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Abstract

Over the last years we witness a revolution initiated by the completion of the Human
Genome Project. DNA, the molecule that encodes our genetic information, has been
fully sequenced setting new promises and challenges for understanding the role of
genetic factors in human health and diseases. Moreover, DNA Microarrays are
devices that measure the expression of many thousands of genes in parallel
permitting the rapid profiling of gene expressions. Although these technological
advances lead us to the understanding of the genetic base of various diseases it is
evident that we need to integrate the knowledge normally processed in the clinical
setting. In this Thesis we present firstly the features and components of a seamless
modern information system for microarray data management that follows specific
well-known ontologies and annotations alongside with some existing
implementations. Furthermore we envisage a synergic clinico-genomic decision
making scenario, where patient’s genotypic and phenotypic profile will be utilized for
disease diagnose and treatment. Consequently we present two novel machine
learning algorithms that facilitate the integration of such data in the medical decision
process. The first is a supervised gene selection algorithm based on gene ranking
through an entropic metric. The second is an unsupervised graph theoretical
hierarchical clustering approach. These methods have been implemented and
applied to real-world datasets and compared to other published approaches.
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EmiAoyn MNovidiwyv kail Kardtunon Asdopévwyv
Meipapdtwy pe MIKPOOUOTOIXIEG:
To cuotnua MineGene

Kavtepakng AAECaVOPOGg

MeTaTrTUXIOKN Epyacia

TunRua EmoTtAung YTroAoyioTwyv
MavemoTtAuio Kpntng

MepiAnyn

Ta teAeutaia xpévia eipaote PdpTupeg piag emavdotaong n omoia gekivnoe pe tnv
OAOKAApWON TNG aTTOKWAIKOTTIOINONG Tou avBpwTtrivou yovidiwuatos. To DNA, 10
MOpIO TTOU TTEPIEXEI TIG YEVETIKEG MOG TTAnpogopieg éxel avaoAuBei BETovtag véeg
UTTOOXEOEIG KAl TTPOKAACEIC yIa Tnv KATOVONoN Tou pPOAOU TWV  YEVETIKWV
TTOPAYOVTWY OTNV uyeia Kal aoBéveia Twv avBpwttwy. ETITTAoV, oI JIKpoouaoToIXieg
DNA eival ouokeuég TTou METPAvE Tn TaAuTOXPOVN £KPPacn TTOAAWY  XIAIGdWYV
yovidiwyv, €mITPETTOVIAG Tnv TaxUTATN KATAYPA®r TNG €KPPaoNnG Twv Yovidiwv.
MapoAo TTou auTEG O TEXVOAOYIKEG €EEAIEEIC pag odnyolv oTnv Katavonon Tng
YEVETIKNG Bdong didopwy acBevelwy gival TTpoQavES OTI TTPETTEI va CUUTTEPIAGBOUE
Kal TNV yvVwon TTou €xel aTToKTNOEi atrd Tnv KAIVIKA euTTEIpia. ZTnv TTapoUca epyaaia
TTOPOUCIAOUME APXIKA TIG 1810TNTEG KAl TA KUPIO OTOIXEIO €VOG ATTOKEVTPWHEVOU
ouyxpovou TTANPOYOPIOKOU CUCTHAPATOG TO OTTOI0 XPNOIUOTIOIEl CUYKEKPIUEVEG
YVWOTEG OVTOAOYIiEG Kal ETTICNMEICEIS YIa Olaxeipion dedopévwy TTOU  £XOUV
TTapayBei atrd TTEIPAUATA JE PIKPOOUOTOIXIEG KAl avaAUoupe SIGQOPES UTTAPYXOUTES
UAOTTOINCEIG. TN CUVEXEIA OPANATICOPAOTE €va OUVEPYIKO KAIVIKO-YEVOUIKO OEVAPIO
Awng amopdcewyv OTIOU O YOVOTUTTOG Kal O @aivoTuTTog Twv aoBeviv Ba
aglotroigital  yia  didyvwon kal  Bepatreia.  EmMITTpooBEéTweG  TTapoucidfoupse  dUo
TIPWTOTUTTOUG AAYOPIBUOUG HUNXAVIKAG MABNoNg TTou UAOTToIoUV TNV OAOKARpwWGN
auTwy Twv Oedopévwy Katd Tn diadikacia ANWng 1aTpIKWY atmopdocwy. O TTPWTOg
gival évag emBAETTOUEVOG aAyOpIBUOG yia €TTIAoyr yovidiwv o oTroiog BacileTal oTn
BaBuoAdynon yovidiwv péocw Hiag evipoTriKAg METPIKNAG. O deUTeEPOG €ival évag pn
EMPAETTOUEVOG YPAPO-OeWPNTIKOG OAYOPIBUOG VIO 1EPAPXIKA KATATUNON. TEAOG
TTOPOUCIAOUME TNV UAOTTOINCON TwV TTOPATTAVW HEBOdWY, TNV £QAPUOYH TOUG Of€
TIPAYMATIKA dedopéva KaBWG €TTioNG Kal TNV OUYKPIOT] TOUG JE GAAEC ONUOCIEUPEVES
TIPOOEYYIoEIG.

EmétrTng: MNMAeCouodkng AnuARTpiog
AvattAnpwTr¢ Kabnyntig
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EuxapioTieg

Otav ekivnoa Tnv METOTITUXIOKA MOU gpyacia Tpiv ammd 2 xpovia TTeEPITTou dev
MTTOpOUCa va QavtaoTw OTI N €QAPUOYN UTTOAOYIOTIKWY HEBOdwY oTn BloAoyia
MTTOpPEl va gival pia TO00 OUVAPTTOOTIKA EUTTEIpia. ZAMEPA, ME TNV €pyacia
OAOKANpwEVN, voIWBw TNV avaykn va euXapIoTACW KATAPXHV Tov ETTOTITN KaBnynTn
pou Mwpyo Motapid 6x1 uévo yia TNV CUVEXN Kal OUCIAOTIKA KaBodrjynon TTou [ou
TTapEixe, aAG Kal yia Tn yvwpldia pe évav TpoOTTo OKEWNG Kal €pyaciag pe Kupla
OUCTATIKA TNV GUVEXN ETTAQPN WE TIG €EENIEEIC, TNV eQapuOyr] TTPWTOTUTTWY IBEWV Kal

TNV APHOVIKR Kal dNUIOUPYIKA CuveEPYOaia.

Emiong BéAw va euxapiotiow tnv EpeuvATtpia Tou ITE-IM Avactacia AvaAuth, kai
TOUG METATTTUXIOKOUG @oITNTEG XApn KovduAdkn kair Anuitpn Mavakavdra yia tnv
BonBeia Toug OTnVv €mmAoyn Kal SIaPOPPWON TNG YEVOUIKAG PAoNG OedopEVWVY.
Emiong, o Oavaong Mapyapitng éAuce TTOANEG aTTOpiEg TTOU €ixav va KAVOUV HE
BioAoyia kai yeveTikr}, o MavoAng Z1ravakng £dwaoe TTOAUTIUEG CUMPBOUAEG o€ BEpaTta
TIPOYPAPUATIONOU Kal 0 AnuATeng Makng 810pBwoe apKeTA YPAUMATIKA AABn TTou

TrEPIEiXE N avagopd.

[BlaiTepa euxapioTw €TTioNG TOV OKABNMAITKO Wou oUPPBOUAO, acgiyvnoTto ZTéAIO
Op@avouddkn Kal TOV avTIKATAOTATA Tou KaBnynti Anunten MNAsgouodkn. ETriong
Tov KaBnyntA Mdvvn TOAAN yia TNV CUPPETOXH TOU OTNV €EETOCTIKN ETTITPOTIH AAAd

Kal YIa TIG TTOAUTIUEG OCUHPBOUAEG TTOU HOU £DWOE.

TéNog, BEAW va euxapIoTACW Wia TTapéa dpacTApIa, TOAUNPEN, YEUATN TTPOKAACEIS Kal
OHOPPIA HE €TEPOKANTOUG TOTTOUG OdIapovAg, B€oceig kal 10€eg. ATToTéEAecav KATI
TapaTTdvw atmd I €uXApIoTn TTapéd KAl Pou  €dwoav  TTEPICCOTEPA  ATTO
oupdTTapdoTaon Kal WuxoAoyikh uttooThpiEn. IdiaiTepa euxapioTw TNV @iAn pHou
AéoTroiva AvTwvaKAKn Kal TV OIKOYEVEIQ Pou, TNV adep®r pPou BaalAikh Kal Toug

yovei¢ pou Niko kal EAévn 0TOUG OTTOIoUG Kal aQIEPWVETAI QUTA N Epyaacia.
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1. Introduction

The completion of a high-quality, comprehensive sequence of the human genome
[1], is a landmark event commencing the genomic era. Genome sequences, the
bounded sets of information that guide biological development and function, lie at the
heart of this revolution making genomics a central and cohesive discipline of
biomedical research [2]. Our ability to explore genome function is increasing in
specificity as each subsequent genome is sequenced. The practical consequences of
the emergence of this new field are widely apparent. Identification of the genes
responsible for human diseases, once an effortful task requiring large research
teams, many years of hard work, and an uncertain outcome, can now be routinely
accomplished in a reasonable time space by a single specialist with access to DNA
samples and associated phenotypes, an Internet connection to the public genome
databases and a DNA-sequencing machine or microarray device.

Microarray technology provided the ability to explore gene expression of tens of
thousands of genes in a time-feasible scale [3]. They are mainly used to estimate
differential expression of genes acquired from tissues in various states and
conditions, making practical comparisons between a sample genotype profile and an
arbitrary phenotype attribute or clinical observation. This linkage promise to bring
close to reality one of the most ambitious visions of modern medicine: The
embodiment and unification of clinical and genomic medicine. The sequencing of the
human genome, along with other recent and expected achievements in genomics,
provides an unparalleled opportunity to advance our understanding of the role of
genetic factors in human health and disease, to allow more precise definition of the
non-genetic factors involved, and to apply this insight rapidly to the prevention,
diagnosis and treatment of disease [4], [6]. Thus, clinical opportunities for
individualized gene-based pre-symptomatic prediction of illness and adverse of drug
response are emerging at a rapid pace [6].

Although genome-based analysis methods are rapidly permeating biomedical
research [7], the challenge of establishing robust paths from genomic information to
improved human health remains immense. In the field of microarray experiments in
particular a wide range of computational requirements have arisen, including image
processing [8], instrumentation and robotics [9], database design [10], [11], data
storage and retrieval [12], microarray design based on available Expressed
Sequence Tags (ESTs) [13], and data analysis [14]. Furthermore, microarray data
need to be interpreted in the context of other biology knowledge, involving various
types of post-genomics informatics [15], including gene networks [16], gene
pathways [17], and gene ontologies [18].

In this thesis we present a novel approach for microarray gene expression data
management and analysis. We introduce a seamless environment where gene
expression data are submitted, stored, queried, retrieved, visualized and shared
among researchers inside and outside the laboratory space. Each database
transaction follows well-known and accepted data standards, ontologies and
annotations. This environment is enriched with a plug-in software environment able
to perform supervised and unsupervised machine learning algorithm in order to
extract invaluable information about the inherent gene regulations. The implemented
algorithms include some well-known learning algorithms like Support Vectors
Machines (SVM [19]) and K-Means [20] as well as some novel approaches based on
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the application of an entropic metric for gene discretisation for supervised learning
and the hierarchical clustering of a Minimum Spanning Tree for a Graph Theoretic
Clustering approach. Our methods have been applied on various real-world gene
expression domain studies and their superiority has been shown.

Moreover, we present a synergistic clinico-genomic decision-making scenario where
through microarray gene expression profiling we will be able to link potential
phenotypical profiles to respective molecular or, genotypical ones. Such
advancement may be utilized in the course of both prognostic and therapeutic
decision-making processes.

1.1 DNA Microarrays

DNA Microarrays are devices than can estimate in parallel, the expression of many
thousands of genes. Their invention in 1995 [21] brought a revolution in molecular
biology, and in the past six years their use has grown rapidly in medicine as well as
in pharmaceutical, biotechnology and food industries [3].

Microarray technology makes use of the sequence resources created by the genome
projects such as the Human Genome Project [22], the Dog Genome Project [23] and
the Mouse Genome Sequencing Consortium [24] as well as other sequencing efforts.
The main question microarrays are posed to answer is what genes are expressed in
a particular cell type of an organism, at a particular time, under particular conditions.
For instance, they allow comparison of gene expression between normal and
diseased (e.g. cancerous) cells.

A DNA microarray consists of a solid surface, usually a microscopy slide, onto which
DNA molecules have been chemically bonded at fixed locations, called spots. There
may be tens of thousands of spots on an array, each containing a huge number of
identical DNA molecules, of lengths from twenty to hundreds of nucleotides [25]. For
gene expression studies, each of these molecules should ideally identify on gene or
one exon in the genome, however in practice this is not always so simple and may
not even be possible due to families of similar genes in genome. Microarrays that
contain all of the about 6000 genes of the yeast genome have been available since
1997 [26]. The spots are either printed on the microarrays by a robot, or synthesized
by photo-lithography (similarly as in computer chip production) or by ink-jet printing.

Although microarrays are used in many research interests such as the identification
and location of SNPs (Single Nucleotide Polymorphism), the major microarray
application is to detect the presence and abundance of labeled nucleic acids in a
biological sample, which will hybridize to the DNA on the array via Watson-Crick
duplex formation [27] and which can be detected via the label. In the majority of
microarray experiments, the labeled nucleic acids are derived from the mRNA of a
sample or tissue, and so the microarray measures gene expression. The power of
microarray is that there may be many thousands of different DNA molecules bonded
to an array, and so it is possible to measure the expression of many thousands of
genes simultaneously [28].

There are different ways in which microarrays can be used to measure the gene
expression levels. One of the most popular microarray applications allows us to
compare gene expression levels in two different samples, e.g. the same cell type in a
healthy and diseased state. The total mMRNA from the cells in two different conditions
is extracted and labeled with two different fluorescent labels: for example a green dye
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for cells at condition 1 and a red dye for cells at condition 2. To be more accurate, the
labeling is typically done by synthesizing single stranded DNAs that are
complementary to the extracted mRNA by an enzyme called reverse transcriptase.
Both extracts are washed over the microarray. Labeled gene products from the
extracts hybridize to their complementary sequences in the spot due to the
preferential binding, as it is called the tendency of the complementary single stranded
nucleic acid sequences to attract each other. Moreover the longer the
complementary parts, the stronger the attraction. Hybridization is the major process
of a microarray experiment [29]. Two DNA strands hybridize if they are mutually
complementary, that is when adenine (A) binds with thymine (T) and cytosine (C)
binds with guanine with Watson-Crick hydrogen bounds (figure 1).
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Figure 1. Hybridization of two DNA molecules. The dashed lines show the hydrogen bounds.

The dyes enable the amount of sample bound to a spot to be measured be the level
of fluorescence emitted when it is excited by a laser. If the RNA from the sample in
condition 1 is in abundance, the spot will be green, if the RNA from the sample in
condition 2 is in abundance, it will be red. If both are equal the spot will be yellow,
while if neither is present it will not fluoresce and appear black. Thus, from the
fluorescence intensities and colors for each spot, the relative expression levels of the
genes in both samples can be estimated. The raw data that are produced from
microarray experiments are the hybridized microarray images. To obtain information
about gene expression levels, these images should be analyzed, each spot on the
array identified, its intensity measured and compared to the background. This is
called image quantitation (figure 2).

Figure 2. An illuminated microarray (enlarged). A typical size of such an array is about 1.5 cm or less.
The diameter of each spot is of the order of 0.1nm, for some microarray types can be even smaller [2].
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Image quantitation is done by image analysis software. To obtain the final gene
expression matrix from spot quantitation, all the quantities related to some gene
(either on the same array or on arrays measuring the same conditions in repeated
experiments) have to be combined and the entire matrix has to be scaled to make
different arrays comparable. This process is called normalization. The final extract is
a numerical matrix containing the relative expression of each gene in the healthy cell
versus the diseased cell.

One of the principal features of microarrays is the volume of quantitative data that
they generate. As a result, the major challenge is how to handle, interpret and make
use of this data. The field of bioinformatics promises to deal with this aimed by the
applications of mathematics, statistics and information technology.

1.1.1 DNA Microarray Technologies

In microarray experiments, each spot contains either DNA oligomers, or a longer
DNA sequence designed to be complementary to a particular mRNA of interest. The
choice of spotting oligomers or a longer cDNA sequence yields two different
microarray technologies: oligo and cDNA microarrays respectively. Oligo arrays are
generated by photolithography techniques to synthesize oligomers directly on the
glass slide. These arrays are manufactured and marketed primarily by Affymetrix Inc
[30]. In contrast, cDNA arrays are created by mechanical gridding, where prepared
material is applied to each spot by ink-jet or physical deposition.

There is generally a one-to-one correspondence between spots and genes, but
various exceptions hold. Multiple genes may hybridize to the same spot if the DNA at
that spot is not unique to a single gene. This problem is called cross-hybridization.
Likewise, a gene may hybridize to more than one on a microarray if different spots
cover different regions of the gene. In fact, many microarrays are designed
deliberately to identify individual exons of a gene, in order to study expression
patterns for different splice forms or transcripts. Because of these considerations, it is
more accurate to say that each spot measures one or more transcripts of a gene,
rather than a particular gene. In this thesis we will consider that we are measuring
expression levels of genes rather than transcripts.

Because cDNA sequences on a microarray are hundreds of nucleotides long, a
single spot is usually sufficient to identify a particular gene. However, oligo
microarrays have spots that contain oligomers of 25 or so nucleotides. Because such
short oligomers will frequently cross-hybridize with several genes, oligo arrays must
measure each gene with several oligomers (16-20 in the Affymetrix arrays). Each set
of oligomers is called a probe set. A gene is considered present only when the vast
majority of the probe set shows positive hybridization.

Oligo microarrays also have another special feature, designed to account for the fact
that short oligomers can have non-specific binding and can vary in their hybridization
efficiency. Each oligomer on the array has a mismatch oligomer which is intended to
serve as a control. The mismatch oligomer is the same as its corresponding perfect
match oligomer except for one position, which is designed to be different. The
amount of specific hybridization can then be measured by taking the difference in
hybridization between the perfect match and its corresponding mismatch.
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More than one sample may be applied to a single microarray, with the different
samples being labeled with differently colored dyes. In practice, however, Affymetrix
oligo arrays measure a single sample at a time and therefore use a single type of
dye. In contrast, cDNA microarrays measure either on sample or, more commonly,
two samples.

1.2 Gene-Expression Data Analysis

Microarray data analysis is heavily depended on Gene Expression Data Mining
(GEDM) technology, and in the very-last years a lot of research efforts are in
progress. GEDM is used to identify intrinsic patterns and relationships in gene
expression data. The identification of patterns in complex gene expression datasets
provides two benefits:

<+ Generation of insight into gene transcription conditions

<+ Characterization of multiple gene expression profiles in complex biological
processes, e.g. pathological states

GEDM activities are based on two approaches:

0 Hypothesis testing: to investigate the induction or perturbation of a biological
process that leads to predicted results — in this case the basic task is to identify
gene-markers or, molecular signatures of a disease or a disease state, and

o Discover hidden regularities: to detect internal structure in biological data — in this
case the basic task is to uncover hidden regularities in gene-expression data, an
exploratory data analysis to find genes of similar profiles (across patient samples)
and (potentially) co-regulated.

In this context advanced data mining technologies- clustering, classification, and
visualization are utilized. The final goal is the delivery of an operational Gene
Expression Data Mining Suite (GEDMS) to accommodate a set of smoothly
integratable data-mining tools. The aim is to help the clinicians and molecular
biologists in their research and data processing enquires.

1.2.1 Intelligent Processing: From Internal Data Regularities to Gene Markers

By measuring transcription levels of genes in an organism under various conditions,
in different tissues, we can build up ‘gene expression profiles’, which characterize the
dynamic functioning of each gene in the genome. The microarray data are
represented in a matrix with rows representing genes, columns representing samples
(e.g. various tissues, developmental stages and treatments), and each cell containing
a number characterizing the expression level of the particular gene in the particular
sample, i.e., the gene expression matrix.

There are two straightforward ways how gene expression matrix can be studied:

o Comparing expression profiles of genes by comparing rows in the expression
matrix.
o Comparing expression profiles of samples by comparing columns in the matrix.

Additionally, both methods can be combined (provided that the data normalization
allows it).

When comparing rows or columns, we can look either for similarities or for
differences and accordingly form classification-rules and clusters [31]. Clustering and
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classification results may reveal correlations between expression of certain genes
and guide to the identification of:

e disease occurrence or state (malignant vs. healthy vs. benign tissue),

e disease clinical markers such as tumor type, stage, size etc,

e disease prognosis or treatment outcome, and

e provide information about the genetic profile of different subgroups of disease-

types (e.g., breast cancer) and possibly identify new subgroups or merge
together subgroups that were previously believed to be genetically separate.

1.2.1.1 Difficulties of Gene Expression data analysis

Although microarray experiments are a breakthrough in molecular biology and
genomics, the whole experimental procedure is very complex and error-prone. Raw
data produced by microarray experiments are subject to errors caused by many
factors that most of them are still open problems [32].

First of all, like many experimental technologies, microarrays measure the target
quantity (i.e. relative or absolute mRNA abundance) indirectly by measuring another
physical quantity, the intensity of the fluorescence of the spots on the array for each
fluorescent dye, i.e. for each optical wavelength (so-called channel). Therefore the
raw data produced by microarrays are in fact images (figure 2). Transforming these
images into the gene expression matrix is a non-trivial process: the spots
corresponding to genes on the microarray should be identified, their boundaries
determined, the fluorescent intensity from each spot measured and compared to the
background intensity and to these intensities for other channels. The software for this
initial image processing is often provided with the image scanner, since it will depend
on particular properties of the hardware. A survey of image analysis software can be
found at [33].

