
Parallel Implementation of
Tail Correction in

Energy-Pressure for
Molecular Simulations

Stefanos Karandreas

Bachelor Thesis

Department of Physics - University of

Crete

Heraklion, Crete 2016

Thesis Advisor: Dr. Vagelis Harmandaris

Thesis Committee

Dr. V. Harmandaris - Department of Mathematics
and Applied Mathematics

Dr. I. Kominis - Department of Physics
Dr. N. Christakis - Department of Physics

Acknowledgements

I would like to thank Dr. Vagelis Harmandaris for providing me
with the opportunity to produce this thesis and sharing his vast knowl-
edge on molecular dynamics simulations. Special thanks go to Mr. Tony
Chazirakis for his continuous support with but not limited to the MD-
PAR package, his insight in parallelization and especially his help with
the Alternative Derivation of the tail correction, see section (4.3). I
would also like to thank Dr. Petra Bacova for her continuous support
and guidance. Finally I am thankful to Dr. Anastasia Rissanou for pro-
viding me with the GROMACS configuration files and always being
there to discuss questions.

ii

Abstract

In this thesis we have studied molecular systems through molecu-
lar dynamics simulations by developing a new method to incorporate
the tail correction potential energy in our calculations for an inho-
mogeneous system. We use molecular dynamics tools which are very
important for predicting the structure properties as well as the com-
puter design of materials. We demonstrate the importance of precise
tail correction calculations and how otherwise they introduce a sys-
tematic error. We proceed to formulate an alternative derivation of the
tail correction of the inhomogeneous system by direct integration. Our
mathematical methods are written in C++ using MPI and openMP
for parallelization in the MDPAR package. We test our implementa-
tions in MDPAR using two types of systems polyethylene with a frozen
graphene layer and polyethylene in vacuum. Detailed results using com-
parisons of density histograms are are presented. We continue by testing
the convergence of the tail correction potential energy.

iv

Contents

1 Introduction 1

2 N-body problem 5
2.1 Introduction to Classical MD Simulation 5
2.2 Force Calculation . 7

2.2.1 Newton’s equations of motion 7
2.2.2 Other formulations of classical equations 8
2.2.3 Integration Algorithm 9

2.3 Computational Methods for Molecular Dynamics . . . 10
2.3.1 Periodic Boundary Conditions 10
2.3.2 Nose-Hoover Thermostat 12
2.3.3 Neighbor Lists 13
2.3.4 Cut-off . 14

3 Model and simulation details 15
3.1 Simulated Systems . 15

3.1.1 System S1: Polyethylene chains with Graphene . 16
3.1.2 System F1: Polyethylene system with 200 chains 16
3.1.3 System F2: Polyethylene system with 2000 chains 18

3.2 Potential Energy . 18
3.3 Simulation Details . 24

4 Tail Correction 25
4.1 Tail Correction for isotropic system 26
4.2 Tail Correction for inhomogeneous system 27
4.3 Alternative Derivation of the Tail Correction for an in-

homogeneous system 32

5 Parallel Programming 35
5.1 OMP . 41
5.2 MPI . 45

vi Contents

6 MDPAR Algorithm 47
6.1 Description of MDPAR 47
6.2 Implementation of Tail Correction 48

6.2.1 Input Configuration 48
6.2.2 Calculation of N(J layer) 49

7 Results 51
7.1 Comparison of results obtained by different codes and

with / without tail correction 51
7.2 Convergence of the Tail Correction 54

8 Conclusions 59

List of Figures

1.1 Multiscale modelling of polymer-solid interfaces from the
electronic structure level, through the atomistic level, to
the mesoscopic coarse-grained level and beyond [2]. . . 2

2.1 Graphical representation of the MD algorithm. 6

2.2 Periodic Boundary Conditions. (a) Our simulation space
is surrounded by exact copies of the simulation box. (b)
Movement inside the simulation box is replicated in all
other boxes. 11

2.3 Minimum image convention 11

2.4 Neighbour List . 14

3.1 a) A typical snapshot from the simulation of S1 (top)
and b) F1 system (bottom). Red beads represent the
monomers of poly(ethylene), the cyan surface at the bot-
tom is a graphene sheet and the blue lines are used to
illustrate the boundaries of the box. 17

3.2 Types of particle interactions. 19

3.3 Bond stretching (left) and bond stretching potential (right) 19

3.4 Sketch of angle vibration (left) and bond angle potential
(right) . 20

3.5 Left: Geometrical representation of the planes in the
chain. r23 is the diatomic distance and angle φ1234 is the
dihedral angle used in 3.6. Right: Ryckaert-Bellemans
dihedral potential [14] 21

3.6 Lennard-Jones for a non-bonded potential. rm is the dis-
tance at which the potential reaches its minimum value,
rcut being the cut-off distance. 23

4.1 Our simulation box divided in Jlayers along the z direc-
tion . 28

viii List of Figures

4.2 Representation of the distance between one particle and
and the Lx, Ly plane. 32

5.1 Example of serial computing [16] 35
5.2 Example of parallel computing [16] 36
5.3 Example of a cluster computer [16] 37
5.4 Example of a distributed memory model 38
5.5 Example of a shared memory model 39
5.6 Plot of time needed for the run, as the number of used

threads increases. 44
5.7 Speedup representation. 44

7.1 Gromacs and MDPAR density histogram comparison for
Rcut=1.0 . 52

7.2 Gromacs, MDPAR density histogram comparison forRcut=1.0,
MDPAR density histogram comparison forRcut=1.0 with
Tail Correction . 53

7.3 Gromacs, MDPAR density histogram comparison forRcut=1.5,
MDPAR density histogram comparison forRcut=1.0 with
Tail Correction . 54

7.4 Polyethelyne in vacuum. Density histogram comparison
forRcut=1.0,Rcut=1.5 with Gromacs and MDPARRcut=1.0
with Tail Correction 55

7.5 MDPAR with tail correction and GROMACS usingRcut=1.0,1.5
without tail correction 57

7.6 Plot of the Lennard-Jones energy as a function of the
Rcut distance. The dashed line represents the total po-
tential energy of the simulation using TC. 58

List of Tables

3.1 System Characteristics 16
3.2 Parameters used in bond potential[13] 20
3.3 Parameters used in angle potential[13] 21
3.4 Parameters used in dihedral potential[13] 22
3.5 Parameters σ and ε used in the Lennard-Jones potential. 23

5.1 Time required for code in serial and in parallel with the
use of openMP. 43

7.1 Convergence to TC . 56

x List of Tables

1. Introduction

From the initial appearance of computers it was apparent how useful
and necessary they were for solving mathematical problems. One could
say that they acted as a catalyst in the rapid development of all sci-
ences, which in return greatly influenced the development of computers
themselves.

This boost provided the ability for the problems to become exponen-
tially more complex and big – in such a scale that soon they exceeded
the capabilities of the personal computers available at the time.

The solution came in the late 60s in the form of parallel com-
puting, namely the usage of multi-core and later multi-processor sys-
tems, systems that combined multiple, usually similar, processors to
distribute the load of the calculations. Such early examples were the
D825 (MIMD) and the notoriously infamous – for the wrong reasons
all together – ILLIAC IV (SIMD). When the project completed, af-
ter 11 years, it cost almost four times the original estimate, while was
only one-quarter complete and underperformed compared to the then
current systems [1].

Parallelization is a broad term. There are multiple types of par-
allelism (instruction-level parallelism, task parallelism etc), as well as
different classes like multi-core computing, symmetric multiprocessing,
distributed computing, cluster computing etc. Algorithmic methods
have been developed to solve various problems: N-body problems, the
Monte Carlo method, dense and sparse linear algebra to name a few.

Even though all these complex calculations can be broken down to
the four basic arithmetical methods, in reality it is the pure volume
of said calculations that makes even modern systems either unable to
process or to process at extreme time or money cost.

The combination of arithmetical methods and parallel computation
greatly diminishes the time required for given operations or in some
cases even makes them possible – for example simulations that require
enormous amounts of memory can not be supported by just one node.

2 Chapter 1. Introduction

Parallel computing is a very costly procedure. It requires prepara-
tion and a deep examination of the computational problem, experience
in actual programming, time for testing and running the calculations
and of course the other main factor is none other than the associated
costs. Systems that can be used for parallel programming can be as
small as few personal computers and laptops networked and as big as
supercomputers that can cost up to hundreds of millions of euro in just
infrastructure.

At this point we should note that parallelization is not a problem
that can be solved just by “throwing money at it”. There is absolutely
no relation or guarantee that increasing the resources will linearly in-
crease the performance. In truth problems may scale till a certain point
after which there is no profit in increasing the number of cores used or
might not be able to be parallelized at all.

The factor that affects mostly the scalability – supposing that the
problem can be parallelized – turns up to be the quality of the code.

Figure 1.1: Multiscale modelling of polymer-solid interfaces from the
electronic structure level, through the atomistic level, to the mesoscopic
coarse-grained level and beyond [2].

Parallelization has seen excessive use in multiple calculations meth-
ods. One of them is molecular dynamics (MD) - a computer simulation

3

method for studying the physical movements of atoms and molecules
but not limited to only those areas of research. A molecular dynam-
ics simulation can be very expensive computationally-wise, as it is an
N-body problem and the computational time scales with the number
of atoms or species N in the system under study. Moreover, depending
on the complexity of the studied system, the time and length scales
in simulations can range from femtoseconds and Angstroms to units
accessible by real experiments. All these time and lenght scales can not
be covered by a single simulation technique, therefore we distinguish
different types of simulations starting from the DFT (density functional
theory) used for the quantum description of the system, to the atom-
istic level, through the mesoscopic coarse-grained level and up to the
continuum level as seen in Fig. 1.1 [2].

To cover the demand created by this field multiple commercial pack-
ages have been created and have seen widespread use, e.g. GROMACS
[3], LAMMPS [4], ESPRESSO++ [5] just to name a few of the most
popular ones. As the problems to be solved became increasingly more
complex the processing power required to solve them grew to such
heights that the creation and use of supercomputers was necessary.
Notable supercomputers in Europe include Switzerland’s Piz Daint,
PRACE in Barcelona, Spain as well as the new Greek supercomputer
facility Aris in Athens.

Even with the aforementioned packages and the usage of supercom-
puters in certain cases we can be limited or restricted in the simulations
we want to run. Namely, commercial packages for the most part act like
black boxes, i.e. a code that the user cannot inspect or modify beyond
the choices provided by the developer. In the cases where one needs
to use an algorithm or function which is not included in the specific
commercially available package, there is no choice but to modify the
problem or the approach used to solve the problem. Also, as the user
can not view the code used for the parallelization in many cases the
run of the code can not be optimized. Furthermore, depending on the
problem and / or the cluster’s hardware / software, performance of the
code may not scale properly without necessary, however not possible
modifications.

