
 Alexandros Kanterakis                                                          -1-                                                                   MSc Thesis

 

 

 

 

 
 

Thesis Title 

Gene Selection & Clustering Microarray Data: 
The MineGene System 

 
 

 

Αλέξανδρος Καντεράκης 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ηράκλειο, Κρήτη 
Απρίλιος 2005 

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 

ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 Alexandros Kanterakis                                                          -i-                                                                   MSc Thesis

Gene Selection & Clustering Microarray Data: 
The MineGene System 

 
Kanterakis Alexandros 

Master of Science 

 

 

Department of Computer Science 

University of Crete 

 

 

Abstract 

 

Over the last years we witness a revolution initiated by the completion of the Human 
Genome Project. DNA, the molecule that encodes our genetic information, has been 
fully sequenced setting new promises and challenges for understanding the role of 
genetic factors in human health and diseases. Moreover, DNA Microarrays are 
devices that measure the expression of many thousands of genes in parallel 
permitting the rapid profiling of gene expressions. Although these technological 
advances lead us to the understanding of the genetic base of various diseases it is 
evident that we need to integrate the knowledge normally processed in the clinical 
setting.  In this Thesis we present firstly the features and components of a seamless 
modern information system for microarray data management that follows specific 
well-known ontologies and annotations alongside with some existing 
implementations. Furthermore we envisage a synergic clinico-genomic decision 
making scenario, where patient’s genotypic and phenotypic profile will be utilized for 
disease diagnose and treatment. Consequently we present two novel machine 
learning algorithms that facilitate the integration of such data in the medical decision 
process. The first is a supervised gene selection algorithm based on gene ranking 
through an entropic metric. The second is an unsupervised graph theoretical 
hierarchical clustering approach. These methods have been implemented and 
applied to real-world datasets and compared to other published approaches.  
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Μεταπτυχιακή εργασία 

 

 

Τµήµα Επιστήµης Υπολογιστών 

Πανεπιστήµιο Κρήτης 

 
Περίληψη 

 
Τα τελευταία χρόνια είµαστε µάρτυρες µίας επανάστασης η οποία ξεκίνησε µε την 
ολοκλήρωση της αποκωδικοποίησης του ανθρώπινου γονιδιώµατος. Το DNA, το 
µόριο που περιέχει τις γενετικές µας πληροφορίες έχει αναλυθεί θέτοντας νέες 
υποσχέσεις και προκλήσεις για την κατανόηση του ρόλου των γενετικών 
παραγόντων στην υγεία και ασθένεια των ανθρώπων. Επιπλέον, οι µικροσυστοιχίες 
DNA είναι συσκευές που µετράνε τη ταυτόχρονη έκφραση πολλών χιλιάδων 
γονιδίων, επιτρέποντας την ταχύτατη καταγραφή της έκφρασης των γονιδίων. 
Παρόλο που αυτές οι τεχνολογικές εξελίξεις µας οδηγούν στην κατανόηση της 
γενετικής βάσης διάφορων ασθενειών είναι προφανές ότι πρέπει να συµπεριλάβουµε 
και την γνώση που έχει αποκτηθεί από την κλινική εµπειρία. Στην παρούσα εργασία 
παρουσιάζουµε αρχικά τις ιδιότητες και τα κύρια στοιχεία ενός αποκεντρωµένου 
σύγχρονου πληροφοριακού συστήµατος το οποίο χρησιµοποιεί συγκεκριµένες 
γνωστές οντολογίες και επισηµειώσεις για διαχείριση δεδοµένων που έχουν 
παραχθεί από πειράµατα µε µικροσυστοιχίες και αναλύουµε διάφορες υπάρχουσες 
υλοποιήσεις. Στη συνέχεια οραµατιζόµαστε ένα συνεργικό κλινικό-γενοµικό σενάριο 
λήψης αποφάσεων όπου ο γονότυπος και ο φαινότυπος των ασθενών θα 
αξιοποιείται για διάγνωση και θεραπεία. Επιπροσθέτως παρουσιάζουµε δύο 
πρωτότυπους αλγόριθµους µηχανικής µάθησης που υλοποιούν την ολοκλήρωση 
αυτών των δεδοµένων κατά τη διαδικασία λήψης ιατρικών αποφάσεων. Ο πρώτος 
είναι ένας επιβλεπόµενος αλγόριθµος για επιλογή γονιδίων ο οποίος βασίζεται στη 
βαθµολόγηση γονιδίων µέσω µίας εντροπικής µετρικής. Ο δεύτερος είναι ένας µη 
επιβλεπόµενος γραφο-θεωρητικός αλγόριθµος για ιεραρχική κατάτµηση. Τέλος 
παρουσιάζουµε την υλοποίηση των παραπάνω µεθόδων, την εφαρµογή τους σε 
πραγµατικά δεδοµένα καθώς επίσης και την σύγκρισή τους µε άλλες δηµοσιευµένες 
προσεγγίσεις. 

Επόπτης: Πλεξουσάκης ∆ηµήτριος 

Αναπληρωτής Καθηγητής 
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1.  Introduction 

The completion of a high-quality, comprehensive sequence of the human genome 
[1], is a landmark event commencing the genomic era. Genome sequences, the 
bounded sets of information that guide biological development and function, lie at the 
heart of this revolution making genomics a central and cohesive discipline of 
biomedical research [2]. Our ability to explore genome function is increasing in 
specificity as each subsequent genome is sequenced. The practical consequences of 
the emergence of this new field are widely apparent. Identification of the genes 
responsible for human diseases, once an effortful task requiring large research 
teams, many years of hard work, and an uncertain outcome, can now be routinely 
accomplished in a reasonable time space by a single specialist with access to DNA 
samples and associated phenotypes, an Internet connection to the public genome 
databases and a DNA-sequencing machine or microarray device. 

Microarray technology provided the ability to explore gene expression of tens of 
thousands of genes in a time-feasible scale [3]. They are mainly used to estimate 
differential expression of genes acquired from tissues in various states and 
conditions, making practical comparisons between a sample genotype profile and an 
arbitrary phenotype attribute or clinical observation. This linkage promise to bring 
close to reality one of the most ambitious visions of modern medicine: The 
embodiment and unification of clinical and genomic medicine. The sequencing of the 
human genome, along with other recent and expected achievements in genomics, 
provides an unparalleled opportunity to advance our understanding of the role of 
genetic factors in human health and disease, to allow more precise definition of the 
non-genetic factors involved, and to apply this insight rapidly to the prevention, 
diagnosis and treatment of disease [4], [5]. Thus, clinical opportunities for 
individualized gene-based pre-symptomatic prediction of illness and adverse of drug 
response are emerging at a rapid pace [6].  

Although genome-based analysis methods are rapidly permeating biomedical 
research [7], the challenge of establishing robust paths from genomic information to 
improved human health remains immense. In the field of microarray experiments in 
particular a wide range of computational requirements have arisen, including image 
processing [8], instrumentation and robotics [9], database design [10], [11], data 
storage and retrieval [12], microarray design based on available Expressed 
Sequence Tags (ESTs) [13], and data analysis [14]. Furthermore, microarray data 
need to be interpreted in the context of other biology knowledge, involving various 
types of post-genomics informatics [15], including gene networks [16], gene 
pathways [17], and gene ontologies [18]. 

In this thesis we present a novel approach for microarray gene expression data 
management and analysis. We introduce a seamless environment where gene 
expression data are submitted, stored, queried, retrieved, visualized and shared 
among researchers inside and outside the laboratory space. Each database 
transaction follows well-known and accepted data standards, ontologies and 
annotations. This environment is enriched with a plug-in software environment able 
to perform supervised and unsupervised machine learning algorithm in order to 
extract invaluable information about the inherent gene regulations. The implemented 
algorithms include some well-known learning algorithms like Support Vectors 
Machines (SVM [19]) and K-Means [20] as well as some novel approaches based on 
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the application of an entropic metric for gene discretisation for supervised learning 
and the hierarchical clustering of a Minimum Spanning Tree for a Graph Theoretic 
Clustering approach. Our methods have been applied on various real-world gene 
expression domain studies and their superiority has been shown.  

Moreover, we present a synergistic clinico-genomic decision-making scenario where 
through microarray gene expression profiling we will be able to link potential 
phenotypical profiles to respective molecular or, genotypical ones. Such 
advancement may be utilized in the course of both prognostic and therapeutic 
decision-making processes. 

1.1  DNA Microarrays 
DNA Microarrays are devices than can estimate in parallel, the expression of many 
thousands of genes. Their invention in 1995 [21] brought a revolution in molecular 
biology, and in the past six years their use has grown rapidly in medicine as well as 
in pharmaceutical, biotechnology and food industries [3]. 

Microarray technology makes use of the sequence resources created by the genome 
projects such as the Human Genome Project [22], the Dog Genome Project [23] and 
the Mouse Genome Sequencing Consortium [24] as well as other sequencing efforts. 
The main question microarrays are posed to answer is what genes are expressed in 
a particular cell type of an organism, at a particular time, under particular conditions. 
For instance, they allow comparison of gene expression between normal and 
diseased (e.g. cancerous) cells.  

A DNA microarray consists of a solid surface, usually a microscopy slide, onto which 
DNA molecules have been chemically bonded at fixed locations, called spots. There 
may be tens of thousands of spots on an array, each containing a huge number of 
identical DNA molecules, of lengths from twenty to hundreds of nucleotides [25].  For 
gene expression studies, each of these molecules should ideally identify on gene or 
one exon in the genome, however in practice this is not always so simple and may 
not even be possible due to families of similar genes in genome. Microarrays that 
contain all of the about 6000 genes of the yeast genome have been available since 
1997 [26]. The spots are either printed on the microarrays by a robot, or synthesized 
by photo-lithography (similarly as in computer chip production) or by ink-jet printing. 

Although microarrays are used in many research interests such as the identification 
and location of SNPs (Single Nucleotide Polymorphism), the major microarray 
application is to detect the presence and abundance of labeled nucleic acids in a 
biological sample, which will hybridize to the DNA on the array via Watson-Crick 
duplex formation [27] and which can be detected via the label. In the majority of 
microarray experiments, the labeled nucleic acids are derived from the mRNA of a 
sample or tissue, and so the microarray measures gene expression. The power of 
microarray is that there may be many thousands of different DNA molecules bonded 
to an array, and so it is possible to measure the expression of many thousands of 
genes simultaneously [28]. 

There are different ways in which microarrays can be used to measure the gene 
expression levels. One of the most popular microarray applications allows us to 
compare gene expression levels in two different samples, e.g. the same cell type in a 
healthy and diseased state. The total mRNA from the cells in two different conditions 
is extracted and labeled with two different fluorescent labels: for example a green dye 
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for cells at condition 1 and a red dye for cells at condition 2. To be more accurate, the 
labeling is typically done by synthesizing single stranded DNAs that are 
complementary to the extracted mRNA by an enzyme called reverse transcriptase. 
Both extracts are washed over the microarray. Labeled gene products from the 
extracts hybridize to their complementary sequences in the spot due to the 
preferential binding, as it is called the tendency of the complementary single stranded 
nucleic acid sequences to attract each other. Moreover the longer the 
complementary parts, the stronger the attraction. Hybridization is the major process 
of a microarray experiment [29]. Two DNA strands hybridize if they are mutually 
complementary, that is when adenine (A) binds with thymine (T) and cytosine (C) 
binds with guanine with Watson-Crick hydrogen bounds (figure 1).   

 

Figure 1. Hybridization of two DNA molecules. The dashed lines show the hydrogen bounds. 

 

The dyes enable the amount of sample bound to a spot to be measured be the level 
of fluorescence emitted when it is excited by a laser. If the RNA from the sample in 
condition 1 is in abundance, the spot will be green, if the RNA from the sample in 
condition 2 is in abundance, it will be red. If both are equal the spot will be yellow, 
while if neither is present it will not fluoresce and appear black. Thus, from the 
fluorescence intensities and colors for each spot, the relative expression levels of the 
genes in both samples can be estimated. The raw data that are produced from 
microarray experiments are the hybridized microarray images. To obtain information 
about gene expression levels, these images should be analyzed, each spot on the 
array identified, its intensity measured and compared to the background. This is 
called image quantitation (figure 2). 

 

Figure 2. An illuminated microarray (enlarged). A typical size of such an array is about 1.5 cm or less. 
The diameter of each spot is of the order of 0.1nm, for some microarray types can be even smaller [2]. 
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Image quantitation is done by image analysis software. To obtain the final gene 
expression matrix from spot quantitation, all the quantities related to some gene 
(either on the same array or on arrays measuring the same conditions in repeated 
experiments) have to be combined and the entire matrix has to be scaled to make 
different arrays comparable. This process is called normalization. The final extract is 
a numerical matrix containing the relative expression of each gene in the healthy cell 
versus the diseased cell.  

One of the principal features of microarrays is the volume of quantitative data that 
they generate. As a result, the major challenge is how to handle, interpret and make 
use of this data. The field of bioinformatics promises to deal with this aimed by the 
applications of mathematics, statistics and information technology. 

1.1.1  DNA Microarray Technologies 

In microarray experiments, each spot contains either DNA oligomers, or a longer 
DNA sequence designed to be complementary to a particular mRNA of interest. The 
choice of spotting oligomers or a longer cDNA sequence yields two different 
microarray technologies: oligo and cDNA microarrays respectively. Oligo arrays are 
generated by photolithography techniques to synthesize oligomers directly on the 
glass slide. These arrays are manufactured and marketed primarily by Affymetrix Inc 
[30]. In contrast, cDNA arrays are created by mechanical gridding, where prepared 
material is applied to each spot by ink-jet or physical deposition.  

There is generally a one-to-one correspondence between spots and genes, but 
various exceptions hold. Multiple genes may hybridize to the same spot if the DNA at 
that spot is not unique to a single gene. This problem is called cross-hybridization. 
Likewise, a gene may hybridize to more than one on a microarray if different spots 
cover different regions of the gene. In fact, many microarrays are designed 
deliberately to identify individual exons of a gene, in order to study expression 
patterns for different splice forms or transcripts. Because of these considerations, it is 
more accurate to say that each spot measures one or more transcripts of a gene, 
rather than a particular gene. In this thesis we will consider that we are measuring 
expression levels of genes rather than transcripts. 

Because cDNA sequences on a microarray are hundreds of nucleotides long, a 
single spot is usually sufficient to identify a particular gene. However, oligo 
microarrays have spots that contain oligomers of 25 or so nucleotides. Because such 
short oligomers will frequently cross-hybridize with several genes, oligo arrays must 
measure each gene with several oligomers (16-20 in the Affymetrix arrays). Each set 
of oligomers is called a probe set. A gene is considered present only when the vast 
majority of the probe set shows positive hybridization. 

Oligo microarrays also have another special feature, designed to account for the fact 
that short oligomers can have non-specific binding and can vary in their hybridization 
efficiency. Each oligomer on the array has a mismatch oligomer which is intended to 
serve as a control. The mismatch oligomer is the same as its corresponding perfect 
match oligomer except for one position, which is designed to be different. The 
amount of specific hybridization can then be measured by taking the difference in 
hybridization between the perfect match and its corresponding mismatch. 
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More than one sample may be applied to a single microarray, with the different 
samples being labeled with differently colored dyes.  In practice, however, Affymetrix 
oligo arrays measure a single sample at a time and therefore use a single type of 
dye. In contrast, cDNA microarrays measure either on sample or, more commonly, 
two samples. 

1.2  Gene-Expression Data Analysis 

Microarray data analysis is heavily depended on Gene Expression Data Mining 
(GEDM) technology, and in the very-last years a lot of research efforts are in 
progress. GEDM is used to identify intrinsic patterns and relationships in gene 
expression data.  The identification of patterns in complex gene expression datasets 
provides two benefits: 

 Generation of insight into gene transcription conditions 
 Characterization of multiple gene expression profiles in complex biological 

processes, e.g. pathological states 
GEDM activities are based on two approaches: 

o Hypothesis testing: to investigate the induction or perturbation of a biological 
process that leads to predicted results – in this case the basic task is to identify 
gene-markers or, molecular signatures of a disease or a disease state, and 

o Discover hidden regularities: to detect internal structure in biological data – in this 
case the basic task is to uncover hidden regularities in gene-expression data, an 
exploratory data analysis to find genes of similar profiles (across patient samples) 
and (potentially) co-regulated. 

In this context advanced data mining technologies- clustering, classification, and 
visualization are utilized. The final goal is the delivery of an operational Gene 
Expression Data Mining Suite (GEDMS) to accommodate a set of smoothly 
integratable data-mining tools. The aim is to help the clinicians and molecular 
biologists in their research and data processing enquires. 

1.2.1  Intelligent Processing: From Internal Data Regularities to Gene Markers 
By measuring transcription levels of genes in an organism under various conditions, 
in different tissues, we can build up ‘gene expression profiles’, which characterize the 
dynamic functioning of each gene in the genome. The microarray data are 
represented in a matrix with rows representing genes, columns representing samples 
(e.g. various tissues, developmental stages and treatments), and each cell containing 
a number characterizing the expression level of the particular gene in the particular 
sample, i.e., the gene expression matrix. 

There are two straightforward ways how gene expression matrix can be studied: 

o Comparing expression profiles of genes by comparing rows in the expression 
matrix.  

o Comparing expression profiles of samples by comparing columns in the matrix. 
Additionally, both methods can be combined (provided that the data normalization 
allows it). 
When comparing rows or columns, we can look either for similarities or for 
differences and accordingly form classification-rules and clusters [31]. Clustering and 
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classification results may reveal correlations between expression of certain genes 
and guide to the identification of:  
• disease occurrence or state (malignant vs. healthy vs. benign tissue),  
• disease clinical markers such as tumor type, stage, size etc, 
• disease prognosis or treatment outcome, and  
• provide information about the genetic profile of different subgroups of disease-

types (e.g., breast cancer) and possibly identify new subgroups or merge 
together subgroups that were previously believed to be genetically separate.  

1.2.1.1  Difficulties of Gene Expression data analysis 
Although microarray experiments are a breakthrough in molecular biology and 
genomics, the whole experimental procedure is very complex and error-prone. Raw 
data produced by microarray experiments are subject to errors caused by many 
factors that most of them are still open problems [32]. 

First of all, like many experimental technologies, microarrays measure the target 
quantity (i.e. relative or absolute mRNA abundance) indirectly by measuring another 
physical quantity, the intensity of the fluorescence of the spots on the array for each 
fluorescent dye, i.e. for each optical wavelength (so-called channel). Therefore the 
raw data produced by microarrays are in fact images (figure 2). Transforming these 
images into the gene expression matrix is a non-trivial process: the spots 
corresponding to genes on the microarray should be identified, their boundaries 
determined, the fluorescent intensity from each spot measured and compared to the 
background intensity and to these intensities for other channels. The software for this 
initial image processing is often provided with the image scanner, since it will depend 
on particular properties of the hardware. A survey of image analysis software can be 
found at [33]. 

In any physical experiment it is important to know not only the value of the 
measurement, but also the standard error or some other indicator of reliability for 
each data point. For most microarray technology platforms only the ratio of the 
background-subtracted signals of the given sample and the control is meaningful. If 
the spot intensity is low, the ratio of these numbers may be high, but the 
measurement may not be reliable. The spot quality can be assessed not only by the 
absolute intensity in each channel, but also by many other factors, such as uniformity 
of the individual pixel intensities, or the shape of the spot. Unfortunately there is 
currently no standard way of assessing the spot measurement reliability. If 
experiments have been done in replicates, they can be used to assess the standard 
error in addition to the single measurement quality assessments. Little has been 
published yet in how to use the reliability of gene expression measurements by 
combining the information about the spot image in each channel and the replicate 
images.  

Another difficulty in creating a gene expression matrix comes from the necessity to 
identify each spot with the respective gene. This is not always possible, since spots 
are typically based on EST sequences. EST (Expressed Sequence Tag) is usually 
short single read from mRNA (cDNA) which is usually produced in large numbers. It 
represents a snapshot of what is expressed in a given tissue, and/or at a given 
developmental stage. It also represents tags (some coding, others not) of expression 
for a given CDNA library [34]. Linking EST to the respective gene may be non-trivial. 
Typically it is done through EST clustering. Additionally, the same gene may be 
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represented by several spots on the array, rather by exactly the same or by different 
sequence. The problem arises when we measure different expression levels from 
these spots. 

Microarray-based gene expression measurements are still far from giving estimates 
of mRNA counts per cell in the sample. The measurements are relative by nature: 
essentially we can compare the expression level either of the same gene in different 
samples, or of different genes in the same sample. Moreover, appropriate 
normalization should be applied to enable any data comparisons. Typically it is 
assumed that abundance ratios of 1.5-2.0 are indicative of a change in gene 
expressions but such estimates are very crude. The reliability of ratios depends on 
the absolute intensity values, as well as varying from spot to spot due to specificity of 
the sequence and cross-hybridization of homologous sequences. This should be kept 
in mind while analyzing the gene expression matrix. The value of microarray-based 
gene expression measurements would be considerably higher if reliability and 
limitations of particular microarray platforms for particular kinds of measurements, as 
well as cross-platforms comparison and normalization were studied and published. 

An outline of the overall microarrays’ experimental methodology and the resulting 
gene-expression matrix is illustrated in figure 3 (below). 

Figure 3. Microarrays: Experimental set-up and resulting gene-expression matrix.   

1.3  Classification and Gene Expression Profiling 
Classification is a supervised intelligent data analysis approach. One of the goals of 
supervised expression data analysis is to construct classifiers, such as decision trees 
or, rules; support vector machines (SVM), or, trained Artificial Neural Networks 
(ANN), which assign predefined classes to a given expression profile. For instance, if 
a classifier can be constructed based on a gene expression profile that is able to 
distinguish between two different, but morphologically closely related tumor tissues, 
such a classifier can be used for diagnostics. Moreover, if such a classifier is based 
on a set of relatively simple rules, it can help to understand what are the mechanisms 
involved in various tumor samples.  
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Typically, such classifiers are trained on a subset of data with a-priori assigned 
classification (e.g., tumor-type-X vs. tumor-type-Y samples). The outcome (decision 
tree/rules, SVM or, trained ANN) is then tested and evaluated on another subset with 
known classification. After assessing the quality of the prediction they can be applied 
to data the classification of which is unknown. In this mode, the classifier could be 
utilized in order to classify new incoming data of unknown class, e.g., to predict the 
tumor-type of sample-tissues based on their respective expression-profile.  