In any physical experiment it is important to know not only the value of the
measurement, but also the standard error or some other indicator of reliability for
each data point. For most microarray technology platforms only the ratio of the
background-subtracted signals of the given sample and the control is meaningful. If
the spot intensity is low, the ratio of these numbers may be high, but the
measurement may not be reliable. The spot quality can be assessed not only by the
absolute intensity in each channel, but also by many other factors, such as uniformity
of the individual pixel intensities, or the shape of the spot. Unfortunately there is
currently no standard way of assessing the spot measurement reliability. If
experiments have been done in replicates, they can be used to assess the standard
error in addition to the single measurement quality assessments. Little has been
published yet in how to use the reliability of gene expression measurements by
combining the information about the spot image in each channel and the replicate
images.

Another difficulty in creating a gene expression matrix comes from the necessity to
identify each spot with the respective gene. This is not always possible, since spots
are typically based on EST sequences. EST (Expressed Sequence Tag) is usually
short single read from mRNA (cDNA) which is usually produced in large numbers. It
represents a snapshot of what is expressed in a given tissue, and/or at a given
developmental stage. It also represents tags (some coding, others not) of expression
for a given CDNA library [34]. Linking EST to the respective gene may be non-trivial.
Typically it is done through EST clustering. Additionally, the same gene may be
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represented by several spots on the array, rather by exactly the same or by different
sequence. The problem arises when we measure different expression levels from
these spots.

Microarray-based gene expression measurements are still far from giving estimates
of mMRNA counts per cell in the sample. The measurements are relative by nature:
essentially we can compare the expression level either of the same gene in different
samples, or of different genes in the same sample. Moreover, appropriate
normalization should be applied to enable any data comparisons. Typically it is
assumed that abundance ratios of 1.5-2.0 are indicative of a change in gene
expressions but such estimates are very crude. The reliability of ratios depends on
the absolute intensity values, as well as varying from spot to spot due to specificity of
the sequence and cross-hybridization of homologous sequences. This should be kept
in mind while analyzing the gene expression matrix. The value of microarray-based
gene expression measurements would be considerably higher if reliability and
limitations of particular microarray platforms for particular kinds of measurements, as
well as cross-platforms comparison and normalization were studied and published.

An outline of the overall microarrays’ experimental methodology and the resulting
gene-expression matrix is illustrated in figure 3 (below).
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Figure 3. Microarrays: Experimental set-up and resulting gene-expression matrix.

1.3 Classification and Gene Expression Profiling

Classification is a supervised intelligent data analysis approach. One of the goals of
supervised expression data analysis is to construct classifiers, such as decision trees
or, rules; support vector machines (SVM), or, trained Artificial Neural Networks
(ANN), which assign predefined classes to a given expression profile. For instance, if
a classifier can be constructed based on a gene expression profile that is able to
distinguish between two different, but morphologically closely related tumor tissues,
such a classifier can be used for diagnostics. Moreover, if such a classifier is based
on a set of relatively simple rules, it can help to understand what are the mechanisms
involved in various tumor samples.
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Typically, such classifiers are trained on a subset of data with a-priori assigned
classification (e.g., tumor-type-X vs. tumor-type-Y samples). The outcome (decision
tree/rules, SVM or, trained ANN) is then tested and evaluated on another subset with
known classification. After assessing the quality of the prediction they can be applied
to data the classification of which is unknown. In this mode, the classifier could be
utilized in order to classify new incoming data of unknown class, e.g., to predict the
tumor-type of sample-tissues based on their respective expression-profile.

By comparing samples, we can find classification-archetypes (class descriptions)
with which differentially expressed genes are combined to distinguish between the
samples (e.g., normal vs. cancerous samples). So, we may be able to identify
‘discriminant’ genes that relate to the clinical-profiles of specific patient-groups, and
to study the effect of various chemotherapeutic-treatments. Such a data-analysis
scenario composes a more targeted-research line of work, aiming towards the device
of diagnostic or and/or prognostic tests.

1.3.1 Discriminatory Gene Selection

The problem now is how to select the genes that best discriminate between the
different disease states. The problem is well-known in the machine learning
community as the problem of feature-selection (with its dual ‘feature-elimination’),
and various ‘wrapper-based’, or, filtering’ approaches have been proposed.

Traditionally, in machine learning research the number of features, m, is quite smaller
than the number, k, of cases (samples in the case of gene-expression studies) that
is, m << k. In contrast, gene-expression studies refer to a huge number of features
and quite few samples. In most gene-expression domains the number of genes is in
the range of 2000 — 35000 (i.e., the estimated number of human genes), and the
number of samples in the range of 50 — 200, that is k << m. In a situation like that it is
questionable if a ‘wrapper’ based feature-selection approach could help, because of
its high-computational cost. So, in most gene-selection studies a ‘filtering’ approach
is followed.

The gene-selection methods are used in order to estimate the correlation strength of
genes that appear in important clusters with any of the samples’ categories (i.e.,
disease-types; disease-recurrence states etc). Genes with high ranked ordered
correlation scores will be proposed as possible indicative markers for these
categories. Special attention will be paid to genes whose expression changes very
slightly in malignant tissue, as these may represent genes activated in initial phases
of the disease and may provide insight about the biological origin of a disease.

S The utility of discriminating genes in prognosis. When trying to predict treatment
outcome, selected genes will be used to identify which patients will respond well
to treatment and which not. To predict disease recurrence, selected genes are
used to identify patients that will be disease-free after a certain time period and
those at high risk of developing metastases. This type of categorization problem
is a supervised classification task where a priori information about the correct
categorization of a group of patients is used to teach the method to learn the
intrinsic relationships between the selected gene expressions of patients within
each category. This relationship is often very complex and cannot be described
by traditional similarity or distance metrics as the ones used in clustering
methods. Once the classification tool learns these relationships, it can be used to
predict the probability of clinical categories (e.g. metastatic or cancer-free) for
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new patients by looking at their respective expression profile over the selected
gene set. Such methods can be used to automatically predict probabilities for the
expected treatment outcome or disease recurrence for new patients.

Prediction performance of gene-selection (as well classification) methods should be
tested in full cross-validated settings and additionally with new patient data as they
accumulate over time to ensure that predictions are reliable over a broad range of
breast cancer types. As more samples accumulate, re-selection of suitable gene
markers might be necessary to ensure that information is learnt for as many disease-
types as possible. Re-teaching the classifiers will further enhance their prediction
performance.

1.3.2 Clustering and Gene Expression Profiling

The goal of clustering is to group together objects (genes or samples) with similar
properties. This can also be viewed as the reduction of the dimensionality of the
system or, the discovery of “structure in the data”. Clustering is not a new technique,
many algorithms have been developed for it and many of these algorithms have been
applied to analyze expression data.

With gene expression data analysis we try to identify the changing and unchanging
levels of gene expression and to correlate these changes to identify sets of genes
with similar profiles. The assumption behind- and the utility-of clustering gene-
expression data is that ‘genes with similar profiles, i.e., in the same cluster, are also
co-regulated’. So, clustering may give rise to valuable information about the
molecular status of various genes and their functioning. In some cases a mainly
visual analysis has been successful in grouping genes into functionally relevant
classes. In other studies, simple sorting of expression ratios and some form of
‘correlation distance’ were used to identify similar genes.

The literature on statistical clustering is fairly vast, offering many other choices of
clustering methods. The hierarchical, and k-mean clustering algorithms as well as
self-organizing maps have all been used for clustering expression profiles. By
comparing gene-expression profiles, and forming clusters, we can hypothesize that
the respective genes are co-regulated and possibly functionally related. Then, we
may go back to the respective genes DNA-sequences to identify putative
transcription-factors (or even identify SNPs- single nucleotide polymorphisms). Such
a data-analysis scenario composes a more basic-research line of work.

At the moment, there do not seem to exist any objective guidelines regarding the
choice of a clustering algorithm to be used for grouping genes based on their
expression profiles. For indicative references about microarrays and gene expression
profiling methodologies as related to classification, gene-selection and clustering you
may look at references [35]-[72].

2 The current thesis tackles and presents real innovative approaches,
algorithms and tools for gene-selection and clustering of gene-
expression data — the introduced methods are extensively tested on
real-world domains and datasets.

> Moreover, a specific objective fullfilled by the current thesis was to
review the state-of-the-art approaches, methods and tools for the
uniform modelling, representation and seamless sharing of the involved
biomedical information and data (i.e., microarray experiments
information and gene expression data).
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1.4 Organization of the Thesis

2 In chapter 2 we present the existing status in genomic informatics. Specialized
databases for sequence storage, genome management, and gene expression are
analyzed. Moreover we focus on data standards for microarray experiment
activities and we concentrate on standards maintained by the most appreciated
consortium in gene expression research area; the MGED group. Furthermore, we
present the most acknowledged ontologies for taxonomies, genes and
microarrays. We finally perform a comparison between the two most appreciated
microarray expression databases ArrayExpress and Base and we highlight the
pros and cons of each database system.

< In chapter 3 we focus on the ‘old genomics’ their limited implications in healthcare
and the advances of the ‘new genomics’ where clinical observations and
knowledge coming from gene expression profiling can be integrated into a
qualitative predictive and therapeutic healthcare system. We discuss the major
applications of genomic medicine in healthcare and the necessity of clinical and
genomic integration. We finally present a scenario where phenotypical profiles
are linked with genotypical to provide a prognostic or therapeutic decision-making
process.

2 In chapter 4 we justify the general concept of supervised gene expression
database mining, research pathway and the related work. Then we propose a
novel gene selection methodology based on gene discretisation and composed
by four main modules: gene ranking, gene grouping, consecutive feature
elimination and class prediction. Furthermore, we apply the algorithm in real-
world datasets and we perform a comparison survey based on the resulted
accuracy and feature elimination of our method versus other related methods.

2 In chapter 5 we introduce a novel Graph Theoretic Clustering algorithm based on
the hierarchical clustering of a Minimum Spanning Tree. This algorithm has the
special feature to combine different information sources, in order to estimate the
distances between genes, and in order to estimate a special category utility that
determines whether the clustering will proceed or not. Then the time complexity is
estimated and a heuristic for feasible distance calculation is presented.

2 In chapter 6 we present an implementation of all aforementioned methods,
algorithms and heuristics. The software system presented is planned to act as a
plug-in in microarray gene expression databases, in order to act as a general
machine learning algorithm toolkit. It is designed according the principles of
object oriented programming it is component based and expandable. The general
parameters, inputs, outputs and usage are finally presented.

< Finally, in chapter 7 we conclude the major findings and we describe possible
future work.
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2. From Genomic to Post-Genomic Informatics: Modeling, Representing
and Sharing Genomic Data

Microarrays are already producing massive amounts of data. These data, like
genome sequence data, can help us to gain insights into underlying biological
processes only if they are carefully recorded and stored in databases, where they
can be queried, compared and analyzed by different computer programs.

In this chapter we look at the sequence databases that are used to select and
annotate the genes that the microarray detects. Databases are separated in
sequence storage, genome management, and gene expression storage. Moreover
we focus on data standards for microarray experiment activities and we concentrate
on standards maintained by the most appreciated consortium in gene expression
research area; the MGED group. Furthermore, we present the most acknowledged
ontologies for taxonomies, genes and microarrays. We finally perform a comparison
between the two most appreciated microarray expression databases ArrayExpress
and Base and we highlight the pros and cons of each database system.

2.1 Sequence Databases
Worldwide there are three major sequence databases:

s The EMBL Nucleotide Sequence Database [73], [74] constitutes Europe's primary
nucleotide sequence resource. Main sources for DNA and RNA sequences are
direct submissions from individual researchers, genome sequencing projects and
patent applications.

m  Genbank [75] is the National Institute of Health (NIH) [76] molecular database
which is composed of an annotated collection of all publicly available DNA
sequences [77]. The February 2004 release of the Genbank molecular database
contained 32,549,400 DNA sequences which are further composed of
approximately 37,893,844,733 deoxyribonucleotides [78].

= DDBJ (DNA Data Bank of Japan [79]) began DNA data bank activities in 1986 at
the National Institute of Genetics (NIG) of Japan.

They date back to 1982, when it became clear that there was a need to publish and
share DNA sequences. The American initiative, GenBank and the European
initiative, EMBL (European Molecular Biology Laboratory), were launched
simultaneously in June 1982, each with approximately 600 sequences. Since that
time, the sizes of the databases have grown exponentially, doubling approximately
every 17 months (figures 4 and 5). In 1987, the DDBJ was started as a Japanese
equivalent of GenBank and EMBL. In 1992, the three databases entered in a
collaboration to share all sequences. Since that date, the three databases contain
almost identical sequence information. Any sequence submitted to one of the
databases will automatically be added to the other two. They also hold two meetings,
the International DNA Data Banks Advisory Meeting and the International DNA Data
Banks Collaborative Meeting.

The success of these sequence databases has resulted not only from the advances
in sequencing technology, but also from the advances in computer technology. The
databases require significant computing power and storage to operate, but most
important is the role of the Internet. Being online, they offer the ability to anyone to
submit, query and download sequences acting as an invaluable medium between
research laboratories.
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approximately 17 months.

Problems and Limitations of Sequence Databases. Although sequence database
is the first place to visit when querying a sequence in order to obtain information
about it, there are two reasons why they are not sufficient for microarray design
and annotation. First, they do not contain meta-information. Although we can
identify a sequence taking part in a microarray experiment, we cannot identify the
gene from which the EST was derived. Second, sequence databases contain too
many sequences for array design. When designing an array, we would want the
database to be able to provide a list of genes in which each gene that will appear
on the array will appear once in the list. There are two reasons why primary
sequence databases cannot provide this. First of all each gene can be
represented several times in the database, for example, if it were submitted by
different research groups who have sequenced it. Secondly each gene sequence
may be in the database in several forms, e.g. as a gene sequence, genomic
sequence and as ESTs. The first problem is referred as the redundancy problem
and the second as the replication problem. Although sequence databases are
used for annotating sequences that appear on arrays, they are not used for array
design. This is a domain for secondary sequence databases specialized for
microarray experiments.
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2.1.1 Secondary Sequence Databases

The three secondary sequence databases that are commonly used for microarray
design are UniGene, TIGR Gene Indices and RefSeq.

0 UniGene [80] is the database with the greatest historical use for selecting
sequences for microarrays. It is an attempt to partition GenBank sequences into
clusters, each of which is intended to represent a unique gene. The clusters
themselves may contain both mRNA sequences and ESTs, so that they
represent both known genes and putative genes based on expressed material
that has been sequenced. The clusters are built by comparing all mRNA and EST
sequences in GenBank and assigning overlapping sequences to the same cluster
[81]. In clusters that contain full-length mRNAs, the task is straightforward,
because all ESTs deriving from the gene will align with the same mRNAs.
However, many clusters in UniGene contain only ESTs; the algorithms by which
UniGene is built assemble the clusters out of overlapping ESTs in order to
produce a picture of the gene from which the ESTs have putatively derived.
UniGene is available for a range of species. Although there are 50 species in the
database, there is only broad coverage of the main research species. The human
database has approximately 53,000 clusters. Each of these clusters is supposed
to represent a potentially different gene. Since current thinking is that there are
approximately 30,000 genes in the human genome, it is likely that many of these
clusters belong together. Of the 53,000 clusters, approximately 32,000 contain at
least one MRNA and so represent known genes.

0 The Gene Indices (Gl) at the Institute for Genetics Research (TIGR) [82] are a
resource that is similar in scope to UniGene. As with UniGene, the TIGR Gl are
arranged according to species. The TIGR GI covers more species than UniGene,
with 31 animal species, 30 plant species, 15 protist species and 9 fungal species.
Also, the TIGR Gl includes a greater number of sequences for most of the
species that are also represented in UniGene. The TIGR human gene index
contains a similar number of sequences to the UniGene human database.
However, it is arranged into approximately 180,000 clusters — significantly more
than UniGene. As with UniGene, this is much greater than the number of
predicted genes in the human genome, so it is likely that this database will
change over the next years. Unlike UniGene, TIGR contains consensus
sequences for each of the clusters [83]. From the perspective of designing
microarrays, this has both advantages and disadvantages. On the positive side, a
consensus is a higher quality sequence and is therefore a better starting point for
oligonucleotide design. On the negative side, the UniGene sequences are all real
clones and can be purchased from the IMAGE Consortium [84] for use with a
spotted array. TIGR also intends to include full information about splice variants
in their database. In February 2005, there was very limited splice variant
information in the TIGR GI, and no information on human splice variants. This will
probably change in the next couple of years and, if implemented, will make the Gl
a powerful resource for microarray design.

0 The third secondary database resource we describe for the construction of
microarray is the NCBI's reference sequence project, or RefSeq [85]. The
reference sequence project aims to collect high-quality, well-annotated
sequenced of many types, including complete genomes, complete chromosomes,
genomic regions, mMRNAs, other types of RNA, genome contigs and proteins. The
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mRNA chapter of RefSeq is of particular interest for microarray design and is
available for humans, mouse, fruit fly, rat and zebrafish. RefSeq does not provide
a complete picture of expressed material for any of these species [86]. For
example as of February 2005, there are only about 19,000 RefSeq entries for
humans compared with about 32,000 UniGene clusters containing at least one
mRNA. However, the sequences in RefSeq represent the highest possible quality
mRNA sequences in the database, and so they are used where possible as the
basis for microarray and other work. Splice variants of genes are fully
represented in RefSeq, making it a very powerful resource for the design of
arrays for known splice variants of known genes.

2.2 Genomic Databases Resources

Genomic databases allow us to examine sequences for microarrays from a genomic
perspective: to start with the whole genome and then choose gene sequences for the
array based on the annotation of that genome. For small organisms, such as bacteria
and yeast, this is the most natural approach. But even for complex organisms such
as humans, there exist resources that allow this approach to microarray design and
annotation. The main genomic resource for complete genome experiments is
Ensembl. Furthermore, some specialized databases exist, for complete microbial
genome studies.

Ensembl [87] is a joint project between the European Bioinformatics Institute (EBI)
and the Wellcome Trust Sanger Institute to provide complete annotation of eukaryotic
genomes. Originally established to cover the human genome, at the time of this
writing it also included coverage of mouse, rat, zebrafish, fugu and mosquito. The
reason for setting up Ensembl is to provide a single, seamless resource for querying
and mining completed genomes, such as the human genome. When a genome is
sequenced, it is sequenced in small chunks. Ensembl assembles these chunks into
chromosome sequences so that each chromosome appears as a single virtual
sequence, also known as the “Golden Path”. The real power of Ensembl as a
resource for microarray design is in its annotation [88]. The Ensembl project links all
available data about human sequences, so that information on known genes, known
proteins and ESTs are included as part of the genome annotation. It also provides
annotation on the results of gene prediction algorithms. This is important for
microarray design because it allows oligonucleotide probes to be designed for
predicted genes and exons in addition to known expressed sequences.

Microbial genomes are small — typically with genomes between 2 and 5 megabases,
and between 2,000 and 5,000 genes. This makes microbes very attractive organisms
for microarray analysis: it is possible to place probes for every gene in the organism
on a single array and perform powerful experiments.

Microbial genomes are readily accessible from two databases: GenBank and the
TIGR Comprehensive Microbial Resource (CMR) [89]. In December 2002, there were
102 genomes in GenBank and 96 genomes in TIGR. Data are exchanged between
the two databases: most genomes are in both database, but the genomes that are
sequenced in TIGR are published in the TIGR database before they reach GenBank,
and genomes sequenced elsewhere are published in GenBank before they reach
TIGR. Of the 102 genomes in GenBank, there are 85 different organisms, with 12
organisms having multiple strains in the database. The two databases have different
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annotation for the same genomes. As a result, an array built from the sequences
downloaded from each of these data resources may have slightly different genes.

2.3 The Rise of Post-Genomics: Microarrays and Gene Expression

Gene Expression is defined as the use of quantitative RNA (mRNA)-level
measurements of gene expression in order to characterize biological processes and
elucidate the mechanisms of gene transcription. The objective of gene expression is
the quantitative measurement of mMRNA expression particularly under the influence of
drug or disease perturbations [90]. As described in [91] the identification of
differential gene expression associated with biological processes is a central
research problem. High throughput gene expression assays enable the simultaneous
monitoring of thousands of genes in parallel and generate vast amounts of gene
expression data. The large-scale investigation of gene expression attaches functional
activity to structural genetic maps and therefore is an essential milestone in the
paradigm shift from static structural genomics to dynamic functional genomics.

2.3.1 Gene Expression Databases: Representing and Sharing Microarray Data

Gene Expression databases provide integrated data management and analysis for
the transcriptional expression data generated by large-scale gene expression
experiments. Conceptually, a gene expression database can be regarded as
consisting of three parts: the gene expression data matrix, gene annotation and
sample annotation (figure 6). Samples interfering in a microarray experiments are
commonly called biomaterials. In many respects gene expression databases are
inherently more complex than sequence databases.

Samples

—_— Sample
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annotation
Figure 6. An abstract form of the annotations of a gene expression matrix.

As we have mentioned microarray experiments generate large amounts of complex
data. Our main purpose is to integrate and share these data among our close
laboratory space and the scientific community in general. Except from the obvious
reasons about the benefits of the scientific community, by sharing our data there are
some additional advantages that we expect to gain.

Firstly we can verify the results of a published microarray experiment hence it is
necessary to provide sufficient information so that others can reproduce it. Except
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from verifying we may expect from external researchers to perform further
experimental work based on the results, expanding and improving our findings.
Moreover scientists can compare the results with other functional genomic data. It is
valuable to make comparisons either between different microarray experiments or
between microarray data and data from other sources (e.g. proteomics). Finally by
sharing our data we allow bioinformatics researchers to develop novel data analysis
methods.

Data sharing for microarray experiments involves many complications that need to be
settled. A microarray laboratory will typically run a number of different computer
applications to capture, store, publish and analyze microarray data (figure 7). In order
for the laboratory to operate successfully, each of these computer applications,
further on referred as components, needs to be able to exchange data with the other.
Data should flow seamlessly between the different components, and ideally it should
be possible to replace any component without affecting the other parts of the flow. In
brief, these components are:

Laboratory
Information
Ianagement
Swstem

Feature (LIMLED

Ezxtraction

Eezults
Datakase

Sequence
Datakases

Lacal

Besults Public

Datakase

Wisualization
And Analysis

Figure 7. Software components for microarray data representation and handling.

