic (CDL) as a fully distributed approach for

contextual reasoning in Ambient Intelligence environments and provides the

representation model.

 Chapter 6 introduces the Distributed Environment Authorization Language

(DEAL) that aims on providing a powerful logic-based approach for addressing

authorization issues in Ambient Intelligence environments. First of all, the chapter

presents the syntax of DEAL by providing the alphabet, rules and characteristics of

the language through examples. Secondly, it illustrates the semantics of the language

through transformation to Defeasible Logic. Thirdly, it describes the appropriate

extensions to the basic CDL algorithm in order to support DEAL policies. Finally, the

chapter provides the implementation of the motivating scenarios using DEAL

policies.

 Chapter 7 summarizes the main points of the thesis and discusses potential

extensions of this work.

Chapter 2

 17

Basic Concepts of the Authorization Problem

Authorization is an important part of the access control process in distributed

environments. In this chapter we describe basic concepts that are associated with the

authorization problem in ambient intelligence environments.

2.1 Request-Pair

Intelligent devices of AmI environments act as autonomous entities by sending and

receiving requests from other entities. The requests aim on consuming services that the

entities provide. The pair that consists of the requester entity and the requested service

is usually called request-pair. Figure 2.1 presents an example where the request-pair

consists of the requester Bob and the requested service translateToGreek. The

request-pair should be included in every received message in order to enforce

authorization control on the receiver entity.

Figure 2.1: The request-pair of a simple Ambient Intelligence example.

2.2 Authorization

Authorization issues arise when an Ambient Intelligence entity receives a request that

is either sent from an intelligent device or perceived through human interaction. An

authorization plain statement that is usually called authorization expresses either

permission (positive authorization) or denial (negative authorization) for a particular

request-pair. The three basic concepts that are usually involved in an authorization

Chapter 2

 18

are the service, the grantor and the grantee. These concepts answer the three

following questions respectively:

• What does the authorization concern?

• Who is giving the authorization?

• Whom is the authorization given to?

 An example of an authorization in the language which is proposed in [29] is

depicted in figure 2.2. The authorization defines that the grantor Alice expresses a

denial to the grantee Bob for consuming the service that provides access to the file

with personal information. The sign +/- denotes either a permission or a denial for

providing a service to the grantee

Figure 2.2: An authorization example in language [29].

2.2.1 Service

In an ambient Intelligence environment an AmI entity provides a service in order to be

consumed by other AmI entities. The request for consuming a service is usually

represented in the form of a query. Two examples of service requests are presented in

figure 2.3.

Figure 2.3: Two query examples of service requests.

Chapter 2

 19

 In [23, 24, 28, 30] the concept of service is decomposed into two additional

concepts, an action and an object, that represent the right to perform an action to a

resource object. Example 2 of figure 2.3 is associated with the right to perform the

action "read" to the resource "grades.txt". However, the service concept in ambient

intelligence environments is a generic notion that depends on the application demands

and cannot always be decomposed into an action to an object, such as the example 1

of figure 2.3.

2.2.2 Grantor

Grantor (or authorizer) refers to the entity that provides the authorization for a

specific request-pair. In an Ambient Intelligence environment it can have the form of

a software component of an autonomous intelligent device or of an individual user.

Sometimes the grantor is omitted from the specification of authorizations. This

usually happens when it is assumed that the grantor is always the local system.

2.2.3 Grantee

Grantee refers to the entity that receives the authorization for consuming a specific

service. In an Ambient Intelligence environment it can have the form of a software

component of an autonomous intelligent device or of an individual user. Moreover,

the grantee of an authorization may refer to a group of entities indicating that every

entity of the group receives the same authorization.

2.3 Authorization Conflict

Ambient Intelligence scenarios may include only positive, only negative or both

authorizations types. Scenarios that involve positive and negative authorizations may

potentially lead to authorization conflicts. An authorization conflict describes a

problematic state where a positive and a negative authorization exist for the same

grantor, grantee and service instances. The positive authorization expresses the

permission and the negative authorization expresses the denial of the grantor for

providing the service to the grantee. However, the aim of an authorization system as a

Chapter 2

 20

grantor concept is to finally conclude either permission (positive authorization) or

denial (negative authorization) for a particular service and grantee that refer to a

specific request-pair.

 The resolution of an authorization conflict requires the specification of a

preference among the contradictory authorizations. The basic idea is that the non

preferred authorization is nullified, thus the conflict is resolved. Three authorization

conflict resolution options could be taken:

• Denial-preference: The negative authorization is preferred over the

positive, thus the positive is nullified. Therefore, the resolution of the

conflict leads to the conclusion that the grantor denies to provide the

service to the grantee.

• Permission-preference: The positive authorization is preferred over the

negative, thus the negative is nullified. Therefore, the resolution of the

conflict leads to the conclusion that the grantor permits the grantee to

consume the service.

• No-Preference: None authorization is preferred, thus both authorizations

are nullified. Therefore, no conclusion can be derived about whether the

grantor permits or denies the grantee to consume the service. The final

outcome in this case may be specified according to the needs of the

particular system. For instance, the system may handle this case as an error

or it may ask for additional information in order to reach as decision.

 An authorization conflict can be viewed as a specific type of a knowledge

conflict. A knowledge conflict refers to pairs of data elements that meet specific

requirements which express contradictory knowledge. An instance of a knowledge

conflict is a particular pair of data elements that fulfill the specified requirements. An

authorization conflict is a specific type of knowledge conflict where the contradictory

data elements correspond to a permission and a denial of a grantor for providing a

service to a grantee.

 The authorization conflict resolution options that apply to an authorization

conflict can be generalized for the knowledge conflict. More specifically, given a pair

of contradictory data elements that form an instance of a knowledge conflict there are

Chapter 2

 21

three knowledge conflict resolution options which can be applied, the first-preference,

the second-preference and the no-preference. The first-preference option indicates

that the first data element of the pair is preferred over the second. On the other hand,

the second-preference option indicates that the second data element of the pair is

preferred over the first. Lastly, the no-preference option indicates that the knowledge

conflict is resolved without preferring any of the contradictory data elements. The

specific semantics of these conflict resolution options depend on the particular type of

knowledge conflict on which they are applied.

 In a particular environment there can be many types of knowledge conflicts

according to what is considered contradictory knowledge. The specification of a type

of knowledge conflict is an application dependant subject. In other words, the pairs of

data elements that are considered contradictory depend on the particular application

domain. In authorization applications, contradictory data elements are usually

elements that form an authorization conflict. However, authorization applications may

require also the specification of other types of knowledge conflicts.

2.4 Authorization Policy

Authorization policy is defined as a set of authorizations and conditions under which

they are concluded. An authorization policy describes when a requester should be

provided or denied a specific service.

 The problem of specifying an authorization policy for a system’s resources can

be viewed as a knowledge representation (KR) problem. Logic-based approaches have

been proven very successful in knowledge representation because they offer significant

advantages such as simplicity, flexibility, formality, expressivity and modularity as

described in [61]. Therefore, logic-based approaches are commonly used for

expressing authorization policies. In logic-based approaches, an authorization policy is

defined as a set of logical rules. A logical rule that participates in the process of

authorization is called authorization rule. An authorization rule can be either a final

rule which concludes to an authorization or an intermediate rule which specifies an

intermediate conclusion which is not an authorization. Ambient Intelligence

authorization scenarios usually require multiple authorization rules in order to define

permissions and denials under different circumstances. This is due to the many

Chapter 2

 22

different aspects of context and the many different possible states of the environment

or the system, which possibly have to be taken into account.

 In KR logic-based approaches, a pair of rules is considered conflicting (or

contradictory) if their conditions can be simultaneously satisfied and their conclusion

instances can form a knowledge conflict instance. In other words, two rules are

considered conflicting if they potentially lead to a knowledge conflict. A knowledge

conflict that is caused by two conflicting rules is also called rule conflict.

 An example of a pair of conflicting rules is depicted in figure 2.4. The

example includes two final authorization rules. The rules may potentially lead to an

authorization conflict. The rules are specified in the language of [29]. The study in

[29] describes a KR logic-based approach which focuses on the authorization

problem.

Figure 2.4: An example of conflicting rules in language of [29].

 Moreover, given a contradictory pair of rules, there is a conflict resolution

approach which is based on rule preference, that aims to resolve every potential rule

conflict caused by these rules in the same way. This approach includes three conflict

resolution options, the firstRule-preference, the secondRule-preference and the

noRule-preference. The firstRule-preference option resolves every potential rule

conflict by deriving always the conclusion of the first rule while the conclusion of the

second is blocked (not derived). On the other hand, the secondRule-preference

approach resolves every potential rule conflict by deriving always the conclusion of

the second rule while the conclusion of the first is blocked. Lastly, the noRule-

preference approach resolves every potential rule conflict by blocking both rule

conclusions. In this approach, neither of the rule conclusions can be derived. Thus,

Chapter 2

 23

every rule conflict is avoided.

 Furthermore, given a contradictory pair of rules and a rule preference for

conflict resolution. The rule that is preferred is called superior while the other rule is

called inferior. In case where no rule preference is specified (noRule-preference

approach) to the contradictory rule pair, the rules are called neutral regarding rule

preference.

Chapter 3

 24

Desirable Characteristics of an Authorization Language

Ambient intelligence systems require an authorization language with specific

characteristics in order to support expressive authorization policies. In this chapter we

present the desirable features of a powerful authorization language for Ambient

Intelligence environments and argue their usefulness in detail.

 The desirable characteristics of an Ambient Intelligence authorization

language are listed below:

• Negative authorization

• Rule priorities

• Hierarchical category authorization

• Nonmonotonic reasoning

3.1 Negative Authorization

A negative authorization expresses the denial of a grantor to provide a service to

another to a grantee. The specification of negative authorizations is required in many

common Ambient Intelligence scenarios that involve blocking of specific request-

pairs. For example, many scenarios include services that expose private information

or permit access to private resources. Requests that aim to consume this type of

services are considered private. In these scenarios it must somehow be declared

negative authorization to specific requesters for private requests.

 The AmI entities and the authorization policy of a simple Ambient

Intelligence scenario that involves negative authorization are provided below.

 Ambient Intelligence entities:

(a) Individual user: Professor Antoniou owns an intelligent mobile phone;

(b) Intelligent device: His phone maintains an automatic system for answering

requests about passing a recent exam;

Chapter 3

 25

 Special cases of students require further consideration by the professor before

answering. Thus, the professor wants to specify the following policy for any incoming

requests about passing the recent exam.

 Authorization policy:

1. A denial to answer requests from his two students Bob and Alice because

they probably cheated.

2. A denial to answer requests if the requester is a student and has exceeded

time limit during the exam because the grade must be decreased.

 The authorization policy of the scenario is depicted in a matrix in figure 3.1.

Figure 3.1: An authorization policy with negative authorizations.

 This scenario includes professor Antoniou as an individual user and a mobile

phone as an intelligent device. The authorization policy requires two negative

authorizations by the grantor professor Antoniou to the grantees Bob and Alice for the

service of answering exam grades requests. Moreover, the policy requires a rule that

concludes a negative authorization for students that have exceeded time limit. An

authorization language should be able to represent negative authorizations in order to

easily support simple scenarios like this. Therefore, negative authorization is a

desirable feature of an authorization language for Ambient Intelligence environments.

3.2 Rule Priorities

Rule priorities is a feature that enables the specification of a priority relation to a

contradictory pair of rules. The priority relation can be used to denote a preference to

the contradictory rules. Thus, rule preference for conflict resolution (described in

Chapter 3

 26

section 2.4) can be expressed with rule priorities. In other words, the priority relation

can be used to specify either the firstRule-preference or the secondRule-preference

conflict resolution option that is able to resolve every potential rule conflict caused by

the contradictory rules. This feature is useful in many common AmI scenarios that

involve multiple authorization rules which may potentially lead to inconsistencies

(authorization conflicts). The authorization conflicts in these scenarios can be easily

avoided by specifying a priority on each contradictory rule pair.

 An example of a simple Ambient Intelligence scenario that requires rule

priorities is presented below. This scenario takes place in a company which includes a

private area. Mr. Smith as the manager of the company controls the access to this area.

The context information flow of the scenario is depicted in figure 3.2.

Figure 3.2: Context information flow in the scenario

 The AmI entities and the authorization policy of the scenario are provided

below.

 Ambient Intelligence entities:

(a) Individual user: The manager of the company Mr. Smith;

(b) Intelligent device: A laptop used by Mr. Smith maintains an intelligent

system for specifying access policies to private area (PA);

Chapter 3

 27

(c) Intelligent device: A person detection device indentifies any individual that

requests access to PA;

(d) Intelligent device: An intelligent door lock mechanism consults the person

detection device and Smith's laptop preferences in order to control the

entrance to PA;

 Authorization policy: Mr. Smith wants to specify the following four rules in

the below preference order in case of conflicts.

1. A permission for accessing PA is granted to a person if the person is the

manager;

2. A denial for accessing PA is specified to a person if the person is a fired

employee;

3. A permission for accessing PA is granted to a person if the person is a

submanager;

4. A permission for accessing PA is granted to a person if the person is a

system administrator;

 The authorization policy of the scenario is depicted in a matrix in figure 3.3.

Figure 3.3: An authorization policy that requires rule priorities.

 The authorization policy involves the conflicting rule pairs {(1, 2), (2, 3), (2, 4)}

and requires the specification of three priorities relation on these pairs in order to

implement the manager's preference in the rules. More specifically, the first priority

relation should express that rule 1 is preferred than rule 2. The second priority relation

should define that rule 2 is preferred than rule 3 and the third priority relation should

Chapter 3

 28

specify that rule 2 is preferred than rule 4. This kind of scenarios that involve many and

possibly conflicting authorization rules require an authorization language that supports

priorities relations on policy rules. Thus, rule priorities is a desirable feature for an

authorization language in Ambient Intelligence environments in order to easily specify

consistent policies of multiple authorization rules.

3.3 Hierarchical Category Authorization

Ambient Intelligent entities can be grouped into hierarchical categories. A category

expresses a common property for the belonging entities. An AmI entity may belong to

many different categories. A category may also belong to many other categories as

their specialization organizing thus hierarchies. An example of hierarchical

categories of users is presented in figure 3.4.

Figure 3.4: An example of user hierarchical categories.

 Ambient Intelligent services can also be grouped into hierarchical categories.

An example of hierarchical categories of services is presented in figure 3.5. The root

element of the structure is the category "dataService".

Chapter 3

 29

Figure 3.5: An example of service hierarchical categories.

 Moreover, when services are decomposed into action and object concepts,

these additional concepts can also be structured into hierarchical categories. Two

examples that represent hierarchical categories of actions and hierarchical categories

of objects are shown in figure 3.6 and figure 3.7 respectively.

Figure 3.6: An example of action hierarchical categories.

Figure 3.7: An example of object hierarchical categories.

Chapter 3

 30

 The ability to represent hierarchical categories is a feature that enables Ambient

Intelligence systems to define structured services, actions, objects and AmI entities.

Furthermore, the ability to specify inherited authorizations among hierarchical

categories simplifies the process of authorization. The main simplification is that an

authorization can be related with a category instead of declaring the same authorization

for every element of the category. For example, a permission for accessing a project

can be associated with the category researcher of figure 3.4 instead of authorizing

Bob, Alice, Mary and George separately. An authorization language should be able to

represent hierarchical categories and inherited authorizations among them in order to

simplify the authorization task. Therefore hierarchical category authorization is a

desirable feature of an authorization language in Ambient Intelligence environments.

3.4 Nonmonotonic Reasoning

Nonmonotonic reasoning is reasoning based on the absence of information and was

developed to model commonsense reasoning used by humans. Nonmonotonic

reasoning is especially appropriate for specifying authorization policies in Ambient

Intelligence environments. The information in Ambient Intelligence systems may be

incomplete or changing due to the open and dynamic nature of AmI environments. The

development of nonmonotonic reasoning provides formal methods that enable

Ambient Intelligence systems to handle incomplete or changing information and

derive authorization conclusions that in the presence of future information may be

withdrawn.

 Many Ambient Intelligence authorization scenarios involve nonmonotonic

policies. An example of a simple AmI authorization scenario that requires

nonmonotonic reasoning is presented below. This scenario includes an individual user

(painter Nick) and an intelligent device (laptop). The AmI entities and the

authorization policy of the scenario are provided below.

 Ambient Intelligence entities:

(a) Individual user: Nick is a painter that takes photos of his finished art and

uploads them on a photo gallery in his laptop;

Chapter 3

 31

(b) Intelligent device: A laptop used by Nick maintains an intelligent system

for answering requests about accessing photos;

 Authorization policy: Nick wants to enforce the following nonmonotonic

authorization policy.

1. A permission for accessing a photo of his gallery is granted to a person if

there is no information that the depicted painting is sold;

2. A denial for accessing a photo of his gallery is specified to a person if the

depicted painting is sold;

 The authorization policy of the scenario is depicted in a matrix in figure 3.8.

Figure 3.8: An authorization policy with nonmonotonic reasoning.