By comparing samples, we can find classification-archetypes (class descriptions) 
with which differentially expressed genes are combined to distinguish between the 
samples (e.g., normal vs. cancerous samples). So, we may be able to identify 
‘discriminant’ genes that relate to the clinical-profiles of specific patient-groups, and 
to study the effect of various chemotherapeutic-treatments. Such a data-analysis 
scenario composes a more targeted-research line of work, aiming towards the device 
of diagnostic or and/or prognostic tests. 

1.3.1  Discriminatory Gene Selection 
The problem now is how to select the genes that best discriminate between the 
different disease states. The problem is well-known in the machine learning 
community as the problem of feature-selection (with its dual ‘feature-elimination’), 
and various ‘wrapper-based’, or, ‘filtering’ approaches have been proposed.  
Traditionally, in machine learning research the number of features, m, is quite smaller 
than the number, k, of cases (samples in the case of gene-expression studies) that 
is, m << k. In contrast, gene-expression studies refer to a huge number of features 
and quite few samples. In most gene-expression domains the number of genes is in 
the range of 2000 – 35000 (i.e., the estimated number of human genes), and the 
number of samples in the range of 50 – 200, that is k << m. In a situation like that it is 
questionable if a ‘wrapper’ based feature-selection approach could help, because of 
its high-computational cost. So, in most gene-selection studies a ‘filtering’ approach 
is followed.  
The gene-selection methods are used in order to estimate the correlation strength of 
genes that appear in important clusters with any of the samples’ categories (i.e., 
disease-types; disease-recurrence states etc). Genes with high ranked ordered 
correlation scores will be proposed as possible indicative markers for these 
categories. Special attention will be paid to genes whose expression changes very 
slightly in malignant tissue, as these may represent genes activated in initial phases 
of the disease and may provide insight about the biological origin of a disease.  

 The utility of discriminating genes in prognosis. When trying to predict treatment 
outcome, selected genes will be used to identify which patients will respond well 
to treatment and which not. To predict disease recurrence, selected genes are 
used to identify patients that will be disease-free after a certain time period and 
those at high risk of developing metastases. This type of categorization problem 
is a supervised classification task where a priori information about the correct 
categorization of a group of patients is used to teach the method to learn the 
intrinsic relationships between the selected gene expressions of patients within 
each category. This relationship is often very complex and cannot be described 
by traditional similarity or distance metrics as the ones used in clustering 
methods.  Once the classification tool learns these relationships, it can be used to 
predict the probability of clinical categories (e.g. metastatic or cancer-free) for 
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new patients by looking at their respective expression profile over the selected 
gene set. Such methods can be used to automatically predict probabilities for the 
expected treatment outcome or disease recurrence for new patients.  

Prediction performance of gene-selection (as well classification) methods should be 
tested in full cross-validated settings and additionally with new patient data as they 
accumulate over time to ensure that predictions are reliable over a broad range of 
breast cancer types. As more samples accumulate, re-selection of suitable gene 
markers might be necessary to ensure that information is learnt for as many disease-
types as possible. Re-teaching the classifiers will further enhance their prediction 
performance. 

1.3.2  Clustering and Gene Expression Profiling 
The goal of clustering is to group together objects (genes or samples) with similar 
properties. This can also be viewed as the reduction of the dimensionality of the 
system or, the discovery of “structure in the data”. Clustering is not a new technique, 
many algorithms have been developed for it and many of these algorithms have been 
applied to analyze expression data. 
With gene expression data analysis we try to identify the changing and unchanging 
levels of gene expression and to correlate these changes to identify sets of genes 
with similar profiles. The assumption behind- and the utility-of clustering gene-
expression data is that ‘genes with similar profiles, i.e., in the same cluster, are also 
co-regulated’. So, clustering may give rise to valuable information about the 
molecular status of various genes and their functioning. In some cases a mainly 
visual analysis has been successful in grouping genes into functionally relevant 
classes. In other studies, simple sorting of expression ratios and some form of 
‘correlation distance’ were used to identify similar genes.  
The literature on statistical clustering is fairly vast, offering many other choices of 
clustering methods. The hierarchical, and k-mean clustering algorithms as well as 
self-organizing maps have all been used for clustering expression profiles. By 
comparing gene-expression profiles, and forming clusters, we can hypothesize that 
the respective genes are co-regulated and possibly functionally related. Then, we 
may go back to the respective genes DNA-sequences to identify putative 
transcription-factors (or even identify SNPs- single nucleotide polymorphisms). Such 
a data-analysis scenario composes a more basic-research line of work.  
At the moment, there do not seem to exist any objective guidelines regarding the 
choice of a clustering algorithm to be used for grouping genes based on their 
expression profiles. For indicative references about microarrays and gene expression 
profiling methodologies as related to classification, gene-selection and clustering you 
may look at references [35]-[72]. 
 

 The current thesis tackles and presents real innovative approaches, 
algorithms and tools for gene-selection and clustering of gene-
expression data – the introduced methods are extensively tested on 
real-world domains and datasets. 

 Moreover, a specific objective fullfilled by the current thesis was to 
review the state-of-the-art approaches, methods and tools for the 
uniform modelling, representation and seamless sharing of the involved 
biomedical information and data (i.e., microarray experiments 
information and gene expression data). 
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1.4  Organization of the Thesis 

 In chapter 2 we present the existing status in genomic informatics. Specialized 
databases for sequence storage, genome management, and gene expression are 
analyzed. Moreover we focus on data standards for microarray experiment 
activities and we concentrate on standards maintained by the most appreciated 
consortium in gene expression research area; the MGED group. Furthermore, we 
present the most acknowledged ontologies for taxonomies, genes and 
microarrays. We finally perform a comparison between the two most appreciated 
microarray expression databases ArrayExpress and Base and we highlight the 
pros and cons of each database system. 

 In chapter 3 we focus on the ‘old genomics’ their limited implications in healthcare 
and the advances of the ‘new genomics’ where clinical observations and 
knowledge coming from gene expression profiling can be integrated into a 
qualitative predictive and therapeutic healthcare system. We discuss the major 
applications of genomic medicine in healthcare and the necessity of clinical and 
genomic integration. We finally present a scenario where phenotypical profiles 
are linked with genotypical to provide a prognostic or therapeutic decision-making 
process.  

 In chapter 4 we justify the general concept of supervised gene expression 
database mining, research pathway and the related work. Then we propose a 
novel gene selection methodology based on gene discretisation and composed 
by four main modules: gene ranking, gene grouping, consecutive feature 
elimination and class prediction. Furthermore, we apply the algorithm in real-
world datasets and we perform a comparison survey based on the resulted 
accuracy and feature elimination of our method versus other related methods. 

 In chapter 5 we introduce a novel Graph Theoretic Clustering algorithm based on 
the hierarchical clustering of a Minimum Spanning Tree. This algorithm has the 
special feature to combine different information sources, in order to estimate the 
distances between genes, and in order to estimate a special category utility that 
determines whether the clustering will proceed or not. Then the time complexity is 
estimated and a heuristic for feasible distance calculation is presented.  

 In chapter 6 we present an implementation of all aforementioned methods, 
algorithms and heuristics. The software system presented is planned to act as a 
plug-in in microarray gene expression databases, in order to act as a general 
machine learning algorithm toolkit. It is designed according the principles of 
object oriented programming it is component based and expandable. The general 
parameters, inputs, outputs and usage are finally presented.  

 Finally, in chapter 7 we conclude the major findings and we describe possible 
future work.  
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2.  From Genomic to Post-Genomic Informatics: Modeling, Representing 
and Sharing Genomic Data 

Microarrays are already producing massive amounts of data. These data, like 
genome sequence data, can help us to gain insights into underlying biological 
processes only if they are carefully recorded and stored in databases, where they 
can be queried, compared and analyzed by different computer programs. 
In this chapter we look at the sequence databases that are used to select and 
annotate the genes that the microarray detects. Databases are separated in 
sequence storage, genome management, and gene expression storage. Moreover 
we focus on data standards for microarray experiment activities and we concentrate 
on standards maintained by the most appreciated consortium in gene expression 
research area; the MGED group. Furthermore, we present the most acknowledged 
ontologies for taxonomies, genes and microarrays. We finally perform a comparison 
between the two most appreciated microarray expression databases ArrayExpress 
and Base and we highlight the pros and cons of each database system. 

2.1  Sequence Databases 
Worldwide there are three major sequence databases: 
■ The EMBL Nucleotide Sequence Database [73], [74] constitutes Europe's primary 

nucleotide sequence resource. Main sources for DNA and RNA sequences are 
direct submissions from individual researchers, genome sequencing projects and 
patent applications.  

■ Genbank [75] is the National Institute of Health (NIH) [76] molecular database 
which is composed of an annotated collection of all publicly available DNA 
sequences [77]. The February 2004 release of the Genbank molecular database 
contained 32,549,400 DNA sequences which are further composed of 
approximately 37,893,844,733 deoxyribonucleotides [78].  

■ DDBJ (DNA Data Bank of Japan [79]) began DNA data bank activities in 1986 at 
the National Institute of Genetics (NIG) of Japan. 

They date back to 1982, when it became clear that there was a need to publish and 
share DNA sequences. The American initiative, GenBank and the European 
initiative, EMBL (European Molecular Biology Laboratory), were launched 
simultaneously in June 1982, each with approximately 600 sequences. Since that 
time, the sizes of the databases have grown exponentially, doubling approximately 
every 17 months (figures 4 and 5). In 1987, the DDBJ was started as a Japanese 
equivalent of GenBank and EMBL. In 1992, the three databases entered in a 
collaboration to share all sequences. Since that date, the three databases contain 
almost identical sequence information. Any sequence submitted to one of the 
databases will automatically be added to the other two. They also hold two meetings, 
the International DNA Data Banks Advisory Meeting and the International DNA Data 
Banks Collaborative Meeting. 

The success of these sequence databases has resulted not only from the advances 
in sequencing technology, but also from the advances in computer technology. The 
databases require significant computing power and storage to operate, but most 
important is the role of the Internet. Being online, they offer the ability to anyone to 
submit, query and download sequences acting as an invaluable medium between 
research laboratories. 
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• Problems and Limitations of Sequence Databases. Although sequence database 
is the first place to visit when querying a sequence in order to obtain information 
about it, there are two reasons why they are not sufficient for microarray design 
and annotation. First, they do not contain meta-information. Although we can 
identify a sequence taking part in a microarray experiment, we cannot identify the 
gene from which the EST was derived. Second, sequence databases contain too 
many sequences for array design. When designing an array, we would want the 
database to be able to provide a list of genes in which each gene that will appear 
on the array will appear once in the list. There are two reasons why primary 
sequence databases cannot provide this. First of all each gene can be 
represented several times in the database, for example, if it were submitted by 
different research groups who have sequenced it. Secondly each gene sequence 
may be in the database in several forms, e.g. as a gene sequence, genomic 
sequence and as ESTs. The first problem is referred as the redundancy problem 
and the second as the replication problem. Although sequence databases are 
used for annotating sequences that appear on arrays, they are not used for array 
design. This is a domain for secondary sequence databases specialized for 
microarray experiments. 

 

 

 

 

 

Figure 4. Log plot of the number of nucleotides in 
the GenBank database between 1982 and 2001. 
The straight line is indicative of exponential growth 
in the number of nucleotides, with a doubling time of 
approximately 17 months. 

 

 

Figure 5. Log plot of the number of sequences in 
GenBank database between 1982 and 2001. 
There is similar exponential growth as with 
nucleotides. 
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2.1.1 Secondary Sequence Databases 

The three secondary sequence databases that are commonly used for microarray 
design are UniGene, TIGR Gene Indices and RefSeq. 

o UniGene [80] is the database with the greatest historical use for selecting 
sequences for microarrays. It is an attempt to partition GenBank sequences into 
clusters, each of which is intended to represent a unique gene. The clusters 
themselves may contain both mRNA sequences and ESTs, so that they 
represent both known genes and putative genes based on expressed material 
that has been sequenced. The clusters are built by comparing all mRNA and EST 
sequences in GenBank and assigning overlapping sequences to the same cluster 
[81]. In clusters that contain full-length mRNAs, the task is straightforward, 
because all ESTs deriving from the gene will align with the same mRNAs. 
However, many clusters in UniGene contain only ESTs; the algorithms by which 
UniGene is built assemble the clusters out of overlapping ESTs in order to 
produce a picture of the gene from which the ESTs have putatively derived. 
UniGene is available for a range of species. Although there are 50 species in the 
database, there is only broad coverage of the main research species. The human 
database has approximately 53,000 clusters. Each of these clusters is supposed 
to represent a potentially different gene. Since current thinking is that there are 
approximately 30,000 genes in the human genome, it is likely that many of these 
clusters belong together. Of the 53,000 clusters, approximately 32,000 contain at 
least one mRNA and so represent known genes. 

o The Gene Indices (GI) at the Institute for Genetics Research (TIGR) [82] are a 
resource that is similar in scope to UniGene. As with UniGene, the TIGR GI are 
arranged according to species. The TIGR GI covers more species than UniGene, 
with 31 animal species, 30 plant species, 15 protist species and 9 fungal species. 
Also, the TIGR GI includes a greater number of sequences for most of the 
species that are also represented in UniGene. The TIGR human gene index 
contains a similar number of sequences to the UniGene human database. 
However, it is arranged into approximately 180,000 clusters – significantly more 
than UniGene. As with UniGene, this is much greater than the number of 
predicted genes in the human genome, so it is likely that this database will 
change over the next years. Unlike UniGene, TIGR contains consensus 
sequences for each of the clusters [83]. From the perspective of designing 
microarrays, this has both advantages and disadvantages. On the positive side, a 
consensus is a higher quality sequence and is therefore a better starting point for 
oligonucleotide design. On the negative side, the UniGene sequences are all real 
clones and can be purchased from the IMAGE Consortium [84] for use with a 
spotted array. TIGR also intends to include full information about splice variants 
in their database. In February 2005, there was very limited splice variant 
information in the TIGR GI, and no information on human splice variants. This will 
probably change in the next couple of years and, if implemented, will make the GI 
a powerful resource for microarray design. 

o The third secondary database resource we describe for the construction of 
microarray is the NCBI’s reference sequence project, or RefSeq [85]. The 
reference sequence project aims to collect high-quality, well-annotated 
sequenced of many types, including complete genomes, complete chromosomes, 
genomic regions, mRNAs, other types of RNA, genome contigs and proteins. The 
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mRNA chapter of RefSeq is of particular interest for microarray design and is 
available for humans, mouse, fruit fly, rat and zebrafish. RefSeq does not provide 
a complete picture of expressed material for any of these species [86]. For 
example as of February 2005, there are only about 19,000 RefSeq entries for 
humans compared with about 32,000 UniGene clusters containing at least one 
mRNA. However, the sequences in RefSeq represent the highest possible quality 
mRNA sequences in the database, and so they are used where possible as the 
basis for microarray and other work. Splice variants of genes are fully 
represented in RefSeq, making it a very powerful resource for the design of 
arrays for known splice variants of known genes. 

2.2  Genomic Databases Resources 
Genomic databases allow us to examine sequences for microarrays from a genomic 
perspective: to start with the whole genome and then choose gene sequences for the 
array based on the annotation of that genome. For small organisms, such as bacteria 
and yeast, this is the most natural approach. But even for complex organisms such 
as humans, there exist resources that allow this approach to microarray design and 
annotation. The main genomic resource for complete genome experiments is 
Ensembl. Furthermore, some specialized databases exist, for complete microbial 
genome studies.  

Ensembl [87] is a joint project between the European Bioinformatics Institute (EBI) 
and the Wellcome Trust Sanger Institute to provide complete annotation of eukaryotic 
genomes. Originally established to cover the human genome, at the time of this 
writing it also included coverage of mouse, rat, zebrafish, fugu and mosquito. The 
reason for setting up Ensembl is to provide a single, seamless resource for querying 
and mining completed genomes, such as the human genome. When a genome is 
sequenced, it is sequenced in small chunks. Ensembl assembles these chunks into 
chromosome sequences so that each chromosome appears as a single virtual 
sequence, also known as the “Golden Path”. The real power of Ensembl as a 
resource for microarray design is in its annotation [88]. The Ensembl project links all 
available data about human sequences, so that information on known genes, known 
proteins and ESTs are included as part of the genome annotation. It also provides 
annotation on the results of gene prediction algorithms. This is important for 
microarray design because it allows oligonucleotide probes to be designed for 
predicted genes and exons in addition to known expressed sequences. 

Microbial genomes are small – typically with genomes between 2 and 5 megabases, 
and between 2,000 and 5,000 genes. This makes microbes very attractive organisms 
for microarray analysis: it is possible to place probes for every gene in the organism 
on a single array and perform powerful experiments. 

Microbial genomes are readily accessible from two databases: GenBank and the 
TIGR Comprehensive Microbial Resource (CMR) [89]. In December 2002, there were 
102 genomes in GenBank and 96 genomes in TIGR. Data are exchanged between 
the two databases: most genomes are in both database, but the genomes that are 
sequenced in TIGR are published in the TIGR database before they reach GenBank, 
and genomes sequenced elsewhere are published in GenBank before they reach 
TIGR. Of the 102 genomes in GenBank, there are 85 different organisms, with 12 
organisms having multiple strains in the database. The two databases have different 
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annotation for the same genomes. As a result, an array built from the sequences 
downloaded from each of these data resources may have slightly different genes. 

2.3  The Rise of Post-Genomics: Microarrays and Gene Expression 

Gene Expression is defined as the use of quantitative RNA (mRNA)-level 
measurements of gene expression in order to characterize biological processes and 
elucidate the mechanisms of gene transcription. The objective of gene expression is 
the quantitative measurement of mRNA expression particularly under the influence of 
drug or disease perturbations [90]. As described in [91] the identification of 
differential gene expression associated with biological processes is a central 
research problem. High throughput gene expression assays enable the simultaneous 
monitoring of thousands of genes in parallel and generate vast amounts of gene 
expression data. The large-scale investigation of gene expression attaches functional 
activity to structural genetic maps and therefore is an essential milestone in the 
paradigm shift from static structural genomics to dynamic functional genomics. 

2.3.1  Gene Expression Databases: Representing and Sharing Microarray Data 

Gene Expression databases provide integrated data management and analysis for 
the transcriptional expression data generated by large-scale gene expression 
experiments. Conceptually, a gene expression database can be regarded as 
consisting of three parts: the gene expression data matrix, gene annotation and 
sample annotation (figure 6). Samples interfering in a microarray experiments are 
commonly called biomaterials. In many respects gene expression databases are 
inherently more complex than sequence databases. 

 
Figure 6. An abstract form of the annotations of a gene expression matrix. 

 

As we have mentioned microarray experiments generate large amounts of complex 
data. Our main purpose is to integrate and share these data among our close 
laboratory space and the scientific community in general. Except from the obvious 
reasons about the benefits of the scientific community, by sharing our data there are 
some additional advantages that we expect to gain.   

Firstly we can verify the results of a published microarray experiment hence it is 
necessary to provide sufficient information so that others can reproduce it. Except 
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from verifying we may expect from external researchers to perform further 
experimental work based on the results, expanding and improving our findings. 
Moreover scientists can compare the results with other functional genomic data. It is 
valuable to make comparisons either between different microarray experiments or 
between microarray data and data from other sources (e.g. proteomics). Finally by 
sharing our data we allow bioinformatics researchers to develop novel data analysis 
methods.  

Data sharing for microarray experiments involves many complications that need to be 
settled. A microarray laboratory will typically run a number of different computer 
applications to capture, store, publish and analyze microarray data (figure 7). In order 
for the laboratory to operate successfully, each of these computer applications, 
further on referred as components, needs to be able to exchange data with the other. 
Data should flow seamlessly between the different components, and ideally it should 
be possible to replace any component without affecting the other parts of the flow. In 
brief, these components are: 

 

 
Figure 7. Software components for microarray data representation and handling. 

      

o Array Layout File is a file containing details of what sequences and genes each 
feature represent. There are currently many formats for these files, depending on 
the platform used. 

o Sequence Databases contain information about the genes that the microarray is 
measuring and the sequences from which the sequences on the array derive. 
Accession numbers are included in the array layout so that is possible to connect 
to these databases. 

o Feature Extraction Software converts the image of the microarray from the 
scanner into quantitative information about gene expression. It needs information 
from the array layout file to be able to annotate the features. 
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o Laboratory Information Management System (LIMS) records all information about 
the laboratory methods and protocols used in microarray manufacture, sample 
preparation and labeling, hybridization and washing. 

o Local Results Database contains results of experiments performed at the local 
institution. It can be in the form of a formal database or data warehouse, or the 
data might be stored as information stored in the LIMS. 

o Public Result Database contains results of microarray experiments that have 
been published in the public domain. If appropriate, data from the local results 
database might be transferred to a public database. 

o Visualization and Analysis software allows the user to look at and interpret 
microarray data. The data could be from the local results database, public data, 
or a combination and comparison of the two. 

Laboratory Information Management System (LIMS). A LIMS records all 
information about the laboratory experiment, including all procedures, protocols and 
methods in microarray manufacture, sample preparation, labeling and hybridization. 
It can be thought of as a laboratory notebook, but with two major benefits. The first is 
that LIMS can be used to record every step of the experimental process as it 
happens, including identity of experiment, date, protocols used, and any 
experimental parameters. The advantage of tracking data are that it provides quality 
control, as any problems can be traced back to the source. It also provides data 
reproducibility. If the entire experimental process has been recorded, it is possible for 
other scientists to reproduce the experiment. Moreover data comparison is provided. 
By knowing all parameters of the experiment, it is more meaningful to make 
comparisons between different microarray experiments and to know when 
comparisons are less meaningful. Finally, data, can be easily published.  

