
Few-shot Deep Learning Algorithms for

Image Classification

Konstantinos Ioannis Tzevelekakis

Thesis submitted in partial fulfillment of the requirements for the

Masters’ of Science degree in Computer Science and Engineering

University of Crete
School of Sciences and Engineering
Computer Science Department

Voutes University Campus, 700 13 Heraklion, Crete, Greece

Thesis Advisor: Assistant Prof. Nikos Komodakis

This work has been performed at the University of Crete, School of Sciences and Engineering,
Computer Science Department.

The work has been supported by the Foundation for Research and Technology - Hellas
(FORTH), Institute of Applied and Computational Mathematics (IACM).

University of Crete

Computer Science Department

Few-shot Deep Learning Algorithms for Image Classification

Thesis submitted by
Konstantinos Ioannis Tzevelekakis

in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science

THESIS APPROVAL

Author:
Konstantinos Ioannis Tzevelekakis

Committee approvals:
Nikos Komodakis
Assistant Professor, Thesis Supervisor

Yannis Stylianou
Professor, Committee Member

Yannis Pantazis
Researcher, Committee Member

Departmental approval:
Polyvios Pratikakis
Assistant Professor, Director of Graduate Studies

Heraklion, March 2023

Few-shot Deep Learning Algorithms for Image

Classification

Abstract

Deep learning, a thriving field of machine learning, has witnessed an unprece-
dented revolution during the last decade. The powerful idea of hierarchical repre-
sentation learning combined with the abundance of data the digital era e↵ortlessly
provides has led to breathtaking achievements in numerous scientific fields. Nev-
ertheless, applications exist where a plethora of annotated training data is not
available due to privacy restrictions, annotation difficulties, or prohibitive costs.
Developing deep learning approaches that can be e↵ective in such low-data regime
scenarios is still a largely open problem.

In this work we consider such a low-data regime scenario for the problem of
image classification, which is fundamental problem of Computer Vision. In the
literature this is a setting also known as few-shot visual learning. In this case,
given only a very small set of annotated images representing the available categories
(e.g. even a single annotated image per category), the correct classification of an
unlabeled image set is required. A common approach, termed metric learning, is
to project both sets on a space, where samples are clustered with respect to their
categories, in order to classify them using a similarity metric.

Following the metric learning paradigm, we propose a methodology that uti-
lizes deep embedding functions to project the samples on the embedding space.
To implement these embedding functions, we combine the representation power
of vision transformers, a state-of-the art deep learning architecture, amplified by
employing pre-trained self-supervised foundation models. Undoubtedly, a few-shot
learning algorithm should harness every bit of available information from the an-
notated data to be e↵ective under this low data regime. Hence, instead of just
incorporating prior knowledge, encoded in the embedding functions parameters,
we additionally exploit the information exchange between those functions. Specif-
ically, we conduct a case study that can be summarized in two main questions; (i)
Is an exchange of information between the embedding functions beneficial for the
problem at hand? (ii) In what way this exchange of information can be established?

In an attempt to answer these questions, we propose three main methods.
These are namely ParallelVits, ParallelVits+Encoder, and BlendedVits. Paral-
lelVits method undertakes the role of a performance baseline since it restricts the
information flow between the embedding functions, whereas the rest of the meth-
ods enable information exchange by leveraging the flexibility of vision transformers
architecture. Moreover, several hyper-parameters of the employed meta-learning
framework, the neural network architectures, and the aforementioned methods
have been put under scrutiny. The evaluation of our method has led to some
interesting findings as well as to very promising experimental results, leading to
near state-of-the-art performance in the miniImageNet dataset.

AlgÏrijmoi Bajiàc Màjhshc gia thn
Kathgoriopo–hsh EikÏnwn me l–ga Parade–gmata

Per–lhyh

H Bajià Màjhsh, Ëna epituqhmËno paraklàdi thc Mhqanik†c Màjhshc, sto o-
po–o Ëqei sunteleste– mia àneu prohgoumËnou epanàstash thn teleuta–a dekaet–a. H
isqur† idËa thc màjhshc ierarqik∏n anaparastàsewn se sunduasmÏ me thn plhj∏ra
dedomËnwn, pou h yhfiak† epoq† parËqei me eukol–a, Ëqei odhg†sei se sunarpasti-
kà epite‘gmata se pollo‘c episthmoniko‘c tome–c. WstÏso, upàrqoun efarmogËc
Ïpou den e–nai diajËsima epark† epishmeiwmËna dedomËna ekpa–deushc, lÏgw twn pe-
riorism∏n thc prostas–ac thc idiwtikÏthtac, twn duskoli∏n epishme–wshc † kai tou
apagoreutiko‘ kÏstouc dhmiourg–ac † qr†shc touc.
H anàptuxh apotelesmatik∏n prosegg–sewn bajiàc màjhshc, gia tËtoia senària

mh epark∏n dedomËnwn, paramËnei Ëna anoiqtÏ prÏblhma. Sthn ergas–a aut† exe-
tàzoume Ëna tËtoio senàrio mh epark∏n dedomËnwn, gia to prÏblhma thc taxinÏmhshc
eikÏnwn, prÏblhma jemeli∏dec gia thn Upologistik† 'Orash. Sthn bibliograf–a autÏ
to prÏblhma anafËretai kai wc optik† màjhsh me l–ga parade–gmata. SugkekrimËna,
apaite–tai h swst† taxinÏmhsh mh epishmasmËnwn eikÏnwn, parËqontac elàqistec (a-
kÏma kai mÏno m–a) antiproswpeutikËc eikÏnec gia kàje kathgor–a . Mia sun†jhc
prosËggish, pou fËrei thn onomas–a metrik† màjhsh, e–nai h probol† twn eikÏnwn se
Ënan q∏ro ston opo–o oi eikÏnec diamer–zontai anàloga me thn kathgor–a sthn opo–a
an†koun me thn qr†sh kàpoiac metrik†c omoiÏthtac.
Uiojet∏ntac aut† thn prosËggish, prote–noume m–a mejodolog–a katà thn opo–a h

probol† twn eikÏnwn ston q∏ro anaparastàsewn g–netai me th qr†sh sunart†sewn
bajiàc màjhshc. SugkekrimËna, qrhsimopoio‘me thn upers‘gqronh arqitektonik†
bajiàc màjhshc twn metasqhmatist∏n Ïrashc, se sunduasmÏ me thn qr†sh pro-
ekpaideumËnwn montËlwn me autoep–bleyh. Kaj∏c oi algÏrijmoi diajËtoun elàqisto
arijmÏ paradeigmàtwn kai prokeimËnou na e–nai apotelesmatiko–, ja prËpei na axio-
poio‘n kàje diajËsimh plhrofor–a apÏ ta epishmeiwmËna dedomËna. 'Etsi, ektÏc
apÏ thn qr†sh thc plhrofor–ac pou br–sketai apojhkeumËnh stic paramËtrouc twn
sunart†sewn bajiàc màjhshc, h antallag† thc plhrofor–ac metax‘ twn –diwn twn
sunart†sewn ja mporo‘se ep–shc na axiopoihje–. Me autÏ to skeptikÏ proqwr†same
sthn diere‘nhsh d‘o kentrik∏n erwthmàtwn: (a) Mpore– sto sugkekrimËno prÏblh-
ma, h antallag† thc plhrofor–ac metax‘ twn sunart†sewn probol†c na sumbàlei
jetikà; (b) Me poio trÏpo mpore– na epiteuqje– aut† h antallag† thc plhrofor–ac;
Se mia prospàjeia na apant†soume ta erwt†mata autà, prote–noume treic me-

jÏdouc. AutËc e–nai oi ParallelVits, h ParallelVits+Encoder kai h BlendedVits. H
ParallelVits den epitrËpei thn antallag† thc plhrofor–ac metax‘ twn sunart†sewn
probol†c apotel∏ntac thn bàsh anaforàc. AntijËtwc, oi upÏloipec mËjodoi thn
epitrËpoun me diaforetik† prosËggish h kàje mia, ekmetalleuÏmenec thn euelix–a
thc uiojeto‘menhc arqitektonik†c. EpiplËon, gia tic proteinÏmenec mejÏdouc, allà
kai gia tic sunart†seic bajiàc màjhshc, Ëqei diexaqje– ektetamËnh anaz†thsh sto
ped–o tim∏n diafÏrwn upËr-paramËtrwn. H axiolÏghsh twn proteinÏmenwn mejÏdwn

od†ghse tÏso sthn anakàluyh shmantik∏n eurhmàtwn, Ïso kai se pollà uposqÏme-
na peiramatikà apotelËsmata, sugkr–sima me autà twn prwtopÏrwn mejÏdwn, sto
s‘nolo eikÏnwn tou miniImageNet.

Euqarist–ec

Arqikà, ja †jela na euqarist†sw ton epÏpth kajhght† mou ko N–ko Komontàkh
gia thn kajod†ghsh kai thn upost†rix† tou kajÏlh thn diàrkeia thc metaptuqiak†c
mou ergas–ac. Oi sumboulËc tou kai oi protàseic tou †tan kajoristikËc gia thn
diamÏrfws† thc. EpiplËon, idia–tera shmantik† †tan kai h suneisforà tou Sp‘rou
G–darh, sunergàth tou kou Komontàkh, me ton opo–o e–qame poluàrijmec suzht†seic
gia thn kate‘junsh twn peiramàtwn. TËloc, ofe–lw Ëna megàlo euqarist∏ sthn
oikogËneia mou pou me st†rixe me kàje trÏpo se Ïlh thn diàrkeia twn spoud∏n mou.

stouc gone–c mou

Contents

Contents i

List of Tables v

List of Figures vii

1 Introduction 1

2 Related Work 5

2.1 Image classification . 5
2.2 Convolutional Neural Networks . 6

2.2.1 Overview . 6
2.2.2 Structure . 6
2.2.3 Convolution operation . 6
2.2.4 Notable Properties . 7

2.3 Vision Transformers . 7
2.3.1 Overview . 7
2.3.2 Structure . 7
2.3.3 Self-Attention . 8
2.3.4 Notable Properties . 9

2.4 Foundation models and DINO . 10
2.5 Few-shot learning . 11

2.5.1 Definition of FSL . 11
2.5.2 Core issue in FSL . 12
2.5.3 Taxonomy . 13

2.5.3.1 Data . 13
2.5.3.2 Model . 13
2.5.3.3 Algorithm . 14

2.6 Meta-learning . 14
2.6.1 FSL image classification framework 14

2.7 Embedding learning for Image classification 15
2.7.1 Overview . 15
2.7.2 Description . 15
2.7.3 Related Work . 16

i

2.7.3.1 Siamese Nets . 17

2.7.3.2 Matching Nets . 17

2.7.3.3 Prototypical Nets 18

2.7.3.4 Relation Net . 19

2.7.4 Related Work based on VITs 20

2.7.4.1 Cross Transformers 20

2.7.4.2 PMF . 21

2.7.4.3 Hyperbolic Vision Transformers 22

3 Methodology 25

3.1 Overview . 25

3.2 Meta-learning framework . 25

3.3 Case Study . 26

3.4 Embedding Function . 27

3.5 Proposed Methods . 28

3.5.1 ParallelVits method . 28

3.5.2 ParallelVits+Encoder method 29

3.5.3 BlendedVits method . 31

3.6 Methods variations . 32

3.6.1 Attention Masks . 32

3.6.2 Cross Attention . 34

3.6.3 Auxiliary Losses . 35

3.6.4 Incorporation of image patches 36

3.7 Other explored factors . 37

3.7.1 Similarity Metrics . 37

3.7.2 Model’s weights state . 38

3.7.3 Optimal training parameter set 38

3.7.4 Artificially increase the number of shots 39

3.7.5 Training with more classes 39

3.7.6 Fine-tuning at meta-test time 39

3.8 Datasets . 40

3.9 Implementation details . 40

3.9.1 Network architecture . 40

3.9.2 Classification Head . 40

3.9.3 Training details . 40

3.10 Workflow . 41

4 Evaluation and Conclusions 43

4.1 Evaluation details . 43

4.2 Evaluation of the proposed methodology 44

4.2.1 Overview . 44

4.2.2 Main hyper-parameters . 44

4.2.2.1 Weights states . 44

4.2.2.2 Similarity Measures 45

ii

4.2.2.3 Baseline performance 45
4.2.3 BlendedVits . 45

4.2.3.1 Concatenation block 45
4.2.3.2 Attention mask settings 46
4.2.3.3 Cross-attention . 47
4.2.3.4 Image patches . 47

4.2.4 ParallelVits+Encoder . 49
4.2.4.1 Encoder blocks . 49
4.2.4.2 Auxiliary losses 50
4.2.4.3 Cross-attention . 50
4.2.4.4 Image patches . 51

4.2.5 Conclusions and Best settings 51
4.2.6 Other experiments . 53

4.3 Comparison with other works . 54

5 Discussion 57

5.1 Summary . 57
5.2 Future Work . 58

Bibliography 59

iii

iv

List of Tables

3.1 The explored similarity measures. 38

4.1 The e↵ect of weight states on the proposed methods. 44
4.2 The e↵ect of similarity choice on our methods. 45
4.3 The baseline performance of our methods. 45
4.4 The e↵ect of weight states on the proposed methods. 46
4.5 Attention mask settings on BlendedVits method using cat block 9. 47
4.6 Cross-attention in BlendedVits method. 47
4.7 Cross-attention coupled with mask setting 2 for BlendedVits method. 47
4.8 The image patches modality combined with BlendedVits method. . 48
4.9 The image patches modality combined with attention mask setting 4. 49
4.10 The e↵ect of pre-trained blocks selection on the ParallelVits+Encoder

method. 49
4.11 The e↵ect of auxiliary losses on the ParallelVits+Encoder method. 50
4.12 Cross-attention in ParallelVits+Encoder method. 50
4.13 The image patches modality combined with ParallelVits+Encoder

method. 51
4.14 Our best settings on MiniImageNet’s validation set. 52
4.15 The e↵ect of sampling more classes on our methods performance. . 53
4.16 The e↵ect of more samples per category (i.e. shots) on the baseline

performance of our methods. 53
4.17 Our best settings on MiniImageNet’s test set. 54
4.18 Comparison of our best settings with other related works. 55

v

vi

List of Figures

1.1 Representation learning. Taken from [20]. 2

2.1 VIT (left side) and Encoder block (right side). Taken from [76]. . . 8

2.2 Scaled dot-product attention (left side) and multi-head attention
(right side). Taken from [34]. 10

2.3 Self-distillation with no labels. Taken from [73]. 11

2.4 Self-attention from a vision transformer trained with no supervision.
Taken from [73]. 12

2.5 Task-invariant (left side) and hybrid (right side) embedding models.
Taken from [66]. 15

2.6 Siamese Nets: Training and testing procedure. Taken from [14]. . . 16

2.7 Matching Nets. Taken from [24]. 17

2.8 ProtoNets: few-shot (left side) and zero-shot (right side) settings.
Taken from [31]. 18

2.9 Relation Net. Taken from [43]. 19

2.10 Cross Transformers. Taken from [59]. 20

2.11 PMF. Taken from [85]. 21

2.12 Hyperbolic Vision Transformers. Taken from [83]. 22

3.1 An example of 2-way 3-shot tasks during training and testing phases.
For each task two classes are sampled for both sets and three sam-
ples per class for the support sets. 26

3.2 Task-invariant (left) vs Hybrid embedding learning (right). The
support and query sets are embedded with the embedding functions
g and f respectively. Then, the query sample is classified to the
category of the support sample which is closer in the embedding
space. At the right side there is a bidirectional arrow that indicates
the information flow between g and f in the hybrid paradigm. . . . 27

vii

3.3 A simplified illustration of the embedding generation using VIT.
An image is split into patches which are linearly projected using a
fully connected layer for each patch. Then a randomly initialized
representation token is added to the sequence of the linear projected
patches. Afterwards, the feature vector is refined through the ViT
blocks and finally the resulted representation token corresponds to
the image embedding. 28

3.4 ParallelVits method: an outline. The support and query sets are
embedded independently and then the similarity scores between
them are computed for the classification process to proceed. 29

3.5 ParallelVits method: an example. The representation tokens are
vectors in the embedding space. The query samples are classified to
the classes of support tokens that are closer in the embedding space. 29

3.6 ParallelVits+Encoder method: an outline. The support and query
samples are initially embedded independently by the two illustrated
ViTs. Then the resulting embeddings are processed by a trans-
former encoder that outputs the contextualized embeddings. Fi-
nally, the similarities between them are calculated. 30

3.7 ParallelVits+Encoder method: an example. From the ViTs output
the patch tokens (painted in gray) are discarded. The representation
tokens are concatenated in the token dimension and then are fed to
the transformer encoder. Finally, query samples are classified to the
categories of support tokens that are closer in the embedding space. 30

3.8 BlendedVits method: an outline. The support and query sets are
embedded independently up to a point. After that, support and
query representation tokens are jointly refined. The process pro-
ceeds with the calculation of similarity scores for the classification
of the query samples. 31

3.9 BlendedVits method: an example. Both support and query sets are
embedded independently up to a point, using the ViT architecture.
Then the support representation tokens are concatenated to each
query feature vector at the cat block of the query network. After the
concatenation each query is jointly processed with all the support
representation tokens. At the end of the process, each query sample
is classified with respect to the support representation tokens that
it was contextualized with. 32

3.10 BlendedVits method: During the concatenation phase. The support
representation tokens are denoted by s0 and s1, the query represen-
tation token by q0 and the query patch tokens by qp. The resulted
feature vector is denoted by X. 33

viii

3.11 Mask settings (1-3). This figure displays how the masked attention
map is multiplied by the vector V to compute the new feature vector
Z. The zeroes in the masked attention map are the entries that have
been masked using the corresponding setting. Note, that each row
of the masked attention map sums to one. 34

3.12 Attention connectivity for support representation tokens (i.e. s0
and s1) using mask setting 1. Each support representation token
attends all the tokens of the value vector V except other support
representation tokens. Precisely, the support representation tokens
do not attend each other. 34

3.13 Cross attention to the query patch tokens example. The self-attention
operation (denoted as SA) is applied to the feature vector X result-
ing in a feature vector Z where the query patch tokes qp are reverted
to their initial state. 35

3.14 ParallelVits+Encoder method with auxiliary losses (setting 1). The
auxiliary losses are computed over the similarity scores of support
and query representation tokens before and between the encoder
blocks (these are denoted by B0 and B1 respectively.). 36

3.15 ParallelVits+Encoder method with auxiliary losses (setting 2). The
auxiliary losses are computed over similarity scores of support and
query representation tokens that have been encoded at a di↵erent
level. 36

3.16 BlendedVits method: Incorporation of pooled patch tokens during
the concatenation phase. The support representation tokens are
denoted by s0 and s1, the support pooled patch tokens by sp0 and
sp1, the query representation token by q0 and the query patch tokens
by qp. 37

3.17 ParallelVits+Encoder method: Incorporation of pooled patch to-
kens during the concatenation phase. The support representation
tokens are denoted by s0 and s1, the support pooled patch tokens
by sp0 and sp1 and the query representation tokens by q0 and q1. . 37

3.18 The proposed workflow illustration. The meta-learning method is
denoted by M . The support and query sets that form the training
and test tasks are denoted by S and Q respectively. 42

4.1 The mask setting 4. Areas painted in gray are masked. In partic-
ular, attention connectivity is restricted in a way that interaction
involving support pooled patch tokens is only allowed between them
and query patch tokens. 48

ix

x

Chapter 1

Introduction

Deep learning (DL) is a thriving field of Machine Learning (ML) that has revolu-
tionized Artificial Intelligence (AI) over the last decade. Having survived two AI
winters and with its origins dating back at least to the invention of McCulloch-Pitts
neuron (1943) [1], it seems that is finally here to stay. Recent advances, have en-
abled applications such as ChatGPT [87], an interactive conversational agent and
DALLE-2 [88], a model capable of generating photo-realistic images from text, to
catch even AI practitioners o↵ guard, by demonstrating breathtaking capabilities.

