
University of Crete

Computer Science Department

FULL-SCALE VISUAL PROGRAMMING IDE:
PROJECTS, COLLABORATION AND DOMAIN PLUGINS

by

YANNIS VALSAMAKIS

In partial fulfillment of the requirements

for the Degree of Doctor of Philosophy

Heraklion, April 2021

ii

iv

v

FULL-SCALE VISUAL PROGRAMMING IDE:

PROJECTS, COLLABORATION AND DOMAIN PLUGINS

YANNIS VALSAMAKIS

PhD Thesis

University of Crete

Computer Science Department

Abstract

Today, visual programming languages (VPLs) are the most popular programming

system for non-professional developers. Originally, they have been introduced for

teaching purposes, as experimental tools encouraging children to program small-scale

games. Nowadays, they are increasingly treated as instruments that can give more

powerful and flexible configuration, customization and extension features to the end-

users of software systems, through controllable programmability relying on some

exposed underlying system functionality. Such an approach has already been applied

within various large-scale systems via scripting frameworks, but is still targeted to

more professional users and is very demanding for the general end-user.

Overall, in the rapidly emerging era of end-user development (EUD) the adoption of

VPLs seems more promising and hotter than ever before. In fact, the broad

proliferation of Internet of Things (IoT) technologies has set end-user development as

the vehicle to accommodate the increased personalization demands for smart

automations. In particular, the IoT domain still faces a low commercial acceptance,

something attributed to the low popularity of monolithic and all-in-one solutions. It is

clear that there is trend towards more flexible and open infrastructures that end-users

may directly tailor to their individual requirements, and even functionally combine

into new ways with custom-made programmable personal automations.

However, the existing VPLs are supported with very primitive and poor tool chains,

missing the notion of a full-scale integrated development environment (IDE) with all

the inherently required high-quality production toolset. In this sense, the missing

features should be explicitly focused on genuinely optimizing the end-user

vi

programming process, meaning the mirroring of typical IDE functionality of the

professional software development domain is insufficient and rather inappropriate.

To this end, as part of this thesis we set one grand challenge: define, develop and

validate in a demanding real domain what an integrated toolset for end-user

development should offer. To this end, the primary technical challenge has been the

development of a full-scale IDE for VPLs, capable to accommodate and host virtually

any VPL editor. Then, our research has revealed and supported a number of primary

disciplines in the context of EUD that we have fully designed, implemented and tested

in the context of our IDE: (i) assisted project management, (ii) collaborative editing

and debugging, and (iii) open interactive domain plugins.

In particular, the role of the domain plugins is very crucial, far more than mere

extension packages, with the purpose of enriching the interactive IDE functionality

with extra development features optimally suiting a target domain. This notion is

novel to EUD, with no counterpart in traditional IDEs, and aims to address the

inherent complexity of domains for EUD due to the custom programming models and

libraries that are very hard to manage without extra toolboxes on top of the IDE. To

test and validate our proposition we have developed, on top of our IDE, a complete

full-scale IoT plugin, including a very rich interactive toolset, for EUD support of

personal smart automations.

vii

Ολοκληρωμένο Περιβάλλον Ανάπτυξης

Για Οπτικό Προγραμματισμό:

Εργαλεία Διαχείρισης, Συνεργασίας και Επεκτάσεων

ΙΩΑΝΝΗΣ ΒΑΛΣΑΜΑΚΗΣ

Διδακτορική Διατριβή

Πανεπιστήμιο Κρήτης

Τμήμα Επιστήμης Υπολογιστών

Περίληψη

Σήμερα, οι γλώσσες και τα συστήματα οπτικού προγραμματισμού είναι τα πιο

δημοφιλή συστήματα για μη επαγγελματίες προγραμματιστές. Αρχικά εμφανίστηκαν

για εκπαιδευτικούς σκοπούς, ως πειραματικά εργαλεία που ενθαρρύνουν τα παιδιά να

προγραμματίσουν παιχνίδια μικρής κλίμακας. Τα εργαλεία οπτικού προγραμματισμού

στις μέρες μας αντιμετωπίζονται όλο και περισσότερο ως προγράμματα που μπορούν

να προσφέρουν πιο ισχυρές και ευέλικτες δυνατότητες διαμόρφωσης, προσαρμογής

και επέκτασης σε χρήστες των συστημάτων λογισμικού, μέσω της ελέγξιμης

δυνατότητας για προγραμματισμό που βασίζεται στην εξαγωγή λειτουργικότητας του

εκάστοτε συστήματος. Μια τέτοια προσέγγιση έχει ήδη εφαρμοστεί σε διάφορα

συστήματα μεγάλης κλίμακας μέσω πλαισίων δέσμης ενεργειών, αλλά εξακολουθεί

να απευθύνεται περισσότερο σε επαγγελματίες χρήστες και είναι πολύ απαιτητική για

τον γενικό τελικό χρήστη.

Συνολικά, στην ταχέως αναδυόμενη εποχή μη προγραμματιστών (EUD) η υιοθέτηση

γλωσσών οπτικού προγραμματισμού (VPL) φαίνεται πιο ελπιδοφόρα από ποτέ. Στην

πραγματικότητα, η ευρεία διάδοση των τεχνολογιών για το διαδίκτυο των πραγμάτων

έχει θέσει την ανάπτυξη εφαρμογών από μη προγραμματιστές ως το όχημα για να

φιλοξενήσει τις αυξημένες απαιτήσεις για έξυπνους αυτοματισμούς. Συγκεκριμένα, ο

τομέας του διαδικτύου των πραγμάτων (IoT) εξακολουθεί να αντιμετωπίζει χαμηλή

εμπορική αποδοχή, κάτι που αποδίδεται στη χαμηλή δημοτικότητα των μονολιθικών

και όλα σε ένα λύσεων. Είναι σαφές ότι υπάρχει μια τάση προς τις πιο ευέλικτες και

ανοιχτές υποδομές που οι τελικοί χρήστες να μπορούν να τις προσαρμόσουν στις

viii

προσωπικές τους απαιτήσεις και ακόμη και να τις συνδυάσουν μέσα από νέους

τρόπους με προσαρμοσμένους προγραμματίσιμους προσωπικούς αυτοματισμούς.

Ωστόσο, οι υπάρχουσες γλώσσες οπτικού προγραμματισμού υποστηρίζονται από

πολύ πρωτόγονα και φτωχά σύνολα εργαλείων, χωρίς την έννοια ενός

ολοκληρωμένου περιβάλλοντος ανάπτυξης (IDE) πλήρους κλίμακας με όλα τα

εγγενώς απαιτούμενα σύνολα εργαλείων υψηλής ποιότητας. Υπό αυτήν την έννοια, οι

λειτουργίες που λείπουν θα πρέπει να εστιάζουν ιδιαίτερα στην πραγματική

βελτιστοποίηση της διαδικασίας προγραμματισμού για μη προγραμματιστές, πράγμα

που σημαίνει ότι ο κατοπτρισμός της τυπικής λειτουργικότητας IDE του

επαγγελματικού τομέα ανάπτυξης λογισμικού είναι ανεπαρκής και μάλλον

ακατάλληλος.

Για τον σκοπό αυτό, ως μέρος αυτής της διατριβής θέτουμε μια μεγάλη πρόκληση: να

ορίσουμε, να αναπτύξουμε και να επικυρώσουμε σε έναν πραγματικό και απαιτητικό

τομέα τι θα πρέπει να προσφέρει ένα ολοκληρωμένο σύνολο εργαλείων για ανάπτυξη

εφαρμογών από μη προγραμματιστές. Στα πλαίσια αυτά, η πρωταρχική πρόκληση

ήταν η ανάπτυξη ενός πλήρους IDE για οπτικό προγραμματισμό, ικανό να

φιλοξενήσει οποιοδήποτε συντάκτη οπτικού προγραμματισμού. Στην συνέχεια, η

έρευνά μας, εμφάνισε και υποστήριξε έναν αριθμό από βασικούς κλάδους στα

πλαίσια εργαλείων προγραμματισμού για μη προγραμματιστές τα οποία και

σχεδιάστηκαν, υλοποιήθηκαν και ελέγχθηκαν πλήρως στα πλαίσια του

ολοκληρωμένου περιβάλλοντος ανάπτυξης για οπτικό προγραμματισμό: (i)

υποβοηθούμενη διαχείριση έργων, (ii) εργαλείο συνεργασίας στα πλαίσια της

επεξεργασίας και του εντοπισμού σφαλμάτων και (iii) ανοιχτοί διαδραστικοί

προστιθέμενοι τομείς εφαρμογών.

Συγκεκριμένα, ο ρόλος των προστιθέμενων τομέων είναι πολύ κρίσιμος, πολύ

περισσότερο από απλά πακέτα επέκτασης, με σκοπό τον εμπλουτισμό της

διαδραστικής λειτουργικότητας του IDE με επιπλέον δυνατότητες ανάπτυξης που

ταιριάζουν βέλτιστα σε έναν συγκεκριμένο τομέα εφαρμογών. Αυτή η έννοια είναι

νέα για τα εργαλεία για μη προγραμματιστές, χωρίς αντίστοιχηση στα παραδοσιακά

ολοκληρωμένα προγραμματιστικά περιβάλλοντα για επαγγελματίες προγραμματιστές,

και στοχεύει να αντιμετωπίσει την εγγενή πολυπλοκότητα των τομέων εφαρμογών

για τα εργαλεία για μη προγραμματιστές λόγω των εξειδικευμένων μοντέλων

ix

προγραμματισμού και των βιβλιοθηκών που είναι πολύ δύσκολο να διαχειριστούν

χωρίς επιπλέον εργαλειοθήκες πάνω από το IDE. Για να δοκιμάσουμε και να

επικυρώσουμε την πρότασή μας, έχουμε αναπτύξει, πάνω από το ολοκληρωμένο

περιβάλλον οπτικού προγραμματισμού, ένα πλήρες πρόσθετο τομέα εφαρμογής για το

διαδίκτυο των πραγμάτων, που περιλαμβάνει ένα πολύ πλούσιο διαδραστικό σύνολο

εργαλείων, για υποστήριξη των μη προγραμματιστών έτσι ώστε να τους ενθαρρύνει

να προγραμματίσουν τους προσωπικούς τους έξυπνους αυτοματισμούς.

x

xi

Ευχαριστίες (Acknowledgements)

Θα ήθελα να ευχαριστήσω ιδιαίτερα τον επόπτη μου καθηγητή του τμήματος

Επιστήμης Υπολογιστών του Πανεπιστημίου Κρήτης, κ. Αντώνη Σαββίδη, για τη

συνεχή καθοδήγηση και υποστήριξή του στο πλαίσιο της συνεργασίας μας όλα τα

χρόνια στο Εργαστήριο Αλληλεπίδρασης Ανθρώπου-Υπολογιστή, του Ινστιτούτου

Πληροφορικής του Ιδρύματος Τεχνολογίας και Έρευνας, ειδικότερα στο πλαίσιο της

εκπόνησης της διδακτορικής μου διατριβής.