 The first rule of the policy includes nonmonotonic features. More specifically,

it expresses that permission is concluded for any request, about accessing a photo,

only in the absence of information about sale. The second rule specifies a denial for

accessing a photo in the presence of information about sale. Note that the two rules

cannot lead to an authorization conflict because their conditions cannot be

simultaneously satisfied. Thus, this policy does not require conflict resolution with

rule priorities. The nonmotonicity of the policy derives from the fact that future

information about sale may withdraw previous permissions. An authorization

language should support nonmonotonic reasoning in order to easily specify policies

like this. Therefore, nonmonotonic reasoning is a desirable feature of an authorization

language in Ambient Intelligence environments.

Chapter 4

 32

Related Work

Over the past twenty years, there have been proposed several authorization

approaches, both logic and non logic based, for distributed environments. In this

chapter we present the approaches that are related to our work and we provide their

limitations thoroughly.

 In order to describe the limitations of the authorization approaches we

distinguish the authorization policies into distributed and centralized. A centralized

authorization policy involves only the local information of the authorizer while a

distributed authorization policy requires information from external third-party entities.

A distributed authorization is an authorization that is concluded from a distributed

authorization policy.

 An example of a distributed authorization would be the second authorization

rule of the policy in the motivating scenario of section 1.3.1, if the information that

refers to the doctor permission, required a communication with the doctor, instead of

being maintained locally in the management office. For simplicity reasons, we

consider it local information.

 Distributed authorizations are required in many cases. For instance, in some

cases the processing of the authorization for a particular request-pair may be divided

into several sub-processes. It is possible that an entity alone cannot deal with all the

sub-processes thus different entities of the environment are specialized for different

sub-processes. These cases require distributed authorization policies that involve

information from external specialized entities.

 Moreover distributed authorizations are required in cases where the authorizer

wants for some reason (e.g. lack of information or decision confirmation) to consult

third-party entities about authorizing a request-pair. We call the process of taking into

account a third-party opinion, about authorizing a particular request-pair,

authorization consultation. In these cases there are arising issues of conflict resolution

(how to handle conflicting third-party opinions). An approach for conflict resolution

could be enforced based on a total or partial ordering of the third-parties regarding

their reliability. However the enforcement of a specific conflict resolution approach is

strictly dependant on the application requirements.

Chapter 4

 33

 Finally distributed authorizations are required in cases where the authorizer

has for some reason (e.g. to decrease his work load) delegated the right of authorizing

specific grantee-service pairs to other third-party entities that he trusts. The process of

transferring the right of authorization to a third-party entity is called authorization

delegation. In these cases where the authorizer has made authorization delegations he

should specify distributed authorization policies that involve information from the

external delegated entities in order to make authorization decisions (for request-pairs

that are related with the authorization delegations). In addition these cases that

involve authorization delegations may lead to authorization conflicts because it is

implied that the authorizer will agree with the “beliefs” of the delegated third-parties

(possible presence of conflicting third-party opinions).

 The difference between authorization consultation and authorization

delegation is that the second indicates that the involved third-party entity has been

given the right to make authorization decisions while the first one doesn’t.

Furthermore, authorization delegations are related with large systems that require

decentralization. In centralized systems only one entity has the privilege to make

important decisions (e.g. authorizations). This entity orders the other entities to make

non-essential tasks. On the other hand, in decentralized systems the right to make

important decisions can be transferred from the most “privileged” entities (that have

more jurisdictions) to the “unprivileged” entities.

 In open and dynamic distributed environments, we distinguish two different

approaches for the exchange of knowledge with external entities. An authorization

framework can adopt either of them in order to support distributed authorizations.

These approaches are listed below.

• Connection-based approach.

• Credential-based approach.

 The first approach is based on runtime communications and information

gathering from the third-party entities. The authorizer must establish connections with

the external entities that he wishes to communicate in order to receive information. A

framework that supports distributed authorizations by adopting this approach should

be able to represent the information that is gathered from the external entities in the

specification of the authorization policies. Moreover, the framework should provide

Chapter 4

 34

mechanisms that would implement the required connections and information

exchange that is specified in the authorization policies.

 The second approach is based on credentials. Credentials represent knowledge

in specific file forms that are issued from entities in the environment. Credentials may

contain simple facts such as “Bob is a student in the University of Crete” or more

complicated policy statements. The key point in this method is that the authorizer

must somehow receive credentials which include information from third parties in

order to expand his knowledge. The credentials are usually provided by the requester,

either together with his request or later according to the communication protocol, in

order for his request to be authorized (by the authorizer). A framework that supports

distributed authorizations by adopting this approach should be able to represent the

information that is gathered from the third-party entities in the specification of the

authorization policies. Moreover, the framework should provide mechanisms that

would extract the knowledge from valid credentials into the local knowledge of the

authorizer.

 Both approaches have advantages and disadvantages. The connection-based

approach is a direct approach since the authorizer must establish a direct connection

with the third-party entity that maintains the required information. Moreover, this

approach is more dynamic and flexible since it provides runtime third-party

information flow that can be specified in the authorization policies. The disadvantage

of this approach is that it is more time-demanding because the exchange of knowledge

with external entities requires additional time for the third-party communications. On

the other hand, the credential-based approach requires only the process of extracting

the credential information into the local authorizer knowledge (in order to achieve the

information exchange with third-party entities). This approach is indirect since the

authorizer receives the required information (in the form of credentials) usually from

the requester entity which is not related with the third-party entity that issued them.

The disadvantage of this approach is that it is more static in the sense that it does not

provide "fresh" information that is gathered during the request processing since

credentials may be issued any time earlier. Moreover, the indirect static nature of the

second approach includes more risks on the secure information flow.

 The most suitable approach for supporting distributed authorizations for a

specific system depends on the specific requirements of the application. It may even

be a hybrid combination of the two approaches.

Chapter 4

 35

4.1 Non logic-based Authorization Approaches

The trust-management approach, which was initially proposed by Blaze et al. in [11]

and is focused on the credential-based method for distributed authorization, has

received a great attention by many researchers [12, 14, 26, 28, 41]. In the trust

management approach a requester submits a request, possibly supported by a set of

credentials, to an authorizer who controls the requested service. The authorizer then

decides whether to authorize this request pair by answering the authorization question:

 “Should this request pair be authorized based on the submitted credentials, my

 knowledge and authorization policy?”

 On the other hand, we could address the submitted request, which is supported

with credentials, as two different requests. The first one would be a request for the

credentials to be accepted by the authorizer that would lead to upgrading his local

knowledge and policy while the second one would be the initial request. This approach

would simplify the authorization question in the following:

 “Should this request pair be authorized based on my knowledge and

 authorization policy?”

 The first request would trigger the authorization question on the authorizer side

in order to be answered. The authorization rules for this request may be associated with

conditions for validity of the credentials. The second request would trigger the

authorization question on the upgraded authorizer context. In our approach we

concentrate on the specification of expressive authorization policies and don’t deal

with credentials, because we view them as additional requests for services which

expand the authorizer’s knowledge and policy.

 The first attempts towards a trust management system where the following

frameworks, the PolicyMaker [11, 12] developed in 1996-1998, the REFEREE [15]

developed in 1997, the Keynote [13, 14] developed in 1999 and the SPKI/ SDSI [16-

20] developed in 1996-1999.

 PolicyMaker was the first trust management system developed by Blaze,

Feigenbaum, and Lacy, in the original paper in which the notion of Trust

Chapter 4

 36

Management was introduced. PolicyMaker’s compliance-checking algorithm was

later fleshed out in [12]. In PolicyMaker, policies and credentials together are called

 “assertions”. An assertion is a pair (f, s), where s is the source of authority (i.e.,

the issuer of this assertion), and f is a program describing the nature of the authority

being granted as well as the party or parties to whom the authority is being granted.

Assertions can be written in any programming language that can be “safely”

interpreted by a local environment. PolicyMaker is quite expressive in the sense that

one can code up complex policies. More details about PolicyMaker are avaliable in

[11, 12, 14].

 REFEREE is similar to PolicyMaker because it also allows arbitrary

programming to be used in credentials and policies. However, none of these

approaches provides declarative semantics since they allow credentials and policies to

contain programs in procedural languages. Moreover they don’t support negative

authorization which is considered a basic desirable feature for an authorization

language in Ambient Intelligence environments.

 Keynote is the second generation of trust management systems and was

designed according to the same principles as PolicyMaker. Instead of writing policy

and credentials in a general-purpose procedural language, it adopts a specific

expression language. KeyNote provides declarative semantics by giving a procedure

to answer whether a specific request pair should be authorized given a set of credentials.

However, neither this approach supports negative authorization.

 SPKI (Simple Public Key Infrastructure) and SDSI (Simple Distributed

Security Infrastructure) were developed independently. SDSI was originally designed

by Rivest and Lampson [20]. SPKI was originally designed by Ellison [18]. Both of

them were motivated by the in-adequacy of public-key infrastructures based on global

name hierarchies, such as X.509 [43] and Privacy Enhanced Mail (PEM) [42]. Later,

SPKI and SDSI merged into a collaborative effort, SPKI/SDSI 2.0 in [16, 17, 19, 44].

SPKI/SDSI 2.0 has two kinds of certificates, name-definition certificates and

authorization certificates. A name certificate binds a local name to a principal or a

more complex name. However, it is pointed out in [26] that the collaborative effort

lacks basic expressive authorization features such as conjunction of attributes and

attributes with fields. An authorization policy that is based on conjunction of

attributes is “A hospital gives special permissions to anyone who is both a physician

and a manager” and another that is based on attributes with fields is “A hospital

Chapter 4

 37

allows an entity to access the records of a patient if the entity is the physician of the

patient” as presented in [26].

 More sophisticated approaches towards an authorization system that are based

in logic programming are described in the following section.

4.2 Logic-based Authorization Approaches

In this section we present approaches of [21-30, 45, 46] research that use logic

programming to specify authorizations. Logic-based authorization methodology is a

very flexible and declarative approach that achieves separation of authorization

policies from implementation mechanisms which has long been recognized as a

fundamental tenet in the design of an authorization system. Moreover, this approach

provides policies with precise semantics.

 The first research that aimed on the specification of authorizations based on

logic languages was the work of Woo and Lam [45] in 1993. Their work points out

the need for flexibility and extensibility in the specification of authorization policies.

The Woo and Lam research illustrates the benefits of abstracting from low level

authorization triples to a high level logic-based authorization language. The

authorization model of their approach is depicted in figure 4.1.

Figure 4.1: Model of authorization in Woo, Lam approach [45].

Chapter 4

 38

 In the authorization model a subject refers to a requester entity and an object

to a specific resource. The authorization model is based on the following process.

Before a subject s can perform a particular access r on an object o, s must first obtain

 the access right r for o. Subject s does so by submitting a request of the form req(r; s;

o) to the authorization module, which responds with grant(r; s; o), deny(r; s; o) or

fail(r; s; o). A grant(r; s; o) is returned if the authorization module can determine that

s is authorized to have r access to o, while a deny(r; s; o) is returned if the

authorization module can determine that s is denied r access to o. A fail(r; s; o) is

returned if the authorization module fails to establish either one of the previous two

cases. To make an authorization decision, the authorization module consults the

authorization requirements and the system state. The system state is needed for

authorization requirements that contain system state variables as parameters. A more

detailed description is provided in [45].

4.2.1 Centralized Authorization Approaches

In 1997-2003 there have been proposed several logic-based approaches that aim on

the specification of authorization policies [21, 22, 23, 24, 46].

 In [21, 22, 24], Jajodia et al. proposed the Flexible Authorization Framework

(FAF) that it can be used to specify different access control policies that can all

coexist in the same system and be enforced by the same security server. FAF

incorporates an authorization specification logic language (ASL) which can be used to

encode the system security needs. ASL supports negative authorizations, hierarchical

category authorization and seems to be able to express nonmonotonic reasoning by

the use of the symbol (used as negation as failure). However, the language does not

support rule priorities for conflict resolution that we consider a basic feature of an

authorization logic-based language.

 In [23, 46] Bertino et al. proposed a logic formalism for expressing

authorization policies. Although the formalism is rich enough to express hierarchical

category authorization, negative authorizations (through the use of true negation) and

nonmonotonic reasoning (through the use of negation as failure) it does not support

rule priorities.

 In conclusion, the approaches in [21-24, 46] are able to specify multiple

authorization policies and provide formal semantics, yet they don’t support rule

Chapter 4

 39

priorities which we consider a desirable feature for conflict resolution. Moreover

these works do not address distributed authorizations and are rather focused on

centralized systems.

4.2.2 Decentralized Authorization Approaches

In this section we will describe several logic-based approaches that are based on

decentralized environments [25-30] and provide rich expressive power.

 The approaches in [25, 26] proposed by Li et al. are able to support distributed

authorizations and adopt the credential-based approach. More specifically [25]

proposes RT framework, a family of role-based trust management languages for

representing policies and credentials. The semantic foundation of RT is DATALOG

with constraints, which enables RT to express authorization of structured resources

and separation of duty policies. In addition the approach in [26] presents Delegation

Logic (which was previously presented in [68, 69]) that is able to specify complex

principles including k-out-of -n structures and delegation depth using also

DATALOG as the semantic foundation. Yet, neither of these approaches supports

negative authorization, nonmonotonic reasoning and rule priorities.

 The approach in [27] presents the nonmonotonic version of Delegation Logic

and the approach in [30] proposed by Liu et al. presents the nonmonotonic framework

FACL4DE. Both approaches are able to express negative authorization,

nonmonotonic reasoning (through negation as failure using symbol ~) and rule

priorities. However, neither of these approaches supports hierarchical category

authorization.

 Finally, in [28,29] Wang et al. proposed the language AL. Although AL has

rich expressive power by supporting negative authorization, nonmonotonic reasoning

(through negation as failure) and hierarchical category authorization, it is not able to

specify rule priorities.

 In conclusion, logic-based approaches have been proven very successful in

specifying authorizations. However, most existing authorization logic-based

approaches don’t provide the desirable characteristics for an authorization language in

Ambient Intelligence environments and thus don't meet the demanding needs of these

environments.

Chapter 5

 40

Background Information

This chapter provides background information on Defeasible Logic, introduces the

notion of Multi-Context Systems and describes Contextual Defeasible Logic and its

representation model.

5.1 Defeasible Logic

Defeasible logic is a simple and efficient rule based non-monotonic formalism that

was originally created by Donald Nute [47]. A thorough research that is based on the

formalism is provided also in [48, 34]. The logic has been extended over the years and

several variants have been proposed. The main focus of the logic is to be able to

derive conclusions from incomplete and sometimes conflicting information. Thus, the

logic was developed to support “tentative” conclusions (defeasible conclusions) and

conflict resolution. In case of conflicting information, the logic provides a conflict

resolution approach based on priority relations between the contradictory data. In case

of incomplete information, the logic is able to express defeasible conclusions which

are conclusions that can be withdrawn in the presence of new information.

 The representation of the knowledge in Defeasible Theory is based on three

concepts, facts, rules and superiority relation. Rules are divided into three categories,

strict rules, defeasible rules and defeaters. A description of these concepts is provided

below.

• Facts: Facts are indisputable statements.

• Strict Rules: Strict rules are “classical” rules in the sense that whenever the

premises are indisputable (e.g., facts) then so is the conclusion.

• Defeasible Rules: Defeasible rules are rules that their conclusions can be

defeated by contrary evidence.

• Defeaters: A defeater is a rule which its conclusion can be derived if its

conditions and the conditions of a contradictory rule are satisfied. In other

words, a defeater conclusion cannot be derived without a derived

contradictory rule conclusion, even if the conditions of the defeater are

satisfied. Their only use is to conditionally prevent other rule conclusions

by providing contrary evidence.

Chapter 5

 41

• Superiority Relation: The superiority relation is a binary relation defined

over a pair of conflicting rules. The superiority relation determines which

rule conclusion is stronger in case of an arising conflict from these rules.

 Defeasible Logic reasoning is “skeptical”. This characteristic derives from the

fact that where there is some support for concluding A but also support for concluding

the negation of A (¬A), neither of them is concluded and the logic consults the

priority relations to resolve the issue. If the support for A has priority over the support

for ¬A then A is concluded.

 In Defeasible Logic, the derived conclusions (of a derivation process over a

set of rules) can be distinguished into two categories, definitely provable and

defeasibly provable.

 Definitely provable are the conclusions that can be derived using only facts

and strict rules. More specifically a conclusion is definitely provable in the three

following cases:

• If it is a fact.

• If it is conclusion of a strict rule which its conditions are satisfied by given

facts.

• If it is conclusion of a strict rule that can be derived by forward chaining

process that is based only on strict rules and facts.

 Defeasibly provable conclusions are conclusions that their derivation process

may involve defeasible rules. More specifically a conclusion is defeasibly provable in

the three following cases:

• If it is definitely provable.

• If it is conclusion of strict or defeasible rule which its conditions are

satisfied by given facts (applicable) and all contradictory rules are not

applicable.

• If it is conclusion of an applicable strict or defeasible rule and all

contradictory rules are weaker based on the priority relations among

them.