0 Array Layout File is a file containing details of what sequences and genes each
feature represent. There are currently many formats for these files, depending on
the platform used.

0 Sequence Databases contain information about the genes that the microarray is
measuring and the sequences from which the sequences on the array derive.
Accession numbers are included in the array layout so that is possible to connect
to these databases.

0 Feature Extraction Software converts the image of the microarray from the
scanner into quantitative information about gene expression. It needs information
from the array layout file to be able to annotate the features.
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o Laboratory Information Management System (LIMS) records all information about
the laboratory methods and protocols used in microarray manufacture, sample
preparation and labeling, hybridization and washing.

0 Local Results Database contains results of experiments performed at the local
institution. It can be in the form of a formal database or data warehouse, or the
data might be stored as information stored in the LIMS.

0 Public Result Database contains results of microarray experiments that have
been published in the public domain. If appropriate, data from the local results
database might be transferred to a public database.

o0 Visualization and Analysis software allows the user to look at and interpret
microarray data. The data could be from the local results database, public data,
or a combination and comparison of the two.

Laboratory Information Management System (LIMS). A LIMS records all
information about the laboratory experiment, including all procedures, protocols and
methods in microarray manufacture, sample preparation, labeling and hybridization.
It can be thought of as a laboratory notebook, but with two major benefits. The first is
that LIMS can be used to record every step of the experimental process as it
happens, including identity of experiment, date, protocols used, and any
experimental parameters. The advantage of tracking data are that it provides quality
control, as any problems can be traced back to the source. It also provides data
reproducibility. If the entire experimental process has been recorded, it is possible for
other scientists to reproduce the experiment. Moreover data comparison is provided.
By knowing all parameters of the experiment, it is more meaningful to make
comparisons between different microarray experiments and to know when
comparisons are less meaningful. Finally, data, can be easily published.

If the LIMS system is MIAME-compliant (a universally accepted standard for
modelling microarray experiments and representing gene expression data; presented
in the sequel), then it will record all the information necessary for publishing the data
in a MIAME-compliant microarray database. Another benefit of LIMS is that is
possible to include standard protocols as workflows that can help ensure that all staff
in the laboratory or group of cooperating laboratories follow the same protocol. This
helps to standardize microarray experiments performed by several people.

2.4 Modeling Microarray Experiments: The Standards

Standards are essential for designing computer software that can integrate with other
applications by common data representation and information exchange. Especially
for microarray databases, in order for standards to be successful, they need to have
several qualities. First they have to be useful, flexible and comprehensible in order to
accommodate all types if microarray experiments and data, including experiments
that have not yet been thought of. They have to be consensual in the sense that they
should be agreed upon by microarray users. Finally they have to be straightforward
for programmers to implement. In order to be of global benefit, the standards should
be adopted by as many research groups and commercial organizations as possible.
To achieve this, it is expected that a requirement for the publication of microarray
results will be the submission of data to a public domain database that has adopted
the standards.
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Gene expression data have meaning only in the context of the particular biological
sample and the exact conditions under which the sample were taken. For instance, if
we are interested in finding out how different cell types react to treatments with
various chemical compounds, we must record unambiguous information about the
cell type and compounds used in the experiment. The microarray technology is still
rapidly developing, therefore it is natural that currently there are no established
standards for microarray experiments and how the raw data should be processed.
There are also no standard measurement units for gene expression levels. In the
lack of such standards the information about how exactly the gene expression data
matrix was obtained should be kept in the database, if the data are to be properly
interpreted later consequently this complicates the data object model. A common
data exchange format MAGE-ML [92] is being developed in collaboration between
MGED and some major microarray companies. Most known repositories for gene
expression data are ArrayExpress, GEO and BASE.

Microarray data standards comprise three areas. The first is which aspects of the
microarray experimental process and of the microarray data need to be recorded.
This is the aim of MIAME (Minimal Information about a Microarray Experiment). The
second is how to describe the experimental methods and microarray data. For this,
we need ontologies defined for our specific domain as controlled vocabularies and
relationships to describe genes, samples and data. The third is how to implement
MIAME and ontologies in computer software. This requires object models, exchange
languages and language-specific modules.

The Microarray Gene Expression Data Society (MGED). The need for microarray
data standards was recognized relatively early in the microarray community. In
November 1999, the Microarray Gene Expression Data Society (MGED) [93] was
founded from EBI researchers, with the intention of establishing standards for
microarray data annotation and to enable the creation of public databases for
microarray data.

The MGED board of directors and advisory board now has representation from many
of the major institutions involved with microarrays, including research institutes,
universities, commercial organizations and journals.

MGED has an annual meeting at which major developments are discussed and
arranges regular workshops, tutorials and programming jamborees. MGED’s work is
arranged into four working groups:

i. MIAME. Minimal Information About a Microarray Experiment formulates the
information required to record about a microarray experiment in order to be able
to describe and share the experiment.

ii. Ontologies. Determine ontologies for describing microarray experiments and the
samples used with microarrays [94].

ii. MAGE. Formulates the object model (MAGE-OM), exchange language (MAGE-
ML) and software modules (MAGE-stk) for implementing microarray software.

iv. Transformations. Determines recommendations of describing methods for
transformations, normalizations and standardizations of microarray data.
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2.4.1 Minimal Information About Microarray Experiments (MIAME)

The aim of MIAME [95] is to outline the minimum information that should be recorded
about a microarray experiment so that data can be fully understood and the
experiment fully reproduced in another laboratory. MIAME is intended to assist the
exchange of microarray information between researchers, including doing so via the
development of public microarray data repositories. It is not intended to be a formal
specification, but a set of guidelines. However, it has become the standard for many
microarray software packages and databases, so it is highly recommended that we
should record data from our experiments in a way that is compliant with MIAME.

MIAME is arranged into two broad areas: the array design description and the
experiment description. The reason for this is that the array design is frequently
independent of the experiment, with the same array design being used for many
experiments.

The aim of the array design description is to give a detailed description of the array,
including physical factors (size and material), chemical factors (type of attachment)
and logical factors (sequences). To describe the sequences on an array, MIAME
introduced three terms:

0 Feature. The location on the array containing the DNA sequence, also commonly
referred to as spots.

0 Reporter. The DNA sequence on a feature.

o0 Composite sequence. The gene sequence from which the reporter derives. There
could be several different reporter sequences for the same gene.

A detailed description of MIAME guidelines can be found at Appendix A.

2.4.2 MicroArray and Gene Expression (MAGE)

MicroArray and Gene Expression (MAGE) [96] is the technical implementation that
allows software to be developed using MIAME. MAGE is of interest to researchers
seeking to develop microarray software that is fully supportive of MIAME. It is
maintained by a group controlled by the MGED society.

This group tries to build software tools capable to facilitate the exchange of
microarray information between different data systems. Currently they are doing this
through OMG (Object Management Group) [97] by the establishment of a data
exchange model (MAGE-OM MicroArray Gene Expression - Data Model [98]) and a
data exchange format (MAGE-ML: MicroArray Gene Expression — Markup Language
[99]). MAGE-OM has been modeled using the Unified Modeling Language (UML
[100]) and MAGE-ML has been implemented using XML (eXtensible Markup
Language [101]). MAGEstk (or MAGE software toolkit) is a collection of packages
that act as converters between MAGE-OM and MAGE-ML under various
programming platforms.

MAGE-OM specifically attempts to define the objects of gene expression data
independent of any implementation. Further, tries to abstract the ideas so that the
model might be applicable to a broader set of array style experiments. For example,
rather than use hybridization, the general class is BioAssay of which hybridization is
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a subclass of BioAssayCreation. MAGE-OM can also be used to map to data
structures in different platforms, such as Java, Perl, or C++.

An outline of the MAGE-OM workflow, and its component classes are shown in
figures 8 and 9, respectively; for a description of MAGE-OM classes refer to table 1.
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Figure 9. Main classes of MAGE-OM
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Table 1. Description of MAGE-OM main classes.

BioSequence Specifies classes that describe the sequence information for a
BioSequence.

QuantitationType This package defines the classes for quantitations, such as measured and
derived signal, error, and pvalue.

ArrayDesign Describes a microarray design that can be printed and then, in the case of
gene expression, hybridized.

DesignElement The classes of this package are the contained and referenced classes of

the ArrayDesign and describe through the DesignElements what is
intended to be at each location of the Array.

Array Describes the process of creating arrays from array designs.

BioMaterial Specifies classes that describe how a BioSource is treated to obtain the
BioMaterial (typically a LabeledExtract) used to create a BioAssay.

BioAssay Specifies classes that contain information and annotation on the event of

joining an Array with a BioMaterial preparation, the acquisition of images
and the extraction of data on a per feature basis from those images.

BioAssayData Specifies classes that describe the data and information and annotation on
the derivation of that data
Experiment Represents the container for a hierarchical grouping of BioAssays.

HigherLevelAnalysis Describes the results of performing analysis on the result of the
BioAssayData from an Experiment.

Protocol Provides a relatively immutable class, Protocol, that can describe a generic
laboratory procedure or analysis algorithm, for example, and an instance
class, ProtocolApplication, which can describe the actual application of a

protocol.

Description The classes in this package allow a variety of references to third party
annotation and direct annotation by the experimenter.

AuditAndSecurit Specifies classes that allow tracking of changes and information on user
permissions.

Measurement The classes of this package provide utility information on the quantities of
other classes to each other.

BioEvent An abstract class representing an event that takes sources of some type to

produce a target(s) of some type.

Given the massive amount of data associated with a single set of experiments, XML
is the best way to describe the data. The use of a Document Type Definition (DTD)
allows a well-defined tag set, a vocabulary, to describe the domain of gene
expression experiments. It also has the virtue of compressing very well so that files
in an XML format compress to ten percent of their original size. XML is now widely
accepted as a data exchange format across multiple platforms. Organizations that
request these XML streams can use freely available implementations of either of the
W3C [102] recommended DOM [103] or the XML-DEV SAX [104] parsing interfaces
to create import and export applications. These import and export applications can be
tailored for the specific needs of the organization without the need to burden the
vocabulary of the XML with specifics of any organization’s schema requirements.
The DTD is generated from the MAGE-OM with the addition of the transformed
representation of the gene expression data in the DTD. Moreover, it is possible to
specify queries both in terms of the object model (OQL) and the XML (XQuery [105],
XPath [106]).

The MAGE Software Toolkit (MAGE-stk) is a collection of open source packages that
implement the MAGE Object Model in various programming languages. The toolkit is
meant for users that develop their own applications, and need to integrate
functionality for managing an instance of a MAGE-OM. The toolkit facilitates easy
reading and writing of MAGE-ML to and from the MAGE-OM, and all MAGE-objects
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have methods to maintain and update the MAGE-OM at all levels. What MAGE-stk
doesn't implement, is the interface between an application, and the standard way of
representing microarray in MAGE-OM (MAGE-ML when in a file) (figure 10). MAGE-
stk is available in Perl, Java, C# and Python programming languages.
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Figure 10. MAGE-stk offers a APl for managing MAGE-OM objects.

MAGE-OM will store essentially any array based data with very few if any
modifications. Applications other than gene expression for which MAGE-OM would
be applicable include: protein diagnostics, genotyping, and sectioned tissue analysis.
MAGE-OM is not presently capable of storing non-array based expression profiling
technologies such as Serial Analysis of Gene Expression (SAGE [107], [108]), and
extensive modifications would be necessary to support this.

Other Object Models. MAGE-OM stems from the collaboration of some of the
major microarray research institutions that contributed by submitting their own
object models deployed mostly for inner use. EBI has been working on
developing a public repository for gene expression data (ArrayExpress) since
1999 [109]. ArrayExpress development has been centered on ArrayExpress
Object Model (AEOM), and design of MAGE-OM has been influenced by this
experience. AEOM was mapped to relational tables and implemented as an
Oracle 8i database. The National Center for Genome Resources (NCGR) [110]
has been developing an open source gene expression database resource,
GeneX, since 1999. The GeneX project has focused on the development of a
relational data model and a corresponding XML data-transmission model,
GeneXML. Finally Rosetta Inpharmatics [111] and Agilent Technologies [112]
have been using the GEML 1.0 format as part of internal pipelines. The GEML
1.0 was the object model used to publish the results of sequencing chromosome
22 [113].
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2.5 Ontologies

MIAME, details what information is needed to be recorded from a microarray
experiment in order to be able to reproduce the experiment. Ontologies provide a
solution for how that information can be recorded. The aim of ontology is to give the
framework for a formal representation of a subject. An ontology consists of two parts:
the vocabulary that contains the words and names of the items in the subject area
that are to be described and the relationships that formulates the ways in which the
items in the subject area relate to one another.

The main reason for using ontologies is that they help the development of computer
databases that hold information about a subject. By introducing a controlled
vocabulary, it is possible to query databases using the controlled terms removing any
potential ambiguity. Moreover, ontologies provide a conceptual framework that can
help in understanding and integrating the information about a subject.

In the field of microarrays there are three sets of ontologies that are used: taxonomic
ontologies, gene ontologies and MGED ontologies.

2.5.1 Taxonomic Ontologies

In taxonomic ontologies every living organism is placed in a hierarchy of kingdom,
phylum, class, order, family, genus and species. The genus and species together
form the scientific name of the organism (e.g., Homo Sapiens). There are controlled
vocabularies for each of the terms, and the terms relate hierarchically. Taxonomic
databases are rather controversial since the soundness of the taxonomic
classifications done by taxonomists so far is directly questioned by the advances of
current genomic research.

Various efforts are going on to create a taxonomy resource. Some of them are "The
Tree of Life" project [114], "Species 2000" [115], “International Organization for Plant
Information” [116], “Integrated Taxonomic Information System” [117]. The most
generally useful taxonomic database is that maintained by the NCBI [118]. This
hierarchical taxonomy is used by the Nucleotide Sequence Databases [73], Swiss-
Prot [119] and TrEMBL, [120] and is curated by an informal group of experts.

2.5.2 Gene Ontologies and the GO Consortium

Gene annotation can be taken care to some extent of by links to sequence
databases. Unfortunately, complicated too many relationships between genes in the
gene expression matrix and the features (spots) on the array makes it necessary to
provide a full and detailed description of each feature on the array, as one gene can
relate to several features on the array. The lack of standards in gene naming is
another difficulty. A table relating each array feature present in the database to the
list of all synonymous names of the respective gene is an essential of a gene
expression database.

Gene ontologies provide a set of terms for describing genes and their products. The
Gene Ontology (GO) Consortium [121] was set up in 1999 in order to provide a
common framework for its members to be able to describe genes and gene products.
The consortium members contain major institutions that have serious involvements in
gene research for certain organisms. GO has allowed its members to have a
common set of terms for annotating genomes. The main advantages to using GO is
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that simplifies database querying, makes easier cross-species comparisons and it
eliminates any ambiguity in gene descriptions.

GO has organized ontologies for describing genes on three levels. The first is the
molecular function level where the task performed by individual gene products is
described. The second is the biological process level where the broad biological goal
of the gene products (e.g., mitosis or protein degredation) is described. Third is the
cellular component level where the subcellular organelle, location or macromolecular
complex in which the gene product would operate (e.g., nucleus) is described. Each
of these areas has a separate ontology defined for it, and any gene would have
terms from all three ontologies.

GO terms and ontology terms in general, exist in a hierarchy of more general and
more specific classes. In classical ontologies, each term may only have one parent.
However, due to the complexity of biological information, in GO each term can have
more that one parent. More precisely, the terms are organized in directed acyclic
graphs.

2.5.3 Microarray Ontologies

The Ontologies Working Group at MGED has drawn up ontologies for microarray
annotation with the aim of describing microarray data. The MGED ontology
comprises three broad type of information: Classes, Properties and Individuals.

Classes are the categories of information, for example age and protocol. Each class
has a number of fields describing it. These are:

o Namespace. A URL for the ontology
o Documentation. A free text description of the class

o Type. In the microarray ontologies, every class is of primitive type. This means
that the class is not fully defined by its constraints.

Superclasses. The parent classes of which this class is a special case.

Constraint. These are rules by which any single instantiation of the class contains
information. Each constraint is in the form of a property that the class may have.

0 Known subclasses. These are child classes of the class which represent
specializations of the class.

0 Used in class. These are the classes that use this class as part of a constraint.

There is annotation for each for the fields. The superclass MGEDOntology is the root
class from which all classes are derived. As protocols are widely used in microarray
experiments, there are several constraints that can be used to describe the protocol
and many subclasses or classes that contain protocols as a constraint.

Properties encapsulate information about classes. A class has properties. For
example the class protocol has the property has citation. Each property is then
linked to a class via the constraint in the class that contains the property. In the case
of a protocol, has_citation will take a value in the class BibliographicReference.
Properties generally contain less information than classes.

Individuals are instances of classes that are formally included in the ontology. Usually
individuals have very little information associated with them.

MAGE-OM contains 226 classes that use 109 properties, and are used to model 644
individuals. It is available as OWL, DAML and RDFS [122].
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2.6 Expression Database Comparison

> The first objective of the current thesis was to analyze existing
microarray gene expression databases for their ability to serve as an
integrated environment for a laboratory that performs microarray
experiments. The aim for this comparison was to choose the most
suitable environment for the experiments performed by molecular
biology researchers in the Institute of Molecular Biology and
Biotechnology of FORTH (FORTH-IMBB [123]), and informaticians from
the Institute of Computer Science of FORTH (FORTH-ICS [124]). The
whole effort was to deliver an integrated clinico-genomics environment
for the respective experiments in the context of the projects: PrognoChip
(funded by the General Secretariat for Research & development - EPAN
program) and at the same time contribute to the FORTH-ICS efforts in the
context of the INFOBIOMED (NoE, funded by EU in the context of the IST
program).

In the following sub-chapters we present the two Expression databases that were
compared: ArrayExpress and Base.

2.6.1 ArrayExpress

The EBI (European Bioinformatics Institute [125]) has established a public repository
for microarray gene expression data called ArrayExpress [109]], analogous to EMBL-
bank for DNA sequence data. ArrayExpress uses MIAME set of disciplines to
describe all the information stored. As of November 2004, ArrayExpress contains
~12,000 hybridizations covering 35 species. The maijority of studies concern samples
from Homo Sapiens or Mus musculus. Along with Gene Expression Omnibus [126]
and CIBEX [127], it is one of the three repositories recommended by the MGED
society for storing data related to publications. The ArrayExpress suite of databases
and applications comprises:

0 MIAMEXxpress [128], a web-based MIAME supportive data-submission tool

0 ArrayExpress repository that provides public and password-protected access to
the submitted data

0 A query optimized data warehouse containing a curated subset of normalized
data

0 Expression Profiler [129], an integrated online visualization and analysis tool.

All the software in the ArrayExpress suite is open source. There are two major
submission routes to ArrayExpress: online via the MIAMExpress data submission
tool and via a MAGE-ML based pipeline set-up with an external application or
database. MIAMExpress is primarily aimed at users with no substantial local
bioinformatics support and with no access to a local database providing direct
deposition. MIAMEXxpress is an open source software that can be customized for use
by a single laboratory, or for particular application domains.

The highest level of organization in the ArrayExpress repository is the Experiment,
which consists of one or more hybridizations, usually linked to a publication. The
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ArrayExpress query interface provides the ability to query for Experiments, Protocols
and Array designs by their various attributes, such as species, authors or array
platforms. The data can also be analysed and visualized online using Expression
Profiler. Password-protected access to pre-publication data is provided for submitters
and reviewers. A schematic diagram of the software architecture is shown in figure
11, below [130].
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Figure 11. (a) The ArrayExpress architecture and database side activities are shown. (b). The
functionality experienced by the user is shown.

The online submission tool MIAMEXxpress is being extended to allow a spreadsheet
based data batch uploading to facilitate large-scale experiment submissions. A
graph-based visualization tool is being added to MIAMExpress and ArrayExpress.
The ArrayExpress repository and data warehouse interfaces will be unified. The
gene-based query facility in the warehouse will be used as the basis for integrating
ArrayExpress into all EBI services more closely.

2.6.2 BASE: BioArray Software Environment

BASE [131], [132] is a comprehensive free web-based database solution for the
massive amounts of data generated by microarray analysis released under the GNU
Public License [133]. BASE attempts to be a unified system capable of organizing all
the information surrounding microarray experimentation and which also integrate this
information with tools for the analysis of quantifies microarray hybridization data.
BASE is a MIAME-supportive customizable database and analysis platform designed
to be installed in any microarray laboratory and to serve many users simultaneously
via the web. The software was developed on the GNU/Linux operating system in the
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PHP language [134], with data being stored in a relational database (MySQL [135])
and communicated to the user through the Apache web server [136]. Where needed,
the user interface employs Java and JavaScript in addition to plain HTML, and C++
has been used for the more computationally intensive tasks on the server.

The system integrates biomaterial information, raw images and extracted data, and
provides a plug-in architecture for data transformation, data viewing and analysis
modules. Additionally, for laboratories the system has array production LIMS features
that can be integrated with data analysis. The structure of BASE was designed to
follow the natural workflow of the microarray biologist (figure 12), and it is compatible
with most types of array experiments and data formats. With his or her own account
and administrated access levels, a user can import data into the database, group
array data together into experiments, and in a uniform and streamlined fashion, apply
filters and transformations and run analyses. To facilitate online collaboration users
can share almost any object within database. Data can be exported in a multitude of
formats for local analysis and publication. BASE also contains an annotating and
tracking system for biomaterials that is user customizable via a web interface and is
integrated with the data analysis. Source organism and cell-type taxonomies can be
created, and new annotation types can be defined and linked to any sample.
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Figure 12. Simplified schematic overview of software structure of BASE.
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BASE integrates a framework with a plug-in architecture that enables integration of
modules that transform, or analyze and visualize microarray data. This architecture
consists of three parts: a data standard and format (MAGE-ML) for transferring
biomaterial, reporter and hybridization data to and from application modules that run
on the server, a job handler for execution of application modules and saving results
back into the database, and a web interface for the administration and installation of
new plug-in modules. Furthermore, to allow for any combination and series of data
filtering, transformation and number-crunching steps, a data analysis interface that is
organized hierarchically was created. Finally data can be visualized at several stages
of analysis. Unmodified and transformed data sets can be plotted as scatter plots,
histograms or tables. Data can also be exported for custom analyses and local
development of new analysis methods, and in various defined formats for use in
external analysis programs.