The success story of DL can be merely attributed to a key idea, that is the
hierarchical representation learning [20]. In particular, instead of constraining
the model to discover only the mapping between a fixed representation of the
input space and a target variable, in DL the model has to discover an input space
representation as well. Extracting such high-level and abstract features from raw
data is a challenging problem. However, providing that the task can be broken
into a hierarchy of problems, DL learns high-level features by building on low-
level ones in a hierarchical manner (illustrated in figure 1.1). Interestingly enough,
automatically learnt representations are more e↵ective than manually created ones
but they come at a price; that is the necessity for large scale datasets, such as
ImageNet [8] in computer vision.

In DL field, human brain has been a significant source of inspiration. On
the one hand, it is proof by example that intelligent behavior is possible, thus
imitating its mechanisms might be a good starting point [2], and on the other
hand, it sets the scientific milestones to be pursued, since intelligent behaviour is
the end goal. An intrinsic characteristic of human brain is to learn and generalize
from few examples. Especially at an early age, humans can learn new tasks rapidly
by utilizing little to no information. To illustrate that point, given a single image
depicting an object, one is able to recognise objects of that particular category in
other unseen images. Even more interestingly, a person can also use that single
image to make an educated guess about images of unknown categories [14].

Although mainstream ML approaches have been quite successful in several
large scale source tasks, they fail to demonstrate those abilities in the limited

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Representation learning. Taken from [20].

data regime. That partly, comes from the difficulty of learning a large number
of parameters from few examples, that most likely leads to over-fitting [24]. The
need to overcome those limitations provided fertile ground for the development of
few-shot learning (FSL) which is the ML paradigm that attempts to imitate this
brain inspired behaviour.

Sufficiently large annotated training data can be hard or impossible to be
acquired due to inherent constraints of the task at hand. For example, in medical
applications, annotation costs and privacy regulations do not allow for conventional
ML to be applied e↵ectively [67]. As a result, FSL serves as a suitable candidate for
such applications. Specific examples of that kind, can be found in medical imaging
such as chest x-ray pathology detection [81], in drug discovery applications, where
making meaningful predictions is required [26], even in decoding and decoupling
the signals of the human brain [71].

Furthermore, use cases of FSL also exist in time-constrained applications,
where the extensive retraining of an ML model can be a prohibitive bottleneck.
To name a few, the imitation of human actions in robotics [28], recommendation
systems [33], visual tracking of arbitrary targets [53] and image retrieval [32] in
computer vision, are some of the many applications that exploit FSL’s advantages.

This line of work has been conducted in the context of the FSL image classi-
fication problem. In that problem, an N -way K-shot task is provided as input,
comprised of two sets of images. These are the support and query sets that con-
tain samples from the same N categories. The support set consists of K annotated
samples per class, whereas the query set consists of Q non-annotated ones. The
ultimate goal is to classify query samples into the correct categories.

3

To tackle the FSL classification problem, inspired by related works [85, 24,
31], variations of the metric-learning paradigm have been employed. This is an
approach, where the support and query sets are projected into a space, in a way
that samples are clustered with respect to their categories. Having projected both
sets on the embedding space, a similarity measure is utilized to classify them.

As an embedding function, a vision transformer (VIT) [76] is utilized, which
processes images as a sequence of image patches. Founded on the self-attention
mechanism, ViT is a flexible architecture known for its state-of-the-art results. As
an initialization of the model’s parameters, we leverage a self-supervised model that
has been pre-trained using the DINO methodology [73]. We follow that approach
for two main reasons. First, since ViT is a data-hungry architecture, employing
a pre-trained model saves a lot of training time and requires less data. Secondly,
it has been shown that especially self-supervised VITs are superior feature map
extractors [73].

In addition, we adopt a commonly used meta-learning framework, introduced
by Vinyals et. al [24]. The key idea, is for training (aka meta-train) to mimic
the test setting (aka meta-test); making the training objective consistent with the
testing one. As a result, training is comprised of few-shot tasks as well. This
approach has been found by Vinyals et. al [24] to minimise the meta-learning
algorithm’s generalization error.

The focus of the conducted experiments, is to explore whether information ex-
change between the embedding functions is beneficial for the problem at hand. In
that regard, we have proposed three main methods. These are namely ParallelVits,
ParallelVits+Encoder, and BlendedVits. More precisely, ParallelVits restricts the
information flow between the embedding functions, whereas the other proposed
methods enable it through the attention mechanism in the ViT architecture. Ad-
ditionally, we have conducted a grid search for several hyper-parameters related
to the proposed methods, the meta-learning framework, and the employed neural
network architecture.

The rest of the thesis is organized as follows. The second chapter 2, provides
some essential information regarding the problem at hand and presents related
works found in literature. In the third chapter 3, the employed methodology is
presented, discussing our proposed methods and their variations. We continue
with the fourth chapter 4, where we evaluate our methods and comment on the
acquired results. Finally, we conclude with the fifth chapter 5, where we provide
a summary of our conclusions and discuss probable future work directions.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Related Work

In this chapter, we begin by the description of the image classification problem
discussion on the di↵erent approaches that have been employed over time to pro-
vide an adequate solution. Then, we move to the presentation of some essential
neural network architectures, namely Convolutional Neural Networks and Vision
Transformers that have transformed the computer vision field. Additionally, we
describe the few-shot learning discipline; providing the related definitions and its
taxonomy. Moreover, we refer to the meta-learning perspective of few-shot learning
paradigm and we emphasize on metric-learning approach. In the end, we present
seminal related works following that approach and works in that field that employ
the notorious vision transformer architecture.

2.1 Image classification

From the perspective of ML, classification is the problem where a computer pro-
gram is asked to specify which of K categories some input belongs to [20]. More
specifically, the algorithm is required to learn a mapping function f : Rn ! {1, ..., k}
that given an input sample x should output the correct class y = f(x) or a probabil-
ity distribution over the possible categories. Image classification, is a classification
problem where the input is an image which typically contains only one object.
There is a variety of datasets for image classification, some notable are ImageNet
[8], CIFAR-10/100 [9] and MNIST [6].

Traditionally, image classification was resolved by the incorporation of com-
puter vision feature detection algorithms and conventional machine learning mod-
els. However, these methods did not generalize well and as a consequence they
could not be transferred to other domains [63]. In 2012, the introduction of
AlexNet [11], a deep convolutional neural network (CNN) [6], has revolutionized
computer vision discipline and popularized the use of deep learning [20]. CNNs
were dominating the field for almost a decade until a more recent architecture
known as vision transformers [76] has pushed the baseline even further for several
computer vision tasks, including image classification.

5

6 CHAPTER 2. RELATED WORK

Although VITs outperform CNNs in various occasions, that does not suggest
that they should be regarded as a panacea. Specifically, there are some works [70,
89, 79] that make a comparison between those architectures in terms of general-
ization and robustness. These works agree on that CNNs have greater inductive
bias that leads to better performance in a lower data regime. Nevertheless, VITs
demonstrate better generalization on out-of-distribution samples.

2.2 Convolutional Neural Networks

2.2.1 Overview

Even though CNNs are not part of the proposed methodology, a concise description
is provided here due to their major impact in the computer vision field and their
wide use in related work. As CNNs are around for more than a decade, their
structure has undergone a lot of tweaks and modifications to improve them in
several aspects. Some notable works in that direction are AlexNet [11], VGG [16],
NiN [13], Inception [18], ResNet [19], DenseNet [30], Wide Residual Nets [35] and
so on.

2.2.2 Structure

Despite, the architectural upgrades the conventional architecture of CNNs com-
prise of the following components: (i) convolutional layers, (ii) pooling layers, and
(iii) fully connected layers.

In convolutional layers (i), the input is convolved with a learnable kernel that
has smaller spatial size and is able to compute local features in an efficient way.
As we go deeper in the architecture the feature dimension of the layer increases.
Pooling layers (ii) essentially reduce the spatial dimensions of the input signal
making the representation approximately invariant to small translations of the
input. Finally, fully connected layers (iii) are located at the end of the network,
where the spatial dimensions of the input signal have been diminished and their
main role is to convert the 2D feature maps into a 1D feature vector.

2.2.3 Convolution operation

The basic element of CNNs is the convolution operation, a specialized kind of
linear operation, which in discrete time can be written as follows:

s(t) = (x ⇤ w)(t) =

1X

a=−1

x(a)w(t− a) (2.1)

In the equation 2.1, x is regarded as the input signal that is convolved with a
learnable kernel w.

2.3. VISION TRANSFORMERS 7

2.2.4 Notable Properties

According to [20, 44], the key properties which contribute to CNN architecture’s
success, are namely: (i)sparse interactions, (ii)parameter sharing and (iii)equivariant
representations.

Sparse interactions (i) essentially mean that the kernel is allowed to be smaller
than the input. Hence, local features can be learnt and at the same time, as
fewer operations are required, the algorithm is more computationally efficient.
Parameter sharing (ii) implies that the same set of parameters (i.e. the same
learnable kernel) is convolved with the input, as opposed to fully-connected layers
where for each connection a di↵erent parameter is used. Having only one kernel
for all positions of the input, substantially decreases the total parameters of the
model and leads to better generalization. In addition, equivariant representations
(iii) arise due to parameter sharing in the convolution mechanism. Equivariance in
mathematical terms means f(g(x)) = g(f(x)). In other words, f is equivariant to
g if the order of application does not change the result of the composite function.
The convolution layer has equivariance to translation. That is to say, that if the
input is translated, so does the output.

2.3 Vision Transformers

2.3.1 Overview

Transformer architectures originate from the natural language processing (NLP)
field, where transformers constitute the de facto standard [68]. The first work
to propose a transformer architecture founded on the self-attention mechanism
for machine translation, a well-researched NLP task, is due to Vaswani et. al
[34]. This work was followed by other significant advances, such as BERT [47]
and GPT [54] that demonstrated how self-supervision and transfer learning can
be leveraged e↵ectively. After the revolution that NLP discipline has witnessed,
computer vision researches have tried to incorporate transformer-like architectures
to exploit the potential of self-attention in image processing. Both standalone
and CNN-aided approaches have been attempted in that regard. However the
first pure-transformer architecture for image recognition at scale was proposed by
Dosovitskiy et. al [76], which is competitive to (or even better than) state-of-the-
art CNNs. Since then, several variations of that model [92, 86] have been proposed
to essentially tackle two main issues of the VIT architecture. These are the absence
of strong inductive biases, such as translation equivariance and locality, as opposed
to CNNs, and the necessity for more data that comes from it [92].

2.3.2 Structure

The vanilla VIT architecture [76] retains only the encoder part of the encoder-
decoder structured NLP transformer [68]. This encoder can be broken down in
encoder blocks that are connected in series. The encoder blocks encapsulate a

8 CHAPTER 2. RELATED WORK

self-attention mechanism and a feed-forward network (FFN) which are connected
residually and their inputs are normalized. To adapt NLP transformers to images,
another step has to be taken. That is, the introduction of a projection layer that
takes the input image, splits it into patches and eventually produces a sequence
of patch embeddings. Moreover, a representation token is placed along the image
embeddings that serves the purpose of image feature representation. Additionally,
in order for the spatial structure of the image to be preserved, a position embed-
ding is added to each of the tokens. Finally, a multi-layer perceptron (MLP) is
being placed at the top in order to classify the image with respect to the resulted
image representation. For illustration purposes, the general layout of the VIT
architecture and the internals of the transformer encoder’s block are displayed in
figure 2.1.

Figure 2.1: VIT (left side) and Encoder block (right side). Taken from [76].

2.3.3 Self-Attention

The fundamental element of transformers is termed self-attention. The key idea
to self-attention is to obtain a weighting scheme for the input by multiplying the
input by itself. In transformers, self-attention is parameterized with learnable
weights. These are namely, key weights WK 2 R

d⇥dk , query weights WQ 2 R
d⇥dk

and value weights W V 2 R
d⇥dv . During a forward pass, given an input sequence

X = (x1, x2, ..., xn) 2 R
n⇥d, where d is the embedding dimension, three matrices

are calculated by using the respective weights. These are K = XWK , Q = XWQ

and V = XW V . At the end, the result of the self-attention layer is computed as
follows1:

1The scaling factor
p

dk is being used for keeping the product Q ⇥ KT sufficiently small, to
avoid that resulting in extremely small gradients [34].

2.3. VISION TRANSFORMERS 9

Z = softmax(
QKT

p
dk

)

| {z }

attention map

⇥V (2.2)

As it is apparent from the equation 2.2, for a given entry in the sequence,
self-attention computes the dot-product of the query with all the keys, which is
then normalized, using the softmax function, to obtain the attention scores. These
attention scores are then participate as weights in a weighted sum of the values
to eventually yield the self-attention result for that particular sequence entry. An
illustration of the process can be seen in figure 2.2.

In practice, a variant of the aforementioned mechanism is utilized which is
called multi-head attention (displayed in figure 2.2). As the name suggests, it
breaks the feature dimension down to dv = dk = d/h, where h stands for the
number of attention heads. For each head the self-attention is computed as shown
in equation 2.2 and then the heads are concatenated and projected using a weight
matrix WO 2 R

h⇤dk⇥d as follows:

Z = Concat(head1, . . . , headh)W
O (2.3)

In addition, to restrict attention to some of the entries of the input sequence an
attention mask is being used. The attention mask is a matrix M 2 Rdk⇥dk full
of zeroes that in order to exclude a particular entry of the attention map a −1
is being placed at the corresponding position in the attention mask. Afterwards,
this mask is added as shown in equation 2.4 before softmax is applied.

Z = softmax(
QKT

p
dk

+M)

| {z }

attention map

⇥V (2.4)

2.3.4 Notable Properties

It has been shown empirically [57] that multi-head self-attention is a more generic
operation than convolution, if sufficient parameters are provided. Furthermore,
both local and global features can be computed [52], without having the strong
image-specific inductive bias of CNNs [76], which also leads to better generaliza-
tion. Moreover, filters are computed dynamically from the learnable parameters
as opposed to convolutions, making transformers more robust towards adversarial
attacks [86]. Last but not least, transformers have shown excellent scalability [76].
That can partly be attributed to multi-head attention implementation which is
optimized for parallelization [86].

10 CHAPTER 2. RELATED WORK

Figure 2.2: Scaled dot-product attention (left side) and multi-head attention (right
side). Taken from [34].

2.4 Foundation models and DINO

According to Bommasani et. al [82], a foundation model is any model that
is trained on broad data (generally using self-supervision at scale) that can be
adopted to a wide range of downstream tasks. Foundation models have two main
characteristics, namely emergence and homogenization. Emergence means that
the behaviour of the model is induced implicitly rather than explicitly introduced.
For example, GPT-3 [54] with 175 billion parameters have demonstrated capa-
bilities, such as in-context learning, without being specifically trained for it. In
addition, homogenization can be understood as the incorporation of the same set
of methodologies to tackle multiple problems. As an example, almost the same
transformer architecture is leveraged both in computer vision and NLP disciplines.
Those characteristics have made foundation models very attractive for industry,
as fine-tuning a model requires fewer resources than training it from scratch es-
pecially for data hungry models as transformers [76]. Additionally, self-supervised
pre-training, which most of these foundation models have gone through, has been
shown to result in better feature representations than those acquired by supervised
pre-training [72, 61, 62].

Every self-supervision methodology is based an a pretext task so that target
labels (aka pseudo labels) can be extracted without requiring human annotation.
In computer vision, for example, that could be the prediction of geometrical trans-
formation, such as rotation [37], the prediction of the color in an image [25] or the
prediction of a whole patch [22]. Nevertheless, the method introduced in the next
paragraph does not require any pseudo labels at all.