Θα ήθελα επίσης να ευχαριστήσω τα μέλη της τριμελούς επιτροπής της διδακτορικής

μου διατριβής, κ. Μαρία Παπαδοπούλη, καθηγήτρια του τμήματος Επιστήμης

Υπολογιστών του Πανεπιστημίου Κρήτης και κ. Δημήτρη Γραμμένο, ερευνητή του

ινστιτούτου πληροφορικής του ιδρύματος τεχνολογίας και έρευνας, για τις

εποικοδομητικές παρατηρήσεις και σχόλια που έκαναν κατά τα στάδια αυτής της

εργασίας.

Επιπλέον, ευχαριστώ το Δημήτρη Λιναρίτη για τη συνεργασία μας στο κομμάτι της

ανάπτυξης του framework για έξυπνους αυτοματισμούς ως προσθήκη στο

ολοκληρωμένο προγραμματιστικό περιβάλλον του οπτικού προγραμματισμού.

Επίσης θα ήθελα να ευχαριστήσω τους φίλους μου για την υποστήριξη τους όλα αυτά

τα χρόνια. Τέλος, πιο πολύ από όλους θα ήθελα να ευχαριστήσω τους γονείς μου

Φλώρα και Νίκο. Είμαι ευγνώμον για όλη τους την αγάπη και υποστήριξη.

xii

xiii

List of Publications

• Visual End-User Programming of Personalized AAL in the Internet of Things.

Y. Valsamakis, A. Savidis - European Conference on Ambient Intelligence,

2017.

• Sharable Personal Automations for Ambient Assisted Living.

Y. Valsamakis, A. Savidis - PETRA 2017.

• Personal Applications in the Internet of Things Through Visual End-User

Programming. Y. Valsamakis, A. Savidis - Book Chapter in Digital

Marketplaces Unleashed, 2018.

• Collaborative Visual Programming Workspace for Blockly.

Y. Valsamakis, A. Savidis, E. Agapakis, A. Katsarakis – VL/HCC 2020.

• Smart Automations for Everybody: When IoT Meets Visual Programming.

Y. Valsamakis, A. Savidis – IOT Companion 2020.

xiv

xv

Table of contents

Figures of Chapter 1 .. xxi

Figures of Chapter 3 .. xxi

Figures of Chapter 4 ... xxii

Figures of Chapter 5 ... xxii

Figures of Chapter 6 ... xxiii

Figures of Chapter 7 ... xxiii

Figures of Chapter 8 ... xxiii

Figures of Chapter 9 ... xxv

1.1 Background and Motivation .. 35

1.1.1 End-User Programming... 36

1.1.2 Visual Programming Languages ... 36

1.1.3 Internet of Things .. 37

1.2 Definition of the Problem and Objectives ... 39

1.2.1 Full-Scale IDE for Visual Programming 39

1.2.2 Collaborative Visual Programming ... 41

1.2.3 Smart Automations for Everybody ... 41

1.2.3.1 Smart Objects in Daily Life .. 42

1.2.3.2 Scenarios for Personal Automations 42

1.2.3.3 Scenarios for Ambient Assisted Living 45

1.3 Technical Approach and Contributions ... 51

1.4 Outline ... 54

2.1 Visual Programming Workspaces ... 57

2.1.1 Block-Based Languages .. 57

2.1.2 Flow-Based Languages ... 59

2.1.3 Game Development Visual Programming Editors 60

xvi

2.1.4 Visual Programming Approaches for the IoT 60

2.1.5 Discussion ... 61

2.2 Extendable IDEs .. 61

2.3 Tools for Debugging in End-User Programming .. 61

2.3.1 Debugging and Testing for IoT automations 63

2.4 Collaborative Programming Workspaces .. 64

2.4.1 Collaboration in Text-Based Programming 64

2.4.2 Collaboration in Visual Programming .. 65

2.5 Collaborative Debugging .. 65

2.6 Teaching and Learning Tools for Debugging ... 66

2.7 Code Snippets .. 67

3.1 Software Architecture .. 69

3.1.1 Shell ... 71

3.1.1.1 Menu Toolbar .. 71

3.1.1.2 Workspace Toolbar ... 72

3.1.2 Configuration Management... 72

3.1.2.1 Basic Property Views .. 74

3.1.2.2 Select Property View .. 75

3.1.2.3 Aggregate Property View .. 76

3.1.3 Communication with Third-Party Applications 76

3.1.4 Openness and Extensibility ... 79

3.2 Extension Mechanism for Application Domain Frameworks 80

3.3 Browsing and Handling Projects of the Application Domains 82

3.4 Sharing and Versioning ... 84

4.1 General-Purpose Visual Programming Editors ... 87

4.1.1 Blockly Editor ... 88

4.1.2 Configuration of Editor Instances ... 90

xvii

4.1.3 Visual Code Snippets .. 92

4.1.3.1 Administering Snippets ... 93

4.1.3.2 Using Snippets .. 94

4.2 Domain-Specific Visual Programming Language Elements and Editors ... 94

4.2.1 Supporting Behavior of Domain VPL Elements 96

4.2.2 Linked Visual Programming Elements ... 97

5.1 Project Manager .. 99

5.1.1 Authoring Project Structure for Application Domains 100

5.1.2 Functionality and Style.. 101

5.1.3 Settings for Project Elements .. 102

5.1.4 User Action Hooks and Validation for Project Elements 103

5.1.5 Using Alternative Project Manager or None 104

5.1.6 Authoring by Using JSON Schemas ... 104

5.2 Project Elements .. 104

5.2.1 Templates .. 105

5.2.2 Hosting and Browsing Project Elements 107

5.3 Project Dependencies .. 107

6.1 Hosting the Runtime Environment .. 109

6.1.1 Running Projects of the Application Domains 111

6.2 Selective Project Execution ... 113

6.3 Input-Output Console .. 114

6.4 Hosting User-Interface of Application Domains at Runtime 115

6.5 Exporting Project to an Isolated Application .. 116

7.1 Initiating the Debugging Process .. 118

7.2 Debugger’s Toolbar ... 119

7.3 Breakpoints .. 119

7.4 Conditional Breakpoints .. 121

xviii

7.5 Tracing ... 123

7.6 Watches ... 124

7.7 Execution Snapshots .. 125

7.8 Explanations .. 126

7.9 Supporting Debugging for Application Domain Frameworks 127

8.1 Collaborative Editing .. 129

8.1.1 Peer Roles .. 130

8.1.2 Local Workspace ... 132

8.1.2.1 Personal Project Elements ... 132

8.1.2.2 Toggling Live Syncing .. 133

8.1.2.3 Selective Project Execution .. 133

8.1.3 Initiating Collaborative Sessions ... 134

8.1.4 Collaboration Toolbar ... 135

8.1.5 Supported Collaboration Models .. 137

8.1.6 Evaluation.. 137

8.1.6.1 Aims and Design ... 138

8.1.6.2 Use Case Scenarios ... 138

8.1.6.3 Participants .. 140

8.1.6.4 Process .. 140

8.1.6.5 Results ... 141

8.2 Collaborative Debugging .. 142

8.2.1 Initiating Collaborative Sessions ... 144

8.2.2 Debugging Rooms ... 145

8.2.3 Visual Debugger .. 148

8.2.4 Correction Suggestions ... 151

8.2.5 Discussion of Supported Applications .. 154

8.2.6 Empirical Study ... 154

xix

8.2.6.1 Preparing the Environment ... 155

8.2.6.2 Participants .. 155

8.2.6.3 Procedure .. 157

8.2.6.4 Results ... 158

9.1 Visual Programming Editor for Smart Objects ... 162

9.1.1 Communicating with Smart Objects ... 162

9.1.2 Managing Smart Objects Through Domain Visual Programming

Language Elements .. 163

9.1.2.1 Smart Devices ... 164

9.1.2.2 Smart Device Environments ... 166

9.1.2.3 Smart Device Groups .. 167

9.1.3 Loading Shared Automations .. 170

9.2 Visual Programming Blocks for the Behavior of Smart Objects 171

9.3 Visual Programming Blocks for Conditional Automations 175

9.4 Visual Programming Blocks for Scheduled Automations 177

9.5 Authoring Project for IoT Automations .. 178

9.5.1 Creating IoT Automation Project .. 179

9.5.2 Project Elements .. 180

9.5.2.1 Smart Devices ... 180

9.5.2.2 Smart Device Groups .. 182

9.5.2.3 Visual Programming Blocks for Project Elements of

Automations 182

9.5.2.4 Automations for Basic Tasks .. 184

9.5.2.5 Automations for Conditional Tasks 185

9.5.2.6 Automations for Scheduled Tasks 187

9.5.2.7 Handling Dependencies .. 189

9.6 Running Smart Automations ... 190

9.6.1 Execution of IoT Automations .. 190

xx

9.6.1.1 Interacting with Smart Objects 191

9.6.1.2 Running Conditional and Scheduled Tasks 192

9.6.2 User-Interface of IoT Automations ... 193

9.6.2.1 Smart Devices View .. 194

9.6.2.2 Calendar View for Automations of Scheduled Tasks ... 196

9.6.2.3 History View ... 198

9.6.2.4 Explaining Why Automations Occurred 200

9.7 Debugging and Testing Facilities for IoT Automations 201

9.7.1 Simulating Smart Environment ... 202

9.7.2 Simulating Smart Devices ... 204

9.7.3 Testing Automations ... 206

9.8 Case Study ... 208

9.8.1 Discussing of Use Case for Morning Automations 208

9.8.2 Initiating of the End-User Development Process 208

9.8.3 Visual Programming of Scheduled and Conditional Tasks 213

9.8.4 Running Morning Automations .. 214

9.8.5 Morning Automations Testing .. 216

9.9 Evaluation .. 219

9.9.1 Aims and design .. 219

9.9.2 Use case scenario .. 219

9.9.3 Participants .. 221

9.9.4 Process ... 221

9.9.5 Results ... 221

10.1 Summary ... 223

10.2 Conclusions ... 225

10.3 Future Work .. 229

xxi

List of Figures

Figures of Chapter 1

Figure 1.1. Layered Architecture of IoT. ... 38

Figure 1.2. The flow of remote hospitality application and the involved smart objects.