2.7 ArrayExpress vs. BASE: Comparison Outcome

During this comparison we evaluated a variety of aspects from the sequence
databases ArrayExpress and BASE. The aspects evaluated and our estimations
were focused on the different functionalities supported by the two approaches and
systems.

m Supporting Standards. Both databases provide partial support for
experiments described under MIAME guidelines as well as provided data
exchange through MAGE-ML. ArrayExpress seemed to have certain
difficulties in using MIAMExpress as experiment submission tool. At the
other hand BASE had as future plan to provide MAGE-ML experiments
submissions even though it supported experiments MAGE-ML
extractions.

n Well-known, supportive community. The databases should be well-known
and tested under various conditions. There should be also a community
of developersi/testers that should provide support and instructions
whenever we faced any problem. Both databases had mailing lists, and
an active community to help and support. ArrayExpress as the sequence
database of one of the three major genomic research institutions
worldwide had better support, documentation and on-line help.

n /nstallation and software maintenance. The databases should be relevant
easy to install, upgrade and maintained. There also shouldn’t have
extreme hardware requirements. At this criterion ArrayExpress had
serious disadvantages. As an internal Relational Database Management
System (RDBMS), ArrayExpress used Oracle version 9i. Even though this
RDBMS is one of the most expert and fast it was exceedingly tricky to be
installed and set-up. Moreover it had unnecessarily high hardware
requirements. At the other hand BASE was depending in MySQL as
internal RDBMS, that is light-weighted robust and easy to be installed
database system.

m Provided tools / Extensions. The databases should have inherently a
large collection of data analysis tools and there should be easy to be
extended with new ones. BASE provided some basic data analysis tools
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and an integrated plug-in schema, while ArrayExpress provided just
some basic tools. More over ArrayExpress has been built by using Perl
programming language rather than BASE that has been built by PHP.
PHP is a relevant contemporary language that has more potentials than
Perl.

n Interface supplied / Usability / Security. As one of the target groups to
use the database was not IT experts, the databases should have an
intuitively simple but yet functional user interface. Both databases
conveyed a graphic query interface. ArrayExpress lacked a graphic
submission tool and both databases had paid substantially attention to
provide a usable graphic interface. Furthermore, both databases had
adopted the security schema of their inherent databases. ArrayExpress
had Oracle’s security system which is more sophisticated and flexible
than the respective RDBMS of BASE.

S After weighting the pros and cons of each tested microarray gene
expression database we finally choose the BASE database. The reasons
for this decision were the specific difficulties of ArrayExpress inherent
RDBMS installation and maintenance and the flexibility of BASE’s plug-
ins and PHP developing language. Although ArrayExpress seemed to be
more renowned in the bioinformatics community the contemporary
characteristics of BASE and its rising reputation determined the final
decision.
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3. Combined Clinico-Genomic Knowledge Discovery

Today, the application of novel technologies from proteomics and functional
genomics to the study of diseases (e.g., cancer) is slowly shifting to the analysis of
clinically relevant samples such as fresh biopsy specimens and fluids, as the ultimate
aim of translational research is to bring basic discoveries closer to the bedside [137].
It becomes evident that in order to fully grasp the mechanisms of a disease we do
not only need an understanding of the genetic base of the disease - dealing with
large amounts of data and related functional genomics approaches but we also need
to integrate the knowledge normally processed in the clinical setting. In other words
the research agenda should be forwarded towards the integration or, synergy
between bioinformatics and medical informatics activities. In this setting a new
discipline namely, BioMedical Informatics (BMI), is rising [138], [139] with the vision
being to compact major diseases on an individualized diagnostic, prognostic and
treatment manner [140], [6].

With the recent advances in microarray technology [141], [14], the potential for
molecular diagnostic and prognostic tools seem to come in reality. The last years,
microarray-chips have been devised and manufactured in order to measure the
expression profile of thousands of genes. In this context a number of pioneering
studies have been conducted that profile the expression-level of genes for various
types of cancers such as leukaemia, breast cancer, colon, lymphoma, central
nervous system, and other tumours [142], [143], [144], [145], [146], [147], [148]. The
aim is to add molecular characteristics to the classification of diseases so that
diagnostic procedures are enhanced and prognostic predictions are improved. These
studies demonstrate that gene-expression profiling has great potential in identifying
and predicting various targets and prognostic factors of diseases.

By measuring transcription levels of genes in an organism under various conditions,
in different tissue samples, we can build up gene expression profiles, which
characterize the dynamic functioning of each gene in the genome. The microarray
data are represented in a matrix with rows representing genes, columns representing
samples (e.g. various tissues, developmental stages and treatments), and each cell
containing a number characterizing the expression level of the particular gene in the
particular sample, i.e, the gene expression matrix.

Gene-expression data analysis depends on Gene Expression Data Mining (GEDM)
technology, and the involved data analysis is based on two approaches: (a)
hypothesis testing - to investigate the induction or perturbation of a biological process
that leads to predicted results, and (b) knowledge discovery - to detect underlying
hidden-regularities in biological data. For the latter, one of the major challenges is
gene-selection [149]. Gene selection methods utilise statistical methods and
algorithms to estimate the correlation strength of genes with any of the sample
classes or, phenotypes (i.e., tumour-types; disease-recurrence states, etc). Genes
with high ranked ordered correlation scores will be proposed as possible indicative
markers for the targeted phenotypes. Possible prognostic genes for disease
outcome, including response to treatment and disease recurrence are then selected
to compose the molecular signature or, genotypical category. The selected genes,
after tested for their reliability (e.g., via appropriately conducted clinical trials) present
the gene-markers that are used for the categorisation of new patient samples into
respective disease classes.
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3.1 Genomic Medicine and Individualized Healthcare

Genomic medicine comes largely from knowledge emanating from the Human
Genome Project [1], and has to be embodied in today’s healthcare services and
research. Genomic medicine will change healthcare by providing knowledge of
individual genetic predispositions via microarray and other technologies. Knowledge
of individual genetic predispositions can benefit patients in several ways. Firstly by
individualized screening, namely by performing certain clinical tests and
observations, secondly by individualized behavior changes and by presymptomatic
medical therapies. This individualized treatment will introduce the advance of
pharmacogenomics that will allow individualized medication use, based on
genetically determined variation in effects and side effects. It will also introduce new
medications for specific genotype disease subtypes.

¢ One of the greatest challenges from genomic medicine is to change healthcare
by providing better understanding of non-genetic, environmental factors in health
and disease, thus by emphasizing health maintenance rather than disease
treatment. Moreover we expect from genomic medicine through genetic
engineering to explicit or implicit intervene into human genomic sequence.
Summarizing, we expect from genomic medicine to change healthcare by
creating a fundamental understanding of the etiology of many diseases, even
non-genetic diseases.

3.1.1 Applications of Genomic Medicine in healthcare

Although the healthcare community is already applying gene related therapies to
specific diseases there are certain limitations to practices followed. The major
limitation is that these practices include conditions wholly caused by an extra or
missing complete chromosome or part of a chromosome (e.g., Down syndrome,
Turner syndrome). Sometimes the conditions are caused by a mutation in a single
gene (e.g., cystic fibrosis). These conditions are of great importance to individuals
and families with them but, even when added together, are relatively rare. Most
people are not directly affected, thus genetics have played small role in healthcare,
and in society in general so far. It is indicative that genetic care could be supplied
primarily by medical geneticists and genetic counselors, with occasional involvement
of other specialists and primary care providers, rather by an organized healthcare
system.

In USA, projections suggest that 40% of those alive today will be diagnosed with
some form of cancer at some point in their lives. By 2010, that number will have
climbed to 50% [150]. Today it is known that 9 of the 10 leading causes of mortality
have genetic components making clear that a new perspective of genetics and
genomic medicine has to be established [4]. This aspect of genetics has to consider
diseases caused partly by mutations in specific genes (e.g., breast cancer, colon
cancer, diabetes, Alzheimer disease) or prevented by mutations in genes (e.g., HIV,
atherosclerosis, some forms of cancer) [5]. These conditions are also of great
importance to individuals and families with them, but are significantly common
enough to directly affect virtually everyone. This make genetics play large role in
healthcare and in society. Moreover, these conditions are common enough that
genetics will be supplied with occasional involvement of medical geneticists and
genetic counselors, but primarily by primary care providers and other specialists.
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3.2 Biomedical Informatics (BMI): The Vehicle through

Biomedical informatics is an emerging discipline underlying the acquisition,
maintenance, retrieval and application of knowledge and information in research,
education, and service in health-related basic sciences, clinical disciplines, and
health care administration with computer science, statistics, engineering,
mathematics, information technologies and management.

Biomedical informatics coalesces the related fields of Medical Informatics (now being
named Health Informatics) and Bioinformatics. Health Informatics contains subsets
such as Telemedicine, Clinical Informatics, Pharmaceutical Informatics, Nursing
Informatics and Public Health Informatics.

Central to both medical informatics and bioinformatics is the collection and analysis
of information. While medical informatics is more concerned with structures and
algorithms for the manipulation of the data and how it can be applied in healthcare,
bioinformatics is more concerned with the data itself and its biological implications.
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Figure 13. An Informatics-centric view of biological sciences, healthcare, bio- and medical-informatics,
that orients biomedical informatics R&D.

Figure 13, above, shows an informatics-centric view of the intersections and overlap
among the biological sciences, health services research, and information analysis
and presentation.

BMI research areas [151] include: (1) understanding how and why researchers and
practitioners use information to accomplish their objectives; (2) modeling structures
for representing data and information that make relationships between concepts and
terms explicit; (3) developing and evolving computer-assisted decision support
systems to improve clinical practice, biomedical research, education, and
administration; (4) understanding and addressing related workflow, change
management, communication, and human-computer interface issues; and, (5)
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developing methods for evaluation of models and systems, including health services
research, data mining and limiting retrieval to context.

3.3 Integrating Clinical with Genomic Information in Gene-Expression data
Analysis

Most genetic contributions to common disease identified so far have been low
frequency with high penetrance alleles. These alleles include: BRCA1 and BRCA2
(breast and ovarian cancer), HNPCC (colon cancer), MODY 1,2,3 (diabetes), Alpha-
synuclein (Parkinson disease). Nevertheless, on a population level, most genetic
contributions to common disease are from high frequency, low penetrance alleles.
These alleles include: APC [1307K (colon cancer), ApoE (Alzheimer disease), CCR5
(HIV/IAIDS resistance) [152]. What makes these low penetrance alleles to be
expressed seems to be a complex concept that has to include clinical observations
alongside with genomic medicine.

Generally, one major research hypothesis is that clinical observations are strictly
correlated with specific alleles during the expression of serious diseases like cancer
and diabetes. To identify genetic patterns - in the broadest sense - which are relevant
to patients in general, genetic data must be linked with clinical data for a substantial
number of patients. While we are moving towards the integration of clinical
information along with genomic medicine it is crucial to build information systems,
software tools and services that elaborate this integration.

Until recently, diagnostic and prognostic assessment of diseased tissues and
tumours relied heavily on indirect indicators that permitted only general classifications
into broad histological or morphological subtypes and did not take into account the
alterations in individual gene expression. In this context, global gene expression
analysis using microarrays now offers unprecedented opportunities to obtain
molecular signatures of the state of activity of diseased cells and patient samples.
This groundbreaking approach of studying cancer promises to provide a better
understanding of the underlying mechanism for oncogenesis, more accurate
diagnosis, more comprehensive prognosis, and more effective therapeutic
interventions.

Within the past years, two major advances have taken place. First, microarray-based
expression profiling has shown promise with the preliminary demonstration that
clustering techniques can ease re-classification and predict the clinical outcome for
various diseases [139], [143], [153], [154]. These studies demonstrate the transition
of basic biologic research to clinical application. The predictive power of this
approach is much greater than that of currently used approaches, but remains to be
validated in prospective clinical studies.

3.3.1 Integrated Clinico-Genomic Knowledge Discovery: A Scenario

The conceptualization of individualized medicine is to be realized by respective
procedures, protocols and guidelines in the context of integrated and synergic clinico-
genomics decision-making scenarios. In the following lines an outline of such a
scenario is presented for the case of cancer — the same scenario may be
conceptualized and appropriately extended to other diseases, The scenario
illustrates the key processes, namely: collection of samples, phenotyping, genotyping
and the transition from phenotypes to genotypes.

Alexandros Kanterakis -34- MSc Thesis



ii.

fii.

iv.

Collections of samples. Tissue sample is extracted from specific cancer patients.
This applies not only to surgical operations (where, the tumor is extracted) but
also to cases where the appointed protocol involves a pre-surgical chemo- and/or
radio- therapeutic treatment in order to ‘shrink’ the tumour and then, depending
on the outcome, proceed to surgery invasion. The tissue sample is appropriately
treated and preserved in order to reserve RNA expression.

Phenotyping

0 Characterization of samples. Assume that the collected samples are assigned
(by the involved clinical specialist — oncologist, pathologo-anatomist, chemo-
and/or radiotherapist) to various clinico-histopathological types and stages.

o Classification of samples. According to characterization, the samples may be
assigned to different phenotypical profiles (e.g. phenotypes F1 and F2 — see
Figure 14). The profiles refer to parameters of patients’ clinical assessment
and include: age, habits & environmental factors, family-history, tumour type,
stage and other related histopathological parameters, as well as medical-
imaging parameters. In this case the acquired patients’ phenotypes ease the
involved diagnostic and/or prognostic decision making operations (e.g., good
vs. bad prognosis). In the case of therapeutic decision making, and in the
presence of follow-up information, the phenotypes may refer to the potential
treatment outcome, e.g., patients (samples) responding to a specific
chemotherapeutic and/or radio-therapeutic treatment versus patients that do
not respond.

Genotyping. Using microarrays technology the molecular, i.e. gene-expression,
profiles of the samples are extracted. Moreover, based on fundamental molecular
biology knowledge we may assess relevant molecular-pathways (e.g., genetic
networks). Such knowledge will help to the identification of validated and more
refined genotypes.

From Phenotypes to Genotypes. After i, ii, and iii are accomplished, we have at
our disposal a gene-expression matrix with rows the targeted genes and columns
the expression levels of genes for the different samples. Moreover, each sample
is assigned to one of the two identified phenotypes, F1 and F2, which are
classes. Applying advanced data-mining operations — such as gene selection, on
the acquired gene-expression matrix we are able to identify potential
discriminatory genes, i.e., the genes that distinguish between the two identified
phenotypes. These genes compose and indicate the molecular signature (or
gene markers) of the respective phenotypes or, the most discriminatory features
that best distinguish between the classes. In other words, we are able to link
potential phenotypical profiles to respective molecular or, genotypical ones. Such
advancement may be utilized in the course of both prognostic and therapeutic
decision-making processes. That is, respective patients, whose gene-expression
profiles ‘match’ the discovered molecular signature, could be detected to belong
to one of the identified phenotypes. Then, according to assessed prognostic
indicators and established clinical guidelines the respective patients may be
admitted to (potentially) available treatment protocols.

From Genotypes to Phenotypes. The scenario presented in iv demonstrates the
identification of patients’ populations that best fit' specific molecular profiles and
by though, ease the individualized treatment/care objective. The decision making
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process described above may be initiated the other way around, towards the
establishment of more fundamental knowledge. That is, applying again data-
mining operations (e.g. clustering) we are able to identify clusters of samples
based on their gene-expression profiles. These clusters (actually the ones
validated by the involved researcher) may represent potential interesting
genotypes, e.g., genotypes G1 and G2 (figure 14). So, in the course of
diagnostic, prognostic or, therapeutic decision making process, each, yet
untreated, patient may be assigned to its corresponding genotypical class (i.e., to
the discovered cluster genotype into which the patient belongs). Then, with the
aid of a supervised predictive learning operation (for instance, decision trees) re-
classification of the disease on the phenotypical level - a fundamental task in the
clinical research for compacting major diseases.

PHENIS
Information System - IntereSting
7777777777 Phenotypical Profiles
= e Fl,F2
Clustering Feature/Gene Selection
Classification Classification
e =
al,c2 = [E: -
Interesting o— . = E——
Phenotypical Profiles GENIS

GEMNOTYPE
Information System

Figure 14. Integrated clinico-genomic knowledge discovery: From phenotypes to
genotypes and vice-versa.

The operationalism of the aforementioned scenario calls for the integration of both
clinical and genomic data. Such an endeavor demands the elaboration and
customization of a mediation infrastructure as well as data mining operations with the
appropriate biomedical informatics support. In the heart of such an integrative
environment the gene selection processes plays the most important role (figure 14).

3.4 Enabling Infrastructure: Integrated Clinico-Genomics Environment

With the recent advances in microarray technology, the potential for molecular
diagnostic and prognostic tools seems to come in reality. In such an integrated
environment, the need to extend the standard clinical decision-making references to
reliable genomic establishments also raises as a major demand.

While the focus of Biolnformatics- Bl around the issues surrounding the Human
Genome Project has given a scientific strength to Bl research and development, the
shift to develop clinical applications could produce the same problems that Medical
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Informatics- MI professionals have faced during the past decades. New collaborative
efforts between MI and Bl could provide new insights and create a synergy for
challenges needed to create novel genomic applications in medicine [155]. Bl
enables us to understand the fundamental knowledge about biological processes.

The inclusion of clinical information in biomedical informatics opens the gateway to
genetic risk profiling of patients, new paradigms in disease diagnoses and prognoses
and novel approaches to drug discovery based on the correlation of genetic and
molecular knowledge of diseases with clinical information of the patients. At the same
time, it becomes evident that in order to fully grasp the mechanisms of a disease we
do not only need an understanding of the genetic base of the disease- dealing with
large amounts of data and related functional genomics approaches (such as gene-
expression profiling) but we also need to integrate the knowledge normally processed
in the clinical setting.
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Figure 15. The envisioned Integrated clinico-genomic environment — knowledge discovery
and data mining are key-components of the environment.

The aim is the design, development and deployment of an integrated clinico-
genomics operational framework where, functional genomics and disease
compacting research are coupled and guided by related medical knowledge. The
endeavour is to be based on the synergy between Medical Informatics and
Bioinformatics, and centred on the promising microarray technology. In this setting,
the respective R&D agenda should be forwarded towards: the delivery of an
Integrated Clinico-Genomics Environment — ICGE with the combined genetic- and
individualized-medicine being the target. Figure 15, above, shows a general outline
of the envisioned ICGE. Key components of the envisioned ICGE environment are:
information and data integration (phenotypical and genotypical), and knowledge
discovery and data mining operations.

In chapter 2 and 3, the specific contributions of the current thesis to the
integration issues were presented. In the following chapter we present
specific contributions for related Aknowledge-discovery issues and in
particular to gene-selection and clustering of gene-expression data.
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4. Towards Reliable Gene-Markers: Supervised Gene Selection

In this chapter we firstly justify the general concept of supervised gene expression
database mining, research pathway and the related work. Then we propose a novel
gene selection methodology based on the application of an entropic metric for gene
discretisation. The algorithm is composed by four main modules: gene ranking, gene
grouping, consecutive feature elimination and class prediction. Furthermore, we
apply the algorithm in real-world datasets and we perform a comparison survey
based on the resulted accuracy and feature elimination of our method versus other
related methods.

4.1 Gene Expression Data Mining

4.1.1 Background to Gene Selection from Microarray Data

Computational genomics has identified a classification of three successive levels for
the management and analysis of genetic data in scientific databases: Genomics,
Gene expression and Proteomics [156]. In this chapter we will be concerned about
Gene expression database mining. Gene expression database mining is the
identification of intrinsic patterns and relationships in transcriptional expression data
generated by large-scale gene expression experiments.

Gene expression database mining is used to identify intrinsic patterns and
relationships in gene expression data. Traditionally molecular biology has followed
so-called reductionist approach mostly concentrating on a study of a single or very
few genes in any particular research project. With genomes being sequenced, this is
now changing into so-called systems approach. Research questions such as how
many genes are expressed in different cell types, which genes are expressed in all
cell types, what are the functional roles of these genes, how a group of genes is
regulated and what genes are interfered in a specific phenotype can now be posed.

Microarray gene expression experiments are organized in four basic types of
experimental protocols: a comparison of two biological samples, a comparison of two
biological conditions, each represented by a set of replicate samples, a comparison
of multiple biological conditions and analysis of covariate information. By ‘biological
condition” we mean the cell or tissue type or variant, plus the environmental or
experimental variable that a given sample represents. The environmental or
experimental variable may include temperature, exposure to some stimulus, insult, or
treatment, or elapsed time from the exposure. These variables may define groups
implicitly, or can be defined explicitly as covariates [157].

Although biological experiments vary considerably in their design, the data generated
by microarray experiments can be viewed as a matrix of expression levels, organized
by samples versus genes. Each sample represents separate microarray hybridization
and generates a set of M expression levels, on of each gene. We call this set of
expression levels an ‘expression signature’, although the term ‘expression fingerprint’
has also been used. In an analysis we may consider N such samples. For each
gene, we can consider its set of expression levels across the different samples,
called its expression profile. Outside this matrix of expression levels, we may have
covariate information for samples, genes or both. The goal for microarray data
analysis is to make inferences among samples, genes and their expression levels
and covariates (figure 16).
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Figure 16. The Gene Expression data matrix — as resulted from microarray experiments.