If the LIMS system is MIAME-compliant (a universally accepted standard for 
modelling microarray experiments and representing gene expression data; presented 
in the sequel), then it will record all the information necessary for publishing the data 
in a MIAME-compliant microarray database. Another benefit of LIMS is that is 
possible to include standard protocols as workflows that can help ensure that all staff 
in the laboratory or group of cooperating laboratories follow the same protocol. This 
helps to standardize microarray experiments performed by several people. 

2.4  Modeling Microarray Experiments: The Standards 

Standards are essential for designing computer software that can integrate with other 
applications by common data representation and information exchange. Especially 
for microarray databases, in order for standards to be successful, they need to have 
several qualities. First they have to be useful, flexible and comprehensible in order to 
accommodate all types if microarray experiments and data, including experiments 
that have not yet been thought of. They have to be consensual in the sense that they 
should be agreed upon by microarray users. Finally they have to be straightforward 
for programmers to implement. In order to be of global benefit, the standards should 
be adopted by as many research groups and commercial organizations as possible. 
To achieve this, it is expected that a requirement for the publication of microarray 
results will be the submission of data to a public domain database that has adopted 
the standards. 
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Gene expression data have meaning only in the context of the particular biological 
sample and the exact conditions under which the sample were taken. For instance, if 
we are interested in finding out how different cell types react to treatments with 
various chemical compounds, we must record unambiguous information about the 
cell type and compounds used in the experiment. The microarray technology is still 
rapidly developing, therefore it is natural that currently there are no established 
standards for microarray experiments and how the raw data should be processed. 
There are also no standard measurement units for gene expression levels. In the 
lack of such standards the information about how exactly the gene expression data 
matrix was obtained should be kept in the database, if the data are to be properly 
interpreted later consequently this complicates the data object model. A common 
data exchange format MAGE-ML [92] is being developed in collaboration between 
MGED and some major microarray companies. Most known repositories for gene 
expression data are ArrayExpress, GEO and BASE. 

Microarray data standards comprise three areas. The first is which aspects of the 
microarray experimental process and of the microarray data need to be recorded. 
This is the aim of MIAME (Minimal Information about a Microarray Experiment). The 
second is how to describe the experimental methods and microarray data. For this, 
we need ontologies defined for our specific domain as controlled vocabularies and 
relationships to describe genes, samples and data. The third is how to implement 
MIAME and ontologies in computer software. This requires object models, exchange 
languages and language-specific modules. 

 

The Microarray Gene Expression Data Society (MGED). The need for microarray 
data standards was recognized relatively early in the microarray community. In 
November 1999, the Microarray Gene Expression Data Society (MGED) [93] was 
founded from EBI researchers, with the intention of establishing standards for 
microarray data annotation and to enable the creation of public databases for 
microarray data.  

The MGED board of directors and advisory board now has representation from many 
of the major institutions involved with microarrays, including research institutes, 
universities, commercial organizations and journals. 

MGED has an annual meeting at which major developments are discussed and 
arranges regular workshops, tutorials and programming jamborees. MGED’s work is 
arranged into four working groups: 

i. MIAME. Minimal Information About a Microarray Experiment formulates the 
information required to record about a microarray experiment in order to be able 
to describe and share the experiment. 

ii. Ontologies. Determine ontologies for describing microarray experiments and the 
samples used with microarrays [94]. 

iii. MAGE. Formulates the object model (MAGE-OM), exchange language (MAGE-
ML) and software modules (MAGE-stk) for implementing microarray software. 

iv. Transformations. Determines recommendations of describing methods for 
transformations, normalizations and standardizations of microarray data. 
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2.4.1  Minimal Information About Microarray Experiments (MIAME) 

The aim of MIAME [95] is to outline the minimum information that should be recorded 
about a microarray experiment so that data can be fully understood and the 
experiment fully reproduced in another laboratory. MIAME is intended to assist the 
exchange of microarray information between researchers, including doing so via the 
development of public microarray data repositories. It is not intended to be a formal 
specification, but a set of guidelines. However, it has become the standard for many 
microarray software packages and databases, so it is highly recommended that we 
should record data from our experiments in a way that is compliant with MIAME.  

MIAME is arranged into two broad areas: the array design description and the 
experiment description. The reason for this is that the array design is frequently 
independent of the experiment, with the same array design being used for many 
experiments. 

The aim of the array design description is to give a detailed description of the array, 
including physical factors (size and material), chemical factors (type of attachment) 
and logical factors (sequences). To describe the sequences on an array, MIAME 
introduced three terms: 

o Feature. The location on the array containing the DNA sequence, also commonly 
referred to as spots. 

o Reporter. The DNA sequence on a feature. 

o Composite sequence. The gene sequence from which the reporter derives. There 
could be several different reporter sequences for the same gene. 

A detailed description of MIAME guidelines can be found at Appendix A. 

2.4.2  MicroArray and Gene Expression (MAGE) 

MicroArray and Gene Expression (MAGE) [96] is the technical implementation that 
allows software to be developed using MIAME. MAGE is of interest to researchers 
seeking to develop microarray software that is fully supportive of MIAME. It is 
maintained by a group controlled by the MGED society.  

This group tries to build software tools capable to facilitate the exchange of 
microarray information between different data systems. Currently they are doing this 
through OMG (Object Management Group) [97] by the establishment of a data 
exchange model (MAGE-OM MicroArray Gene Expression - Data Model [98]) and a 
data exchange format (MAGE-ML: MicroArray Gene Expression – Markup Language 
[99]). MAGE-OM has been modeled using the Unified Modeling Language (UML 
[100]) and MAGE-ML has been implemented using XML (eXtensible Markup 
Language [101]). MAGEstk (or MAGE software toolkit) is a collection of packages 
that act as converters between MAGE-OM and MAGE-ML under various 
programming platforms.  

MAGE-OM specifically attempts to define the objects of gene expression data 
independent of any implementation.  Further, tries to abstract the ideas so that the 
model might be applicable to a broader set of array style experiments. For example, 
rather than use hybridization, the general class is BioAssay of which hybridization is 
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a subclass of BioAssayCreation. MAGE-OM can also be used to map to data 
structures in different platforms, such as Java, Perl, or C++.  

An outline of the MAGE-OM workflow, and its component classes are shown in 
figures 8 and 9, respectively; for a description of MAGE-OM classes refer to table 1. 

 

 
Figure 8. MAGE-OM Inherent workflow. 

 

 

 
Figure 9. Main classes of MAGE-OM 
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Table 1. Description of MAGE-OM main classes. 

BioSequence Specifies classes that describe the sequence information for a 
BioSequence. 

QuantitationType This package defines the classes for quantitations, such as measured and 
derived signal, error, and pvalue. 

ArrayDesign Describes a microarray design that can be printed and then, in the case of 
gene expression, hybridized. 

DesignElement The classes of this package are the contained and referenced classes of 
the ArrayDesign and describe through the DesignElements what is 
intended to be at each location of the Array. 

Array Describes the process of creating arrays from array designs. 
BioMaterial Specifies classes that describe how a BioSource is treated to obtain the 

BioMaterial (typically a LabeledExtract) used to create a BioAssay. 
BioAssay Specifies classes that contain information and annotation on the event of 

joining an Array with a BioMaterial preparation, the acquisition of images 
and the extraction of data on a per feature basis from those images. 

BioAssayData Specifies classes that describe the data and information and annotation on 
the derivation of that data 

Experiment Represents the container for a hierarchical grouping of BioAssays. 
HigherLevelAnalysis Describes the results of performing analysis on the result of the 

BioAssayData from an Experiment. 
Protocol Provides a relatively immutable class, Protocol, that can describe a generic 

laboratory procedure or analysis algorithm, for example, and an instance 
class, ProtocolApplication, which can describe the actual application of a 
protocol. 

Description The classes in this package allow a variety of references to third party 
annotation and direct annotation by the experimenter. 

AuditAndSecurit Specifies classes that allow tracking of changes and information on user 
permissions. 

Measurement The classes of this package provide utility information on the quantities of 
other classes to each other. 

BioEvent An abstract class representing an event that takes sources of some type to 
produce a target(s) of some type. 

 

Given the massive amount of data associated with a single set of experiments, XML 
is the best way to describe the data. The use of a Document Type Definition (DTD) 
allows a well-defined tag set, a vocabulary, to describe the domain of gene 
expression experiments.  It also has the virtue of compressing very well so that files 
in an XML format compress to ten percent of their original size.  XML is now widely 
accepted as a data exchange format across multiple platforms. Organizations that 
request these XML streams can use freely available implementations of either of the 
W3C [102] recommended DOM [103] or the XML-DEV SAX [104] parsing interfaces 
to create import and export applications. These import and export applications can be 
tailored for the specific needs of the organization without the need to burden the 
vocabulary of the XML with specifics of any organization’s schema requirements.  
The DTD is generated from the MAGE-OM with the addition of the transformed 
representation of the gene expression data in the DTD. Moreover, it is possible to 
specify queries both in terms of the object model (OQL) and the XML (XQuery [105], 
XPath [106]). 

The MAGE Software Toolkit (MAGE-stk) is a collection of open source packages that 
implement the MAGE Object Model in various programming languages. The toolkit is 
meant for users that develop their own applications, and need to integrate 
functionality for managing an instance of a MAGE-OM. The toolkit facilitates easy 
reading and writing of MAGE-ML to and from the MAGE-OM, and all MAGE-objects 
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have methods to maintain and update the MAGE-OM at all levels. What MAGE-stk 
doesn't implement, is the interface between an application, and the standard way of 
representing microarray in MAGE-OM (MAGE-ML when in a file) (figure 10). MAGE-
stk is available in Perl, Java, C# and Python programming languages. 

 

Figure 10. MAGE-stk offers a API for managing MAGE-OM objects. 

 

MAGE-OM will store essentially any array based data with very few if any 
modifications. Applications other than gene expression for which MAGE-OM would 
be applicable include: protein diagnostics, genotyping, and sectioned tissue analysis. 
MAGE-OM is not presently capable of storing non-array based expression profiling 
technologies such as Serial Analysis of Gene Expression (SAGE [107], [108]), and 
extensive modifications would be necessary to support this. 

■ Other Object Models. MAGE-OM stems from the collaboration of some of the 
major microarray research institutions that contributed by submitting their own 
object models deployed mostly for inner use. EBI has been working on 
developing a public repository for gene expression data (ArrayExpress) since 
1999 [109]. ArrayExpress development has been centered on ArrayExpress 
Object Model (AEOM), and design of MAGE-OM has been influenced by this 
experience. AEOM was mapped to relational tables and implemented as an 
Oracle 8i database. The National Center for Genome Resources (NCGR) [110] 
has been developing an open source gene expression database resource, 
GeneX, since 1999. The GeneX project has focused on the development of a 
relational data model and a corresponding XML data-transmission model, 
GeneXML. Finally Rosetta Inpharmatics [111] and Agilent Technologies [112] 
have been using the GEML 1.0 format as part of internal pipelines. The GEML 
1.0 was the object model used to publish the results of sequencing chromosome 
22 [113]. 
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2.5  Ontologies 
MIAME, details what information is needed to be recorded from a microarray 
experiment in order to be able to reproduce the experiment. Ontologies provide a 
solution for how that information can be recorded. The aim of ontology is to give the 
framework for a formal representation of a subject. An ontology consists of two parts: 
the vocabulary that contains the words and names of the items in the subject area 
that are to be described and the relationships that formulates the ways in which the 
items in the subject area relate to one another. 

The main reason for using ontologies is that they help the development of computer 
databases that hold information about a subject. By introducing a controlled 
vocabulary, it is possible to query databases using the controlled terms removing any 
potential ambiguity. Moreover, ontologies provide a conceptual framework that can 
help in understanding and integrating the information about a subject. 

In the field of microarrays there are three sets of ontologies that are used: taxonomic 
ontologies, gene ontologies and MGED ontologies. 

2.5.1  Taxonomic Ontologies 

In taxonomic ontologies every living organism is placed in a hierarchy of kingdom, 
phylum, class, order, family, genus and species. The genus and species together 
form the scientific name of the organism (e.g., Homo Sapiens). There are controlled 
vocabularies for each of the terms, and the terms relate hierarchically. Taxonomic 
databases are rather controversial since the soundness of the taxonomic 
classifications done by taxonomists so far is directly questioned by the advances of 
current genomic research.  

Various efforts are going on to create a taxonomy resource. Some of them are "The 
Tree of Life" project [114], "Species 2000" [115], “International Organization for Plant 
Information” [116], “Integrated Taxonomic Information System” [117]. The most 
generally useful taxonomic database is that maintained by the NCBI [118]. This 
hierarchical taxonomy is used by the Nucleotide Sequence Databases [73], Swiss-
Prot [119] and TrEMBL, [120] and is curated by an informal group of experts. 

2.5.2  Gene Ontologies and the GO Consortium 

Gene annotation can be taken care to some extent of by links to sequence 
databases. Unfortunately, complicated too many relationships between genes in the 
gene expression matrix and the features (spots) on the array makes it necessary to 
provide a full and detailed description of each feature on the array, as one gene can 
relate to several features on the array. The lack of standards in gene naming is 
another difficulty. A table relating each array feature present in the database to the 
list of all synonymous names of the respective gene is an essential of a gene 
expression database. 

Gene ontologies provide a set of terms for describing genes and their products. The 
Gene Ontology (GO) Consortium [121] was set up in 1999 in order to provide a 
common framework for its members to be able to describe genes and gene products. 
The consortium members contain major institutions that have serious involvements in 
gene research for certain organisms. GO has allowed its members to have a 
common set of terms for annotating genomes. The main advantages to using GO is 
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that simplifies database querying, makes easier cross-species comparisons and it 
eliminates any ambiguity in gene descriptions.  

GO has organized ontologies for describing genes on three levels. The first is the 
molecular function level where the task performed by individual gene products is 
described. The second is the biological process level where the broad biological goal 
of the gene products (e.g., mitosis or protein degredation) is described. Third is the 
cellular component level where the subcellular organelle, location or macromolecular 
complex in which the gene product would operate (e.g., nucleus) is described. Each 
of these areas has a separate ontology defined for it, and any gene would have 
terms from all three ontologies.  

GO terms and ontology terms in general, exist in a hierarchy of more general and 
more specific classes. In classical ontologies, each term may only have one parent. 
However, due to the complexity of biological information, in GO each term can have 
more that one parent. More precisely, the terms are organized in directed acyclic 
graphs. 

2.5.3  Microarray Ontologies 
The Ontologies Working Group at MGED has drawn up ontologies for microarray 
annotation with the aim of describing microarray data. The MGED ontology 
comprises three broad type of information: Classes, Properties and Individuals. 

Classes are the categories of information, for example age and protocol. Each class 
has a number of fields describing it. These are: 
o Namespace. A URL for the ontology 
o Documentation. A free text description of the class 
o Type. In the microarray ontologies, every class is of primitive type. This means 

that the class is not fully defined by its constraints. 
o Superclasses. The parent classes of which this class is a special case. 
o Constraint. These are rules by which any single instantiation of the class contains 

information. Each constraint is in the form of a property that the class may have.  
o Known subclasses. These are child classes of the class which represent 

specializations of the class. 
o Used in class. These are the classes that use this class as part of a constraint. 

There is annotation for each for the fields. The superclass MGEDOntology is the root 
class from which all classes are derived. As protocols are widely used in microarray 
experiments, there are several constraints that can be used to describe the protocol 
and many subclasses or classes that contain protocols as a constraint.  

Properties encapsulate information about classes. A class has properties. For 
example the class protocol has the property has_citation. Each property is then 
linked to a class via the constraint in the class that contains the property. In the case 
of a protocol, has_citation will take a value in the class BibliographicReference. 
Properties generally contain less information than classes.  

Individuals are instances of classes that are formally included in the ontology. Usually 
individuals have very little information associated with them.  

MAGE-OM contains 226 classes that use 109 properties, and are used to model 644 
individuals. It is available as OWL, DAML and RDFS [122].  
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2.6  Expression Database Comparison 

 The first objective of the current thesis was to analyze existing 
microarray gene expression databases for their ability to serve as an 
integrated environment for a laboratory that performs microarray 
experiments. The aim for this comparison was to choose the most 
suitable environment for the experiments performed by molecular 
biology researchers in the Institute of Molecular Biology and 
Biotechnology of FORTH (FORTH-IMBB [123]), and informaticians from 
the Institute of Computer Science of FORTH (FORTH-ICS [124]). The 
whole effort was to deliver an integrated clinico-genomics environment 
for the respective experiments in the context of the projects: PrognoChip 
(funded by the General Secretariat for Research & development – EPAN 
program) and at the same time contribute to the FORTH-ICS efforts in the 
context of the INFOBIOMED (NoE, funded by EU in the context of the IST 
program). 

 

In the following sub-chapters we present the two Expression databases that were 
compared: ArrayExpress and Base. 

2.6.1  ArrayExpress 

The EBI (European Bioinformatics Institute [125]) has established a public repository 
for microarray gene expression data called ArrayExpress [109]], analogous to EMBL-
bank for DNA sequence data. ArrayExpress uses MIAME set of disciplines to 
describe all the information stored. As of November 2004, ArrayExpress contains 
~12,000 hybridizations covering 35 species. The majority of studies concern samples 
from Homo Sapiens or Mus musculus. Along with Gene Expression Omnibus [126] 
and CIBEX [127], it is one of the three repositories recommended by the MGED 
society for storing data related to publications. The ArrayExpress suite of databases 
and applications comprises: 

o MIAMExpress [128], a web-based MIAME supportive data-submission tool 

o ArrayExpress repository that provides public and password-protected access to 
the submitted data 

o A query optimized data warehouse containing a curated subset of normalized 
data 

o Expression Profiler [129], an integrated online visualization and analysis tool. 

All the software in the ArrayExpress suite is open source. There are two major 
submission routes to ArrayExpress: online via the MIAMExpress data submission 
tool and via a MAGE-ML based pipeline set-up with an external application or 
database. MIAMExpress is primarily aimed at users with no substantial local 
bioinformatics support and with no access to a local database providing direct 
deposition. MIAMExpress is an open source software that can be customized for use 
by a single laboratory, or for particular application domains. 

The highest level of organization in the ArrayExpress repository is the Experiment, 
which consists of one or more hybridizations, usually linked to a publication. The 
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ArrayExpress query interface provides the ability to query for Experiments, Protocols 
and Array designs by their various attributes, such as species, authors or array 
platforms. The data can also be analysed and visualized online using Expression 
Profiler. Password-protected access to pre-publication data is provided for submitters 
and reviewers. A schematic diagram of the software architecture is shown in figure 
11, below [130]. 

 

Figure 11. (a) The ArrayExpress architecture and database side activities are shown. (b). The 
functionality experienced by the user is shown. 

 

The online submission tool MIAMExpress is being extended to allow a spreadsheet 
based data batch uploading to facilitate large-scale experiment submissions. A 
graph-based visualization tool is being added to MIAMExpress and ArrayExpress. 
The ArrayExpress repository and data warehouse interfaces will be unified. The 
gene-based query facility in the warehouse will be used as the basis for integrating 
ArrayExpress into all EBI services more closely.  

2.6.2  BASE: BioArray Software Environment 

BASE [131], [132] is a comprehensive free web-based database solution for the 
massive amounts of data generated by microarray analysis released under the GNU 
Public License [133]. BASE attempts to be a unified system capable of organizing all 
the information surrounding microarray experimentation and which also integrate this 
information with tools for the analysis of quantifies microarray hybridization data. 
BASE is a MIAME-supportive customizable database and analysis platform designed 
to be installed in any microarray laboratory and to serve many users simultaneously 
via the web. The software was developed on the GNU/Linux operating system in the 
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PHP language [134], with data being stored in a relational database (MySQL [135]) 
and communicated to the user through the Apache web server [136]. Where needed, 
the user interface employs Java and JavaScript in addition to plain HTML, and C++ 
has been used for the more computationally intensive tasks on the server. 

The system integrates biomaterial information, raw images and extracted data, and 
provides a plug-in architecture for data transformation, data viewing and analysis 
modules. Additionally, for laboratories the system has array production LIMS features 
that can be integrated with data analysis. The structure of BASE was designed to 
follow the natural workflow of the microarray biologist (figure 12), and it is compatible 
with most types of array experiments and data formats. With his or her own account 
and administrated access levels, a user can import data into the database, group 
array data together into experiments, and in a uniform and streamlined fashion, apply 
filters and transformations and run analyses. To facilitate online collaboration users 
can share almost any object within database. Data can be exported in a multitude of 
formats for local analysis and publication. BASE also contains an annotating and 
tracking system for biomaterials that is user customizable via a web interface and is 
integrated with the data analysis. Source organism and cell-type taxonomies can be 
created, and new annotation types can be defined and linked to any sample. 

 

Figure 12. Simplified schematic overview of software structure of BASE. 
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BASE integrates a framework with a plug-in architecture that enables integration of 
modules that transform, or analyze and visualize microarray data. This architecture 
consists of three parts: a data standard and format (MAGE-ML) for transferring 
biomaterial, reporter and hybridization data to and from application modules that run 
on the server, a job handler for execution of application modules and saving results 
back into the database, and a web interface for the administration and installation of 
new plug-in modules. Furthermore, to allow for any combination and series of data 
filtering, transformation and number-crunching steps, a data analysis interface that is 
organized hierarchically was created. Finally data can be visualized at several stages 
of analysis. Unmodified and transformed data sets can be plotted as scatter plots, 
histograms or tables. Data can also be exported for custom analyses and local 
development of new analysis methods, and in various defined formats for use in 
external analysis programs.  

2.7  ArrayExpress vs. BASE: Comparison Outcome 

During this comparison we evaluated a variety of aspects from the sequence 
databases ArrayExpress and BASE. The aspects evaluated and our estimations 
were focused on the different functionalities supported by the two approaches and 
systems. 

■ Supporting Standards. Both databases provide partial support for 
experiments described under MIAME guidelines as well as provided data 
exchange through MAGE-ML. ArrayExpress seemed to have certain 
difficulties in using MIAMExpress as experiment submission tool. At the 
other hand BASE had as future plan to provide MAGE-ML experiments 
submissions even though it supported experiments MAGE-ML 
extractions. 