 .. 43

Figure 1.3. Morning Automations triggered by environment events. 44

Figure 1.4. Tina's daily activities, contacts and smart objects. 46

Figure 1.5. Tina's morning automations. ... 47

Figure 1.6. Tina’s daily activities, destinations and smart objects. 48

Figure 1.7. Tina's transportation automations to visit Alice. 49

Figure 1.8. (T1) Tina's peace of mind automation; (T2, T3, T4) her children's peace of

mind automations. .. 50

Figure 1.9. The notion of professional developers (i.e., application domain authors)

and end-user developers & users (i.e. novices, non-programmers) in the visual

programming IDE. ... 51

Figures of Chapter 3

Figure 3.1. The component-based infrastructure of Blockly Studio; IDE’s component

infrastructure for the UI view and the component functionality is required (top-left).70

Figure 3.2. IDE's menu toolbar including the logo of the IDE and menu items which

are declared by the registered components. ... 71

Figure 3.3. Dialogue of the Configuration Management to configurate the dialogue

parts of itself. ... 73

Figure 3.4. Dynamic extra number property value appears on selecting the option

'number' for the HTML font size select property value. .. 75

xxii

Figure 3.5. Extension layer for the Blockly Studio communication with third-party

applications. ... 77

Figure 3.6. Communication among third-party applications and the Blockly Studio. 78

Figure 3.7. Making application domain-specific frameworks for visual programming

on the top of Blockly Studio. ... 81

Figure 3.8. Having choose the application domain ``Smart Automation in the Internet

of Things" at the Start Page of the Blockly Studio IDE. .. 83

Figure 3.9. Configuring the dialogue to create new application based on specific

application domain. .. 84

Figures of Chapter 4

Figure 4.1. Blockly Editor privileges modes; editing mode (tag A), read-only mode

(tag B) and not accessible (tag C). ... 89

Figure 4.2. Default View of Blockly's instance (top); Alternate View of Blockly's

instance (bottom). .. 91

Figure 4.3. Visual Code Snippets Toolbar. .. 92

Figure 4.4. Pop-up dialogue for Blockly’s code snippets creation. 93

Figure 4.5. Extension mechanism for Blockly to automatically manage the behavior

handling set of blocks for visual programming language domain elements. 96

Figure 4.6. Linked visual programming language element with other visual sources. 98

Figures of Chapter 5

Figure 5.1. Configurable view parts of the project manager component. 100

Figure 5.2. Authoring settings for project element type. ... 103

Figure 5.3. Example of a project element template; project element information (tag

1); interactive parts of the template (tag 2); area for visual programming editors (tag

3). ... 106

file:///C:/Users/user/Dropbox/jvalsam-thesis.docx%23_Toc69647260
file:///C:/Users/user/Dropbox/jvalsam-thesis.docx%23_Toc69647260
file:///C:/Users/jvalsam/Dropbox/PhD/PhD_jvalsam_SharedFiles/jvalsam-thesis.docx%23_Toc64061100

xxiii

Figure 5.4. Splitted in two project element instances area vertically. 107

Figure 5. 5. Visual programming project sources of application and dependencies

among the visual programming language elements. .. 108

Figures of Chapter 6

Figure 6.1. Authoring runtime of a domain project and runtime environment system of

the Blockly Studio IDE. ... 111

Figure 6.2. Selective execution dialogue for ‘Morning Automations’ project. 113

Figure 6.3. Console input is enabled and the corresponding block is browsed. 115

Figures of Chapter 7

Figure 7.1. Debugger's Toolbar. .. 118

Figure 7.2. Breakpoint icons for Blockly Editor. ... 120

Figure 7.3. Handling breakpoints by right clicking on Blockly blocks. 121

Figure 7.4. Conditional breakpoint's dialogue. .. 122

Figure 7.5. Automatic variable inspection and the Evaluate operation which works for

any kind of block, enabling to re-evaluate on-the fly (during debugging) any code

snippet. ... 123

Figure 7. 6. Adding explanations for the execution of smart automations based on the

environment temperature. .. 126

Figures of Chapter 8

Figure 8.1. Collaborative Project “Morning Automations” with 3 participants

(George, Mary and James). George’s view of the collaborative project (see 1) and

James (see tag 2). ... 130

Figure 8.2. Dialogue to create new visual code correction suggestion for a project

element. .. 131

file:///C:/Users/user/Dropbox/jvalsam-thesis.docx%23_Toc69647234
file:///C:/Users/user/Dropbox/jvalsam-thesis.docx%23_Toc69647234
file:///C:/Users/user/Dropbox/jvalsam-thesis.docx%23_Toc69647234
file:///C:/Users/user/Dropbox/jvalsam-thesis.docx%23_Toc69647211
file:///C:/Users/user/Dropbox/jvalsam-thesis.docx%23_Toc69647211

xxiv

Figure 8.3. Dialogue to view the visual code suggestion in order to accept or deny it.

 .. 132

Figure 8.4. Left: Starting share the project; Right: Joining the collaboration. 134

Figure 8.5. Collaboration project settings. ... 135

Figure 8.6. Collaboration Toolbar. .. 136

Figure 8.7. Participants' time to accomplish each of the scenarios. 142

Figure 8.8. High level of our collaborative debugging approach. 143

Figure 8.9. Starting view (i.e., home page) of the collaborative debugging session. 145

Figure 8.10. Modal to create a new debugging room. ... 146

Figure 8.11. Viewing 'Debug Room 4'. .. 147

Figure 8.12. Using Visual Debugger of Blockly. .. 149

Figure 8.13. Visual debugger’s architecture for classic debugger version (left),

collaborative debugger version (right). .. 150

Figure 8.14. Debug Control (left); Give floor control dialog (right). 151

Figure 8.15. Creating new Correction Suggestion for “Alarm Clock Rings” project

element. .. 151

Figure 8.16. Debug the project by choosing the project items will participate and

which of the project items will be original and which of them will be correction

suggestions. .. 152

Figure 8.17. Choosing which of the correction suggestions will be applied to original

project and which of them will be saved. .. 153

Figure 8.18. Teaching application domain for the collaborative debugging

environment. .. 155

file:///C:/Users/user/Dropbox/jvalsam-thesis.docx%23_Toc69647215

xxv

Figure 8.19. Exercises asked to debug individually under supervision. (top) Program

swaps x and y and adds them. Find the bug.; (bottom) Program calculates the amount

of money for wages(w): w<1000 =50, 1000<=w<1500 =100, 1500<=w<2000 =150

and w>=2000 =300. ... 156

Figure 8.20. Exercises asked to debug in groups under supervision. (top) Program

attempts to output the sum of the input number’s digits; (bottom) Program attempts to

recognize palindrome. .. 157

Figures of Chapter 9

Figure 9.1. The notion of personalized custom automations in the Internet of Things

through an End-User Programming framework. ... 161

Figure 9.2. Importing Smart Device .. 163

Figure 9.3. The view parts of a registered air-conditioning device. 164

Figure 9.4. Smart device group for air-conditioning. .. 166

Figure 9.5. The view of air-condition living room. ... 167

Figure 9.6. The view of air-condition living room. ... 168

Figure 9. 7. Handling smart object groups for the alarm clock. 169

Figure 9.8. Replacing the ‘Air Condition’ smart device of the shared application with

a compatible smart device. ... 170

Figure 9.9. Basic Blockly Blocks for Smart Objects; actions for smart objects (tag A),

setters, getters (tag B, C) and input, output for smart object properties in the I/O

Console. ... 172

Figure 9.10. Dynamic change of a Blockly block based on the choice during the end-

user development. .. 173

Figure 9.11. Blockly Blocks for Smart Object Groups. ... 173

Figure 9.12. Conditional Event Blockly Blocks for Smart Automations. 174

file:///C:/Users/user/Dropbox/jvalsam-thesis.docx%23_Toc69647161
file:///C:/Users/user/Dropbox/jvalsam-thesis.docx%23_Toc69647161
file:///C:/Users/user/Dropbox/jvalsam-thesis.docx%23_Toc69647163
file:///C:/Users/user/Dropbox/jvalsam-thesis.docx%23_Toc69647165
file:///C:/Users/user/Dropbox/jvalsam-thesis.docx%23_Toc69647166

xxvi

Figure 9.13. Scheduled Event Blockly Blocks for Smart Automations. 176

Figure 9.14. Configuring the create application dialogue for IoT Automations and the

Project Manager view based on the user’s input data. ... 178

Figure 9.15. Project element template that includes information and hosts one visual

programming editor instance. .. 180

Figure 9.16. Menu options for the Smart Devices Category. 181

Figure 9.17. Creating new smart group device by choosing smart device that will

export its functionality interface. ... 181

Figure 9.18. Choosing if automation will start automatically in the beginning of

project execution or later with visual programming block element instruction. 183

Figure 9.19. Authoring Blockly blocks to enable the end-user developers handle

manually start and stop of the automations for project elements. 184

Figure 9.20. Automations for ‘Basic Tasks’ configuration of Blockly editor's toolbox.