We make a distinction between two types of analysis tasks: gene selection and gene
clustering. Gene selection implies in identifying specific genes that are expressed
differentially in one or more biological conditions by identifying unusual patterns of
expression. Gene clustering or gene grouping is useful for understanding common
expression patterns and it relies on reducing the complexity of the data by clustering
genes into groups and identifying potential co-regulated genes.

4.1.2 State-of-the-art Approaches in Gene Selection from Microarray Data

One of the goals of supervised expression data analysis is to construct classifiers,
such as linear discriminants, decision trees or support vector machines (SVM), which
assign predefined classes to a given expression profile [158]. For instance, if a
classifier can be constructed based on gene expression profiles that is able to
distinguish between two different, but morphologically closely related tumour issues,
such a classifier can be used for diagnostics. Moreover, if such a classifier is based
on a set of relatively simple rules, it can help to understand what the mechanisms
involved in each tumour are. Typically, such classifiers are trained on a subset of
data with a priori given classification and tested on another subset with known
classification. After assessing the quality of the prediction they can be applied to
estimate the classification of which is unknown.

Brown et al. [159] have applied various supervised learning algorithms to six
functional classes of yeast genes using gene expression matrices from 79 samples
[160]. Genes from some of the classes, such as ribosomal proteins and histones, are
expected to be co-expressed. For these classes it was achieved a good classification
accuracy. Some other functional classes, such as protein kinases, are not expected
to have distinct gene expression profiles. It was shown that SVM provides one of the
best prediction accuracy for the functional classes that are expected to be co-
regulated.

Golub et al. [142] applied neighbourhood analysis to construct class predictors for
samples, concretely for leykemias. They were looking for genes the expression of
which is best correlated with two known classes of leukemias, acute myeloid
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leukaemia and acute lymphoblastic leukaemia. They constructed a classifier based
on 50 genes (out of 6817) using 38 samples and applied it to a collection of 34 new
samples. The classifier correctly predicted 29 of these 34 samples.

Su et al. [161], made a thoroughness study on the expression profiles of 9198 genes
probing for discriminant factors for 11 different tumour types. They calculated a
Wilcoxon rank-sum score [162] for each group of tumour samples versus samples
from all other groups. The 100 genes with the lowest Ps in each class were ranked
based on their predictive accuracy for discriminating one class versus all other using
a Support Vector Machine (SVM) classifier [19] and ranked based on the Leave One
Out Cross Validation (LOOCV [163]) accuracy. They made confident and accurate
predictions for 85% of the test samples.

Van't Veer et al. [143] studied the gene expression profile of 78 breast cancer
according to their clinical outcome. In brief, 5000 genes significantly regulated were
selected from the 25000 genes on the microarray and ranked according to their
correlation coefficient, then a sequentially adding of genes method followed to build a
predictive mechanism. They finally build a 20 gene predictor capable to predict 65
out of the 78 patients’ clinical outcome.

Pomeroy et al. [148] developed a classification system based on microarray gene
expression data derived from 99 patient samples with 4 different tumours of the
Central Nervous System (CNS). They applied the Self Organizing Maps (SOMs)
algorithm and hierarchical clustering to group data and principal component analysis
to reduce the dimensionality of the data. Then they ranked data according to a
signal-to-noise statistic and the t-statistic metric. Finally they used the k-NN algorithm
[164] as a prediction mechanism for test data. They outperformed an 85% prediction
score.

Note that when classifying samples, we are confronted with a problem that there are
many more attributes (genes) than samples that we are trying to classify. This makes
it always possible to find a perfect discriminator to find if we are not careful in
restricting the complexity of the permitted classifiers. To avoid this problem we must
look for very simple classifiers, compromising between simplicity and classification
accuracy.

4.2 A Novel Gene Selection Approach: Methodology and Algorithms

Here we present a novel gene-selection methodology composed by four main
modules:

< Discretisation of gene-expression data;

2 Gene ranking;

< Grouping of genes;

2 Consecutive feature (gene) elimination, or addition.

Discretisation of gene-expression data compose a data pre-processing that takes as
input the gene-expression matrix and output a discretised transform of it [165].

The gene-selction methodology is implemented in the context of an
integrated gene-expression data analysis system, named MineGene -- a
contribution of the current thesis.
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An outline of the introduced gene selection via addition/deletion of genes, named is
presented in Figure 17, below.
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Figure 17. Outline, components and workflow in the Gene Selection methodology.

4.2.1 Discretization of Gene-Expression Data

In many gene expression profiling studies the researchers decide to visualize the
potential clustering of the genes (or the original gene expression matrix), as well as
the final selected set of genes in a discretised manner [142]. Even a simple clustering
algorithm based on binning (i.e. discretizing the expression profile space and
clustering together the profiles that map into the same bin) has been shown to be
useful for clustering genes and subsequent discovering of transcript factor binding
sites [166]. The MineGene method utilized discretization of the gene expression
continuous values into the core of the gene selection process. Discretisation of
gene’s expression values leads to the assignment of these values to interval of
numbers that bound the expression level of the genes in the given samples. A
variable number of such intervals could be utilized and assigned to naturally
interpretable values e.g., low, high.

Given the situation that, in most of the cases, we are confronted with the problem of
selecting genes that discriminate between two classes (i.e., diseases, disease-states,
treatment outcome, recurrence of disease, in other words phenotypes) it is
convenient to follow a two-interval discretisation of gene-expression patterns. The
multi-class problem where, patient samples are categorised to more than two
phenotypes, is tackled by splitting it into a series of two-class discrimination problems
and the combining the results, as it is done in various gene-expression studies [161],
[167]. In this thesis we also present a novel multi-class categorisation method suited
for microarray data.

A general statement of the two-interval discretisation problem followed by a two-step
process to solve it follows.
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Given: A vector of numbers V = <ny, n, ... n..s>, n; > ni+; where, each number n;in
V is assigned to one of two classes.

Find: A number, u, n; < U < n,4, that splits the numbers in V into two intervals:
[no,1) and [u,n,.;], and best discriminates between the two classes — best
discrimination is decided according to a specified criterion (in the presented
work we rely on an information theoretic one; see step 2 below).

The two aforementioned steps are (see figure 18 for a visual outline of the approach):

Step 1. For all consecutive pair of numbers n;, n; in V their midpoint, y; = (n; ni.1)/2
is computed, and the corresponding ordered vector of midpoint numbers is formed, M
=< Ui, Mz ... Uy

Step 2. For each y € M the well-known information gain metric is computed (utilised
in the context of decision tree induction, [210]):
Vi

IG(V ) = Entropy(V) — >’ 7Entropy(\ﬁj) 1)
U€{|,h}‘ |

where sets V, and V,, include numbers from V which are less than y and higher (or
equal) to u, respectively. Thatis, V, = {n;eV [/ n;in [no,u)} and V, = {n;eV | n;in [u,n,.
1J}. It is crucial to note that the entropy estimation is made according to the class
assignment of each element in V and not according the expression values that it

contains. Hence.
Npos ‘ ’Vpos ’Vneg ’Vneg

Entropy(V) = - log - g
VTV VT

Note that the first term in equation (1) is just the entropy of the original set of
numbers in V according to their class assignment, i.e., the distribution of class-values
assigned to the numbers in V. The second term is the expected entropy after V is
split using u as the split point. That is, taking into account the distribution of class-
values assigned to the numbers in V; and V,. The midpoint that exhibits the maximum
information gain is considered as the gene’s expression value which, when
considered as a split point, exhibits the best discrimination between the classes.
Then, this point is selected to assign the gene’s expression values to the nominal
‘Tow or, ‘high values, respectively (i.e., less than y and higher that y). A ‘natural’
(even extreme and controversial in a molecular setting!) interpretation of low and high
expression values for a gene is that the state of the gene is ‘on’ or ‘off in a particular
sample (e.g., disease type or state).

lo

The aforementioned discretisation process is applied independently on each gene in
the training set. The final result is a discretised expression-value representation /
transform of each gene. An example, from the leukaemia domain (a two-
class/disease discrimination domain between diseases ALL and AML), is shown
below (see chapter 4.3).

Gene / Sample-class >  ALL ALL ALL ALL ALL ALL ALL AML AML AML AML AML AML AML
1

M77142- original 296 225 243 137 289 -20 150 27 28 45 34 68 80 21

M77142- discretised h h h h h 1 h | | L | | | |
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The split values for each gene are stored to be used for (unseen) samples excluded
from the training phase. In this case, the expression values of the genes are
discretised according to the stored ones. The steps of the overall gene expression
discretisation method are presented in Figure 18, below.

Order 206 289 243 225 137 150 80 68 45 34 28 27 21 -20
Values inL L L 1 1 1 L L L L 1 1 1 L L

1 |

Flnd 296 289 243 225 137 150 80 68 45 34 28 27 21 -20

Mid-points

Binary Split ‘ H ‘”k‘ I ‘
into sub-sets k k

1

Information _'I_-I__I__I_ @ra/{mlb_f-poiqﬁ 'i--l--l_ _I--'l-'
Gain 16(u,) = E(L) - E(L/) = E(L) - E(Hy L)

|

max{IG(u )}
Best Discretisation Point

Figure 18. The gene-expression data discretisation process.

e Related approaches. The discretisation process resembles the one introduced by
Fayyad and Irani [168], with two fundamental differences (recently, the same
approach was also utilized in a gene-expression profiling study [169]). Because
we use the sorted list of numbers for the selection of midpoints, all the points are
‘boundary values’ (in Fayyad’'s terminology). Furthermore, in [168] and [169],
discretisation is recursively applied to each of the formed binary splits until an
appropriately devised stopping criterion is met. The method proposed by Fayyad
and Irani, however, does not meet the demand for a two-interval discretisation,
which poses a strong difficulty to the natural interpretation of the resulted nominal
values as it is unintuitive to interpret the states of a gene that is discretised to
more than two values.

4.2.2 Gene Ranking and Selection

The problem that reveals now is how to select the genes that best discriminate
between the different classes (being different diseases, disease types/states or,
treatment outcome). The problem is well-known in the machine learning community
as the problem of feature-selection [170]. In this context various ‘wrapper based’
[171], or, ffiltering’ [172], approaches has been proposed.

Traditionally, in machine learning and data mining research the number of features,
m, is quite smaller than the number of cases (samples), n that is, m << n. In contrast,
gene-expression studies refer to a huge number of features and quite few samples.
In most of gene-expression domains the number of genes is in the range of 2000 —
35000 (= the estimated number of human genes), and the number of samples in the
range of 50 — 200, that is n << m. In this context it is questionable if a pure ‘wrapper’
based feature-selection approach could help, especially because of its high-
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computational cost. This argument could be also grounded on the PAC-learnability
framework [173]. The needed (i.e., theoretical lower bounds) number of examples for
a concept (i.e., a Boolean one) to be PAC-learnable are computed to be log(m) [174]-
[177]. So, the extra cost of learning a concept in the presence of rirrelevant features
is log(m-r), the bound, and the computational cost, remains high.

One feature (gene) selection process is based on the combination of a filtering and
wrapper consecutive components: (a) Filtering component — the genes are ranked
with respect to their power to distinguish between the different classes, and (b)
Wrapper component — a greedy elimination (or, addition) process is consecutively
applied on (groups of) the ranked genes in order to select the ones that best
discriminate between the classes.

4.2.2.1 Gene Ranking

Gene Ranking has already been used to estimate genes’ discriminating ability.
Pomeroy et al [148] applied the following metric: each gene, that has samples in
class a and in class b are ranked according to the formula 2, below:

Ha = My 2)
o, +0,

Where u,, 1, are the mean values of the expression values of class a and class b
respectively. And o,,0,are the standard deviation of expression values of class a
and class b respectively. Intuitively, this formula calculates how ‘concentrated’ are
the expression values among the two classes.

In our approach, for each discretised gene we count the number of ‘h’'s and ‘I's that
occur in the respective samples. Assume that each sample is assigned to one of two
classes, i.e., P, and N. The following quantities are computed: Hyp» = number of ‘K’
values for gene g assigned to class P; L, = number of ‘I values for gene g assigned
to class P; Hyn = number of ‘h’ values for gene g assigned to class N; and Lgn =
number of ‘I values for gene g assigned to class N. As an example, these values

Formula (3), below, computes a rank for each gene that measures the power of the
gene to distinguish between the two classes:

I'g =(Hg,P x Lg,N )_(Hg,N x Lg,P) (3)

For a completely distinguishing gene where, all of its values for class P are ‘h’, and
all of its values for class N are ‘I, Hyn = Lgp = 0 and, ry, takes its maximum positive
value. In this case the gene is considered to be descriptive of (associated with) class
P.

The gene remains completely distinguishing in the inverse case where, Hyp = Lgn =
0 and, r,, takes the minimum negative value. In this case the gene is associated with
class N. In other words the gene ranking formula encompasses and expresses a
polarity characteristic that represents the descriptive power of the gene with respect
to the present disease-state classes. So, ordering the list of positive and negative
ranks in descending order may identify the most discriminant genes for class P and
N, respectively. For example by considering and selecting genes just from the top of
the two lists. Formula (3) could be considered as (and actually presents) a discrete
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analogue of the respective signal-to-noise formula (used by various gene ranking and
selection approaches, see for example [142]).

4.2.2.2 Gene-selection via Feature Elimination / Addition

Rank-ordering of the genes and selection for the top ranked genes does not solve
the problem of ‘how many genes’ should be considered as the most discriminant. In
most of the published gene-expression studies the researchers decide on an ‘ad hoc’
basis choosing a threshold cut-off value for this (i.e., [142]). Here we introduce a
more careful and sound method that selects the most discriminant genes from the
two rank-ordered lists. It consists of two processes.

e Grouping of genes. With this method we group genes that have similar ranking.
First we estimate the value:

g= MaxRank — MinRank

- (4)

MaxRank and MinRank are the maximum and minimum ranking of the genes
respectively as they were computed from the previous step. As we have positive
and negative ranking we have to estimate two g values: one for positive and one
for negative ranking. Gene i is assigned to a group O, according the formula:

1 =1k« 1
0. = k ,Ri—RFlS g (5)
k+1 ,R-R_,>09g,k«k+1

In this formula, R;is the ranking of gene i, and k is an integer variable.

e Greedy gene-groups elimination. We are presented with the two vectors of
groups of genes, Op = <O, Op.1 ... Op.s>and Oy = <Oy, Op.r1 ... Op>. Note that
the beginning elements in the two vectors contain groups of genes that are less
distinguishing between the two classes. In contrast, the ending elements contain
genes that are most discriminant. So, it is rational to consider a procedure that
eliminates groups from the beginning of the two vectors. We consider three
situations: (i) deleting a group from Op, (ii) deleting a group from Oy, and (iii)
deleting a group from both Op and O. In all cases, the accuracy of the remaining
genes on the training samples is assessed. The accuracy is computed based on
a specially devised predictor metric (presented in the next chapter). The accuracy
figure and the respective list of remaining genes are recorded. The deletion that
exhibits the highest accuracy is performed. The group-elimination process
continues till all the groups in the two lists are considered. The list of remaining
genes with the highest accuracy is selected as the final set of most discriminant
genes.

e Greedy gene-groups addition. Greedy feature selection could be implemented
with its dual namely, greedy gene-groups addition. In this mode, groups of genes
are added to an initially empty list until the prediction performance declines — the
genes accumulated to that pointed compose the finally selected genes. In this
initialization phase, with empty set of genes, the perspective performance is
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considered to be the default one (i.e., the majority class is used for class
prediction of all samples).

Note. In the context of MineGene both gene-groups elimination and addition methods
are implemented. Moreover, the same methods are implemented for
eliminating/adding just one gene at a time, i.e., without forming groups of ranked
genes.

4.2.3 Samples Class Prediction

The vision of functional genomics, at least for the human case, is the devise of
diagnostic and prognostic kits for various diseases. With the utilization of microarray
chip technology the target is to devise microarray chip-based diagnostic and
prognostic kits dedicated to specific diseases. In the core of the process for devising
such a kit are gene-selection methods, much in the sense presented above. Having
in our disposal such a kit the question is how a new patient (i.e., its potential
pathologic sample-tissue) is classified to a disease-state class or, how its prognosis
is predicted.

Assume that the sample is presented as a vector of gene-expression values for the
genes that are present in the diagnostic/prognostic kit. We introduce a novel
matching procedure, and a respective metric, that predicts the class of a sample.

We assign the integer values ‘7’ and ‘-7’ to the respective discretised genes’
expression-levels of the new sample (we have already mentioned that the gene
expression values of an unseen sample are discretised according to the mid points
computed during the training phase). The integer values ‘7’ and ‘-7’ stands for the ‘h’
and ‘I assignments, respectively, denoted with sign(sg). The matching formula (3),
below, is used to predict the class of a sample s.

class(s) = {Z (Sign (S9) %J - Z (sign (S9) x Wﬂ (6)

geP geN

In this formula, with g € P we denote all selected and positive ranked genes and
respectively with g € N we denote all selected and negatively ranked genes. With |P|
and |N| we denote the number of “Positive” and “Negative” train samples
respectively. As with the gene-ranking formula (formula 3, above) formula (6) also
encompasses a polarity characteristic. If the outcome of the formula is positive then
the new sample is assigned to class P, and if it is negative then it assigned to class
N. In addition, the strength with which the sample is predicted to belong to one of the
two classes is also provided so that, strong (or, weak) predictions could be made.
Take as an example the extreme case were Lg.p = Hyy = O for all selected genes (i.e.,
all the genes have ‘high’ values for all class P samples, and Jow’ values for all class
N samples; in other words all selected genes are ideally associated with the
respective classes). Then, in formula (6) the bracketed factor receives its maximum
positive value which equals the total number of total selected genes, say T. Now, if
the incoming unseen sample have ‘high’ values (i.e., sign(sg) = 1) for all genes
associated with class P, and ow’ values (i.e., sign(s,) = -1) for all genes associated
with class N (i.e., an ideal class P sample) then, formula 6 receives its maximum
positive value which equals to -T. So, the sample is strongly predicted to belong to
class P. All the above holds for the inverse case where, the incoming sample is an
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ideal class N sample- the outcome of formula 6 will be -2S, and the sample will be
strongly predicted to belong to class N. Under suitable assumptions (based on an
analysis of all prediction figures) a ‘weak’ prediction could leave the sample
unclassified.

4.2.4 Multi-domain Prediction Method

The two-class predictor not only uses the metric of entropy to decide which class
should be assigned to an unclassified sample, but also produces a strength of
prediction value according to the relevance of the unclassified sample to our train
samples. This strength can be applied to tackle domains with more than two classes.

m Let S be an unclassified sample that belongs to a domain with ¢ classes. We also
assume that we have selected g genes to be our discriminant attributes. We
apply the predictor described above subsequently for each class. That is, we
estimate the prediction strength of S belonging to each one of the ¢ classes.
Finally we assign the sample S to the class that made the best prediction score.
With this mode of operation (also implemented in MineGene) we are able to
predict the class of samples in the presence of multi-classes — an operation of
great value in the case of multi-disease (e.g., multi-cancer) domains.

4.3 Experimental Evaluation of the MineGene Gene-Selection Methodology

We applied the introduced gene-selection and samples classification methodology on
eight real-world gene-expression domain studies that are pioneers in their fields. A
total of six biomedical domains were investigated and respective tasks were posted
(for two domains, HBC and CNS, two different tasks are posted). Below the
respective reference studies and tasks, with which we compare our gene selection
method, are listed.

0 LEUK (Leukemia; Ref. [142]) — to distinguish between two leukemia classes, ALL and
AML;

0 BRCA (Breast Cancer; ref. [143]) — to distinguish between two classes, patients with no
metastasis in at-least five years and patients with metastasis within five years;

0 COLON (Colon Cancer; Ref. [144] for original study, and [146] for the comparison
reference) — the task is to distinguish between normal and tumor samples

0 LYMPH (Lymphoma; Ref. [146]) — to distinguish between two lymphoma-characteristic
classes, GCB and AB (types of cells);

0 HBC (BRCA1; Ref. [147]) — to distinguish between BRCA1 and not-BRCA1 mutated
samples;

0 HBC (BRCAZ2; Ref. [147]) — the same as the previous domain study but with the task of
distinguishing between BRCAZ2 and not-BRCA2 mutated samples;

0 CNS (Meduloblastoma; Ref. [148]) — to distinguish between two types of meduloblastoma
brain tumours, Classic and Desmoplastic;

O CNS (Treat.Outcome; Ref. [148]) — the same as the previous domain but with the task of
distinguishing between two treatment outcomes for patients with meduloblastoma,
Survivors and Failures.
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In table 2 the specifics (e.g. reference study, number of genes, classes, etc) of the
above domains are presented.

Table 2. Experimental domain studies: Comparison reference studies and respective datasets.

Study | Study Name (Task) Study Classes #Genes Training
# Reference Samples
1 LEUK [142] {ALL , AML} 7129 38 {27,11}
2 BRCA [143] {RELAPSE , NON-RELAPSE)} 24481 78 {34,44}
3 COLON [144]] {TUMOUR , NORMAL} 2000 62 {40,22}
4 LYMPH [146] {GCB , AB} 4026 47 {24,23}
5 HBC (BRCA1) [147] {BRCA1 , notBRCA1} 5361 22 {7,15}
6 HBC (BRCAZ2) [147] {BRCA2 , notBRCA2} 5361 22 {8,14}
7 CNS [148] {CLASSIC , DESMOPLASTIC} 7129 60 {9,25}
(Medulloblastoma)

8 CNS [148] {SURVIVORS , FAILURES} 7129 60 {39,21}
(Treatment
Outcome)

4.3.1 Results and Discussion

Table 3, summarizes the results of applying the introduced MineGene gene-selection
and sample classification/prediction method. The bold figures indicate superior
performance with respect to the reference study, and: (a) to the number of selected
genes (i.e., less number of genes is considered as superior), and (b) to accuracy
assessment results.
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Table 3. Comparison results assessed on the available training samples: MineGene vs. stuffy reference
results. Bold figures indicate superior performance (better accuracy and less number of selected genes).
#G: number of selected genes; Acc%: accuracy figure (%); Ref.: the number of selected genes and the
reported (in the original reference paper) accuracy; MineGene.a: number of selected genes and
accuracy figures for the MineGene gene addition method; GeneMin.d: the same as previous but for the
MineGene gene deletion method; Ref./PRED: using the reported (reference) genes with MineGene’s
predictor; Ref./MineGene.a: number of selected genes and accuracy figures when MineGene.a (both
selection of genes and prediction) is applied just on the reported genes; Ref./MineGene.d: the same as
previous but when MineGene.d was applied (figures in bold shows superiority over the reference study
results).