We can easily see that there is a clear need for homemade (open-
source), well designed packages that provide the same functionality as
the commercial ones while also providing modularity, in the sense that
one can modify or add features, as is required to tackle a specific prob-
lem. We aim in this work to overcome part of the above mentioned
issues using the homemade MDPAR [6] package. Specifically, we will

4 Chapter 1. Introduction

implement in it our own algorithm which calculates the tail correction
for an inhomogeneous system. This mathematical approach, correctly
implemented takes into account the proper values of potential energy
which are often substituted in commercially available packages by ap-
proximated values from the tail correction in homogeneous systems. We
test the algorithm and report also the results obtained in the same solid
/ polymer and vacuum / polymer systems by commercially available
GROMACS package.

2. N-body problem

2.1 Introduction to Classical MD Simula-

tion

Molecular Dynamics (MD) is a computer simulation method for
studying the physical movement of atoms and molecules (by comput-
ing the equilibrium and transport properties of a classical many body
system). Or more commonly known, a N-body type of problem. With
the term classical we imply that motion of the atoms or molecules obey
the laws of classical mechanics.

An N-body problem normally predicts the individual motions of a
group of celestial objects which interact with each other gravitation-
ally. It can further be expanded to the microscopic plane by substitut-
ing celestial objects for atoms or molecules. Gravity is replaced by a
potential.

MD simulations to some extend mimic real experiments. In a lab
we need to prepare the sample and the correct measuring instrument.
Similarly, in MD we start by setting up the initial configuration of the
system and then we measure the property of interest during a certain
time interval. Moreover, simulations bridge the gap between the exper-
iments and the theory. They allow us to study properties not easily
accessible through the experimental techniques and at the same time
we can use the simulation results in order to test the theoretical pre-
dictions.

The procedure that we follow during the MD simulation can be
summarized in distinct points and is usually referred to as the MD
algorithm.

The general algorithm scheme consists of:

1. Initialization: we create the initial configuration of the model sys-
tem that includes the initial coordinates and velocities for each
particle.

6 Chapter 2. N-body problem

2. Force calculations: in this point the forces acting on every particle
are calculated.

3. Integration of the equations of motion: the evolution of the system
is achieved by the integration of the equations of motion through
a chosen mathematical method.

4. Obtaining information about the actual state of the system: the
present coordinates and velocities together with data required for
the further analysis (energy, density etc.) are stored.

5. Presentation of final output values.

Figure 2.1: Graphical representation of the MD algorithm.

Points 2-4 are repeated till the system reaches a state of equilibrium.
After that we perform a production run, starting the point 1 with the

2.2. Force Calculation 7

equilibrated configuration. Again, we iterate the points 2-4 as long as it
is required by the specific problem under investigation. Some problems
may need longer iterations in order to obtain satisfactory results with
the proper statistics.

In the following sections we will introduce more details concerning
the Initialization (information about our model system can be found in
section) and the algorithms related to the points 2 (section 2.2) and 3
(subsection 2.2.3) of the above mentioned scheme. We will pay partic-
ular attention to the potential energy calculation (the potential energy
is introduced in section 3.2) where we will address the tail correction
(TC) problem (see sections 4.1 and 4.2).

2.2 Force Calculation

In the molecular dynamics simulation the positions ri and momenta
pi of the studied species are propagated by the equations of motion. The
motion of the species is detected during the simulation and corresponds
to the simulation trajectory.

2.2.1 Newton’s equations of motion

The MD method follows Newton’s second law of motion,

Fi = mir̈i = ṗi i = 1, 2, ...,N (2.1)

where Fi is the force exerted on particle i, mi is the mass and r̈i the
acceleration of particle i. The single or double dot in the previous equa-
tion denotes the first and the second time derivative, respectively.

Let us assume that the particles in the system are interacting via
given potential V (r) where r represents the full set of coordinates. The
force then can be written as the gradient of the potential:

Fi = −∇iV (2.2)

or

Fi = − ∂

∂ri

V(r) (2.3)

Combining 2.1 with 2.3 yields:

−∂V
∂ri

= mir̈i (2.4)

8 Chapter 2. N-body problem

2.2.2 Other formulations of classical equations

In this section we introduce two more formalisms to formulate the
classical equations of motion namely, Lagrangian and Hamiltonian for-
malism.

For our system of N interacting molecules and potential V, we de-
note the generalized coordinates q = (q1,q2, ...,qN) and their first
time derivative q̇ = (q̇1, q̇2, ..., q̇N). In the Lagrange formulation, fol-
lowing Cartesian coordinates (n = 3N), the equations of motion can
be written in the following form:

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 i = 1, 2, ..., N (2.5)

where L is the Lagrangian of the system, defined as the difference
between kinetic and potential energies:

L(q, q̇, t) ≡ K(q̇)− V (q) (2.6)

By expanding the kinetic energy term we arrive to the expression:

L =
1

2

n∑
i=1

miq̇i
2 − V (q) (2.7)

In the similar fashion, the generalized momenta is defined as:

pi =
∂L

∂q̇i
(2.8)

The second formulation we are going to mention is the Hamiltonian
formalism. Using this formalism the equations of motion are described
as:

q̇i =
∂H

∂qi
, ṗi = −∂H

∂qi
(2.9)

In the previous equation the H stands for the Hamiltonian function
which is the sum of the kinetic and potential energies:

H(p,q) = K(ṗ) + V(q) (2.10)

Hamilton’s equations of motion are reversible in time, i.e. the evo-
lution of the system can be retraced backwards.

2.2. Force Calculation 9

2.2.3 Integration Algorithm

Since all forces between the particles have been computed, it is
time consuming to integrate Newton’s equations of motion. There are
multiple algorithms designed to do this but we will use the so-called
Verlet algorithm, which is not only one of the simplest, but also usually
the best performing one.

What defines an algorithm as good or bad is how well it satisfies
various criteria, some of them we will briefly discuss here:

• Usually one would instantly think of speed first but that is not
always the case. Compared to other MD computations integration
requires rather small computing time. Similarly, memory usage
should be kept minimal but this is usually not an issue as modern
systems have in their disposition much greater memory storage.

• Accuracy for large time steps is more important. The longer the
time step we can use, the fewer evaluations of the forces are
needed per unit of simulation time.

• Newton’s equations of motion are time reversible and so should
our algorithms be.

• Algorithm should satisfy the energy conservation law.

Assuming Cartesian coordinates with r = {r1, ..., rN} we start the
derivation of the algorithm with a Taylor expansion of the coordinate
of a particle around time t [7]:

r(t + ∆t) = r(t) + ν(t)∆t +
f(t)

2m
∆t2 +

∆t3

3!

...
r + O(∆t4) (2.11)

r(t−∆t) = r(t)− ν(t)∆t +
f(t)

2m
∆t2 − ∆t3

3!

...
r + O(∆t4) (2.12)

Summing equations 2.11,2.12, we obtain:

r(t + ∆t) + r(t−∆t) = 2r(t) +
f(t)

m
∆t2 + O(∆t4)

or

r(t + ∆t) ≈ 2r(t)− r(t−∆t) +
f(t)

m
∆t2 (2.13)

10 Chapter 2. N-body problem

Verlet algorithm does not require the velocity to compute the new
position. However, one, can derive the velocity from knowledge of the
trajectory, using:

r(t + ∆t)− r(t−∆t) = 2ν(t)∆t + O(∆t3)

or

ν(t) =
r (t+ ∆t)− r (t−∆t)

2∆t
+O(∆t2) (2.14)

2.3 Computational Methods for Molecu-

lar Dynamics

In this section we introduce mathematical methods widely used to
either speed up the simulation algorithm or to avoid size effects.

2.3.1 Periodic Boundary Conditions

The objective of our simulation is to be able to predict properties
of systems that are much bigger than our model system. Moreover our
system is limited by the box dimensions and we have to be careful while
considering phenomena happening in the boundaries of our box. This
limitation can be overcome by employing a mathematical method which
mimics the presence of infinite surrounding of our N-particle system.
The method is based in the use of periodic boundary conditions.

Periodic boundary conditions are achieved by surrounding our sim-
ulation box with its exact copies throughout the space (Fig. 2.2a).
During the course of the simulation any movement of a particle in the
simulation box is precisely replicated by its periodic image in every
one of the other boxes. If a particle exits the simulation box, one of
its images will enter it from the opposite side (Fig. 2.2b). Thus in the
direction where the periodic boundaries are applied there are no hard
boundaries at the edge of the principal simulation box. In this way
randomly chosen particle will interact with all other particles in this
infinite periodic system, as well as with its own periodic image in all
other cells. If we assume that the interactions are pairwise additive then
the periodic boundary conditions will extend the calculations of the po-
tential energy for infinite number of pairs. This general picture does not

2.3. Computational Methods for Molecular Dynamics 11

(a) (b)

Figure 2.2: Periodic Boundary Conditions. (a) Our simulation space is
surrounded by exact copies of the simulation box. (b) Movement inside
the simulation box is replicated in all other boxes.

look particularly useful, however, in practice we deal with short-ranged
interactions and the calculation is reduced only to the pairs inside of
a certain cut-off distance rcut. We will discuss the potential energy in
Sec. 3.2 and how a specific choice of rcut affects the results in Sec. 4.2.

Figure 2.3: Minimum image convention

In Figure 2.3, the cut-off radius rcut is schematically shown. Within
this radius a given particle may interact with other particles placed in
one of the neighbouring cells. In order to avoid a double calculation
of the same pair positioned in various cells, we always calculate only
the interaction with the image closest to the reference particle. This is
known as the minimum image convention. We define rcut to be ≤ L

2
,

where L is the length of the simulation box.

12 Chapter 2. N-body problem

2.3.2 Nose-Hoover Thermostat

In our simulations the number of particles, the volume and the
temperature are kept constant. This setting is referred to in statistical
mechanics as canonical ensemble or NVT. The canonical ensemble is the
statistical ensemble that represents the possible states of a mechanical
system in thermal equilibrium with a heat bath at a fixed temperature.
The system can exchange energy with the heat bath, so that the states
of the system will differ in total energy [8]. Once the system can be
described as the canonical ensemble, one can use the expressions for
the partition function derived by the statistical mechanics to compute
the desired properties [7].

Several methods have been introduced to keep the temperature con-
stant while using the micro-canonical ensemble. In our case, all of the
systems will use the the Nosé–Hoover thermostat.