■ Well-known, supportive community. The databases should be well-known 
and tested under various conditions. There should be also a community 
of developers/testers that should provide support and instructions 
whenever we faced any problem. Both databases had mailing lists, and 
an active community to help and support. ArrayExpress as the sequence 
database of one of the three major genomic research institutions 
worldwide had better support, documentation and on-line help. 

■ Installation and software maintenance. The databases should be relevant 
easy to install, upgrade and maintained. There also shouldn’t have 
extreme hardware requirements. At this criterion ArrayExpress had 
serious disadvantages. As an internal Relational Database Management 
System (RDBMS), ArrayExpress used Oracle version 9i.  Even though this 
RDBMS is one of the most expert and fast it was exceedingly tricky to be 
installed and set-up. Moreover it had unnecessarily high hardware 
requirements.  At the other hand BASE was depending in MySQL as 
internal RDBMS, that is light-weighted robust and easy to be installed 
database system. 

■ Provided tools / Extensions. The databases should have inherently a 
large collection of data analysis tools and there should be easy to be 
extended with new ones. BASE provided some basic data analysis tools 
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and an integrated plug-in schema, while ArrayExpress provided just 
some basic tools. More over ArrayExpress has been built by using Perl 
programming language rather than BASE that has been built by PHP. 
PHP is a relevant contemporary language that has more potentials than 
Perl.  

■ Interface supplied / Usability / Security. As one of the target groups to 
use the database was not IT experts, the databases should have an 
intuitively simple but yet functional user interface. Both databases 
conveyed a graphic query interface. ArrayExpress lacked a graphic 
submission tool and both databases had paid substantially attention to 
provide a usable graphic interface. Furthermore, both databases had 
adopted the security schema of their inherent databases. ArrayExpress 
had Oracle’s security system which is more sophisticated and flexible 
than the respective RDBMS of BASE. 

 After weighting the pros and cons of each tested microarray gene 
expression database we finally choose the BASE database. The reasons 
for this decision were the specific difficulties of ArrayExpress inherent 
RDBMS installation and maintenance and the flexibility of BASE’s plug-
ins and PHP developing language. Although ArrayExpress seemed to be 
more renowned in the bioinformatics community the contemporary 
characteristics of BASE and its rising reputation determined the final 
decision. 
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3. Combined Clinico-Genomic Knowledge Discovery 

Today, the application of novel technologies from proteomics and functional 
genomics to the study of diseases (e.g., cancer) is slowly shifting to the analysis of 
clinically relevant samples such as fresh biopsy specimens and fluids, as the ultimate 
aim of translational research is to bring basic discoveries closer to the bedside [137]. 
It becomes evident that in order to fully grasp the mechanisms of a disease we do 
not only need an understanding of the genetic base of the disease - dealing with 
large amounts of data and related functional genomics approaches but we also need 
to integrate the knowledge normally processed in the clinical setting. In other words 
the research agenda should be forwarded towards the integration or, synergy 
between bioinformatics and medical informatics activities. In this setting a new 
discipline namely, BioMedical Informatics (BMI), is rising [138], [139] with the vision 
being to compact major diseases on an individualized diagnostic, prognostic and 
treatment manner [140], [6]. 
With the recent advances in microarray technology [141], [14], the potential for 
molecular diagnostic and prognostic tools seem to come in reality. The last years, 
microarray-chips have been devised and manufactured in order to measure the 
expression profile of thousands of genes. In this context a number of pioneering 
studies have been conducted that profile the expression-level of genes for various 
types of cancers such as leukaemia, breast cancer, colon, lymphoma, central 
nervous system, and other tumours [142], [143], [144], [145], [146],  [147], [148]. The 
aim is to add molecular characteristics to the classification of diseases so that 
diagnostic procedures are enhanced and prognostic predictions are improved. These 
studies demonstrate that gene-expression profiling has great potential in identifying 
and predicting various targets and prognostic factors of diseases.  
By measuring transcription levels of genes in an organism under various conditions, 
in different tissue samples, we can build up gene expression profiles, which 
characterize the dynamic functioning of each gene in the genome. The microarray 
data are represented in a matrix with rows representing genes, columns representing 
samples (e.g. various tissues, developmental stages and treatments), and each cell 
containing a number characterizing the expression level of the particular gene in the 
particular sample, i.e, the gene expression matrix.  
Gene-expression data analysis depends on Gene Expression Data Mining (GEDM) 
technology, and the involved data analysis is based on two approaches: (a) 
hypothesis testing - to investigate the induction or perturbation of a biological process 
that leads to predicted results, and (b) knowledge discovery - to detect underlying 
hidden-regularities in biological data. For the latter, one of the major challenges is 
gene-selection [149]. Gene selection methods utilise statistical methods and 
algorithms to estimate the correlation strength of genes with any of the sample 
classes or, phenotypes (i.e., tumour-types; disease-recurrence states, etc). Genes 
with high ranked ordered correlation scores will be proposed as possible indicative 
markers for the targeted phenotypes. Possible prognostic genes for disease 
outcome, including response to treatment and disease recurrence are then selected 
to compose the molecular signature or, genotypical category. The selected genes, 
after tested for their reliability (e.g., via appropriately conducted clinical trials) present 
the gene-markers that are used for the categorisation of new patient samples into 
respective disease classes. 
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3.1  Genomic Medicine and Individualized Healthcare  

Genomic medicine comes largely from knowledge emanating from the Human 
Genome Project [1], and has to be embodied in today’s healthcare services and 
research. Genomic medicine will change healthcare by providing knowledge of 
individual genetic predispositions via microarray and other technologies. Knowledge 
of individual genetic predispositions can benefit patients in several ways. Firstly by 
individualized screening, namely by performing certain clinical tests and 
observations, secondly by individualized behavior changes and by presymptomatic 
medical therapies. This individualized treatment will introduce the advance of 
pharmacogenomics that will allow individualized medication use, based on 
genetically determined variation in effects and side effects. It will also introduce new 
medications for specific genotype disease subtypes. 

♦ One of the greatest challenges from genomic medicine is to change healthcare 
by providing better understanding of non-genetic, environmental factors in health 
and disease, thus by emphasizing health maintenance rather than disease 
treatment. Moreover we expect from genomic medicine through genetic 
engineering to explicit or implicit intervene into human genomic sequence. 
Summarizing, we expect from genomic medicine to change healthcare by 
creating a fundamental understanding of the etiology of many diseases, even 
non-genetic diseases. 

3.1.1  Applications of Genomic Medicine in healthcare 

Although the healthcare community is already applying gene related therapies to 
specific diseases there are certain limitations to practices followed. The major 
limitation is that these practices include conditions wholly caused by an extra or 
missing complete chromosome or part of a chromosome (e.g., Down syndrome, 
Turner syndrome). Sometimes the conditions are caused by a mutation in a single 
gene (e.g., cystic fibrosis). These conditions are of great importance to individuals 
and families with them but, even when added together, are relatively rare. Most 
people are not directly affected, thus genetics have played small role in healthcare, 
and in society in general so far. It is indicative that genetic care could be supplied 
primarily by medical geneticists and genetic counselors, with occasional involvement 
of other specialists and primary care providers, rather by an organized healthcare 
system. 

In USA, projections suggest that 40% of those alive today will be diagnosed with 
some form of cancer at some point in their lives. By 2010, that number will have 
climbed to 50% [150]. Today it is known that 9 of the 10 leading causes of mortality 
have genetic components making clear that a new perspective of genetics and 
genomic medicine has to be established [4]. This aspect of genetics has to consider 
diseases caused partly by mutations in specific genes (e.g., breast cancer, colon 
cancer, diabetes, Alzheimer disease) or prevented by mutations in genes (e.g., HIV, 
atherosclerosis, some forms of cancer) [5]. These conditions are also of great 
importance to individuals and families with them, but are significantly common 
enough to directly affect virtually everyone. This make genetics play large role in 
healthcare and in society. Moreover, these conditions are common enough that 
genetics will be supplied with occasional involvement of medical geneticists and 
genetic counselors, but primarily by primary care providers and other specialists. 
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3.2  Biomedical Informatics (BMI): The Vehicle through  

Biomedical informatics is an emerging discipline underlying the acquisition, 
maintenance, retrieval and application of knowledge and information in research, 
education, and service in health-related basic sciences, clinical disciplines, and 
health care administration with computer science, statistics, engineering, 
mathematics, information technologies and management. 

Biomedical informatics coalesces the related fields of Medical Informatics (now being 
named Health Informatics) and Bioinformatics. Health Informatics contains subsets 
such as Telemedicine, Clinical Informatics, Pharmaceutical Informatics, Nursing 
Informatics and Public Health Informatics. 

Central to both medical informatics and bioinformatics is the collection and analysis 
of information. While medical informatics is more concerned with structures and 
algorithms for the manipulation of the data and how it can be applied in healthcare, 
bioinformatics is more concerned with the data itself and its biological implications. 

 
Figure 13. An Informatics-centric view of biological sciences, healthcare, bio- and medical-informatics, 

that orients biomedical informatics R&D. 

Figure 13, above, shows an informatics-centric view of the intersections and overlap 
among the biological sciences, health services research, and information analysis 
and presentation. 

BMI research areas [151] include: (1) understanding how and why researchers and 
practitioners use information to accomplish their objectives; (2) modeling structures 
for representing data and information that make relationships between concepts and 
terms explicit; (3) developing and evolving computer-assisted decision support 
systems to improve clinical practice, biomedical research, education, and 
administration; (4) understanding and addressing related workflow, change 
management, communication, and human-computer interface issues; and, (5) 
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developing methods for evaluation of models and systems, including health services 
research, data mining and limiting retrieval to context.  

3.3  Integrating Clinical with Genomic Information in Gene-Expression data 
Analysis 

Most genetic contributions to common disease identified so far have been low 
frequency with high penetrance alleles. These alleles include: BRCA1 and BRCA2 
(breast and ovarian cancer), HNPCC (colon cancer), MODY 1,2,3 (diabetes), Alpha-
synuclein (Parkinson disease). Nevertheless, on a population level, most genetic 
contributions to common disease are from high frequency, low penetrance alleles. 
These alleles include: APC I1307K (colon cancer), ApoE (Alzheimer disease), CCR5 
(HIV/AIDS resistance) [152]. What makes these low penetrance alleles to be 
expressed seems to be a complex concept that has to include clinical observations 
alongside with genomic medicine. 

Generally, one major research hypothesis is that clinical observations are strictly 
correlated with specific alleles during the expression of serious diseases like cancer 
and diabetes. To identify genetic patterns - in the broadest sense - which are relevant 
to patients in general, genetic data must be linked with clinical data for a substantial 
number of patients. While we are moving towards the integration of clinical 
information along with genomic medicine it is crucial to build information systems, 
software tools and services that elaborate this integration.  

Until recently, diagnostic and prognostic assessment of diseased tissues and 
tumours relied heavily on indirect indicators that permitted only general classifications 
into broad histological or morphological subtypes and did not take into account the 
alterations in individual gene expression. In this context, global gene expression 
analysis using microarrays now offers unprecedented opportunities to obtain 
molecular signatures of the state of activity of diseased cells and patient samples. 
This groundbreaking approach of studying cancer promises to provide a better 
understanding of the underlying mechanism for oncogenesis, more accurate 
diagnosis, more comprehensive prognosis, and more effective therapeutic 
interventions. 

Within the past years, two major advances have taken place. First, microarray-based 
expression profiling has shown promise with the preliminary demonstration that 
clustering techniques can ease re-classification and predict the clinical outcome for 
various diseases [139], [143], [153], [154]. These studies demonstrate the transition 
of basic biologic research to clinical application. The predictive power of this 
approach is much greater than that of currently used approaches, but remains to be 
validated in prospective clinical studies. 

3.3.1  Integrated Clinico-Genomic Knowledge Discovery: A Scenario 
The conceptualization of individualized medicine is to be realized by respective 
procedures, protocols and guidelines in the context of integrated and synergic clinico-
genomics decision-making scenarios. In the following lines an outline of such a 
scenario is presented for the case of cancer – the same scenario may be 
conceptualized and appropriately extended to other diseases, The scenario 
illustrates the key processes, namely: collection of samples, phenotyping, genotyping 
and the transition from phenotypes to genotypes. 
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i. Collections of samples. Tissue sample is extracted from specific cancer patients. 
This applies not only to surgical operations (where, the tumor is extracted) but 
also to cases where the appointed protocol involves a pre-surgical chemo- and/or 
radio- therapeutic treatment in order to ‘shrink’ the tumour and then, depending 
on the outcome, proceed to surgery invasion. The tissue sample is appropriately 
treated and preserved in order to reserve RNA expression. 

ii. Phenotyping 

o Characterization of samples. Assume that the collected samples are assigned 
(by the involved clinical specialist – oncologist, pathologo-anatomist, chemo- 
and/or radiotherapist) to various clinico-histopathological types and stages. 

o Classification of samples. According to characterization, the samples may be 
assigned to different phenotypical profiles (e.g. phenotypes F1 and F2 – see 
Figure 14). The profiles refer to parameters of patients’ clinical assessment 
and include: age, habits & environmental factors, family-history, tumour type, 
stage and other related histopathological parameters, as well as medical-
imaging parameters. In this case the acquired patients’ phenotypes ease the 
involved diagnostic and/or prognostic decision making operations (e.g., good 
vs. bad prognosis). In the case of therapeutic decision making, and in the 
presence of follow-up information, the phenotypes may refer to the potential 
treatment outcome, e.g., patients (samples) responding to a specific 
chemotherapeutic and/or radio-therapeutic treatment versus patients that do 
not respond. 

iii. Genotyping. Using microarrays technology the molecular, i.e. gene-expression, 
profiles of the samples are extracted. Moreover, based on fundamental molecular 
biology knowledge we may assess relevant molecular-pathways (e.g., genetic 
networks). Such knowledge will help to the identification of validated and more 
refined genotypes. 

iv. From Phenotypes to Genotypes. After i, ii, and iii are accomplished, we have at 
our disposal a gene-expression matrix with rows the targeted genes and columns 
the expression levels of genes for the different samples. Moreover, each sample 
is assigned to one of the two identified phenotypes, F1 and F2, which are 
classes. Applying advanced data-mining operations – such as gene selection, on 
the acquired gene-expression matrix we are able to identify potential 
discriminatory genes, i.e., the genes that distinguish between the two identified 
phenotypes. These genes compose and indicate the molecular signature (or 
gene markers) of the respective phenotypes or, the most discriminatory features 
that best distinguish between the classes. In other words, we are able to link 
potential phenotypical profiles to respective molecular or, genotypical ones. Such 
advancement may be utilized in the course of both prognostic and therapeutic 
decision-making processes. That is, respective patients, whose gene-expression 
profiles ‘match’ the discovered molecular signature, could be detected to belong 
to one of the identified phenotypes. Then, according to assessed prognostic 
indicators and established clinical guidelines the respective patients may be 
admitted to (potentially) available treatment protocols. 

v. From Genotypes to Phenotypes. The scenario presented in iv demonstrates the 
identification of patients’ populations that best ‘fit’ specific molecular profiles and 
by though, ease the individualized treatment/care objective. The decision making 
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process described above may be initiated the other way around, towards the 
establishment of more fundamental knowledge. That is, applying again data-
mining operations (e.g. clustering) we are able to identify clusters of samples 
based on their gene-expression profiles. These clusters (actually the ones 
validated by the involved researcher) may represent potential interesting 
genotypes, e.g., genotypes G1 and G2 (figure 14). So, in the course of 
diagnostic, prognostic or, therapeutic decision making process, each, yet 
untreated, patient may be assigned to its corresponding genotypical class (i.e., to 
the discovered cluster genotype into which the patient belongs). Then, with the 
aid of a supervised predictive learning operation (for instance, decision trees) re-
classification of the disease on the phenotypical level - a fundamental task in the 
clinical research for compacting major diseases.  

 

 

                      Figure 14. Integrated clinico-genomic knowledge discovery: From phenotypes to 
genotypes and vice-versa. 

 
 

The operationalism of the aforementioned scenario calls for the integration of both 
clinical and genomic data. Such an endeavor demands the elaboration and 
customization of a mediation infrastructure as well as data mining operations with the 
appropriate biomedical informatics support. In the heart of such an integrative 
environment the gene selection processes plays the most important role (figure 14). 

3.4  Enabling Infrastructure: Integrated Clinico-Genomics Environment 

With the recent advances in microarray technology, the potential for molecular 
diagnostic and prognostic tools seems to come in reality. In such an integrated 
environment, the need to extend the standard clinical decision-making references to 
reliable genomic establishments also raises as a major demand. 

While the focus of BioInformatics- BI around the issues surrounding the Human 
Genome Project has given a scientific strength to BI research and development, the 
shift to develop clinical applications could produce the same problems that Medical 
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Informatics- MI professionals have faced during the past decades. New collaborative 
efforts between MI and BI could provide new insights and create a synergy for 
challenges needed to create novel genomic applications in medicine [155]. BI 
enables us to understand the fundamental knowledge about biological processes. 

The inclusion of clinical information in biomedical informatics opens the gateway to 
genetic risk profiling of patients, new paradigms in disease diagnoses and prognoses 
and novel approaches to drug discovery based on the correlation of genetic and 
molecular knowledge of diseases with clinical information of the patients. At the same 
time, it becomes evident that in order to fully grasp the mechanisms of a disease we 
do not only need an understanding of the genetic base of the disease- dealing with 
large amounts of data and related functional genomics approaches (such as gene-
expression profiling) but we also need to integrate the knowledge normally processed 
in the clinical setting. 

 
                  

                 Figure 15. The envisioned Integrated clinico-genomic environment – knowledge discovery 
and data mining are key-components of the environment. 

 

The aim is the design, development and deployment of an integrated clinico-
genomics operational framework where, functional genomics and disease 
compacting research are coupled and guided by related medical knowledge. The 
endeavour is to be based on the synergy between Medical Informatics and 
Bioinformatics, and centred on the promising microarray technology. In this setting, 
the respective R&D agenda should be forwarded towards: the delivery of an 
Integrated Clinico-Genomics Environment – ICGE with the combined genetic- and 
individualized-medicine being the target. Figure 15, above, shows a general outline 
of the envisioned ICGE. Key components of the envisioned ICGE environment are: 
information and data integration (phenotypical and genotypical), and knowledge 
discovery and data mining operations.  

In chapter 2 and 3, the specific contributions of the current thesis to the 
integration issues were presented. In the following chapter we present 
specific contributions for related knowledge-discovery issues and in 
particular to gene-selection and clustering of gene-expression data. 
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4.  Towards Reliable Gene-Markers: Supervised Gene Selection  
In this chapter we firstly justify the general concept of supervised gene expression 
database mining, research pathway and the related work. Then we propose a novel 
gene selection methodology based on the application of an entropic metric for gene 
discretisation. The algorithm is composed by four main modules: gene ranking, gene 
grouping, consecutive feature elimination and class prediction. Furthermore, we 
apply the algorithm in real-world datasets and we perform a comparison survey 
based on the resulted accuracy and feature elimination of our method versus other 
related methods. 

4.1  Gene Expression Data Mining 

4.1.1  Background to Gene Selection from Microarray Data 
Computational genomics has identified a classification of three successive levels for 
the management and analysis of genetic data in scientific databases: Genomics, 
Gene expression and Proteomics [156]. In this chapter we will be concerned about 
Gene expression database mining. Gene expression database mining is the 
identification of intrinsic patterns and relationships in transcriptional expression data 
generated by large-scale gene expression experiments. 

Gene expression database mining is used to identify intrinsic patterns and 
relationships in gene expression data. Traditionally molecular biology has followed 
so-called reductionist approach mostly concentrating on a study of a single or very 
few genes in any particular research project. With genomes being sequenced, this is 
now changing into so-called systems approach. Research questions such as how 
many genes are expressed in different cell types, which genes are expressed in all 
cell types, what are the functional roles of these genes, how a group of genes is 
regulated and what genes are interfered in a specific phenotype can now be posed. 

Microarray gene expression experiments are organized in four basic types of 
experimental protocols: a comparison of two biological samples, a comparison of two 
biological conditions, each represented by a set of replicate samples, a comparison 
of multiple biological conditions and analysis of covariate information. By ‘biological 
condition’ we mean the cell or tissue type or variant, plus the environmental or 
experimental variable that a given sample represents. The environmental or 
experimental variable may include temperature, exposure to some stimulus, insult, or 
treatment, or elapsed time from the exposure. These variables may define groups 
implicitly, or can be defined explicitly as covariates [157]. 

Although biological experiments vary considerably in their design, the data generated 
by microarray experiments can be viewed as a matrix of expression levels, organized 
by samples versus genes. Each sample represents separate microarray hybridization 
and generates a set of M expression levels, on of each gene. We call this set of 
expression levels an ‘expression signature’, although the term ‘expression fingerprint’ 
has also been used. In an analysis we may consider N such samples. For each 
gene, we can consider its set of expression levels across the different samples, 
called its expression profile. Outside this matrix of expression levels, we may have 
covariate information for samples, genes or both. The goal for microarray data 
analysis is to make inferences among samples, genes and their expression levels 
and covariates (figure 16). 
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Figure 16. The Gene Expression data matrix – as resulted from microarray experiments. 

 

We make a distinction between two types of analysis tasks: gene selection and gene 
clustering. Gene selection implies in identifying specific genes that are expressed 
differentially in one or more biological conditions by identifying unusual patterns of 
expression. Gene clustering or gene grouping is useful for understanding common 
expression patterns and it relies on reducing the complexity of the data by clustering 
genes into groups and identifying potential co-regulated genes. 

4.1.2  State-of-the-art Approaches in Gene Selection from Microarray Data 

One of the goals of supervised expression data analysis is to construct classifiers, 
such as linear discriminants, decision trees or support vector machines (SVM), which 
assign predefined classes to a given expression profile [158]. For instance, if a 
classifier can be constructed based on gene expression profiles that is able to 
distinguish between two different, but morphologically closely related tumour issues, 
such a classifier can be used for diagnostics. Moreover, if such a classifier is based 
on a set of relatively simple rules, it can help to understand what the mechanisms 
involved in each tumour are. Typically, such classifiers are trained on a subset of 
data with a priori given classification and tested on another subset with known 
classification. After assessing the quality of the prediction they can be applied to 
estimate the classification of which is unknown.  