Study Name
Study || (Task) MineGene.a/d STUDY
# MineGene.a | MineGene.d Ref. Ref./PRED | Ref./MineGene.a | Ref./MineGene.d
#G  Acc% | #G = Acc% #G  Acc% Acc% #G Acc% #G Acc%
1 LEUK 1 | 100.0 4 100.0 50 94.7 81.6 5 94.7 13 97.4
2 BRCA 33 974 | 34 97.4 70 83.3 71.8 17 87.2 63 84.6
3 COLON 127 100.0 | 26 100.0 10 = 100.0 90.0 6 925 6 92.5
4 LYMPH 4 100.0 4 100.0 50 97.1 100.0 4 100.0 4 100.0
HBC
5 (BRCAT1) 10 = 100.0 | 10 100.0 9 95.5 95.5 5 100.0 5 100.0
HBC
6 (BRCA2) 3 | 100.0 5  100.0 11 81.8 100.0 4 100.0 6 100.0
CNsS
7 (Medul/stoma) 21 100.0 | 21 100.0 140 97.1 97.1 17 100.0 1 97.1
CNS
(Treatment
8 Outcome) 10 95.0 | 32 93.3 100 78.3 91.7 19 95.0 39 96.7
MEAN 26 99.1 | 17 98.8 55 91.0 90.9 10 96.2 18 96.0

m Accuracy assessment. As it can be observed, the introduced gene-selection
methodology outperforms, in most of the cases, the ones in the comparison-
references. At an average, the accuracy achieved with MineGene is 99.1%, and
98.8%, when using the gene addition and deletion approaches, respectively. These
figures should be compared with the reported (in the original study reference
publication) accuracy figure of 91.0% - a statistically significant difference on the
P>99% level, for both MineGene.a and MineGene.d, applying a one-tail t-Test on
the accuracy figures over all domains.

The results show the reliability of the introduced MineGene gene-selection and
sample classification/prediction methodology. The high performance could be
attributed not only to the overall gene-selection approach (i.e., discretisation, gene-
ranking and gene-selection) but also to the introduced prediction metric and
methodology. In particular when the reported genes where used for prediction of
samples’ class an average accuracy figure of 90.9 % was achieved. This figure is
comparable with the 91.0% average reported accuracy figure, also confirmed with
the observation of no statistically significance difference between the respective
accuracy figures (even for the P>90% level when the same as above statistical test
was applied).
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m Number of genes. Furthermore, MineGene results in a significant smaller number
of selected genes, an average of 26, and 17 for the MineGene gene addition and
deletion approaches, respectively, compared with an average of 55 reported genes
for the reference studies. A statistically significant difference was observed on the
P>95% level, applying a two-tail t-Test statistical test for the respective numbers of
selected genes (i.e., 26 and 17 vs. 55). This result is quite satisfactory because a
small number of disease associated genes gives the opportunity for more complete
and better biological interpretation (e.g., for the involved disease-related
biochemical pathways).

Furthermore, using just the reported genes as a starting point for the MineGene
method we were able to achieve even better results. In particular, high average
accuracy figures of 96.2%, and 96.0% were achieved when MineGene was applied
with the gene addition, and deletion approaches, respectively (a statistical
significance difference on the P>90% level for a one-tail t-Test). In this
experimental mode we were able to find even less number of discriminatory genes
— 10, and 18 for the gene addition and deletion approaches, respectively (with a
statistical significance difference on the P>99% level for a one-tail t-Test).

4.4 Future R&D work for Gene-Selection

The future research agenda includes: (a) further experimentation with other gene-
expression profiling domains, especially multi-class (more than two) domains, (b)
biological interpretation of the results (e.g., how many of the selected genes are
common in our results and the original comparison references), and (c) inclusion of
the gene-selection and samples classification methodology in an Integrated Clinico-
Genomics Environment to ease decision making in the genomic medicine context
[139].

Whether we use supervised or unsupervised expression profile analysis, they are just
the first steps in expression data analysis. It is a long way from finding gene clusters
to finding functional roles of the respective genes, and moreover, understanding the
underlying biological processes. A natural step downstream of expression profile
clustering is the usage of putative promoter sequences of similarly expressed genes
for finding regulatory sequence elements in genomes. This is easier from yeast,
since typically yeast promoters are relatively close to ORFs.
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5. Discovery of Co-Regulated Genes: A Clustering Approach

The goal of clustering is to group together objects (genes or samples) with similar
properties. This can also be viewed as the reduction of the dimensionality of the
system or, the discovery of “structure in the data’. By comparing gene-expression
profiles, and forming clusters, we can hypothesize that the respective genes are co-
regulated and possibly functionally related.

2 In this setting, clustering serves for the discovery and identification of potential
genes’ function. The discovery of genes’ function may help to the identification of
genes being involved in particular molecular pathways, and by though ease the
modelling and exploration of metabolic pathways (i.e., metabolomics).

2 Moreover, clustering of genes may reveal gene-families, i.e., metagenes, and
their potential linkage with combined clinical features — a task which is too-difficult
to be achieved when we are confronted with the huge number of available genes
(~25000-30000 for the human case).

The current thesis introduces a novel graph theoretic clustering (GTC) approach.
The approach is based on a graph-based arrangement of the input objects (genes in
our case). With a careful and iterative partitioning of the graph’s minimum spanning
tree (MST) it results into a hierarchical clustering of the input objects.

5.1 State-of-the-art Approaches and Utility of Clustering Microarray Data

The goal of clustering is to group together object (genes or samples) with similar
properties. Many clustering algorithms have been applied to analyze expression
data. The hierarchical [160] and K-mean clustering algorithms [178], [20], [179] as
well as self-organizing maps [180] have all been used for clustering expression
profiles.

Clustering of expression profiles has been used for grouping genes as well as
samples. The clustering of genes for finding co-regulated and functionally related
groups is particularly interesting in the cases when we have complete sets of an
organism’s genes. DeRisi et al. [181] used a DNA array containing a complete set of
yeast genes to study to dauxic shift time course. They selected small groups of
genes with similar expression profiles and showed that these genes are functionally
related and contain relevant transcription factor binding sites upstream of their ORFs.
More systematic studies of this dataset for regulatory elements were done by Brazma
et al. [166] and Helden et al. [182].

Later more expression studies of yeast under various conditions were carried out,
including sporulation [183], cell cycle [184] and yeast gene regulation machinery
[185]. Clustering has been applied to the obtained gene expression matrices, and
groups of functionally related and co-regulated genes have been revealed. Tavazoie
et al. [179] clustered expression profiles of 3000 most variable yeast genes during
the cell cycle into 30 clusters by the K-means algorithm. They found that for half of
these clusters, strong sequence patterns are present in the gene upstream
sequence. Note that expression profiles of cell cycle-dependent genes are periodic
and Fourier analysis has been used to discover these genes [184].

Eisen et al. [160] have developed a hierarchical clustering-based algorithm and
visualization software package, which is currently one of the most frequent used tools
for expression profile clustering and data visualisation. They applied their software to

Alexandros Kanterakis -53- MSc Thesis



gene expression matrices obtained by combining 80 different yeast samples
(experimental conditions) studied in various hybridization experiments at Stanford
University.

Gene expression profile clustering does not necessarily require the full genome. For
instance lyer et al [186] studied 8600 genes in human fibroblasts and obtained 10
distinct gene clusters each associated with genes with particular functional roles,
such as signal transduction, coagulation, hemostasis, inflammation etc.

A simple method of finding sets of interesting genes is comparing expression profiles
of two or more samples for differentially expressed genes. For instance, Lee et al.
[187] used this method to find genes that are differentially expressed in skeletal
muscle of adult (5 months) and old (30 months) mice. Of over 6347 mouse genes
surveyed by a microarray, 58 displayed a greater than two-fold increase, whereas 55
displayed a greater that two-fold decrease in expression in the skeletal muscles of
the old mice.

Ben-Dor et al. [188] applied a new clustering algorithm for classification of colon and
ovarian cancer data sets. They used unsupervised clustering to find a hierarchical
structure in the expression profile space, and supervised learning to find the best
threshold to correlate the clustering structure with the known cancer classes.

Hierarchical clustering has also been used for sample clustering. An interesting
application of this approach is the clustering of tumours to find new possible tumour
subclasses. Alizadeh et al. [146], applied this approach where diffuse large B-cell
lymphoma (DLBCL) was studied using 96 samples of normal and malignant
lymphocytes. Applying a hierarchical clustering algorithm to these samples they
showed that there is diversity in gene expression among the tumours of DLBCL
patients forming two distinct clusters. These two groups correlated well with patient
survival rates, thus confirming that the clusters are meaningful.

Sample clustering has been combined with gene clustering to identify which genes
are the most important for sample clustering [146], [144]. Alon et al. [144] have
applied a partitioning based clustering algorithm to study 6500 genes of 40 tumor and
22 normal colon tissues for clustering both genes and samples. They call this method
two-way clustering.

Another fact that indicates the significance of the clustering methods can be found in
gene regulatory networks, where we try to identify the role of every functioning part of
a gene by doing something like “reverse engineering”. Based on the hypothesis that
genes that have similar expression profiles (i.e. similar rows in the gene expression
matrix) should also have similar regulation mechanisms as there must be a reason
why their expression is similar under a variety of conditions. Therefore, if we cluster
the genes in such clusters, some of these sets of sequences may contain a ‘signal’
as a specific sequence pattern such as a particular substring, which is relevant to
regulation of these genes.

5.2 A Graph Theoretic Clustering (GTC)

In this chapter we present a novel Graph Theoretic Clustering (GTC) approach on
clustering of microarray gene expression profile data. The approach is based on the
arrangement of the genes in a weighted graph, the construction of the graph’s
Minimum Spanning Tree (MST), and an algorithm that recursively partitions the tree.
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5.2.1 Related approaches and utility of GTC clustering approach

MST-based clustering is not a new idea. It was first introduced by Zahn [189] and
Page [190]. Recently a similar approach that follows a different partitioning strategy
was also introduced and applied on gene-expression profiling tasks [191]; the
method is implemented in the core of the EXCAVATOR gene-expression analysis
system [192]. These approaches follow a ‘one-shot’ MST partition strategy with the
identification of ‘weak’ (or, ‘long’) MST edges, which are then cut. Because of their
one-shot partitioning strategy these methods could not identify special relations in the
data as for example the potential of a hierarchical organization. In addition, all
approaches demand the presetting of the number of desired clusters. In most cases
such a demand is problematic, especially in exploratory data analysis where, the
analyst possesses no hints about the potential number of clusters. For the approach
in [191] an estimate for the optimal number of clusters is computed in advance, a
pre-processing step of high computational cost.

Moreover, GTC exploits a ‘hybrid’ characteristic. Assuming that the assignment of
genes to classes is known in advance, or we have an external source of information
that can estimate an arbitrary form of distance between two genes then, several
metrics and distances can be used to utilize information that comes from this external
(to the expression-based description of the genes) modality. The clustering is to be
performed an a (potentially) different distance-based arrangement of the genes, and
the final hierarchical clustering outcome reflects both: (a) the expression-based
description of the genes and (b) their class assignments. So, conjectures made from
one source of information may be used to confirm (or, reject) conjectures from the
other, and vice versa. In this setting, pre-established domain-knowledge is utilized in
order to discover regularities and confirm/reject hypotheses. In that sense, GTC
presents a ‘knowledgeable’ exploratory data analysis approach. This is in contrast to
other MST-based clustering approaches where, the computation of distances
between objects relies solely on the expression-based description of the objects and
the corresponding ‘geometric’ arrangement of them. In this mode clustering is not
coupled with background domain knowledge, a crucial source of information in order
to decide where to cut the MST (especially for ‘borderline’ cases).

With GTC there is no need to specify the number of clusters in advance (a
prerequisite of other clustering approaches such as k-means [20]). In contrast, a
‘termination’ condition, implemented with an information-theoretic formula, is applied
on each of the nodes of the growing cluster-tree and decides to stop or, to further
expand the tree at that node. A special feature of GTC is the combination of different
information sources in order to compute the distance between the input objects
(genes). Domain background knowledge can be utilized in order to compute
distances between objects and arrange them in a weighted graph. Then iterative
partitioning of the respective MST is done with reference to the original feature-based
description of data. This hybrid characteristic makes the whole data analysis process
more ‘knowledgeable’ in the sense that established domain knowledge guides the
clustering process. The final result is a hierarchical clustering-tree organization of the
input gene expression profiles. We focus on the discovery of indicative and
descriptive patterns in order to ‘uncover’ hidden relations and vyield insights on the
order of spatial maps of genome, providing profiling rules that possibly reveals its
functional structure and selective transcription.
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5.2.1 Minimum Spanning Tree Construction

With the microarray gene expression matrix in our disposal we compute the
distances of all gene expression profiles. The distances between all the genes
expressions profiles can be a simple (i.e. Euclidean, Manhattan) distance or
something more domain specific suitable to reveal certain data regularities (i.e.
Pearson, Mahalanobis). It also can be, as we have discussed, a complete arbitrary,
external source of information.

The next step is to form a fully connected weighted graph, with the genes as nodes
and computed distances as edge-weights. In order for this graph to be formed all
combinations of gene distances must be computed. If we have n nodes (genes) then

1
the graph will have E(n —1)n edge-weights (fully connected, figure 19)

Gene 5
Figure 19. Connected graph: Each node is a gene, the weight of each edge is not shown

Given a set E of n genes, the minimum spanning tree of the fully-connected weighted
graph of the objects is constructed. The formed MST contains exactly n-71 edges. In
the current GTC implementation we used Prim’s [193], Kruskal's [194] and Round
Robin [195] methods for the construction of the MST. A basic characteristic of the
MST is that it reserves the shortest distance between the genes (figure 20). This
guarantees that objects lying in ‘close areas’ of the tree exhibit low distances. So
finding the ‘right’ cuts of the tree could result in a reliable grouping of the genes.

Gene 1
Gene 8 Gaene 2
Gene 7 GCerae =
Oy
Gene 6 aGeme =
Gene 5

Figure 20. The Minimum Spanning Tree of the graph in figure 19 (for given weights of links).
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5.2.2 lterative MST partition
Iterative MST partition is implemented within the following three steps.

Stepl: Binary splitting. At each node (i.e., sub-cluster) in the so-far formed
hierarchical tree, each of the edges in the corresponding node’s sub-MST is cut. With
each cut a binary split of the genes is formed. If the current node includes n genes
then n-1 such splits are formed (figure 21). The two sub-clusters, formed by the
binary split, plus the clusters formers so far (excluding the current node) compose a
potential partition.

Gene 1

Gene 1

Gene 2

Gene 2 Gene 8

Gene 2
®

Gene 3

Gene 8

Gene 7 Gene 3 el Gene 3

Gene 6 Gene 4 Gee 6 Gene 6 Gene 4

Gene 5

Genz 5

Gene 5

Gene 1

Gere 8 Gene 2

Sene 1

Gere 8 Gene 2

Gene 1

Gene 2

Gene 3 | Gere 7 Gane 3

9

Gene 6 Gene 4 Gene 6 Gene €

Genz 5 Gene 5

Gene 5

Figure 21. Binary splitting of a MST.

Step 2: Best Split. For each binary split we compute a category utility (CU) that
indicates the division ability of the split. The more compact the clusters formed the
higher the CU. As the expression profile data is numeric, we assume that the
probabilities for numeric attributes have a normal distribution, and we use the height
of the normal curve as the probability of a particular attribute value. The following
formula shows this derivation process [196]:

L ei(%ﬂ)zdx: 1

7
o?2rx rN 7

SPA=V) e

The transformed evaluation function is [197]:
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Where K is the number of clusters formed so far, o, is the standard deviation for
samples iin classk, and o, is the standard deviation for attribute i of all the genes
participating in the clustering. The one that exhibits the highest CU is selected as the
best partition of genes in the current node.

Step 3: Iteration and termination criterion. Each new cutting point found on the
tree, divides the tree in two sub-trees, let the first sub-tree be the left and the second
the right. The best cut of these two trees is found as described in steps 1 and 2. In
order to decide what will be the new cut, four potentials have to be examined. The
first is that none cut should be considered, thus none new cluster will be formed and
the algorithm must terminate. The second is that the best cut in the left sub-tree
should divide the left tree into 2 new clusters while the right tree should not be
examined any more. The third potential is symmetric to the second, thus the right
tree should be divided and the left to be remained stable. The forth potential is that
both cuttings should be considered and both left and right tree should be divided. In
order to decide what potential is the proper one we estimate the CU of each one and
select the one that exhibits the higher value. Then for each new division decided we
iterate steps 1 through 3 (see figure 22).
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Figure 22. Four potentials of a partitioning step.
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The final outcome is a hierarchical clustering tree where (by default) the termination
nodes are the final clusters. After visual inspection of the hierarchical tree the user
may decide to use higher levels of the tree as the final clustering. Note that there is
no need to determine the number of clusters in advance — a task left to the node
growing/termination criterion (step 3).

5.2.3 Time complexity of GTC: Preliminary Assesment

The core of GTC (i.e., the MST recursively partitioning) time-complexity depends: (i)
on the complexity of computing the category utility indices and (ii) on the depth of the
resulted clustering tree. Denote with F, the number of features (samples) and n, the
total number of input objects. The category utility computation needs a time linear to
the total number of the features, ~ O(F) .

In the worst case the maximum depth of the tree is n-1. That is, at the zero level (i.e.,
all genes in one group) the resulted sub-clusters have 71 and n-1 objects,
respectively. The sub-clusters are formed after performing a total of n-7 CU
computations (i.e., edge cut or, splits of the corresponding MST tree. At the second
level the clusters with 1 and n-2 objects, respectively, after performing a total of n-2
CU computations. At the last level, n-1, there are n-(n-2) genes, and a total of
n-(n-2)-1=1 CU computations are to be performed. So he total number of CU
computations is equal to 7+2+...+(n-1)=n(n-1)/2. As a result, and for the worst case,
the GTC algorithm exhibits a quadratic to the total number of genes, and linear to the
total number of samples, time-complexity, i.e., ~ O(n* x F).

The quadratic complexity figure is in accordance to hierarchical clustering
approaches that use dynamic closest pairing techniques [198], and with k-means
approaches when the preset number of clusters is equal to the total number of input
objects. The time complexities of the MST algorithms are: Prim’s ~O(nlog, F),
Kruskal’'s ~O(nlog F + Fa(n)) and Round Robin ~O(nloglog F). As we can see all
of them are significantly faster than the main GTC algorithms, thus cannot be
considered in time complexity estimations.

In all the conducted experiments, and for datasets with ~1000-27000 genes and ~78-
100 samples, the real execution time of the C++ based GTC implementation ranges
from ~2 to ~30min (on a 3.2MHz, 1Gb RAM PC).

5.2.4 Coping with Time Complexity: Keep ‘Significant’ Weighted Links

One of the main bottlenecks of the algorithm is the distance calculation. The time
complexity (and space complexity) of calculating all distances of n genes with F
samples is ~O(F x nz). Especially when dealing with gene expression matrices the
number of input objects may reach the value of 30,000 (35,000 numbers is the
estimation number of human genes), thus the time and space requirements of the
algorithm can reach the order of 10"". Even though this complexity can be arranged
by contemporary modern computers in the field of time, it is very hard to be arranged
in the field of space. In order to overcome this bottleneck we introduce a heuristic
that reduces significantly the order of the computed distances.

We assume that the maximum degree of computed MST’s nodes is a value less than
a constant value, let t. This hypothesis comes from the belief, that the data has a
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minimum sparseness. Even though gene expression data have many irregularities,
we can safely assume that a cluster can have a maximum compactness. Thus a
MST of a fully connected graph cannot have a node with degree greater than t. As a
consequence it is adequate to compute the t minimum distances of each node. This
reduces the space complexity to ~®(F xtxn) even though it increases the time
complexity as the burden of sorting the distances of each node has been added.

The resulted graph will not be fully connected, but the produced MST will be exactly
the same if the f value is not too small. According to our implementation a value of ¢
close to 1% of the number of input objects (genes) proved to be a rational value.

5.3 Experimental Evaluation of GTC on Gene-Expression Data Clustering

We utilized GTC on an indicative gene expression profiling domain namely, large
scale gene expression profiling of central nervous system development, referred as
the Wen case-study [199]. The respective case-study present the mRNA expression
levels of 112 genes during rat central nervous system development (cervical spinal
cord); assignment of the 112 genes to four main functional classes- spitted further to
fourteen class-values is also provided.

Utilizing a special devised distance measure, the VDM metric (see below), in the
course of GTC five clusters were induced that exhibit, not only similar expression
profiles but similar, more-or-less, functions as well. The natural interpretation of the
induced clusters and their correspondence to the respective Wen ‘w’aves are:
EARLY / w1; MID-LATE /w2; MID / w3; LATE / w4; and CONSTANT / w5. Figure 23,
below, shows the representative profiles for each of the induced clusters (the plotted
patterns present the developmental-stage means over all genes in the respective
cluster).

Note. In the current MineGene implementation the Euclidean distance is
implemented — the VDM metric was utilised off-line (of the MineGene system) and
the results were saved in a file (appropriately formated to be read from MineGene).