Chapter 5

 42

5.1.1 Proof Theory

Informally, a conclusion q is defeasibly derivable given a defeasible theory D = (F, R,

>) when (a) q is a fact; or (b) there is an applicable strict or defeasible rule

for q, and either all the rules for q-complementary literals are discarded or

every rule for a q-complementary literal is weaker than an applicable rule for q.

 Formally, a conclusion of a defeasible theory D is a tagged literal and can

have one of the following four forms:

• +Δq which is intended to mean that q is a definite consequence of D

• −Δq which is intended to mean that we have proved that q is not

a de finite consequence of D

• +θq which is intended to mean that q is defeasible provable in D

• −θq which is intended to mean that we have proved that q is not

defeasible provable in D

 Provability is based on the concept of a derivation in D [34]. A derivation is a

definite sequence P = (P(1), ,P(n)) of tagged literals satisfying the following

conditions (P (1..i) denotes the initial part of the sequence P of length i, Rs [q] the set

of strict rules that support q and Rd [q] the set of defeasible rules that support q):

 +Δ: If P (i + 1) = +Δq then either

 q ∈ F or

 ∃r ∈ Rs [q] ∀α ∈ body(r): +Δα ∈ P (1...i)

 −Δ: If P (i + 1) = +Δq then either

 ∈ F and

 ∀r ∈ Rs [q] ∃α ∈ body(r): −Δα ∈ P (1...i)

 +θ : If P (i + 1) = +θq then either

 (1) +Δq ∈ P (1...i) or

 (2) (2.1) ∃r ∈ Rsd [q] ∀α ∈ body(r):

 +θα ∈ P (1...i) and

Chapter 5

 43

 (2.2) −Δ ∼ q ∈ P (1...i) and

 (2.3) ∀s ∈ R[∼ q]

 (2.3.1) ∃α ∈ body(s): −θα ∈ P (1...i) or

 (2.3.2) ∃t ∈ Rsd [q]:

 ∀α ∈ body(t): +θα ∈ P (1...i) and t > s

 − θ : If P (i + 1) = − θq then

 (1) −Δq ∈ P (1...i) and

 (2) (2.1) ∀r ∈ Rsd [q] ∃α ∈ body(r):

 −θα ∈ P (1...i) or

 (2.2) +Δ ∼ q ∈ P (1...i) or

 (2.3) ∃s ∈ R[∼ q] such that

 (2.3.1) ∀α ∈ body(s): + θα ∈ P (1...i) and

 (2.3.2) ∀t ∈ Rsd [q] either

 ∃α ∈ body(t): − θα ∈ P (1:::i) or t ≯ s

Governatori et. al describe in [62] Defeasible Logic and its variants in argumentation

theoretic terms. A model theoretic semantics is discussed in [63].

5.2 Multi-Context Systems

A Multi-Context System (based on Bikakis et. al. research [37]) consists of a set

of contexts and a set of inference rules (known as mapping or bridge rules) that

enable information flow between different contexts. A context can be thought of as a

logical theory - a set of axioms and inference rules - that models local knowledge of

an agent. Different contexts are expected to use different languages and inference

systems, and although each context may be locally consistent, global consistency

cannot be required or guaranteed. Reasoning with multiple contexts requires

performing two types of reasoning; (a) local reasoning, based on the individual

context theories; and (b) distributed reasoning, which combines the knowledge

encoded in different local theories using the mappings. The most critical challenges of

contextual reasoning are the heterogeneity of local context theories, and the potential

conflicts that may arise from the interaction of different contexts through the

mappings.

Chapter 5

 44

 The notions of context and contextual reasoning were first introduced in AI

by McCarthy in (1987) [49], as an approach for the problem of generality. In the

same paper, he argued that the combination of non-monotonic reasoning and

contextual reasoning would constitute an adequate solution to this problem.

Since then, two main formalizations have been proposed to formalize context:

the Propositional Logic of Context, PLC in [50, 51], and the Multi-Context Systems

introduced by Giunchiglia and Serafini in [35], which later became associated with

the Local Model Semantics proposed by Ghidini and Giunchiglia in [52]. Multi-

Context Systems have been argued to be most adequate with respect to the three

properties of contextual reasoning (partiality, approximation, proximity) and shown to

be technically more general than PLC in the research of Serafini and Bouquet [53].

This formalism was also the basis of two recent studies that were the first to deploy

non-monotonic features in contextual reasoning:

1. the non-monotonic rule-based MCS framework [54] (Roelofsen and Serafini,

2005) which supports default negation in the mapping rules allowing to reason

based on the absence of context information.

2. the multi-context variant of Default Logic, ConDL [55] (Brewka et al., 2007)

which models bridge relations between different contexts as default rules.

 Additionally to the three fundamental dimensions of contextual reasoning

(partiality, approximation and perspective) that the generic MCS model inherently

supports, both approaches support reasoning with incomplete local information using

default negation in the body of the mapping rules. Furthermore,

Contextual Default Logic handles the problem of mutually inconsistent information

provided by two or more different sources using default mapping rules,

and has the additional advantage that is closer to implementation due to the

well-studied relation between Default Logic and Logic Programming. However,

ConDL does not provide ways to model the quality of imported knowledge, nor

preference between different information sources, leaving the conflicts that arise

in such cases unresolved.

 The use of Multi-Context Systems as a means of specifying and implementing

agent architectures has been proposed in some recent studies. Specifically, the

research in [56, 57] (Sabater et al., 2002 and Casali et al., 2008) propose breaking the

Chapter 5

 45

logical description of an agent into a set of contexts, each of which represents a

different component of the architecture, and the interactions between these

components are specified by means of bridge rules. A similar approach is followed in

[58] (Dastani et al., 2007), where contextual deliberation of cognitive agents is

achieved using a special extension of Defeasible Logic. On the other hand, in the

multi-agent architectures proposed in [59, 60] (Cristani and Burato, 2009, Resconi

and Kovalerchuk, 2009), context refers to a criterion, with respect to which an agent

thinks it is important to evaluate an action. In our case, a context represents the

viewpoint of each different agent in the system.

5.3 Contextual Defeasible Logic

The Contextual Defeasible Logic (CDL) is a language that provides a fully distributed

approach for contextual reasoning in Ambient Intelligence environments. CDL is

based on Defeasible Logic [47] which is skeptical, rule-based, and uses priorities to

resolve conflicts among rules. Moreover, CDL adopts ideas from Multi-Context

Systems (MCS) [35] which consist of a set of contexts and a set of inference rules

(a.k.a. mapping rules) that enable information flow between different contexts.

Essentially, the Multi-Context Systems model is enriched through defeasible rules,

and priority relations that provide a preference ordering between system contexts

regarding their reliability.

5.3.1 Representation Model

In CDL a Multi-Context System 𝐶 is modeled as a collection of distributed context

theories 𝐶𝑖: A context is defined as a tuple of the form(𝑉𝑖 ,𝑅𝑖 , 𝑇𝑖) where 𝑉𝑖 is the

vocabulary used by 𝐶𝑖, 𝑅𝑖 is a set of rules, and 𝑇𝑖 is a preference relation on 𝐶.

 𝑉𝑖 is a set of positive and negative literals. If 𝑞𝑖 is a literal in 𝑉𝑖, ~ 𝑞𝑖 denotes

the complementary literal, which is also in 𝑉𝑖. If 𝑞𝑖 is a positive literal p then ~ 𝑞𝑖 is

¬𝑝; and if 𝑞𝑖 is ¬𝑝, then ~ 𝑞𝑖 is 𝑝. We assume that each context uses a distinct

vocabulary.

 𝑅𝑖 consists of two sets of rules: the set of local rules and the set of mapping

rules. The body of local rules is a conjunction of local literals (literals that are

Chapter 5

 46

contained 𝑉𝑖), while their head contains a single local literal. There are two types of

local rules:

– Strict rules, of the form: 𝑟𝑖𝑙: 𝑎𝑖1,𝑎𝑖2, … 𝑎𝑖𝑛−1 → 𝑎𝑖𝑛. They express local

knowledge and are interpreted in the classical sense: whenever the literals in the

body of the rule are strict consequences of the local theory, then so is the literal

in the head of the rule. Local rules with empty body denote factual knowledge.

– Defeasible rules, of the form: 𝑟𝑖𝑑: 𝑏𝑖1, 𝑏𝑖2, … 𝑏𝑖𝑛−1 ⟹ 𝑏𝑖𝑛. They are used to

express uncertainty, in the sense that a defeasible rule cannot be applied to

support its conclusion if there is adequate contrary evidence.

Mapping rules associate local literals with literals from the vocabularies of

other contexts (foreign literals). The body of each such rule is a conjunction of local

and foreign literals, while its head contains a single local literal:

𝑟𝑖𝑚: 𝑎𝑖1, 𝑎𝑗2, …𝑎𝑘𝑛−1 ⟹ 𝑎𝑖𝑛. 𝑟𝑖𝑚 associates local literals of 𝐶𝑖 (e.g. 𝑎𝑖1) with local

literals of 𝐶𝑗 (𝑎𝑗2), 𝐶𝑖(𝑎𝑘𝑛−1) and possibly other contexts. 𝑎𝑖𝑛 is a local literal of the

theory that has defined 𝑟𝑖𝑚 (𝐶𝑖).

 Finally, each context 𝐶𝑖 defines a trust level order Ti which expresses its

confidence (trust) in the knowledge it imports from other contexts. More details about

the reasoning model of CDL and how it has already been applied in Ambient

Intelligence and Mobile Computing are available in [31, 32, 33, 36, 37].

Chapter 6

 47

A Distributed Environment Authorization Language: DEAL

In this chapter we present the formal high level logic-based language DEAL

(Distributed Environment Authorization Language) for expressing authorization

policies in distributed ambient environments. DEAL is based on Defeasible Logic and

is able to support all the desirable features that were described in chapter 3. Moreover

the implementation of the language as an extension to CDL enables DEAL to specify

distributed authorizations by adopting the connection-based approach (described on

chapter 4). Firstly, we describe the syntax of the language in detail. Secondly, we

provide the semantics of the language through transformation to Defeasible Logic.

Thirdly, we illustrate the appropriate extensions to the basic CDL algorithm in order to

support DEAL policies. Finally, we present the implementation of the motivating

scenarios which were discussed in chapter 1 using DEAL policies.

6.1 Language Syntax

In this section we provide the syntax of the language in detail by presenting the DEAL

alphabet, rules and the expressive characteristics of the language through examples.

6.1.1 Alphabet of DEAL Language

The alphabet of DEAL language consists of four sets, the constants (C), the variables

(V), the predicate symbols (P) and the logical symbols (L).

 Constants and Variables: In DEAL policies constants and variables are used

in the classical sense. More specifically, a constant has a specific nonchanging value

while a variable has a changing value that varies. Constant symbols start with a

lowercase letter while variable symbols start with an uppercase letter. A constant

represents an environment element such as an AmI entity, a provided service (by an

AmI entity), a resource or an action that is performed to a resource. On the other

hand, a variable ranges over the constant set C. Thus, a variable represents any

environment element which can be expressed by a constant. Moreover, a variable is

instantiated when it is assigned a concrete value.

Chapter 6

 48

 Predicate Symbols: Predicate symbols are symbols used to denote predicate

knowledge. Predicate knowledge expresses some relation or some property of the

environment elements. The value of a predicate symbol can be either true or false.

This value denotes if the predicate knowledge can be verified based on a given

knowledge base. Predicates have zero or more arguments (in order to express the

environment elements) which are enclosed in parenthesis and are comma separated.

These arguments may be constants, variables or other predicates. An unary predicate

(with one argument) denotes a property while an n-arity predicate (n >1) denotes a

relation. A predicate can be evaluated (assigned a value) only when all variables are

instantiated (ground predicate). The predicate symbols of DEAL alphabet are

described below in detail.

• belong(X, Y): Predicate symbol belong represents that an element X

belongs to a category of elements Y. Moreover, it may represent that a

subcategory X belongs to an element category Y. The X element can

either be an AmI entity, an AmI service, an action which is performed to a

resource or an AmI resource.

• right(X, Y): Predicate symbol right represents the privilege to perform an

action X to an AmI resource Y. Moreover, the arguments X, Y may also

represent a category of actions and a category of resources respectively.

• grant(X, Y, Z): Predicate symbol grant represents a positive authorization

(permission) that is given by a grantor AmI entity X to a grantee AmI

entity Y for consuming an AmI service Z. Moreover, the arguments Y, Z

may also represent a category of AmI entities and a category of services

respectively. Furthermore, the argument Z may also be a right predicate.

• granted(Y, Z): Predicate symbol granted represents a positive

authorization (permission) in the exact same sense as it is specified for

predicate grant. The only difference is that the grantor argument is omitted

as it is assumed to be the local system.

• superior(X, Y): Predicate symbol superior represents a preference between

a pair of conflicting rules (X, Y). More specifically, the rule with name

denoted in X is preferred than the rule with name denoted in Y.

Chapter 6

 49

 Apart from the above predicate symbols the user is able to define any

predicate of n-arity in order to represent knowledge for a particular application

domain. For example, if a business application for a particular company requires the

specification of the property "manager" in order to represent persons that are project

managers, the user is able to define the application dependent predicate

isManager(X). The predicate isManager(X) denotes the fact that person X is a

manager.

 A predicate symbol or its negation is defined as literal in DEAL language. The

specification of a predicate negation and its semantics are explained in the description

of DEAL logical symbols which is provided below.

 Logical Symbols: The DEAL language supports the following logical

symbols:

• Strong Negation: DEAL supports strong negation (a.k.a. classical

negation) with the use of ¬ symbol in front of language predicates. Strong

negation that is used in front of a predicate denotes contradictory

knowledge from what the predicate expresses. In other words, given a data

element p which is a grounded predicate then ¬ p represents the

contradictory data element. Thus, positive truth values for both p, ¬ p

leads to a knowledge conflict instance. Moreover, strong negations in front

of predicates grant and granted expresses negative authorization

(described in section 3.1) instead of positive. Therefore, strong negation

enables the specification of the authorization conflict which is the most

common type of knowledge conflict in authorization applications.

Furthermore, strong negation can be used in front of any user-defined

predicate in order to represent contradictory information. Therefore, it

enables the specification of other user-defined types of knowledge

conflicts.

• Weak Negation: DEAL supports weak negation (a.k.a. negation as failure)

with the use of not keyword in front of language predicates. Weak

negation that is used in front of a predicate denotes the absence of the

predicate as a data element. In other words, given a data element p which

is a grounded predicate, then not p is true if p is false (absent). In this

Chapter 6

 50

case, the contradictory data element ¬ p may or may not be true. The

difference between strong and weak negation for a predicate p is that the

first one represents the existence of negative (contradictory) information

(¬ p) while the second one represents the absence of positive information

(p). The two definitions are not equivalent in an environment where p and

¬ p may coexist. It should be noted also that weak negation is a common

feature of nonmonotonic reasoning models.

• Conjunction: Deal supports logical conjunction of literals with the use of

comma symbol.

• Strict entailment: Deal supports strict entailment with the use of ←

symbol. Strict entailment is used to express authorization rules with the

classical sense of logical implication (deductive reasoning): Given a

conjunction of literals X at the right side of the operator and a literal Y at

the left, whenever X is true, Y can be derived as a logical consequence. The

only restriction is that literal Y cannot be a weak negated predicate. A rule

that is specified with strict entailment is called strict rule.

• Defeasible entailment: Deal supports defeasible entailment with the use of

⟸ symbol. Defeasible entailment is used to express authorization rules in

the following sense (defeasible reasoning based on rule preference): Given

a conjunction of literals X at the right side of the operator and a literal Y at

the left, whenever X is true, Y can be derived as a logical consequence,

only if ¬ Y cannot be derived by a non-inferior (superior or neutral,

described in section 2.4) conflicting rule. A rule that is specified with

defeasible entailment is called defeasible rule. Defeasible entailment is

also a common feature in nonmonotonic reasoning models.

6.1.2 Rules of DEAL Language

In DEAL language direct knowledge (a.k.a. facts) is expressed by rules with empty

body. On the other hand, derived knowledge is expressed as conclusions of rules with

non-empty body.

 Moreover, in DEAL we distinguish three types of authorization rules, the final

rule, the priority rule and the hierarchy rule. A DEAL rule may have the form of one

of these types or it may be an authorization rule of another form specified by the

Chapter 6

 51

predicate and logical symbols of the language. The definitions of these rule types are

described below in detail.

Definition 1. A hierarchy rule is a rule of the following form:

 belong(X, Y) ← .

 The hierarchy rule is used to support the representation of hierarchical

categories. The hierarchy rule concludes to a transitive relation. For example, consider

that it is given the direct knowledge of the following rules:

 belong(a, b) ← .

 belong(b, c) ← .

 In this case, we conclude: belong(a, c) ← .

Definition 2. A final rule is a rule of the following form:

 <Rule_name> G ⟸ L1, L2, ..., Ln .

 The final rule concludes to literal G which represents a predicate of the set

{granted, grant} or their respective strong negations {¬ granted, ¬ grant} while L1,

L2, ..., Ln is a conjunction of any literals that are supported in DEAL language. In

other words, the final rule concludes to an authorization specified in G while its

fulfillment requirements are specified in the conjunction of literals L1, L2, ..., Ln.