In this work, a more recent self-supervision methodology is being adopted,
termed as DINO [73]. DINO stands for self-distillation with no labels. As a

2.5. FEW-SHOT LEARNING 11

knowledge distillation method, it has a student and a teacher network with identi-
cal architectures (aka co-distillation). However, neither the teacher nor the student
model have undergone any pre-training prior to the method. A forward pass of a
single training step proceeds as follows. The models are provided with a di↵erent
augmentation of an image (e.g. a random crop), then the teacher’s output (i.e. a
k-dimensional feature vector) is centered using a mean computed over the batch.
Afterwards, both the outputs of the models are passed through a temperature
softmax (i.e. a softmax with a scaling factor) and finally the similarity of those
predictions is measured using the standard cross-entropy loss. The backward pass
includes only the student network, since the teacher network’s parameters are up-
dated only through an exponential moving average (EMA) of the student network’s
parameters. An illustration of the process can be seen in figure 2.3.

Figure 2.3: Self-distillation with no labels. Taken from [73].

Despite this self-supervision methodology is architecture agnostic and can be
applied with a CNN as well, the authors make the following observations. Firstly,
the feature maps of the last layer of the self-supervised VIT contain explicit in-
formation about the semantic segmentation of an image, as it is visible in figure
2.4. Secondly, these features, without any further processing, are excellent KNN
classifiers. Interestingly enough, both of these statements do not hold for either
supervised VITs or CNNs. These observations are indicative of why self-supervised
VITs are better feature extractors.

2.5 Few-shot learning

2.5.1 Definition of FSL

Inspired from the, not necessarily human, brain ability to learn through limited
examples, FSL is a well-studied field of ML and has received a lot of attention
from ML researchers. In general, it is comprised of algorithms that leverage prior
knowledge or introduce some bias to account for the weak supervision signal. To

12 CHAPTER 2. RELATED WORK

Figure 2.4: Self-attention from a vision transformer trained with no supervision.
Taken from [73].

formally state the FSL problem definition the recall of the widely accepted ML
definition [5], is deemed necessary.

Definition 1 A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P, if its performance at tasks
in T, as measured by P, improves with experience E.

To provide an example, in the chess learning problem, the task is the well-
known board game, the experience corresponds to the number of games the system
has seen, during training, and the performance measure might be the win-ratio of
the system against opponents. Based on the aforementioned definition a highly-
cited research survey [66] suggests the following one:

Definition 2 Few-shot Learning (FSL) is a type of machine learning problems
(specified by E, T , and P), where E contains only a limited number of examples
with supervised information for the target T.

2.5.2 Core issue in FSL

Unsurprisingly, the limited training examples, that serve as the system’s expe-
rience, render the empirical risk minimizer unreliable, transforming FSL into a
more demanding problem than the original one [94, 66]. To illustrate that point,
let us recall that a loss function L, in supervised learning, indicates how close a
prediction, acquired using a hypothesis h 2 H, is to ground truth (i.e. the correct
prediction) of a specified task. In particular, one can go further and calculate both
the expected and empirical risks.

R(h) =
1

N

NX

i=1

L(h(xi), yi) = E[L(h(x), y)] (2.5)

There are three hypothesis related to this reasoning. Firstly, the optimal hy-
pothesis ĥ that minimizes the expected risk, which is not constrained to the hy-
pothesis space H. Secondly, the best approximation of the ĥ in H, denoted by
h⇤, and finally, the best hypothesis in H obtained by empirical risk minimization,

2.5. FEW-SHOT LEARNING 13

denoted by hN (N corresponds to the number of training examples). Now, the
decomposition of the excess error can be written as:

E[R(hN)−R(ĥ)] = E[R(h⇤)−R(ĥ)]
| {z }

1st term

+E[R(hN)−R(h⇤)]
| {z }

2nd term

(2.6)

Although the above reasoning is simplified by assuming that the aforemen-
tioned hypothesis functions are unique and by constraining the scope of the prob-
lems to supervised only, the following conclusion can been drawn. The excess error,
in general, depends on the hypothesis space H (1st term), which is determined by
the model at hand and on the number of samples N (2nd term), in the training
set. Thus, having less samples for the empirical risk minimization makes the FSL
problem more demanding.

2.5.3 Taxonomy

FSL is a well-studied field that encompasses a variety of methods. Recent surveys
in the field, such as [66, 84, 94], have not reached to a consensus on FSL taxonomy.
As a result, the most accepted one [66], on the basis of citations count at the time
of this writing, will be adopted. The rationale behind this particular taxonomy
is that all FSL methods use prior knowledge to compensate for the limited data
regime which they are constraint to operate in. Hence, a taxonomy should be
founded on the grounds this prior knowledge is incorporated. In that regard,
authors divide these approaches into three perspectives. These are namely data,
model and algorithm. Although, an exhaustive, in-depth, exploration of those
perspectives would be very interesting, for the purpose of this thesis, only a concise
description of the main ideas is provided here.

2.5.3.1 Data

The data perspective is comprised of data augmentation methods that increase
the number of samples in the training dataset. Apart from that, the augmented
samples make the algorithm invariant to a variety of transformations, such as
translation [36, 23], flipping [40], rotation [40, 23], scaling [45, 15] and so on. The
augmentation policy is selected carefully to exploit inherent properties of the task
at hand [66]. As a consequence, these methods are not easily transferable to other
tasks without manually selecting a di↵erent set of augmentations. To alleviate
that, there is a line of work [46, 60] that proposes algorithms which can acquire
augmenting policies in an automatic way.

2.5.3.2 Model

Methods belonging to the model perspective leverage prior knowledge to constraint
the hypothesis space H, so that the search for the best hypothesis h would be
feasible with limited samples. Under this category fall multi-task learning [91, 4],

14 CHAPTER 2. RELATED WORK

embedding learning [43, 24, 31], learning with external memory [21, 12, 17] and
generative modeling [48, 41].

2.5.3.3 Algorithm

The algorithm perspective includes methods that utilize prior knowledge to search
for a parametrization ✓ of the best hypothesis h⇤ 2 H. Assuming that a conven-
tional optimization method, such as stochastic gradient descent is difficult to con-
verge when insufficient samples are supplied, these methods leverage prior knowl-
edge to provide a better parameter initialization [27, 38] or to train a meta-learner
that outputs the parameter updates [29].

2.6 Meta-learning

Almost all FSL methods pose their problem as a metal-learning problem to incor-
porate prior knowledge. The key idea in meta-learning [7], although general and
abstract, is to learn how to learn. This implies that there are two learners, an inner
one (aka learner) and an outer one (aka meta-learner). The former solves a specific
task (aka base task), such as image classification, whereas the latter interferes with
the former so that an outer objective will be met. That might be generalization
improvement or learning speed of the inner learner [84]. More formally, meta-
learning improves the progress P on a new task T by leveraging the experience
E obtained by the task and meta-knowledge extracted from other related tasks
by a meta-learner. The parameters of the meta-learner are optimized in order to
minimize the error across all learners. This broad description of meta-learning
encompasses many conventional outer algorithms such as grid hyper-parameter
search, cross-validation, early stopping, and so on.

2.6.1 FSL image classification framework

A very common meta-learning framework for FSL image classification, first in-
troduced by Vinyals et. al [24], is to make the training and testing objectives
consistent. In particular, the dataset is split into two disjoint sets of categories.
These are, the base categories (aka train categories) and the novel categories (aka
test categories). During the training phase (aka meta-train), tasks (aka episodes)
T are formed from base categories only. Specifically, each task T is composed by
a support set S (i.e. the set of labeled samples) and a query set Q (i.e. the set
of unlabeled samples). Those sets contain samples of the same categories, and
in each set the same number of samples per category is used. The meta-learner
is then trained to minimize the error predicting the labels of the query samples
conditioned on the support set S2. Since the training phase mimics the testing
phase, the only di↵erence during meta-test is that now tasks T 0 are formed from

2Only the labels of the support samples are available to meta-learner, as this would also be
the case in the test setting.

2.7. EMBEDDING LEARNING FOR IMAGE CLASSIFICATION 15

novel categories only. The described procedure is a form of meta-learning since
the training procedure explicitly learns to learn from a given support set S to
minimise a loss over a query set Q. Reasonably, as T 0 diverges from T , that is
when the domain shift increases between train and test categories, it is expected
for the performance to decrease [24].

The convention is that a FSL task is described by the number of sampled
classes (i.e. N -way) and the samples per class in the support set (i.e. K-way).
Usual settings for the aforementioned framework are the 5-way 1-shot tasks and
5-way 5-shot tasks. These settings serve as benchmarks, when they are combined
with a specific dataset, for the comparison of several FSL methods. There is a
variety of FSL image classification datasets, some notable are mini-imageNet [24,
90], CifarFS [39], tiered-imageNet [42], meta-dataset [65] and CUB [10].

2.7 Embedding learning for Image classification

2.7.1 Overview

Embedding learning (aka metric-learning) is a very common approach towards FSL
image classification; categorised under the Model perspective of FSL (explained in
2.5.3.2). Furthermore, it usually follows the meta-learning framework proposed by
Vinyals et. al [24] (described in 2.6.1). In this section, a description of embedding
learning will be provided along with its variations, namely task-invariant, task-
specific and hybrid. Furthermore, since under this paradigm falls the proposed
methodology some closely related works will be presented.

Figure 2.5: Task-invariant (left side) and hybrid (right side) embedding models.
Taken from [66].

2.7.2 Description

In order to reduce the size of the hypothesis space H, embedding learning utilizes
a function (aka embedding function) to map each sample x 2 R

d to a space Z
of a lower dimension (aka embedding space). In that space, samples of the same
category are clustered together with respect to a similarity measure s(·, ·). Due to
the use of that similarity measure, these methods are also referred to as metric-
learning based methods.

16 CHAPTER 2. RELATED WORK

More precisely, embedding learning involves two embedding functions g : Rd ! Z
and f : Rd ! Z, where g is used to embed the support samples xs and f is used
to embed the query samples xq. The classification of the query samples takes
place by comparing the similarities between embedded support samples g(xs) and
embedded query samples f(xq). The query sample will be eventually classified to
the category of the support sample that is located closer in the embedding space.

Depending on the implementation, the similarity measure s(·, ·) can be learn-
able or fixed. Moreover, the embedding functions can be either dependent or
independent. In addition, embedding learning is further classified based on the
knowledge that is being leveraged in order for the embedding functions to be
learnt. Specifically, there is task-specific, task-invariant and hybrid embedding
learning. Task-specific embedding models learn an embedding function utilizing
information only from the task at hand. On the other hand, task-invariant em-
bedding models learn an embedding function from a sufficiently large dataset,
independent to the task. Finally, hybrid embedding models are a combination
of the aforementioned paradigms, where a general embedding function is refined
by incorporating task specific information. For illustration purposes, figure 2.5
displays the task-invariant and hybrid embedding models.

2.7.3 Related Work

Some of the most influential and seminal works towards embedding learning image
classification, arranged in chronological order, are chosen to be described here.
These are namely, Siamese Nets [14], Matching Nets [24], Prototypical Nets [31]
and Relation Net [43].

Figure 2.6: Siamese Nets: Training and testing procedure. Taken from [14].

2.7. EMBEDDING LEARNING FOR IMAGE CLASSIFICATION 17

2.7.3.1 Siamese Nets

Siamese Nets were first introduced in the early 1990s [3] as a solution to the ver-
ification problem. The key characteristics of the siamese networks is that they
have identical architecture and their parameters are shared (aka tied parameters).
In addition, they accept two distinct inputs and output two distinct high-level
feature representations, along which a metric is being computed. The idea is that
two similar images would result to a high score of similarity, since the parame-
ters of the models are tied and the representations of the samples in the feature
space are expected to be close. Koch et. al [14] demonstrated that after training
Siamese Nets on the verification problem; acquiring good feature representations,
these features can generalize to the one-shot classification task. In particular, to
adapt the model to the one-shot problem’s formulation, given a query sample, they
create all the pairs between the query sample and the available support samples.
Afterwards, they feed those pairs to the Siamese Nets and they classify the query
sample to the class of the support sample participating in the most similar pair.
An illustration of the process can be seen in figure 2.6.

Figure 2.7: Matching Nets. Taken from [24].

2.7.3.2 Matching Nets

Matching Nets [24] is an impactful work in the FSL image classification field as it
introduces one of the most commonly used meta-learning frameworks (described in
2.6.1). Apart from that, its novelty resides also in the modeling level. In particular,
for a given query sample x̂ and a support set S = {(xi, yi)}ki=1, they embed both
the query sample and the support samples in S using the embedding functions f
and g respectively. Afterwards, they calculate the cosine similarity3 of the query
with all the support samples in S which they later normalize using softmax over
all similarities.

3in equation 2.7 cosine similarity is denoted as c(·).

18 CHAPTER 2. RELATED WORK

a(x̂, xi) =
ec(f(x̂),g(xi))

Pk
j=1 e

c(f(x̂),g(xj))
(2.7)

The resulting probability distribution over all possible categories of query sample
label ŷ is obtained as follows 4:

P (ŷ|x̂, S) =
kX

i=1

a(x̂, xi)yi (2.8)

Hence, in the one-shot case that would be:

P (ŷ|x̂, S) =

2

6
4

a(x̂, x0)
...

a(x̂, xk)

3

7
5 (2.9)

Whereas, when more than one sample per class is utilized, the probability for each
category will be a sum over the attention kernels a(x̂, xi) formed from samples of
that particular category5.

Figure 2.8: ProtoNets: few-shot (left side) and zero-shot (right side) settings.
Taken from [31].

2.7.3.3 Prototypical Nets

Prototypical Nets [31] take the idea of Matching Nets [24], for few-shot learning
tasks, one step further. That is done by introducing a simple inductive bias which
presumes that a single prototype exists, for each category, where embedded sam-
ples, belonging to that category, cluster around it. These prototypes are called
centroids; an example of that can be seen in figure 2.8. To capitalize on that, the
proposed classification method first embeds the support samples using an embed-
ding function (i.e. a neural network) and then computes the centroids for each
category. Afterwards, the classification proceeds by assigning the query sample to
the category of the nearest centroid.

4note that yi is a one-hot vector.
5that probability will be well defined since the softmax is computed over all similarities.

2.7. EMBEDDING LEARNING FOR IMAGE CLASSIFICATION 19

In more detail, centroids are calculated by taking the mean over the support
samples embeddings of the same class. After that, classification takes place by
computing the normalized similarity between query samples and centroids quite
similarly to the Matching Nets methodology. Consequently, for the one-shot case
where only one support sample is given for each category ProtoNets are equivalent
to MatchingNets.

An observation made by the authors regarding the similarity metric is that
euclidean distance is better suited for their problem formulation rather than cosine
distance. They presume that this can be attributed to the fact that euclidean
distance belongs to the class of Bregman divergences where cosine distance does
not. Another outcome of their work, related to the episode composition, was the
observation that when they formed training episodes by sampling more classes
compared to the test setting led to better results.

Figure 2.9: Relation Net. Taken from [43].

2.7.3.4 Relation Net

Relation Net [43] proposes an extension to the aforementioned works [24, 31] by
incorporating a learnable non-linear comparator as a replacement for the fixed
metric employed by previous works. As it is illustrated in figure 2.9, the proposed
method, provided a query sample and a support set, embeds both of them using
an embedding function, and then concatenates the embeddings in a pairwise man-
ner, so that each pair is formed by the query embedding and one of the support
embeddings. In addition, it employs a relation module (i.e. learnable non-linear
comparator), that is implemented as a deep neural network, and undertakes the
role of assigning each pair a similarity score. Then, the query sample is classified
to the category of the support sample in the pair that scored the highest similarity
value.

Authors base their approach on the conjecture that having both embedding
function and metric be learnable, provides greater flexibility to their model as

20 CHAPTER 2. RELATED WORK

opposed to previous models where the metric is fixed. They also claim that a fixed
metric is constrained on comparing embeddings in an element-wise manner and
usually relies on the assumption of linear separability of the provided features.
As a result, it is more difficult for those methods to generalize in inadequately
discriminative representations.

2.7.4 Related Work based on VITs

Vision transformers have seen limited use in FSL with respect to embedding learn-
ing for image classification, as also pointed out by [85]. Nevertheless, there are
some works that either utilize them as robust feature extractors [85, 83] or as a
manner to incorporate task-specific information by essentially exploiting the at-
tention mechanism [59]. These works are going to be described here.

Figure 2.10: Cross Transformers. Taken from [59].

2.7.4.1 Cross Transformers

Cross Transformers [59] is a closely related work that its novelty is twofold. To
begin with, the authors formulate contrastive learning; specifically the SimCLR
framework [55], in a way that is compatible with the meta-learning framework
proposed by Vinyals et. al [24] (described in 2.6.1). That is done to avoid a
problem they call supervision collapse. Moreover, they propose a novel transformer
architecture, termed as CrossTransformer, which they use on top of a CNN, capable
of harnessing the limited labeled samples during the test setting to accurately
classify the query samples.

The term supervision collapse is used to describe the phenomenon where a
classification model, during training, learn class specific patterns that are e↵ective
in order to cluster samples of the same class, minimizing other ways that samples
might relate to each other. However, the latter may be useful in out-of-distribution
tasks (i.e. di↵erent classes or di↵erent domain); thus supervision collapse impairs
the model’s ability to generalize. That problem is inherent to previous works, such

2.7. EMBEDDING LEARNING FOR IMAGE CLASSIFICATION 21

as ProtoNets [31], that are trained using a classification objective. To circumvent
this limitation, they employ contrastive learning which, as they show, result in
superior feature representations immune by design to the aforementioned problem.

As per their proposed pipeline, given a few-shot task and a query sample xq,
they provide as input the xq along with all the support samples of a class c.
The goal is to create query-aligned prototypes for each class by aligning the
query feature representation Φ(xq) with the feature representations of the support
samples Φ(xci). At first, all the samples are embedded using a CNN. The employed
CNN has its last pool layer dropped to preserve the spatial dimensions of feature
representations. Afterwards, the cross transformer architecture is applied. The
diagram in figure 2.10 illustrates how the cross-attention, from the query features
Φ(xq) to the support features Φ(xci), takes place. Specifically, it illustrates the
process for a particular spatial position p of Φ(xq). The depicted ⌦, Γ and ⇤ are
the attention weights for the calculation of the attention queries, keys and values,
respectively. After computing the query-aligned prototypes tc for each class the
classification of the query sample xq happens by aggregating euclidean distances
between aligned local features from the above prototypes and corresponding query
image values wp = ⇤Φ(xq)p. Consequently, the proposed pipeline is able to make
local part-based comparisons and to account for spatial alignment in a manner
which is more agnostic to the underlying classes.