 .. 185

Figure 9.21. Automations for 'Conditional Tasks' configuration of Blockly editor's

toolbox. .. 187

Figure 9.22. Automations for 'Scheduled Tasks' configuration of Blockly editor's

toolbox. .. 188

Figure 9.23. Dialogues in case the end-user chooses to delete a Smart Device 189

Figure 9.24. Dialogue on connection issues of the smart devices. 192

Figure 9.25. Runtime environment for IoT automations. .. 194

Figure 9.26. Request to set input in property of a smart device. 194

Figure 9.27. Display of the Smart Devices at runtime environment. 195

Figure 9.28. Enabling control smart devices during the project execution. 196

file:///C:/Users/user/Dropbox/jvalsam-thesis.docx%23_Toc69647177
file:///C:/Users/user/Dropbox/jvalsam-thesis.docx%23_Toc69647177

xxvii

Figure 9.29. Monitoring scheduled automations in the runtime environment of IoT

automations. ... 196

Figure 9.30. Browsing project elements that includes the scheduled blocks. 197

Figure 9.31. Interactive bubble which depicts action of the history panel view. 198

Figure 9.32. Monitoring conditional tasks and browsing respective visual code

snippets. ... 199

Figure 9.33. Filtering executed explanations per scheduled (top) and conditional

(bottom) automations by enabling info button that opens dialogue which present them

separately. .. 201

Figure 9.34. Simulation Environment View: tests control panel (left), date & time

simulation (right). .. 203

Figure 9.35. Managing Simulation Behavior and Expected Values Tests. 204

Figure 9.36. Simulating smart device actions for debugging purposes. 205

Figure 9.37. Simulating behavior of smart devices at specific time periods. 206

Figure 9.38. End-user development of tests for expected values in smart devices

properties. ... 207

Figure 9.39. Warning message in case a test of expected values of smart device

properties fails. ... 207

Figure 9.40. Morning home automations example. ... 208

Figure 9.41. Creating morning automations and defining bedroom lighting device. 209

Figure 9.42. Workspace view having define the smart devices for morning

automations. ... 212

Figure 9.43. Visual programming scheduled and conditional tasks for morning

automations. ... 213

Figure 9.44. Smart Devices monitoring values for 'Morning Automations' project. . 214

file:///C:/Users/user/Dropbox/jvalsam-thesis.docx%23_Toc69647190

xxviii

Figure 9.45. Calendar view of the scheduled tasks for 'Morning Automations'. 215

Figure 9.46. History actions view of the tasks that will be shown running 'Morning

Automations'. ... 215

Figure 9. 47. Preparing state of smart device properties (tag A) and go at specific time

in order to trigger scheduled task of ‘Morning Automations’. 216

Figure 9.48. Implemented actions for smart devices of 'Morning Automations'. 217

Figure 9.49. Testing 'Home Safety' conditional task of 'Morning Automations':

Adding breakpoint (tag A); Simulating behavior of the smoke sensor (tag B);

Stepping in until the simulated fire extinguisher starts and view variables and smart

device properties state (tag C); View actions history to verify the fire extinguisher

started (tag D); ... 218

xxix

List of Tables

Table 1. Project Element Privileges. .. 133

Table 2. Efficiency and Usability. .. 141

Table 3. Fields of Use. ... 141

Table 4. Questions focusing on learning programming and debugging. 158

Table 5. Questions focusing on the collaborative debugging environment. 159

Table 6. Standard SUS Questionnaire. .. 160

Table 7. Smart Devices that are used for Morning IoT Automations. 210

Table 8. SUS Questionnaire for the Smart Automations Workspace Environment. . 222

30

31

To my family

32

33

“Professional developers have integrated development environments and full-scale

tools for programming applications. Non-programmers and learners behoove to be

provided with more efficient end-user programming tools in their arsenal for

developing and learning purposes”

34

35

Chapter 1

Introduction

“The whole of science is nothing more than a refinement of everyday thinking.”

- Albert Einstein

More and more devices are connected in networks resulting exponentially increasing

need of development applications. As a result, these needs are not able to be covered

by professional developers and the end-user programming research area attempts to

address this need by empowering non-programmers to program through appropriate

approaches and tools. We strongly believe that such tools could not be less powerful

than the existing software tools for professional developers. We base this on two

reasons. Firstly, novices or non-programmers needs more support to program an

application and secondly provided tools could be the vehicle of teaching and learning

programming. In this context, our work focuses on contributing by empowering non-

programmers with efficient tools. In this Chapter, we analyze the background and

motivation of this PhD thesis. We present the research questions and the objectives of

this work. Then, we briefly describe the technical approach and discuss the

contributions of our work.

1.1 Background and Motivation

Nowadays, most software programs are written by people who are not professional

software engineers [1], but they may have expertise in other domains. This arises

from two main reasons. First, the innumerable needs of programming that cannot be

covered from professional developers. Second, there are specific requirements that are

well known from people who use them and need them rather than software engineers.

Using correspondent software tools, people who are not professional programmers

acquire the power to develop their programming purposes without significant

knowledge of a programming language. For example, a user interface designer could

use a user-interface builder to develop user interfaces. This concept is an active

research topic called End User Programming.

36

1.1.1 End-User Programming

End User Development (EUD) or End User Programming (EUP) can be defined as a

set of methods, techniques and tools that allow users of software systems, who are

acting as nonprofessional software developers, at some point to create, modify, or

extend a software artifact [2]. There are various techniques and approaches which

have been developed in previous decades in EUP. The most used end-user

programming approach is the Spreadsheets that are used in the industry from

professionals in several applications [3]. Some use case examples are teachers that

write grading spreadsheets to save time grading, receptionists that use spreadsheets

for reservations, accountants that write accounting spreadsheets for their job etc.

Another EUD technique is the use of natural language phrases interpretation. Natural

languages are mainly attempt to eliminate the need for language constructs all

together, and focuses on the presence of keywords in a command expression that call

them as keyword commands [4], [5]. In addition, there is approach in case does not

know how to perform step, try to help user with development by predicting and

suggesting possible alternative phrase commands [6]. Yet another EUD approach is

the scripting languages. Using scripting languages, the end-users are able to extend

and adapt an existing application (e.g., Open Office Scripting Framework [7]). On the

one hand scripts are the most powerful EUD tools, but on the other hand present users

with a considerable learning burden and in addition scripts are prone to errors.

Furthermore, there are scripting languages which use in parallel graphical tiles, giving

one more friendly way to write scripts and able the possibility to have more complex

and expressive scripting languages [8]. This hybrid technique from the view of the

graphical drag and drop context seems with the Visual Programming which is

discussed in the following section.

1.1.2 Visual Programming Languages

Visual Programming Languages (VPLs) and systems are amongst the most popular

tools of end-user development (EUD) thanks to learning programming purposes

which are targeted primarily at children (e.g., Scratch [9], Tynker [10], MakeCode

[11], LEGO MINDSTORMS [12], LEGO in MakeCode [13], LearnBlock [14], etc.).

VPLs allow programming with visual expressions. The basic idea is to associate icons

to high-level functionalities that are important for the specific domain experts. There

37

are two main categories of VPLs, the jigsaws and the flow diagrams. Most of the

existing approaches are focused on playing-learning purposes and they don’t attempt

to provide full-scale toolset of programming.

Recently, application domains in visual programming have been appeared which are

not targeted at learning. The mobile applications constitute such domain for the end-

users. Particularly, the use of smart phones and tablets in people’s daily life lead to

the explosion of mobile applications. App Inventor [15] is a visual programming

environment that empowers the end-users with the ability to build fully functional

applications for smart phones and tablets. However, this visual programming

environment does not support full-scale toolset for end-user programming (e.g.

debugging, project management, versioning features are missing). Moreover,

BlocklyDuino [16] and ArduBlock [17] are two visual programming workspaces that

focus on the application domain of programming in the context of Arduino [18].

In general, based on new arising technologies, new application domains in which

visual programming is able to be applied in order to empower novices or non-

programmers to program related applications. In this direction, a notable application

domain for visual programming which motivated us to begin this PhD Journey is

based on the Internet of Things era. In the next section, we discuss about the Internet

of Things era. Afterwards, we analyze the research questions and the objectives of

this PhD thesis. We then present the technical approach and the contributions of our

work.

1.1.3 Internet of Things

The Internet of Things (IoT) is a new paradigm which refers to advanced connectivity

of devices, systems, and services. The term IoT has become recently popular to

emphasize the vision of a dynamic global network infrastructure of physical objects or

“things” which are embedded with electronics, software, sensors and connectivity

capabilities. The connection of physical things to the Internet gives them the

capability of producing data, collecting information and accessing remote sensor data.

Furthermore, this connectivity also allows for the control of the physical world from a

distance by users. In addition, the inserted intelligence into physical objects enables

them to communicate with each other and even to control each other’s functional

state, e.g., a thermostat sensor can control the state of an air conditioning unit by

38

turning it on or off when the room has reached a certain temperature reading, or by

activating the window shutters. Alternatively, this kind of everyday physical objects is

called Smart Objects (SOs) and is the building block of the IoT.

Figure 1.1. Layered Architecture of IoT.

Internet of Things has been based on a layered architecture. In Figure 1.1 is depicted,

the architecture of IoT that is consisted of four main layers. The bottom layer of IoT is

the hardware layer which consists of RFID tags, sensor networks and generally all

kind of connected things. All kinds of information of the physical things in world that

participate in IoT era are perceived and collected in this layer. The above layer of

hardware is the network layer which includes access and core network, provides

transparent data transmission capability. The data from hardware layer can be sent to

this layer using existing mobile communication network. The upper layer from

network is middleware layer. This is a software layer which facilitates the

development of application. In particular, middleware hides the details of different

technologies and the heterogeneity of smart objects in order to exempt the developers

from issues that are not directly pertinent of their focus. The topmost layer of IoT

architecture is the Application layer. This layer responsible for the delivery of a

variety of applications which are provided through the middleware layer to different

applications and users in IoT based systems.

39

The novelty of the IoT concept is not in any new disruptive technology, but is the

pervasive deployment in the environment of a variety of smart objects around us, such

as sensors, actuators, mobile phones, Radio Frequency Identification (RFID) tags, etc.