Moreover, in case where the authorization (which is specified by literal G) refers to a

category (as it is specified in predicate symbol description of section 6.1.1) then the

authorization is inherited to every element of the category. Note, that categories may

refer either to AmI entities, AmI services, actions (which are performed on AmI

resources) or AmI resources. For example, consider the following rules encoding

direct knowledge, where the first rule represents a category of AmI entities and the

second rule specifies an authorization on the entity category:

 belong(a, b) ← .

 granted(b, q) ⟸ .

 In this case, we conclude: granted(a, q) ⟸ .

Chapter 6

 52

 Thus, a final rule supports hierarchical category authorization (described in

section 3.3) that enables the authorizations which are specified to a category to be

inherited to every category element.

 Moreover, note that a final rule is specified with defeasible entailment. This is

due to the fact that an authorization policy may include many and possibly

contradictory final rules that lead to authorization conflicts. Thus, a final rule is

specified as a defeasible rule which implies defeasible reasoning based on rule

preference that is able to handle possible rule conflicts arising from contradictory

rules.

 Furthermore, note the <Rule_name> label in front of the final rule. DEAL

enables the use of rule labels in front of any rule in order to specify its unique name.

Rule labels are required for the specification of rule preferences.

Definition 3. A priority rule is a rule of the following form:

 superior(X, Y) ← .

 The priority rule is used to support the rule priorities feature (described in

section 3.2) which is able to express a rule preference for resolving rule conflicts. Given

a conflicting pair of rules (X, Y) where X, Y are the rule names specified in rule

labels, it is declared that rule with name X is preferred to rule with name Y. Thus, rule

with name X is the superior rule and rule with name Y is the inferior rule regarding

rule preference. In case of a potential knowledge conflict from a contradictory pair of

rules which are neutral regarding rule preference (not associated with any priority

rule), both their conclusions are blocked (noRule-preference approach). In this way,

inconsistency caused by contradictory conclusions is avoided.

 The priority rule concludes to an acyclic relation. For example the direct

knowledge of the following rules is considered invalid:

superior(a, b) ← .

superior(b, c) ← .

superior(c, a) ← .

Chapter 6

 53

6.1.3 Characteristics of DEAL Language

DEAL language has expressive characteristics that meet all the desirable

features of a powerful authorization language for Ambient Intelligence

environments which were discussed in chapter 3. We describe in detail how

DEAL is able to support all of these features through examples that illustrate

the expressive power of the language.

 Firstly, the negative authorization feature is supported in DEAL by using the

strong negation symbol ¬ in front of the authorization predicates granted and grant

(as mentioned earlier in section 6.1.1). We describe below two examples which

require negative authorizations and we provide their authorization policies using

DEAL language.

Example 6.1. In an ambient classroom system, a student is not granted to read exam

solutions if his teacher does not allow him to do so. In this example, in order to

conclude negative authorization for a student we require a negative authorization from

his teacher. The authorization policy for this example is specified below in DEAL

language.

¬ granted(X, readSolutions) ⟸ isStudent(X),

 teaches(Y, X),

 ¬ grant(Y, X, readSolutions).

Example 6.2. This example refers to the AmI scenario that was described in section

3.1. The authorization policy of the scenario was depicted in figure 3.1. This policy is

specified below in DEAL language.

¬ grant('Antoniou', 'Bob', passExam) ⟸ .

¬ grant('Antoniou', 'Alice', passExam) ⟸ .

¬ grant('Antoniou', X, passExam) ⟸ isStudent(X),

 exceededTime(X).

 Secondly, rule priorities is supported in DEAL by using rule labels in front of

defeasible rules and the priority rule to denote rule preference. We describe below two

Chapter 6

 54

examples which require rule priorities and we provide their authorization policies

using DEAL language.

Example 6.3. According to the access control system of a company, no one is allowed

to access company money except for the accountants. The authorization policy can be

represented with the following statements that are listed below.

1. No one is allowed access to company money.

2. If a person is an accountant, he can access company money.

3. Statement 2 is preferred from statement 1.

 This policy is specified below in DEAL language.

<label1> ¬ granted(X, accessMoney) ⟸ .

<label2> granted(X, accessMoney) ⟸ isAccountant(X).

<label3> superior(label2, label1) ← .

Example 6.4. This example refers to the AmI scenario that was described in section

3.2. The authorization policy of the scenario was depicted in figure 3.3. This policy is

specified below in DEAL language.

<label1> grant('Smith', X, access('PA')) ⟸ isManager(X).

<label2> ¬ grant('Smith', X, access('PA')) ⟸ isEmployee(X),

 fired(X).

<label3> grant('Smith', X, access('PA')) ⟸ isSubmanager(X).

<label4> grant('Smith', X, access('PA')) ⟸ isAdministrator(X).

<label5> superior(label1, label2) ← .

<label6> superior(label2, label3) ← .

<label7> superior(label2, label4) ← .

 Thirdly, hierarchical categories can be represented in DEAL by using the

hierarchy rule. The hierarchical categories authorization feature is supported in DEAL

by using the authorization rule in conjunction with the hierarchy rule. We describe

below four examples which require hierarchical category authorization and we

provide their authorization policies using DEAL language.

Chapter 6

 55

Example 6.5. In a firewall system all IPs that belong to the category "malicious" are

not granted the ftp service. The IPs that belong to the category "malicious" are "ipA"

and "ipB". This example involves hierarchical categories of entities. The authorization

policy for this example is specified below in DEAL language.

belong(ipA, malicious) ← .

belong(ipB, malicious) ← .

¬ granted(malicious, ftpService) ⟸ .

Example 6.6. A weather observation system allows access to weather forecast only to

specific official sites such as "weather.com" and "travelling.com". The wind-

information service belongs to the weather-forecast service . Moreover, the wind-

direction and wind-strength services belong to the wind-information service. This

example involves hierarchical categories of services. The authorization policy for this

example is specified below in DEAL language.

belong(temperatureInformation, weatherForecast) ← .

belong(windInformation, weatherForecast) ← .

belong(windDirection, windInformation) ← .

belong(windStrength, windInformation) ← .

granted(site(weather.com), weatherForecast) ⟸ .

granted(site(travelling.com), weatherForecast) ⟸ .

Example 6.7. The administrator of a site is allowed any action, such as read or write,

to the file that contains the users passwords. This example involves hierarchical

categories of actions. The authorization policy for this example is specified below in

DEAL language.

belong(read, fileAction) ← .

belong(write, fileAction) ← .

granted(admin, right(fileAction, userPasswords.txt)) ⟸ .

Example 6.8. The administrator of a site is allowed access to any of the user files. The

category "userPhotos" belongs to "userFiles" category. The category "userFiles"

Chapter 6

 56

includes also profile information described in the file "profile.txt". Moreover, the

photos that belong to "userPhotos" category are "photoA.jpg " and "photoB.jpg". This

example involves hierarchical categories of objects. The authorization policy for this

example is specified below in DEAL language.

belong(profile.txt, userFiles) ← .

belong(userPhotos, userFiles) ← .

belong(photoA.jpg, userPhotos) ← .

belong(photoB.jpg, userPhotos) ← .

granted(admin, right(access, userFiles)) ⟸ .

 Finally, DEAL enables nonmonotonic reasoning with authorization policies.

Firstly, nonmonotonic policies are supported by the use of weak negation.

Specifically, if weak negation is used in front of a predicate p it implicitly represents a

nonmonotonic rule that derives not p from the absence of p (failure to derive p) which

means that future information about p may withdraw the previous conclusion. Thus, a

rule that uses weak negation in its conditions inherits this nonmonotonicity. Secondly

nonmonotonic policies are supported by the use of defeasible entailment. Defeasible

entailment is a nonmonotonic feature because it enables the specification of defeasible

rules which provide conclusions that in the presence of future information (from

contradictory rules) may be withdrawn. The study in [64] provides more information

about defeasible reasoning as a form of nonmonotonic reasoning. A nonmonotonic

reasoning policy specified with defeasible rules was provided in example 6.4. We

describe below two examples of nonmonotonic reasoning specified with weak

negation and we provide their authorization policies using DEAL language.

Example 6.9. According to the access control system of a cinema, a person cannot

enter the cinema if he has not bought a ticket. The authorization policy for this

example is specified below in DEAL language.

¬ granted(X, entry(cinema)) ⟸ not hasBought(X, ticket).

 In the above example, we conclude negative authorization for a person

(about entering the cinema), it there is no information that he has bought a

Chapter 6

 57

ticket. Future information about a ticket sell may withdrawn previous negative

authorizations. Note the difference between strong negation of example 6.1. In

the example 6.1, we conclude a negative authorization if there is knowledge of

negative authorization from the teacher (¬ grant) while in this example, we

conclude a negative authorization if there is no knowledge about buying a

ticket (hasBought).

Example 6.10. This example refers to the AmI scenario that was described in section

3.4. The authorization policy of the scenario was depicted in figure 3.8. This policy is

specified below in DEAL language.

grant('Nick', X, right(accessPhoto, Y)) ← not sold(Y).

¬ grant('Nick', X, right(accessPhoto, Y)) ← sold(Y).

6.2 Language Semantics

DEAL language can be fully implemented in Defeasible Logic (described in chapter

5). In this section we illustrate the semantics of DEAL language through

transformation to Defeasible Logic. More specifically, we describe in detail how the

alphabet and rules of DEAL can be transformed to Defeasible Logic.

6.2.1 DEAL alphabet transformation

In this section we describe how the alphabet of DEAL can be fully represented by

Defeasible Logic (DL). More specifically, we illustrate how the constants, the

variables, the predicate and logical symbols of DEAL are specified in DL.

 Firstly, DL supports constants and variables exactly as they are specified in

DEAL. Secondly, DL enables the specification of user defined predicates. Thus, all

DEAL predicates can be represented in DL. Finally, DL supports directly the logical

symbols of strong negation, logical conjunction, strict and defeasible entailment as

they are defined in DEAL. The only logical symbol that is not provided directly in DL

is weak negation. However, weak negation can be specified as a predicate symbol

indirectly by DL elements. More specifically, every declaration of not X where X is a

language literal can be equivalently replaced with not(X) (where not is a predicate and

 X is an argument) and the addition of the following rules.

Chapter 6

 58

 not(X) ⟸ .

 ¬ not(X) ⟸ X.

 The first defeasible rule expresses that the absence of X (which is specified by

predicate not) is always concluded. In other words, the weak negation of X which is

defined as not(X) is always derived defeasibly (as conclusion of a defeasible rule).

The second rule is used to block the conclusion of the first when X is present as a

data element.

6.2.2 DEAL rules transformation

In this section we describe how the semantics of DEAL rules can be fully expressed

by Defeasible Logic. More specifically, we illustrate how the semantics of the

priority, the hierarchy and the final rule are specified in DL.

 Firstly, we describe how the priority rule is expressed in Defeasible Logic.

The priority rule is associated with rule names which (in DEAL) are specified in rule

labels in front of rule definitions. Defeasible Logic expresses rule names also in front

of rule definitions. An example of a DL rule with name r1 is provided below.

r1: bird(X) ← flies(X).

 The priority rule in DEAL is used to support the rule priorities feature

(described in section 3.2) that enables the specification of a rule preference for conflict

resolution. The rule priorities feature is expressed in DL with the support of

superiority relations. A superiority relation is defined with the use of > logical

symbol. More specifically, given a rule name R1 at the left side of the operator and a

rule name R2 of a conflicting rule at the right side, it is denoted that R1 is preferred to

R2. Moreover, the superiority relation is an acyclic relation on R (the set of rules in

the theory).Thus, the priority rule is specified as a superiority relation fact in DL.

 Moreover, in case of a potential knowledge conflict from a contradictory pair

of DL rules which are neutral regarding rule preference (not associated with any

superiority relation fact), both their conclusions are blocked (noRule-preference

approach). In this way, inconsistency caused by contradictory conclusions is avoided.

 Secondly, we describe how the hierarchy rule is expressed in Defeasible

Chapter 6

 59

Logic. The hierarchy rule is used in DEAL to specify the hierarchical categories

feature. Moreover, the hierarchy rule concludes to a transitive relation. In Defeasible

Logic the hierarchy rule is specified exactly as in DEAL while the transitivity of the

belong relation is supported with the following rule.

 belong(X, Y) ← belong(X, Z), belong(Z, Y).

 The only requirement is that the information expressed by the belong predicate

is acyclic. For instance, the cycle expressed by the facts belong(a, b), belong(b, c) and

belong(c, a) is prohibited, as a query of the form belong(a, c)? would cause an infinite

loop. In case of cycles, in the information which is specified by the belong predicate,

the hierarchy rule can be alternatively expressed in DL by the following two rules.

The additional predicate belongTo is used to avoid the infinite loops. In this case the

query belong(a, c)? which is evaluated over the facts belongTo(a, b), belongTo(b, c)

and belongTo(c, a) is evaluated to true.

 belong(X, Y) ← belongTo(X, Y).

 belong(X, Y) ← belongTo(X, Z), belong(Z, Y).

 Thirdly, we describe how the final authorization rule is expressed in

Defeasible Logic. Final rules are used in DEAL to specify negative and positive

authorizations under different circumstances. Moreover, the final rule is associated

with the hierarchical category authorization feature (described in section 3.3) that

enables the authorizations which are specified to a category to be inherited to every

category element.

 In Defeasible Logic the final rule is specified exactly as in DEAL while the

hierarchical category authorization feature is supported with the following rules. As

described in section 3.3 hierarchical categories can be specified for grantee entities,

services, actions and objects.

 Firstly, the rules given below specify derived authorizations among grantee

entity hierarchies in Defeasible Logic.

granted(X, Q) ⟸ belongTo(X, Y), granted(Y, Q).

¬ granted(X, Q) ⟸ belongTo(X, Y), ¬ granted(Y, Q).

grant(G, X, Q) ⟸ belongTo(X, Y), grant(G, Y, Q).

¬ grant(G, X, Q) ⟸ belongTo(X, Y), ¬ grant(G, Y, Q).

Chapter 6

 60

 Secondly, the following rules specify derived authorizations among service

hierarchies in Defeasible Logic.

granted(X, Q) ⟸ belongTo(Q, Y), granted(X, Y).

¬ granted(X, Q) ⟸ belongTo(Q, Y), ¬ granted(X, Y).

grant(G, X, Q) ⟸ belongTo(Q, Y), grant(G, X, Y).

¬ grant(G, X, Q) ⟸ belongTo(Q, Y), ¬ grant(G, X, Y).

 Thirdly, the following rules specify derived authorizations among action

hierarchies in Defeasible Logic.

granted(X, right(A,O)) ⟸ belongTo(A, Y), granted(X, right(Y,O)).

¬ granted(X, right(A,O)) ⟸ belongTo(A, Y), ¬ granted(X, right(Y,O)).

grant(G, X, right(A,O)) ⟸ belongTo(A, Y), grant(G, X, right(Y,O)).

¬ grant(G, X, right(A,O)) ⟸ belongTo(A, Y), ¬ grant(G, X, right(Y,O)).

 Finally, the following rules specify derived authorizations among object

hierarchies in Defeasible Logic.

granted(X, right(A,O)) ⟸ belongTo(O, Y), granted(X, right(A,Y)).

¬ granted(X, right(A,O)) ⟸ belongTo(O, Y), ¬ granted(X, right(A,Y)).

grant(G, X, right(A,O)) ⟸ belongTo(O, Y), grant(G, X, right(A,Y)).

¬ grant(G, X, right(A,O)) ⟸ belongTo(O, Y), ¬ grant(G, X, right(A,Y)).

 In this section, we illustrated how the DEAL rules can be expressed in

Defeasible Logic. In other words, we provided the semantics of DEAL rules

specified in Defeasible Logic.

 In conclusion, we described how DEAL language can be fully implemented in

Defeasible Logic. The transformation of DEAL language to Defeasible Logic

provides formal semantics for the language. Moreover, in the propositional case

Defeasible Logic has linear complexity as described in [65]. Therefore, DEAL

language which can be fully transformed to Defeasible Logic has also linear

complexity in the propositional case.

Chapter 6

 61

6.3 Contextual Defeasible Logic Extensions

Contextual Defeasible Logic (CDL) is a language that enables reasoning about

context in ambient intelligence environments. In this section we provide the algorithm

extensions to the basic reasoning processing of CDL in order to support DEAL

policies.

 As described in chapter 5, CDL models a multi-context system P as a

collection of distributed local rule theories Pi in a P2P system: P={Pi}, i=1,…,n. Each

system node (context) has a proper distinct vocabulary Vi defined as a set of literals

and their negations, and a unique identifier i. Each local theory consists of a set of

rules that contain only literals from the local vocabulary. These rules are interpreted in

the classical sense: whenever the literals in the body of a local rule are consequences

of the local theory, then so is the conclusion of the rule Each node also defines a set of

mappings that associate literals from its own vocabulary (local literals) with literals

from the vocabulary of other peers (foreign literals). Mappings are modeled as

defeasible rules which can be defeated in the existence of adequate contrary evidence.