5.3.1 Results and Discussion

The result shows that the presented clustering approach is well-formed and reliable
producing similar results with the standard joining-neighboring clustering approaches
(followed by Wen). Moreover, for all functional classes GTC/VDM exhibits lower
diversity indices figures; compared with Wen'’s clustering a significance difference
was observed on the P>99% level. So, the GTC/VDM clustering approach induces
more ‘compact’, with respect to the genes’ functions, clusters. Furthermore, in
hierarchical clustering approaches it is difficult to identify the ‘borderline’ patterns,
i.e., genes with expression profiles that lie between two or, more clusters. This is the
situation with the w2/c2112 and w3/c2111 clusters. In Wen clustering there are some
genes that are assigned to cluster w2, even if their expression patterns fits more-or-
less to the w3/c2111 pattern. The GTC/VDM clustering approach remedies this, and
groups the genes within cluster w3/c2111. A special case of ‘bordeline’ cases are the
‘unclassified’ ones — some genes assigned to the ‘neuro_glial_markers’ function
remain unclassified in the Wen case study (the ‘other’ pattern in Wen'’s terminology).
With CTC/VDM most of these genes are assigned to cluster w3/c2111 in which, most
of the genes comes from the ‘neuro_glial_markers’ function. So, with the utilization of
background-knowledge (i.e., knowledge about the function of genes) it is possible to
solve the ‘borderline’ problem, and make the interpretation of the final clustering
result more natural.
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Figure 23. Plots of the clusters’ mean expression level (representative patterns) for Wen and
CTG/VDM clustering.

Value Difference Metric (VDM): A Knowledgeable Distance Measure. VDM
combines information about the input objects that originates from different modalities.
For example, the a-priori assignment of genes to specific functional classes could be
utilized. The VDM metric, given by the formula below, takes into account this
information [200].

2
C Na; X; C Na; y; C

VDMa(Va = xVa = y) = ). — (9)

c=1

Na;x Na;y

where, V,=x: xis the value of feature a; N,.,: the number of objects with value x for
feature a; N...... the number of class ¢ objects with value x for feature a; and c the
total number of classes. Using VDM we may conclude into a distance arrangement of
the objects that differs from the one that results when the used distance-metric does
not utilize objects’ class information. So, the final hierarchical clustering outcome will
confront not only to the distance between the feature-based (i.e., gene expression
values) description of the objects but to their class resemblance as well. As the
assignment of classes to objects reflect to some form of established domain
knowledge the whole clustering operation becomes more ‘knowledgeable’.
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5.4 Future R&D Work for Clustering Microarray Data

The GTC clustering methodology is currently being tested on various domains, e.g.,
economic time-series data [201], mapping regional brain development [202]. The
approach provides a framework where several distance metrics and category utilities
can be applied and assessed. Thus, we need to expand our research on the direction
to locate the most suitable distance metrics and category utilities for various research
domains. In the field of microarray gene expression data we have to consider metrics
that are resistant to erroneous or non-available data.

GTC methods are ideal for visualisation of inner data relations either during the
method’s process or the method’s outcomes after termination. Existing visualisation
techniques and available software does not provide visualisation in a large zoomed-
out scale suitable for gene expression domains where the number of visualised
objects usually exceeds the 30,000 nodes. In order to visualise and designate the
inner gene relations stemming from GTC methods we have to introduce novel
visualisation algorithms.

Finally, as proved one bottleneck of the algorithm, are the distances computations.
Although we presented a heuristic that merely overcomes this problem, the need for
advanced, sophisticated distance computation heuristics is still an open issue.

Alexandros Kanterakis -62- MSc Thesis



6. The MineGene System: Implementation Issues

In an integrated clinico-genomic environment we want to utilize a general-purpose
machine learning tool to serve as an application platform for gene selection and
clustering algorithms. This tool, names MineGene is a collection of Machine Learning
algorithms and heuristics for intelligent processing of gene expression data produced
by DNA Microarray experiments. Its main purpose is to mine into vast and redundant
documents for information regarding the ability of certain genes to discriminate
between different sample states. Similar tools are GeneSpring [203] and MolMine
[204]. MineGene, is designed and implemented to be suited as a plug-in in a gene
expression database. With MineGene we give the ability to a gene expression
database apart from storing, retrieving, sharing and querying of the data, to infer
fundamental conclusions about the inner regularities, descriptive ability and possible
relations of the data stored.

The majority of the studies performed on gene expression data analysis follow a
‘one-way’ approach, thus they apply only one or a very limited set of algorithms.
Even when a study is composed by many parts, each responsible for a specific
aspect of the process, it is not possible to apply and test various algorithms for this
aspect and infer invaluable conclusions not only for the data, but for the application
spectrum of an algorithm as well. Moreover, even when we want to test a single
algorithm it is desirable to have an environment capable to perform multiple runs with
different inputs and parameters.

Judging from studies recently published, there is not yet any standard method for
microarray gene expression data analysis but some general guidelines that recently
have started to be formed. These guidelines represent a sequencing procedure that
starts after data acquisition and ends to the construction of a predictor or a clustering
mechanism depending if we are performing supervised or unsupervised data
analysis (figure 24).
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Figure 24. Procedural tasks for gene expression data analysis.
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6.1 The supervised data analysis pathway

For supervised data analysis these guidelines form the following sequencing
procedure:

2 Filtering. Filtering is the first task of the procedure and the only that accesses the
primary train dataset. Filtering can be considered as a preprocessing of primary
data. With filtering we eliminate the number of further studied gene expression
profiles according to a preferred criterion. The main reason to do this is to
simplify the following tasks by providing them less data and to reduce the
dimensionality of the problem. Usually the data filtered does not contain any
significant information for gene expression regulations, namely filtered data do
not significantly regulate among different sample classes. Some filtered methods
include several hypothesis testing metrics as Wilcoxon rank-sum test and t-test.

2 Ranking. With ranking we tag each gene with a value indicative of its descriptive
ability. The higher the ranking the better the ability of the gene to discriminate
between different sample classes. Some ranking methods include Pearson’s
correlation coefficients, standard deviation. The method proposed in chapter
4.2.2.1 is a ranking method.

2 Grouping. Usually it is undesirable to manage each gene as a unique feature.
The main reason for this is that according to previous step, some genes may
exhibit a similar ranking, thus they should be treated as a group of genes.
Moreover, treating each gene as a unique feature is sometimes an expensive
computational task. Grouping allows as to reduce complexity and to emerge
some physical correlation of the genes.

2 Gene Selection. The next step is to select the most suitable genes that according
to our methods can discriminate the samples among two or more categories.
These genes must have been regulated differently in the two classes of samples.
Most of the studies select an ‘ad hoc’ number of best ranked genes, but some
algorithmic approaches exist as well. One of them is proposed in chapter 4.2.2.2.

o Predictor. The final step is to build the predictor. Here the genes selected from
the previous task are chosen to act as attributes with continuous attribute values.
Then each sample in the testing dataset is processed by the learning method
selected here and assigned to a class. This is the only task where the test
dataset is needed. Some famous learning methods include SVM, K-NN, K-
means, as well as the one proposed on chapter 4.2.3.

6.1.1 Validation of Gene-Selection results: The Leave One Out Cross Validation
(LOOCV) procedure

In cases where test dataset is not available, or we want to assess the predictive
capacity of the train data we can use the Leave One Out Cross Validation (LOOCV)
[163] method. During this method we take one sample from the train dataset. Then
we perform all the algorithms described above, and then use the taken sample, as a
test dataset. This process is done iteratively for all train samples. The ration of the
samples predicted successful by the predictor reflects the predictive capacity of the
train data. In the case than we have absence of test data we may consider as best
discrimant the genes that participated more times in the selected genes set during a
LOOCYV procedure. LOOCYV is an essential validation method that can estimate the
value of our learning method and/or the predictive ability of our data.
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6.1.2 Unsupervised data analysis pathway

For unsupervised data analysis these guidelines form the following two step
procedure:

< Filtering. Filtering is exactly the same task as in supervised processes.
Preprocessing of the data is still a very important task.

o Clustering. The clustering task is a generic unsupervised grouping method.
Clustering significance and methods have been surveyed in chapter 5.
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Figure 25. Class Hierarchy of MineGene.

6.1.3 General concerns of implementation

As we have seen, the general purpose machine learning tool should comprise with
some certain requirements. One of them is that it should act as a plug-in in a gene
expression database, thus it should be implemented in a general purpose, flexible
computer language. Another concern is that it should be composed by several
components with certain correlations between them. All the tasks presented before
are families of certain algorithms (i.e., we have the family of gene ranking
algorithms). Algorithms belonging to the same family share common attributes,
methods and architecture. The only programming technique that ensures the
component-like structure of the tool is the object oriented programming. Finally the
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tool should utilize a Graphical User Interface (GUI) in order, for a user to have a
visual contact with various possible algorithms and parameters of them.

The programming language that fulfills the above requirements is the C++ and the
programming environment selected is Microsoft Visual Studio v. 6.0. The component
based schema of the tool, depicted in figure 24, is reflected in the hierarchy of the
classes as we can see in figure 25. It is crucial to note that MineGene’s architecture
allows a component / plug-in approach. Thus if a new specific (i.e., ranking) algorithm
appears it is very easy and straight-forward to be embodied in the tool and enrich its
architecture.

6.2 MineGene: A Guide to Operations

In this chapter we will describe the features and usage of MineGene. The initial GUI
is presented in figure 26.
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Figure 26. MineGene's initial GUI.

It is divided in three regions. The first named ‘Input Files’ where we select the input
files to be processed. The second named ‘Methods’ contains all available methods
organized as showed in chapter 6.1. Finally the third region contains buttons for
manipulation.
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6.2.1 Input Files
Each input file can be one of three types (see figure 27):

Train/Test File. These are files containing the primary data with gene expressions.
They should be tab delimited files with k rows and / columns. In the i-th row and j-th
column should be the expression of i-th gene of the j-th patient/sample. The filename
could be anything, say “train.txt”’. The test file will be used only if we will not select
LOOCYV or Clustering elsewhere it will be ignored. The contents of the test files are
used only to apply the learning method and assess its predictive ability.

Alongside with this file should be a file with the same name but with extension “.opt”
(“train.opt” in our example). This file should contain the class assignment of each
sample in the “train.txt” file as well as the name of each class. A typical “.opt” file
could be:

classes = 1123321212321212344 43211
names = classl class2 class3 class4
Another file that should exist is one with same name but with altered extension

“.names” (“train.names” in our example). This file should contain the names of every
genes plus arbitrary clustering information. It should have the following form:

0 AFFX-BioB-5_at CL1
3 AFFX-BioB-M_at CL2
1 AFFX-BioB-3_at CL2
2 AFFX-BioC-5_at CL1

The first column contains the consecutive number of a gene (starting from 0). The
records in the file don’t have to be sorted in any particular way, so with this
consecutive number we hold the information of what gene is in each line. The second
column contains the name of each gene. The third column contains pre-clustering
information. We can assign a cluster value to each gene coming from an external
source. This is useful when we perform our own clustering and we want to estimate
our clustering efficiency according to an external cluster. Of course similarly we can
estimate an external clustering.

If we select two or more files as train/test files then these files will be merged
horizontally. The merged file will be used as a standalone train/test file. This is useful
when we want to check the general content of a domain. Of course the two merged
files should have the same number of lines.

Study file. When we select to build a classifier via the selected prediction method,
the genes selected from the respective algorithm are printed in a separate file. It is
very useful sometimes to compare the genes discovered by our algorithm with the
genes discovered by an external study. So we provide the ability to select a file
containing genes selected by a foreign study plus some kind of clustering
information. This file can have any name and should have the following format:

0 AFFX-BioB-5_at CL1
3 AFFX-BioB-M_at CL2
1 AFFX-BioB-3_at CL2
2 AFFX-BioC-5_at CL1
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The first column is ignored, although it is required for consistency reasons, as we
wanted all the input files to have the same format. The second column contains the
name of the genes of the external study and third column contains an arbitrary form
of clustering. Whenever a study file is selected, at the end of the algorithm, the
common genes are printed in a file with the same name as the train file but with
altered extension “.common” (in our case the filename will be: “train.common”). This
file has the following format:

3133 U38480_at cLi B
3297 U49114_at CL2 B
6613 U68135 s_at CL2 A
The first column contains the consecutive number of the common gene found
(always starting from 0). The second column contains the name of the common

gene. The third column contains clustering information contained in the “.names” file
and the forth line contains clustering information contained in the study file.
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Figure 27. Input Files.

6.2.2 Methods

As it was described, we provide a series of families of algorithms, where each family
is responsible for a certain aspect of the whole learning method. The provided
methods, categorized in algorithmic families are:

Filtering. We provide the following filtering algorithms:

0 Remove null values (‘NaN’). As it was described in chapter 1.2.1.1 microarray
expression data are sometimes erratic or non available. In these cases the
gene expression matrix contains the value: NaN (Not a Number) in the
corresponding position instead of a certain continuous value. Gene
expression profiles containing too many NaN values do not exhibit any
particular information, so they can be safely removed. With this algorithm we
can remove gene expression profiles containing NaN values over a certain
percentage.

o Significance. With this algorithm we can perform the consequent methods
only to genes that are significantly regulated between the two sample classes.
This was achieved using the Wilcoxon rank-sum test [162], which tests the
null hypothesis that gene expression in one sample class is not different from
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gene expression in the other tumor class. The user has to specify the
maximum p value. Usually a value close to 0.05 yields satisfactory results.

0 Read from File. We can select to perform our study restricted to genes whose
names exist in an external file. The file should have the following format:

0 AFFX-BioB-5_at CL1
3 AFFX-BioB-M_at CL2
1 AFFX-BioB-3_at CL2

The first and third columns are ignored, although required for consistency
reasons. The second column contains the names of the genes that will be
furthermore processed. With this simple way we can restrict a study to be
performed only in certain favorable genes.

o No Filtering. No filtering at all is performed. All genes are examined.
Ranking Method. We provide the following ranking methods.
0 Entropy. The dicretization ranking method proposed in chapter 4.2.2.1.

o Standard Deviation. Gene discretization as proposed by Pomeroy et al [148].
This formula has been presented in the top of chapter 4.2.2.1.

o Significance. This ranking method is exactly as in the filtering family. Here the
extracted probability is not used to decide if the gene will be neglected or not,
but is assigned to it as ranking value.

0 Read from file. Here we have the ability to assign a value to each gene that
comes from an external source. The file should have the following format:

AFFX-BioB-5_at 13.5
AFFX-BioB-M_at 17.1
AFFX-BioB-3_at 21.2

The first column is ignored. The second and third column contains the name
of the file and its value respectively. If the file does not contain values for all
available genes (all, except of these neglected from filtering) then an error
message is appeared.

Grouping Method. After ranking genes are sorted according to their ranking in
descending order. At the top of the ordering we have genes with maximum
descriptive ability. We provide the following grouping method:

0 Maxmin. Gene Grouping as presented in chapter 4.2.2.2.

o No Grouping. No grouping is performed at all. With this option, every gene is
considered to belong to a unique group.

Gene Selection. We provide the following gene selection methods:
0 Add. The Add Gene Selection method as it was presented in chapter 4.2.2.2.
0 Del. The Del Gene Selection method as it was presented in chapter 4.2.2.2.

o Select Genes. Apart from the heuristic/algorithmic methods for gene
selection, a user can manually set the number of positive or negative ranked
genes to be selected as markers. Let P and N denote the number of positive
and negative ranked genes respectively. Via a special dialog box (figure 28) a
user can set either the absolute number of desired positive and negative
genes, as well as the percentage of them. We can also set to “lock” the ratio
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of selected positive and negative genes to be P/N regardless our selection of
genes. For example, let C be the number of absolute genes that we select to

be our final markers. If we choose to “lock” the ratio then we will use ¢ P
P+N
positive genes and ¢ N negative genes. Similarly if we select a
P+N

percentage C instead of an absolute value, then we will use C% of P positive
genes and C% of N negative genes. The same selection can be done to
groups rather than genes.

Select Groups. This method is exactly the same if the Select Genes method.
Instead of manually selection of genes, we have the ability to select an
arbitrary number of groups via the same dialog box and the same options.

x
Inzert Humber of Groups
Positive Groups: I—
Meqative Groups: I—

 Ahsolute i Percent [~ Lock Pos/Meg

Carcnt_|

Figure 28. Group Selection Dialog.

Read from file. Instead from applying a specific algorithm to find the most
informative genes we can select genes from an external file. The file should
have the following format:

0 AFFX-BioB-5_at CL1
3 AFFX-BioB-M_at CL2
1 AFFX-BioB-3_at CL2

The first and third columns are ignored. The second column contains the
names of the selected genes. This method is useful in order to estimate the
descriptive ability of genes published in a foreign study.

Predictor. We provide the following prediction methods.

(0]

0]

Discritisation. The discritization prediction method as presented in 4.3.3.

SVM. Performs the well-known SVM (Support Vector Machines [19])
prediction method. This method has a lot of parameters and options [205] that
can be tuned from a special dialog box (figure 29).

KNN. Performs the K-NN (K-Nearest Neighbors [164]). The number of
nearest neighbors as well the distance method can be inserted via a special
dialog box.

Kmeans. Performs the KMEANS learning method.
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Figure 29. Parameters of SVM package.

Clustering. The only clustering method implemented is the Minimum Spanning Tree
method proposed in chapter 5.2. The dialog box where we can set its options is in
figure 30. In this dialog box we can set the MST method that will be followed (Prim’s
[193], Kruskal's [194] and Round Robin [195]). We can also set the distance method
and the Category Utility as it was presented in chapter 5.2.2. We can also set some
additional stopping criteria: The Minimum Cluster Members criterion ensures that
each cluster should have a minimum number of objects. The percentage of Minimum
Cluster Members criterion ensures that in each cluster a minimum percentage of total
objects should participate. The maximum clusters criterion stops clustering when a
certain number of clusters have been found and formed.

As presented in chapter 5.2.4 a special heuristic has been implemented in order to
limit the number of stored distances. With Prune Distances percentage setting we
can set the percentage of lower distances for each gene that should be computed. A
reasonable value is 1%.

Additionally we can load an existing tree and apply clustering algorithm in this tree. It
is not necessary to be a MST, any tree is suitable. To do this, we have to use the
“Open Tree File” button. The file containing the tree must be formatted according the
“.dot” format of Graphviz [206].

The “Open Dist File” button gives us the ability instead of calculating the distances to
use an external file that contains all the distances of all the genes. This file should
have the following format:

Genel Gene2 Distl-2
Genel Gene3 Distl-3
Gene2 Gene3 Dist2-3
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The first and second column contains the names of the genes and the distance
between them is in third column. This file must contain all possible distances
between genes. With this option we can utilize the ‘hybrid’ characteristic of MST
clustering algorithm, as described in chapter 5.2.

Finally, we can use an arbitrary graph instead of the fully connected graph, in order
to produce the MST. This graph must be located in a file described according the
“.dot” format of GraphViz and have to be chosen by the “Open Graph File” button.

The resulted clustering can be exported in JPEG format and visualized. Though, it is
not recommended to visualize trees containing over than 1000 nodes as the inner
JPEG exporting algorithm (GraphViz) has certain limitations.

Clustering Properties 5[

MST Method: IF'rim

2
Distance: IEucIidean j
I

Cateqary Litiliky: INumeric

kdirirnum Cluster bMembers: I
Minimum Cluster Members [%)] I
b awirmum Clasters: I

Frune Distances [%] I

Open Tree File

Open Graph file

EE

|
Open Dist File |
|

¥ Make peg araph
(] Cancel |

Figure 30. MST Clustering Algorithm Properties.

6.2.3 General usage

The button region of MineGene provides the ability to perform three fundamental
data mining operation:

m  Gene Selection / Application of Learning Method. This provides the ability to
perform a supervised learning method that includes feature elimination / gene
selection abilities. First a proper train and a test dataset have to be selected from
the “Input Files” region. Then for each algorithm family (filtering, ranking,
grouping, selection and predictor) one algorithm mast be chosen and set its
parameters. The button “Gene Selection” has to be pressed.
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m LOOCV. In order to perform LOOCV, we have to do make the same
manipulations as in Gene Selection operation. We do not have to select a test
file. The button “Validation” has to be pressed”.

m Clustering. In order to perform Clustering, we have to select an input Train File
from the “Input Files” region. Then we have to set up a suitable filtering algorithm
and a clustering algorithm. Then we have to press the “Clustering” button.

MineGene will inform when the algorithm terminates and will print the elapsed time. If
the domain loaded has more than 2 classes, then the popup window in figure 31

pops-up.

oo x

The Domain has 3 claszes instead of 2. Select the
name of a clasz to solve the bwo categony problem
ar gelect mulki-categony.

[ - |
ak. I Cancel |

Figure 31. Selecting between multi-class/category and two-
category/class domains.

From this popup window we can select a name of a class, for instance class1. Then
all the samples not belonging to class1 will be grouped in the same class with name
“Other” and the two category problem will be used. If we want to apply algorithms in a
multi-category domain then we have to select the “Multi-category” option. Only the
“Entropy”, “Select Groups”, “Select Genes” and “Discritization-Multi” methods work in
multi-category domains.

6.2.4 Getting the Results: Output Files

At the end, when all specified algorithms have been completed the program
produces a set of files containing various results and findings. All produced files are
saved in a special directory named “Results”. The exported files are:

o <train_filename>_selectedGenes

This file contains the genes selected from the selection algorithm. It looks like
this:

3133 U38480_at cL1
3297 U49114 at cL2
6613 U68135_s_at CL1

The first column contains the consecutive number of the gene as it is appeared in
the train/test file. It is important to note that the first gene in train/test file has
consecutive number 0, instead of 1. The second column contains the name of the
gene and the third columns contains its corresponding cluster information as it is
contained in the “.names” file.
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<train_filename>_classification

This file contains the classification results that produced by the prediction

algorithm. It looks like this:

N RPN R R R

On each row the assigned class is printed.