More specifically, it is appreciated that in the next few years, smart objects that will

be connected in the Internet will be approximate trillions [19]. A key part of the future

Internet will be that through wireless and wired connections and unique addressing

schemes are able to interact with each other and cooperate with other smart objects in

order to create new services and reach common goals.

This has as a result more and more in the community of researchers and industrials

moving their interest in this new trend and trying to address the new challenges,

defining and creating the new world of the IoT. The main strength of the IoT idea is

the high impact it will have in the behavior of people who will use it and generally in

several aspects of their everyday life such as personal, societal, social, businesses,

medical, environmental etc.

1.2 Definition of the Problem and Objectives

Our work targets to three main research directions. Starting the PhD journey, our first

direction is focused on how could smart automations be developed by everybody

exploiting the Internet of Things era and visual programming languages. This research

direction led us to the next two directions of providing full-scale IDE in the context of

visual programming languages which will include collaborative facilities. In this

section we discuss each of them including the research questions, the key missing

end-user development facilities and our work objectives.

1.2.1 Full-Scale IDE for Visual Programming

The professional programmers are empowered by integrated development

environments (IDEs) which include several advanced and efficient facilities in order

to program applications. However, in case of non-programmers and novices, the

visual programming workspaces are treated as children of a lesser God. In particular,

the existing visual programming frameworks are missing a full-scale end-user

development toolset. The existing approaches are mainly targeted to children learning

within the context of a game. In addition, several visual programming features are at

40

an infant level or not mature enough (e.g., project management, remote collaboration,

debugging, intelligence, etc.).

Additionally, the visual programming frameworks are limited to specialized

requirements resulting in satisfying a narrow set of needs for end-user programming.

This set of needs is specialized either in the application domains (e.g. Scratch is a

visual programming framework only for end-user development of animations) or in

the audience knowledge and level of experience (e.g. focusing on end-users that have

experience on flow diagrams will not be efficient for end-users that may have only

experience on jigsaws). Moreover, taking into account that new applications are

arising, existing application domain requirements for visual programming are fluid

and third-party technologies are updated continually, constantly changing

requirements for developing new IDEs for visual programming languages. For

example, in the context of the IoT, communication libraries (e.g. IoTivity), smart

services and devices are upgraded and each one of them uses different technology

based on the circumstances. However, the development of an IDE for visual

programming languages from scratch for each new application domain is no trivial

process and it is extremely expensive.

Moreover, with the absence of one full-scale IDE for visual programming languages

the non-programmers are affected as this would happen in case of developers if they

didn’t have an IDE. This might have been acceptable in the case of application

domains that are targeted primarily on learning programming. However, there are

application domains that the end-user would like to be fully empowered such as the

case of personalized ambient assisted living automations in the Internet of Things we

analyze in section 1.2.3. In addition, learning programming would be more efficient

by using an appropriate full-scale IDE which will provide adequate end-user

development facilities.

Our objective in this PhD concerns the development of an extendable IDE for visual

programming languages, while offering full-scale end-user programming facilities

and a mechanism to plug-in application domain frameworks.

41

1.2.2 Collaborative Visual Programming

One of the key features in the visual end-user programming is the collaborative

programming. Visual programming languages users are novice programmers for

which collaboration as a learning and support instrument is more important compared

to typical experienced programmers. In particular, this feature could be notably useful

in the case of using it for teaching and learning programming purposes. Additionally,

this feature is able to be used in the context of asking for help from more experienced

users, co-working for automations etc. Moreover, errors are able to be corrected

through collaborative testing and debugging. The later makes it important for groups

of end-user developers to have suitable tools to support their collaborative

programming tasks. However, existing works are focusing on co editing of the visual

programming process (e.g., App Inventor approach [20]), without caring to sort out

the collaborative programming process. In addition, there is no approach that

undertakes the testing and debugging collaboratively.

The objective of our work concerns the development of a full-scale toolset for

collaborative visual programming which is able to empower novices to cooperate for

end-user development process. We also target this toolset efficiently support the

novices to test and debug their applications collaboratively. Last but not least

objective is to support teaching and learning programming through the provided

facilities.

1.2.3 Smart Automations for Everybody

In the IoT context, people’s daily lives could benefit from using smart objects, as they

can offer an environment of automations for everyday activities. However, in practice,

the demands for such automations are highly personalized and fluid, resulting in a

respective digital market that is either inexistent or marginal. Consequently, in order

to fully benefit from the capabilities of this environment, individuals should be able to

interact with smart objects, potentially managing, parameterizing and even

programming applications involving them. In this section, we discuss the introduction

of smart objects in daily life. To better represent the requirements and the benefits of

smart automations in IoT, we describe potential scenarios of personal automations

that could be developed.

42

1.2.3.1 Smart Objects in Daily Life

The IoT concept is the pervasive deployment of a variety of network connected smart

objects around us, including physical things, smart devices, applications, etc. in the

environment. Furthermore, devices which are commonly used in daily life have been

evolved to smart connected devices by offering extra services and automations (e.g.

tracking information, remote control, exchanging data with other smart objects etc.).

The refrigerator is a representative example of a device used on a daily basis. Its main

function is to maintain and store food items and fresh produce. But as a smart object,

apart from the above functions, it will also be able to do other more complex

functions such as identifying, enumerating, and holding important information about

the food items it contains. Smart refrigerator notifies users when a food item is close

to expire or if it has already expired. Furthermore, the refrigerator is able to display

through an embedded screen, recipes based on the food items that are currently stored.

Moreover, the users can remotely view what is stored in their refrigerator.

In addition, apart from the physical connected things and the smart devices, there is a

huge number of applications online and day by day this exponentially increases.

These applications could be used in the world of IoT and could be considered as smart

objects which are connected online and are able to communicate through web-

services. Such applications could be available via digital market-places. Examples of

applications could be weather forecast, a clock, a chronometer etc. Furthermore,

examples of such applications that could be interoperated with the smart refrigerator

are a nutrition calendar and online shopping. Using these smart objects, the user will

be able to program a weekly meal plan based on which the refrigerator could

automatically place online orders in authorized food shops.

Taking into account the aforementioned about regarding smart objects which are

available in people’s daily life, people may like to have custom automations based on

their needs. In the next section, we discuss scenarios of possible personal applications.

1.2.3.2 Scenarios for Personal Automations

Using existing smart objects, we discuss potential scenarios which could be developed

by end-users based on the visual end-user environment we develop. However, the

scenarios discussed below are just indicative, since by offering end-user programming

43

features and due to the fact that there is a huge variety of smart objects available, the

possibilities are endless.

Remote Hospitality

People would often like to be at home (or office) when their doorbell rings but instead

they happen to be somewhere else. This happens either when there is a meeting for

which they couldn’t be there on time or in case of a surprise visit. Before the

existence of IoT concept, visitors could only call the potential hosts in order to

communicate with them. Thanks to IoT, people are able to use smart doorbells which

are supported by appropriate software applications. The latter notify users when the

doorbell rings and help them communicate with the person who rang it. On the one

hand, smart doorbell software provides support for all possible services of the device,

on the other hand, it is impossible to provide sup-port for other smart objects that

users would like to use with the smart doorbell. For example, end-users may like to

have an application which uses home smart objects in order to host visitors remotely

until they go back at home as depicted in Figure 1.2. The smart door gives access to

the visitors, while the smart lights turn on or window blinds open depending on the

time of the day. Furthermore, home temperature can be regulated using the air

conditioning system and the thermometer. Then, the smart Hi-Fi or TV could take on

the visitors’ entertainment. In addition, drinks can be prepared by the smart coffee

machine or the smart kettle.

Figure 1.2. The flow of remote hospitality application and the involved smart objects.

44

Someone would wonder why we have to create a new application using smart objects

and not use all the provided applications from our smart objects. The answer is

twofold. First, users would like to have custom automations without having to use

each of the applications of the smart objects. In addition, running applications for

each smart object would be impossible in case of using several smart objects for one

task something which would be a common scenario in the concept of the IoT which is

based on the pervasive deployment of smart objects around the world. Second, there

are several cases that smart objects are based on the events and data of other smart

objects. A representative example of such application is discussed on the next section

describing morning automations.

Morning Automations

One of the most difficult times of the day for people is wake up doing their morning

habitual tasks. There are several things that people have to do when they wake up

such as, have a bath, prepare their breakfast, be informed about the news and their

messages, prepare for their work, leave home for work etc. Using the existing smart

objects, several processes could be automated and users would gain some more

minutes of sleep, find their home temperature regulated, not for-get to be informed

about the news, leave home without worrying if they forgot to lock the windows or

turn off lights, electric devices etc. All these automations can be accomplished when

related events are triggered as depicted on the Figure 1.3.

Figure 1.3. Morning Automations triggered by environment events.

45

The first event of application is based on the time that the alarm clock is programmed

to ring. When the event is fired, the alarm clock is switched off before it rings, then

the air conditioning regulates the home temperature, while heater starts preparing

water for a morning bath and the coffee machine prepares the first coffee of the day.

Once the water for the bath is ready, the alarm clock rings and the window blinds

open. Also, when coffee is prepared, the coffee machine notifies the user. Afterwards,

when the user opens the bath door, the smart Hi-Fi automatically starts playing music

and the smart bed makes itself. Afterwards, when the user starts serving coffee (once

she has finished with her bath) music stops and it is time to catch up with the news

and view the daily tasks she has to do, messages or email she has received. Finally,

when leaving home for work, smart objects take on the home safety by locking all

windows, window blinds and out-doors which are still open, switching off not used

electric devices such as the air conditioning, the TV etc. turning off the lights and

activating the alarm system.

1.2.3.3 Scenarios for Ambient Assisted Living

Moreover, in the context of smart personal automations could be developed

applications that will focus in the Ambient Assisted Living (AAL). AAL aims to

support the elderly and disabled in their daily routine and health care by extending

their independent living as far as possible. Particularly, in the case of elderly people,

AAL attempts to encourage and maintain their autonomy by increasing their safety in

their home environment, improving their daily life activities and reducing the burden

on societal economics from the assisted care of elderly people [21]. Main categories

of applications of AAL for the elderly are health (e.g. medications, pill reminder),

safety (e.g. emergency button, fall detection), peace of mind, social contact, mobility,

security etc. Applications of Ambient Assisted Living can be implemented on top of

the Internet of Things [22][23][24], the emerging paradigm regarding the deployment

of network connected smart objects in the environment, including physical things,

smart devices, applications, etc.