Their conclusions are labeled by local literals. Finally, each node Pi defines a

preference order Ti, which includes a subset of the system nodes, and expresses the

trust that Pi has in the other system nodes.

 Contextual reasoning proceeds roughly as follows: when a peer P processes a

query q, it may query through bridge rules other peers, which in turn may pass on

queries to further peers. Based on the information that is collected, P builds a support

set and a blocking set for the query q. The support and blocking set contain

information about the peers that provide respectively, positive and negative responses.

A comparison between the sets is achieved, based on the trust that P places to other

peers. Finally, the comparison result leads to a positive or negative conclusion. In the

simplest case, a peer Q responses to a query issued by peer P only with true/false. In

more complex strategies [37], Q passes on further information regarding the support

and blocking sets that determine the answer it returns to P. The selection of the

appropriate strategy for an AmI system depends, among others, on the requirements

regarding efficiency and privacy protection.

 The assumption made in CDL processing is that a requester is always granted

to consume any service and the CDL algorithm only tries to provide an answer to the

requester. In other words, the current implementation of CDL always proceeds in

Chapter 6

 62

concluding and returning an answer for an issued query without any authorization

restrictions. However, there are cases where the system should not proceed on

answering the request due to privacy and security reasons. Real applications require

an authorization policy that specifies when a requester should be provided or denied a

specific service. The limitation of CDL is that it does not deal with privacy and

security issues as it does not support any kind of authorization control.

 The extensions of CDL aim on addressing authorization issues of reasoning in

Multi-Context systems. The CDL approach is enriched in order to support DEAL

authorization policies. The extended version of CDL deals with the following

problem: Given a MCS C and a query about literal 𝑝𝑖 issued by context 𝐶0 to context

𝐶𝑖 , if the request pair (𝐶0,𝑝𝑖) is an authorized pair, compute the truth value of 𝑝𝑖. The

𝐶𝑖 context triggers the query "granted(𝐶0,𝑝𝑖)?" in order to determine whether the

request pair is authorized. The answer to the query is determined by 𝐶𝑖 context theory

that includes a DEAL authorization policy. The authorization policy may involve

multiple authorization rules that finally conclude to one of the following answers for

the query:

(a) true: Indicating that the request pair is authorized.

(b) false: Indicating that the request pair is not authorized.

(c) undefined: Indicating that neither true nor false could be derived.

 The negative (false) or undefined answer implies that context 𝐶𝑖 should not

provide context 𝐶0 with an answer for the issued query 𝑝𝑖, due to various privacy and

security reasons (e.g. 𝐶0 context may be on a malicious requester list). In this case,

𝐶𝑖 should reply to 𝐶0 that the truth value of 𝑝𝑖 is undefined. The positive (true) answer

implies that context 𝐶𝑖 should proceed on computing and replying the truth value of 𝑝𝑖

to context 𝐶0. In this case, 𝐶𝑖 should call the P2P_DR distributed algorithm that

implements the basic strategy of contextual reasoning in order to compute the truth

value of 𝑝𝑖.

 The P2P_DEAL algorithm provides the extended version of the CDL

reasoning process. The pseudocode of the algorithm is presented below. The

algorithm proceeds in five steps. In the first step, P2P_DEAL calls Accept that

triggers the query "granted(𝐶0,𝑝𝑖)?" on the context theory of 𝐶𝑖. Essentially, Accept

calls P2P_DR algorithm in order to compute the truth value of granted(𝐶0, 𝑝𝑖) literal.

Chapter 6

 63

The query answer is returned in 𝐴𝑛𝑠𝐶𝑜 variable. In the following three steps,

P2P_DEAL checks variable 𝐴𝑛𝑠𝐶𝑜 for a negative or undefined value. In this case, it

assigns the answer undefined in variable 𝐴𝑛𝑠𝑝𝑖 (that represents the truth value of 𝑝𝑖)

and returns it. It also assigns, the empty set to the support (𝑆𝑆𝑝𝑖) and blocking (𝐵𝑆𝑝𝑖)

set. Alternatively, if 𝐴𝑛𝑠𝐶𝑜 contains a positive value (true) the algorithm proceeds in

step five. In this case, P2P_DEAL calls P2P_DR algorithm in order to compute the

truth value of 𝑝𝑖 literal.

 The difference of P2P_DEAL with the previous CDL algorithm is that the

latter always call P2P_DR algorithm for query evaluation without implementing any

form of authorization control. P2P_DR is an algorithm which is provided in the

previous version of CDL. For completeness, we describe it also here, after the

presentation of P2P_DEAL algorithm.

 The input parameters of P2P_DEAL are:

• 𝑝𝑖: The queried literal.

• 𝐶0: The context that issues the query.

• 𝐶𝑖: The context that receives the query.

• 𝐻𝑖𝑠𝑡𝑝𝑖: The list of pending queries ([p1, ..., pi])

• 𝑇𝑖: The preference ordering of 𝐶𝑖

 The output parameters of P2P_DEAL are:

• 𝑆𝑆𝑝𝑖: A set of foreign literals of 𝐶𝑖 denoting the Supportive set of 𝑝𝑖.

• 𝐵𝑆𝑝𝑖: A set of foreign literals of 𝐶𝑖 denoting the Blocking set of 𝑝𝑖.

• 𝐴𝑛𝑠𝑝𝑖: The answer returned for 𝑝𝑖.

Below, we provide the pseudocode of P2P_DEAL algorithm.

P2P_DEAL (𝑝𝑖,𝐶0,𝐶𝑖 ,𝐻𝑖𝑠𝑡𝑝𝑖 ,𝑇𝑖 , 𝑆𝑆𝑝𝑖 ,𝐴𝑛𝑠𝑝𝑖)

1. call Accept(𝐶0,𝐶𝑖 ,𝑝𝑖 ,𝐴𝑛𝑠𝐶𝑜)

2. if 𝐴𝑛𝑠𝐶𝑜 = false or 𝐴𝑛𝑠𝐶𝑜 = undefined

Chapter 6

 64

3. 𝐴𝑛𝑠𝑝𝑖⃪ 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑, 𝑆𝑆𝑝𝑖⃪ ∅,𝐵𝑆𝑝𝑖 ⃪ ∅

4. terminate

5. call P2P_DR (𝑝𝑖 ,𝐶0,𝐶𝑖 ,𝐻𝑖𝑠𝑡𝑝𝑖 ,𝑇𝑖 , 𝑆𝑆𝑝𝑖 ,𝐴𝑛𝑠𝑝𝑖)

 P2P_DR is a distributed algorithm for query evaluation that deals with the

following problem: Given a MCS C, and a query about literal 𝑝𝑖 issued to context 𝐶𝑖,

compute the truth value of 𝑝𝑖.Essentially, P2P_DR returns one of the following values

for an arbitrary literal 𝑝𝑖:

(a) true: Indicating that 𝑝𝑖 is a logical consequence of C.

(b) false: Indicating that 𝑝𝑖 is not a logical consequence of C.

(c) undefined: Indicating that neither true nor false could be derived.

P2P_DR proceeds in four main steps. In the first step, P2P_DR determines

whether 𝑝𝑖, or its negation ~𝑝𝑖 are consequences of the strict local rules of 𝐶𝑖,

returning true/false respectively as an answer for 𝑝𝑖 and terminates.

In the second step, P2P_DR calls Support to determine whether there are

applicable and unblocked rules with head 𝑝𝑖. We call applicable those rules that for

all literals in their body P2P_DR has computed true as their truth value, while

unblocked are the rules that for all literals in their body P2P_DR has computed either

true or undefined as their truth value. Support returns two data structures for 𝑝𝑖: (a)

the Supportive Set of pi (𝑆𝑆𝑝𝑖), which is the set of foreign literals used in the most

preferred (according to 𝑇𝑖) chain of applicable rules for 𝑝𝑖 ; and (b) the Blocking Set

of 𝑝𝑖 (𝐵𝑆𝑝𝑖), which is the set of foreign literals used in the most preferred chain of

unblocked rules for 𝑝𝑖 (𝐵𝑆𝑝𝑖). If there is no unblocked rule for 𝑝𝑖 (𝐵𝑆𝑝𝑖 = ∅), the

algorithm returns false as an answer and terminates.

In the third step, similarly to the second, P2P_DR calls Support to compute the

respective constructs for ~𝑝𝑖 (𝑆𝑆~𝑝𝑖 ,𝐵𝑆~𝑝𝑖).

In the last step, P2P_DR uses the constructs computed in the previous steps

and the preference order 𝑇𝑖, to determine the truth value of 𝑝𝑖. In case there is no

unblocked rule for ~𝑝𝑖 (𝐵𝑆~𝑝𝑖 = ∅), or SSpi is computed by Stronger to be stronger

than 𝐵𝑆~𝑝𝑖, P2P_DR returns true as an answer for 𝑝𝑖. That 𝑆𝑆𝑝𝑖 is stronger than BSpi

Chapter 6

 65

means that the chains of applicable rules for 𝑝𝑖 involve information from contexts that

are preferred by 𝐶𝑖 to the contexts that are involved in the chain of unblocked rules for

~𝑝𝑖. In case there is at least one applicable rule for ~𝑝𝑖, and 𝐵𝑆𝑝𝑖 is not stronger than

𝑆𝑆~𝑝𝑖, P2P_DR returns false as an answer for 𝑝𝑖. In any other case, the algorithm

returns undefined.

The context that is called to evaluate the query for 𝑝𝑖(𝐶𝑖) returns through

𝐴𝑛𝑠𝑝𝑖 the truth value of the literal it is queried about. 𝑆𝑆𝑝𝑖 𝑎𝑛𝑑 𝐵𝑆𝑝𝑖 are returned to

the querying context (𝐶0) only if the two contexts (the querying and the queried one)

are actually the same context. Otherwise, the empty set is assigned to both

𝑆𝑆𝑝𝑖𝑎𝑛𝑑 𝐵𝑆𝑝𝑖 and returned to 𝐶0. In this way, the size of the messages exchanged

between different contexts is kept small. 𝐻𝑖𝑠𝑡𝑝𝑖 is a structure used by Support to

detect loops in the global knowledge base.

 The input parameters of P2P_DR are:

• 𝑝𝑖: The queried literal.

• 𝐶0: The context that issues the query.

• 𝐶𝑖: The context that receives the query.

• 𝐻𝑖𝑠𝑡𝑝𝑖: The list of pending queries ([p1, ..., pi])

• 𝑇𝑖: The preference ordering of 𝐶𝑖

 The output parameters of P2P_DR are:

• 𝑆𝑆𝑝𝑖: A set of foreign literals of 𝐶𝑖 denoting the Supportive set of 𝑝𝑖.

• 𝐵𝑆𝑝𝑖: A set of foreign literals of 𝐶𝑖 denoting the Blocking set of 𝑝𝑖.

• 𝐴𝑛𝑠𝑝𝑖: The answer returned for 𝑝𝑖.

 Below, we provide the pseudocode of P2P_DR algorithm.

 P2P_DR (𝑝𝑖,𝐶0,𝐶𝑖 ,𝐻𝑖𝑠𝑡𝑝𝑖 ,𝑇𝑖 , 𝑆𝑆𝑝𝑖 ,𝐴𝑛𝑠𝑝𝑖)

call local_alg (𝑝𝑖 , 𝑙𝑜𝑐𝑎𝑙𝐴𝑛𝑠𝑝𝑖)

if localAns = true then

Chapter 6

 66

 𝐴𝑛𝑠𝑝𝑖⃪ 𝑡𝑟𝑢𝑒, 𝑆𝑆𝑝𝑖⃪ ∅,𝐵𝑆𝑝𝑖 ⃪ ∅

terminate

call local_alg (~𝑝𝑖 , 𝑙𝑜𝑐𝑎𝑙𝐴𝑛𝑠𝑝𝑖)

if 𝑙𝑜𝑐𝑎𝑙𝐴𝑛𝑠~𝑝𝑖 = 𝑡𝑟𝑢𝑒 then

 𝐴𝑛𝑠𝑝𝑖 ⃪𝑓𝑎𝑙𝑠𝑒, 𝑆𝑆𝑝𝑖 ⃪⃪∅,𝐵𝑆𝑝𝑖⃪∅

 terminate

call Support (𝑝𝑖 ,𝐻𝑖𝑠𝑡𝑝𝑖 ,𝑇𝑖 , sup𝑝𝑖 ,𝑢𝑛𝑏𝑝𝑖 , 𝑆𝑆𝑝𝑖 ,𝐵𝑆𝑝𝑖)

if 𝑢𝑛𝑏𝑝𝑖 = 𝑓𝑎𝑙𝑠𝑒 then

 𝐴𝑛𝑠𝑝𝑖 ⃪⃪𝑓𝑎𝑙𝑠𝑒, 𝑆𝑆𝑝𝑖 ⃪∅,𝐵𝑆𝑝𝑖 ⃪∅

Terminate

𝐻𝑖𝑠𝑡~𝑝𝑖 ⃪ �𝐻𝑖𝑠𝑡𝑝𝑖 − { 𝑝𝑖 }� ∪ { ~𝑝𝑖 }

 call Support (~𝑝𝑖 ,𝐻𝑖𝑠𝑡~𝑝𝑖 ,𝑇𝑖 , sup~𝑝𝑖 ,𝑢𝑛𝑏~𝑝𝑖 , 𝑆𝑆~𝑝𝑖 ,𝐵𝑆~𝑝𝑖)

 if

 sup𝑝𝑖 = 𝑡𝑟𝑢𝑒 𝑎𝑛𝑑 (𝑢𝑛𝑏~𝑝𝑖 = 𝑓𝑎𝑙𝑠𝑒 𝑜𝑟 𝑆𝑡𝑟𝑜𝑛𝑔𝑒𝑟�𝑆𝑆𝑝𝑖 ,𝐵𝑆~𝑝𝑖 ,𝑇𝑖 � = 𝑆𝑆𝑝𝑖)

 then

 𝐴𝑛𝑠𝑝𝑖 ⃪ 𝑡𝑟𝑢𝑒

if 𝐶0 ≠ 𝐶𝑖 then

 𝑆𝑆𝑝𝑖 ⃪ ∅, 𝐵𝑆𝑝𝑖 ⃪ ∅

else if sup~𝑝𝑖 = 𝑡𝑟𝑢𝑒 𝑎𝑛𝑑 𝑆𝑡𝑟𝑜𝑛𝑔𝑒𝑟� 𝐵𝑆𝑝𝑖 , 𝑆𝑆~𝑝𝑖 ,𝑇𝑖� ≠ 𝐵𝑆𝑝𝑖 then

 𝐴𝑛𝑠𝑝𝑖 ⃪ 𝑓𝑎𝑙𝑠𝑒, 𝑆𝑆𝑝𝑖 ⃪ ∅,𝐵𝑆𝑝𝑖 ⃪ ∅

else

 𝐴𝑛𝑠𝑝𝑖 ⃪ 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑

if 𝐶0 ≠ 𝐶𝑖 then

 𝑆𝑆𝑝𝑖 ⃪ ⃪∅,𝐵𝑆𝑝𝑖 ⃪ ∅

 local_alg is called by P2P_DR to determine whether the truth value of the

queried literal can be derived from the strict local rules of a context theory. We should

note that, for sake of simplicity, we assume that there are no loops in the local context

Chapter 6

 67

 theories. local_alg returns either true or false as a local answer for the queried literal.

The algorithm parameters are:

• 𝑝𝑖: The queried literal.

• 𝑙𝑜𝑐𝑎𝑙𝐴𝑛𝑠𝑝𝑖: The local answer for 𝑝𝑖 (output)

Local_alg (𝑝𝑖 , 𝑙𝑜𝑐𝑎𝑙𝐴𝑛𝑠𝑝𝑖)

for all 𝑟𝑖 ∊ 𝑅𝑠[𝑝𝑖] do

 for all 𝑏𝑖 ∊ 𝑏𝑜𝑑𝑦(𝑟𝑖) do

 call local_alg(𝑏𝑖 , 𝑙𝑜𝑐𝑎𝑙𝐴𝑛𝑠𝑏𝑖)

 if for all 𝑏𝑖: 𝑙𝑜𝑐𝑎𝑙𝐴𝑛𝑠𝑏𝑖 = 𝑡𝑟𝑢𝑒 then

 return 𝑙𝑜𝑐𝑎𝑙𝐴𝑛𝑠𝑝𝑖 = 𝑡𝑟𝑢𝑒 𝑎𝑛𝑑 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒

return 𝑙𝑜𝑐𝑎𝑙𝐴𝑛𝑠𝑝𝑖 = 𝑓𝑎𝑙𝑠𝑒

Support is called by P2P_DR to determine whether there are applicable and

unblocked rules for 𝑝𝑖. In case there is at least one applicable rule for 𝑝𝑖, Support

returns sup𝑝𝑖 = 𝑡𝑟𝑢𝑒; otherwise, it returns sup𝑝𝑖 = 𝑓𝑎𝑙𝑠𝑒. Similarly, 𝑢𝑛𝑏𝑝𝑖 =

𝑡𝑟𝑢𝑒 is returned when there is at least one unblocked rule for 𝑝𝑖; otherwise, 𝑢𝑛𝑏𝑝𝑖 =

𝑓𝑎𝑙𝑠𝑒.