Figure 2.11: PMF. Taken from [85].

2.7.4.2 PMF

PMF [85], which stands for Pre-train, Meta-Learn, Fine-Tune, is a recent work
which proposes a three stage simple pipeline to push the state-of-the-art even
further. The novelty of PMF lies in the combination of its components. To begin
with, PMF employs a VIT architecture [76] which is pre-trained in a self-supervised
manner using DINO [73]. As for the meta-learner, PMF utilizes the Prototypical
Nets [31] work. Consequently, the embedding function that is used in Prototypical

22 CHAPTER 2. RELATED WORK

Nets is substituted with the aforementioned pre-trained VIT. Finally, the third
stage of the pipeline is fine-tuning which will be described in more detail.

Fine-tuning procedure takes place right before meta-test time for a number
of optimization steps. In each step, support samples from novel categories are
sampled and augmented using several transformations (e.g. rotation, Gaussian
blur, color jittering, etc.). Then, the fine-tune task is for the model to classify the
augmented samples (i.e. fake query samples). The application of meta-test time
fine-tuning is beneficial when the domain shift between meta-train and meta-test is
large. To illustrate that point, the authors perform experiments where the source
dataset (i.e. meta-train dataset) di↵ers from the target dataset (i.e. meta-test
dataset).

Figure 2.12: Hyperbolic Vision Transformers. Taken from [83].

2.7.4.3 Hyperbolic Vision Transformers

Hyperbolic Vision Transformers [83] emphasize on how meta-learners can learn
highly-discriminative models so that embeddings of the same category will be
clustered together, whereas those of di↵erent category will be pushed apart. To
encourage the meta-learner to result in such models the authors propose to embed
samples in the hyperbolic space and especially to the Poincare disc [93]. Apart
from that, similarly to aforementioned works, they employ a vision transformer
[76] as the model’s underlying architecture which is pre-trained with DINO [73].
In addition, they propose a form of contrastive learning, during the meta-train
phase, using a pairwise cross-entropy loss based on hyperbolic distances.

The intuition behind hyperbolic embeddings is that hyperbolic spaces are in-
trinsically suited for hierarchical data. Moreover, hyperbolic spaces without sacri-
ficing the model’s accuracy or representational power, have the ability to use low
dimensional manifolds for embeddings. One reason is that in hyperbolic spaces the
volume of an object scales exponentially with respect to each diameter, whereas
in euclidean space scales polynomially.

The proposed pipeline is illustrated in figure 2.12. In particular, given two
samples of the same category (aka positives) they use a pre-trained VIT to extract
the feature representations of the samples which they later project using a fully

2.7. EMBEDDING LEARNING FOR IMAGE CLASSIFICATION 23

connected layer. Afterwards, they map those projected features onto the Poincare
disc. The blue stars, depicted in the figure, denote the mapped representations of
the samples that are clustered together, whereas the gray circles represent other
samples from the same batch that belong to di↵erent categories (aka negatives).
Finally, the displayed arrows indicate the pair-wise cross entropy loss.

24 CHAPTER 2. RELATED WORK

Chapter 3

Methodology

3.1 Overview

In this line of work, we tackle the FSL image classification problem. That is
accomplished by following the embedding learning (aka metric-learning) paradigm
under which an embedding function projects the samples in a well partitioned
embedding space; enabling classification with a fixed similarity measure to be
possible. To train our deep embedding functions we employ the meta-learning
framework proposed by Vinyals et. al [24], where the training setting mimics
the testing one. The main focus of this work is to understand whether and how
the information flow between the embedding functions is beneficial in solving the
problem at hand. In that regard, we have proposed three main architectures and
variations. In addition, we have explored other factors to improve the overall
performance of our methods.

This chapter is organised in the following way. We begin by explaining the
adopted meta-learning framework, then we elaborate on the case study of this work
and the underlying intuition. Afterwards we proceed by describing the employed
embedding function and its properties and we continue by presenting our main
architectures, their variations and other explored factors. Finally, we conclude
this chapter by demonstrating the overall workflow.

3.2 Meta-learning framework

The meta-learning framework proposed in the seminal work of Matching Networks
[24] has been the most common framework for few-shot learning in recent years.
As explained in 2.6.1, it is based on a simple machine learning principle: test and
train conditions must match. Specifically, the dataset is split into train and test
categories that are used in meta-train (i.e. the training phase) and meta-test (i.e.
the testing phase) respectively. Each phase is comprised of tasks (aka episodes).
A task consists of a support set (i.e. the set of annotated samples) and a query
set (i.e. the set of non-annotated samples). Each of those sets contain samples

25

26 CHAPTER 3. METHODOLOGY

of the same N randomly sampled categories. Within a set, the same number of
samples per category are randomly selected. Meanwhile, the number of samples
per category can di↵er between the support and query sets 1. Given an N -way
K-shot task, which stands for N sampled classes and K samples per class in the
support set, a meta-learner is tasked to specify the classes of the samples belonging
to the query set with respect to the samples in the support set. To further clarify
how tasks are formed we provide an illustration in figure 3.1.

Figure 3.1: An example of 2-way 3-shot tasks during training and testing phases.
For each task two classes are sampled for both sets and three samples per class for
the support sets.

3.3 Case Study

Due to the limited data regime at the testing phase, where only few examples are
provided to classify samples of unseen categories during the training phase, the
employed meta-learning algorithm should be capable of harnessing every bit of
available information. As Doersch et. al proposed with the Cross-Transformers
architecture [59], we hypothesise that information flow between the embedding
functions could transform the resulting embeddings appropriately, leading to a
better partitioning of the embedding space, where the classification process with
a fixed metric will be easier to tackle. In particular, the ideal partitioning of the
embedding space occurs when embeddings of samples belonging to the same cate-
gory are clustered together, whereas embeddings of samples of di↵erent categories
are pushed apart.

In that regard, we explore the full spectrum from task-invariant to hybrid em-
bedding learning (aka metric-learning). As described in 2.7.2, in task-invariant
embedding learning the embeddings of support and query samples are generated
independently and the information that the algorithm exploits has been encoded
in the embedding function’s parameters during the training phase. Conversely,
in hybrid embedding learning both task-invariant and task-specific information
is leveraged. More specifically, the generation process of support and query em-
beddings not only leverages the encoded information in the embedding functions’

1For example, in figure 3.1 there are four samples per category in the query set and three
samples per category in the support set.

3.4. EMBEDDING FUNCTION 27

parameters, but also information that is exchanged between them. An illustration
of the task-invariant and hybrid embedding learning can be seen in figure 3.2.

Figure 3.2: Task-invariant (left) vs Hybrid embedding learning (right). The sup-
port and query sets are embedded with the embedding functions g and f respec-
tively. Then, the query sample is classified to the category of the support sample
which is closer in the embedding space. At the right side there is a bidirectional
arrow that indicates the information flow between g and f in the hybrid paradigm.

Nevertheless, our exploration does not end there. Information flow can be
established in several ways and to multiple directions. For example, information
can flow from support to query embedding function, meaning that the projection
of query embeddings will be constraint on the provided information of the support
set. Moreover, information flow can be bidirectional. That implies that both query
and support embeddings exploit information from each other to be projected in
the embedding space. To that end we have designed three main methods and
variations of them in an attempt to cover as many scenarios as possible.

To conclude this section, our case study can be summarised in the following two
questions: (i) Does information flow between the embedding functions is beneficial
for the problem at hand? (ii) In what way this information flow can be established?

3.4 Embedding Function

In metric-learning, an embedding function is required to project the samples in
the embedding space. Here, the role of the embedding function is undertaken by
a vision transformer architecture [76] (illustrated in 2.3). More specifically, we
employ a self-supervised pre-trained VIT that has been trained with the DINO
[73] methodology (presented in 2.4), following the works of [85, 83]. The choice of
this particular architecture is mainly based on its desirable properties and state-
of-the-art results.

First of all, contrary to CNN’s hierarchical design pattern, ViT has an isotropic
architecture. Isotropic neural networks have the property that all of the weights
and intermediate features have identical dimensionality. That comes in handy
when there is a need for cross-layer parameter sharing. Another useful property,
that is inherited by the attention mechanism, is the shape independence. In other
words, at any point in the network one can introduce more tokens without the
need to re-train or adjust any other hyper-parameters of the architecture. Hence,

28 CHAPTER 3. METHODOLOGY

concatenating tokens at any point in the network becomes trivial. Furthermore,
as discussed in 2.3 and 2.4, VITs and specifically self-supervised ones are excellent
feature extractors without having the strong image-specific inductive bias of CNNs,
which leads to better generalization.

It is worth mentioning, that the resulted embedding for a particular sample
corresponds to a VIT’s representation token (referred in 2.3). To further clarify
that, we provide an illustration of the embedding generation using ViT in figure
3.3. Moreover, the information flow between the embedding functions is mainly
manifested using the transformer’s attention mechanism. That is done by exploit-
ing its flexibility and concatenating tokens along the feature vector as we are going
to describe in detail in the sections to come.

Figure 3.3: A simplified illustration of the embedding generation using VIT. An
image is split into patches which are linearly projected using a fully connected layer
for each patch. Then a randomly initialized representation token is added to the
sequence of the linear projected patches. Afterwards, the feature vector is refined
through the ViT blocks and finally the resulted representation token corresponds
to the image embedding.

3.5 Proposed Methods

3.5.1 ParallelVits method

ParallelVits is the simplest method that we employ. It is comprised of two embed-
ding functions (i.e. g and f) that project samples independently on the embedding
space. That is to say, that there is no information flow between support and query
sets during the generation of the embeddings. The samples are embedded by lever-
aging only prior knowledge encoded in the embedding function’s parameters. In
other words, this is a task-invariant method.

More concretely, given a task consisting of a support set Xs and a query set
Xq, ParallelVits embeds each sample independently (i.e. g(Xs) and f(Xq)). A
similarity metric s(·, ·) is then used to calculate the similarity scores between query
and support embeddings (i.e. s(g(Xs), f(Xq))). Finally, the support samples are
classified to the categories of the query samples that are closer in the embedding
space. To further clarify this method we provide an outline and an example in
figures 3.4 and 3.5, where ViT0 and ViT1 serve as the embedding functions g and
f respectively.

In addition, it should be noted that the ParallelVits method is very similar
to Matching Nets [24] and Prototypical Nets [31] in the one-shot case (i.e. for

3.5. PROPOSED METHODS 29

tasks where one sample per class is provided). Furthermore, in our case study,
this method undertakes the role of the performance baseline. To demonstrate that
methods exploiting task-specific information are beneficial, they have to surpass
the ParallelVits performance.

Figure 3.4: ParallelVits method: an outline. The support and query sets are em-
bedded independently and then the similarity scores between them are computed
for the classification process to proceed.

Figure 3.5: ParallelVits method: an example. The representation tokens are
vectors in the embedding space. The query samples are classified to the classes of
support tokens that are closer in the embedding space.

3.5.2 ParallelVits+Encoder method

Although ParallelVits is an e↵ective method it does not incorporate task-specific
information. To alleviate that, we incorporate a transformer encoder in the Paral-
lelVits architecture resulting in a new hybrid method that we term as ParallelVits
plus Encoder. More precisely, instead of having two embedding functions (i.e. f
and g), we introduce a third one (i.e. h) that is applied on top of the other two
and enables the unrestricted flow of information in all directions. Consequently,
the generation of embeddings leverage prior information encoded in the trained
parameters of the embedding functions and additionally exploit information be-
tween and within the support and query sets. An illustration of the outline of the
method is provided in figure 3.6.

Given a task consisting of a support set Xs and a query set Xq, the method
begins by embedding each sample independently (i.e. g(Xs) and f(Xq)) as in

30 CHAPTER 3. METHODOLOGY

Figure 3.6: ParallelVits+Encoder method: an outline. The support and query
samples are initially embedded independently by the two illustrated ViTs. Then
the resulting embeddings are processed by a transformer encoder that outputs the
contextualized embeddings. Finally, the similarities between them are calculated.

the ParallelVits method. Additionally, the generated embeddings are concate-
nated and then provided to a subsequent embedding function to be jointly refined
(i.e. h(c(g(Xs), f(Xq))), where c(·, ·) is the concatenation operation.). Finally, the
similarity scores are calculated between the contextualized support and query em-
beddings in order for the classification process of the query samples to proceed. An
example that illustrates how the concatenation process takes place can be found
in 3.7.

Figure 3.7: ParallelVits+Encoder method: an example. From the ViTs output
the patch tokens (painted in gray) are discarded. The representation tokens are
concatenated in the token dimension and then are fed to the transformer encoder.
Finally, query samples are classified to the categories of support tokens that are
closer in the embedding space.

From the implementation’s perspective, the additional embedding function h,
that we call transformer encoder, is comprised of transformer encoder blocks (de-
scribed in 2.3) which are being initialized using the employed pre-trained VIT.
The actual number of those encoder blocks has been chosen empirically. Further-
more, this transformer encoder is position agnostic as positional tokens have not
been added. In other words, it process the representation tokens as a set. Finally,
another detail regarding the encoder is that a randomly initialized representation
token is not supplied as it happens with ViT, since the goal is to refine the provided
ones.

3.5. PROPOSED METHODS 31

3.5.3 BlendedVits method

ParallelVits plus Encoder method allows information to be exchanged between
representation tokens through a transformer encoder after they have been sepa-
rately encoded by the employed ViT architectures. Nevertheless, since di↵erent
kind of features are built along a multi-layer neural network, from low-level ones
such as edges to high-level ones like object parts, there could be some merit to
earlier information exchange. That is precisely the rationale behind BlendedVits
method. More specifically, BlendedVits method consists of two ViTs, similarly
to the ParallelVits method. However, it allows query and support representation
tokens, after a specified query network’s block, to be jointly encoded. Hence, this
method (outlined in figure 3.8) is categorised as a hybrid one since it incorporates
both task specific and task invariant information to project the samples on the
embedding space.

Figure 3.8: BlendedVits method: an outline. The support and query sets are em-
bedded independently up to a point. After that, support and query representation
tokens are jointly refined. The process proceeds with the calculation of similarity
scores for the classification of the query samples.

More concretely, given a task consisting of a support set Xs and a query set
Xq, BlendedVits embeds each of them independently up to a point. The support
set is encoded through a specified number of layers of the support network and
then is concatenated to each query feature vector at a specified query network’s
block (we call it the cat block). In that manner, after the cat block, each query
will be processed along with all the support representation tokens corresponding
to the support set. Finally, the contextualized queries are classified with respect
to the support tokens that have been contextualised with. An illustration of that
process can be seen in figure 3.9.

It is worth mentioning that both the concatenation block in query network
(i.e. cat block) and the support network’s block, from which support representa-
tion tokens are originated, are hyper-parameters of the method. In the provided
illustration the support representation tokens of the last support network’s layer
are used. However, experiments have been conducted where support representa-
tion tokens of previous blocks have been incorporated as well.

32 CHAPTER 3. METHODOLOGY

Figure 3.9: BlendedVits method: an example. Both support and query sets are
embedded independently up to a point, using the ViT architecture. Then the
support representation tokens are concatenated to each query feature vector at
the cat block of the query network. After the concatenation each query is jointly
processed with all the support representation tokens. At the end of the process,
each query sample is classified with respect to the support representation tokens
that it was contextualized with.

3.6 Methods variations

3.6.1 Attention Masks

Information flow between support and query sets can be achieved through both
ParallelVits+Encoder and BlendedVits methods. However, to enable a fine-grained
control over the information exchange between tokens and restrict any undesirable
attention connectivity we incorporate the modality of attention masks. The ra-
tionale is that information propagation between some of the support and query
tokens might be harmful to the performance of the methods. In that regard, we
have explored several masking settings in search of the most beneficial attention
connectivity.

To present these settings we should first briefly revisit the inner workings of the
attention mechanism discussed in 2.3.3. The attention mechanism takes as input
a feature vector X and linearly projects it, using three di↵erent learnable weight
matrices, generating three versions of itself, namely Query Q, Key K and Value
V . Then the multiplication of QKT takes place to provide a weighting scheme
for the Values vector V . That weighting scheme, when is normalized, using the
softmax function, is called the attention map. Our attention mask M is added
directly to the QKT product before softmax operation takes place. The equation
3.1 shows how the new feature vector Z is calculated by applying the masked
attention mechanism.2

2The scaling factor
p

dk is being used for keeping the product Q ⇥ KT sufficiently small, to
avoid that resulting in extremely small gradients [34].

3.6. METHODS VARIATIONS 33

Z = softmax(
QKT

p
dk

+M)

| {z }

attention map

⇥V (3.1)

The mask M is a two dimensional array that consists of two elements, these are
{0,−1}. Since the mask is added to the product QKT the elements that are
added with 0 will not change and elements added with −1 will get infinitely
small. Thus, when the softmax operation is applied3 the weights corresponding to
the infinitely small elements will be zero and hence the corresponding elements of
the Value vector V will be masked.

The masking settings are applied to the BlendedVits method after the concate-
nation of the support representation tokens to the query feature vector. Conse-
quently, a query feature vector will consist of the support representation tokens,
the query representation token and the query patch tokens. To present our mask
settings we consider a 2-way 1-shot task illustrated in 3.10.

Figure 3.10: BlendedVits method: During the concatenation phase. The support
representation tokens are denoted by s0 and s1, the query representation token by
q0 and the query patch tokens by qp. The resulted feature vector is denoted by X.