In this section, we discuss scenarios that are focused mainly on the elderly and on the

way their daily life can benefit from the use of smart objects through custom

automations supporting everyday activities. The demands for such AAL automations

are very personalized, while the requirements may also change on a regular basis due

46

to seasons, social life, health conditions or the progress of ageing. We discuss the case

of Tina, being 72, lives alone, has diabetes and is overweight.

Tina should carry out specific tasks in her daily life due to diabetes, including daily

workout, medical therapy and medical examinations (e.g. track insulin glucose),

check her weight and have a strict diet. Furthermore, she has to take bath on a regular

basis in order to prevent possible infections. Tina’s tasks are split in three parts of the

day as depicted in Figure 1.4 (right), while the people she communicates with are

family, nurse which gets blood samples once a week, nutritionist and doctors, as

depicted in Figure 1.4 (left, top). Tina wakes up every morning at 7 o’clock; using an

alarm clock in order to get the required pill for her therapy. She has to track her

weight, track glucose in her blood, get breakfast with specific ingredients and take her

morning bath. However, Tina’s morning tasks will be different every Monday for the

next two months during which a nurse will be coming to her home once a week. The

nurse will take blood samples, which require from Tina not to have received any

medication or breakfast on that particular morning. All these changing tasks are

difficult to follow for an elderly patient either because they may forget to do some of

the tasks (e.g. forget to check weight, remember not to get a pill on the day of blood

sampling etc.) or forget to abide by the rules of a strict diet.

Figure 1.4. Tina's daily activities, contacts and smart objects.

47

Thanks to IoT, Tina is able to use smart objects such as Bee+ [25] tracking glucose,

smart scale tracking weight, and smart heater preparing water for bath. In particular,

Bee+ is able to track glucose and send data to the doctor directly for further analysis

and alert to do this task at a specific time daily. However, Bee+ does not provide

functionality to remind her to track glucose after activities such as tracking weight or

finishing the bath. Such customized automations require ways to introduce extra

algorithmic logic across smart objects.

In Figure 1.5, such extra automations are shown to remind and guide Tina for all

morning tasks, like track weight and glucose levels, get pills in time, prepare heated

water for the morning bath, and regulate home temperature wake up. Furthermore,

automations which are depicted in Figure 5 care to remind Tina not to receive any

medication or breakfast every Monday morning before doing her blood tests.

Figure 1.5. Tina's morning automations.

Moreover, using smart devices for automations, Tina is able to be benefited on

alternative cases of her mobility requirements. Tina has intense social life and has to

move around the city to visit her contacts on a daily basis. In particular, Tina visits her

son’s family twice a week, goes to the gym three times a week, goes to the nutritionist

once a week and she visits her friend Alice twice a month. In order to go to all these

48

places, it is required from Tina to follow different routes as depicted in Figure 1.6

while on longer distances, she is required to take pill(s) and/or track blood glucose. In

addition, Tina takes her emergency bag and personal belongings with her during her

journeys. Furthermore, Tina has difficulty using the means of transport due to vision

issues which arose two months ago. Tina’s son, Nick is anxious that his mother may

neglect her health by forgetting to take her medication or to track glucose levels

during travelling. She may also forget her emergency equipment bag in the means of

transport. Furthermore, he worries that his mother may be confused and get lost if she

gets the wrong bus or gets off the train/metro at the wrong stop. Also, Nick knows

how important it is for his mother to continue her social life as earlier.

Figure 1.6. Tina’s daily activities, destinations and smart objects.

Thanks to IoT, Tina is able to use smart objects such as Bee+, e-ticket and smart

metro assistant. In particular, Bee+ is able to track glucose and send data directly to

the doctor for further analysis and alert the user to take a sample at a specific time.

However, Bee+ does not provide functionality to remind her to track glucose after

different activities such as getting on the train. Furthermore, e-ticket works with NFC

technology which requires from her to go close to the ticket reader. But it may be

difficult for her to find the device to validate her ticket due to visual impairments.

49

Such customized automations require ways to introduce extra algorithmic logic across

smart objects.

Figure 1.7. Tina's transportation automations to visit Alice.

Using smart objects which exist on the market (see in Figure 1.6, label 1 and 2) and

smart objects which are provided by the metro/train (see Figure 1.6, label 3) such as

e-tickets, route assistant, ticket reader, Nick could develop custom applications for his

mother’s necessities. In particular, Tina needs one application for each journey due to

different requirements per travel (e.g. different means of transport, get medical

therapy or not etc.). These applications require different automations that are

50

categorized as shown in Figure 1.6, i.e. the first category is for Tina’s travelling, the

second is for Tina’s health care, the third is for the Tina’s peace of mind and the final

category is for her children’s peace of mind.

We choose to discuss about the required automations for the journey from Tina’s

home to Alice’s (see Figure 1.7) because of the longest route. In particular, this route

demands from Tina to walk to the metro station, get the metro at 9:00 o’clock, get off

at a particular stop, get the bus and get off at a stop near Alice’s home. Also, after

Tina has got on the metro, she has to take her medication at 9:30. Moreover, during

traveling by bus Tina has to track her blood glucose.

In addition, for Tina’s and her children peace of mind, Nick could has developed an

extra application with automations as depicted in Figure 1.8.

Figure 1.8. (T1) Tina's peace of mind automation; (T2, T3, T4) her children's peace of mind

automations.

The objective of our work is to provide end-users with the necessary tools enabling

them to easily and quickly craft, test and change the automations they desire. Now,

the latter is not an easy task as it implies end-users to directly manipulate smart

objects in a developer perspective, ranging from parameterizing and linking together,

to actually programming the control and coordination of a set of smart objects. In this

context, we target to address challenges of communicating, managing, programming,

51

testing and running smart automations in the IoT context by developing all required

end-user programming facilities.

1.3 Technical Approach and Contributions

Our approach aims to develop an open IDE for visual end-user programming

languages by not limiting it on a specific application domain and aiming on

extendibility of new visual programming features (see Figure 1.9). In order to cope

with these requirements, the IDE focuses on two directions, the domain application

adaptability of the IDE and the extendibility of the IDE.

Figure 1.9. The notion of professional developers (i.e., application domain authors) and end-user

developers & users (i.e. novices, non-programmers) in the visual programming IDE.

In particular, based on the requirements of visual programming in application domain,

the developers (i.e., domain application authors) are able to define new application

52

domain(s) for visual programming workspaces by authoring the required visual

programming language elements, adapting the core components of the IDE through

meta-data definitions and developing domain specific components as plugins if

required. They are also able to reuse all components and definitions of other

application domains. Moreover, they are able to contribute by developing adaptable

tools for visual programming that will be used by the application domains.

Furthermore, following our approach, the developers are able to use all provided

visual programming features of the IDE for each of the authored application domains.

Since the visual programming IDE for VPLs has to be extendable, our approach is

following component-based architecture. The core of the IDE includes the

component’s communication which is based on Blackboard pattern and the Shell

Component which is responsible for the user-interface management. Each component

is independent from others and communicates through the provided communication of

the IDE. We present our IDE approach and extension mechanism for new application

domains in Chapter 3. Using this approach, the developers are able to add new visual

end-user programming features through the development of new IDE components.

Overall, our work of this thesis is categorized in three main directions. Firstly, the

development of a visual programming IDE with a full-scale end-user development

toolset. Secondly, we focus on embracing visual programming domain variations as

pluggable domain frameworks in the IDE. The last direction of our work is the

development of a pluggable application domain framework for smart automations in

the internet of Things. Based on these three directions, the contributions of this PhD

thesis are following.

• We provide an extendable visual programming IDE that allows programmers

to extend it in two perspectives. The first perspective is that of new visual end-

user programming features and the second is that of the new application

domains. Our approach could be used for existing (e.g., smart automation in

the Internet of Things, mobile applications, etc.) and emerging application

domains and technologies.

• We introduce the notion of application domain authors which is the role that

developers are able to play in order to build new application domains as

53

frameworks based on the arisen technologies and requirements for visual

programming workspaces.

• We develop a full-scale collaborative editing approach that sorts out the

process by introducing peer roles and project element privileges. Additionally,

our proposed approach supports multiple collaboration models (i.e., Pair

Programming in one or more groups, teaching and learning purposes, working

in small teams, etc.) by regulating the settings are provided in order to

configure the collaboration process when it starts.

• We facilitate debugging and testing for novices by providing collaborative

debugging process that can be used for personal and collaborative EUD

projects. The collaboration proposed approach guarantees the preservation of

the project’s visual code by isolating it, creating a local replica for each one of

the collaboration members. In this context, the users are able to create

correction suggestions per project element. Those correction suggestions are

shared among the participants. During the debugging session, one user at a

time is able to handle the debugger instructions (i.e., master of the debug

session). However, the rest of the members (i.e., observers) are able to

navigate the visual code to acquire information independently of other

members browsing, without interfering with the experience of any

collaboration member.

• We propose an alternative model of collaborative debugging in order to

contribute to teaching and learning in the context of debugging and

programming. Particularly, the tool can be used by teachers to demonstrate the

debugging process to students in real-time. The students are able to perceive

the flow of a program and learn the process of debugging. Additionally, our

approach introduces multiple debugging rooms in a session by enabling the

students to live debug programs, individually or collaboratively while

allowing the teachers to supervise all the debugging processes.

• We introduce conditional breakpoints for domain-specific visual programming

language elements contributing in the debugging process.

• We propose code snippets for visual programming languages by developing

infrastructure to manage and use them in the context of general purpose

54

(common loops, branches, etc.) and specific purposes for the application

domains.

• We provide a full-scale management for the smart devices in the context of

EUD including user actions to authenticate, organize, customize smart devices

in order to enable isolation and handling of the numerous existing smart

devices.