In one of the methods, the Andersen approach, the constant tem-
perature is achieved by stochastic collisions with a heat bath [9]. The
approach of Nosé is based on the use of an extended Lagrangian; that is,
a Lagrangian that contains additional, artificial coordinates and veloc-
ities. To constrain temperature Nosé introduced an additional degree
of freedom, s, in the Lagrangian, The parameter s plays the role of
a heat bath whose aim is to damp out temperature deviations from
the desired level. It requires adding to the total energy an additional
potential term of the form:

Vs = gkBT lns (2.15)

and an additional kinetic energy term of the form:

Ks =
Q

2

(
ṡ

s

)2

=
p2
s

2Q
(2.16)

In the above equations, g is the total number of degrees of freedom.
In a system with constrained bond lengths, for example, g = 3Natoms−
Nbonds − 3, with Natoms and Nbonds standing for the total number of
atoms and bonds respectively. The value 3 subtracted in calculating g
takes care of the fact that the total momentum of the simulation box is
constrained to be zero by the periodic boundary conditions. Q and ps
represent the ”effective mass” and momentum, respectively, associated
with the new degree of freedom s. Equations of motion are derived
from the Lagrangian of the extended ensemble, including the degree of

2.3. Computational Methods for Molecular Dynamics 13

freedom s. Their final form, according to Hoover’s analysis [10], is:

ṙi =
pi

mi

(2.17)

ṗi = −∂V
∂ri
− ṡ

s
pi (2.18)

ṗs =

(
N∑
i=1

p2
i

mi

− gkBT

)
/Q, ps = Q

ṡ

s
(2.19)

where the dot denotes a time derivative and pi is the momentum of
particle i.

An important result in Hoover’s analysis is that the set of equations
of motions is unique, in the sense that no other equations of the same
form can lead to a canonical distribution. The total Hamiltonian of the
system, which should be conserved during the MD simulation is:

HNose−Hoover =
N∑
i=1

p2
i

mi

+ V
(
rN
)

+ gkBT lns+
p2
s

2Q
(2.20)

2.3.3 Neighbor Lists

In order to determine how many particles interact inside of the shell
with radius rcut one has to check all the possible pairs within the box.
This fact may be the slow point of the simulation algorithm, as the
number of pairs scales quadratically with the number of particles.

Since the cut-off radius ensures that a given particle will only in-
teract with a finite number of other particles, we can build a list of
all these particles. Such a list is known as a Verlet neighbour list. In
Verlet lists each particle is surrounded by one additional shell with a
radius rl. The efficiency of the algorithm will depend on the thickness
of the shell. Additionally, the list is updated every certain time and
the proper estimation of the update frequency is crucial to the perfor-
mance of the algorithm. Both of the values may be tuned according to
the needs of the problem. For example, if we can estimate a time scale
at which most of the particles participating in the pair interaction will
not move distance greater than the rcut, this time estimation can help
us to find the most convenient parameters ri and frequency.

14 Chapter 2. N-body problem

Figure 2.4: Neighbour List

2.3.4 Cut-off

The computational cost associated with molecular dynamics simu-
lations is still very large, however representing a significant obstacle to
the more widespread applications of MD simulation techniques to the
study of complex biological processes [11]. MD simulations, like many
other computational methods, face a trade off between computational
efficiency and accuracy. Namely by reducing the quantity of computa-
tions in our simulations we are decreasing the accuracy we get.

In order to perform MD simulations less expensively or on longer
timescales, a number of approximations of the potential energy function
are often employed. The most computationally expensive part of MD
simulation is generally the calculation of non-bonded forces, including
both electrostatic and Van der Waals interactions, which act between
all pairs of atoms. A common approach to reduce the cost of this com-
putation is to set a maximum distance of interactions Rcut−off , limiting
the scope of interactions to a sphere with volume 4π

3
r3

cut−off under the
condition that potential degrades quickly enough in that distace, to
ignore any interaction between atoms separated by more than the cut-
off distance. This approach is generally accepted as being sufficiently
accurate for Van der Waals forces, which decay rapidly to zero as the
distance increases.

3. Model and simulation
details

3.1 Simulated Systems

All simulations we run, are executed in the (NVT) canonical ensem-
ble at 450K with the use of the Nose-Hoover thermostat, see section
[2.3.2].

In the simulatiom molecules can be represented either by the atom-
istic or the coarse-grained models. The atomistic model takes into ac-
count all the atoms of a chain while the coarse grained model separates
the chain into discrete atom groups. The coarse graining procedure re-
duces the number of degrees of freedoms which makes the simulation
computationally more feasible, however we lose the information at the
atomistic scale, e.g. partial charge, chemical affinity [12].

The atomistic model can either include all-atom details (explicit
atom model) or it neglects the hydrogens (united atom model, UA).
The explicit atom model considers each type of atom as independent
spherical center of interaction, including hydrogen, in comparison to
the united atom model UA which represents the atoms of hydrogen
and carbon in one ethyl CH2 or methyl CH3 unit. In this representation
carbon and hydrogens are considered as a unified center of interactions.

We used the united atom model for the polyethylene and graphene
molecules. It gives us the opportunity to simulate systems in the atom-
istic scale without losing information about the chemical structure as
it would be in the case of coarse grained model, however it is compu-
tationally cheaper than explicit atom model and we also avoid possible
quantum effects coming from the movement of light hydrogen atoms.
Including hydrogens would increase the number of atoms in the system
and in the case of large systems it would lead to exponentially larger
computational times.

16 Chapter 3. Model and simulation details

system number of number of number of box size
graphene atoms chains chain monomers [nm]

S1 2400 200 78 5.68 x 4.796 x 25.0
F1 0 200 78 5.68 x 4.796 x 120.0
F2 0 2000 78 11.36 x 9.592 x 120.0

Table 3.1: System Characteristics

3.1.1 System S1: Polyethylene chains with Graphene

Our first simulation system which we will refer to as ”System S1”
consists of polyethylene chains deposited on a graphene surface and
confined by a hard wall. In our work we used the united-atom model
in which the polymer chain was represented by the sequence of united
atoms consisting of one carbon and two or three hydrogen atoms per
unit. Namely, in our case the chain contains two CH3 groups intercon-
nected by CH2 units.

Graphene is placed in the bottom of our simulation box and is
formed by carbon atoms arranged in honey comb structure. The graphene
layer is frozen, which means that during the simulation the position of
the graphene atoms is constant.

The system is arranged in a way that is periodic only in two di-
rections i.e. we use the periodic boundary conditions only in x and y
direction while the z dimension is fixed.

The details related to the composition of the system S1 can be found
in Table 3.1 and a typical snapshot is shown in Fig. 3.1.

3.1.2 System F1: Polyethylene system with 200
chains

Our second simulation system which we will refer to as ”System
F1” consists of polyethylene chains in vacuum. In this case no surface
was present and the polyethelyne chains form a film surrounded from
both sides by vacuum. Again we used the united-atom model and the
system was periodic only in the x,y direction.

A representative snapshot is shown in Fig. 3.1b.

3.1. Simulated Systems 17

Figure 3.1: a) A typical snapshot from the simulation of S1 (top)
and b) F1 system (bottom). Red beads represent the monomers of
poly(ethylene), the cyan surface at the bottom is a graphene sheet and
the blue lines are used to illustrate the boundaries of the box.

18 Chapter 3. Model and simulation details

3.1.3 System F2: Polyethylene system with 2000
chains

Our third simulation system which we will refer to as ”System F2”
consists again of polyethylene chains in vacuum. It is similar to system
F1 but this time the simulation box has been increased four times
compared to F1, to allow for a higher maximum value of Rcut defined
previously in Sec. 2.3.4.

Details for all the systems are summarized in Table 3.1.

3.2 Potential Energy

To start a MD simulation we need to set up initial parameters for
the interactions between the particles in our systems. Assume a system
described in r = {r1, ..., rN}. The interactions are described by a poten-
tial defined as the derivative of the total force acted on all atoms of the
system. We distinguish bonded and non-bonded interactions therefore
the inter-atomic potential V (r) consists of two parts:

V (r) = Vbonded(r) + Vnon−bonded(r) (3.1)

Vbonded(r) stands for the bonded potential and Vnon−bonded(r) is the
potential corresponding to the non-bonded interactions. The potential
is pair-wise, it means that it only depends on the distance r between
a pair of particles. The description of these interactions constitutes
a force field. The force field parameters needed for a certain system
can be usually found in the literature being derived from quantum
simulations. To model the polyethylene chain we used well-established
TraPPE force field, widely used for alkanes [13]. In the following section
using the united-atom model (UA) we will introduce the expressions
for the components of the potential and we will report the used set of
parameters.

Bonded Potential Energy

The potential energy corresponding to bonded interactions can be
written as a sum of three terms:

Vbonded(r) = Vbonds(r) + Vangles(r) + Vdihedrals(r) (3.2)

where Vbonds is the potential describing the interaction due to the bonds
between the particles, Vangles is the angle potential among three con-

3.2. Potential Energy 19

Figure 3.2: Types of particle interactions.

Figure 3.3: Bond stretching (left) and bond stretching potential (right)

secutive particles in the chain, Vdihedrals is the potential describing the
interaction among 4 consecutive atoms i.e., is the angle φ of the two
planes defined from the four consecutive particles.

Bond Potential:
If there are bonds along consecutive atoms, then the bonding dis-

tance between atoms i, i+ 1 is defined as b = |ri − ri+1|, where ri, ri+1

are the positions of the atoms i and i+ 1, respectively.
In such case we can express harmonic bonding potential Vbond(r)

as:

Vbonds(r) =
∑
bonds

kb (b− b0)2 (3.3)

where Vbonds is the potential energy function for stretching a bond be-
tween the atoms i and i + 1, kb is the harmonic force constant and b0

is the equilibrium bond length. The harmonic function is the simplest
and sufficient form for determining most equilibrium geometries.

20 Chapter 3. Model and simulation details

atom group b0 [nm] kb [kJ/mol*nm2]
CH2 CH2 0.154 83736.0
CH2 CH3 0.154 83736.0
CH3 CH2 0.154 83736.0

Table 3.2: Parameters used in bond potential[13]

A sketch of a bond stretching together with a graphical representa-
tion of the potential can be seen in Fig. 3.3.

The parameters kb and b0 applied in the simulation of polyethylene
are summarized in Tab. 3.2.

Angle Potential:

Figure 3.4: Sketch of angle vibration (left) and bond angle potential
(right)

The functional form for the angle potential Vangles can be written
as:

Vangles =
∑

angles

kθ (θ − θ0)2 (3.4)

where kθ is the angle bending force constant and θ is the angle
between successive bonds. Let us define the bond vector bi = ri− ri+1.
Consequently, the θ angle is calculated by the formula:

cos θ =
bibi+1

|bi||bi+1|
(3.5)

A sketch of a angle vibration together with a functional form of the
potential can be seen in Fig. 3.4.

3.2. Potential Energy 21

atom group θ0(deg) kθ [kJ/mol*deg2]
CH2 CH2 CH2 114 519.611
CH2 CH2 CH3 114 519.611
CH3 CH2 CH2 114 519.611

Table 3.3: Parameters used in angle potential[13]

To calculate the angle potential we used parameters given in Tab.
3.3.