After the concatenation, the subsequent attention block will process the feature
vector X using the the masked attention operation (equation 3.1). It will first
compute the product QKT , add the mask M and apply the softmax operation.
Then the new feature vector Z will be calculated using the masked attention map
and the Value vector V . For our three proposed mask settings an illustration of
that step is depicted in figure 3.11.

The first attention mask setting (i.e. setting 1) is designed to restrict attention
for support representation tokens only to themselves. Consequently, by applying
this mask, a support representation token cannot attend to other tokens in the
feature vector. The second attention mask setting (i.e. setting 2) that was ex-
plored is a super-set of the aforementioned mask setting. Not only it restricts the
attention between support representation tokens, but also does not allow the query
representation token to attend support representation tokens and vice versa. Last

3softmax is applied in a row-wise manner, thus every row will sum to one.

34 CHAPTER 3. METHODOLOGY

Figure 3.11: Mask settings (1-3). This figure displays how the masked attention
map is multiplied by the vector V to compute the new feature vector Z. The
zeroes in the masked attention map are the entries that have been masked using
the corresponding setting. Note, that each row of the masked attention map sums
to one.

but not least, the third attention mask setting (i.e. setting 3) is a super-set of the
above mask settings and additionally does not allow query patch tokens to attend
the support representation tokens.

To clarify further our mask settings we demonstrate the attention connectivity
of the support representation tokens (i.e. s0 and s1) for mask setting 1 in figure
3.12.

Figure 3.12: Attention connectivity for support representation tokens (i.e. s0 and
s1) using mask setting 1. Each support representation token attends all the tokens
of the value vector V except other support representation tokens. Precisely, the
support representation tokens do not attend each other.

3.6.2 Cross Attention

Cross-attention (aka encoder-decoder attention) is a type of attention that is found
in the conventional NLP transformer [34]. This attention type has the character-
istic of not modifying its target (i.e. the tokens that it attends to). In other words
it provides a way to facilitate one-way information flow between the support and
query sets.

We have experimented with cross-attention both in the BlendedVits and Paral-
lelVits+Encoder methods. Specifically, in the BlendedVits method we have applied
cross-attention from query patch tokens to support representation tokens and vice

3.6. METHODS VARIATIONS 35

versa. Furthermore, in ParallelVits+Encoder cross-attention has been applied be-
tween support and query representation tokens in both directions as well.

Implementation wise, cross-attention can be simulated by performing the self-
attention operation and then by reverting the attended tokens in the new feature
vector to the previous state (i.e. before self-attention operation takes place.).
Schematically, that can be seen in figure 3.13.

Figure 3.13: Cross attention to the query patch tokens example. The self-attention
operation (denoted as SA) is applied to the feature vector X resulting in a feature
vector Z where the query patch tokes qp are reverted to their initial state.

3.6.3 Auxiliary Losses

Auxiliary losses is an additional modality that we apply in combination with the
ParallelVits+Encoder method in an attempt to enhance the supervision signal. In
that regard, we employ two di↵erent approaches. Both of them compute additional
losses that eventually are aggregated by summation in a cumulative loss. This loss
is then utilized to update the weights of the model.

The first approach (i.e. setting 1) computes similarities at di↵erent points
in the network. Specifically, in addition to the default loss, it computes losses
before and between the encoder blocks of the extra transformer encoder. On the
other hand, the second approach (i.e. setting 2)calculates similarities between
representation tokens that have been processed from the transformer encoder (we
call them contextualized) and representation tokens that have not (we call them
initial). In particular, the auxiliary losses are computed over the following pairs
of representation tokens: (i) initial support with contextualized query tokens and
(ii) initial query with contextualized support tokens. Both of the aforementioned
methods are illustrated in figures 3.14 and 3.15 respectively.

An issue that arises by employing this modality, is that we end up having three
di↵erent similarity score matrices (i.e. one for each loss), from which we should
pick one to return as the model’s prediction. In that regard, we have explored
either returning one those matrices or aggregating those three by mean or max
reduction.

36 CHAPTER 3. METHODOLOGY

Figure 3.14: ParallelVits+Encoder method with auxiliary losses (setting 1). The
auxiliary losses are computed over the similarity scores of support and query rep-
resentation tokens before and between the encoder blocks (these are denoted by
B0 and B1 respectively.).

Figure 3.15: ParallelVits+Encoder method with auxiliary losses (setting 2). The
auxiliary losses are computed over similarity scores of support and query repre-
sentation tokens that have been encoded at a di↵erent level.

3.6.4 Incorporation of image patches

Broadly speaking, ViT architecture utilizes a randomly initialized token (i.e. rep-
resentation token) that its sole purpose is to be refined through the attention
blocks along with patch tokens and to eventually encapsulate information needed
to minimize the objective’s loss (described in 2.3). In that regard, in both Blend-
edVits and ParallelVits+Encoder methods, we concatenate representation tokens
to enable information exchange. However, that approach has the following short-
comings. First, by concatenating only representation tokens we might lose some
information of patch tokens that has not being encoded yet. Secondly, the interac-
tion of patch tokens with foreign representation tokens (i.e. representation tokens
of the other feature vectors) might be beneficial. To explore those intuitions, we
have implemented the modality of incorporating image patches.

In particular, for the BlendedVits method instead of concatenating only the
support representation tokens to the query network, the support patch tokens of
the support set are concatenated as well. Due to the fact that the complexity of
attention mechanism is quadratic with respect to the number of participating to-
kens, this is done by applying an average pooling operation over the support patch
tokens before the concatenation takes place. Consequently, the concatenation in
the BlendedVits method proceeds as can be seen in figure 3.16. Moreover, In the
ParallelVits+Encoder method, pooled support or query image patch tokens are
incorporated in a similar manner (illustrated in figure 3.17) and interact with all
support and query representation tokens.

3.7. OTHER EXPLORED FACTORS 37

Figure 3.16: BlendedVits method: Incorporation of pooled patch tokens during
the concatenation phase. The support representation tokens are denoted by s0
and s1, the support pooled patch tokens by sp0 and sp1, the query representation
token by q0 and the query patch tokens by qp.

Figure 3.17: ParallelVits+Encoder method: Incorporation of pooled patch tokens
during the concatenation phase. The support representation tokens are denoted
by s0 and s1, the support pooled patch tokens by sp0 and sp1 and the query
representation tokens by q0 and q1.

3.7 Other explored factors

In addition to our case study we have also explored other techniques to increase
the overall performance of the proposed methods. Some of these techniques are
described here.

3.7.1 Similarity Metrics

Since metric-learning needs a metric to compute the distance between the ac-
quired embeddings we have experimented with three di↵erent similarity metrics
to evaluate their performance and choose the best performing one. In particular,
we have explored cosine similarity, dot product similarity and euclidean similar-
ity. Each of those measures has each own interpretation. Euclidean similarity
measures the negative distance between the ends of the vectors, Cosine similarity
measures the cosine of the angle ✓ between the embeddings and finally the Dot
product similarity is similar to cosine similarity but takes into consideration the

38 CHAPTER 3. METHODOLOGY

length of the vectors as well. For clarification purposes, we provide the formulas

for these similarity measures given two embedding vectors a =
⇥

a1 a2 . . . an
⇤T

and b =
⇥

b1 b2 . . . bn
⇤T

in table 3.1.

Similarity Formula

Euclidean −

p

(a1 − b1)2 + (a2 − b2)2 + . . .+ (an − bn)2

Cosine aT b
|a||b|

Dot Product a1b1 + a2b2 + . . .+ anbn = |a||b|cos(✓)

Table 3.1: The explored similarity measures.

3.7.2 Model’s weights state

Inspired from the impactful work of Siamese Nets [14] we have explored three states
for the parameters of the employed VITs that undertake the role of embedding
functions. Specifically, we have explored three settings, these are namely shared
weights, independent weights and frozen support network’s weights. In the shared
weights state, the two embedding functions are sharing their parameters or in
other words they are identical (i.e. f ⌘ g). In the second setting, where the
weights are independent, the embedding functions are allowed to be di↵erent (i.e.
f 6= g). Finally, the third setting, where the parameters of the support network
are frozen, the embedding functions di↵er as well. However, in that setting the
support network is constrained to preserve its initial weights state, that is the state
of the employed pre-trained VIT.

3.7.3 Optimal training parameter set

A group of experiments has been dedicated to explore whether training only a
subset of the network’s parameters has any positive e↵ect on the acquired perfor-
mance of the methods (i.e. the classification accuracy). This experiment group
was inspired by the observation that when the support and query networks share
their parameters the classification accuracy increases. More specifically, our inten-
tions were to explore whether the observed increase in the performance was due
to the smaller number of parameters that were trained. Some of the explored set-
tings, under this experiment group, were to train all the parameters of the model
not related to the attention mechanism, to train all the parameters of the model
instead of those in the FFN located in the transformer blocks, to train only those
parameters in the self-attention mechanism and to train only those parameters
included in the normalization layers of the transformer blocks.

3.7. OTHER EXPLORED FACTORS 39

3.7.4 Artificially increase the number of shots

An FSL task is specified by the number of sampled classes and the number of
samples per class (aka shots). As the number of shots increases the task becomes
more trivial and consequently the performance of the method increases as well.
Thus, an idea is to artificially increase the number of shots of a task. For example,
for a one-shot task it would be ideal if we could use an algorithm to generate more
samples based on the provided samples. In that regard, we have employed two
approaches. Firstly, we attempted to increase the number of shots by augmenting
the given samples. In particular, we have used a set of augmentations. These are
random crop followed by a horizontal flip, colour jittering followed by colour drop-
ping and Gaussian blur4. By applying those augmentations to the given samples
we artificially increased the number of shots. As a second approach, instead of
augmenting the provided samples, we utilized support representation tokens from
previous layers of the support network. More precisely, in the similarities calcula-
tion we also included the support representation tokens of the last k layers of the
support network. In both of the aforementioned approaches, the extra support
representation tokens are handled similarly to more than one shot case (described
in 3.9.2).

3.7.5 Training with more classes

Some works, such as [75] suggest that meta-learning is mostly e↵ective over whole-
classification training when novel classes are similar to base classes. Specifically, by
sampling more categories during the meta-train phase they imply that the learnt
feature representations demonstrate better class transferability. In that regard, we
performed a group of experiments where during the training phase more classes
were sampled. For example in a five-way one-shot task, during training, 10 classes
where sampled instead of five.

3.7.6 Fine-tuning at meta-test time

As Vinyals et. al [24] and Hu et. al [85] have pointed out, fine tuning can be
beneficial for FSL algorithms. Specifically, fine-tuning during the meta-test phase
can significantly increase the performance especially when out-of-distribution data
are included in the test set. For that reason, we have employed fine-tuning at
meta-test time. This modality is implemented by augmenting support samples
from the test set using an augmentation policy similar to 3.7.4. The augmented
samples undertake the role of the query samples to perform a few optimization
steps and then the classification of the actual query samples takes place.

4This augmentation policy was adopted by the SimCLR paper [55].

40 CHAPTER 3. METHODOLOGY

3.8 Datasets

Throughout this work most of the experiments have been conducted on the mini-
ImageNet dataset. This dataset has been put together by Vinyals et. al [24] and
contains 60K images of 100 categories. Thus, there are 600 images per category
with spatial dimensions of 84x84. Ravi et. al [90] have proposed a category split of
this dataset that is adopted by a lot of works and is used to benchmark FSL algo-
rithms. In particular, they split the data to 64, 16, and 20 categories for training,
validation and testing, respectively. Furthermore, we have also conducted some
experiments on the CIFAR100 [9] dataset. This dataset contains 100 categories
with each of them containing 600 images as well. We have manually split this
dataset into a 80 categories for training and 20 categories for testing.

3.9 Implementation details

3.9.1 Network architecture

The employed network architecture for this work is a ViT-S/16 with 21M param-
eters. Hence, it is comprised of 12 blocks, each multi-head attention module has
6 heads and the feature dimension is 384. Additionally, the expected image size is
224x224 and the patch size is 16. For images of smaller size a scale up operation
takes place, using bi-linear interpolation. It is worth mentioning, that we drop the
MLP network that is placed at the top of the VIT architecture and plays the role of
the classifier. That is because we are interested only for the feature representation
vectors.

3.9.2 Classification Head

The classification is done by employing a fixed measure of similarity (e.g. cosine
similarity). There are two cases which need to be addressed for the classifica-
tion of query samples, with respect to the support set. Firstly, in the one-shot
setting, where one sample per class is provided, the query sample is classified in
the category of the nearest support sample in the embedding space, similarly to
both Matching Nets and Prototypical Nets [31]. Secondly, when more than one
sample per category is provided, the similarities between all support-query pairs
are computed and then aggregated per category (e.g. by taking the maximum
similarity score). The resulted representative similarity scores per category are
used to classify the query sample.

3.9.3 Training details

Each method is comprised of two ViT architectures. As described above, we
incorporate three weight states (i.e. shared weights, frozen support weights and
independent weights). In either case, the computational graph includes both of
the architectures and each method is trained in an end-to-end fashion. The most

3.10. WORKFLOW 41

important hyper-parameter for training neural networks is the learning rate [20]. A
learning rate has been chosen by conducting a coarse grid search for our methods.
From the learning rate’s (lr) domain {10−3, 10−4, 10−5, 10−6, 10−7, 10−8} we have
found that lr = 10−6 is the most suitable having a batch size5 (i.e. number
of tasks processed in parallel) equal to one. Greater learning rates resulted in
degrading model’s performance, probably because they harm the already learnt
representations of the pre-trained model. With smaller learning rates we observed
that after the first few episodes the performance of the model was not increasing.
A possible explanation could be that the optimization procedure is trapped in
some local minima.

As per the optimizer, we utilize the AdamW optimizer [51] which is one of
the state-of-the-art optimizers for training neural networks, coupled with a co-
sine scheduler to achieve faster convergence. In addition, we have found that 16K
episodes were enough to achieve convergence given that the best validation per-
formance is recorded before reaching the maximum number of episodes, having
a minimum margin of 960 episodes and a median margin of 5600 episodes. The
resulted model checkpoint which we use for evaluation is that with the higher
validation accuracy.

In addition, the classification loss which is utilized is the standard cross-entropy
loss preceded by a softmax operation. In particular, the similarities calculated
between a query and the support embeddings are passed through the softmax to
be converted to probabilities and then the cross-entropy loss is computed.

3.10 Workflow

The proposed workflow consists of three phases. These are namely, pre-train phase,
meta-train phase and meta-test phase. In pre-train phase the feature backbone,
that is used as an initialization for the employed embedding functions, is pre-
trained using the DINO methodology described in 2.4 on external data. In the
meta-train phase one of the proposed meta-learning methods is being trained using
the meta-learning framework, explained in 2.6.1, on the training categories of the
given dataset. Finally, the meta-trained method is evaluated on the test categories
of the dataset. To put all of our framework’s components together schematically,
we provide a diagram (3.18) that illustrates the general workflow.

5We use batch size = 1 throughout this work.

42 CHAPTER 3. METHODOLOGY

Figure 3.18: The proposed workflow illustration. The meta-learning method is
denoted by M . The support and query sets that form the training and test tasks
are denoted by S and Q respectively.

Chapter 4

Evaluation and Conclusions

In this chapter, we present the results of the conducted experiments, discuss our
conclusions and compare our best-performing methods with related works in the
literature. Specifically, in the first section we elaborate on the evaluation details.
In the second section, we demonstrate how several architectural choices impact the
classification performance, summing up with our conclusions and the presentation
of the best settings. Finally, we conclude the chapter by comparing our best
settings with other works.

4.1 Evaluation details

Throughout the evaluation process, we use a single evaluation metric. In particu-
lar, we utilize classification accuracy defined as the ratio of correct classifications
made over the total classifications attempted. Although a single evaluation met-
ric might not witness the full story, comparisons between several settings become
straightforward.

During the evaluation procedure, we randomly sample two thousand episodes
of the specified task format (e.g. 5way-1shot task) averaging the classification ac-
curacy over them. In addition, during model selection, we evaluate the experiment
settings on the validation set. Having concluded to our best models, we addition-
ally evaluate them on the test set to compare them with other works. Specifically
for the test set evaluation we run each evaluation five times and report the average
performance to further minimize the variation in the acquired results.

It is worth mentioning, that the majority of the performed experiments have
been conducted under the 5way-1shot setting, a usual benchmark for FSL algo-
rithms, and thus enabling the comparison of our proposed methodology with other
works. Nevertheless, we perform some experiments for 5way-5shot tasks to assert
the normal behavior of our methods (i.e. as shots increase the task becomes easier,
and the methods’ performance increases.)

43

44 CHAPTER 4. EVALUATION AND CONCLUSIONS

4.2 Evaluation of the proposed methodology

4.2.1 Overview

This section begins by presenting the selection of two main hyper-parameters that
we adapt throughout the evaluation. These are the employed similarity metric,
which is used to classify the query samples using the corresponding embedding
vectors, and the weight states (e.g. shared parameters) of the ViT models that
undertake the role of the embedding functions. The performance of our methods,
under those hyper-parameters, is regarded as a baseline performance, which is used
to evaluate the benefits of the explored modalities. We continue by presenting sepa-
rately how our method variations a↵ect the BlendedVits and ParallelVits+Encoder
methods baseline performance. In addition, we present our best settings and we
conclude by demonstrating experiments conducted to assert the normal behaviour
of our methods and other attempts to increase their performance.

4.2.2 Main hyper-parameters

4.2.2.1 Weights states

As described in 3.7.2, we have explored three settings for the parameters of the
embedding functions (i.e. ViT models). These are namely shared weights, in-
dependent weights and frozen support network’s weights. The e↵ect that these
settings exert, on the performance of our methods, can be seen in table 4.1.

Shared weights seem to demonstrate the best performance across all the meth-
ods, meanwhile independent weights follow with a narrow margin. Finally, frozen
support weights obtain the worst performance. Interestingly enough, although in-
dependent weights result in greater model’s capacity and flexibility, we do not ob-
serve over-fitting. We attribute that fact to the adopted meta-learning framework.
In addition, frozen support weights performance indicates that it is necessary for
the support network parameters to be updated and that the flexibility provided by
only the trainable query network is not sufficient. Since shared weights achieve the
best performance for all our methods, in the experiments to come, we use them
by default unless stated otherwise.