Support also returns two data structures for 𝑝𝑖:

• 𝑆𝑆𝑝𝑖: 𝑡ℎ𝑒 𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑖𝑣𝑒 𝑆𝑒𝑡 𝑓𝑜𝑟 𝑝𝑖 . This is a set of literals representing the

most preferred (according to 𝑇𝑖) chain of applicable rules for 𝑝𝑖.

• 𝐵𝑆𝑝𝑖: 𝑡ℎ𝑒 𝐵𝑙𝑜𝑐𝑘𝑖𝑛𝑔 𝑆𝑒𝑡 𝑓𝑜𝑟 𝑝𝑖 . This is a set of literals representing the

most preferred (according to 𝑇𝑖) chain of unblocked rules for 𝑝𝑖.

To compute these structures, Support checks the applicability of the rules with

head 𝑝𝑖, using the truth values of the literals in their body, as these are evaluated by

P2P_DR. To avoid loops, before calling P2P_DR, it checks if the same query has

been issued before during the running call of P2P_DR. In this case, it marks the rule

with a cycle value, and proceeds with the remaining body literals. For each applicable

rule 𝑟𝑖. Support builds its Supportive Set, 𝑆𝑟𝑖 ; this is the union of the set of foreign

Chapter 6

 68

literals contained in the body of 𝑟𝑖 with the Supportive Sets of the local literals

contained in the body of the rule. Similarly, for each unblocked rule 𝑟𝑖, it computes its

Blocking Set 𝐵𝑆𝑟𝑖using the Blocking Sets of its body literals. Support computes the

Supportive Set of 𝑝𝑖, 𝑆𝑆𝑝𝑖 , as the strongest rule Supportive Set 𝑆𝑆𝑟𝑖 ; and its Blocking

Set, 𝐵𝑆𝑝𝑖 , as the strongest rule Blocking Set 𝐵𝑆𝑟𝑖 , using the Stronger function.

The input parameters of Support are:

• 𝑝𝑖: The queried literal.

• 𝐻𝑖𝑠𝑡𝑝𝑖: The list of pending queries ([p1, ..., pi])

• 𝑇𝑖: The preference ordering of 𝐶𝑖

The output parameters of Support are:

• 𝑠𝑢𝑝𝑝𝑖 : which indicates whether 𝑝𝑖 is supported in C.

• 𝑢𝑛𝑏𝑝𝑖 ∶ which indicates whether 𝑝𝑖 is unblocked in C.

• 𝑆𝑆𝑝𝑖: A set of foreign literals of 𝐶𝑖 denoting the Supportive set of 𝑝𝑖.

• 𝐵𝑆𝑝𝑖: A set of foreign literals of 𝐶𝑖 denoting the Blocking set of 𝑝𝑖.

Support (𝑝𝑖 ,𝐻𝑖𝑠𝑡𝑝𝑖 ,𝑇𝑖 , sup𝑝𝑖 ,𝑢𝑛𝑏𝑝𝑖 , 𝑆𝑆𝑝𝑖 ,𝐵𝑆𝑝𝑖)

𝑠𝑢𝑝𝑝𝑖 ⃪⃪𝑓𝑎𝑙𝑠𝑒

𝑢𝑛𝑏𝑝𝑖 ⃪⃪𝑓𝑎𝑙𝑠𝑒

For all 𝑟𝑖 ∊ 𝑅[𝑝𝑖] do

 𝑐𝑦𝑐𝑙𝑒(𝑟𝑖)⃪ 𝑓𝑎𝑙𝑠𝑒

 𝑆𝑆𝑟𝑖⃪∅

 𝐵𝑆𝑟𝑖⃪∅

For all 𝑏𝑡 ∊ 𝑏𝑜𝑑𝑦(𝑟𝑖) do

 if 𝑏𝑡 ∊ 𝐻𝑖𝑠𝑡𝑝𝑖 then

 𝑐𝑦𝑐𝑙𝑒(𝑟𝑖) ⃪ 𝑡𝑟𝑢𝑒

 𝐵𝑆𝑟𝑖 ⃪𝐵𝑆𝑟𝑖 ∪ {𝑑𝑡}{𝑑𝑡 ≡ 𝑏𝑡 𝑖𝑓 𝑏𝑡 ∉ 𝑉𝑖; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑑𝑡𝑖𝑠 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑓𝑜𝑟𝑒𝑖𝑔𝑛 𝑙𝑖𝑡𝑒𝑟𝑎𝑙 𝑜𝑓 𝐶𝑖 𝑎𝑑𝑑𝑒𝑑 𝑖𝑛 𝐻𝑖𝑠𝑡𝑝𝑖𝑎𝑓𝑡𝑒𝑟 𝑏𝑡}

 else

 𝐻𝑖𝑠𝑡𝑏𝑡 ⃪ 𝐻𝑖𝑠𝑡𝑝𝑖 ∪ {𝑏𝑡}

Chapter 6

 69

 call P2P_DR(𝑏𝑡,𝐶𝑖 ,𝐶𝑡 ,𝐻𝑖𝑠𝑡𝑏𝑡 ,𝑇𝑡 , 𝑆𝑆𝑏𝑡 ,𝐵𝑆𝑏𝑡 ,𝐴𝑛𝑠𝑏𝑡)

 if 𝐴𝑛𝑠𝑏𝑡 = 𝑓𝑎𝑙𝑠𝑒 then

 stop and check the next rule

 else if 𝐴𝑛𝑠𝑏𝑡 = 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑜𝑟 𝑐𝑦𝑐𝑙𝑒(𝑟𝑖) = 𝑡𝑟𝑢𝑒 then

 cycle(𝑟𝑖) ⃪𝑡𝑟𝑢𝑒

 if 𝑏𝑡 ∉ 𝑉𝑖 then

 𝐵𝑆𝑟𝑖 ⃪ 𝐵𝑆𝑟𝑖 ∪ { 𝑏𝑡}

 else

 𝐵𝑆𝑟𝑖 ⃪ 𝐵𝑆𝑟𝑖 ∪ 𝐵𝑆𝑏𝑡

 else

 if 𝑏𝑡 ∉ 𝑉𝑖 then

 𝐵𝑆𝑟𝑖 ⃪ 𝐵𝑆𝑟𝑖 ∪ { 𝑏𝑡}

 𝑆𝑆𝑟𝑖 ⃪ 𝑆𝑆𝑟𝑖 ∪ { 𝑏𝑡}

 else

 𝐵𝑆𝑟𝑖 ⃪ 𝐵𝑆𝑟𝑖 ∪ 𝐵𝑆𝑏𝑡

 𝑆𝑆𝑟𝑖 ⃪ 𝑆𝑆𝑟𝑖 ∪ 𝑆𝑆𝑏𝑡

if 𝑢𝑛𝑏𝑝𝑖 = 𝑓𝑎𝑙𝑠𝑒 𝑜𝑟 𝑆𝑡𝑟𝑜𝑛𝑔𝑒𝑟�𝐵𝑆𝑟𝑖 ,𝐵𝑆𝑝𝑖 ,𝑇𝑖� = 𝐵𝑆𝑟𝑖 then

 𝐵𝑆𝑝𝑖 ⃪ 𝐵𝑆𝑟𝑖

𝑢𝑛𝑏𝑝𝑖 ⃪𝑡𝑟𝑢𝑒

if 𝑐𝑦𝑐𝑙𝑒(𝑟𝑖) = 𝑓𝑎𝑙𝑠𝑒 then

 if sup𝑝𝑖 = 𝑓𝑎𝑙𝑠𝑒 𝑜𝑟 𝑆𝑡𝑟𝑜𝑛𝑔𝑒𝑟�𝑆𝑆𝑟𝑖 , 𝑆𝑆𝑝𝑖 ,𝑇𝑖� = 𝑆𝑆𝑟𝑖 then

 𝑆𝑆𝑝𝑖 ⃪ 𝑆𝑆𝑟𝑖

 𝑠𝑢𝑝𝑝𝑖 ⃪ 𝑡𝑟𝑢𝑒

The Stronger(A, B, Ti) function computes the strongest between two sets of

literals, A and B according to the preference order 𝑇𝑖. A literal 𝑎𝑘is preferred to a

literal 𝑏𝑙, if there is a list 𝐿𝑗 in 𝑇𝑖such that 𝐶𝑘 and 𝐶𝑙 are both part of that list and 𝐶𝑘

precedes 𝐶𝑙. It must be noted that literals might not be comparable if there is no list in

𝑇𝑖 containing both contexts from which these literals are derived. So in case where

literals of two sets are not comparable then stronger function returns undecided for

which set is the stronger.

Chapter 6

 70

Stronger (𝐴,𝐵,𝑇𝑖)

 if ∃𝑏𝑙 ∈ 𝐵 ∶ ∀𝑎𝑘 ∈ 𝐴, ∃ 𝐿𝑗 ∈ 𝑇𝑖: 𝐶𝑙 ,𝐶𝑘 ∈ 𝐿𝑗 𝒂𝒏𝒅 𝐶𝑘 𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑠 𝐶𝑙 𝑖𝑛 𝐿𝑗 then

 Stronger = A

 else if ∃𝑎𝑘 ∈ 𝐴 ∶ ∀𝑏𝑙 ∈ 𝐵, ∃ 𝐿𝑗 ∈ 𝑇𝑖: 𝐶𝑘 ,𝐶𝑙 ∈ 𝐿𝑗 𝒂𝒏𝒅 𝐶𝑙 𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑠 𝐶𝑘 𝑖𝑛 𝐿𝑗

then

 Stronger = B

 else

 Stronger = None

 return Stronger

 The current extensions of the CDL algorithm that implement authorization

control do not change the order of complexity of the previous algorithm. Essentially,

the P2P_DEAL algorithm calls twice the P2P_DR algorithm in steps 1,5 while the

other steps include conditional and assignment statements that check and init the

value of variables. Thus, it is obvious that the order of complexity depends on the

P2P_DR algorithm which is the previous CDL algorithm. The complexity of P2P_DR

algorithm is provided in the proposition 3 of [37] which is presented below.

 Proposition: The total number of calls of P2P_DR that are required for the

evaluation of a single query is in the worst case 𝑂(𝑛 𝑥 ∑ 𝑃(𝑛,𝑘)), where n stands

for the total number of literals in the system, ∑ expresses the sum over k = 0, 1, . . . ,

n, and 𝑃(𝑛,𝑘) stands for the number of permutations with length k of n elements. If

each of the literals in the system is defined by a different context, then the total

number of messages exchanged between the system contexts for the evaluation of a

query is 𝑂(2 𝑥 𝑛 𝑥 ∑ 𝑃(𝑛,𝑘)).

 We should note that ∑ 𝑃(𝑛,𝑘) stands between 2n and n!*2n. In addition, the

complexity of P2P_DR algorithm in an acyclic multi-context system is provided in

the proposition 4 of [37] which is presented below.

 Proposition: In acyclic MCS, the total number of calls of P2P_DR that are

required for the evaluation of a single query is in the worst case 𝑂(𝑐 𝑥 𝑛), where c

stands for the total number of contexts in the system, and n stands for the total

number of literals in the system. If each of the literals in the system is defined by a

different context, then the total number of messages exchanged between the system

contexts for the evaluation of a query is 𝑂(2 𝑥 𝑐 𝑥 𝑛).

Chapter 6

 71

 A complexity analysis for each different CDL strategy that deals with

contextual reasoning is provided in [37]. The study in [36] presented the initial

experiences gained from the deployment of contextual defeasible reasoning in real

environments and discusses performance and scalability issues of the approach.

 In conclusion, the implementation of DEAL on top of CDL framework

provides two main advantages. Firstly, the CDL algorithm is enriched with

authorization control. Secondly, CDL enables DEAL to specify distributed

authorizations based on the connection-based approach (described on chapter 4).

6.4 Motivating Scenarios Implementation

In this chapter we present technical information about the implementation of the

motivating scenarios that were described in section 1.3. Moreover, we specify the

authorization policies of the scenarios in DEAL language. The first scenario refers to

an Ambient Intelligence hospital environment and focuses on the protection of

medical data, while the second scenario refers to an Ambient Intelligence university

and focuses on the access control of secretarial services.

6.4.1 Implementation of AmI Hospital Authorization Scenario

The implementation of this scenario took place at ICS-FORTH institute facilities.

Moreover, the implementation involved the following AmI devices, three cell phones

that belong to the three doctors Bob, Trudy and Alice and four desktop computers that

belong to the management office, and the hospital departments of Cardiology, Xray

and Gastroenterology respectively.

 The implementation of the information flow (which is depicted in figure 1.2)

was based on the wireless networks of ICS-FORTH institute while the

communication technologies that were used are SMS (short message service)

messages via the GSM cellular network and P2P connections based on Bluetooth.

More specifically, these technologies were used as follows. The individuals of the

scenario are able to send requests, with their cell phones, to the management office

computer in the form of SMS messages. The management office computer responds

to the requests via SMS messages. Moreover, the management office computer

Chapter 6

 72

communicates with the computers of the departments via P2P connections based on

Bluetooth in order to receive additional information about patients.

 Moreover, the computers of this scenario are equipped with the latest version

of CDL application which is able to address authorization issues via DEAL language

and some CDL algorithm extensions. As for the technical details of the CDL

application, the CDL algorithm is implemented in Java language. Moreover, as a

basic reasoning engine it is used a Java implementation of a Prolog engine which is

called TuProlog (which is described in the appendix A.1). The reasoning engine is

preloaded with a metaprogram (which is provided in the appendix A.2) that simulates

the proof theoretic semantics of Defeasible Logic and another metaprogram (which is

provided in appendix A.3) that simulates the proof theoretic semantics of DEAL

language.

 Furthermore, in the implementation of this scenario we make identification

and authentication assumptions because we focus on the authorization problem. More

specifically, we assume that the requesters are identified and their identities are

verified successfully when an intelligent device receives a request.

 As for the policy of the management office for answering a particular request,

it is expressed below in CDL language. The rules demonstrate that a received query of

the form "readyResults(X,Y)", where X is a specific patient and Y is a specific type of

exams, requires additional information from the specified department in order to be

answered. For example, a received query that asks if the cardiology exams of a patient

X are ready (readyResults(X,'Cardiology')) requires an additional query

(readyCardioExams(X)) to be sent and answered by the computer of the Cardiology

department.

𝑟1𝑚: readyResults(X, 'Cardiology') ⟸ readyCardioExams(X)CardioDep .

𝑟2𝑚: readyResults(X, ' Xray') ⟸ readyXrayExams(X)XrayDep .

𝑟3𝑚: readyResults(X, ' Gastroenterology') ⟸ readyGastroExams(X)GastroDep .

 Moreover, the policy of the management office for authorizing a particular

request is expressed below in DEAL language. The following rules of the

authorization policy correspond to the authorization statements which are described in

section 1.3.1.

Chapter 6

 73

<deal1> granted(X, readyResults(Y, Z)) ⟸ doctor(X), treat(X, Y).

<deal2> granted(X, readyResults(Y, Z)) ⟸ trainee(X),

 grant(W, X, readyResults(Y, Z))

 doctor(W), treat(W,Y).

<deal3> ¬ granted(X, readyResults(Y, Z)) ⟸ doctor(X), retired(X).

<deal4> superior(deal3, deal1) ← .

<deal5> belong(X,'Doctors') ← doctor(X).

<deal6> belong(X,'Doctors') ← trainee(X).

<deal7> granted('Doctors', diseaseOutbreak(X)) ⟸ .

<deal8> granted('Doctors', incidentsAbove(X,Y)) ⟸ .

 As for the knowledge base of the management office, it is provided below in

DEAL language.

doctor('Bob') ← .

treat('Bob', 'Mary') ← .

treat('Bob', 'George') ← .

trainee('Alice') ← .

grant(Bob', 'Alice', readyResults('George', Z)) ← .

doctor('Trudy') ← .

treat('Trudy', 'George') ← .

retired('Trudy') ← .

diseaseOutbreak('H1N1') ← .

 Moreover, the implementation of this scenario involved different types of

requests to the management office computer by the cell phones of the individuals. In

addition, at the time when the requests were performed the computers of the hospital

departments contained the knowledge which is specified below in CDL language.

 Firstly, the Cardiology department contained the following knowledge:

readyCardioExams('Mary') ← .

 Secondly, the Xray department contained the following knowledge:

Chapter 6

 74

readyXrayExams('George') ← .

 Thirdly, the Gastroenterology department contained the following knowledge:

readyGastroExams('George') ← .

 Furthermore, in this scenario there were preformed several requests. The

replies to these requests verify that the system implements authorization control based

on its authorization policy. To be more specific, we describe in detail the requests and

the replies of the system.