Brown et al. [159] have applied various supervised learning algorithms to six 
functional classes of yeast genes using gene expression matrices from 79 samples 
[160]. Genes from some of the classes, such as ribosomal proteins and histones, are 
expected to be co-expressed. For these classes it was achieved a good classification 
accuracy. Some other functional classes, such as protein kinases, are not expected 
to have distinct gene expression profiles. It was shown that SVM provides one of the 
best prediction accuracy for the functional classes that are expected to be co-
regulated. 

Golub et al. [142] applied neighbourhood analysis to construct class predictors for 
samples, concretely for leykemias. They were looking for genes the expression of 
which is best correlated with two known classes of leukemias, acute myeloid 
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leukaemia and acute lymphoblastic leukaemia. They constructed a classifier based 
on 50 genes (out of 6817) using 38 samples and applied it to a collection of 34 new 
samples. The classifier correctly predicted 29 of these 34 samples. 

Su et al. [161], made a thoroughness study on the expression profiles of 9198 genes 
probing for discriminant factors for 11 different tumour types. They calculated a 
Wilcoxon rank-sum score [162] for each group of tumour samples versus samples 
from all other groups. The 100 genes with the lowest Ps in each class were ranked 
based on their predictive accuracy for discriminating one class versus all other using 
a Support Vector Machine (SVM) classifier [19] and ranked based on the Leave One 
Out Cross Validation (LOOCV [163]) accuracy. They made confident and accurate 
predictions for 85% of the test samples.  

Van’t Veer et al. [143] studied the gene expression profile of 78 breast cancer 
according to their clinical outcome. In brief, 5000 genes significantly regulated were 
selected from the 25000 genes on the microarray and ranked according to their 
correlation coefficient, then a sequentially adding of genes method followed to build a 
predictive mechanism. They finally build a 20 gene predictor capable to predict 65 
out of the 78 patients’ clinical outcome.  

Pomeroy et al. [148] developed a classification system based on microarray gene 
expression data derived from 99 patient samples with 4 different tumours of the 
Central Nervous System (CNS). They applied the Self Organizing Maps (SOMs) 
algorithm and hierarchical clustering to group data and principal component analysis 
to reduce the dimensionality of the data. Then they ranked data according to a 
signal-to-noise statistic and the t-statistic metric. Finally they used the k-NN algorithm 
[164] as a prediction mechanism for test data. They outperformed an 85% prediction 
score.  

Note that when classifying samples, we are confronted with a problem that there are 
many more attributes (genes) than samples that we are trying to classify. This makes 
it always possible to find a perfect discriminator to find if we are not careful in 
restricting the complexity of the permitted classifiers. To avoid this problem we must 
look for very simple classifiers, compromising between simplicity and classification 
accuracy. 

4.2  A Novel Gene Selection Approach: Methodology and Algorithms 

Here we present a novel gene-selection methodology composed by four main 
modules: 

 Discretisation of gene-expression data; 
 Gene ranking; 
 Grouping of genes; 
 Consecutive feature (gene) elimination, or addition. 

Discretisation of gene-expression data compose a data pre-processing that takes as 
input the gene-expression matrix and output a discretised transform of it [165].  

The gene-selction methodology is implemented in the context of an 
integrated gene-expression data analysis system, named MineGene -- a 
contribution of the current thesis. 
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An outline of the introduced gene selection via addition/deletion of genes, named is 
presented in Figure 17, below. 

 

 

Figure 17. Outline, components and workflow in the Gene Selection methodology. 

4.2.1  Discretization of Gene-Expression Data 

In many gene expression profiling studies the researchers decide to visualize the 
potential clustering of the genes (or the original gene expression matrix), as well as 
the final selected set of genes in a discretised manner [142]. Even a simple clustering 
algorithm based on binning (i.e. discretizing the expression profile space and 
clustering together the profiles that map into the same bin) has been shown to be 
useful for clustering genes and subsequent discovering of transcript factor binding 
sites [166]. The MineGene method utilized discretization of the gene expression 
continuous values into the core of the gene selection process.  Discretisation of 
gene’s expression values leads to the assignment of these values to interval of 
numbers that bound the expression level of the genes in the given samples. A 
variable number of such intervals could be utilized and assigned to naturally 
interpretable values e.g., low, high.  

Given the situation that, in most of the cases, we are confronted with the problem of 
selecting genes that discriminate between two classes (i.e., diseases, disease-states, 
treatment outcome, recurrence of disease, in other words phenotypes) it is 
convenient to follow a two-interval discretisation of gene-expression patterns. The 
multi-class problem where, patient samples are categorised to more than two 
phenotypes, is tackled by splitting it into a series of two-class discrimination problems 
and the combining the results, as it is done in various gene-expression studies [161], 
[167]. In this thesis we also present a novel multi-class categorisation method suited 
for microarray data.  

A general statement of the two-interval discretisation problem followed by a two-step 
process to solve it follows. 
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Given:    A vector of numbers V = <n0, n2 … nv-1>,  ni > ni+1  where, each number ni in 

V is assigned to one of two classes. 

Find:     A number, µ, ni < µ < nv-1, that splits the numbers in V into two intervals: 
[n0,µ) and [µ,nv-1], and best discriminates between the two classes – best 
discrimination is decided according to a specified criterion (in the presented 
work we rely on an information theoretic one; see step 2 below). 

 

The two aforementioned steps are (see figure 18 for a visual outline of the approach): 

Step 1. For all consecutive pair of numbers ni, ni+1 in V their midpoint, µi = (ni, ni+1)/2 
is computed, and the corresponding ordered vector of midpoint numbers is formed, M 
= < µ1 , µ2  … µv>.  

Step 2. For each µ ∈ M the well-known information gain metric is computed (utilised 
in the context of decision tree induction, [210]): 
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where sets Vl, and Vη include numbers from V which are less than µ and higher (or 
equal) to µ, respectively.  That is, Vl = {ni∈V / ni in [n0,µ)} and Vh = {ni∈V / ni in [µ,nv-

1]}. It is crucial to note that the entropy estimation is made according to the class 
assignment of each element in V and not according the expression values that it 
contains. Hence. 

V

V

V

V

V

V

V

V
VEntropy negnegpospos loglog)( −−=  

 

Note that the first term in equation (1) is just the entropy of the original set of 
numbers in V according to their class assignment, i.e., the distribution of class-values 
assigned to the numbers in V. The second term is the expected entropy after V is 
split using µ as the split point. That is, taking into account the distribution of class-
values assigned to the numbers in Vl and Vh. The midpoint that exhibits the maximum 
information gain is considered as the gene’s expression value which, when 
considered as a split point, exhibits the best discrimination between the classes. 
Then, this point is selected to assign the gene’s expression values to the nominal 
‘l’ow or, ‘h’igh values, respectively (i.e., less than µ and higher that µ). A ‘natural’ 
(even extreme and controversial in a molecular setting!) interpretation of low and high 
expression values for a gene is that the state of the gene is ‘on’ or ‘off’ in a particular 
sample (e.g., disease type or state). 

The aforementioned discretisation process is applied independently on each gene in 
the training set. The final result is a discretised expression-value representation / 
transform of each gene. An example, from the leukaemia domain (a two-
class/disease discrimination domain between diseases ALL and AML), is shown 
below (see chapter 4.3).  
Gene  /  Sample-class  
    ↓ 

ALL ALL ALL ALL ALL ALL ALL AML AML AML AML AML AML AML

M77142- original 296 225 243 137 289 -20 150 27 28 45 34 68 80 21 
M77142- discretised h h h h h l h l l L l l l l 
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The split values for each gene are stored to be used for (unseen) samples excluded 
from the training phase. In this case, the expression values of the genes are 
discretised according to the stored ones. The steps of the overall gene expression 
discretisation method are presented in Figure 18, below. 

 

Figure 18. The gene-expression data discretisation process. 
 

• Related approaches. The discretisation process resembles the one introduced by 
Fayyad and Irani [168], with two fundamental differences (recently, the same 
approach was also utilized in a gene-expression profiling study [169]). Because 
we use the sorted list of numbers for the selection of midpoints, all the points are 
‘boundary values’ (in Fayyad’s terminology). Furthermore, in [168] and [169], 
discretisation is recursively applied to each of the formed binary splits until an 
appropriately devised stopping criterion is met. The method proposed by Fayyad 
and Irani, however, does not meet the demand for a two-interval discretisation, 
which poses a strong difficulty to the natural interpretation of the resulted nominal 
values as it is unintuitive to interpret the states of a gene that is discretised to 
more than two values. 

4.2.2  Gene Ranking and Selection 

The problem that reveals now is how to select the genes that best discriminate 
between the different classes (being different diseases, disease types/states or, 
treatment outcome). The problem is well-known in the machine learning community 
as the problem of feature-selection [170]. In this context various ‘wrapper based’ 
[171], or, ‘filtering’ [172], approaches has been proposed. 

Traditionally, in machine learning and data mining research the number of features, 
m, is quite smaller than the number of cases (samples), n that is, m << n. In contrast, 
gene-expression studies refer to a huge number of features and quite few samples. 
In most of gene-expression domains the number of genes is in the range of 2000 – 
35000 (= the estimated number of human genes), and the number of samples in the 
range of 50 – 200, that is n << m. In this context it is questionable if a pure ‘wrapper’ 
based feature-selection approach could help, especially because of its high-
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computational cost. This argument could be also grounded on the PAC-learnability 
framework [173]. The needed (i.e., theoretical lower bounds) number of examples for 
a concept (i.e., a Boolean one) to be PAC-learnable are computed to be log(m) [174]-
[177]. So, the extra cost of learning a concept in the presence of r irrelevant features 
is log(m-r), the bound, and the computational cost, remains high. 

One feature (gene) selection process is based on the combination of a filtering and 
wrapper consecutive components: (a) Filtering component – the genes are ranked 
with respect to their power to distinguish between the different classes, and (b) 
Wrapper component – a greedy elimination (or, addition) process is consecutively 
applied on (groups of) the ranked genes in order to select the ones that best 
discriminate between the classes. 

4.2.2.1  Gene Ranking 
Gene Ranking has already been used to estimate genes’ discriminating ability. 
Pomeroy et al [148] applied the following metric: each gene, that has samples in 
class a and in class b are ranked according to the formula 2, below: 

 
ba

ba

σσ
µµ

+
−                                                          (2) 

Where ba µµ , are the mean values of the expression values of class a and class b 
respectively. And ba σσ , are the standard deviation of expression values of class a 
and class b respectively. Intuitively, this formula calculates how ‘concentrated’ are 
the expression values among the two classes. 

In our approach, for each discretised gene we count the number of ‘h’s and ‘l’s that 
occur in the respective samples. Assume that each sample is assigned to one of two 
classes, i.e., P, and N. The following quantities are computed: Hg,P = number of ‘h’ 
values for gene g assigned to class P; Lg,P = number of ‘l’ values for gene g assigned 
to class P; Hg,N = number of ‘h’ values for gene g assigned to class N; and Lg,N = 
number of ‘l’ values for gene g assigned to class N. As an example, these values  

Formula (3), below, computes a rank for each gene that measures the power of the 
gene to distinguish between the two classes: 

( ) ( )PgNgNgPgg LHLHr ,,,, ×−×=         (3) 

For a completely distinguishing gene where, all of its values for class P are ‘h’, and 
all of its values for class N are ‘l’, Hg,N =  Lg,P = 0 and, rg, takes its maximum positive 
value. In this case the gene is considered to be descriptive of (associated with) class 
P. 

The gene remains completely distinguishing in the inverse case where, Hg,P  =  Lg,N = 
0 and, rg, takes the minimum negative value. In this case the gene is associated with 
class N. In other words the gene ranking formula encompasses and expresses a 
polarity characteristic that represents the descriptive power of the gene with respect 
to the present disease-state classes. So, ordering the list of positive and negative 
ranks in descending order may identify the most discriminant genes for class P and 
N, respectively. For example by considering and selecting genes just from the top of 
the two lists. Formula (3) could be considered as (and actually presents) a discrete 
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analogue of the respective signal-to-noise formula (used by various gene ranking and 
selection approaches, see for example [142]). 

4.2.2.2  Gene-selection via Feature Elimination / Addition 
Rank-ordering of the genes and selection for the top ranked genes does not solve 
the problem of ‘how many genes’ should be considered as the most discriminant. In 
most of the published gene-expression studies the researchers decide on an ‘ad hoc’ 
basis choosing a threshold cut-off value for this (i.e., [142]). Here we introduce a 
more careful and sound method that selects the most discriminant genes from the 
two rank-ordered lists. It consists of two processes. 

• Grouping of genes. With this method we group genes that have similar ranking. 
First we estimate the value: 
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MaxRank and MinRank are the maximum and minimum ranking of the genes 
respectively as they were computed from the previous step. As we have positive 
and negative ranking we have to estimate two g values: one for positive and one 
for negative ranking. Gene i is assigned to a group iO according the formula: 
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In this formula, iR is the ranking of gene i, and k is an integer variable. 

• Greedy gene-groups elimination. We are presented with the two vectors of 
groups of genes, OP = <Op;f, Op;f-1 … Op;1>and ON = <On;f, On;f-1 … On;1>. Note that 
the beginning elements in the two vectors contain groups of genes that are less 
distinguishing between the two classes. In contrast, the ending elements contain 
genes that are most discriminant. So, it is rational to consider a procedure that 
eliminates groups from the beginning of the two vectors. We consider three 
situations: (i) deleting a group from OP, (ii) deleting a group from ON, and (iii) 
deleting a group from both OP and ON. In all cases, the accuracy of the remaining 
genes on the training samples is assessed. The accuracy is computed based on 
a specially devised predictor metric (presented in the next chapter). The accuracy 
figure and the respective list of remaining genes are recorded. The deletion that 
exhibits the highest accuracy is performed. The group-elimination process 
continues till all the groups in the two lists are considered. The list of remaining 
genes with the highest accuracy is selected as the final set of most discriminant 
genes.  

• Greedy gene-groups addition. Greedy feature selection could be implemented 
with its dual namely, greedy gene-groups addition. In this mode, groups of genes 
are added to an initially empty list until the prediction performance declines – the 
genes accumulated to that pointed compose the finally selected genes. In this 
initialization phase, with empty set of genes, the perspective performance is 
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considered to be the default one (i.e., the majority class is used for class 
prediction of all samples). 

Note. In the context of MineGene both gene-groups elimination and addition methods 
are implemented. Moreover, the same methods are implemented for 
eliminating/adding just one gene at a time, i.e., without forming groups of ranked 
genes. 

4.2.3  Samples Class Prediction 

The vision of functional genomics, at least for the human case, is the devise of 
diagnostic and prognostic kits for various diseases. With the utilization of microarray 
chip technology the target is to devise microarray chip-based diagnostic and 
prognostic kits dedicated to specific diseases. In the core of the process for devising 
such a kit are gene-selection methods, much in the sense presented above. Having 
in our disposal such a kit the question is how a new patient (i.e., its potential 
pathologic sample-tissue) is classified to a disease-state class or, how its prognosis 
is predicted.  

Assume that the sample is presented as a vector of gene-expression values for the 
genes that are present in the diagnostic/prognostic kit. We introduce a novel 
matching procedure, and a respective metric, that predicts the class of a sample. 

We assign the integer values ‘1’ and ‘-1’ to the respective discretised genes’ 
expression-levels of the new sample (we have already mentioned that the gene 
expression values of an unseen sample are discretised according to the mid points 
computed during the training phase). The integer values ‘1’ and ‘-1’ stands for the ‘h’ 
and ‘l’ assignments, respectively, denoted with sign(sg). The matching formula (3), 
below, is used to predict the class of a sample s. 
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In this formula, with Pg ∈  we denote all selected and positive ranked genes and 
respectively with Ng ∈ we denote all selected and negatively ranked genes. With |P| 
and |N| we denote the number of “Positive” and “Negative” train samples 
respectively. As with the gene-ranking formula (formula 3, above) formula (6) also 
encompasses a polarity characteristic. If the outcome of the formula is positive then 
the new sample is assigned to class P, and if it is negative then it assigned to class 
N. In addition, the strength with which the sample is predicted to belong to one of the 
two classes is also provided so that, strong (or, weak) predictions could be made. 
Take as an example the extreme case were Lg;P = Hg;N = 0 for all selected genes (i.e., 
all the genes have ‘high’ values for all class P samples, and ‘low’ values for all class 
N samples; in other words all selected genes are ideally associated with the 
respective classes). Then, in formula (6) the bracketed factor receives its maximum 
positive value which equals the total number of total selected genes, say T. Now, if 
the incoming unseen sample have ‘high’ values (i.e., sign(sg) = 1) for all genes 
associated with class P, and ‘low’ values (i.e., sign(sg) = -1)  for all genes associated 
with class N (i.e., an ideal class P sample) then, formula 6 receives its maximum 
positive value which equals to -T. So, the sample is strongly predicted to belong to 
class P. All the above holds for the inverse case where, the incoming sample is an 
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ideal class N sample- the outcome of formula 6 will be -2S, and the sample will be 
strongly predicted to belong to class N. Under suitable assumptions (based on an 
analysis of all prediction figures) a ‘weak’ prediction could leave the sample 
unclassified. 

4.2.4  Multi-domain Prediction Method 
The two-class predictor not only uses the metric of entropy to decide which class 
should be assigned to an unclassified sample, but also produces a strength of 
prediction value according to the relevance of the unclassified sample to our train 
samples. This strength can be applied to tackle domains with more than two classes.  
■ Let S be an unclassified sample that belongs to a domain with c classes. We also 

assume that we have selected g genes to be our discriminant attributes. We 
apply the predictor described above subsequently for each class. That is, we 
estimate the prediction strength of S belonging to each one of the c classes. 
Finally we assign the sample S to the class that made the best prediction score. 
With this mode of operation (also implemented in MineGene) we are able to 
predict the class of samples in the presence of multi-classes – an operation of 
great value in the case of multi-disease (e.g., multi-cancer) domains. 

4.3  Experimental Evaluation of the MineGene Gene-Selection Methodology 

We applied the introduced gene-selection and samples classification methodology on 
eight real-world gene-expression domain studies that are pioneers in their fields. A 
total of six biomedical domains were investigated and respective tasks were posted 
(for two domains, HBC and CNS, two different tasks are posted). Below the 
respective reference studies and tasks, with which we compare our gene selection 
method, are listed. 
o LEUK (Leukemia; Ref. [142]) – to distinguish between two leukemia classes, ALL and 

AML; 
o BRCA (Breast Cancer; ref. [143]) – to distinguish between two classes, patients with no 

metastasis in at-least five years and patients with metastasis within five years; 
o COLON (Colon Cancer; Ref. [144] for original study, and [146] for the comparison 

reference) – the task is to distinguish between  normal  and tumor samples 
o LYMPH (Lymphoma; Ref. [146]) – to distinguish between two lymphoma-characteristic 

classes, GCB and AB (types of cells);   
o HBC (BRCA1; Ref. [147]) – to distinguish between BRCA1 and not-BRCA1 mutated 

samples; 
o HBC (BRCA2; Ref. [147]) – the same as the previous domain study but with the task of 

distinguishing between BRCA2 and not-BRCA2 mutated samples; 
o CNS (Meduloblastoma; Ref. [148]) – to distinguish between two types of meduloblastoma 

brain tumours, Classic and Desmoplastic;  
o CNS (Treat.Outcome; Ref. [148]) – the same as the previous domain but with the task of 

distinguishing between two treatment outcomes for patients with meduloblastoma, 
Survivors and Failures. 
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In table 2 the specifics (e.g. reference study, number of genes, classes, etc) of the 
above domains are presented. 

 

Table 2. Experimental domain studies: Comparison reference studies and respective datasets. 

Study 
# 

Study Name (Task) Study 
Reference 

Classes #Genes Training 
Samples 

1 LEUK [142] {ALL , AML} 7129 38  {27,11} 
2 BRCA [143] {RELAPSE , NON-RELAPSE)} 24481 78  {34,44} 
3 COLON [144]] {TUMOUR , NORMAL} 2000 62  {40,22} 
4 LYMPH [146] {GCB , AB} 4026 47  {24,23} 
5 HBC (BRCA1) [147] {BRCA1 , notBRCA1} 5361    22  {7,15} 
6 HBC (BRCA2) [147] {BRCA2 , notBRCA2} 5361    22   {8,14} 
7 CNS 

(Medulloblastoma) 
[148] {CLASSIC , DESMOPLASTIC} 7129    60   {9,25} 

8 CNS  
(Treatment 
Outcome) 

[148] {SURVIVORS , FAILURES} 7129 60  {39,21} 

4.3.1  Results and Discussion 

Table 3, summarizes the results of applying the introduced MineGene gene-selection 
and sample classification/prediction method. The bold figures indicate superior 
performance with respect to the reference study, and: (a) to the number of selected 
genes (i.e., less number of genes is considered as superior), and (b) to accuracy 
assessment results. 
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Table 3. Comparison results assessed on the available training samples: MineGene vs. stuffy reference 
results. Bold figures indicate superior performance (better accuracy and less number of selected genes).  
#G: number of selected genes; Acc%: accuracy figure (%); Ref.: the number of selected genes and the 
reported (in the original reference paper) accuracy; MineGene.a: number of selected genes and 
accuracy figures for the MineGene gene addition method; GeneMin.d: the same as previous but for the 
MineGene gene deletion method; Ref./PRED: using the reported (reference) genes with MineGene’s 
predictor; Ref./MineGene.a: number of selected genes and accuracy figures when MineGene.a (both 
selection of genes and prediction) is applied just on the reported genes; Ref./MineGene.d: the same as 
previous but when MineGene.d was applied (figures in bold shows superiority over the reference study 
results). 