Weights BlendedVits1 ParallelVits ParallelVits+Enc

Frozen support 88.19% 89.34% 88.69%

Independent 91.24% 91.26% 90.69%

Shared 91.43% 92.25% 91.99%

Table 4.1: The e↵ect of weight states on the proposed methods.

1The initial version of BlendedVits concatenates the support representation tokens to the first
block (cat block = 0).

4.2. EVALUATION OF THE PROPOSED METHODOLOGY 45

4.2.2.2 Similarity Measures

Similarity measures have been utilized to calculate similarity scores between the
embedding vectors and eventually classify the query samples, as described in 3.7.1.
Specifically, Cosine, Dot product and Euclidean similarities have been explored for
all our methods. The e↵ect of those similarity measures is illustrated in table (4.2).

Apparently, Euclidean similarity is the clear winner across all methods, mean-
while, Dot product similarity and Cosine similarity follow. For the BlendedVits
method, Dot product obtains better results than Cosine similarity. However, for
the ParallelVits and ParallelVits+Enc methods, Cosine similarity performs bet-
ter. It is worth noting that in related works [85, 31, 24] there is no consensus
on the choice of similarity measure. However, the choice is vital and is usually
selected empirically. Throughout this work, we adapt Euclidean similarity as the
default similarity measure.

Similarity BlendedVits ParallelVits ParallelVits+Enc

Cosine 88.74% 89.93% 90.65%

Dot Product 90.29% 89.43% 90.51%

Euclidean 91.43% 92.25% 91.99%

Table 4.2: The e↵ect of similarity choice on our methods.

4.2.2.3 Baseline performance

To demonstrate the impact of the employed modalities (described in 3.6) the initial
methods performance (i.e. baseline performance) should be presented first. In that
way, it is feasible to conclude whether the applied modifications a↵ect positively
or negatively the performance of the method at hand. The following table 4.3
summarises the baseline performance for the proposed methods.

BlendedVits ParallelVits ParallelVits+Enc

91.43% 92.25% 91.99%

Table 4.3: The baseline performance of our methods.

4.2.3 BlendedVits

4.2.3.1 Concatenation block

In BlendedVits method we have experimented with the cat block hyper-parameter
as mentioned in 3.5.3. That is the block where the support representation tokens,
of the last layer of the support network, are concatenated in the query network.
In the initial version of BlendedVits method cat block was set to the first block
of ViT network. In those experiments we perform a grid search for the cat block

46 CHAPTER 4. EVALUATION AND CONCLUSIONS

hyper-parameter for each weight state to see if a better choice for the cat block can
be made. We therefore present the best performance and the corresponding cat
block in table 4.4. From the results, we observe that for each weight state the best
performance is achieved with a di↵erent choice of cat block. Another conclusion,
is that there is a general tendency for cat blocks deeper in the query network to
result in better performance. That is expected since features learnt by the last
layers of the network are more similar to those extracted from the last layer of the
support network.

Additionally, we have conducted experiments where instead of concatenating
the last version of support representation tokens we concatenate the support rep-
resentation tokens of the respective layer. That was done under the assumption
that respective blocks output similar features. However, the results of those exper-
iments did not show any improvement probably because of the fewer transformer
blocks, that were available, for support representation tokens to be embedded
properly.

Weights Best performance cat block2

Shared 91.78% 9

Independent 91.24% 11

Frozen support 88.30% 11

Table 4.4: The e↵ect of weight states on the proposed methods.

4.2.3.2 Attention mask settings

One of our most e↵ective modalities is the use of attention masks, described in
3.6.1. This modality applies to the BlendedVits method and consists of three main
settings. The first setting (i.e. setting 1) restricts support representation tokens
from attending each other. The second setting (i.e. setting 2) is a super-set of
the first, meanwhile it restricts attention between support representation tokens
and the query representation token. Finally, the third setting (i.e. setting 3) is
also a super-set of the aforementioned settings but does not allow query patch
tokens to attend support representation tokens. The e↵ect of those settings on the
baseline performance of the BlendedVits method can be seen in table 4.5. The
results show that setting 2 is the most beneficial. Setting 3 follows and setting 1
does not positively a↵ect the performance of the model. The main conclusion is
that when support representation tokens attend the query representation token,
a decrease is observed in method’s performance. Additionally, since setting 3 has
worse performance than setting 2, we claim that the attention of query patch
tokens to support representation tokens is beneficial.

2The provided numbers correspond to block indexes in [0,11].
3Relative to BlendedVits with cat block 9.

4.2. EVALUATION OF THE PROPOSED METHODOLOGY 47

Settings Accuracy Relative increase3

setting 1 91.73% -0.05

setting 3 92.13% +0.35

setting 2 92.31% +0.53

Table 4.5: Attention mask settings on BlendedVits method using cat block 9.

4.2.3.3 Cross-attention

Cross-attention falls under the attention connectivity experiments and is exten-
sively described in 3.6.2. The main purpose of cross-attention is to modify the
processed feature vector without changing the attention target. In other words,
it uses the attention target as a constraint on the other tokens. Cross-attention
has been performed in two directions. These are support representation tokens
attending to query patch tokens and vice versa. We demonstrate the results of
those experiments in table 4.6. At first glance, cross-attention modality seems to
not positively a↵ect the performance of the method. However, given the promising
results of the attention masking we conducted experiments where those modali-
ties are combined. Specifically, in table 4.7, we utilize the second attention mask
along with the cross-attention modality. In that manner, query representation to-
ken does not attend support representation tokens. The results indicate, that the
combination of those modalities increase the baseline performance when support
representation tokens undertake the role of the attention target.

Target Accuracy Relative increase4

support repr. 91.72% -0.06

query patches 88.25% -3.53

Table 4.6: Cross-attention in BlendedVits method.

Target Accuracy Relative increase

support repr. 92.24% +0.46

query patches 91.47% -0.31

Table 4.7: Cross-attention coupled with mask setting 2 for BlendedVits method.

4.2.3.4 Image patches

The incorporation of image patches is another modality that we apply to Blend-
edVits method as described in 3.6.4. In this method we additionally include the
support pooled patch tokens when support representation tokens are concatenated

4Relative to the performance of the method without cross-attention.

48 CHAPTER 4. EVALUATION AND CONCLUSIONS

to the query feature vector. In particular, we have experimented with several sizes
of pooled patch tokens, these are 4, 8 and 16. The results of this modality are
presented in table 4.8.

As it is clear from the presented results, BlendedVits method does not seem to
benefit from this modality. Moreover, a more significant decrease in performance,
can be observed, as the size of pooled patch tokens increases. We attribute the
negative e↵ect of this modality to the attention connectivity between pooled patch
tokens and representation tokens.

In that regard, we have designed a generalization of mask setting 2, depicted in
4.1, that restricts the attention connectivity from the support pooled patch tokens
to both representation token types (i.e. setting 4). The results of this combination
of modalities can be observed in the table 4.9. The combination of those modalities
seems to positively a↵ect the performance of BlendedVits method. Nevertheless,
we still observe that an increase in the size of pooled patch tokens results in worse
performance.

Size Accuracy Relative increase

4 91.71% -0.07

8 91.71% -0.07

16 91.51% -0.27

Table 4.8: The image patches modality combined with BlendedVits method.

Figure 4.1: The mask setting 4. Areas painted in gray are masked. In particular,
attention connectivity is restricted in a way that interaction involving support
pooled patch tokens is only allowed between them and query patch tokens.

4.2. EVALUATION OF THE PROPOSED METHODOLOGY 49

Size Accuracy Relative increase

4 92.23% +0.45

8 92.16% +0.38

Table 4.9: The image patches modality combined with attention mask setting 4.

4.2.4 ParallelVits+Encoder

4.2.4.1 Encoder blocks

The encoder of the ParallelVits+Encoder method consists of transformer encoder
blocks. Those blocks have been initialized from the employed pre-trained ViT. To
choose which blocks to incorporate we have conducted some experiments. Specifi-
cally, we explore block combinations which are located deeper in ViT’s architecture
since they have trained to extract high-level features. The rationale behind this
choice, is that those blocks’ parameters need fewer optimization steps than other
blocks, early in the architecture, to provide a useful representation. The table 4.10
displays the explored combinations and the corresponding classification accuracy.
From the acquired results, we observe three general trends. First, blocks that are
closer to the last layer of the architecture obtain better results. Second, it seems
that combinations of two blocks are more e↵ective than using a group of three
blocks or a single block. Finally, by employing the same block twice we do not
see any improvement. Throughout the rest of the experimentation with Paral-
lelVits+Encoder method, we use by default the combination of the 11th and 12th
blocks (these correspond to indices 10,11).

ViT blocks5 Accuracy

10 91.71%

8, 9, 10 91.73%

11 91.74%

8, 9 91.77%

9, 10, 11 91.80%

9, 10 91.92%

10, 11 91.99%

11, 11 91.99%

Table 4.10: The e↵ect of pre-trained blocks selection on the ParallelVits+Encoder
method.

5The provided numbers correspond to block indexes in [0,11].

50 CHAPTER 4. EVALUATION AND CONCLUSIONS

4.2.4.2 Auxiliary losses

Auxiliary losses have been integrated to the ParallelVits+Encoder method as men-
tioned in 3.6.3. In particular, we employ two types of auxiliary losses. The first
setting computes the auxiliary losses before and between the encoder blocks, mean-
while the second setting computes auxiliary losses over embeddings that have not
been encoded yet by the extra blocks and those that have. The table 4.11, demon-
strates the impact of those settings on the performance of ParallelVits+Encoder
method.

It is apparent that setting 2 is more beneficial than setting 1 on the Par-
allelVits+Encoder. Furthermore, it is worth mentioning that the aggregation of
similarity matrices, which arise from the multiple loss calculations, has been done
by mean and max reductions or by selecting one of the similarity matrices, as
described in 3.6.3. Interestingly enough, we have found empirically that the latter
yields the best results for both settings.

Settings Accuracy Relative increase6

setting 1 92.06% +0.07

setting 2 92.13% +0.14

Table 4.11: The e↵ect of auxiliary losses on the ParallelVits+Encoder method.

4.2.4.3 Cross-attention

Similarly to BlendedVits method, we have incorporated cross-attention modality
with ParallelVits+Encoder as well. Nevertheless, here is applied in a di↵erent
context. Specifically, cross-attention takes place over all the concatenated repre-
sentation tokens. In table 4.12, we present the results for two attention targets,
these are the support representation tokens and the query representation tokens.

We can observe, from the presented results, that cross-attention modality does
not significantly a↵ect the performance of ParallelVits+Encoder method’s. Addi-
tionally, we observe that when query representation tokens serve as the attention
target the decrease in performance is more significant.

Target Accuracy Relative increase7

support repr. 92.01% +0.02

query repr. 91.66% -0.33

Table 4.12: Cross-attention in ParallelVits+Encoder method.

6Relative to ParallelVits+Encoder accuracy without applying this modality.
7Relative to the performance of the method without cross-attention.

4.2. EVALUATION OF THE PROPOSED METHODOLOGY 51

4.2.4.4 Image patches

In ParallelVits+Encoder we have also incorporated image patches as described in
3.6.4. Similarly to BlendedVits method, we additionally include the average pooled
support patch tokens when support and query representation tokens are concate-
nated together. In particular, we have experimented with several sizes of pooled
patch tokens, these are 4, 8 and 16. The results of this modality are presented in
table 4.13. In correspondence with the results obtained for BlendedVits method,
we observe that image patches modality does not a↵ect positively the performance
of ParallelVits+Encoder method. In addition, as the size of pooled patch tokens
increases, the performance of the method drops. Hence, image patches modality
is not included in ParallelVits+Encoder ’s best settings.

Size Accuracy Relative increase

4 91.94% -0.05

8 91.90% -0.09

16 91.75% -0.24

Table 4.13: The image patches modality combined with ParallelVits+Encoder
method.

4.2.5 Conclusions and Best settings

Having experimented with all our main methods and their variations we summarise
our conclusions. In the BlendedVits method we enable information exchange be-
tween support and query sets by concatenating the support representation tokens
to each of the query feature vectors. Specifically, we concatenate the support rep-
resentation tokens, of a block in the support network, to another block in the query
network (i.e. cat block). In that regard we have found that the best performance
is acquired using the last block of the support network, for fetching the support
representation tokens, and the 10th block (i.e. cat block = 9) of the query network
to concatenate them.

Furthermore, we have discovered that by restricting the attention connectivity
between support representation tokens and the query representation token we ob-
tained better results. Although that could indicate that information flow between
support and query networks is not beneficial, the third proposed attention mask,
where the query patches are restricted from paying attention to the representation
support tokens as well, results in worse performance. That leads to the conclusion,
that the interaction between the support representation tokens and query patch
tokens is useful.

Moreover, by employing the cross-attention modality, which guarantees that
the attention target will not be modified, we acquired another positive result when
we combined it with the attention mask setting. Nevertheless, it is not clear

52 CHAPTER 4. EVALUATION AND CONCLUSIONS

whether this result is due to the combination of cross-attention with the attention
mask modality or due to the attention mask modality alone.

Finally, the incorporation of pooled support image patches coupled with the
generalization of the second attention mask (i.e. setting 4) obtains better results
than the BlendedVits performance baseline. That result might indicate that in-
formation stored in support image patches is useful when combined in the query
feature vector.

Regarding ParallelVits+Encoder method, its purpose is to enable information
flow between support and query sets by the concatenation of all the representation
tokens. In contrast with, BlendedVits method, image patches are not incorporated
at all. Its inferior performance, with respect to the BlendedVits method, might
outline their significance in the process of information exchange.

Specifically for the ParallelVits+Encoder method, we have explored several
choices for the the encoder blocks. We have found that the last blocks of the
employed pre-trained ViT obtain the best performance and particular when they
are combined in pairs. After examining several modalities, we have found that
only the auxiliary losses result in better performance than the baseline.

Finally, for ParallelVits, which is a method where no exchange of information
flow is allowed between support and query sets, we have not proposed any variation,
since the purpose of the explored variation was to restrict or enhance the way
information is exchanged. A conclusion regarding ParallelVits method; despite its
simplicity, and by only incorporating prior information, is that it can perform on
par with the other proposed methods.

In conclusion, we provide a summary of our best settings in table 4.14. The
best validation accuracy is achieved by the BlendedVits method coupled with the
second attention mask. The ParallelVits method is located in the second place of
our results table, meanwhile other two variations of the BlendedVits follow. These
are the cross-attention setting combined with the second mask setting, and the
image patches incorporated with the mask setting 4. At the bottom of the table,
the best ParallelVits+Encoder setting is located with the auxiliary losses.

Method Variation(s) Accuracy

BlendedVits mask setting 2 92.31%

ParallelVits N/A 92.25%

BlendedVits cross-attention, mask setting 2 92.25%

BlendedVits image patches, mask setting 4 92.23%

ParallelVits+Encoder auxiliary losses 92.13%

Table 4.14: Our best settings on MiniImageNet’s validation set.

4.2. EVALUATION OF THE PROPOSED METHODOLOGY 53

4.2.6 Other experiments

We have also conducted experiments in order to assert the normal behaviour of
our methods. For those experiments, we have used our methods without any
variation. Specifically, we have tested our methods on tasks where more categories
are sampled. These are namely the 8way-1shot, the 11way-1shot and the 14way-
1shot tasks. The table 4.15 depicts the performance of our methods on those tasks.
Furthermore, we have evaluated our methods on the 5way-5shot task. The results
of this evaluation are presented in table 4.16.

From the acquired results, it is clear that as the number of sampled categories
increases the performance of our methods decreases. That is expected since the
classification task becomes more demanding. For the five-shot experiments, since
more annotated samples are provided, our methods perform better on those tasks.
Interestingly enough, we observe that the order of our methods, with respect to the
classification accuracy, is not constant. In particular, in the five-shot experiments,
BlendedVits is ranked first in the results table. Meanwhile, when the number of
sampled categories increases, BlendedVits has the worst performance.

Task BlendedVits ParallelVits ParallelVits+Encoder

08way-1shot 87.80% 88.88% 89.33%

11way-1shot 84.97% 86.83% 86.69%

14way-1shot 81.81% 83.86% 83.79%

Table 4.15: The e↵ect of sampling more classes on our methods performance.

Method Accuracy

BlendedVits 96.96%

ParallelVits 96.88%

ParallelVits+Encoder 96.58%

Table 4.16: The e↵ect of more samples per category (i.e. shots) on the baseline
performance of our methods.

In addition to the aforementioned experiments, we have also made several
attempts to increase the performance of the proposed methods. As described in
3.7, these are the training of a subset of models’ parameters, the artificial increase
of the number of shots, the incorporation of more classes during the training phase
and the models fine-tuning at the meta-test phase.

Unfortunately, those experiments did not result in an improvement to any
of our methods. For fine-tuning at meta-test phase, we hypothesize, that the
underlining cause is the small shift in the data distribution between train and
test categories of miniImageNet dataset. In particular, as Hu et. al [85] have
demonstrated, fine-tuning at meta-test time is beneficial only when a large shift
in the distribution of the data has occurred. As per the other experiments, we

54 CHAPTER 4. EVALUATION AND CONCLUSIONS

do not provide an explanation regarding the lack of improvement in our proposed
methods, since more extensive experimentation is required.

4.3 Comparison with other works

In addition to comparisons made within our proposed methodology, we contrast
our methods with other state-of-the-art related works. The comparison is es-
tablished on the five-way one-shot task using the miniImageNet test set. It is
important to mention that our results are not directly comparable to much of
those works in both terms of architecture (e.g. number of model parameters) and
prior knowledge (i.e. we use a pre-trained model). However, this comparison pro-
vides an insight of where our methods stand with respect to both impactful and
recent works. Our best settings’ results on the test set are provided in table 4.17,
meanwhile the comparison with related works is presented in table8.