Dihedral Potential:

Figure 3.5: Left: Geometrical representation of the planes in the chain.
r23 is the diatomic distance and angle φ1234 is the dihedral angle used
in 3.6. Right: Ryckaert-Bellemans dihedral potential [14]

In order to describe the dihedral potential we use the Ryckaert-
Bellemans function given by the form:

Vdihedrals =
5∑

n=0

Cn (cos (φ− π))n (3.6)

where φ is the angle between the planes defined as following. If we
imagine a simple polymer chain and draw it in a way as it is illustrated
in Fig. 3.5 we can define the angle φ1234 as:

cosφ = −(b12 × b23) (b23 × b34)

|b12 × b23||b23 × b34|
(3.7)

where bij is the bond vector between atoms i, j.
A conversion from the GROMACS convention to the MDPAR can

be achieved by multiplying every coefficient Cn by (−1)n as described
in chapter 4.2.13 of the GROMACS manual [3].

22 Chapter 3. Model and simulation details

atom group c0 c1 c2 c3 c4 c5 [kJ/mol]
CH3 CH2 CH2 CH2 9.276 12.154 -13.117 -3.058 26.238 -31.493
CH2 CH2 CH2 CH2 9.276 12.154 -13.117 -3.058 26.238 -31.493
CH2 CH2 CH2 CH3 9.276 12.154 -13.117 -3.058 26.238 -31.493

Table 3.4: Parameters used in dihedral potential[13]

The Ryckaert-Bellemans potential is plotted in Fig. 3.5.
The parameters used to calculate the dihedral potential are given

in Tab. 3.4.

Non-bonded Potential Energy

The non-bonded potential is written as a sum of two terms the Van
der Waals and the electrostatic interactions:

Vnon−bonded(r) = VLJ(r) + Vc(r) (3.8)

Thus, non-bonded interactions which are dependent of the distance
between the particles and are the sum of Van der Waals described by
a typical Lennard-Jones (LJ) potential and electrostatic by Coulomb
potential.

Lennard-Jones Interactions

The Lennard-Jones potential VLJ between two atoms i and j equals:

VLJ = 4εij

((
σij
rij

)12

−
(
σij
rij

)6
)

(3.9)

εij is the depth of the LJ well for a distance of rij = rm = 2
1
6σij, σij is

the finite distance on which the inter-particle potential is zero. For the
calculation of σij and εij parameters we can use the Lorent-Berthelot
combination rules:

σij =
1

2
(σi + σj) , εij =

√
εiεj (3.10)

The parameters σ and ε for each atom are coming either from fits
to experimental data or quantum-mechanical calculations. For our sim-
ulations their values can been seen in the table below:

3.2. Potential Energy 23

type σ [nm] ε [kJ/mol]
CH2 0.395 0.3824
CH3 0.395 0.3824
CGR 0.340 0.2327

Table 3.5: Parameters σ and ε used in the Lennard-Jones potential.

The repulsive part of the Lennard-Jones equation (first term) de-
scribes the Pauli repulsion in small distances due to the overlap of the
electron orbitals. The second term describes the attraction of particles
in large distances due to Wan der Waals forces. The Lennard-Jones po-
tential is a mathematically simple model potential and as such is used
extensively in molecular simulations.

The Lennard-Jones potential is represented in Fig. 3.6 where the
characteristic distances rm and rcut are also shown. The values of σ
and ε for the PE model (CH2 and CH3) groups and the graphene
atoms (CGR) are shown in Table 3.5.

−1

 0

 1

 2

 3

 4

 5

rm rcut 0 1 2 3

V
/ε

r/σ

Lennard−Jones potential

−0.1

−0.05

 0

 0.05

 0.1

 2.3 2.4 2.5 2.6 2.7

Figure 3.6: Lennard-Jones for a non-bonded potential. rm is the dis-
tance at which the potential reaches its minimum value, rcut being the
cut-off distance.

Coulomb Interactions

If atom charges are present, we add the appropriate Coulomb po-

24 Chapter 3. Model and simulation details

tential, which is the potential due to electrostatic interactions between
two charged particles:

Vcoulomb(rij) =
QiQj

4πε0rij

(3.11)

where Qi, Qj are the charges of the particles i, j. rij is the distance
between particles i, j and ε0 is the dielectric constant in vacuum which
equals to 8.854×10−12C/mV. A schematic representation of all particle
interactions is shown in Fig. 3.2.

In all our simulations the charges Qi, Qj are equal to zero which
means that the calculation of the electrostatic energy can be omitted
and so the non-bonded energy will have only one component, namely
the Lennard-Jones potential.

3.3 Simulation Details

All the simulations were performed either by commercially available
GROMACS package [3] or by home-made code MDPAR [6]. These two
simulation programs differ in format of the configuration file and used
units.

Units in GROMACS are nanometers in length, picoseconds for time,
unified atomic mass for mass, kJ/mol for energy and Kelvins for tem-
perature. On the other side MDPAR works with units used in LAMMPS
package [4], namely Å, femtoseconds, gram/mol, Kcal/mol and Kelvins.
For the sake of clarity unless otherwise specified all the data in the thesis
are presented in the GROMACS units. As we mentioned in the previous
chapter the simulation procedure is divided into two parts, equilibra-
tion and production run. Started with the initial configuration which
included bulk polyethylene and graphene surface in the bottom in the
case of S1 and only the polyethylene bulk in the case of F1. We let the
systems equilibrate for approximately 0.5ns. We considered the system
to be equilibrated when the system properties became independent of
time. We start the production run after the equilibration. The length
of the production run was approximately 2ns and the time step was
1fs. We saved the configuration every 2ps.

4. Tail Correction

Let us now consider a case where we perform a simulation of a sys-
tem where the caclulated interactions are mostly short-range i.e, we
ignore interactions of atoms which are further apart than a specific dis-
tance rcut. In this context, short-ranged means that the total potential
energy of a given particle i is dominated by interactions with neigh-
boring particles that are closer than a short cutoff distance rcut. The
error that results when we ignore interactions with particles at larger
distances can be made arbitrarily small by choosing rcut sufficiently
large. However, if we use periodic boundary conditions 2.3.1, the case
that rcut has to be less than L

2
(half the side of the periodic box) is of

special interest because in that case we must consider the interaction
of a given particle i only with the nearest periodic image of any other
particle j. For periodic image convention see 2.3.1. If the intermolecular
potential is not rigorously zero for distances r > rcut, truncation of the
intermolecular interactions at rcut will result in a systematic error in
total potential energy. If the intermolecular interactions decay rapidly,
one may correct for the systematic error by adding a tail contribution
to V total [7]:

V total =
∑
i<j

Vc(rij) +
Nρ

2

∫ ∞
rcut

drV(r)4πr2 (4.1)

V total =

{
4ε
[(

σ
r

)12 −
(
σ
r

)6
]

r < rcut

2πρ
∫∞
rcut

drr2V(r) r ≥ rcut

(4.2)

where Vc stands for the truncated potential energy function for example
LJ potential as shown in eq. 4.2 and ρ is the average number density
and N is the number of particles interacting with the given potential.
In writing down this expression, it is implicitly assumed that the radial
distribution function g(r) = 1 for r > rcut. Clearly, the nearest periodic
image convention can be applied only if the tail correction is small.
From equation 4.1 it can be seen that the tail correction to the potential

26 Chapter 4. Tail Correction

energy is infinite unless the potential energy function V (r) decays more
rapidly than r−3 (in three dimensions). This condition is satisfied if the
long-range interaction between molecules is dominated by dispersion
forces. Dispersion forces are part of the van der Waals forces and are a
weak intermolecular force arising from quantum-induced instantaneous
polarization multi-poles in molecules. They can therefore act between
molecules without permanent multi-pole moments. However, for the
very important case of Coulomb 3.11 and dipolar interactions, the tail
correction diverges and hence the nearest-image convention cannot be
used. In such cases, the interactions with all periodic images should be
taken into account explicitly.

Several factors make truncation of the potential a difficult process.
First of all, one should realize that although the absolute value of the
potential energy function decreases with inter-particle separation r, for
sufficiently large r, the number of neighbors is a rapidly increasing
function of r. In fact, the number of particles at a distance r of a given
atom increases asymptotically as rd−1, where d is the dimensionality of
the system.

4.1 Tail Correction for isotropic system

Let us consider a specific example of isotropic system. For the three-
dimensional system interacting by LJ, the pair potential in which atoms
interact via pair potentials is given by:

Vlj = 4ε

[(σ
r

)12

−
(σ
r

)6
]

(4.3)

The average potential energy (in 3D) of any given atom i is given
by:

Vi = (
1

2
)

∫ ∞
0

dr4πr2ρ(r)V(r), i = 1, ...,N (4.4)

where ρ(r) denotes the average number density at a distance r from
a given atom i. The factor (1/2) takes care of double counting of pair
interactions. If we truncate the potential at a distance rc, we ignore for
each atom the tail contribution V tail:

V tail = (
1

2
)

∫ ∞
rc

dr4πr2ρ(r)V (r) (4.5)

4.2. Tail Correction for inhomogeneous system 27

where we have dropped the subscript i, because in an isotropic system
all the atoms are identical. We assume that for r ≥ rc, the density ρ(r)
is equal to the average number density ρ. If V (r) is the Lennard-Jones
potential, we find for V tail

V tail =
1

2
4πρ

∫ ∞
rc

drr2V(r)

=
1

2
16πρε

∫ ∞
rc

drr2

[(σ
r

)12

−
(σ

r

)6
]

=
8

3
πρεσ3

[
1

3

(
σ

rc

)9

−
(
σ

rc

)3
]

(4.6)

As an example, if we assume values of rc= 2.5σ and density ρσ3=
1, we find V tail= -0.535ε, where ε= 0.0914 kcal/mol and ε = 3.95 Å
(TRaPPE model [13]). Therefore, for N atoms the total truncated en-
ergy is N · Vtail = N(−0.535ε).

4.2 Tail Correction for inhomogeneous sys-

tem

In a many-body, inhomogeneous system with more than one type
of atoms the contribution to the long-range correction in the potential
energy, Vtails, will be the sum of the corrections from all atoms (or
species):

Vtail =
N∑

i=1

Vtail,i (4.7)

where n denotes the number of molecules and Vtail,i is the correction in
energy for molecule i due to its interaction with all other molecules.

In turn Vtail,i is the sum of corrections in energy due to the interac-
tion of the i− th molecule with molecules of all molecule types:

Vtail,i =
tn∑

tj=1

Vtail [ti, tj] (4.8)

where tn is the number of molecule types, tj is the type of molecule j
and ti is the type of the i − th molecule. Term in the brackets shows
the dependence of the correction on the type of i, j.

28 Chapter 4. Tail Correction

We will explain the above relations on a specific example: Let us
consider a system that has three atom types, namely C,H,O. Thus tn
will be equal to 3. tj will iterate between the 3 different types, so t1
will represent the atom type of C, t2 the atom type of H and finally t3
the atom type of O.