 First of all, we performed the query readyResults('Mary', 'Cardiology') by

Bob's cell phone to the management office. The management office authorization

policy concluded that Bob is authorized for this request due to rule deal1 and its

knowledge base. Thus, the system proceeded on processing and answering the

request. The particular request is associated with the CDL mapping rule r1 for

distributed reasoning. Based on this rule, the additional request

readyCardioExams('Mary') is forwarded to the Cardiology department in order to be

answered. The Cardiology department answered with 'yes' due to its knowledge base,

thus the rule r1 concludes the value true for the query readyResults('Mary',

'Cardiology'). Therefore the management office replies to Bob the answer 'yes'.

 Additionally, we performed the query diseaseOutbreak('H1N1') by Bob's cell

phone to the management office. The management office authorization policy

concluded that Bob is authorized for this request due to rules deal5, deal7 and its

knowledge base. Thus, the system proceeded on processing and answering the

request. The particular request is not associated with any CDL mapping rule for

distributed reasoning but there is local knowledge on the management office for

concluding the value true for the query. Thus, the management office replies to Bob

 the answer 'yes'.

 Moreover, we performed the queries readyResults('George', 'Xray') and

readyResults('George', 'Gastroenterology') by Alice's cell phone to the management

office. The management office authorization policy concluded that Alice is authorized

for these requests due to rule deal2 and its knowledge base. Thus, the system

proceeded on processing and answering the requests. The particular requests are

associated with the CDL mapping rules r2 and r3 for distributed reasoning. Based on

these rules, the additional requests readyXrayExams('George') and

Chapter 6

 75

readyGastroExams('George') are forwarded to the Xray and Gastroenterology

department respectively, in order to be answered. The Xray and Gastroenterology

departments answered with 'yes' due to their knowledge base. Thus, the rule r2

concludes the value true for the query readyResults('George', 'Xray') and the rule r3

concludes the value true for the query readyResults('George', 'Gastroenterology').

Therefore the management office replies to Alice the answer 'yes' for both queries.

 In addition, we performed the query incidentsAbove('H1N1', 4) by Alice's cell

phone to the management office. The management office authorization policy

concluded that Alice is authorized for this request due to rules deal6, deal8 and its

knowledge base. Thus, the system proceeded on processing and answering the

request. The particular request is not associated with any CDL mapping rule for

distributed reasoning and there is not any local knowledge on the management office

for concluding the value true for the query. Thus, the management office replies to

Alice the answer 'no'.

 Finally, we performed the query readyResults('George', 'Xray') by Trudy's

cell phone to the management office. The management office authorization policy

concluded that Trudy is not authorized for this request due to rules deal1, deal3 and

deal4 and its knowledge base. Thus, the system did not proceed on processing and

answering the request. Therefore, the management office replies to Trudy the answer

'undefined'.

 Overall, in the implementation of this scenario, the response of the

management office system is correct based on its authorization policy.

6.4.2 Implementation of AmI University Authorization Scenario

The implementation of this scenario took place at ICS-FORTH institute facilities.

Moreover, the implementation involved the following AmI devices, five cell phones

that belong to the individuals Bob, Trudy, Alice, Mr. Antoniou and Mr. Smith and

one desktop computer that belong to the secretary office.

 The implementation of the information flow (which is depicted in figure 1.3)

was based on the wireless networks of ICS-FORTH institute while the

communication technologies that were used are SMS (short message service)

messages via the GSM cellular network. More specifically, the individuals of the

scenario are able to send requests, with their cell phones, to the secretary office

Chapter 6

 76

computer in the form of SMS messages and the office computer responds also via

SMS messages. Moreover, the secretary office computer is equipped with the latest

version of CDL application which is able to address authorization issues via DEAL

language and some CDL algorithm extensions. Furthermore, in this scenario we make

the same identification and authentication assumptions as in the previous one.

 As for the policy of secretary office for answering a particular request, it is

expressed below in CDL language. The rule r1 indicates that a student X gets a

degree, if he has passed all the degree lessons and has presented his thesis. Moreover,

the rule r1 implies that a classroom X is available at the time Y, if it does not exist any

information of a presentation at the particular classroom and time. Finally, the rule r3

indicates that the computer system has enough memory space, if the percentage of the

used memory is smaller than 80%.

𝑟1𝑙:
 getDegree(X) ⟸ passedLessons(X), presentedThesis(X) .

𝑟2𝑙:
 isAvaliable(X,Y) ⟸ not presentantionOn(X,Y).

𝑟3𝑙:
 enoughMemorySpace ⟸ usedMemoryBelow('80%').

 Moreover, the policy of the secretary office for authorizing a particular request

is expressed below in DEAL language. The following rules of the authorization policy

correspond to the authorization statements which are described in section 1.3.2.

<deal1> belong(getDegree(X), 'StudentServices') ← .

<deal2> belong(getScholarship(X), 'StudentServices') ← .

<deal3> granted(X, 'StudentServices') ⟸ student(X).

<deal4> ¬ granted(X, 'StudentServices') ⟸ student(X),

 not registered(X).

<deal5> superior(deal4, deal3) ← .

<deal6> granted(X, isAvaliable(Y,Z)) ⟸ professor(X) ,

 not retired(X).

<deal7> granted(X, enoughMemorySpace) ⟸ administrator (X).

 As for the knowledge base of the secretary office, it is provided below in

DEAL language.

Chapter 6

 77

student('Bob') ← .

registered('Bob') ← .

getScholarship('Bob') ← .

student('Alice') ← .

passedLessons('Alice') ← .

presentedThesis('Alice') ← .

student('Trudy') ← .

professor('Antoniou') ← .

administrator('Smith') ← .

presentantionOn('RA201', 5) ← .

usedMemoryBelow('80%') ← .

 Moreover, in this scenario there were preformed several requests. The replies

to these requests verify that the system implements authorization control based on its

authorization policy. To be more specific, we describe in detail the requests and the

replies of the system.

 First of all, we performed the query getScholarship('Bob') by Bob's cell phone

to the secretary office. The secretary office authorization policy concluded that Bob is

authorized for this request due to rules deal2, deal3, deal4, deal5 and its knowledge

base. Thus, the system proceeded on processing and answering the request. In

conclusion, the secretary office replies to Bob the answer 'yes' due to its local

knowledge.

 In addition, we performed the query getDegree ('Alice') by Alice's cell phone

to the secretary office. The secretary office authorization policy concluded that Alice

is authorized for this request due to rules deal1, deal3, deal4, deal5 and its knowledge

base. Thus, the system proceeded on processing and answering the request. In

conclusion, the secretary office replies to Alice the answer 'yes' due to CDL rule r1

and its local knowledge.

 Furthermore, we performed the query getDegree ('Trudy') by Trudy's cell

phone to the secretary office. The secretary office authorization policy concluded that

Trudy is not authorized for this request due to rules deal1, deal3, deal4, deal5 and its

knowledge base. Thus, the system did not proceed on processing and answering the

request. Therefore, the secretary office replies to Trudy the answer 'undefined'.

Chapter 6

 78

 Additionally, we performed the query isAvaliable('RA201', 5) by professor's

Antoniou cell phone to the secretary office. The secretary office authorization policy

concluded that Antoniou is authorized for this request due to rule deal6 and its

knowledge base. Thus, the system proceeded on processing and answering the

request. In conclusion, the secretary office replies to professor Antoniou the answer

'no' due to CDL rule r2 and its local knowledge.

 Moreover, we performed the query enoughMemorySpace by Mr. Smith's cell

phone to the secretary office. The secretary office authorization policy concluded that

the administrator Smith is authorized for this request due to rule deal7 and its

knowledge base. Thus, the system proceeded on processing and answering the

request. In conclusion, the secretary office replies to Smith the answer 'yes' due to

CDL rule r3 and its local knowledge.

 Overall, in the implementation of this scenario, the response of the secretary

system is correct based on its authorization policy.

Chapter 7

 79

Conclusion

To conclude this thesis, we summarize and discuss its main contributions, and

propose possible directions for future research.

7.1 Synopsis

The special characteristics of ambient intelligence environments have introduced new

research challenges in the field of authorization. The implementation of authorization

policies is vital in order to develop a secure Ambient Intelligence system. Every AmI

device should be able to specify access right policies to the resources that it controls.

However, the imperfect nature of context information and the open and dynamic

characteristics of AmI environments make the enforcement of authorization policies

problematic.

 The authorization problem has been addressed in many studies. Several

authorization systems have been developed during the last 20 years both logic-based

and non logic-based. However, most existing authorization systems are not

appropriate to meet the demanding needs of Ambient Intelligence environments.

More specifically, these approaches either don't support distributed authorizations or

don't provide the expressive features of a powerful authorization language such as

negative authorization, rule priorities, hierarchical category authorization and

nonmonotonic reasoning.

 This thesis studies, the problem of authorization in Ambient Intelligence

environments. Firstly, it describes in detail the basic concepts of the authorization

problem and the desirable characteristics of an authorization language for AmI

environments. Secondly it proposes an approach that meets the predefined criteria.

This approach proposes extensions to the framework presented in [32], which

supports distributed contextual reasoning in ambient intelligence environments. The

capabilities of this approach are illustrated using two fully implemented AmI

scenarios that motivated our current research study.

 In chapter 2 we provide the basic concepts of the authorization problem while

in chapter 3 we describe the desirable characteristics of an authorization language for

AmI environments. In chapter 6 we introduce the Distributed Environment

Chapter 7

 80

Authorization Language (DEAL) that aims on providing a powerful logic-based

approach for addressing authorization issues in Ambient Intelligence environments.

First of all, the chapter presents the syntax of DEAL by providing the alphabet, rules

and characteristics of the language through examples. Secondly, it illustrates the

semantics of the language through transformation to Defeasible Logic. Thirdly, it

describes the appropriate extensions to the basic CDL algorithm in order to support

DEAL policies. Finally, the chapter provides the implementation of the motivating

scenarios using DEAL policies. Overall, this study suggests a formal high level logic-

based authorization language which is sufficiently efficient to meet the increased

authorization requirements in Ambient Intelligence environments.

7.2 Future Directions

This work is just one step in an ambitious research plan, and there are concrete ideas

on further work for supporting the DEAL (Distributed Environment Authorization

Language) approach.

 First of all, future work on improving CDL implementation will also

strengthen DEAL implementation because it is built as an extension to the current

CDL application. The study in [37] provides several ideas for improving and

extending CDL both in theoretical and in implementation level.

 Secondly, our approach addresses the authorization problem and makes

identification and authentication assumptions. However, the overall access control

process requires strong identification and authentication techniques. Thus, further

work can be conducted on the identification and authentication problem in order to be

presented in conjunction with this work as a generic approach for access control.

 Moreover, in this work distributed authorizations are supported by adopting

the connection-based approach. Future work can be performed for also supporting

distributed authorizations by adopting the credential-based approach. The advantages

and disadvantages of both approaches are provided in chapter 4.

 Finally, DEAL can be enriched with additional language characteristics that

would empower its expressiveness. Some expressive features that could be added in

DEAL are listed below. The addition of any of these features implies further research

for the impact on the language complexity.

Chapter 7

 81

• defeaters: Defeaters are rules (which are supported in Defeasible logic and

described in section 5.1) that they are used to block competing rules by

deriving contrary evidence but they are not used independently to derive

conclusions.

• conflicting literals: conflicting literals is a set of literals that any grounded

pair of them forms a knowledge conflict. Obviously, given a predicate p,

the set {p, ¬ p} is a set of conflicting literals. Other sets of conflicting

literals may refer to discrete values that a variable can take, such as {on,

off} and {hot, warm, cold}. A more detailed description of conflicting

literals in an extended version of Defeasible logic is provided in [67].

• conditional rule priorities: conditional rule priority is a feature that

enables the rule priorities to be expressed as a conclusion of a rule with a

non-empty body. In DEAL language, conditional rule priorities could be

supported if the priority rule could be specified as a defeasible or strict rule

with non-empty conditions. The semantics of conditional rule priorities

require changes in the defeasible reasoning process.

Overall, we believe that ambient intelligence environments provide a rich

testbed for authorization approaches. Ambient Intelligence is a rich area with special

requirements in terms of openness, distribution, heterogeneity and efficiency. Thus, it

can serve as a source of inspiration for future work on the authorization problem.

 Appendix

 82

Appendix A

A.1 TuProlog Reasoner

TuProlog [66] is a Java-based light-weight Prolog for Internet applications and

infrastructures. For this purpose, tuProlog is designed to feature some interesting

qualities: it is easily deployable, just requiring the presence of a Java VM and an

invocation upon a single JAR file; its core is both minimal, taking the form of a tiny

Java object containing only the most essential properties of a Prolog engine, and

configurable, thanks to the loading and unloading of predicates, functors and

operators embedded in libraries; the integration between Prolog and Java is as wide,

deep, clean as possible; finally, interoperability is developed along the two main lines

of Internet standard patterns and coordination models.

A.2 Defeasible Logic Metaprogram

On the TuProlog reasoning engine it is loaded the DR-PROLOG metaprogram. This

metaprogram is actually a prolog program, implementing the defeasible logic, in a

shorter more lightweight version of the original the ideas which are described in [48].

supportive_rule(Name, Head, Body) :- strict(Name, Head, Body).

supportive_rule(Name, Head, Body) :- defeasible(Name, Head,
Body).

rule(Name,Head,Body) :- supportive_rule(Name, Head, Body).

definitely(X):- fact(X).

definitely(X):- strict(R,X,L), definitely_provable(L).

definitely(X):- strict0(R,X,L), definitely_provable(L).

definitely(neg(X)):- strict1(R,neg(X),L),
definitely_provable(L), not(definitely(X)).

definitely(X):- strict2(R,X,L), definitely_provable(L).

definitely_provable([]).

Appendix

 83

definitely_provable(X):- definitely(X).

definitely_provable([X1|X2]):- definitely_provable(X1),
definitely_provable(X2).

defeasibly(X):- definitely(X).

defeasibly(X):- negation(X,X1), supportive_rule(R,X,L),
defeasibly_provable(L), not(definitely(X1)),
not(overruled(R,X)).

defeasibly_provable([]).

defeasibly_provable(X):- defeasibly(X).

defeasibly_provable([X1|X2]):- defeasibly_provable(X1),
defeasibly_provable(X2).

overruled(R,X):- negation(X,X1), supportive_rule(S,X1,U),
defeasibly_provable(U), not(defeated(S,X1)).

defeated(S,X):- sup(T,S), negation(X,X1),
supportive_rule(T,X1,V), defeasibly_provable(V).

negation(~(X),X):- !.

negation(X,~(X)).

append([],List,List).

append([Head|Tail],List2,[Head|Result]):-
append(Tail,List2,Result).

member(N,[N|Tail]).

member(N,[I|Tail]):- member(N,Tail).

minus_set([E|X],Y,Z):- member(E,Y),minus_set(X,Y,Z),!.

minus_set([E|X],Y,[E|Z]):-minus_set(X,Y,Z),not(member(E,Y)),
!.

minus_set([],Y,[]).

strict(e,w,r).

defeasible(y,t,e).

fact(w).

Appendix

 84

sup(e,w).

A.3 DEAL Metaprogram

On the TuProlog reasoning engine it is loaded the DEAL metaprogram. This
metaprogram is actually a prolog program, implementing the DEAL language proof
theoretic semantics.

%Nonmonotonic reasoning

defeasible(r1, notExist(_H), []).

defeasible(r2, ~(notExist(H)), [H]).

%Transitivity of belong predicate

strict(r3,belongTo(X,Y),[belong(X,Y)]).

strict(r4,belongTo(X,Y),[belong(X,Z), belongTo(Z,Y)]).

%Derived authorizations among requester hierarchies

defeasible(r5, granted(X,Q) ,[belongTo(X,Y), granted(Y,Q)]).

defeasible(r6, ~(granted(X,Q)) ,[belongTo(X,Y),
 ~(granted(Y,Q))]).

defeasible(r7, grant(G,X,Q) ,[belongTo(X,Y), grant(G,Y,Q)]).

defeasible(r8, ~(grant(G,X,Q)) ,[belongTo(X,Y),
 ~(grant(G,Y,Q))]).

%Derived authorizations among query hierarchies

defeasible(r9, granted(X,Q) ,[belongTo(Q,Y), granted(X,Y)]).

defeasible(r10, ~(granted(X,Q)) ,[belongTo(Q,Y),
~(granted(X,Y))]).

defeasible(r11, grant(G,X,Q) ,[belongTo(Q,Y), grant(G,X,Y)
]).

defeasible(r12, ~(grant(G,X,Q)) ,[belongTo(Q,Y),
~(grant(G,X,Y))]).

Appendix

 85

%Derived authorizations among action hierarchies

defeasible(r13, granted(X,right(A,O)) ,[belongTo(A,Y),
granted(X,right(Y,O))]).

defeasible(r14, ~(granted(X,right(A,O))) ,[belongTo(A,Y),
~(granted(X,right(Y,O)))]).

defeasible(r15, grant(G,X,right(A,O)) ,[belongTo(A,Y),
grant(G,X,right(Y,O))]).

defeasible(r16, ~(grant(G,X,right(A,O))) ,[belongTo(A,Y),
~(grant(G,X,right(Y,O)))]).