<train_filename>._results

It contains all the essential information and results of the whole process. Whether
we have performed gene selection or clustering, this file has different form. If we

have performed gene selection the file looks like this:

Train File = E:\Master\leukemia\train_tab.txt
Test File = E:\Master\leukemia\test_tab.txt
Initial Genes = 7129

Genes after filtering = 7129

Train Samples = 38

Class: ALL has 27 train samples

Class: AML has 11 train samples

Test Samples = 35

Class: ALL, has 21 test samples

Class: AML, has 14 test samples

Number of Genes Finally Selected = 1

Number of Positive Ranked Selected Genes = 0
Number of Negative Ranked Selected Genes
Number of Positive Groups Selected = 0
Number of Negative Groups Selected = 1
File with selected Genes = E:\Master\leukemia\train_tab.selectedGenes

]
[

File with Classification Results = E:\Master\leukemia\train_tab.classification
ALL / ALL Classification 19 54.285714%

ALL /7 AML  Classification = 2 5.714286%

AML /7 ALL Classification = 1 2.857143%

AML / AML ClassifTication = 13 37.142857%

True Classification = 32 91.428571%

False Classification = 3 8.571429%

If we have performed clustering the file looks like this:

Clustering Results:

Train File = E:\Master\leukemia\leukemia3\train_tab2.txt
Initial Genes = 10

Genes after filtering = 10

Train Samples = 38
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Clustering / Tags Entropy: 0.857044
Tags / Clustering Entropy: 0.797797

Found 3 Clusters

Cluster 1 has 5 members

Cluster 2 has 3 members

Cluster 3 has 2 members

The Entropy values presented in this file are produced from the application of
information gain formula in the clustering information yielded by the clustering
algorithm and the clustering information contained in the “.names” file:

#CL
E= &E (CLi )
n

i=1

#Cl

E(CL,) = —Z P(Cl;)log P(CI;)

#CI.
Cl,=—1
I #CL,

Where #CL is the total number of clusters produced by our algorithm and #C/ is
the total number of clusters contained in “.names” file. #CL,is the number of
genes contained in cluster i of our algorithm and #CIij is the number of genes
contained in cluster j of “.names” clustering and belong to cluster i of our
algorithm.

e <train_filename>.ranking

It contains the ranking of the genes produced by the ranking algorithm. It looks
like this:

-297.000000 6613.000000 U68135_s_at

-286.000000 2849.000000 U17977_at

-275.000000 4542.000000 X74764_at

-275.000000 6165.000000 X83705_s_at

-275.000000 1747.000000 M16404_at

-270.000000 2628.000000 U04313_at

-270.000000 2696.000000 U09117_at

The first column contains the ranking value of the gene. The second contains the
consecutive number of the gene (always starting from 0). The third line contains
the name of the gene. This file is sorted according the ranking values in
ascending order. It is also printed the file <train_filename>.usranking that has the
same information but is unsorted.

e <train_filename>_bin and <test_filename>_bin

This file contains the expression values of all genes discretized according to the
method proposed in chapter 4.2.2.1.
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e <train_filename>.binSelected and <test_filename>_binSelected

This file contains a discretization of the expression profile of the selected genes.
The contents of this file are valuable, if we want to check the efficiency of the
gene selection algorithm. A successful gene selection algorithm should select
genes that are regulated significantly different among two class samples. The
discretization should exhibit this regulation. The contents have the following
format:

0 1 0 0 1 1 1 1
0 0 1 0 1 1 1 1 1 1
1 1 1 0 0 0 0 0

These are the discretised values of the selected gene expression profiles. These
values have been yielded from the following formula:
max — min
W=—"
n
n ,E; = max
={| E. —max
d {‘—} +1 ,else
w
max and min are the minimum and maximum expression values of a selected
gene. E; is the expression value of a selected gene at the j sample and n is the
total number of samples.

e <train_fTilename>_genes

This file contains the genes that where processed, namely the genes that passed
the filter. It has exactly the same format as the “.names” file.

e <train_filename>_grouping

This file contains the grouping information of all genes generated by the
respecting grouping algorithm. The file has the following format:

6613 U68135 s at 1
2849 U17977_at 2
4542  X74764_at 3

The first column contains the consecutive number of each gene. The second
column contains the gene’s name and the third column contains the
corresponding group that the gene belongs.

e <train_filename>._.log

During runtime, several messages, events and progress status is printed in this
file. This fire is useful in time consuming operations, especially during the
clustering procedures. A timestamp is printed along which each message for
example:

Fri Mar 11 15:41:39 2005 --> Starting MST procedure..

Fri Mar 11 15:41:51 2005 --> End of MST procedure

Fri Mar 11 15:41:51 2005 --> Start of clustering procedure

Fri Mar 11 15:41:51 2005 --> start of Finding primary best edge
Fri Mar 11 15:42:01 2005 --> Best Cut done: 10% Total: 24188
Fri Mar 11 15:42:06 2005 --> Best Cut done: 20% Total: 24188
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6.3 Future Work for MineGene

The presented software toolkit, offered an integrated environment and a cohesive
collection of machine learning algorithm for gene expression analysis through data
mining.

= Although the major input can be easily acquired from gene expression databases
through exported tab delimited files, we have to embed code supplied by MGED,
and to follow specific directives in order to conform to MIAME guidelines. With
this advance we will be able to feed with gene expression data our algorithms
explicitly from gene expression databases, our results will be published in the
same database system where the original data are laid and any researcher will
be able to add his/her own algorithm to the existing toolkit schema.

m Although clinical applications and scenarios have already been presented we
want to provide a full interconnection with a Clinical Information System (CLIS).
Thus, a different clinical profile can be queried to the CLIS and produce distinct
patients’ ids. These ids can be used to export patient’'s expression signature from
a gene expression database. From gene expression data mining we can extract
specific differential gene regulations that designate the genotypic profile of
patients. These differences can be studied further to gain intrinsic knowledge of
the causing causes of the initial clinical differentiation and subsequently, to
broaden medical research.

m As an addition, we could add existing or novel visualisation algorithms to gain
insights of gene expressions regulations.
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7. Conclusions and Future Work

7.1 Conclusions

We have presented the structural components of an integrated clinico-genomic
environment where the genomic information mainly stemmed from microarray gene
expression experiments is combined with information coming from clinical
observations and processed via modern and novel machine learning algorithms. By
analyzing gene expression profiles we expect to elaborate our knowledge about gene
functional roles, genes inner-correlations and genes pathology. Outcomes from this
utilization are expected to help healthcare specialists to infer critical deductions about
the origins, pathology and treatment of several diseases affecting in various ways a
vast part of population.

We surveyed microarray experiments, their usage and their essential role in gene
expression profiling along with some certain difficulties that pose intrinsic challenges
in machine learning researchers. Additionally, our approach was motivated by the
construction of a seamless information system that acts as a microarray gene
expression database incremented with machine learning application abilities. We
surveyed existing genomic sequence and expression databases along with existing
ontologies and annotations. The most cultivated and accepted ontology, MAGE, was
analytical presented alongside with MIAME guidelines. Moreover we compared two
of the most integrated and promising expression databases; ArrayExpress and BASE
in various aspects to conclude that BASE is more suitable for our needs.

A vision of an integrated clinico-genomic environment where phenotypical profiles
containing patient’s clinical assessments are enriched with gene-expression profiles
has been presented. Through data-mining algorithms that identify potential
discriminatory genes we can indicate the molecular signature that best distinguish a
specific phenotypic state. This signature - combined with clinical observations - can
then be used for prognostic and therapeutic decision-making processes.

In the field of supervised learning methods, we presented an algorithm for gene
ranking through an entropic metric according to their ability to distinguish between
two sample classes. Genes then were sorted and grouped according to this ranking.
A greedy gene selection / feature elimination methods was used to select the most
discriminatory genes, with no use of any ‘ad hoc’ user presumption. Finally the same
metric was used to build a predictor of unclassified samples. Our major contribution
in this field was a gene selection via feature elimination algorithm based in groups
addition and a sample class prediction method for multi-class domains. All these
methods were applied to well-known datasets and their predictive accuracy were
shown.

In the field of unsupervised learning methods we presented a novel Graph Theoretic
Clustering algorithm. The distances coming either from the original expression values
or from an external knowledge source are used to construct the fully connected
graph of the genes. Then the Minimum Spanning Tree is extracted and an iterative
hierarchical clustering algorithm is applied. The decision of whether to stop or
continue clustering comes from a Category Utility that tests the compactness of
potential clusters. The major deficiency of the algorithm; the space-demanding part of
distance calculation was indicated and a heuristic that tackles this problem was
proposed.
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All the aforementioned methods plus some well-known methods for gene-ranking,
filtering and predicting where implemented in a software tool named MineGene.
MineGene is designed to serve as a machine-learning plug-in to a gene expression
database. It has an extendable, components based architecture and it provides a
usable GUI for maximum usability. Apart from the methods described above some
additional methods where implemented. These methods include gene ranking and
filtering methods based on significance estimation and a gene filtering method that
eliminated the NaN (Not a Number) values. MineGine has the ability to import
external data for gene filtering, gene ranking and gene selection and to compare the
results with external studies. Finally creates a big variety of results ready to be used
in other machine learning systems.

7.2 Future Work

Although we may be currently surprised by the advances of technology in genomic
medicine, we can envisage the distant and not distant endeavours that have to be
established in order to proceed.

In the field of genomic informatics we have to develop a comprehensive and
comprehensible catalogue of all of the components encoded in the human genomes.
So far we have specialized databases for expressions, sequences, proteins and
pathways. We have to integrate these databases and to provide seamless
information for every part of the human genome. Such elaboration will enable the
prediction of protein function in the context of higher order processes such as the
regulation of gene expression, metabolic pathways [207], [208] and signaling
cascades. Moreover genomic databases have to be unified with clinical information
systems, laboratory information systems and pathologo-anatomical information
systems. The final objective of such higher-level functional analysis will be the
elucidation of integrated mapping between genotype and phenotype [209]. These
advances will narrow the difference between clinical and genomic domain with
benefits in both sides.

As we moving toward the translation of genome-based knowledge into health
benefits we have to define some common aims. First, we have to identify genes and
pathways with role in health and disease, and determine how they interact with
environmental factors. Secondly we have to develop, evaluate and apply genome-
based diagnostic methods for the prediction of susceptibility to disease, the
prediction of drug response, the early detection of illness and the accurate molecular
classification of disease. Finally we have to deploy methods that catalyse the
translation of genomic information into therapeutic advances.

In the machine learning / data mining field, we have to establish new approaches to
solving problems, such as the identification of different features in a DNA sequence,
the analysis of gene expression and regulation, the elucidation of protein structure
and protein-protein interactions and the identification of the patterns of genetic
variation in populations and the processes that produced those patterns. We also
have to introduce methods to elucidate the effects of environmental (non-genetic)
factors of gene-environment interactions on health and disease. Finally, although
new improved database technologies facilitate the integration and visualisation of
different genomic data types, little has been done in the construction of reusable
machine learning software modules, easily exchangeable and tuned.
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An additional data mining perspective is the exploitation of the knowledge stemmed
from the enormous digital information cited in libraries, publications, conference
proceedings, announcements and other sources of scientific material. Every
algorithmic outcome and every result regarding genomic research have to be
documented, supported and advocated with scientific publications. As information is
constantly diffused in Internet we have to build novel machine learning methods to
span scientific resources, perform term based comparisons and vyield significant
scientific support for our results.

Finally, it is crucial to define policy options, and their potential consequences, for the
use of genomic information and for the ethical boundaries around genomic research
[6]. It is indubitable the genetics and genomics can contribute understanding to many
areas of biology, health and life. Although freedom of scientific inquiry has been
cardinal feature of human progress, it is not unbounded. It is important for society to
define the appropriate and inappropriate uses of genomics.
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Appendix A. MIAME Guidelines Description

A.1 MIAME, array design description.

1. Array-related information:
o Array design name.

o Platform type. Whether the array is in-situ synthesized, spotted or some
other type of array.

o Surface and coating specification. The physical composition of the array
(nylon or glass) and description of any chemical derivitisation on the
surface of the array.

o Physical dimensions of the array.

o Number of features on the array. Includes the number of features in both x
and y, and details of any grids on the array.

o Availability. Name of supplier and catalogue number for commercial
arrays, or production protocol for custom-made arrays.
2. Reporter type information:

o Type of reporter. Whether the reporters are synthetic oligonucleotides,
PCR products, plasmids, colonies or other.

o Single- or double- stranded.

o For each reporter:

« Sequence or PCR information. The sequence if known (e.g.
oligonucleotides), sequence accession number or primer pairs (if
relevant).

o Exact or approximate length of sequence.

« Clone information. If relevant, the clone ID, clone provider, date of
provision and availability of the clone.

« Element generation protocol. Sufficient information to reproduce
the element on custom arrays that are not generally available.
3. Feature type information:
o Dimensions. The physical size of the features.

o Attachment. Covalent, ionic or other. If the feature is an oligonicleotide,
whether attachment is from 3’ or 5’ end of oligonucleotide.

o For each feature:
e Location on the array. Both physical and logical coordinates.
« Which reporters. Which reporter sequence is on the feature,

4. For each composite sequence:
o Which reporters it contains.
o The reference sequence.
o Gene or EST names. Including links to appropriate databases (e.g.,
UniGene or RefSeq).
5. Control elements on the array:
o Position of the feature. Logical coordinates.
o Control type. Spiking, normalization, negative or positive.
o Control qualifier. Endogenous or exogenous.

Alexandros Kanterakis -91- MSc Thesis



A.2 MIAME - Experimental Description

The aim of the experimental description is to give sufficient information that another
laboratory would be able to repeat the experiment. An experiment may consist of one
or more hybridizations to one or more types of array. The experimental description is
broken into four main parts, each of which has several components:

I. Experimental design.

Authors, laboratory and contact information.

Type of experiment. Typical experiments might be normal vs. disease
comparison, treated vs. untreated comparison, time course or dose
response.

Experimental factors. These are the parameters or conditions that are
tested in experiment. For example, treatment, time, dose or genetic
variation.

Number of hybridizations in the experiment.
Whether or not a common reference sample has been used.

Quality control steps. These include replications at different levels, the use
of dye reversal, or the inclusion of quality control features.

Description of experiment and its goal.
Links to journal and/or web publication of the experiment.

Journal or URL citations.

Il. Samples used, extract preparation and labelling.

MIAME devised a hierarchical terminology for describing the samples that are
hybridized to arrays.

Biosource properties. The biosource is the term used to describe to
organism from m which the sample that will be hybridized to the array is
derived. It has the following properties:

o Organism. Names are used from the NCBI taxonomy.
o Contact details. Who to contact for information about the sample.
o Descriptors relevant to the sample.

= Sex, e.g. male, female, hermaphrodite.

= Age. Including relevant units (days, months, years) and
whatever from birth or embryolysis.

= Developmental stage. An organism could develop at
different rated depending on environmental conditions so
this is included in addition to age.

= Organism part. Tissue.
= Cell type.
= Animal/plant strain or line.

= Genetic variation, e.g., wild-type, gene knockout or
transgenic variation.

= Individual genetic characteristics. Disease associated
alleles or polymorphisms.

= Additional clinical information.
= |ndividual ID.
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e Biomaterial manipulations. These are the laboratory processes carried out
to the biosource as part of the experiment. They include:

o Growth conditions.

0 Invivo treatments.

o In vitro treatments, including cell culture conditions.

0 Treatment type, e.g. small molecule (drug), heat shock, food
deprivation.

0 Separation technique, e.g. none, microdissection, FACS.

e Hybridiation extract preparation protocol. This is the nucleic acid that is
extracted from the biomaterial that will be labeled:

o Extraction method, e.g., URL of protocol.
0 Extract type, e.g. total RNA, mRNA or genomic DNA.
o Amplification, e.g., RNA polymerases or PCR.

e Labeling protocol. For each extract:
o Amount of nucleic acid labeled.
0 Label used, e.g., A-Cy3, G-Cy5 or 33P.
o0 Label incorporation method, e.g., URL of protocol.

e External controls added to hybridization extract. These are spiking
controls added for quality control purposes.

o Element on array expected to hybridize to spiking control.
0 Spike type, e.g., oligonucleotide or bacterial DNA.

o Spike qualifier, e.g., concentration, expected ration or labeling
methods.

lll. Hybridization procedures and parameters.

¢ Information about which labelled extracts have been hybridized to which
arrays. The labelled extracts relate to the sample, and the array will relate
to array design information.

e Hybridization protocol. This would normally include

o The solution, e.g., Na® concentration or formamide concentration.
Blocking agent, e.g., COT1.
Wash procedure, e.g., temperature and Na* concentration.
Quantity of labeled target used.
Time, concentration, volume and temperature.
0 Hybridization instruments, e.g., manufacturer and model.

O O O O

IV. Measurement data and specifications of data processing.

MIAME provides standards for describing the data from a microarray
experiment at three levels. At the lowest level, the raw data is the image of
the array. The second level is the image quantitation table, which contains the
information produced by the feature extraction software such as mean
intensity, number if pixels and pixel standard deviation. At the highest level,
gene expression measurements from all the arrays in the experiment are
normalized and combined to produce a gene expression measurement table
for the experiment.

e Raw data description. The protocols and settings for scanning including:
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0 Scanning protocol, including scanning hardware and software
(e.g., make, model number of version), and scan parameters,
including laser power, spatial resolution, pixel space and
photomultiplier tube (PMT) voltage.

0 Scanned images. There is no consensus in MGED as to whether
the images themselves should be provided. There are two
advantages of providing images. First they are the raw data, and
thus provide better validation of results, particularly where features
may be flagged. Second, advances in feature extraction software
may mean that it would be desirable to revisit old images and
obtain new quantitative data. However, images are large in size
and so inclusion of images would be expensive and difficult for
many laboratories.

e Image analysis and quantitation.

o0 Image analysis software. The specification and version of the
feature extraction software, the algorithm and all parameters used.

0 Image analysis output. For each image, the complete output of the
image analysis software. This is image quantitation table.

o Normalized and summarized data. This is gene expression data matrix
containing data from the whole experiment.

o Data processing protocol, including details of any normalization
algorithms used.

o Gene expression data tables:

o0 Derived measurement values. These summarize the replicated
(whether on the same or different arrays), or different elements
(sequences) for the same gene.

o0 Reliability indicator for each data point, e.g. standard deviation or
median absolute deviation. The inclusion of a reliability indicator is
strongly encouraged but not essential.
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Appendix B. Biology Glossary

Allele

cDNA
Chemical compound

Codon

Consensus sequence

Contig

EST

Exon

Gene Expression

Gene Regulatory Networks

Histone

Homologous Sequence

Kinase

mRNA

Nucleic Acid

Nucleotide

Oligo

Oligomer

Oligonucleotide

ORF

An alternative form of a gene or any other segment of a chromosome.

Complementary DNA. A DNA copy of an mRNA or complex sample of
mRNAs, made using reverse transcriptase.

A distinct and pure substance formed by the union or two or more
elements in definite proportion by weight.

A sequence of three nucleotides in messenger mRNA that specifies an
amino acid.

A derived nucleotide sequence that represents a family of similar
sequences. Each base in the consensus sequence corresponds to the
base most frequently occuring at that position, in the real sequences.

A contiguous region of DNA sequence constructed by aligning many
sequence ‘"reads" (one '"read" is the data generated from one
sequencing reaction).

Expressed Sequence Tag. A partial sequence of a randomly chosen
cDNA, obtained from the results of a single DNA sequencing reaction.
ESTs are used both to identify transcribed regions in genomic
sequence and to characterize patterns of gene expression in the
tissue that was the source of the cDNA.

Part of a gene that can encode amino acids in a protein. Usually
adjacent to a non-coding DNA segment called an intron.

The process by which a gene's coded information is translated into the
structures present and operating in the cell (either proteins or RNAS).

The on-off switches and rheostats of a cell operating at the gene level.
They dynamically orchestrate the level of expression for each gene in
the genome by controlling whether and how vigorously that gene will
be transcribed into RNA.

A basic protein associated with nucleic acids. Histones are important
parts of the DNA control system, suppressing the expression of or
causing the expression of specific parts of the DNA blueprints in
conjunction with other nucleoproteins.

In phylogenetics, describing particular features in different individuals
that are genetically descended from the same feature in a common
ancestor. In molecular biology, homologous sequences often mean
significantly similar sequences that are highly likely to have a common
descent.

An enzyme that is important in regulating cell functions.

Messenger RNA; arises in the process of transcription from the DNA
and includes information on the synthesis of a protein.

A biological molecule composed of a long chain of nucleotides. DNA is
made of thousands of four different nucleotides repeated randomly

Building blocks of DNA and RNA. Nucleotides are composed of
phosphate, sugar and one of four bases, adenine, guanine, cytosine
and uracil (RNA) or thymine (DNA). Three bases form a codon, which
specifies a particular amino acid; amino acids are strung together to
form proteins. Strings of thousands of nucleotides form a DNA or RNA
molecule.

Same as oligonucleotide.

A molecule containing a small number of covalently linked units; a
multisubunit protein.

A molecule usually composed of 25 or fewer nucleotides; used as a
DNA synthesis primer.

Open Reading Frame. A section of a sequenced piece of DNA that
begins with an initiation (methionine ATG) codon and ends with a
nonsense codon. ORFs all have the potential to encode a protein or
polypeptide, however many may not actually do so.
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Promoter

Ribosome

SNP

Splice Variants

Transcription

A DNA sequence that is located in front of a gene and controls gene
expression. Promoters are required for binding of RNA polymerase to
initiate transcription.

Organelle of the cell. It walks down the messenger RNA three
nucleotides at a time, building a new protein piece-by-piece. It has its
own DNA (ribosomal DNA) and proteins (Ribosomal Proteins).

Single Nucleotide Polymorphism. A SNP (pronounced "snip") is a
place in the genetic code where DNA differs from one person to the
next by a single letter. These slight genetic variations between human
beings may predispose some people to disease and explain why some
respond better to certain drugs.

A gene has splice variants if the organism can make different
transcripts of the gene by using different exons. It is thought that many
genes from eukaryotic organisms have splice variants. The different
splice variants of a gene have different sequences.

The process of copying information from DNA into new strands of
messenger RNA (mRNA). The mRNA then carries this information to
the cytoplasm, where it serves as the blueprint for the manufacture of
a specific protein.
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