 

Study 
Study Name  
(Task) MineGene.a/d STUDY 

#  MineGene.a MineGene.d Ref. Ref./PRED Ref./MineGene.a Ref./MineGene.d 

    #G Acc% #G Acc% #G Acc% Acc% #G Acc% #G Acc% 

1 LEUK 1 100.0 4 100.0 50 94.7 81.6 5 94.7 13 97.4 

2 BRCA 33 97.4 34 97.4 70 83.3 71.8 17 87.2 63 84.6 

3 COLON 127 100.0 26 100.0 10 100.0 90.0 6 92.5 6 92.5 

4 LYMPH 4 100.0 4 100.0 50 97.1 100.0 4 100.0 4 100.0 

5 
HBC 
(BRCA1) 10 100.0 10 100.0 9 95.5 95.5 5 100.0 5 100.0 

6 
HBC 
(BRCA2) 3 100.0 5 100.0 11 81.8 100.0 4 100.0 6 100.0 

7 
CNS 
(Medul/stoma) 21 100.0 21 100.0 140 97.1 97.1 17 100.0 11 97.1 

8 

CNS 
(Treatment 
Outcome) 10 95.0 32 93.3 100 78.3 91.7 19 95.0 39 96.7 

  MEAN 26 99.1 17 98.8 55 91.0 90.9 10 96.2 18 96.0 

 

■ Accuracy assessment. As it can be observed, the introduced gene-selection 
methodology outperforms, in most of the cases, the ones in the comparison-
references. At an average, the accuracy achieved with MineGene is 99.1%, and 
98.8%, when using the gene addition and deletion approaches, respectively. These 
figures should be compared with the reported (in the original study reference 
publication) accuracy figure of 91.0% - a statistically significant difference on the 
P>99% level, for both MineGene.a and MineGene.d, applying a one-tail t-Test on 
the accuracy figures over all domains. 
The results show the reliability of the introduced MineGene gene-selection and 
sample classification/prediction methodology.  The high performance could be 
attributed not only to the overall gene-selection approach (i.e., discretisation, gene-
ranking and gene-selection) but also to the introduced prediction metric and 
methodology. In particular when the reported genes where used for prediction of 
samples’ class an average accuracy figure of 90.9 % was achieved. This figure is 
comparable with the 91.0% average reported accuracy figure, also confirmed with 
the observation of no statistically significance difference between the respective 
accuracy figures (even for the P>90% level when the same as above statistical test 
was applied). 
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■ Number of genes. Furthermore, MineGene results in a significant smaller number 
of selected genes, an average of 26, and 17 for the MineGene gene addition and 
deletion approaches, respectively, compared with an average of 55 reported genes 
for the reference studies. A statistically significant difference was observed on the 
P>95% level, applying a two-tail t-Test statistical test for the respective numbers of 
selected genes (i.e., 26 and 17 vs. 55). This result is quite satisfactory because a 
small number of disease associated genes gives the opportunity for more complete 
and better biological interpretation (e.g., for the involved disease-related 
biochemical pathways). 
Furthermore, using just the reported genes as a starting point for the MineGene 
method we were able to achieve even better results. In particular, high average 
accuracy figures of 96.2%, and 96.0% were achieved when MineGene was applied 
with the gene addition, and deletion approaches, respectively (a statistical 
significance difference on the P>90% level for a one-tail t-Test). In this 
experimental mode we were able to find even less number of discriminatory genes 
– 10, and 18 for the gene addition and deletion approaches, respectively (with a 
statistical significance difference on the P>99% level for a one-tail t-Test). 

4.4  Future R&D work for Gene-Selection 

The future research agenda includes: (a) further experimentation with other gene-
expression profiling domains, especially multi-class (more than two) domains, (b) 
biological interpretation of the results (e.g., how many of the selected genes are 
common in our results and the original comparison references), and (c) inclusion of 
the gene-selection and samples classification methodology in an Integrated Clinico-
Genomics Environment to ease decision making in the genomic medicine context 
[139]. 

Whether we use supervised or unsupervised expression profile analysis, they are just 
the first steps in expression data analysis. It is a long way from finding gene clusters 
to finding functional roles of the respective genes, and moreover, understanding the 
underlying biological processes. A natural step downstream of expression profile 
clustering is the usage of putative promoter sequences of similarly expressed genes 
for finding regulatory sequence elements in genomes. This is easier from yeast, 
since typically yeast promoters are relatively close to ORFs. 
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5.  Discovery of Co-Regulated Genes: A Clustering Approach 
The goal of clustering is to group together objects (genes or samples) with similar 
properties. This can also be viewed as the reduction of the dimensionality of the 
system or, the discovery of “structure in the data”. By comparing gene-expression 
profiles, and forming clusters, we can hypothesize that the respective genes are co-
regulated and possibly functionally related.  

 In this setting, clustering serves for the discovery and identification of potential 
genes’ function. The discovery of genes’ function may help to the identification of 
genes being involved in particular molecular pathways, and by though ease the 
modelling and exploration of metabolic pathways (i.e., metabolomics). 

 Moreover, clustering of genes may reveal gene-families, i.e., metagenes, and 
their potential linkage with combined clinical features – a task which is too-difficult 
to be achieved when we are confronted with the huge number of available genes 
(~25000-30000 for the human case). 

The current thesis introduces a novel graph theoretic clustering (GTC) approach. 
The approach is based on a graph-based arrangement of the input objects (genes in 
our case). With a careful and iterative partitioning of the graph’s minimum spanning 
tree (MST) it results into a hierarchical clustering of the input objects.  

5.1  State-of-the-art Approaches and Utility of Clustering Microarray Data 

The goal of clustering is to group together object (genes or samples) with similar 
properties. Many clustering algorithms have been applied to analyze expression 
data. The hierarchical [160] and K-mean clustering algorithms [178], [20], [179] as 
well as self-organizing maps [180] have all been used for clustering expression 
profiles. 

Clustering of expression profiles has been used for grouping genes as well as 
samples. The clustering of genes for finding co-regulated and functionally related 
groups is particularly interesting in the cases when we have complete sets of an 
organism’s genes. DeRisi et al. [181] used a DNA array containing a complete set of 
yeast genes to study to dauxic shift time course. They selected small groups of 
genes with similar expression profiles and showed that these genes are functionally 
related and contain relevant transcription factor binding sites upstream of their ORFs. 
More systematic studies of this dataset for regulatory elements were done by Brazma 
et al. [166] and Helden et al. [182]. 

Later more expression studies of yeast under various conditions were carried out, 
including sporulation [183], cell cycle [184] and yeast gene regulation machinery 
[185]. Clustering has been applied to the obtained gene expression matrices, and 
groups of functionally related and co-regulated genes have been revealed. Tavazoie 
et al. [179] clustered expression profiles of 3000 most variable yeast genes during 
the cell cycle into 30 clusters by the K-means algorithm. They found that for half of 
these clusters, strong sequence patterns are present in the gene upstream 
sequence. Note that expression profiles of cell cycle-dependent genes are periodic 
and Fourier analysis has been used to discover these genes [184]. 

Eisen et al. [160] have developed a hierarchical clustering-based algorithm and 
visualization software package, which is currently one of the most frequent used tools 
for expression profile clustering and data visualisation. They applied their software to 
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gene expression matrices obtained by combining 80 different yeast samples 
(experimental conditions) studied in various hybridization experiments at Stanford 
University.  

Gene expression profile clustering does not necessarily require the full genome. For 
instance Iyer et al [186] studied 8600 genes in human fibroblasts and obtained 10 
distinct gene clusters each associated with genes with particular functional roles, 
such as signal transduction, coagulation, hemostasis, inflammation etc. 

A simple method of finding sets of interesting genes is comparing expression profiles 
of two or more samples for differentially expressed genes. For instance, Lee et al. 
[187] used this method to find genes that are differentially expressed in skeletal 
muscle of adult (5 months) and old (30 months) mice. Of over 6347 mouse genes 
surveyed by a microarray, 58 displayed a greater than two-fold increase, whereas 55 
displayed a greater that two-fold decrease in expression in the skeletal muscles of 
the old mice. 

Ben-Dor et al. [188] applied a new clustering algorithm for classification of colon and 
ovarian cancer data sets. They used unsupervised clustering to find a hierarchical 
structure in the expression profile space, and supervised learning to find the best 
threshold to correlate the clustering structure with the known cancer classes. 

Hierarchical clustering has also been used for sample clustering. An interesting 
application of this approach is the clustering of tumours to find new possible tumour 
subclasses. Alizadeh et al. [146], applied this approach where diffuse large B-cell 
lymphoma (DLBCL) was studied using 96 samples of normal and malignant 
lymphocytes. Applying a hierarchical clustering algorithm to these samples they 
showed that there is diversity in gene expression among the tumours of DLBCL 
patients forming two distinct clusters. These two groups correlated well with patient 
survival rates, thus confirming that the clusters are meaningful.  

Sample clustering has been combined with gene clustering to identify which genes 
are the most important for sample clustering [146], [144]. Alon et al. [144] have 
applied a partitioning based clustering algorithm to study 6500 genes of 40 tumor and 
22 normal colon tissues for clustering both genes and samples. They call this method 
two-way clustering.  

Another fact that indicates the significance of the clustering methods can be found in 
gene regulatory networks, where we try to identify the role of every functioning part of 
a gene by doing something like “reverse engineering”. Based on the hypothesis that 
genes that have similar expression profiles (i.e. similar rows in the gene expression 
matrix) should also have similar regulation mechanisms as there must be a reason 
why their expression is similar under a variety of conditions. Therefore, if we cluster 
the genes in such clusters, some of these sets of sequences may contain a ‘signal’ 
as a specific sequence pattern such as a particular substring, which is relevant to 
regulation of these genes. 

5.2  A Graph Theoretic Clustering (GTC) 

In this chapter we present a novel Graph Theoretic Clustering (GTC) approach on 
clustering of microarray gene expression profile data. The approach is based on the 
arrangement of the genes in a weighted graph, the construction of the graph’s 
Minimum Spanning Tree (MST), and an algorithm that recursively partitions the tree.  
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5.2.1  Related approaches and utility of GTC clustering approach 

MST-based clustering is not a new idea. It was first introduced by Zahn [189] and 
Page [190]. Recently a similar approach that follows a different partitioning strategy 
was also introduced and applied on gene-expression profiling tasks [191]; the 
method is implemented in the core of the EXCAVATOR gene-expression analysis 
system [192]. These approaches follow a ‘one-shot’ MST partition strategy with the 
identification of ‘weak’ (or, ‘long’) MST edges, which are then cut. Because of their 
one-shot partitioning strategy these methods could not identify special relations in the 
data as for example the potential of a hierarchical organization. In addition, all 
approaches demand the presetting of the number of desired clusters. In most cases 
such a demand is problematic, especially in exploratory data analysis where, the 
analyst possesses no hints about the potential number of clusters. For the approach 
in [191] an estimate for the optimal number of clusters is computed in advance, a 
pre-processing step of high computational cost. 
Moreover, GTC exploits a ‘hybrid’ characteristic. Assuming that the assignment of 
genes to classes is known in advance, or we have an external source of information 
that can estimate an arbitrary form of distance between two genes then, several 
metrics and distances can be used to utilize information that comes from this external 
(to the expression-based description of the genes) modality. The clustering is to be 
performed an a (potentially) different distance-based arrangement of the genes, and 
the final hierarchical clustering outcome reflects both: (a) the expression-based 
description of the genes and (b) their class assignments. So, conjectures made from 
one source of information may be used to confirm (or, reject) conjectures from the 
other, and vice versa. In this setting, pre-established domain-knowledge is utilized in 
order to discover regularities and confirm/reject hypotheses. In that sense, GTC 
presents a ‘knowledgeable’ exploratory data analysis approach. This is in contrast to 
other MST-based clustering approaches where, the computation of distances 
between objects relies solely on the expression-based description of the objects and 
the corresponding ‘geometric’ arrangement of them. In this mode clustering is not 
coupled with background domain knowledge, a crucial source of information in order 
to decide where to cut the MST (especially for ‘borderline’ cases). 
With GTC there is no need to specify the number of clusters in advance (a 
prerequisite of other clustering approaches such as k-means [20]). In contrast, a 
‘termination’ condition, implemented with an information-theoretic formula, is applied 
on each of the nodes of the growing cluster-tree and decides to stop or, to further 
expand the tree at that node. A special feature of GTC is the combination of different 
information sources in order to compute the distance between the input objects 
(genes). Domain background knowledge can be utilized in order to compute 
distances between objects and arrange them in a weighted graph. Then iterative 
partitioning of the respective MST is done with reference to the original feature-based 
description of data. This hybrid characteristic makes the whole data analysis process 
more ‘knowledgeable’ in the sense that established domain knowledge guides the 
clustering process. The final result is a hierarchical clustering-tree organization of the 
input gene expression profiles. We focus on the discovery of indicative and 
descriptive patterns in order to ‘uncover’ hidden relations and yield insights on the 
order of spatial maps of genome, providing profiling rules that possibly reveals its 
functional structure and selective transcription. 
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5.2.1  Minimum Spanning Tree Construction 

With the microarray gene expression matrix in our disposal we compute the 
distances of all gene expression profiles. The distances between all the genes 
expressions profiles can be a simple (i.e. Euclidean, Manhattan) distance or 
something more domain specific suitable to reveal certain data regularities (i.e. 
Pearson, Mahalanobis). It also can be, as we have discussed, a complete arbitrary, 
external source of information.  

The next step is to form a fully connected weighted graph, with the genes as nodes 
and computed distances as edge-weights. In order for this graph to be formed all 
combinations of gene distances must be computed. If we have n nodes (genes) then 

the graph will have nn )1(
2
1

− edge-weights (fully connected, figure 19) 

 

Figure 19. Connected graph: Each node is a gene; the weight of each edge is not shown 

 

Given a set E of n genes, the minimum spanning tree of the fully-connected weighted 
graph of the objects is constructed. The formed MST contains exactly n-1 edges. In 
the current GTC implementation we used Prim’s [193], Kruskal’s [194] and Round 
Robin [195] methods for the construction of the MST. A basic characteristic of the 
MST is that it reserves the shortest distance between the genes (figure 20). This 
guarantees that objects lying in ‘close areas’ of the tree exhibit low distances. So 
finding the ‘right’ cuts of the tree could result in a reliable grouping of the genes.  

Figure 20. The Minimum Spanning Tree of the graph in figure 19 (for given weights of links). 
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5.2.2  Iterative MST partition 

Iterative MST partition is implemented within the following three steps. 

Step1: Binary splitting. At each node (i.e., sub-cluster) in the so-far formed 
hierarchical tree, each of the edges in the corresponding node’s sub-MST is cut. With 
each cut a binary split of the genes is formed. If the current node includes n genes 
then n-1 such splits are formed (figure 21). The two sub-clusters, formed by the 
binary split, plus the clusters formers so far (excluding the current node) compose a 
potential partition. 

 

Figure 21. Binary splitting of a MST. 

 

Step 2: Best Split. For each binary split we compute a category utility (CU) that 
indicates the division ability of the split. The more compact the clusters formed the 
higher the CU. As the expression profile data is numeric, we assume that the 
probabilities for numeric attributes have a normal distribution, and we use the height 
of the normal curve as the probability of a particular attribute value. The following 
formula shows this derivation process [196]: 
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The transformed evaluation function is [197]: 
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Where K  is the number of clusters formed so far, ikσ is the standard deviation for 
samples i in class k , and iPσ  is the standard deviation for attribute i  of all the genes 
participating in the clustering. The one that exhibits the highest CU is selected as the 
best partition of genes in the current node.  

Step 3: Iteration and termination criterion. Each new cutting point found on the 
tree, divides the tree in two sub-trees, let the first sub-tree be the left and the second 
the right. The best cut of these two trees is found as described in steps 1 and 2. In 
order to decide what will be the new cut, four potentials have to be examined. The 
first is that none cut should be considered, thus none new cluster will be formed and 
the algorithm must terminate. The second is that the best cut in the left sub-tree 
should divide the left tree into 2 new clusters while the right tree should not be 
examined any more. The third potential is symmetric to the second, thus the right 
tree should be divided and the left to be remained stable. The forth potential is that 
both cuttings should be considered and both left and right tree should be divided. In 
order to decide what potential is the proper one we estimate the CU of each one and 
select the one that exhibits the higher value. Then for each new division decided we 
iterate steps 1 through 3 (see figure 22). 

 
Figure 22. Four potentials of a partitioning step. 
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The final outcome is a hierarchical clustering tree where (by default) the termination 
nodes are the final clusters. After visual inspection of the hierarchical tree the user 
may decide to use higher levels of the tree as the final clustering. Note that there is 
no need to determine the number of clusters in advance – a task left to the node 
growing/termination criterion (step 3). 

5.2.3  Time complexity of GTC: Preliminary Assesment 

The core of GTC (i.e., the MST recursively partitioning) time-complexity depends: (i) 
on the complexity of computing the category utility indices and (ii) on the depth of the 
resulted clustering tree. Denote with F, the number of features (samples) and n, the 
total number of input objects. The category utility computation needs a time linear to 
the total number of the features, )(FΟ≈ . 

In the worst case the maximum depth of the tree is n-1. That is, at the zero level (i.e., 
all genes in one group) the resulted sub-clusters have 1 and n-1 objects, 
respectively. The sub-clusters are formed after performing a total of n-1 CU 
computations (i.e., edge cut or, splits of the corresponding MST tree. At the second 
level the clusters with 1 and n-2 objects, respectively, after performing a total of n-2 
CU computations. At the last level, n-1, there are n-(n-2) genes, and a total of                 
n-(n-2)-1=1 CU computations are to be performed. So he total number of CU 
computations is equal to 1+2+…+(n-1)=n(n-1)/2. As a result, and for the worst case, 
the GTC algorithm exhibits a quadratic to the total number of genes, and linear to the 
total number of samples, time-complexity, i.e., )( 2 FnO ×≈ . 

The quadratic complexity figure is in accordance to hierarchical clustering 
approaches that use dynamic closest pairing techniques [198], and with k-means 
approaches when the preset number of clusters is equal to the total number of input 
objects. The time complexities of the MST algorithms are: Prim’s ~ )log( 2 FnO , 
Kruskal’s ~ ))(log( nFaFnO + and Round Robin ~ )loglog( FnO . As we can see all 
of them are significantly faster than the main GTC algorithms, thus cannot be 
considered in time complexity estimations. 

In all the conducted experiments, and for datasets with ~1000-27000 genes and ~78-
100 samples, the real execution time of the C++ based GTC implementation ranges 
from ~2 to ~30min (on a 3.2MHz, 1Gb RAM PC). 

5.2.4  Coping with Time Complexity: Keep ‘Significant’ Weighted Links 

One of the main bottlenecks of the algorithm is the distance calculation. The time 
complexity (and space complexity) of calculating all distances of n genes with F 
samples is ~ )( 2nF ×Θ . Especially when dealing with gene expression matrices the 
number of input objects may reach the value of 30,000 (35,000 numbers is the 
estimation number of human genes), thus the time and space requirements of the 
algorithm can reach the order of 1011. Even though this complexity can be arranged 
by contemporary modern computers in the field of time, it is very hard to be arranged 
in the field of space. In order to overcome this bottleneck we introduce a heuristic 
that reduces significantly the order of the computed distances.  

We assume that the maximum degree of computed MST’s nodes is a value less than 
a constant value, let t. This hypothesis comes from the belief, that the data has a 
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minimum sparseness. Even though gene expression data have many irregularities, 
we can safely assume that a cluster can have a maximum compactness. Thus a 
MST of a fully connected graph cannot have a node with degree greater than t. As a 
consequence it is adequate to compute the t minimum distances of each node. This 
reduces the space complexity to ~ )( ntF ××Θ  even though it increases the time 
complexity as the burden of sorting the distances of each node has been added.  

The resulted graph will not be fully connected, but the produced MST will be exactly 
the same if the t value is not too small. According to our implementation a value of t 
close to 1% of the number of input objects (genes) proved to be a rational value. 

5.3  Experimental Evaluation of GTC on Gene-Expression Data Clustering 
We utilized GTC on an indicative gene expression profiling domain namely, large 
scale gene expression profiling of central nervous system development, referred as 
the Wen case-study [199]. The respective case-study present the mRNA expression 
levels of 112 genes during rat central nervous system development (cervical spinal 
cord); assignment of the 112 genes to four main functional classes- spitted further to 
fourteen class-values is also provided. 
Utilizing a special devised distance measure, the VDM metric (see below), in the 
course of GTC five clusters were induced that exhibit, not only similar expression 
profiles but similar, more-or-less, functions as well. The natural interpretation of the 
induced clusters and their correspondence to the respective Wen ‘w’aves are: 
EARLY / w1; MID-LATE / w2; MID / w3; LATE / w4; and CONSTANT / w5. Figure 23, 
below, shows the representative profiles for each of the induced clusters (the plotted 
patterns present the developmental-stage means over all genes in the respective 
cluster).   
Note. In the current MineGene implementation the Euclidean distance is 
implemented – the VDM metric was utilised off-line (of the MineGene system) and 
the results were saved in a file (appropriately formated to be read from MineGene). 

5.3.1  Results and Discussion 
The result shows that the presented clustering approach is well-formed and reliable 
producing similar results with the standard joining-neighboring clustering approaches 
(followed by Wen). Moreover, for all functional classes GTC/VDM exhibits lower 
diversity indices figures; compared with Wen’s clustering a significance difference 
was observed on the P>99% level. So, the GTC/VDM clustering approach induces 
more ‘compact’, with respect to the genes’ functions, clusters. Furthermore, in 
hierarchical clustering approaches it is difficult to identify the ‘borderline’ patterns, 
i.e., genes with expression profiles that lie between two or, more clusters. This is the 
situation with the w2/c2112 and w3/c2111 clusters. In Wen clustering there are some 
genes that are assigned to cluster w2, even if their expression patterns fits more-or-
less to the w3/c2111 pattern. The GTC/VDM clustering approach remedies this, and 
groups the genes within cluster w3/c2111. A special case of ‘bordeline’ cases are the 
‘unclassified’ ones – some genes assigned to the ‘neuro_glial_markers’ function 
remain unclassified in the Wen case study (the ‘other’ pattern in Wen’s terminology). 
With CTC/VDM most of these genes are assigned to cluster w3/c2111 in which, most 
of the genes comes from the ‘neuro_glial_markers’ function. So, with the utilization of 
background-knowledge (i.e., knowledge about the function of genes) it is possible to 
solve the ‘borderline’ problem, and make the interpretation of the final clustering 
result more natural. 
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Figure 23. Plots of the clusters’ mean expression level (representative patterns) for Wen and 
CTG/VDM clustering. 