%Derived authorizations among object hierarchies

defeasible(r17, granted(X,right(A,O)) ,[belongTo(O,Y),
granted(X,right(A,Y))]).

defeasible(r18, ~(granted(X,right(A,O))) ,[belongTo(O,Y),
~(granted(X,right(A,Y)))]).

defeasible(r19, grant(G,X,right(A,O)) ,[belongTo(O,Y),
grant(G,X,right(A,Y))]).

defeasible(r20, ~(grant(G,X,right(A,O))) ,[belongTo(O,Y),
~(grant(G,X,right(A,Y)))]).

References

 86

Bibliography

[1] P. Remagnino and G.L. Foresti. Ambient Intelligence: A New Multidisciplinary

Paradigm. IEEE Transactions on Systems, Man and Cybernetics, Vol.35(1),pp 1-6,

Jan. 2005.

[2] E. Aarts. Ambient intelligence: a multimedia perspective. Multimedia, IEEE ,

vol.11, no.1, pp. 12-19, Jan.-March 2004.

[3] C. Ramos, J.C. Augusto, and D. Shapiro. Ambient intelligence – the next step for

artificial intelligence. IEEE Intelligent Systems, 23(2), 15–18, 2008.

[4] J.C. Augusto. Ambient Intelligence: Basic Concepts and Applications.

Communications in Computer and Information Science, vol. 10, pp.14–24. Springer,

Heidelberg (2008).

[5] G. Riva, F. Vatalaro, F. Davide and M. Alcañiz. Ambient Intelligence: From

Vision to Reality. IOS Press, 2005.

[6] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and P. Steggles.

Towards a Better Understanding of Context and Context-Awareness. In HUC '99:

Proceedings of the 1st international symposium on Handheld and Ubiquitous

Computing, pages 304:307. Springer-Verlag, 1999. 1, 2

[7] B. Schilit and M. Theimer. Disseminating Active Map Information to Mobile

Hosts. IEEE Network, 8(5):22{32, 1994. 1

[8] P. D. Gray and D. Salber. Modelling and Using Sensed Context Information in

the Design of Interactive Applications. In EHCI '01: Proceedings of the 8th IFIP

International Conference on Engineering for Human-Computer Interaction, pages

317{336, London, UK, 2001. Springer-Verlag. 1

[9] N. S. Ryan, J. Pascoe, and D. R. Morse. Enhanced Reality Fieldwork: the

Context-aware Archaeological Assistant. In V. Gaffney and M. van Leusen and S.

Exxon, editor, Computer Applications in Archaeology 1997, British Archaeological

Reports, Oxford, October 1998. Tempus Reparatum. 2

[10] K. Henricksen and J. Indulska. Modelling and Using Imperfect Context

Information. In Proceedings of PERCOMW '04, pages 33{37, Washington, DC, USA,

2004. IEEE Computer Society. 2

References

 87

[11] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management. In

Proceedings of the 1996 IEEE Symposium on Security and Privacy, pages 164-173.

IEEE Computer Society Press, May 1996.

[12] M. Blaze, J. Feigenbaum, and M. Strauss. Compliance-checking in the

PolicyMaker trust management system. In Proceedings of Second International

Conference on Financial Cryptography (FC’98), volume 1465 of Lecture Notes in

Computer Science, pages 254-274. Springer, 1998.

[13] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis. The KeyNote Trust-

Management System, Version 2, Internet Engineering Task Force RFC 2704,

September 1999. http://www.ietf.org/rfc/rfc2704.txt

[14] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis. The role of trust

management in distributed systems. In Secure Internet Programming, volume 1603 of

Lecture Notes in Computer Science, pages 185-210. Springer, 1999.

[15] Y. Chu, J. Feigenbaum, B. LaMacchia, P. Resnick, and M. Strauss. REFEREE:

Trust management for web applications. World Wide Web Journal, 2:706-734, 1997.

[16] D. Clarke, J. Elien, C. Ellison, M. Fredette, A. Morcos, and R. L. Rivest.

Certificate Chain Discovery in SPKI/SDSI, manuscript, Nov 1999.

[17] J. Elien. Certificate Discovery Using SPKI/SDSI 2.0 Certificates. Masters

Thesis, MIT LCS, May 1998,

http://groups.csail.mit.edu/cis/theses/elien-masters.pdf

[18] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen. SPKI

Certificate Theory. Internet Engineering Task Force RFC 2693, September 1999.

http://www.ietf.org/rfc/rfc2693.txt

[19] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen. Simple

Public Key Certificate, Internet Draft (Work in Progress), July1999.

http://world.std.com/~cme/spki.txt

[20] R. L. Rivest, and B. Lampson. SDSI - A Simple Distributed Security

Infrastructure, October 1996. http://theory.lcs.mit.edu/rivest/sdsi11.html

[21] S. Jajodia, P. Samarati, V. S. Subrahmanian, and Elisa Bertino. A unified

framework for enforcing multiple access control policies. In Proceedings of ACM

SIGMOD International Conference on Management of Data, pages 474-485, 1997

[22] S. Jajodia, P. Samarati, and V. S. Subrahmanian. A logical language for

expressing authorizations. In Proceedings of the 1997 IEEE Symposium on Security

and Privacy, pages 31-42. IEEE Computer Society Press, 1997.

http://www.ietf.org/rfc/rfc2704.txt/
http://groups.csail.mit.edu/cis/theses/elien-masters.pdf
http://www.ietf.org/rfc/rfc2693.txt/
http://world.std.com/~cme/spki.txt
http://theory.lcs.mit.edu/rivest/sdsi11.html

References

 88

[23] E. Bertino, F. Buccafurri, E. Ferrari, and P. Rullo. A Logical Framework for

Reasoning on Data Access Control Policies. In Proceedings of the 12th IEEE

Computer Security Foundations Workshop (CSFW-12), pages 175-189, IEEE

Computer Society Press, Los Alamitos, CA, 1999.

[24] S. Jajodia, P. Samarati, and V. S. Subrahmanian. Flexible Support for Multiple

Access Control Policies. In ACM Transactions on Database Systems, Vol.26, No.2,

June 2001, Pages 214-260

[25] N. Li, J. C. Mitchell, W. H. Winsborough. Design of a role-based trust

management framework. In Proceedings of the 2002 IEEE Symposium on Security

and Privacy, pp 114-130. IEEE Computer Society Press (2002).

[26] N. Li, B. N. Grosof, J. Feigenbaum. Delegation Logic: A logic-based approach

to distributed authorization. ACM Transactions on Information and System Security

(TISSEC), Vol 6(1): 128-171 (2003).

[27] N. Li, B. N. Grosof, J.Feigenbaum. A nonmonotonic delegation logic with

prioritized conflict handling. Unpublished manuscript (2000).

[28] S. Wang, and Y. Zhang, A formalization of distributed authorization with

delegation. In Proceedings of the 10th Australasian Conference on Information

Security and Privacy (ACISP 2005), pp 303-315. Springer 2005.

[29] S. Wang and Y. Zhang, Handling distributed authorization with delegation

through answer set programming. International Journal of Information Security. 6

(2007) 27-46.

[30] P. Liu, J. Hu, Z. Chen: A Formal Language for Access Control Policies in

Distributed Environment. The 2005 IEEEWIC ACM International Conference on

Web Intelligence WI05.

[31] A. Bikakis, G. Antoniou: Local and Distributed Defeasible Reasoning in Multi-

Context Systems. In Proc. RuleML 2008: 135-149; an extended version of this paper

has been conditionally accepted by Knowledge & Information Systems.

[32] A. Bikakis, G. Antoniou: Distributed Defeasible Contextual Reasoning in

Ambient Computing. In Proc. AmI 2008: 308-325; an extended version of this paper

has been accepted by IEEE Transactions on Systems, Man and Cybernetics.

[33] A. Bikakis, G. Antoniou: Contextual Argumentation in Ambient Intelligence. In

Proc. LPNMR 2009: 30-43; an extended version of this paper has been accepted for

publication in IEEE Transactions on Knowledge and Data Engineering.

http://staff.scm.uws.edu.au/~yan/papers/current/acisp05.pdf
http://staff.scm.uws.edu.au/~yan/papers/current/acisp05.pdf
http://staff.scm.uws.edu.au/~yan/papers/current/ijis07.pdf
http://staff.scm.uws.edu.au/~yan/papers/current/ijis07.pdf

References

 89

[34] G. Antoniou, D. Billington, G. Governatori, M.J. Maher: Representation results

for defeasible logic. ACM Transactions on Computational Logic 2(2): 255-287

(2001).

[35] F. Giunchiglia, L. Serafini: Multilanguage hierarchical logics, or: how we can do

without modal logics. Artificial Intelligence 65(1) (1994).

[36] G. Antoniou, C.Papatheodorou, A. Bikakis: On the Deployment of Contextual

Reasoning in Ambient Intelligence Environments. In Proc. 6th International

Conference on Intelligent Environments, 2010 (IE'10).

[37] A. Bikakis, G. Antoniou, P. Hassapis: Strategies for Contextual Reasoning with

Conflicts in Ambient Intelligence, 2010, Knowledge and Information Systems

(accepted) (2010)

[38] G.S. Graham and P.J. Denning. Protection | principles and practice. In

Proceedings of the AFIPS Spring Joint Computer Conference, volume 40, pages

417{429, Atlantic City, New Jersey, May 16{18 1972.

[39] B.W. Lampson. Protection. In Proceedings of the 5th Princeton Symposium on

Information Sciences and Systems, pages 437{443, Princeton University, March

1971. Reprinted in ACM Operating Systems Review, 8(1):18{24, January 1974.

[40] B.W. Lampson. A note on the con nement problem. Communications of the

ACM, 16(10):613{615, October 1973.

[41] N. Li, W. H. Winsborough, J. C. Mitchell (2003) Distributed credential chain

discovery in trust management. Journal of Computer Security, 11(1): 35-86.

[42] S. T. Kent. Internet privacy enhanced mail. Communications of the ACM,

36(8):48-60, August 1993.

[43] ITU-T Rec. X.509 (revised). The Directory - Authentication Framework.

International Telecommunication Union, 1993.

[44] D. Clarke, J. Elien, C. Ellison, M. Fredette, A. Morcos, and R. L.

Rivest. Certificate chain discovery in SPKI/SDSI. Journal of Computer Security,

9(4):285-322, 2001.

[45] T.Y.C Woo, S.S. Lam, Authorizations in Distributed Systems: A New Approach.

Journal of Computer Security, 2(2 & 3):107-136, 1993.

[46] E. Bertino, B. Catania, E. Ferrari and P. Perlasca, “A Logical Framework for

Reasoning about Access Control Models”. ACM Transactions on Information and

System Security, Vol.6, No.1, pp71-127, 2003.

References

 90

[47] D. Nute. Defeasible logic. In D.M. Gabbay, C.J. Hogger, and J.A.Robinson,

editors, Handbook of Logic in Artificial Intelligence and Logic Programming, Vol 3,

pages 355-395. Oxford University Press, 1994.

[48] G. Antoniou, D. Billington, G. Governatori, M. J. Maher: Embedding defeasible

logic into logic programming. TPLP 6(6): 703-735 (2006)

[49] J. McCarthy (1987) Generality in artificial intelligence. Commun ACM

30(12):1030-1035

[50] S. Buvac, IA Mason (1993) Propositional logic of context. In: AAAI, pp 412-419

[51] J. McCarthy, S. Buvač (1998) Formalizing context expanded notes. In: Aliseda

A, van Glabbeek R, Westerståhl D (eds) Computing natural language. CSLI

Publications, Stanford California pp 13-50

[52] C. Ghidini, F. Giunchiglia (2001) Local models semantics, or contextual

reasoning = locality + compatibility. Artif Intell 127(2):221-259

[53] L. Serafini, P. Bouquet (2004) Comparing formal theories of context in AI. Artif

Intell 155(1-2):41-67

[54] F. Roelofsen, L. Serafini (2005) Minimal and absent information in contexts. In:

IJCAI, pp 558-563

[55] G. Brewka, F. Roelofsen, L. Serafini (2007) Contextual default reasoning. In:

IJCAI, pp 268-273

[56] A. Casali, L. Godo, C. Sierra (2008) A logical framework to represent and reason

about graded preferences and intentions. In: KR, pp 27-37

[57] J. Sabater, C. Sierra, S. Parsons, NR Jennings (2002) Engineering executable

agents using multi-context systems. J Log Comput 12(3):413-442

[58] M. Dastani, G. Governatori, A. Rotolo, I. Song, L. van der Torre (2007)

Contextual deliberation of cognitive agents in defeasible logic. In: AAMAS, p 148

[59] M. Cristani, E. Burato (2009) Approximate solutions of moral dilemmas in

multiple agent system. Knowledge Information Systems 18(2):157-181

[60] G. Resconi, B. Kovalerchuk (2009) Agents’ model of uncertainty. Knowledge

Information Systems 18(2):213-229

[61] A. Bikakis, G. Antoniou: Rule-Based Contextual Reasoning in Ambient

Intelligence. RuleML 2010, 74-88

[62] G. Governatori, M. J. Maher, D. Billington, and G. Antoniou.

Argumentation Semantics for Defeasible Logics. Journal of Logic and Computation,

14(5):675-702, 2004. 29, 32, 36, 102, 105, 139

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Billington:David.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Governatori:Guido.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Maher:Michael_J=.html
http://www.informatik.uni-trier.de/~ley/db/journals/tplp/tplp6.html#AntoniouBGM06

References

 91

[63] M. J. Maher. A Model-Theoretic Semantics for Defeasible Logic. In

Paraconsistent Computational Logic, pages 67{80, 2002. 139

[64] D. Billington, G. Antoniou, G. Governatori, M. J. Maher: Revising

Nonmonotonic Theories: The Case of Defeasible Logic. KI 1999: 101-112

[65] M. J. Maher: Propositional Defeasible Logic has Linear Complexity. TPLP 1(6):

691-711 (2001)
[66] E. Denti, A. Omicini, A. Ricci, tuProlog: A Light-Weight Prolog for Internet

Applications and Infrastructures, Practical Aspects of Declarative Languages, 3rd

International Symposium (PADL 2001), Las Vegas, NV, USA, 11-12 March 2001.

Proceedings. LNCS 1990, Springer-Verlag, 2001.

[67] D. Billington (1997) Conflicting Literals and Defeasible Logic, Proceedings of

the Second Australian Workshop on Commonsense Reasoning in conjunction with the

10th Australian Joint Conference on Artificial Intelligence, 1997. 1-14.

[68] N. Li, B. N. Grosof, J. Feigenbaum: A Practically Implementable and

Tractable Delegation Logic. IEEE Symposium on Security and Privacy

2000: 27-42

[69] N. Li, J. Feigenbaum, B. N. Grosof: A Logic-based Knowledge

Representation for Authorization with Delegation. CSFW 1999: 162-174

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Billington:David.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Governatori:Guido.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Maher:Michael_J=.html
http://www.informatik.uni-trier.de/~ley/db/conf/ki/ki99.html#BillingtonAGM99
http://www.informatik.uni-trier.de/~ley/db/journals/tplp/tplp1.html#Maher01

	List of Figures
	List of Tables
	Table of Contents
	Introduction
	1.1 Ambient Intelligence
	1.2 Authorization in Ambient Intelligence
	1.3 Motivating Scenarios
	1.3.1 Ambient Intelligence Hospital Scenario
	1.3.2 Ambient Intelligence University Scenario

	1.4 Approach
	1.5 Thesis Contribution
	1.6 Thesis Organization

	Basic Concepts of the Authorization Problem
	2.1 Request-Pair
	2.2 Authorization
	2.2.1 Service
	2.2.2 Grantor
	2.2.3 Grantee

	2.3 Authorization Conflict
	2.4 Authorization Policy

	Desirable Characteristics of an Authorization Language
	3.1 Negative Authorization
	3.2 Rule Priorities
	3.3 Hierarchical Category Authorization
	3.4 Nonmonotonic Reasoning

	Related Work
	4.1 Non logic-based Authorization Approaches
	4.2 Logic-based Authorization Approaches
	4.2.1 Centralized Authorization Approaches
	4.2.2 Decentralized Authorization Approaches

	Background Information
	5.1 Defeasible Logic
	5.1.1 Proof Theory

	5.2 Multi-Context Systems
	5.3 Contextual Defeasible Logic
	5.3.1 Representation Model

	A Distributed Environment Authorization Language: DEAL
	6.1 Language Syntax
	6.1.1 Alphabet of DEAL Language
	6.1.2 Rules of DEAL Language
	6.1.3 Characteristics of DEAL Language

	6.2 Language Semantics
	6.2.1 DEAL alphabet transformation
	6.2.2 DEAL rules transformation

	6.3 Contextual Defeasible Logic Extensions
	6.4 Motivating Scenarios Implementation
	6.4.1 Implementation of AmI Hospital Authorization Scenario
	6.4.2 Implementation of AmI University Authorization Scenario

	Conclusion
	7.1 Synopsis
	7.2 Future Directions

	Appendix A
	A.1 TuProlog Reasoner
	A.2 Defeasible Logic Metaprogram
	A.3 DEAL Metaprogram

	Bibliography