• We provide a full-scale visual programming workspace environment for

personalized internet of things automations including conditional and

scheduled tasks and choice of starts them automatically or manually during the

project execution.

• We provide GUI for the runtime environment that cares for monitoring and

interacting with smart automations, facilitating the end-user developers by

removing the requirement to program user interfaces for their smart

automations.

• We provide facilities in the context of testing and debugging the smart

automations by developing infrastructure to enable the users to simulate the

smart devices, the behavior of the smart devices, the date and the time that the

automations will be executed.

• We address the issue of responding to the arising user questions about

automations which caused during the execution of the constructed IoT

applications.

• We demonstrate how visual programming IDEs can be used to address the

highly personalized and fluid requirements of Ambient Assisted Living

through custom personalized automations in the context of Internet of Things.

1.4 Outline

This thesis is organized as follows. Chapter 2 discusses the related work, focusing on

visual programming workspaces and toolset support for end-user development.

Chapter 3 presents the core system of the visual programming IDE, including the

software architecture, the extension mechanism for application domain frameworks

and the IDE’s core components. Chapter 4 describes the visual programming editors

presenting the types and hosting of the editors. In addition, we discuss the main visual

programming editor which is incorporated in the IDE and basic features are supported

55

by editors. Moreover, we analyze the domain-specific VPL editors and elements and

how their behavior is handled by our approach. Chapter 5 presents the authoring of

application domain projects including the Project Manager’s functionality, the

application structure, the project elements, etc. Chapter 6 explores the runtime

environment of the IDE, presenting how application domain projects are supported to

be executed. Moreover, we present the I/O console of the visual programming IDE

and how hosting user-interface of application domains at runtime is supported.

Chapter 7 discusses the debugger of the visual programming IDE including full-scale

block-level debugger for Blockly editor and appropriate features of debugging for

novices. Chapter 8 presents our approach of collaborative visual programming which

focuses on two directions, the collaborative editing and the collaborative debugging.

Chapter 9 discusses the visual programming framework for IoT automations we have

developed, including the smart object editor which manages the smart devices, the

visual programming language elements for the behavior of smart objects, authoring of

the application structure, the user-interface which is viewed at runtime and the

simulator for the runtime which contributes the debugging process. Chapter 10

summarizes the key points of this thesis, draws key conclusions and discusses

directions for future research.

56

57

Chapter 2

Related Work

“The greatest part of a writer's time is spent in reading, in order to write: a man will

turn over half a library to make one book.”

- Samuel Johnson

Our work in this thesis is focused on three directions, the full-scale visual

programming IDE that will not be limited on a specific application domain, the

collaborative visual programming and the IoT automations through visual

programming. The related work is organized in three areas: visual programming

workspaces, extension mechanisms of IDEs, visual debuggers in the context of end-

user development, collaborative programming and code snippets.

2.1 Visual Programming Workspaces

There are several visual programming approaches the past two decades. In this section

we outline the most current or remarkable approaches.

2.1.1 Block-Based Languages

The most popular category of graphic artifacts for the visual programming languages

are the jigsaws. This technique is based in the traditional jigsaws which all people has

already experienced during their childhood and beyond. Each jigsaw has mapped with

correspondent functionality of the visual programming language. Alternatively, this

approach is called as block-based languages. There are several approaches of visual

programming languages based on this technique. One of the most popular approaches

is the Scratch [26]. It is a web-based application and online multimedia authoring tool

that can be used by end-users to program their own interactive stories, games,

animations and simulations. Additionally, Scratch gives the ability creations can be

shared [27]. Inspiring from the work of Scratch, several research works have been

developed such as Phratch [28], Snap! [29], etc.

58

Another approach that resembles Scratch is the Blockly which is a project of Google

[30]. Blockly uses blocks that link together like a puzzle in order to make writing code

easier. It can generate source code in JavaScript, Python and Dart [31]. Using Blockly,

people learn about coding and logic of programming. In the same context, yet another

approach is the App Inventor Blocks Editor which is specialized for the development

of the logic of applications for devices running Android [32].

In the context of robotics, the Lego Mindstorms is another approach that uses blocks

too [33]. Lego Mindstorms blocks’ has been mapped in a higher level of functionality

than Blockly and are specialized in the concept of robots that can be programmed by

youngsters. This visual programming approach combines block-based programming

with flow-based programming we discuss in the following paragraphs. An approach

which resembles with the MindStorms is the MODKit [34]. MODKit product provides

two versions of products, the first is related by micro controllers and the second is

related by robotics. Moreover, an extension of Scratch is named as mBlock [35] and

focuses on the end-user development of Arduino and robotics.

Yet another approach uses block parts is Tynker [10] and is targeted for children.

Using Tynker, kids educated on programming web applications, building custom

games, interfacing with hardware (e.g. program motors, LEDs, speakers etc.),

drawing math art etc. In addition, students which use it, are able to learn fundamental

programming concepts. This arises from the included ability coding visually or to

write JavaScript source code and viewing in parallel the results of blocks and vice

versa.

In addition, there is yet another authoring tool which is based on blocks [36]. This

authoring tool focuses on the development of mobile services. The interesting with

this approach is that provides to users the ability of the choice between two levels of

programming. The first level of programming is for beginners and it is based on

programming with questions. The second level is based on blocks. All above

approaches using jigsaws for visual programming run either as a desktop application

or as a web application. Additionally, in literature there is a framework called Puzzle

which supports a visual based environment for opportunistically creating mobile

applications [37].

59

In addition, there are two approaches which use their own technique for visual

programming. First approach belongs to the Microsoft Research and is called

TouchDevelop [38]. Using TouchDevelop, end-users can develop in their mobile

devices [39]. Through TouchDevelop, applications can be created to access data,

media, and sensors on smart phone, tablet or PC. End-Users could program without

coding technology, but only by touch predefined statements and expressions to

express logic. Touchdevelop uses tree view of steps that define windows, events, logic

source code and in parallel provides advices in order to help user understand which

have to be the current and next step of development. Microsoft retired the Touch

Develop platform in June 2019. However, Microsoft continue research in the world of

visual programming by introducing the MakeCode which focuses on two different

directions, the game development of Arcade [40] and the MakeCode editors [41]

which focus on the educational part through programming via blocks.

An alternative visual programming approach is called Thyrd [42]. Thyrd is a VPL that

both data and code are stored in cells. Thyrd is an attempt to reduce the spreadsheet

programming model to its minimal aspects by focusing on a small set of central

concepts.

2.1.2 Flow-Based Languages

Another category of visual programming languages is the flow diagrams. There are

icons with high level functionality as in the aforementioned VPLs based on jigsaws,

but there is the concept of design flow diagrams. One of the approaches following the

concept of design flow diagrams is the Microsoft VPL [43]. This VPL is specialized

for building robotics applications. It can be used by both professional and non-

professional developers. In this direction, a research work which is related with

robotics and IoT is the research work of VIPPLE [44]. Another of robotics kit is the

ROBO Pro [45]. This approach is specialized for robotics as toys for children. The

robotic process control is based in the design of flow diagrams. In the concept of flow

diagrams there are several approaches which are specialized on education such as

LabVIEW [46], Flowgorithm [47], LARP [48], Raptor [49], Visual Logic [50] etc. All

these languages are targeted on learning the concept of programming using designers

in order to construct flow diagrams and execute them by correspondent interpreters.

60

Another approach for flow-based visual programming tools is Rete [51]. Rete is a

JavaScript framework for visual programming by enabling the developers to build

flow-based visual programming languages based on their requirements as the Blockly

library accomplishes in case block-based visual programming languages.

2.1.3 Game Development Visual Programming Editors

Another category for visual programming is in the area of game development

editors. Using this kind of authoring tools, end-users can design virtual worlds using

predefined actors and objects. Such software tools are used for end-user development

of customs games. One very well-known approach is Kodu [52] from the Microsoft

research. Kodu provides numerous words and character artifacts that can be used in

order to design a game. Furthermore, in this context, there are several approaches

such as Construct 2 [53] developed by Scirra, GODOT [54] developed by OKAM

Studio, GameSalad [55], etc. Moreover, AgentCubes [56] is an educational

programming language for children to create 3D and 2D online games and

simulations.

2.1.4 Visual Programming Approaches for the IoT

HomeKit [57] is product from Apple allowing control connected home accessories

when compatible with HomeKit, and supports to a certain degree user-defined

automations as combinations of accessory control actions. It is not an end-user

programming system as such, and focuses mostly on smart home solutions with

emphasis on advanced configurations. Puzzle [58] is a visual development system for

custom automations with smart objects in IoT adopting the jigsaw metaphor.

Extending the App-Inventor, the developed blocks ‘When’ for sensors in the context

of IoT [59][60]. Another approach is the Smart Block [61] which is based on Blockly

library. The Smart Block is a visual block programming language for Smart-Things

IoT application development. This approach is based on the IoTa calculus by creating

new custom blocks for ECA rules, events, conditions, and actions. Additionally,

Node-Red is a visual tool developed for wiring IoT centric applications. Moreover,

NETLab Toolkit [63] is a flow-based programming approach in the context of the

Internet of Things, providing a simple web interface to connect sensors, actuators,

media, and networks associated with smart widgets.

61

2.1.5 Discussion

Existing visual programming workspaces are missing a full-scale end-user

development toolset, while most of them are limited on specific application domains.

In case of visual programming approaches for the IoT automations, existing

approaches are limited on full-scale workspace environment for visual programming.

Particularly, they are limited on programming expressiveness (i.e. provided

conditional events are limited on basic expressions, while there is no approach that

deals with time and calendar events). Additionally, there is no provided full-scale

management of smart objects. Moreover, there are not adequate runtime environments

for smart automations in the context of visual programming workspaces. Furthermore,

there are not visual end-user development facilities that empowers the novices in

order to test and debug their creations.

2.2 Extendable IDEs

To our knowledge there is no visual programming IDE which is extendable in the

context of plugins or application domain frameworks enabling configurable and

adaptable components in which the developers can develop and author their visual

programming workspaces for specific application domains. However, most of classic

IDEs are extendable in the context of developing plugins by providing infrastructure

which enables the developers to incorporate their plugins such as IntelliJ [64], Eclipse

[65], Visual Studio Code [66], etc.