For a pair of atoms in a system that is periodic in the x, y axis the
correction is given by the following equation presented in ref. [15]:

Vtail [ti, tj] =

∫ zj+δ

zj

dz

∫ ∞
%

rdr

∫ 2π

0

dϕ
1

LxLyδ
Uti,tj [

√
r2 + (z− zi)2]

(4.9)

Z

1st layer

3rd layer

5th layer

Figure 4.1: Our simulation box divided in Jlayers along the z direction

A further approach is the division of the non periodic axis in our
case z in discrete layers, each of thickness δ. We follow this approach
and we refer to them as Jlayer see Fig. 4.1. Taking advantage of the
symmetry with respect to the polar angle ϕ after the integration we
arrive to an expression:

4.2. Tail Correction for inhomogeneous system 29

Vtail [ti, tj] =
1

2
2π

Nb−1∑
Jlayer=0

Ntj (Jlayer)×
∫ ∞
%

1

LxLy
Uti,tj [r̃] rdr (4.10)

r̃ =
√
r2 + (Jlayerδ − zi)2

where we sum over all the layers, Jlayer, ranging from 0 till Nb − 1, Nb

being the number of layers. Ntj stands for the number of particles of
type j per layer. Uti,tj represents the interaction of a molecule of type
i with a molecule of type j. The factor 1

2
takes care of the duplicated

pair iterations. Lx, Ly are the dimensions of plane x,y respectively. The
lower limit % of the integral is the minimum distance we integrate over
given by:

% =
√
max{R2

c − (Jlayerδ − zi)2, 0} (4.11)

Rc denotes the cut off distance, while zi is the coordinate of molecule
i on the z axis.

By combining equations 4.7, 4.8, 4.10 we get the complete equation:

Vtail =
n∑

i=1

tn∑
tj=1

Nb−1∑
Jlayer=0

πNtj (Jlayer)×
∫ ∞
%

r
1

LxLy
Uti,tj [r̃] dr (4.12)

30 Chapter 4. Tail Correction

By substituting Uti,tj with the common expression of Lennard-Jones
in 4.10 we end up with:

Vtail =
n∑

i=1

tn∑
tj=1

Nb−1∑
Jlayer=0

πNtj (Jlayer)

LxLy
×
∫ ∞
%

4εti,tjr

(
σ12
ti,tj

r̃12
−
σ6
ti,tj

r̃6

)
dr

(4.13)
Solving the integration we arrive at:∫ ∞

%

4εti,tj

(
rσ12

ti,tj(
r2 + (Jlayerδ − zi)2)6 −

rσ6
ti,tj(

r2 + (Jlayerδ − zi)2)3

)
dr

= 4εti,tj

(
−

σ12
ti,tj

10
(
r2 + (Jlayerδ − zi)2)5 +

σ6
ti,tj

4
(
r2 + (Jlayerδ − zi)2)2

)∞
ρ

= 4εti,tj

(
σ12
ti,tj

10
(
ρ2 + (Jlayerδ − zi)2)5 −

σ6
ti,tj

4
(
ρ2 + (Jlayerδ − zi)2)2

)

= εti,tj

(
2

5

σ12
ti,tj(

max{R2
c − (Jlayerδ − zi)2, 0}+ (Jlayerδ − zi)2)5 −

−
σ6
ti,tj(

max{R2
c − (Jlayerδ − zi)2, 0}+ (Jlayerδ − zi)2)2

)

= εti,tj

(
2

5

σ12
ti,tj

r1
10
−
σ6
ti,tj

r4
1

)
(4.14)

Substituting (4.14) in (4.13) we end with the final form of the equa-
tion:

Vtail =
n∑

i=1

tn∑
tj=1

Nb−1∑
Jlayer=0

πNtj (Jlayer)

LxLy
εti,tj

(
2

5

σ12
ti,tj

r1
10
−
σ6
ti,tj

r4
1

)
(4.15)

r2
1 = max{R2

c − (Jlayerδ − zi)2, 0}+ (Jlayerδ − zi)2 (4.16)

Since the main input in our calculations is the force, we just have to
find the derivative according to F = − dV

dr1
while keeping in mind that

due to 4.16 we derive over zi, thus the total force is:

4.2. Tail Correction for inhomogeneous system 31

Fz =

0 |Jlayerδ − zi| ≤ Rc∑n

i=1

∑tn
tj=1

∑Nb−1
Jlayer=0 2εti,tj

πNtj(Jlayer)
LxLy

(
−20

5

σ12
ti,tj

(Jlayerδ−zi)
11−

− (−4)
σ6
ti,tj

(Jlayerδ−zi)
5

)
|Jlayerδ − zi| > Rc

=

0 |Jlayerδ − zi| ≤ Rc∑n

i=1

∑tn
tj=1

∑Nb−1
Jlayer=0 8εti,tj

πNtj(Jlayer)
LxLy

(
σ6
ti,tj

(Jlayerδ−zi)
5−

−
σ12
ti,tj

(Jlayerδ−zi)
11

)
|Jlayerδ − zi| > Rc

(4.17)

Previously when explaining the Vtail in eq. 4.10 we mentioned that
the term 1

2
takes care of not counting doubly the interactions between

two pairs i, j. While that is correct for calculating the total potential
energy, when calculating the force for an inhomogeneous system we
explicitly have to take into account all the interactions of the species.
Therefore, a factor of two is added in the above equations of force 4.17.

Respectively, the force on molecule i , will be:

F i
z =

0 |Jlayerδ − zi| ≤ Rc∑tn

tj=1

∑Nb−1
Jlayer=0 8εti,tj

πNtj(Jlayer)
LxLy

(
σ6
ti,tj

(Jlayerδ−zi)
5−

−
σ12
ti,tj

(Jlayerδ−zi)
11

)
|Jlayerδ − zi| > Rc

(4.18)

Finally we may wish to consider the use of other potentials apart
from the Lennard-Jones. Thus our equation would be updated to a
more generic form:

F i
z =

tn∑
tj=1

Nb−1∑
Jlayer=0

2πNtj (Jlayer)

LxLy
×
(
−dV
dr1

)(∫ ∞
%

(
Dti,tj [r̃]

)
rdr

)
(4.19)

32 Chapter 4. Tail Correction

4.3 Alternative Derivation of the Tail Cor-

rection for an inhomogeneous system

In this section we will present an alternative derivation of the force
due to tail correction based on a direct integration on a two-dimensional
disk. We follow closely the mathematically machinery published in this
paper[15] but we implement a new approach derived by us. Instead of
partitioning our simulation space with a periodicity in x,y direction and
certain finite thickness in z direction, so to speak 3D layers of thickness
δ we consider them 2D.
We assume the following points:

• The force exerted on a pair of particles is only dependent on
their distance on axis z. With other words, since the system is
homogeneous in x and y directions the tail correction energy along
x,y is constant; thus the force in these directions is zero

• The thickness of a layer is in the order of a few Angstroms, so we
can consider the height of a layer in respect to axis z to be equal
to the middle of the layer’s height

Figure 4.2: Representation of the distance between one particle and
and the Lx, Ly plane.

4.3. Alternative Derivation of the Tail Correction for an
inhomogeneous system 33

∆ = Jlayer ∗ δ − zi
r =

(
ρ2 + ∆2

)
Fz(s) = F ∗ cos θ =

N

LxLy

∆

r
FLJ

F =

∫
dsFz(s) =

∫ ∞
po

∫ 2π

0

dpdφpFz(s) = 2π

∫ ∞
po

dppFz(s) = 2π

∫ ∞
po

dpp
N

LxLy

∆

r
FLJ

=
2πN∆

LxLy

∫ ∞
po

dpp
1

r
FLJ =

2πN∆

LxLy

∫ ∞
po

dpp
1

(p2 + ∆2)1/2
4ε

(
6σ6

r7
− 12σ12

r13

)
=

8πεN∆

LxLy

∫ ∞
po

dp
p

(p2 + ∆2)1/2

(
6σ6

(p2 + ∆2)7/2
− 12σ12

(p2 + ∆2)13/2

)

=
8πεN∆

LxLy

∫ ∞
po

dpp

(
6σ6

(p2 + ∆2)4 −
12σ12

(p2 + ∆2)7

)
=

8πεN∆

LxLy

(
6σ6

6 (p2
o + ∆2)3 −

6σ12

6 (p2
o + ∆2)6

)
=

2πN∆

LxLy
4ε

(
σ6

(p2
o + ∆2)3 −

σ12

(p2
o + ∆2)6

)

=
2πN

LxLy

 4ε
(
σ6

∆5 − σ12

∆11

)
|∆| > Rc

4ε∆
(
σ6

p6o
− σ12

p12o

)
|∆| ≤ Rc

(4.20)
po = max{

√
R2
c −∆2, 0}

For |∆| > Rc the term inside the brackets is exactly the same as
the solution in the previous section.

34 Chapter 4. Tail Correction

5. Parallel Programming

Traditionally software has been written for serial computation, where
a problem is divided in discrete series of instruction sets. Instructions
are executed sequentially on a single processor, with only one instruc-
tion being executed at any point in time as it is schematically shown
in Fig. 5.1.

Figure 5.1: Example of serial computing [16]

The major focus of the industry for improvement of the processing
power from the mid 80s was the increase of the density in transistors
fitted in integrated circuits and the increase of the operating frequen-
cies. In time the advancements in those fields increased so much as to
reach the physical barriers. While the transistor density still increased,
frequency scaling had reached power consumption and cooling barriers.
If we define the capacitance being switched per clock cycle as C, the
operating voltage V and the processor’s frequency F , then the power
consumption P of a processor is: P = CV 2F .

As we can see, with the increase of the operating frequency, there
is increase of the power consumption and consequently of heat produc-
tion. In addition the increased transistor density makes heat dissipation
more difficult and thus the cooling techniques required to counter the

36 Chapter 5. Parallel Programming

heat production become expensive and more complex. This brought a
halt on the efforts for higher processor frequency in 2004 when Intel
canceled its then current processor lineup for a focus on multi-core pro-
cessors [17]. With the end of frequency scaling, the transistors which
are no longer needed to facilitate frequency scaling were used to add
extra hardware, such as additional cores to share the total workload.

Interest in parallel computing had appeared as back as the early 60s
with the creation of the first supercomputers namely IBM’s STRETCH
and the LARC that solved problems of interest of the scientific com-
munity.

In layman’s terms parallel computing is the simultaneous use of
multiple compute units to solve a computational problem. The problem
is initially broken into discrete parts that can be solved concurrently.
Then we proceed to break each part in a series of instructions. Different
instructions are processed simultaneously on different processors. A
scheme summarizing these steps is shown in Fig. 5.2.