Method Variation(s) Accuracy

BlendedVits cross-attention, mask setting 2 93.51%

ParallelVits N/A 93.35%

BlendedVits mask setting 2 93.26%

BlendedVits image patches, mask setting 4 93.21%

ParallelVits+Encoder auxiliary losses 93.07%

Table 4.17: Our best settings on MiniImageNet’s test set.

8The table’s contents have been adopted from [85].

4.3. COMPARISON WITH OTHER WORKS 55

Method Backbone Accuracy Published in

Baseline++ [56] CNN-4-64 48.2% ICLR, 2019

ProtoNet [31] CNN-4-64 55.5% Nips, 2017

MetaOpt-SVM [49] ResNet12 61.4% CVPR, 2019

ProtoNet [58] WRN-28-10 62.9% ICCV, 2019

RS-FSL [69] ResNet12 65.3% BMVC, 2021

Fine-tuning [58] WRN-28-10 65.7% ICLR, 2020

Meta-Baseline [75] ResNet12 68.6% ICCV, 2021

SIB [77] WRN-28-10 70.0% ICLR, 2020

PLCM [78] ResNet12 70.1% ICCV, 2021

LST [50] ResNet12 70.1% NeurIPS, 2019

ProtoNet [74] AMDIM ResNet 76.8% ICASSP, 2021

EPNet+SSL [64] WRN-28-10 79.2% ECCV, 2020

CNAPS+FETI [80] ResNet18 79.9% WACV, 2022

PT-MAP [77] RN-28-10 82.9% ICANN, 2021

ParallelVits+Enc ViT-small 93.1% -

ParallelVits ViT-small 93.3% -

BlendedVits ViT-small 93.5% -

PMF [85] ViT-base 95.3% CVPR, 2022

Table 4.18: Comparison of our best settings with other related works.

56 CHAPTER 4. EVALUATION AND CONCLUSIONS

Chapter 5

Discussion

5.1 Summary

In this work we have tackled the FSL image classification problem, using the
notorious ViT architecture amplified with a self-supervised model pre-trained with
DINO methodology. Specifically, we have proposed and evaluated three main
methods and their variations. Each method has been designed to fulfill a di↵erent
purpose. We began from ParallelVits method, which restricts the information
exchange between the embedding functions, taking the role of the performance
baseline in our case study. We continued by proposing two additional methods that
in contrast with ParallelVits, they allow such exchange, in mainly two di↵erent
ways.

Through experimental evaluation, we have found that our methods achieve
near state-of-the-art performance on the five-way one-shot benchmark on miniIm-
ageNet. Additionally, we have acquired some interesting insights on how infor-
mation flow can be incorporated in a more beneficial manner, using the attention
mechanism of the transformer architecture.

Regarding our case study, even though, the results indicate that our methods
incorporating information flow, perform equally or even surpass the performance
achieved by the performance baseline (i.e. ParallelVits), we cannot ignore that this
is happening with a narrow margin. One explanation could be that the achieved
classification accuracy is already too high, rendering the benefits of information
exchange hardly noticeable. Another explanation could be that a di↵erent ap-
proach should be followed in order to make the most out of information exchange,
between the embedding functions. In either case there is plenty of follow-up work
that could be conducted in this context to strengthen our conclusions and explore
other techniques of information exchange.

57

58 CHAPTER 5. DISCUSSION

5.2 Future Work

Our work could be extended in multiple directions. Those directions could be re-
lated to a more robust evaluation of our methods, an exploration of other modal-
ities to incorporate information flow between the embedding functions, and an
evaluation on other setting and forms of few-shot learning.

First of all, our experimentation has mostly taken place on the miniImageNet
dataset. To alleviate that, a first direction would be to evaluate our methods
in other datasets such as CifarFS [39], tiered-imageNet [42], meta-dataset [65]
and CUB [10]. That would allow as to evaluate already implemented modalities,
such as fine-tuning at the meta-test time, that require a greater distribution shift
between train and test data.

Additionally, we could also observe how our methods perform on relevant but
more demanding forms of FSL. Cross-domain FSL is where the training phase
di↵ers from the test one, not only in the categories utilized, but also in the under-
lying image distribution. Another popular form of FSL, we could explore, is the
fine-grained FSL. In that form, categories are very similar to each other; making
the problem more challenging. For instance, a candidate dataset for fine-grained
FSL is the CUB [10] dataset, comprised of bird images only.

Furthermore, in our evaluation we enforce some hyper-parameters to be con-
stant (e.g. the weight state). That is done for the sake of avoiding exponential
growth in the number of experiments to be conducted, since unlimited resources
are not available. However, this approach could hide an underlying trend or corre-
lation. In that regard, another direction would be to conduct experiments under
di↵erent values of those hyper-parameters, seeking unobserved findings.

Finally, an additional direction would be to compare our methods and their
variations in other FSL settings. For example, the five-way five-shot setting is a
usual benchmark for few-shot algorithms comparison, in literature. Apart from
that, having more samples available per class, would enable for other approaches
to be followed. For example, in the related work of Cross Transformers [59],
they generate query aligned prototypes for each class by taking advantage of the
multiple shots in the task setting.

Bibliography

[1] Warren S. McCulloch and Walter Pitts.
“A logical calculus of the ideas immanent in nervous activity.”
In: The bulletin of mathematical biophysics 5.4 (Dec. 1, 1943), pp. 115–133.
issn: 1522-9602. doi: 10.1007/BF02478259.
url: https://doi.org/10.1007/BF02478259 (visited on 02/18/2023).

[2] F. Rosenblatt. “The perceptron: A probabilistic model for information
storage and organization in the brain.”
In: Psychological Review 65.6 (1958), pp. 386–408.
issn: 1939-1471, 0033-295X. doi: 10.1037/h0042519.
url: http://doi.apa.org/getdoi.cfm?doi=10.1037/h0042519 (visited
on 02/18/2023).

[3] Jane Bromley et al.
“Signature Verification using a ”Siamese” Time Delay Neural Network.”
In: Advances in Neural Information Processing Systems. Vol. 6.
Morgan-Kaufmann, 1993. url: https://proceedings.neurips.cc/
paper/1993/hash/288cc0ff022877bd3df94bc9360b9c5d-Abstract.html

(visited on 03/01/2023).

[4] Rich Caruana. “Multitask Learning.”
In: Machine Learning 28.1 (July 1, 1997), pp. 41–75. issn: 1573-0565.
doi: 10.1023/A:1007379606734. url:
https://doi.org/10.1023/A:1007379606734 (visited on 02/24/2023).

[5] Tom Mitchell. Machine Learning. McGraw Hill, 1997. 414 pp.
isbn: 0070428077.

[6] Y. Lecun et al. “Gradient-based learning applied to document recognition.”
In: Proceedings of the IEEE 86.11 (Nov. 1998), pp. 2278–2324.
issn: 1558-2256. doi: 10.1109/5.726791.

[7] Sepp Hochreiter, A. Steven Younger, and Peter R. Conwell.
“Learning to Learn Using Gradient Descent.”
In: Artificial Neural Networks — ICANN 2001.
Ed. by Georg Dor↵ner, Horst Bischof, and Kurt Hornik.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2001,
pp. 87–94. isbn: 9783540446682. doi: 10.1007/3-540-44668-0_13.

59

60 BIBLIOGRAPHY

[8] Jia Deng et al. “ImageNet: A large-scale hierarchical image database.”
In: 2009 IEEE Conference on Computer Vision and Pattern Recognition.
2009 IEEE Conference on Computer Vision and Pattern Recognition.
ISSN: 1063-6919. June 2009, pp. 248–255.
doi: 10.1109/CVPR.2009.5206848.

[9] Krizhevsky, Alex and Geo↵rey Hinton.
“Learning multiple layers of features from tiny images.” In: (2009). url:
http://www.cs.utoronto.ca/~kriz/learning-features-2009-TR.pdf.

[10] Catherine Wah et al. The Caltech-UCSD Birds-200-2011 Dataset.
July 2011. url:
https://resolver.caltech.edu/CaltechAUTHORS:20111026-120541847

(visited on 02/16/2023).

[11] Alex Krizhevsky, Ilya Sutskever, and Geo↵rey E Hinton.
“ImageNet Classification with Deep Convolutional Neural Networks.”
In: Advances in Neural Information Processing Systems. Vol. 25.
Curran Associates, Inc., 2012. url: https://papers.nips.cc/paper/
2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html (visited
on 02/25/2023).

[12] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural Turing Machines.
Dec. 10, 2014. doi: 10.48550/arXiv.1410.5401. arXiv: 1410.5401[cs].
url: http://arxiv.org/abs/1410.5401 (visited on 02/21/2023).

[13] Min Lin, Qiang Chen, and Shuicheng Yan. Network In Network.
Mar. 4, 2014. doi: 10.48550/arXiv.1312.4400. arXiv: 1312.4400[cs].
url: http://arxiv.org/abs/1312.4400 (visited on 02/25/2023).

[14] Gregory Koch. “Siamese neural networks for one-shot image recognition.”
In: ICML deep learning workshop.
32nd International Conference on Machine Learning (ICML 2015).
Vol. vol. 2. 2015.
url: http://www.cs.toronto.edu/~gkoch/files/msc-thesis.pdf.

[15] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum.
“Human-level concept learning through probabilistic program induction.”
In: Science 350.6266 (Dec. 11, 2015), pp. 1332–1338.
issn: 0036-8075, 1095-9203. doi: 10.1126/science.aab3050. url:
https://www.sciencemag.org/lookup/doi/10.1126/science.aab3050

(visited on 02/15/2023).

[16] Karen Simonyan and Andrew Zisserman.
Very Deep Convolutional Networks for Large-Scale Image Recognition.
Apr. 10, 2015. doi: 10.48550/arXiv.1409.1556. arXiv: 1409.1556[cs].
url: http://arxiv.org/abs/1409.1556 (visited on 02/25/2023).

BIBLIOGRAPHY 61

[17] Sainbayar Sukhbaatar et al. “End-To-End Memory Networks.”
In: Advances in Neural Information Processing Systems. Vol. 28.
Curran Associates, Inc., 2015. url: https://proceedings.neurips.cc/
paper/2015/hash/8fb21ee7a2207526da55a679f0332de2-Abstract.html

(visited on 02/21/2023).

[18] Christian Szegedy et al. “Going Deeper With Convolutions.” In:
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2015, pp. 1–9.
url: https://www.cv-foundation.org/openaccess/content_cvpr_
2015/html/Szegedy_Going_Deeper_With_2015_CVPR_paper.html (visited
on 02/25/2023).

[19] Kaiming He et al. “Deep Residual Learning for Image Recognition.” In:
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2016, pp. 770–778. url:
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_

Residual_Learning_CVPR_2016_paper.html (visited on 02/25/2023).

[20] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016. url: http://www.deeplearningbook.org.

[21] Alexander Miller et al.
Key-Value Memory Networks for Directly Reading Documents.
Oct. 10, 2016. doi: 10.48550/arXiv.1606.03126. arXiv: 1606.03126[cs].
url: http://arxiv.org/abs/1606.03126 (visited on 02/21/2023).

[22] Deepak Pathak et al. “Context Encoders: Feature Learning by Inpainting.”
In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2016, pp. 2536–2544.
url: https://openaccess.thecvf.com/content_cvpr_2016/html/
Pathak_Context_Encoders_Feature_CVPR_2016_paper.html (visited on
02/27/2023).

[23] Adam Santoro et al.
“Meta-Learning with Memory-Augmented Neural Networks.”
In: Proceedings of The 33rd International Conference on Machine Learning.
International Conference on Machine Learning. PMLR, June 11, 2016,
pp. 1842–1850.
url: https://proceedings.mlr.press/v48/santoro16.html (visited on
02/21/2023).

[24] Oriol Vinyals et al. “Matching Networks for One Shot Learning.”
In: Advances in Neural Information Processing Systems. Vol. 29.
Curran Associates, Inc., 2016. url: https://proceedings.neurips.cc/
paper/2016/hash/90e1357833654983612fb05e3ec9148c-Abstract.html

(visited on 02/15/2023).

62 BIBLIOGRAPHY

[25] Richard Zhang, Phillip Isola, and Alexei A. Efros.
“Colorful Image Colorization.” In: Computer Vision – ECCV 2016.
Ed. by Bastian Leibe et al. Lecture Notes in Computer Science.
Cham: Springer International Publishing, 2016, pp. 649–666.
isbn: 9783319464879. doi: 10.1007/978-3-319-46487-9_40.

[26] Han Altae-Tran et al.
“Low Data Drug Discovery with One-Shot Learning.”
In: ACS Central Science 3.4 (Apr. 26, 2017), pp. 283–293.
issn: 2374-7943, 2374-7951. doi: 10.1021/acscentsci.6b00367.
url: https://pubs.acs.org/doi/10.1021/acscentsci.6b00367 (visited
on 02/17/2023).

[27] Sergi Caelles et al. “One-Shot Video Object Segmentation.” In:
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2017, pp. 221–230. url: https:
//openaccess.thecvf.com/content_cvpr_2017/html/Caelles_One-

Shot_Video_Object_CVPR_2017_paper.html (visited on 02/25/2023).

[28] Yan Duan et al. “One-Shot Imitation Learning.”
In: Advances in Neural Information Processing Systems. Vol. 30.
Curran Associates, Inc., 2017. url: https://proceedings.neurips.cc/
paper/2017/hash/ba3866600c3540f67c1e9575e213be0a-Abstract.html

(visited on 02/17/2023).

[29] Chelsea Finn, Pieter Abbeel, and Sergey Levine.
“Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks.”
In: Proceedings of the 34th International Conference on Machine Learning.
International Conference on Machine Learning. PMLR, July 17, 2017,
pp. 1126–1135.
url: https://proceedings.mlr.press/v70/finn17a.html (visited on
02/15/2023).

[30] Gao Huang et al. “Densely Connected Convolutional Networks.” In:
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2017, pp. 4700–4708.
url: https://openaccess.thecvf.com/content_cvpr_2017/html/
Huang_Densely_Connected_Convolutional_CVPR_2017_paper.html

(visited on 02/25/2023).

[31] Jake Snell, Kevin Swersky, and Richard Zemel.
“Prototypical Networks for Few-shot Learning.”
In: Advances in Neural Information Processing Systems. Vol. 30.
Curran Associates, Inc., 2017. url: https://proceedings.neurips.cc/
paper/2017/hash/cb8da6767461f2812ae4290eac7cbc42-Abstract.html

(visited on 02/15/2023).

BIBLIOGRAPHY 63

[32] Eleni Triantafillou, Richard Zemel, and Raquel Urtasun.
“Few-Shot Learning Through an Information Retrieval Lens.”
In: Advances in Neural Information Processing Systems. Vol. 30.
Curran Associates, Inc., 2017. url: https://proceedings.neurips.cc/
paper/2017/hash/01e9565cecc4e989123f9620c1d09c09-Abstract.html

(visited on 02/17/2023).

[33] Manasi Vartak et al.
“A Meta-Learning Perspective on Cold-Start Recommendations for Items.”
In: Advances in Neural Information Processing Systems. Vol. 30.
Curran Associates, Inc., 2017. url: https://proceedings.neurips.cc/
paper/2017/hash/51e6d6e679953c6311757004d8cbbba9-Abstract.html

(visited on 02/17/2023).

[34] Ashish Vaswani et al. “Attention is All you Need.”
In: Advances in Neural Information Processing Systems. Vol. 30.
Curran Associates, Inc., 2017. url: https://proceedings.neurips.cc/
paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

(visited on 02/20/2023).

[35] Sergey Zagoruyko and Nikos Komodakis. Wide Residual Networks.
June 14, 2017. doi: 10.48550/arXiv.1605.07146.
arXiv: 1605.07146[cs].
url: http://arxiv.org/abs/1605.07146 (visited on 02/25/2023).

[36] Sagie Benaim and Lior Wolf.
“One-Shot Unsupervised Cross Domain Translation.”
In: Advances in Neural Information Processing Systems. Vol. 31.
Curran Associates, Inc., 2018. url: https://proceedings.neurips.cc/
paper/2018/hash/062ddb6c727310e76b6200b7c71f63b5-Abstract.html

(visited on 02/21/2023).

[37] Spyros Gidaris, Praveer Singh, and Nikos Komodakis.
Unsupervised Representation Learning by Predicting Image Rotations.
Mar. 20, 2018. doi: 10.48550/arXiv.1803.07728.
arXiv: 1803.07728[cs].
url: http://arxiv.org/abs/1803.07728 (visited on 02/15/2023).

[38] Rohit Keshari et al. “Learning Structure and Strength of CNN Filters for
Small Sample Size Training.” In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2018, pp. 9349–9358.
url: https://openaccess.thecvf.com/content_cvpr_2018/html/
Keshari_Learning_Structure_and_CVPR_2018_paper.html (visited on
02/25/2023).

[39] Boris Oreshkin, Pau Rodŕıguez López, and Alexandre Lacoste. “TADAM:
Task dependent adaptive metric for improved few-shot learning.”
In: Advances in Neural Information Processing Systems. Vol. 31.
Curran Associates, Inc., 2018. url: https://proceedings.neurips.cc/

64 BIBLIOGRAPHY

paper/2018/hash/66808e327dc79d135ba18e051673d906-Abstract.html

(visited on 02/20/2023).

[40] Hang Qi, Matthew Brown, and David G. Lowe.
“Low-Shot Learning With Imprinted Weights.” In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2018,
pp. 5822–5830. url:
https://openaccess.thecvf.com/content_cvpr_2018/html/Qi_Low-

Shot_Learning_With_CVPR_2018_paper.html (visited on 02/21/2023).

[41] Scott Reed et al. Few-shot Autoregressive Density Estimation: Towards
Learning to Learn Distributions. Feb. 28, 2018.
doi: 10.48550/arXiv.1710.10304. arXiv: 1710.10304[cs].
url: http://arxiv.org/abs/1710.10304 (visited on 02/24/2023).