 

Value Difference Metric (VDM): A Knowledgeable Distance Measure. VDM 
combines information about the input objects that originates from different modalities. 
For example, the a-priori assignment of genes to specific functional classes could be 
utilized. The VDM metric, given by the formula below, takes into account this 
information [200].  
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where, Va=x: x is the value of feature a; Na;x: the number of objects with value x for 
feature a; Na;x;c: the number of class c objects with value x for feature a; and C the 
total number of classes. Using VDM we may conclude into a distance arrangement of 
the objects that differs from the one that results when the used distance-metric does 
not utilize objects’ class information. So, the final hierarchical clustering outcome will 
confront not only to the distance between the feature-based (i.e., gene expression 
values) description of the objects but to their class resemblance as well. As the 
assignment of classes to objects reflect to some form of established domain 
knowledge the whole clustering operation becomes more ‘knowledgeable’. 
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5.4  Future R&D Work for Clustering Microarray Data 

The GTC clustering methodology is currently being tested on various domains, e.g., 
economic time-series data [201], mapping regional brain development [202]. The 
approach provides a framework where several distance metrics and category utilities 
can be applied and assessed. Thus, we need to expand our research on the direction 
to locate the most suitable distance metrics and category utilities for various research 
domains. In the field of microarray gene expression data we have to consider metrics 
that are resistant to erroneous or non-available data. 

GTC methods are ideal for visualisation of inner data relations either during the 
method’s process or the method’s outcomes after termination. Existing visualisation 
techniques and available software does not provide visualisation in a large zoomed-
out scale suitable for gene expression domains where the number of visualised 
objects usually exceeds the 30,000 nodes. In order to visualise and designate the 
inner gene relations stemming from GTC methods we have to introduce novel 
visualisation algorithms.  

Finally, as proved one bottleneck of the algorithm, are the distances computations. 
Although we presented a heuristic that merely overcomes this problem, the need for 
advanced, sophisticated distance computation heuristics is still an open issue.  
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6.  The MineGene System: Implementation Issues 
In an integrated clinico-genomic environment we want to utilize a general-purpose 
machine learning tool to serve as an application platform for gene selection and 
clustering algorithms. This tool, names MineGene is a collection of Machine Learning 
algorithms and heuristics for intelligent processing of gene expression data produced 
by DNA Microarray experiments. Its main purpose is to mine into vast and redundant 
documents for information regarding the ability of certain genes to discriminate 
between different sample states. Similar tools are GeneSpring [203] and MolMine 
[204]. MineGene, is designed and implemented to be suited as a plug-in in a gene 
expression database. With MineGene we give the ability to a gene expression 
database apart from storing, retrieving, sharing and querying of the data, to infer 
fundamental conclusions about the inner regularities, descriptive ability and possible 
relations of the data stored. 

The majority of the studies performed on gene expression data analysis follow a 
‘one-way’ approach, thus they apply only one or a very limited set of algorithms. 
Even when a study is composed by many parts, each responsible for a specific 
aspect of the process, it is not possible to apply and test various algorithms for this 
aspect and infer invaluable conclusions not only for the data, but for the application 
spectrum of an algorithm as well. Moreover, even when we want to test a single 
algorithm it is desirable to have an environment capable to perform multiple runs with 
different inputs and parameters.  

Judging from studies recently published, there is not yet any standard method for 
microarray gene expression data analysis but some general guidelines that recently 
have started to be formed. These guidelines represent a sequencing procedure that 
starts after data acquisition and ends to the construction of a predictor or a clustering 
mechanism depending if we are performing supervised or unsupervised data 
analysis (figure 24). 
 

Figure 24. Procedural tasks for gene expression data analysis. 
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6.1  The supervised data analysis pathway 

For supervised data analysis these guidelines form the following sequencing 
procedure: 

 Filtering. Filtering is the first task of the procedure and the only that accesses the 
primary train dataset. Filtering can be considered as a preprocessing of primary 
data. With filtering we eliminate the number of further studied gene expression 
profiles according to a preferred criterion.  The main reason to do this is to 
simplify the following tasks by providing them less data and to reduce the 
dimensionality of the problem. Usually the data filtered does not contain any 
significant information for gene expression regulations, namely filtered data do 
not significantly regulate among different sample classes. Some filtered methods 
include several hypothesis testing metrics as Wilcoxon rank-sum test and t-test. 

 Ranking. With ranking we tag each gene with a value indicative of its descriptive 
ability. The higher the ranking the better the ability of the gene to discriminate 
between different sample classes. Some ranking methods include Pearson’s 
correlation coefficients, standard deviation. The method proposed in chapter 
4.2.2.1 is a ranking method. 

 Grouping. Usually it is undesirable to manage each gene as a unique feature. 
The main reason for this is that according to previous step, some genes may 
exhibit a similar ranking, thus they should be treated as a group of genes. 
Moreover, treating each gene as a unique feature is sometimes an expensive 
computational task. Grouping allows as to reduce complexity and to emerge 
some physical correlation of the genes. 

 Gene Selection. The next step is to select the most suitable genes that according 
to our methods can discriminate the samples among two or more categories. 
These genes must have been regulated differently in the two classes of samples. 
Most of the studies select an ‘ad hoc’ number of best ranked genes, but some 
algorithmic approaches exist as well. One of them is proposed in chapter 4.2.2.2.  

 Predictor. The final step is to build the predictor. Here the genes selected from 
the previous task are chosen to act as attributes with continuous attribute values. 
Then each sample in the testing dataset is processed by the learning method 
selected here and assigned to a class. This is the only task where the test 
dataset is needed. Some famous learning methods include SVM, K-NN, K-
means, as well as the one proposed on chapter 4.2.3. 

6.1.1 Validation of Gene-Selection results: The Leave One Out Cross Validation 
(LOOCV) procedure 

In cases where test dataset is not available, or we want to assess the predictive 
capacity of the train data we can use the Leave One Out Cross Validation (LOOCV) 
[163] method. During this method we take one sample from the train dataset. Then 
we perform all the algorithms described above, and then use the taken sample, as a 
test dataset. This process is done iteratively for all train samples. The ration of the 
samples predicted successful by the predictor reflects the predictive capacity of the 
train data. In the case than we have absence of test data we may consider as best 
discrimant the genes that participated more times in the selected genes set during a 
LOOCV procedure. LOOCV is an essential validation method that can estimate the 
value of our learning method and/or the predictive ability of our data. 
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6.1.2  Unsupervised data analysis pathway 
 

For unsupervised data analysis these guidelines form the following two step 
procedure: 

 Filtering. Filtering is exactly the same task as in supervised processes. 
Preprocessing of the data is still a very important task. 

 Clustering. The clustering task is a generic unsupervised grouping method. 
Clustering significance and methods have been surveyed in chapter 5. 

Figure 25. Class Hierarchy of MineGene. 

6.1.3  General concerns of implementation 

As we have seen, the general purpose machine learning tool should comprise with 
some certain requirements.  One of them is that it should act as a plug-in in a gene 
expression database, thus it should be implemented in a general purpose, flexible 
computer language. Another concern is that it should be composed by several 
components with certain correlations between them. All the tasks presented before 
are families of certain algorithms (i.e., we have the family of gene ranking 
algorithms). Algorithms belonging to the same family share common attributes, 
methods and architecture. The only programming technique that ensures the 
component-like structure of the tool is the object oriented programming. Finally the 
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tool should utilize a Graphical User Interface (GUI) in order, for a user to have a 
visual contact with various possible algorithms and parameters of them.  

The programming language that fulfills the above requirements is the C++ and the 
programming environment selected is Microsoft Visual Studio v. 6.0. The component 
based schema of the tool, depicted in figure 24, is reflected in the hierarchy of the 
classes as we can see in figure 25. It is crucial to note that MineGene’s architecture 
allows a component / plug-in approach. Thus if a new specific (i.e., ranking) algorithm 
appears it is very easy and straight-forward to be embodied in the tool and enrich its 
architecture. 

6.2  MineGene: A Guide to Operations 

In this chapter we will describe the features and usage of MineGene. The initial GUI 
is presented in figure 26.  

 

Figure 26. MineGene's initial GUI. 

It is divided in three regions. The first named ‘Input Files’ where we select the input 
files to be processed. The second named ‘Methods’ contains all available methods 
organized as showed in chapter 6.1. Finally the third region contains buttons for 
manipulation.  
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6.2.1  Input Files 

Each input file can be one of three types (see figure 27):  

Train/Test File. These are files containing the primary data with gene expressions. 
They should be tab delimited files with k rows and l columns. In the i-th row and j-th 
column should be the expression of i-th gene of the j-th patient/sample. The filename 
could be anything, say “train.txt”. The test file will be used only if we will not select 
LOOCV or Clustering elsewhere it will be ignored. The contents of the test files are 
used only to apply the learning method and assess its predictive ability. 

Alongside with this file should be a file with the same name but with extension “.opt” 
(“train.opt” in our example). This file should contain the class assignment of each 
sample in the “train.txt” file as well as the name of each class. A typical “.opt” file 
could be: 

classes = 1 1 2 3 3 2 1 2 1 2 3 2 1 2 1 2 3 4 4  4 3 2 1 1 

names  =  class1 class2 class3 class4 

Another file that should exist is one with same name but with altered extension 
“.names” (“train.names” in our example). This file should contain the names of every 
genes plus arbitrary clustering information. It should have the following form: 

0 AFFX-BioB-5_at CL1 

3 AFFX-BioB-M_at CL2 

1 AFFX-BioB-3_at CL2 

2 AFFX-BioC-5_at CL1 

The first column contains the consecutive number of a gene (starting from 0). The 
records in the file don’t have to be sorted in any particular way, so with this 
consecutive number we hold the information of what gene is in each line. The second 
column contains the name of each gene. The third column contains pre-clustering 
information. We can assign a cluster value to each gene coming from an external 
source. This is useful when we perform our own clustering and we want to estimate 
our clustering efficiency according to an external cluster. Of course similarly we can 
estimate an external clustering.  

If we select two or more files as train/test files then these files will be merged 
horizontally. The merged file will be used as a standalone train/test file. This is useful 
when we want to check the general content of a domain. Of course the two merged 
files should have the same number of lines. 

Study file. When we select to build a classifier via the selected prediction method, 
the genes selected from the respective algorithm are printed in a separate file. It is 
very useful sometimes to compare the genes discovered by our algorithm with the 
genes discovered by an external study. So we provide the ability to select a file 
containing genes selected by a foreign study plus some kind of clustering 
information. This file can have any name and should have the following format: 

0 AFFX-BioB-5_at CL1 

3 AFFX-BioB-M_at CL2 

1 AFFX-BioB-3_at CL2 

2 AFFX-BioC-5_at CL1 
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The first column is ignored, although it is required for consistency reasons, as we 
wanted all the input files to have the same format. The second column contains the 
name of the genes of the external study and third column contains an arbitrary form 
of clustering. Whenever a study file is selected, at the end of the algorithm, the 
common genes are printed in a file with the same name as the train file but with 
altered extension “.common” (in our case the filename will be: “train.common”). This 
file has the following format: 

3133 U38480_at CL1 B 

3297 U49114_at CL2 B 

6613 U68135_s_at CL2 A 

The first column contains the consecutive number of the common gene found 
(always starting from 0). The second column contains the name of the common 
gene. The third column contains clustering information contained in the “.names” file 
and the forth line contains clustering information contained in the study file. 

 

 

Figure 27. Input Files. 

6.2.2  Methods 

As it was described, we provide a series of families of algorithms, where each family 
is responsible for a certain aspect of the whole learning method. The provided 
methods, categorized in algorithmic families are: 

Filtering. We provide the following filtering algorithms: 

o Remove null values (‘NaN’). As it was described in chapter 1.2.1.1 microarray 
expression data are sometimes erratic or non available. In these cases the 
gene expression matrix contains the value: NaN (Not a Number) in the 
corresponding position instead of a certain continuous value. Gene 
expression profiles containing too many NaN values do not exhibit any 
particular information, so they can be safely removed. With this algorithm we 
can remove gene expression profiles containing NaN values over a certain 
percentage. 

o Significance. With this algorithm we can perform the consequent methods 
only to genes that are significantly regulated between the two sample classes. 
This was achieved using the Wilcoxon rank-sum test [162], which tests the 
null hypothesis that gene expression in one sample class is not different from 
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gene expression in the other tumor class. The user has to specify the 
maximum p value. Usually a value close to 0.05 yields satisfactory results. 

o Read from File. We can select to perform our study restricted to genes whose 
names exist in an external file. The file should have the following format: 

0 AFFX-BioB-5_at CL1 

3 AFFX-BioB-M_at CL2 

1 AFFX-BioB-3_at CL2 

The first and third columns are ignored, although required for consistency 
reasons. The second column contains the names of the genes that will be 
furthermore processed. With this simple way we can restrict a study to be 
performed only in certain favorable genes. 

o No Filtering. No filtering at all is performed. All genes are examined. 

Ranking Method. We provide the following ranking methods. 

o Entropy. The dicretization ranking method proposed in chapter 4.2.2.1. 

o Standard Deviation. Gene discretization as proposed by Pomeroy et al [148]. 
This formula has been presented in the top of chapter 4.2.2.1. 

o Significance. This ranking method is exactly as in the filtering family. Here the 
extracted probability is not used to decide if the gene will be neglected or not, 
but is assigned to it as ranking value.  

o Read from file. Here we have the ability to assign a value to each gene that 
comes from an external source. The file should have the following format: 

0 AFFX-BioB-5_at 13.5 

3 AFFX-BioB-M_at 17.1 

1 AFFX-BioB-3_at 21.2 

The first column is ignored. The second and third column contains the name 
of the file and its value respectively. If the file does not contain values for all 
available genes (all, except of these neglected from filtering) then an error 
message is appeared.  

Grouping Method. After ranking genes are sorted according to their ranking in 
descending order. At the top of the ordering we have genes with maximum 
descriptive ability. We provide the following grouping method: 

o Maxmin. Gene Grouping as presented in chapter 4.2.2.2. 

o No Grouping. No grouping is performed at all. With this option, every gene is 
considered to belong to a unique group.  

Gene Selection. We provide the following gene selection methods: 

o Add. The Add Gene Selection method as it was presented in chapter 4.2.2.2. 

o Del. The Del Gene Selection method as it was presented in chapter 4.2.2.2. 

o Select Genes. Apart from the heuristic/algorithmic methods for gene 
selection, a user can manually set the number of positive or negative ranked 
genes to be selected as markers. Let P and N denote the number of positive 
and negative ranked genes respectively. Via a special dialog box (figure 28) a 
user can set either the absolute number of desired positive and negative 
genes, as well as the percentage of them. We can also set to “lock” the ratio 
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of selected positive and negative genes to be P/N regardless our selection of 
genes. For example, let C be the number of absolute genes that we select to 
be our final markers. If we choose to “lock” the ratio then we will use 

NP
PC
+

 

positive genes and 
NP

NC
+

 negative genes. Similarly if we select a 

percentage C instead of an absolute value, then we will use C% of P positive 
genes and C% of N negative genes. The same selection can be done to 
groups rather than genes. 

o Select Groups. This method is exactly the same if the Select Genes method. 
Instead of manually selection of genes, we have the ability to select an 
arbitrary number of groups via the same dialog box and the same options. 

Figure 28. Group Selection Dialog. 

 

o Read from file. Instead from applying a specific algorithm to find the most 
informative genes we can select genes from an external file. The file should 
have the following format: 

0 AFFX-BioB-5_at CL1 

3 AFFX-BioB-M_at CL2 

1 AFFX-BioB-3_at CL2 

The first and third columns are ignored. The second column contains the 
names of the selected genes. This method is useful in order to estimate the 
descriptive ability of genes published in a foreign study.  

Predictor. We provide the following prediction methods. 

o Discritisation. The discritization prediction method as presented in 4.3.3. 

o SVM. Performs the well-known SVM (Support Vector Machines [19]) 
prediction method. This method has a lot of parameters and options [205] that 
can be tuned from a special dialog box (figure 29). 

o KNN. Performs the K-NN (K-Nearest Neighbors [164]). The number of 
nearest neighbors as well the distance method can be inserted via a special 
dialog box.  

o Kmeans. Performs the KMEANS learning method. 
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Figure 29. Parameters of SVM package. 

 

Clustering. The only clustering method implemented is the Minimum Spanning Tree 
method proposed in chapter 5.2. The dialog box where we can set its options is in 
figure 30. In this dialog box we can set the MST method that will be followed (Prim’s 
[193], Kruskal’s [194] and Round Robin [195]). We can also set the distance method 
and the Category Utility as it was presented in chapter 5.2.2. We can also set some 
additional stopping criteria: The Minimum Cluster Members criterion ensures that 
each cluster should have a minimum number of objects. The percentage of Minimum 
Cluster Members criterion ensures that in each cluster a minimum percentage of total 
objects should participate. The maximum clusters criterion stops clustering when a 
certain number of clusters have been found and formed. 

As presented in chapter 5.2.4 a special heuristic has been implemented in order to 
limit the number of stored distances. With Prune Distances percentage setting we 
can set the percentage of lower distances for each gene that should be computed. A 
reasonable value is 1%.  

Additionally we can load an existing tree and apply clustering algorithm in this tree. It 
is not necessary to be a MST, any tree is suitable. To do this, we have to use the 
“Open Tree File” button. The file containing the tree must be formatted according the 
“.dot” format of Graphviz [206]. 

The “Open Dist File” button gives us the ability instead of calculating the distances to 
use an external file that contains all the distances of all the genes. This file should 
have the following format: 

Gene1 Gene2 Dist1-2 

Gene1 Gene3 Dist1-3 

Gene2 Gene3 Dist2-3 
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The first and second column contains the names of the genes and the distance 
between them is in third column. This file must contain all possible distances 
between genes. With this option we can utilize the ‘hybrid’ characteristic of MST 
clustering algorithm, as described in chapter 5.2. 

 Finally, we can use an arbitrary graph instead of the fully connected graph, in order 
to produce the MST. This graph must be located in a file described according the 
“.dot” format of GraphViz and have to be chosen by the “Open Graph File” button.  

The resulted clustering can be exported in JPEG format and visualized. Though, it is 
not recommended to visualize trees containing over than 1000 nodes as the inner 
JPEG exporting algorithm (GraphViz) has certain limitations. 

 

Figure 30. MST Clustering Algorithm Properties. 

 

6.2.3  General usage 
The button region of MineGene provides the ability to perform three fundamental 
data mining operation: 

■ Gene Selection / Application of Learning Method. This provides the ability to 
perform a supervised learning method that includes feature elimination / gene 
selection abilities. First a proper train and a test dataset have to be selected from 
the “Input Files” region. Then for each algorithm family (filtering, ranking, 
grouping, selection and predictor) one algorithm mast be chosen and set its 
parameters. The button “Gene Selection” has to be pressed.  
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■ LOOCV. In order to perform LOOCV, we have to do make the same 
manipulations as in Gene Selection operation. We do not have to select a test 
file. The button “Validation” has to be pressed”.  

■ Clustering. In order to perform Clustering, we have to select an input Train File 
from the “Input Files” region. Then we have to set up a suitable filtering algorithm 
and a clustering algorithm. Then we have to press the “Clustering” button. 

MineGene will inform when the algorithm terminates and will print the elapsed time. If 
the domain loaded has more than 2 classes, then the popup window in figure 31 
pops-up. 

 
Figure 31. Selecting between multi-class/category and two-                                                  

category/class domains. 

 

From this popup window we can select a name of a class, for instance class1. Then 
all the samples not belonging to class1 will be grouped in the same class with name 
“Other” and the two category problem will be used. If we want to apply algorithms in a 
multi-category domain then we have to select the “Multi-category” option. Only the 
“Entropy”, “Select Groups”, “Select Genes” and “Discritization-Multi” methods work in 
multi-category domains. 

6.2.4  Getting the Results: Output Files 

At the end, when all specified algorithms have been completed the program 
produces a set of files containing various results and findings. All produced files are 
saved in a special directory named “Results”. The exported files are: 

• <train_filename>.selectedGenes 

This file contains the genes selected from the selection algorithm. It looks like 
this: 

3133 U38480_at CL1 

3297 U49114_at CL2 

6613 U68135_s_at CL1 

The first column contains the consecutive number of the gene as it is appeared in 
the train/test file. It is important to note that the first gene in train/test file has 
consecutive number 0, instead of 1. The second column contains the name of the 
gene and the third columns contains its corresponding cluster information as it is 
contained in the “.names” file. 
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• <train_filename>.classification 

This file contains the classification results that produced by the prediction 
algorithm. It looks like this: 

1 

1 

1 

2 

1 

2 

. 

. 

. 

On each row the assigned class is printed. 

 

• <train_filename>.results 

It contains all the essential information and results of the whole process. Whether 
we have performed gene selection or clustering, this file has different form. If we 
have performed gene selection the file looks like this: 

Train File = E:\Master\leukemia\train_tab.txt 
Test  File = E:\Master\leukemia\test_tab.txt 

Initial Genes = 7129 

Genes after filtering = 7129 
Train Samples = 38 

Class: ALL has 27 train samples 

Class: AML has 11 train samples 
Test Samples = 35 

Class: ALL, has 21 test samples 

Class: AML, has 14 test samples 
Number of Genes Finally Selected = 1 

Number of Positive Ranked Selected Genes = 0 

Number of Negative Ranked Selected Genes = 1 
Number of Positive Groups Selected = 0 

Number of Negative Groups Selected = 1 

File with selected Genes = E:\Master\leukemia\train_tab.selectedGenes 
File with Classification Results = E:\Master\leukemia\train_tab.classification 

ALL / ALL   Classification = 19 54.285714% 

ALL / AML   Classification = 2 5.714286% 
AML / ALL   Classification = 1 2.857143% 

AML / AML   Classification = 13 37.142857% 

True  Classification = 32 91.428571% 
False Classification = 3 8.571429% 

If we have performed clustering the file looks like this: 

Clustering Results: 

Train File = E:\Master\leukemia\leukemia3\train_tab2.txt 

Initial Genes = 10 
Genes after filtering = 10 

Train Samples = 38 
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Clustering / Tags        Entropy: 0.857044 

      Tags / Clustering  Entropy: 0.797797 
Found 3 Clusters 

Cluster 1 has 5 members 

Cluster 2 has 3 members 
Cluster 3 has 2 members 

The Entropy values presented in this file are produced from the application of 
information gain formula in the clustering information yielded by the clustering 
algorithm and the clustering information contained in the “.names” file: 
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Where #CL is the total number of clusters produced by our algorithm and #Cl is 
the total number of clusters contained in “.names” file.  iCL# is the number of 
genes contained in cluster i of our algorithm and ijCl# is the number of genes 
contained in cluster j of “.names” clustering and belong to cluster i of our 
algorithm. 