Figure 5.2: Example of parallel computing [16]

Therefore any computer consisting of more than two physical cores
is capable of parallel computing. We can increase the scale by using
computers that support multiple processors or in addition connecting
multiple computers via network which constitutes what we refer to as
a cluster.

At this point we should note some limitations of parallel computing.
The challenge of parallel computing is that not all problems are easily
parallelizable, and some of them are not parallelizable at all. In a serial

37

Figure 5.3: Example of a cluster computer [16]

algorithm one operation is performed after another and at the time it
is performed its input data are assumed to be up to date. In a par-
allel algorithm one has to decompose the problem in such a way that
parts of it can be processed, without the need for data that depends
on other parts of the problem processed elsewhere. Different parts of
the problem are then run in parallel and data are exchanged between
those parts only when needed. Some issues arise during such a decom-
position. No part of the processing should remain idle waiting for data
from other parts, at least not for long. The amount of exchanged data
should be minimal, as data transfer between processing units comes
at a cost. Imbalances and bad synchronization make the whole set of
processing units wait for the slowest part, so any effect of bad paral-
lelization is essentially scaled by the number of processing units. Even if
the problem can be made parallel to a great amount, writing the paral-
lel software for solving it, is not a trivial thing in the sense that a large
number of optimizations must be made for the overall performance to
be acceptable. These optimizations may largely depend on the archi-
tecture of the used computing system and thus may not be easy to be
generalized. Erroneous results are much more difficult to trace as data
and processing are delocalized, and the problem decomposition usually
adds significant complexity to existing serial algorithms. Finite com-
munication speeds between parts of the problem almost always limit
the amount of parallelization that can be achieved. What is the worst
of all, is that there are often algorithmic barriers that limit the poten-
tial degree of parallelization of a problem. Nevertheless, much work has
been done in parallel computing, and near optimal solutions exist for
a great range of algorithmic problems. It is usual to know beforehand,
what is the optimal performance one should expect to achieve, when
handling a problem of a certain class.

38 Chapter 5. Parallel Programming

In parallel computing, using only CPUs, there are two main mod-
els with their main distinction on how they distribute the data to be
operated on.

Distributed memory model

Figure 5.4: Example of a distributed memory model

The distributed memory model was the most common in the past
due to computers being single-core with their own memory. In the dis-
tributed memory model each processing unit operates on data that is
stored in its private memory and cannot be accessed by other process-
ing units. Any data exchange between processing units is explicit, and
some form of communication has to take place between processing units
in order for it to happen.

For example in Fig. 5.4 we see three single processor computers in-
terconnected by a network each with its own data in its private memory.
Any data that needs to be exchanged has to be transfered through the
network. Whenever remote data are needed, they must be explicitly
requested by the algorithm to be transmitted or received, therefore a
common problem is how to distribute the data and the cost of the
communications necessary for the distribution.

A widespread programming library specification for message-passing
used to code in the distributed memory model is MPI (Message Pass-

39

ing Interface) which is commonly used and is proposed as a standard
by a broad selection of vendors and implementors. It is an add-on li-
brary available for multiple programming languages including but not
restricted to C, C++, Fortran and a wide spectrum of operating sys-
tems like Linux, Windows and Mac OS X.

Shared memory model

In the shared memory model all the data that is being operated on is
implicitly shared between all the processing units (see Fig. 5.5). There
is no need for the algorithm to communicate data between the different
processors, but care must be taken to synchronize updates and access
to common data. While there are not explicit communication costs in
the shared memory model, there are costs involved in the sharing of the
data. Updates to a single datum shared from multiple processing units
must still be made in a serial way and access to that datum must usually
be somehow synchronized. The hardware taking care of the uniform
appearance of memory to different processing units, must make sure
that updates to a memory location from a processing unit are visible
to other processing units as well. There are cases when this might lead
to excessive processor-to-memory communications that cripple parallel
performance.

Figure 5.5: Example of a shared memory model

Generally shared memory parallelism is offering much higher per-
formances than distributed memory parallelism, but when performance
is not as high as expected it is more difficult to understand how it can
be improved, as it is not always obvious how the complex hardware
and software that implement shared memory operate. A widespread

40 Chapter 5. Parallel Programming

and portable compiler extension exists that supports shared memory
programming called openMP and has been around for many years mak-
ing it quite mature. It is available for multiple programming languages
including C, C++ and Fortran, and for multiple operating systems,
including Linux, Mac OS X and Windows. It is primarily focused on
the parallelization of loops that operate on sets of data, but it also pro-
vides directives for breaking up the parallel work into sections and sets
of tasks. It is designed so that existing serial code, or at least big parts
of it, can be easily parallelized, by minimal code changes that explicitly
state to the compiler which data are shared between processes and how
this sharing should be done.

Computing clusters much like the one used to run our simulations
are composed of nodes with multiple processes and adequate memory
interconnected with high speed networking. The cluster we work with
has 13 nodes. Nodes 1-8 have two 6-core processors with 16 gigabytes of
memory while nodes 9-13 have two 12-core processors with 32 gigabytes
of memory, totaling 216 cores with 288 gigabytes of memory. To achieve
the optimum performance of such a system we have to use the shared
memory approach internally on each of the nodes and the distributed
memory approach to combine the resources from all the nodes. In other
words we use openmp for the parallelization in each node and MPI for
the inter-node communication.

Before we describe openMP and MPI in the next two sections, we
will briefly describe how to measure the performance of a parallel al-
gorithm using the speedup function derived from Amdahl’s law [18]:

S(P) =
T1(S)

TN(P)
(5.1)

• S is the speedup factor

• T1(S) is the time required for the problem to be run serially

• TN(P) is the time required for the problem to be run parallelized
by N threads

5.1. OMP 41

5.1 OMP

OpenMP is not just a library but also a specification for a set of
compiler directives and environment variables. OpenMP works with
threads. Threads are concurrently executing blocks of code which share
access to a common memory space. The program is run once but it
spawns multiple threads that share the workload of the computations.
In general the operating system will create a number of threads equal
to the number of cores (M number of cores) that the processor has,
so its full potential is used. Also it is generally meaningless to create
more than M threads as some of them would have to share a single
processor’s time.

Threads have been used to share a single processors time making
what is known as multitasking available long before multi-core proces-
sors. Multitasking is when a single processor or even a single core runs
many programs at the same time, by slicing them up and running small
parts of them interchangeably, one after another, so that is seems to the
user they are all running at the same time, while in reality they are be-
ing executed concurrently. That happens because threads that are not
actively using much processing time but are waiting on some condi-
tion before they take action consume minuscule processing time, so the
system may be essentially in an idle state, even though many threads
may be running. On a modern multi-core processor multi-threading is
the natural way of exploiting its potential where instructions from the
same program are executed simultaneously on multiple cores.

The process of starting, synchronizing and terminating threads for
parallel code can be done in multiple ways using different program-
ming languages, but it is a quite tedious task, as different kinds of
threads must be created and especially due to the managing of the
synchronization. There is also the added problem of portability, as one
wishes to be able to port a parallel program to a different operating
system or compiler without having to modify the source code. OpenMP
has been created to provide a straightforward, consistent and portable
way to implement parallel shared memory algorithms, by making use
of the multi-threading capabilities of modern computers. It provides
constructs that inform the compiler how to automatically start and
manage thread groups that share the load of processing.

42 Chapter 5. Parallel Programming

1 #inc lude <omp . h>
2 #inc lude <iostream>
3 #inc lude <math . h>
4 #inc lude <chrono>
5 us ing namespace std ;
6

7 i n t main () {
8 // Random mathematical sum in s e r i a l code
9 auto s t a r t s e r i a l = std : : chrono : : h i g h r e s o l u t i o n c l o c k : :

now() ;
10

11 double s e r i a l s um=0;
12 f o r (i n t i =0; i <100000000; i++)
13 s e r i a l s um += pow(i , 1 0) ;
14

15 auto f i n i s h s e r i a l = std : : chrono : : h i g h r e s o l u t i o n c l o c k : :
now() ;

16

17

18 // Same random mathematical sum in p a r a l l e l code
19 auto s t a r t p a r a l l e l = std : : chrono : : h i g h r e s o l u t i o n c l o c k : :

now() ;
20

21 double pa ra l l e l s um = 0 ;
22 #pragma omp p a r a l l e l f o r d e f au l t (none) r educt ion (+ :

pa ra l l e l s um) num threads (4)
23 f o r (i n t i =0; i <100000000; i++)
24 pa ra l l e l s um += pow(i , 1 0) ;
25

26 auto f i n i s h p a r a l l e l = std : : chrono : : h i g h r e s o l u t i o n c l o c k
: : now() ;

27

28 // Output o f e l apsed time
29 std : : chrono : : durat ion<double> e l a p s e d s e r i a l =

f i n i s h s e r i a l − s t a r t s e r i a l ;
30 std : : chrono : : durat ion<double> e l a p s e d p a r a l l e l =

f i n i s h p a r a l l e l − s t a r t p a r a l l e l ;
31 std : : cout << ”Elapsed time s e r i a l : ” << e l a p s e d s e r i a l .

count () << ” , e l apsed time p a r a l l e l : ” <<
e l a p s e d p a r a l l e l . count () << endl ;

32 }

Listing 5.1: openMP example

Openmp in C and C++ works primarily with compiler pragma omp
directives. The “pragma omp parallel” directive informs the compiler
that the following block of code is to be run by simultaneous threads
followed by extra arguments that can specify multiple things. One of
the most common ones is that the compiler should not make any as-

5.1. OMP 43

number of threads time [s]
1 6.2857
2 3.2114
4 1.7099
6 1.2422
8 0.9639

Table 5.1: Time required for code in serial and in parallel with the use
of openMP.

sumptions about which variable is local to a thread and which is shared
by all threads, declared with the ”private()” and ”shared()” clause re-
spectively. In our example ”pragma omp for” instructs the compiler
that it should not run the block of code just using multiple threads
but that the loop’s iterations should be broken down per thread - so
each thread takes care of 1/Nth of the loop’s iterations. The reduction
clause is considered a private type of variable and in our case ”paral-
lel sum” is used to sum the values from all of the threads very own
private ”parallel sum” into the ”parallel sum” variable that we have
declared outside the parallel region. We should note that the “pragma
omp parallel for” directive combines two openMP directives into one,
something that is not always the correct thing to do as a series of
successive loops may need to be executed by multiple threads. Finally
”num threads()” explicitly sets the number of threads that should be
used.

To demonstrate how easily a serial code can be parallelized and
subsequently sped up we used an example openMP code - see [5.1] - in
serial (1 thread) and in parallel (2,4,6,8 threads) and we provide the
results in Tab. 5.1. The system it was run on was a node with dual
CPU E5-2680 v3 and 32 gigabytes of memory.