[42] Mengye Ren et al.
Meta-Learning for Semi-Supervised Few-Shot Classification. Mar. 1, 2018.
doi: 10.48550/arXiv.1803.00676. arXiv: 1803.00676[cs,stat].
url: http://arxiv.org/abs/1803.00676 (visited on 02/15/2023).

[43] Flood Sung et al.
“Learning to Compare: Relation Network for Few-Shot Learning.” In:
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2018, pp. 1199–1208.
url: https://openaccess.thecvf.com/content_cvpr_2018/html/Sung_
Learning_to_Compare_CVPR_2018_paper.html (visited on 02/15/2023).

[44] Athanasios Voulodimos et al.
“Deep Learning for Computer Vision: A Brief Review.” In: Computational
Intelligence and Neuroscience 2018 (Feb. 1, 2018), e7068349.
issn: 1687-5265. doi: 10.1155/2018/7068349.
url: https://www.hindawi.com/journals/cin/2018/7068349/ (visited
on 02/26/2023).

[45] Yabin Zhang, Hui Tang, and Kui Jia.
“Fine-Grained Visual Categorization using Meta-Learning Optimization
with Sample Selection of Auxiliary Data.” In:
Proceedings of the European Conference on Computer Vision (ECCV).
2018, pp. 233–248. url:
https://openaccess.thecvf.com/content_ECCV_2018/html/Yabin_

Zhang_Fine-Grained_Visual_Categorization_ECCV_2018_paper.html

(visited on 02/21/2023).

[46] Ekin D. Cubuk et al.
“AutoAugment: Learning Augmentation Strategies From Data.” In:
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2019, pp. 113–123.
url: https://openaccess.thecvf.com/content_CVPR_2019/html/

BIBLIOGRAPHY 65

Cubuk_AutoAugment_Learning_Augmentation_Strategies_From_Data_

CVPR_2019_paper.html (visited on 02/21/2023).

[47] Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding. May 24, 2019.
doi: 10.48550/arXiv.1810.04805. arXiv: 1810.04805[cs].
url: http://arxiv.org/abs/1810.04805 (visited on 02/26/2023).

[48] Jonathan Gordon et al.
Meta-Learning Probabilistic Inference For Prediction. Aug. 6, 2019.
doi: 10.48550/arXiv.1805.09921. arXiv: 1805.09921[cs,stat].
url: http://arxiv.org/abs/1805.09921 (visited on 02/24/2023).

[49] Kwonjoon Lee et al.
“Meta-Learning With Di↵erentiable Convex Optimization.” In:
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2019, pp. 10657–10665. url:
https://openaccess.thecvf.com/content_CVPR_2019/html/Lee_Meta-

Learning_With_Differentiable_Convex_Optimization_CVPR_2019_

paper.html (visited on 02/15/2023).

[50] Xinzhe Li et al.
“Learning to Self-Train for Semi-Supervised Few-Shot Classification.”
In: Advances in Neural Information Processing Systems. Vol. 32.
Curran Associates, Inc., 2019. url: https://proceedings.neurips.cc/
paper/2019/hash/bf25356fd2a6e038f1a3a59c26687e80-Abstract.html

(visited on 03/16/2023).

[51] Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization.
Jan. 4, 2019. doi: 10.48550/arXiv.1711.05101.
arXiv: 1711.05101[cs,math].
url: http://arxiv.org/abs/1711.05101 (visited on 02/15/2023).

[52] Jorge Pérez, Javier Marinković, and Pablo Barceló.
On the Turing Completeness of Modern Neural Network Architectures.
Jan. 10, 2019. doi: 10.48550/arXiv.1901.03429.
arXiv: 1901.03429[cs,stat].
url: http://arxiv.org/abs/1901.03429 (visited on 02/27/2023).

[53] Zhipeng Zhang and Houwen Peng.
“Deeper and Wider Siamese Networks for Real-Time Visual Tracking.” In:
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2019, pp. 4591–4600.
url: https://openaccess.thecvf.com/content_CVPR_2019/html/
Zhang_Deeper_and_Wider_Siamese_Networks_for_Real-

Time_Visual_Tracking_CVPR_2019_paper.html (visited on 02/17/2023).

66 BIBLIOGRAPHY

[54] Tom Brown et al. “Language Models are Few-Shot Learners.”
In: Advances in Neural Information Processing Systems. Vol. 33.
Curran Associates, Inc., 2020, pp. 1877–1901.
url: https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html (visited on
02/19/2023).

[55] Ting Chen et al.
“A Simple Framework for Contrastive Learning of Visual Representations.”
In: Proceedings of the 37th International Conference on Machine Learning.
International Conference on Machine Learning. PMLR, Nov. 21, 2020,
pp. 1597–1607.
url: https://proceedings.mlr.press/v119/chen20j.html (visited on
02/15/2023).

[56] Wei-Yu Chen et al. A Closer Look at Few-shot Classification. Jan. 12, 2020.
doi: 10.48550/arXiv.1904.04232. arXiv: 1904.04232[cs].
url: http://arxiv.org/abs/1904.04232 (visited on 02/15/2023).

[57] Jean-Baptiste Cordonnier, Andreas Loukas, and Martin Jaggi.
On the Relationship between Self-Attention and Convolutional Layers.
Jan. 10, 2020. doi: 10.48550/arXiv.1911.03584.
arXiv: 1911.03584[cs,stat].
url: http://arxiv.org/abs/1911.03584 (visited on 02/27/2023).

[58] Guneet S. Dhillon et al. A Baseline for Few-Shot Image Classification.
Oct. 21, 2020. doi: 10.48550/arXiv.1909.02729.
arXiv: 1909.02729[cs,stat].
url: http://arxiv.org/abs/1909.02729 (visited on 02/15/2023).

[59] Carl Doersch, Ankush Gupta, and Andrew Zisserman.
“CrossTransformers: spatially-aware few-shot transfer.”
In: Advances in Neural Information Processing Systems. Vol. 33.
Curran Associates, Inc., 2020, pp. 21981–21993.
url: https://proceedings.neurips.cc/paper/2020/hash/
fa28c6cdf8dd6f41a657c3d7caa5c709-Abstract.html (visited on
02/15/2023).

[60] Ryuichiro Hataya et al. “Faster AutoAugment: Learning Augmentation
Strategies Using Backpropagation.” In: Computer Vision – ECCV 2020.
Ed. by Andrea Vedaldi et al. Lecture Notes in Computer Science.
Cham: Springer International Publishing, 2020, pp. 1–16.
isbn: 9783030585952. doi: 10.1007/978-3-030-58595-2_1.

[61] Kaiming He et al.
“Momentum Contrast for Unsupervised Visual Representation Learning.”
In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2020, pp. 9729–9738.
url: https://openaccess.thecvf.com/content_CVPR_2020/html/He_

BIBLIOGRAPHY 67

Momentum_Contrast_for_Unsupervised_Visual_Representation_

Learning_CVPR_2020_paper.html (visited on 02/27/2023).

[62] Ishan Misra and Laurens van der Maaten.
“Self-Supervised Learning of Pretext-Invariant Representations.” In:
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2020, pp. 6707–6717. url: https:
//openaccess.thecvf.com/content_CVPR_2020/html/Misra_Self-

Supervised_Learning_of_Pretext-

Invariant_Representations_CVPR_2020_paper.html (visited on
02/27/2023).

[63] Niall O’Mahony et al. “Deep Learning vs. Traditional Computer Vision.”
In: Advances in Computer Vision. Ed. by Kohei Arai and Supriya Kapoor.
Advances in Intelligent Systems and Computing.
Cham: Springer International Publishing, 2020, pp. 128–144.
isbn: 9783030177959. doi: 10.1007/978-3-030-17795-9_10.

[64] Pau Rodŕıguez et al.
“Embedding Propagation: Smoother Manifold for Few-Shot Classification.”
In: Computer Vision – ECCV 2020. Ed. by Andrea Vedaldi et al.
Lecture Notes in Computer Science.
Cham: Springer International Publishing, 2020, pp. 121–138.
isbn: 9783030585747. doi: 10.1007/978-3-030-58574-7_8.

[65] Eleni Triantafillou et al. Meta-Dataset: A Dataset of Datasets for Learning
to Learn from Few Examples. Apr. 8, 2020.
doi: 10.48550/arXiv.1903.03096. arXiv: 1903.03096[cs,stat].
url: http://arxiv.org/abs/1903.03096 (visited on 02/15/2023).

[66] Yaqing Wang et al.
“Generalizing from a Few Examples: A Survey on Few-shot Learning.”
In: ACM Computing Surveys 53.3 (June 12, 2020), 63:1–63:34.
issn: 0360-0300. doi: 10.1145/3386252.
url: https://doi.org/10.1145/3386252 (visited on 02/15/2023).

[67] Martin J. Willemink et al.
“Preparing Medical Imaging Data for Machine Learning.”
In: Radiology 295.1 (Apr. 2020), pp. 4–15. issn: 0033-8419, 1527-1315.
doi: 10.1148/radiol.2020192224.
url: http://pubs.rsna.org/doi/10.1148/radiol.2020192224 (visited
on 02/18/2023).

[68] Thomas Wolf et al.
“Transformers: State-of-the-Art Natural Language Processing.”
In: Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations.
Online: Association for Computational Linguistics, Oct. 2020, pp. 38–45.
doi: 10.18653/v1/2020.emnlp-demos.6.

68 BIBLIOGRAPHY

url: https://aclanthology.org/2020.emnlp-demos.6 (visited on
02/26/2023).

[69] Mohamed Afham et al. Rich Semantics Improve Few-shot Learning.
Nov. 12, 2021. doi: 10.48550/arXiv.2104.12709.
arXiv: 2104.12709[cs].
url: http://arxiv.org/abs/2104.12709 (visited on 03/16/2023).

[70] Yutong Bai et al. “Are Transformers more robust than CNNs?”
In: Advances in Neural Information Processing Systems. Vol. 34.
Curran Associates, Inc., 2021, pp. 26831–26843.
url: https://proceedings.neurips.cc/paper/2021/hash/
e19347e1c3ca0c0b97de5fb3b690855a-Abstract.html (visited on
02/25/2023).

[71] Myriam Bontonou et al. “Few-Shot Decoding of Brain Activation Maps.”
In: 2021 29th European Signal Processing Conference (EUSIPCO).
2021 29th European Signal Processing Conference (EUSIPCO).
ISSN: 2076-1465. Aug. 2021, pp. 1326–1330.
doi: 10.23919/EUSIPCO54536.2021.9616158.

[72] Mathilde Caron. “Self-supervised learning of deep visual representations.”
PhD thesis. Université Grenoble Alpes [2020-....], Dec. 9, 2021. url:
https://theses.hal.science/tel-03675254 (visited on 02/27/2023).

[73] Mathilde Caron et al.
“Emerging Properties in Self-Supervised Vision Transformers.” In:
Proceedings of the IEEE/CVF International Conference on Computer
Vision. 2021, pp. 9650–9660. url: https://openaccess.thecvf.com/
content/ICCV2021/html/Caron_Emerging_Properties_in_Self-

Supervised_Vision_Transformers_ICCV_2021_paper.html (visited on
02/15/2023).

[74] Da Chen et al.
“Self-Supervised Learning for Few-Shot Image Classification.”
In: ICASSP 2021 - 2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP).
ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). ISSN: 2379-190X. June 2021,
pp. 1745–1749. doi: 10.1109/ICASSP39728.2021.9413783.

[75] Yinbo Chen et al.
“Meta-Baseline: Exploring Simple Meta-Learning for Few-Shot Learning.”
In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. 2021, pp. 9062–9071. url:
https://openaccess.thecvf.com/content/ICCV2021/html/Chen_Meta-

Baseline_Exploring_Simple_Meta-Learning_for_Few-

Shot_Learning_ICCV_2021_paper.html (visited on 02/15/2023).

BIBLIOGRAPHY 69

[76] Alexey Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers
for Image Recognition at Scale. June 3, 2021.
doi: 10.48550/arXiv.2010.11929. arXiv: 2010.11929[cs].
url: http://arxiv.org/abs/2010.11929 (visited on 02/15/2023).

[77] Yuqing Hu, Vincent Gripon, and Stéphane Pateux. “Leveraging the
Feature Distribution in Transfer-Based Few-Shot Learning.”
In: Artificial Neural Networks and Machine Learning – ICANN 2021.
Ed. by Igor Farkaš et al. Lecture Notes in Computer Science.
Cham: Springer International Publishing, 2021, pp. 487–499.
isbn: 9783030863401. doi: 10.1007/978-3-030-86340-1_39.

[78] Kai Huang et al.
“Pseudo-Loss Confidence Metric for Semi-Supervised Few-Shot Learning.”
In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. 2021, pp. 8671–8680. url: https:
//openaccess.thecvf.com/content/ICCV2021/html/Huang_Pseudo-

Loss_Confidence_Metric_for_Semi-Supervised_Few-

Shot_Learning_ICCV_2021_paper.html (visited on 03/16/2023).

[79] Muhammad Muzammal Naseer et al.
“Intriguing Properties of Vision Transformers.”
In: Advances in Neural Information Processing Systems. Vol. 34.
Curran Associates, Inc., 2021, pp. 23296–23308.
url: https://proceedings.neurips.cc/paper/2021/hash/
c404a5adbf90e09631678b13b05d9d7a-Abstract.html (visited on
02/25/2023).

[80] Peyman Bateni et al.
“Enhancing Few-Shot Image Classification With Unlabelled Examples.” In:
Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision. 2022, pp. 2796–2805.
url: https://openaccess.thecvf.com/content/WACV2022/html/
Bateni_Enhancing_Few-Shot_Image_Classification_With_

Unlabelled_Examples_WACV_2022_paper.html (visited on 03/16/2023).

[81] Ananth Reddy Bhimireddy et al. Few-Shot Transfer Learning to improve
Chest X-Ray pathology detection using limited triplets. Apr. 16, 2022.
doi: 10.48550/arXiv.2204.07824. arXiv: 2204.07824[cs,eess].
url: http://arxiv.org/abs/2204.07824 (visited on 02/18/2023).

[82] Rishi Bommasani et al.
On the Opportunities and Risks of Foundation Models. July 12, 2022.
doi: 10.48550/arXiv.2108.07258. arXiv: 2108.07258[cs].
url: http://arxiv.org/abs/2108.07258 (visited on 02/15/2023).

70 BIBLIOGRAPHY

[83] Aleksandr Ermolov et al. “Hyperbolic Vision Transformers: Combining
Improvements in Metric Learning.” In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2022,
pp. 7409–7419.
url: https://openaccess.thecvf.com/content/CVPR2022/html/
Ermolov_Hyperbolic_Vision_Transformers_Combining_Improvements_

in_Metric_Learning_CVPR_2022_paper.html (visited on 03/01/2023).

[84] Timothy Hospedales et al. “Meta-Learning in Neural Networks: A Survey.”
In: IEEE Transactions on Pattern Analysis and Machine Intelligence 44.9
(Sept. 2022), pp. 5149–5169. issn: 1939-3539.
doi: 10.1109/TPAMI.2021.3079209.

[85] Shell Xu Hu et al. “Pushing the Limits of Simple Pipelines for Few-Shot
Learning: External Data and Fine-Tuning Make a Di↵erence.” In:
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2022, pp. 9068–9077.
url: https://openaccess.thecvf.com/content/CVPR2022/html/Hu_
Pushing_the_Limits_of_Simple_Pipelines_for_Few-

Shot_Learning_External_CVPR_2022_paper.html (visited on
02/15/2023).

[86] Salman Khan et al. “Transformers in Vision: A Survey.”
In: ACM Computing Surveys 54.10 (Sept. 13, 2022), 200:1–200:41.
issn: 0360-0300. doi: 10.1145/3505244.
url: https://doi.org/10.1145/3505244 (visited on 02/26/2023).

[87] OpenAI. ChatGPT: Optimizing Language Models for Dialogue. OpenAI.
Nov. 30, 2022.
url: https://openai.com/blog/chatgpt/ (visited on 02/18/2023).

[88] OpenAI. DALL·E 2. OpenAI. 2022.
url: https://openai.com/dall-e-2/ (visited on 02/18/2023).

[89] Sayak Paul and Pin-Yu Chen. “Vision Transformers Are Robust Learners.”
In: Proceedings of the AAAI Conference on Artificial Intelligence 36.2
(June 28, 2022), pp. 2071–2081. issn: 2374-3468.
doi: 10.1609/aaai.v36i2.20103.
url: https://ojs.aaai.org/index.php/AAAI/article/view/20103
(visited on 02/25/2023).

[90] Sachin Ravi and Hugo Larochelle.
“Optimization as a Model for Few-Shot Learning.” In:
International Conference on Learning Representations. July 21, 2022. url:
https://openreview.net/forum?id=rJY0-Kcll (visited on 02/15/2023).

[91] Yu Zhang and Qiang Yang. “A Survey on Multi-Task Learning.”
In: IEEE Transactions on Knowledge and Data Engineering 34.12 (Dec.
2022), pp. 5586–5609. issn: 1558-2191. doi: 10.1109/TKDE.2021.3070203.

BIBLIOGRAPHY 71

[92] Kai Han et al. “A Survey on Vision Transformer.” In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 45.1 (Jan. 2023), pp. 87–110.
issn: 1939-3539. doi: 10.1109/TPAMI.2022.3152247.

[93] Poincaré disk model. In: Wikipedia. Page Version ID: 1142291709.
Mar. 1, 2023. url: https://en.wikipedia.org/w/index.php?title=
Poincar%C3%A9_disk_model&oldid=1142291709 (visited on 03/03/2023).

[94] Yisheng Song et al. “A Comprehensive Survey of Few-shot Learning:
Evolution, Applications, Challenges, and Opportunities.”
In: ACM Computing Surveys (Feb. 4, 2023). Just Accepted.
issn: 0360-0300. doi: 10.1145/3582688.
url: https://doi.org/10.1145/3582688 (visited on 02/16/2023).