• <train_filename>.ranking 

It contains the ranking of the genes produced by the ranking algorithm. It looks 
like this: 

-297.000000 6613.000000 U68135_s_at 

-286.000000 2849.000000 U17977_at 

-275.000000 4542.000000 X74764_at 

-275.000000 6165.000000 X83705_s_at 

-275.000000 1747.000000 M16404_at 

-270.000000 2628.000000 U04313_at 

-270.000000 2696.000000 U09117_at 

The first column contains the ranking value of the gene. The second contains the 
consecutive number of the gene (always starting from 0). The third line contains 
the name of the gene. This file is sorted according the ranking values in 
ascending order. It is also printed the file <train_filename>.usranking that has the 
same information but is unsorted. 

• <train_filename>.bin and <test_filename>.bin 

This file contains the expression values of all genes discretized according to the 
method proposed in chapter 4.2.2.1. 
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• <train_filename>.binSelected and <test_filename>.binSelected 

This file contains a discretization of the expression profile of the selected genes. 
The contents of this file are valuable, if we want to check the efficiency of the 
gene selection algorithm. A successful gene selection algorithm should select 
genes that are regulated significantly different among two class samples. The 
discretization should exhibit this regulation. The contents have the following 
format: 

0   0 0 1 0 0 1 1 1 1 

0   0 1 0 1 1 1 1 1 1 

1   1 1 1 1 0 0 0 0 0 

These are the discretised values of the selected gene expression profiles. These 
values have been yielded from the following formula: 
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max and min are the minimum and maximum expression values of a selected 
gene. jE  is the expression value of a selected gene at the j sample and n is the 
total number of samples.  

• <train_filename>.genes 

This file contains the genes that where processed, namely the genes that passed 
the filter. It has exactly the same format as the “.names” file.  

• <train_filename>.grouping 

This file contains the grouping information of all genes generated by the 
respecting grouping algorithm. The file has the following format: 

 6613 U68135_s_at 1 

2849 U17977_at 2 

4542 X74764_at 3 

The first column contains the consecutive number of each gene. The second 
column contains the gene’s name and the third column contains the 
corresponding group that the gene belongs. 

• <train_filename>.log 

During runtime, several messages, events and progress status is printed in this 
file. This fire is useful in time consuming operations, especially during the 
clustering procedures. A timestamp is printed along which each message for 
example: 

Fri Mar 11 15:41:39 2005 --> Starting MST procedure.. 

Fri Mar 11 15:41:51 2005 --> End of MST procedure 

Fri Mar 11 15:41:51 2005 --> Start of clustering procedure 
Fri Mar 11 15:41:51 2005 --> start of Finding primary best edge 

Fri Mar 11 15:42:01 2005 --> Best Cut done: 10%  Total: 24188 

Fri Mar 11 15:42:06 2005 --> Best Cut done: 20%  Total: 24188 
… 
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6.3  Future Work for MineGene 

The presented software toolkit, offered an integrated environment and a cohesive 
collection of machine learning algorithm for gene expression analysis through data 
mining.  

■ Although the major input can be easily acquired from gene expression databases 
through exported tab delimited files, we have to embed code supplied by MGED, 
and to follow specific directives in order to conform to MIAME guidelines. With 
this advance we will be able to feed with gene expression data our algorithms 
explicitly from gene expression databases, our results will be published in the 
same database system where the original data are laid and any researcher will 
be able to add his/her own algorithm to the existing toolkit schema.  

■ Although clinical applications and scenarios have already been presented we 
want to provide a full interconnection with a Clinical Information System (CLIS). 
Thus, a different clinical profile can be queried to the CLIS and produce distinct 
patients’ ids. These ids can be used to export patient’s expression signature from 
a gene expression database. From gene expression data mining we can extract 
specific differential gene regulations that designate the genotypic profile of 
patients. These differences can be studied further to gain intrinsic knowledge of 
the causing causes of the initial clinical differentiation and subsequently, to 
broaden medical research.  

■ As an addition, we could add existing or novel visualisation algorithms to gain 
insights of gene expressions regulations.  
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7.  Conclusions and Future Work 

7.1  Conclusions 
We have presented the structural components of an integrated clinico-genomic 
environment where the genomic information mainly stemmed from microarray gene 
expression experiments is combined with information coming from clinical 
observations and processed via modern and novel machine learning algorithms. By 
analyzing gene expression profiles we expect to elaborate our knowledge about gene 
functional roles, genes inner-correlations and genes pathology. Outcomes from this 
utilization are expected to help healthcare specialists to infer critical deductions about 
the origins, pathology and treatment of several diseases affecting in various ways a 
vast part of population.  

We surveyed microarray experiments, their usage and their essential role in gene 
expression profiling along with some certain difficulties that pose intrinsic challenges 
in machine learning researchers. Additionally, our approach was motivated by the 
construction of a seamless information system that acts as a microarray gene 
expression database incremented with machine learning application abilities. We 
surveyed existing genomic sequence and expression databases along with existing 
ontologies and annotations. The most cultivated and accepted ontology, MAGE, was 
analytical presented alongside with MIAME guidelines. Moreover we compared two 
of the most integrated and promising expression databases; ArrayExpress and BASE 
in various aspects to conclude that BASE is more suitable for our needs. 

A vision of an integrated clinico-genomic environment where phenotypical profiles 
containing patient’s clinical assessments are enriched with gene-expression profiles 
has been presented. Through data-mining algorithms that identify potential 
discriminatory genes we can indicate the molecular signature that best distinguish a 
specific phenotypic state. This signature - combined with clinical observations - can 
then be used for prognostic and therapeutic decision-making processes. 

In the field of supervised learning methods, we presented an algorithm for gene 
ranking through an entropic metric according to their ability to distinguish between 
two sample classes. Genes then were sorted and grouped according to this ranking. 
A greedy gene selection / feature elimination methods was used to select the most 
discriminatory genes, with no use of any ‘ad hoc’ user presumption. Finally the same 
metric was used to build a predictor of unclassified samples. Our major contribution 
in this field was a gene selection via feature elimination algorithm based in groups 
addition and a sample class prediction method for multi-class domains. All these 
methods were applied to well-known datasets and their predictive accuracy were 
shown. 

In the field of unsupervised learning methods we presented a novel Graph Theoretic 
Clustering algorithm. The distances coming either from the original expression values 
or from an external knowledge source are used to construct the fully connected 
graph of the genes. Then the Minimum Spanning Tree is extracted and an iterative 
hierarchical clustering algorithm is applied. The decision of whether to stop or 
continue clustering comes from a Category Utility that tests the compactness of 
potential clusters. The major deficiency of the algorithm; the space-demanding part of 
distance calculation was indicated and a heuristic that tackles this problem was 
proposed.  
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All the aforementioned methods plus some well-known methods for gene-ranking, 
filtering and predicting where implemented in a software tool named MineGene. 
MineGene is designed to serve as a machine-learning plug-in to a gene expression 
database. It has an extendable, components based architecture and it provides a 
usable GUI for maximum usability. Apart from the methods described above some 
additional methods where implemented. These methods include gene ranking and 
filtering methods based on significance estimation and a gene filtering method that 
eliminated the NaN (Not a Number) values. MineGine has the ability to import 
external data for gene filtering, gene ranking and gene selection and to compare the 
results with external studies. Finally creates a big variety of results ready to be used 
in other machine learning systems.  

 
7.2  Future Work 
Although we may be currently surprised by the advances of technology in genomic 
medicine, we can envisage the distant and not distant endeavours that have to be 
established in order to proceed.  

In the field of genomic informatics we have to develop a comprehensive and 
comprehensible catalogue of all of the components encoded in the human genomes. 
So far we have specialized databases for expressions, sequences, proteins and 
pathways. We have to integrate these databases and to provide seamless 
information for every part of the human genome. Such elaboration will enable the 
prediction of protein function in the context of higher order processes such as the 
regulation of gene expression, metabolic pathways [207], [208] and signaling 
cascades. Moreover genomic databases have to be unified with clinical information 
systems, laboratory information systems and pathologo-anatomical information 
systems. The final objective of such higher-level functional analysis will be the 
elucidation of integrated mapping between genotype and phenotype [209]. These 
advances will narrow the difference between clinical and genomic domain with 
benefits in both sides. 

As we moving toward the translation of genome-based knowledge into health 
benefits we have to define some common aims. First, we have to identify genes and 
pathways with role in health and disease, and determine how they interact with 
environmental factors. Secondly we have to develop, evaluate and apply genome-
based diagnostic methods for the prediction of susceptibility to disease, the 
prediction of drug response, the early detection of illness and the accurate molecular 
classification of disease. Finally we have to deploy methods that catalyse the 
translation of genomic information into therapeutic advances.  

In the machine learning / data mining field, we have to establish new approaches to 
solving problems, such as the identification of different features in a DNA sequence, 
the analysis of gene expression and regulation, the elucidation of protein structure 
and protein-protein interactions and the identification of the patterns of genetic 
variation in populations and the processes that produced those patterns. We also 
have to introduce methods to elucidate the effects of environmental (non-genetic) 
factors of gene-environment interactions on health and disease. Finally, although 
new improved database technologies facilitate the integration and visualisation of 
different genomic data types, little has been done in the construction of reusable 
machine learning software modules, easily exchangeable and tuned. 
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An additional data mining perspective is the exploitation of the knowledge stemmed 
from the enormous digital information cited in libraries, publications, conference 
proceedings, announcements and other sources of scientific material. Every 
algorithmic outcome and every result regarding genomic research have to be 
documented, supported and advocated with scientific publications. As information is 
constantly diffused in Internet we have to build novel machine learning methods to 
span scientific resources, perform term based comparisons and yield significant 
scientific support for our results. 

Finally, it is crucial to define policy options, and their potential consequences, for the 
use of genomic information and for the ethical boundaries around genomic research 
[6]. It is indubitable the genetics and genomics can contribute understanding to many 
areas of biology, health and life. Although freedom of scientific inquiry has been 
cardinal feature of human progress, it is not unbounded. It is important for society to 
define the appropriate and inappropriate uses of genomics.  
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Appendix A.  MIAME Guidelines Description 

A.1  MIAME, array design description. 
1. Array-related information: 

o Array design name. 
o Platform type. Whether the array is in-situ synthesized, spotted or some 

other type of array. 
o Surface and coating specification. The physical composition of the array 

(nylon or glass) and description of any chemical derivitisation on the 
surface of the array. 

o Physical dimensions of the array. 
o Number of features on the array. Includes the number of features in both x 

and y, and details of any grids on the array. 
o Availability. Name of supplier and catalogue number for commercial 

arrays, or production protocol for custom-made arrays. 
2. Reporter type information: 

o Type of reporter. Whether the reporters are synthetic oligonucleotides, 
PCR products, plasmids, colonies or other. 

o Single- or double- stranded. 

o For each reporter: 
• Sequence or PCR information. The sequence if known (e.g. 

oligonucleotides), sequence accession number or primer pairs (if 
relevant). 

• Exact or approximate length of sequence. 
• Clone information. If relevant, the clone ID, clone provider, date of 

provision and availability of the clone. 
• Element generation protocol. Sufficient information to reproduce 

the element on custom arrays that are not generally available. 

3. Feature type information: 
o Dimensions. The physical size of the features. 
o Attachment. Covalent, ionic or other. If the feature is an oligonicleotide, 

whether attachment is from 3’ or 5’ end of oligonucleotide. 
o For each feature: 

• Location on the array. Both physical and logical coordinates. 
• Which reporters. Which reporter sequence is on the feature, 

4. For each composite sequence: 
o Which reporters it contains. 
o The reference sequence. 
o Gene or EST names. Including links to appropriate databases (e.g., 

UniGene or RefSeq). 

5. Control elements on the array: 
o Position of the feature. Logical coordinates. 
o Control type. Spiking, normalization, negative or positive. 
o Control qualifier. Endogenous or exogenous. 
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A.2  MIAME - Experimental Description 

The aim of the experimental description is to give sufficient information that another 
laboratory would be able to repeat the experiment. An experiment may consist of one 
or more hybridizations to one or more types of array. The experimental description is 
broken into four main parts, each of which has several components: 

I. Experimental design. 
• Authors, laboratory and contact information. 
• Type of experiment. Typical experiments might be normal vs. disease 

comparison, treated vs. untreated comparison, time course or dose 
response. 

• Experimental factors. These are the parameters or conditions that are 
tested in experiment. For example, treatment, time, dose or genetic 
variation. 

• Number of hybridizations in the experiment. 
• Whether or not a common reference sample has been used. 
• Quality control steps. These include replications at different levels, the use 

of dye reversal, or the inclusion of quality control features. 
• Description of experiment and its goal. 
• Links to journal and/or web publication of the experiment. 

• Journal or URL citations. 

II. Samples used, extract preparation and labelling. 
MIAME devised a hierarchical terminology for describing the samples that are 
hybridized to arrays. 
• Biosource properties. The biosource is the term used to describe to 

organism from m which the sample that will be hybridized to the array is 
derived. It has the following properties: 

o Organism. Names are used from the NCBI taxonomy. 
o Contact details. Who to contact for information about the sample. 
o Descriptors relevant to the sample. 

 Sex, e.g. male, female, hermaphrodite. 
 Age. Including relevant units (days, months, years) and 

whatever from birth or embryolysis. 
 Developmental stage. An organism could develop at 

different rated depending on environmental conditions so 
this is included in addition to age. 

 Organism part. Tissue. 
 Cell type. 
 Animal/plant strain or line. 
 Genetic variation, e.g., wild-type, gene knockout or 

transgenic variation. 
 Individual genetic characteristics. Disease associated 

alleles or polymorphisms. 
 Additional clinical information. 
 Individual ID. 
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• Biomaterial manipulations. These are the laboratory processes carried out 
to the biosource as part of the experiment. They include: 

o Growth conditions. 
o In vivo treatments. 
o In vitro treatments, including cell culture conditions. 
o Treatment type, e.g. small molecule (drug), heat shock, food 

deprivation. 
o Separation technique, e.g. none, microdissection, FACS. 

• Hybridiation extract preparation protocol. This is the nucleic acid that is 
extracted from the biomaterial that will be labeled: 

o Extraction method, e.g., URL of protocol. 
o Extract type, e.g. total RNA, mRNA or genomic DNA. 
o Amplification, e.g., RNA polymerases or PCR. 

• Labeling protocol. For each extract: 
o Amount of nucleic acid labeled. 
o Label used, e.g., A-Cy3, G-Cy5 or 33P. 
o Label incorporation method, e.g., URL of protocol. 

• External controls added to hybridization extract. These are spiking 
controls added for quality control purposes. 

o Element on array expected to hybridize to spiking control. 
o Spike type, e.g., oligonucleotide or bacterial DNA. 
o Spike qualifier, e.g., concentration, expected ration or labeling 

methods. 

III. Hybridization procedures and parameters. 
• Information about which labelled extracts have been hybridized to which 

arrays. The labelled extracts relate to the sample, and the array will relate 
to array design information. 

• Hybridization protocol. This would normally include 
o The solution, e.g., Na+ concentration or formamide concentration. 
o Blocking agent, e.g., COT1. 
o Wash procedure, e.g., temperature and Na+ concentration. 
o Quantity of labeled target used. 
o Time, concentration, volume and temperature. 
o Hybridization instruments, e.g., manufacturer and model. 

IV. Measurement data and specifications of data processing. 
MIAME provides standards for describing the data from a microarray 
experiment at three levels. At the lowest level, the raw data is the image of 
the array. The second level is the image quantitation table, which contains the 
information produced by the feature extraction software such as mean 
intensity, number if pixels and pixel standard deviation. At the highest level, 
gene expression measurements from all the arrays in the experiment are 
normalized and combined to produce a gene expression measurement table 
for the experiment. 
• Raw data description. The protocols and settings for scanning including: 
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o Scanning protocol, including scanning hardware and software 
(e.g., make, model number of version), and scan parameters, 
including laser power, spatial resolution, pixel space and 
photomultiplier tube (PMT) voltage. 

o Scanned images. There is no consensus in MGED as to whether 
the images themselves should be provided. There are two 
advantages of providing images. First they are the raw data, and 
thus provide better validation of results, particularly where features 
may be flagged. Second, advances in feature extraction software 
may mean that it would be desirable to revisit old images and 
obtain new quantitative data. However, images are large in size 
and so inclusion of images would be expensive and difficult for 
many laboratories.  

• Image analysis and quantitation. 
o Image analysis software. The specification and version of the 

feature extraction software, the algorithm and all parameters used. 
o Image analysis output. For each image, the complete output of the 

image analysis software. This is image quantitation table.  
• Normalized and summarized data. This is gene expression data matrix 

containing data from the whole experiment. 
o Data processing protocol, including details of any normalization 

algorithms used. 
• Gene expression data tables: 

o Derived measurement values. These summarize the replicated 
(whether on the same or different arrays), or different elements 
(sequences) for the same gene. 

o Reliability indicator for each data point, e.g. standard deviation or 
median absolute deviation. The inclusion of a reliability indicator is 
strongly encouraged but not essential. 
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Appendix B. Biology Glossary 

Allele An alternative form of a gene or any other segment of a chromosome. 

cDNA Complementary DNA. A DNA copy of an mRNA or complex sample of 
mRNAs, made using reverse transcriptase. 

Chemical compound A distinct and pure substance formed by the union or two or more 
elements in definite proportion by weight. 

Codon A sequence of three nucleotides in messenger mRNA that specifies an 
amino acid. 

Consensus sequence 
A derived nucleotide sequence that represents a family of similar 
sequences. Each base in the consensus sequence corresponds to the 
base most frequently occuring at that position, in the real sequences. 

Contig 
A contiguous region of DNA sequence constructed by aligning many 
sequence "reads" (one "read" is the data generated from one 
sequencing reaction). 

EST 

Expressed Sequence Tag. A partial sequence of a randomly chosen 
cDNA, obtained from the results of a single DNA sequencing reaction. 
ESTs are used both to identify transcribed regions in genomic 
sequence and to characterize patterns of gene expression in the 
tissue that was the source of the cDNA. 

Exon Part of a gene that can encode amino acids in a protein. Usually 
adjacent to a non-coding DNA segment called an intron. 

Gene Expression The process by which a gene's coded information is translated into the 
structures present and operating in the cell (either proteins or RNAs). 

Gene Regulatory Networks 
The on-off switches and rheostats of a cell operating at the gene level. 
They dynamically orchestrate the level of expression for each gene in 
the genome by controlling whether and how vigorously that gene will 
be transcribed into RNA. 

Histone 
A basic protein associated with nucleic acids. Histones are important 
parts of the DNA control system, suppressing the expression of or 
causing the expression of specific parts of the DNA blueprints in 
conjunction with other nucleoproteins. 

Homologous Sequence 

In phylogenetics, describing particular features in different individuals 
that are genetically descended from the same feature in a common 
ancestor. In molecular biology, homologous sequences often mean 
significantly similar sequences that are highly likely to have a common 
descent. 

Kinase An enzyme that is important in regulating cell functions. 

mRNA Messenger RNA; arises in the process of transcription from the DNA 
and includes information on the synthesis of a protein. 

Nucleic Acid A biological molecule composed of a long chain of nucleotides. DNA is 
made of thousands of four different nucleotides repeated randomly 

Nucleotide 

Building blocks of DNA and RNA. Nucleotides are composed of 
phosphate, sugar and one of four bases, adenine, guanine, cytosine 
and uracil (RNA) or thymine (DNA). Three bases form a codon, which 
specifies a particular amino acid; amino acids are strung together to 
form proteins. Strings of thousands of nucleotides form a DNA or RNA 
molecule. 

Oligo Same as oligonucleotide. 

Oligomer A molecule containing a small number of covalently linked units; a 
multisubunit protein. 

Oligonucleotide A molecule usually composed of 25 or fewer nucleotides; used as a 
DNA synthesis primer. 

ORF 
Open Reading Frame. A section of a sequenced piece of DNA that 
begins with an initiation (methionine ATG) codon and ends with a 
nonsense codon. ORFs all have the potential to encode a protein or 
polypeptide, however many may not actually do so. 
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Promoter 
A DNA sequence that is located in front of a gene and controls gene 
expression. Promoters are required for binding of RNA polymerase to 
initiate transcription. 

Ribosome 
Organelle of the cell. It walks down the messenger RNA three 
nucleotides at a time, building a new protein piece-by-piece. It has its 
own DNA (ribosomal DNA) and proteins (Ribosomal Proteins). 

SNP 

Single Nucleotide Polymorphism. A SNP (pronounced "snip") is a 
place in the genetic code where DNA differs from one person to the 
next by a single letter. These slight genetic variations between human 
beings may predispose some people to disease and explain why some 
respond better to certain drugs. 

Splice Variants 
A gene has splice variants if the organism can make different 
transcripts of the gene by using different exons. It is thought that many 
genes from eukaryotic organisms have splice variants. The different 
splice variants of a gene have different sequences. 

Transcription 
The process of copying information from DNA into new strands of 
messenger RNA (mRNA). The mRNA then carries this information to 
the cytoplasm, where it serves as the blueprint for the manufacture of 
a specific protein. 

 