In Fig. 5.6 we can see Tab. 5.1 plotted and it is evident that a)
the time needed for the example run is decreasing as the number of
threads increases and b) the decrease in time is not constant as the
threads increase, so there is a performance loss. We can take a better
look at the performance by looking at Fig. 5.7 which is a representation
of the speedup. The continuous line shows how the performance would
be if the parallelization scaled perfectly with the increase of threads in
a 1:1 ratio, with absolutely no loss, therefore a theoretical take. The
rectangle points paint us the real image. Even for a simple loop as the
one we used, albeit with absolutely no optimization, the scaling is far

44 Chapter 5. Parallel Programming

	0

	1

	2

	3

	4

	5

	6

	7

	1 	2 	3 	4 	5 	6 	7 	8

Ti
m

e	
[s

]

Number	of	threads

Figure 5.6: Plot of time needed for the run, as the number of used
threads increases.

	1

	2

	3

	4

	5

	6

	7

	8

	1 	2 	3 	4 	5 	6 	7 	8

Sp
ee

du
p

Number	of	threads

experimental	results
theoretical	linear	scaling

Figure 5.7: Speedup representation.

from nominal especially for the 8 and 6 threads runs. Still such a result
is to be considered as a problem well parallelized and portraits the clear
benefits of parallelization.

5.2. MPI 45

5.2 MPI

As we have mentioned before MPI does not add to the language
syntax but is a library of routines. Multiple instances of a program run
at the same time and the MPI library is used to handle communication
and synchronization between those instances. Groups of instances (spe-
cific parts of the code) of a program may collectively create communica-
tors. Any communication or collective operation must take place in the
context of a communicator. There can be no data exchange without the
use of a communicator. The global ”MPI COMM WORLD” communi-
cator is the default communicator created automatically by MPI, so in
the simplest scenario only the global communicator is used during the
whole execution of a program. When it’s required by a set of processes
to differentiate their execution path they may create their own distinct
”communication space” by the derivation of sub-communicators from
the global communicator. An instance of a program is not limited to
one communicator but can take part in many different communicators
at the same time. Each instance of the program is called a “rank” in the
context of a communicator. Each rank has a unique, sequential number
assigned to it and so if a program runs on five processors the ranks of
its instances will be 0,1,2,3 and 4. When an instance of the program
participates in multiple communicators it may be assigned a different
rank number at each of the communicators. The ranks numbers are
used to identify program instances in communicators. It is the means
by which an instance of the program identifies itself, and the means
by which the MPI library is instructed, through the code, with which
other instance of the program it should perform an operation with.

Data are exchanged between ranks in the form of messages. When
one rank sends a message another must receive it. Messages have a
sender, a receiver, a type, and carry some data. Messages of different
types are distinguished between them by an integer tag. A sender may
send many messages of different types to a receiver. The receiver may
choose which message types he wishes to receive at a time from that
specific sender. If the sender, receiver and message types do not match
at both ends of a send/receive operation the data exchange fails.

Sends and receives can be processed synchronously or asynchronously.
When sending data one may choose to wait until a matching receive
has started before continuing, or choose to continue doing other stuff
till the send operation successfully completes. Likewise on the receiv-
ing end one can choose to wait until a message he expects is received
before he continues, or may just check if such a message exists and

46 Chapter 5. Parallel Programming

do other stuff until the wanted message arrives. Apart from point to
point send-receive operations, MPI also supports some sorts of collec-
tive operations. The simplest of them is the reduction operation, where
sums, products, minimums etc of values residing at different ranks are
calculated and made available to these ranks. Others are the broadcast
operation where some data residing in one rank are made available to
all other ranks, or the scatter operation where different parts of data
originating from a single rank are made available to all other ranks.

6. MDPAR Algorithm

6.1 Description of MDPAR

MDPAR is a parallel molecular dynamics simulator implemented in
C++ using MPI and openMP. The parallelization is done mainly by
domain decomposition by splitting the simulation volume to smaller
(equal) parts and assigning one part to each processor involved. The
rank (thread) number is easily mapped to the rank coordinates (i,j,k)
and so we acquire the neighbor rank numbers at each direction.

1. When the simulation starts, the configuration is read from disk
by the root rank (serial process). Global configuration data are
transmitted to the other ranks using the MPI broadcast function.

2. The dimensions of the decomposition are decided accordingly to
the number of processes available. Using MPI’s scatter, atoms
and their bonds are sent to their respective ranks by using a
temporary linked list to classify atoms to ranks.

3. The coordinates of atoms assigned to neighboring ranks are needed.
We limit it to the immediate neighbors by demanding that the
potential cutoff distance does not exceed the dimension of the
volume assigned to each rank. As such at most there can be 26
neighboring ranks.

4. The communications required by the ranks on step 3 are split
in two parts. The first stage is when the neighbor lists of the
atoms are being constructed – to determine the atoms that are
close enough to interact. Atoms that may interact with atoms
of a neighbor are considered the ones whose distance from the
boundaries is not greater than the potential cutoff distance.

5. The check for cross rank interaction happens by having each rank
send to its neighbors the coordinates of atoms it holds. The re-

48 Chapter 6. MDPAR Algorithm

mote rank replies with which atoms actually have cross rank in-
teractions.

6. Steps 4 and 5 are sped up by using the linked cell list described
in step 2.

7. For part 2, for each integration step the coordinates of atoms
needed by remote ranks must be transmitted to them. Further-
more some reaction forces will be applied to the transmitted
atoms by the receiving ranks which will have to be gathered and
summed up to the total force acting on the local atoms.

8. After some integrations (order of 10) the neighbor lists have to
be reconstructed. A check is done to verify if some atom’s coor-
dinates are out of bounds and to identify to which neighbor rank
they must be transferred to.

Classes / methods of importance

• Loading of initial configuration – SimulationSetup class and specif-
ically the initialize method.

• Instantiation of a valid simulation – startSimulation method.

• Communications – mainly by the Simulation class.

• Identification of neighbor interactions and preparation for inte-
gration – makeLists method.

• Relocation of atoms amongst ranks – transferAtoms.

• Transfer of coordinates – checkGetNeiPositions.

• Transfer of reaction forces – getf and get fref methods.

6.2 Implementation of Tail Correction

6.2.1 Input Configuration

• From the LJ case we conclude that either δlayer or Nb should be
given as input.

• Also a boolean value should be read to indicate whether inhomo-
geneous tail correction should be applied or not.

6.2. Implementation of Tail Correction 49

• These parameters should be provided in the .cfg file which is read
by SimulationSetup.

• The parameter names and help strings should be described in
SimulationSetup::initKnownArgs()

• They should be read in member variables of SimulationSetup in
SimulationSetup::initialize

• They should be broadcasted to mpi nodes in SimulationSetup::startSimulation

• They should then be assigned to each simulation node in Simula-
tionSetup::startSimulation using some helper function like Simu-
lation::setDeltaNbLayer(thickness) and Simulation::setNbTail(on/off)

6.2.2 Calculation of N(J layer)

• Should be performed after the linked cell list creation, inside
makeLists, every so many calls, as the density profile is not ex-
pected to vary rapidly

• A container function putAtomsInLayers() has been created and
waits implementation

• The density histogram should be mostly implemented in a differ-
ent class to avoid core bugs and a pointer to it should be kept in
the Simulation class

• Domain and mpi info can be retrieved through Simulation::m domain

50 Chapter 6. MDPAR Algorithm

7. Results

In the following we give results from our simulations.

7.1 Comparison of results obtained by dif-

ferent codes and with / without tail

correction

We begin by comparing the results obtained by using home-made
MDPAR code with those obtained by commercially available GRO-
MACS package. The property that we compare with is the density
profile which is the amount of mass as a function of distance r from the
graphene for S1 while for F1,F2 is the distribution of mass of the poly-
mer film. Density is a very important property and it is widely known
to affect all system properties. We define as reference system the S1 sys-
tem described in 3.1.1 and simulated with GROMACS. The advantage
of using this particular system is that it has been previously simulated
by members of our group [19]. We run S1 on MDPAR without tail cor-
rection, with Rcut=1.0 for 2ns. The same system is then simulated by
GROMACS and their respective density histograms are compared. In
Fig. 7.1 we can see the characteristic peak near the graphene layer, typ-
ical for polymer absorption on the surface where the attractive forces
between the graphene and the polyethylene are quite strong. We can
also observe that at distances greater than approximately 2nm there is
a plateau in the density function, which value corresponds to the den-
sity in the bulk-like region. At distances ≈ 18nm the function decays
to 0, as the polymer creates a free surface in contact with vacuum. The
interactions between the frozen graphene layer and the polyethylene
monomers causes a movement of the bulk towards the bottom of the
simulations box evident by the shift of the tail towards the beginning
of the axis.

In Fig. 7.2 we present the same data in Fig. 7.1 but we also include

52 Chapter 7. Results

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 50 100 150 200 250

D
en

si
ty

 p
ro

fil
e

(g
 /

cm
3)

Distance from graphene (Å)

GRO rc1.0
MDPAR rc1.0

 0.2

 0.4

 0.6

 0.8

 160 170 180 190 200

Figure 7.1: Gromacs and MDPAR density histogram comparison for
Rcut=1.0

the density histogram of a S1 system that is simulated for 2ns via MD-
PAR for Rcut=1.0 and with tail correction. We can detect a tendency
of the bulk-region density to be systematically higher than in the case
of systems with no tail corrections (compare light blue line with either
green or purple line in Fig. 7.2) as well as a shift of polymer / vacuum
inteface. The bigger forces derived by the addition of energy due to the
tail correction potential lead to higher density and a small decrease of
film thickness.

To evaluate the performance of the Tail Correction we will compare
the density histogram of the Tail Correction run with the following two
runs:

• Gromacs run for 2 ns with Rcut=1.5

• MDPAR run for 2 ns with Rcut=1.5, without Tail Correction

We chose Rcut = 1.5 as this is widely considered as enough distance
to include the correction by tail correction, simulated by both packages
to further show the similar results.

As we can see in 7.3 the curve corresponding to tail correction ap-
pears to have larger bulk density. The behavior of the ”tail” supports

7.1. Comparison of results obtained by different codes and with /
without tail correction 53

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 50 100 150 200 250

D
en

si
ty

 p
ro

fil
e

(g
 /

cm
3)

Distance from graphene (Å)

mdpar rc1.0
GRO rc1.0

rc1.0 TC

 0.2

 0.4

 0.6

 0.8

 150 160 170 180 190 200

Figure 7.2: Gromacs, MDPAR density histogram comparison for
Rcut=1.0, MDPAR density histogram comparison for Rcut=1.0 with
Tail Correction

that statement since the polyethylene bulk has shrunk due to the in-
creased forces.

In order to check the possible effect of the frozen graphene layer
on the tail correction implementation we remove the frozen graphene
layer from our system and repeat the process. The polyethylene film is
now surrounded in both sides by vacuum. Due to the absence of the
Lennard-Jones potential caused by the interaction of the polyethylene
and the graphene we expect not to see the characteristic peak. The
density profile should have a symmetry to it as there are no external
forces in the vacuum and so the polyethylene acts like a sphere in the
vacuum.

Our new S2 system’s properties can be seen in 3.1.2.

In Figure 7.4 we confirm our expectations regarding the polyethylenes
behavior in vacuum. It is also clear that there is no effect of the frozen
graphene layer on our implementation.

As the movement of the bulk is not easy to discern, we will try to
make it more easily understood by plotting a density graph Fig. 7.5 con-
taining the following measurements: GROMACS using an Rcut=1.0,1.5

54 Chapter 7. Results

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 50 100 150 200 250

D
en

si
ty

 p
ro

fil
e

(g
 /

cm
3)

Distance from graphene (Å)

GRO rc1.5
MDPAR rc1.5

MDPAR rc1.0 TC

 0.2

 0.4

 0.6

 0.8

 150 160 170 180 190 200

Figure 7.3: Gromacs, MDPAR density histogram comparison for
Rcut=1.5, MDPAR density histogram comparison for Rcut=1.0 with
Tail Correction

without the use of tail correction and MDPAR using Rcut=1.0 with
the use of both approaches for tail correction. In the above figure it
should be easier to discern the progressive differences beginning from
Rcut=1.0, followed by Rcut=1.5 and finally the tail correction imple-
mentation. As we can see the implementation of tail correction exceeds
the Rcut=1.5 a value that is generally deemed adequate to cover the
energy loss from the tail correction. This potential overestimation of
the tail correction is not something we should really worry about as
there is no reason that a Rcut=1.5 is great enough to contain all the
energy corrections. Therefore, it creates the question for which Rcut we
will get approximately the same value as with tail correction and that
is something we will investigate in the next section.

7.2 Convergence of the Tail Correction

As we have mentioned before the total energy is equal to the Lennard-
Jones potential in combination with the tail correction component, if
present (see eq. 4.1, 4.2). While performing simulations one could won-

7.2. Convergence of the Tail Correction 55

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 400 600 800 1000 1200 1400

D
en

si
ty

 p
ro

fil
e

(g
 /

cm
3)

Distance from graphene (Å)

GRO rc1.0
GRO rc1.5

MDPAR TC

 0.65

 0.7

 0.75

 600 650 700 750 800

Figure 7.4: Polyethelyne in vacuum. Density histogram comparison for
Rcut=1.0, Rcut=1.5 with Gromacs and MDPAR Rcut=1.0 with Tail Cor-
rection

der what would be the required value of Rcut in a simulation with no
tail correction in order to achieve the same total energy as in a simu-
lation using tail correction. In other words, what is the Rcut distance
for which the potential converges to the energy with the tail correction
implementation.

To answer the above dilemma we created the following setup. We
used the F2 system with tail correction and Rcut = 1.0 to run a simula-
tion and collected the total energy values (VLJ + VTC). Next we run a
set of simulations, this time without the use of tail correction and with
Rcut varying from 0.9 nm up to 4.9 nm. The results are presented in
Tab. 7.1 where ∆V is equal to the total potential energy from the sim-
ulation with tail correction minus the VLJ from a simulation without
tail correction.

The total potential energy in our simulations with tail correction
was equal to -57165.098 [Kcal/mol]. As we can see from Table 7.1 for a
given error of approximately 0.1%, the computation of the LJ converges
only for values of rcut ≈ 3.6nm. Such values are not feasible in MD
simulations due to the extreme computational resources required as we

56 Chapter 7. Results

Rcut VLJ ∆V ∆V
[nm] [Kcal/mol] [Kcal/mol] %

0.9 -49657.322 7507.775 84.881
1.0 -51725.525 5439.573 89.484
1.1 -53130.275 5439.573 92.406
1.2 -54084.306 3080.791 94.304
1.4 -55248.911 1916.187 95.532
1.6 -55907.327 1257.771 97.750
1.8 -56300.188 864.909 98.464
2.0 -56550.792 614.305 98.914
2.4 -56832.168 332.929 99.414
2.8 -56968.915 196.183 99.656
3.2 -57048.745 116.353 99.796
3.6 -57096.167 68.931 99.879
4.0 -57128.415 36.683 99.936
4.4 -57147.952 17.145 99.970
4.8 -57161.343 3.754 99.993
4.9 -57163.981 1.117 99.998
5.0 -57166.348 -1.251 100.002

Table 7.1: Convergence to TC

7.2. Convergence of the Tail Correction 57

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 50 100 150 200 250

D
en

si
ty

 p
ro

fil
e

(g
 /

cm
3)

Distance from graphene (Å)

GRO rc10
GRO rc15

MDPAR rc10 TC

 0.2

 0.4

 0.6

 0.8

 150 160 170 180 190 200

Figure 7.5: MDPAR with tail correction and GROMACS using
Rcut=1.0,1.5 without tail correction

demonstrated earlier by comparing the time required for rcut = 1.0 with
1.5 and 2.0. Clearly it shows that the assumption that using an rcut of
up to 1.5 to incorporate the potential energy from the tail correction
is false and even in that case there is a noticeable systematic error
introduced.

The contents of Table 7.1 have also been plotted and their represen-
tation can be seen in Fig. 7.6. The horizontal line represents the total
potential energy of the simulation using tail correction.

58 Chapter 7. Results

-58000

-57000

-56000

-55000

-54000

-53000

-52000

-51000

-50000

-49000

	0.5 	1 	1.5 	2 	2.5 	3 	3.5 	4 	4.5 	5

LJ
	e
ne
rg
y	
(K
ca
l	/
	m
ol
)

rcut	distance	[nm]

Figure 7.6: Plot of the Lennard-Jones energy as a function of the Rcut

distance. The dashed line represents the total potential energy of the
simulation using TC.

8. Conclusions

Here we have studied molecular systems through molecular dynam-
ics simulations, as an example of a N-body problem. We have developed
a new method to incorporate the tail correction potential energy in our
calculations for an inhomogeneous system. Furthermore, we have shown
the importance of precise tail correction calculations and how otherwise
they introduce a notable systematic error affecting the system’s prop-
erties. We proceeded to formulate an alternative derivation of the tail
correction of the inhomogeneous system done by direct integration and
have shown it arrives in the exact same equations. We implemented
our tail correction methods in the MDPAR open-source package using
MPI and openMP for parallelization of our code. We simulated us-
ing our implementations in two types of systems, polyethylene with a
deposited frozen graphene layer and polyethylene surrounded on both
sides with vacuum and compared the results using density histograms.
Our results have shown clear differences with and without the use of
our tail correction method and confirmed the importance of a proper
calculation of the tail correction in inhomogeneous systems. In addition
we have shown that usage of the truncated LJ potential with a large
rcut is clearly not enough even by using an rcut as high as 1.5 which is
widely regarded as the ”upper limit” by the scientific community. We
expanded by calculating the convergence of the tail correction poten-
tial energy and provided a rcut value at which the systematic error is
removed but at prohibitive computational cost. Future goals include
further analysis of the model system, optimization and expansion of
the parallel code used to implement our methods.

60 Chapter 8. Conclusions

Bibliography

[1] J. L. Hennessy and D. A. Patterson, Computer Architecture, Fifth
Edition: A Quantitative Approach. San Francisco, CA, USA: Mor-
gan Kaufmann Publishers Inc., 5th ed., 2011.

[2] K. Johnston and V. Harmandaris, “Hierarchical simulations of hy-
brid polymer-solid materials,” Soft Matter, vol. 9, pp. 6696–6710,
2013.

[3] B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, “Gro-
macs 4: Algorithms for highly efficient, load-balanced, and scalable
molecular simulation,” Journal of Chemical Theory and Compu-
tation, vol. 4, no. 3, pp. 435–447, 2008.

[4] S. Plimpton, “Fast parallel algorithms for short-range molecular
dynamics,” Journal of Computational Physics, vol. 117, no. 1, pp. 1
– 19, 1995.

[5] J. Halverson, T. Brandes, O. Lenz, A. Arnold, S. Bevc,
V. Starchenko, K. Kremer, T. Stuehn, and R. D., “Espresso++:
A modern multiscale simulation package for soft matter systems,”
Computer Physics Communications, vol. 184, Apr. 2013.

[6] T. Chazirakis, “empty,” empty, empty.

[7] D. Frenkel and B. Smit, Understanding Molecular Simulation. Or-
lando, FL, USA: Academic Press, Inc., 2nd ed., 2001.

[8] D. McQuarrie, Statistical Mechanics. University Science Books,
2000.

[9] H. C. Andersen, “Molecular dynamics simulations at constant
pressure and/or temperature,” The Journal of Chemical Physics,
vol. 72, no. 4, pp. 2384–2393, 1980.

62 Bibliography

[10] W. G. Hoover, “Constant-pressure equations of motion,” Phys.
Rev. A, vol. 34, pp. 2499–2500, Sep 1986.

[11] S. Piana, K. Lindorff-Larsen, R. M. Dirks, J. K. Salmon, R. O.
Dror, and D. E. Shaw, “Evaluating the effects of cutoffs and treat-
ment of long-range electrostatics in protein folding simulations,”
PLOS ONE, vol. 7, pp. 1–6, 06 2012.

[12] D. Fritz, K. Koschke, V. A. Harmandaris, N. F. A. van der Vegt,
and K. Kremer, “Multiscale modeling of soft matter: scaling of
dynamics,” Phys. Chem. Chem. Phys., vol. 13, pp. 10412–10420,
2011.

[13] M. G. Martin and J. I. Siepmann, “Transferable potentials for
phase equilibria. 1. united-atom description of n-alkanes,” The
Journal of Physical Chemistry B, vol. 102, no. 14, pp. 2569–2577,
1998.

[14] J.-P. Ryckaert and A. Bellemans, “Molecular dynamics of liquid
alkanes,” Faraday Discuss. Chem. Soc., vol. 66, pp. 95–106, 1978.

[15] K. C. Daoulas, V. A. Harmandaris, and V. G. Mavrantzas, “De-
tailed atomistic simulation of a polymer melt/solid interface:
Structure, density, and conformation of a thin film of polyethy-
lene melt adsorbed on graphite,” Macromolecules, vol. 38, no. 13,
pp. 5780–5795, 2005.

[16] B. Barney, Introduction to Parallel Computing. Lawrence Liver-
more National Laboratory, 2007.

[17] L. Flynn, “Intel halts development of 2 new microprocessors,” New
York Times, 2004.

[18] G. M. Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” in Proceedings of
the April 18-20, 1967, Spring Joint Computer Conference, AFIPS
’67 (Spring), (New York, NY, USA), pp. 483–485, ACM, 1967.

[19] A. Rissanou and V. Harmandaris, “Dynamics of various polymer-
graphene interfacial systems through atomistic molecular dynam-
ics simulations,” Soft matter, vol. 10, pp. 2876–88, 03 2014.