In the context of programming frameworks which are able to be hosted as plugins in

the IDEs there two approaches. Eclipse IDE supports hosting of application domain

frameworks. A representative example of developed frameworks is the Eclipse

Modeling Framework (EMF) [67] which a modeling framework and code generation

facility for building tools and other applications based on a structured data model.

Another IDE supports the domain-specific development framework is the Sparrow

IDE [68]. An example is the Game Maker 1.0, being a domain-specific application

development environment for cartoon-like games.

2.3 Tools for Debugging in End-User Programming

There are errors which arise during the development process and programmers have

to resolve them by using debugging methodologies and strategies. Some of the

62

techniques used by professional programmers have been adapted in the end-user

development tools. In the context of debuggers for end-user programming, research

work attempts to elicit the way end-users think in the case of correcting an error

[69][70]. Furthermore, another research study analyzes possible gender-based

differences that may exist in the debugging strategies that end-users following in

order to eliminate errors [71]. Moreover, a study [72] demonstrates that end-user

debugging process is more efficient through pair collaboration. In addition, a study

[73] investigates the debugging process that early childhood preservice teachers used

during the process of block-based programming. This study reports the types of errors

commonly made and how teachers debugged them.

In general, most of the approaches to end-user debugging are based on analyzing

dependencies. There are several approaches that attempt to help users in the context of

finding errors in spreadsheets. ExceLint [74] is an approach that uses static analysis

for Microsoft Excel. UCheck [75] is an approach for spreadsheets that applies type

checking in order to detect errors automatically. UCheck automatically infers the

labels associated with cells and uses this information to carry out consistency

checking of the formulas. Another approach uses a combination of spatial and

semantic label analysis aiming to improve the rate of detected errors [76]. StratCel

[77] is an Excel add-on that improves the process of finding errors. Participants using

it, found twice as many bugs as participants using standard Excel, they fixed four

times as many bugs, and all this in only a small fraction of the time. Another

approach, GoalDebug [78] lets the end-user set the correct expected value of a cell,

then generates a list with all possible solutions and suggests them to the end-user in

order to choose the correct one.

In the case of debugging in visual programming workspaces, the first approach

proposes an interrogative debugging interface for the Alice programming environment

[79]. This approach [80] is a debugging paradigm in which end-users are able to ask

why and why not questions about their program’s run-time failures. In addition, there

are approaches which adapt classic visual debuggers to debuggers for visual

programming languages. MakeCode [81] incorporates a visual debugger which offers

watcher view for variables, step-in, restart and slow-motion step execution actions.

Starting the visual debugging process, MakeCode’s view mode changes by turning

63

from editing to debugging mode (i.e. the visual code blocks turn in read-only mode

and their view changes by adding ‘holes’ to enable adding breakpoints functionality

etc.). Also, Tynker [10] has developed a debugger tool [82] which includes start,

pause and resume actions, while stepping is allowed only by using breakpoints. The

breakpoints are inserted in the visual code by adding specific breakpoint blocks that

have been defined. When the program runs in a different mode (i.e. release mode), the

breakpoint blocks remain present but are ignored.

In the context of Blockly Library, there are two approaches of debugging. The first

one is a demo approach [83] for Blockly which provides only step execution of the

program without functionality for watching variables, breakpoints etc. The second

approach provides a full-scale visual debugging toolset for Blockly, working over

blocks, supporting the full-range of debugging features [84].

2.3.1 Debugging and Testing for IoT automations

Moreover, in the context of end-user programming for the Internet of Things,

EUDebug [85] is a system that enables end-users to debug trigger-action rules that are

composed in a web-based application like IFTTT [86]. Additionally, My IoT Puzzle

[88] is a debugging approach for IF-THEN rules through the jigsaw metaphor. Yet

another approach that supports end-user debugging of trigger-action rules for IoT

smart automations is [87], providing answers to why and why not questions

considering the execution of the rules.

However, in the context of visual programming there are not approaches to test and

debug the automations. In this context, we developed a simulator which is able to

simulate smart object actions, simulate the behavior of smart object during the project

execution. Additionally, simulates the time, date and enables the end-users to author

tests of expected values of the smart object properties during the project execution.

Using this, the end-users are able to debug and test their applications without

communicating with real devices.

There is no existing tool that provides infrastructure in order to debug smart

automations in the context of visual end-user programming. However, there are

research approaches and experiences in case of professional developers. Particularly,

debugging IoT control system correctness for building automation experience is

64

presented on [89]. Additionally, a framework for debugging IoT wireless applications

[90] has been developed.

Additionally, simulators have been developed for debugging purposes in case of

processors such as Simulics Platform Simulator [91]. Additionally, there is approach

of a versatile emulator for the identification of vulnerabilities of IoT devices [92].

Moreover, an emulator has been developed in the context of debugging service

programs in Ad Hoc networks [93].

2.4 Collaborative Programming Workspaces

One of the cases that collaborative debugging is notably useful is the collaborative

programming of applications. There are several collaborative programming

approaches for software integrated development tools and end-user development

tools. Collaborative spreadsheets with concurrent cursors (i.e. one cursor per

member), such as Google Docs [94], and Office Online [95] constitute one of the most

popular approaches.

2.4.1 Collaboration in Text-Based Programming

In the case of software developers, the collaboration process is mainly based on

version control systems such as Git [96] and SVN [97]. The developers work locally

on different replicas of the project and merge their changes in the repository.

However, during the development process, conflicts may appear and the programmers

have to resolve them. In addition, each programmer has to set up the workspace in

order to participate in the collaborative project. Moreover, visualization tools have

been developed for the history of changes and handling them e.g. Bellevue [98] as an

IDE extension and Sourcetree [99] as an independent software tool.

Furthermore, in the case of text-based programming, real-time collaboration features

have been developed for IDEs. As previously mentioned, Visual Studio and Visual

Studio Code enable developers to collaborate in real-time through Visual Studio Live.

Using this tool, the developers have concurrent cursors and are able to edit the

project’s source code in parallel. Collabode [100] is a web-based IDE for Java that

supports real-time collaborative editing through concurrent editors, isolating the error

report only for their own changes. Moreover, Codiad [101] is another web-based IDE

that supports real-time collaborative editing via concurrent cursors. Jimbo [102] is a

65

collaborative IDE that attempts to provide better collaboration and communication

between designers and developers.

Also, Saros [103] is an open-source plugin-in for IDEs which offers distributed

collaborative editing and pair programming. This plugin has been incorporated into

Eclipse IDE and has recently been added to IntelliJ. In addition, another plug-in that

has been developed for Eclipse is Ripple [104]. This plug-in enables the students to

collaborate for educational purposes, incorporating a chat software tool for

communication.

Furthermore, plugins for remote collaboration have been developed for text and

source code editors (i.e., RemoteCollab [105] for SublimeText [106] and Teletype

[107] for Atom [108]). Moreover, Codeshare [109] is an online code editor that is

used for sharing code in real-time with developers and incorporates a video call

software for communication purposes.

2.4.2 Collaboration in Visual Programming

In the case of visual programming, full-scale collaboration facilities are missing.

However, approaches of collaboration for visual programming tools have appeared.

An extension of App Inventor [110] that supports collaboration using concurrent

cursors has been developed. Additionally, there is an approach for collaboration in

Scratch that includes a shared stage screen in which each child develops one animated

character and then merges it with the other animated characters in the shared stage of

the application [111]. An approach of co-located collaborative block-based

programming [112] has been developed for exploring block-based programming in a

cross-device environment consisting of digital tabletops, mobile tablets and laptops.

Furthermore, an approach in TouchDevelop [113] focuses on a merge algorithm

which is conflict free, thanks to reasoning on changes at the level of AST [114].

Moreover, extending Alice Framework, there is work that enables interaction and

collaboration among students [115].

2.5 Collaborative Debugging

In the case of developers, there are approaches to integrated development

environments (IDEs) for collaborative debugging. Visual Studio and Visual Studio

Code enable developers to collaborate in real-time by using Visual Studio Live [116].

66

In this context, Visual Studio Live enables collaborative debugging features by

communicating with the debuggers that are provided by Visual Studio. IntelliJ with its

plugin, Code With Me [117], is another IDE that has recently released collaborative

programming features. In addition, CloudStudio [118] is a web-based IDE that

supports collaborative software development on the web [119].

2.6 Teaching and Learning Tools for Debugging

Debugging is one of the most important tasks of the programming process. However,

it is also a challenging task from which novice programmers can learn. In this context,

there are research studies that attempt to teach the debugging process and improve the

debugging skills of novices. There are several approaches which aim to facilitate them

by using game-based applications. RoboBUG [120] aims to help students learn

effective debugging techniques by playing a puzzle-type game, focusing on students

who are learning to debug for the first time. G4D [121] is another approach which

aims to teach debugging to novice programmers through interactive games. Ladebug

[122] is an online software tool that aims to help novice programmers to improve their

debugging skills. Using Ladebug, students follow a structured debugging process to

find and fix errors in predefined exercises. Furthermore, Gidget [123] is an online

debugging game for learning.

Moreover, a study [124] proposes a teaching model for learning debugging by

designing worksheets to guide students on how to apply debugging strategies in order

to find errors and correct them. ViDA [125] is a virtual debugging advisor that

supports students' learning. CMeRun [126] is a software tool that enables the user to

see each statement in a program during execution. Backstop [127] is a software tool

that provides extra debugging features and attempts to be user-friendly in order to

facilitate novices to understand run-time errors and correct them.

Furthermore, DESUS [128] is a tool that aims to support beginners of programming

by providing them guide for tracing which benefit them to better understand the

behavior of their programs. Additionally, LondonTube [129] is a visual programming

language that blends dataflow and actor-based programming paradigms. An IDE

plugin [130] aims to show where in the code the computation breaks down and help

the programmer to understand why the code is not working.

67

2.7 Code Snippets

Code snippets are templates that make easier to enter repeating code patterns, such as

loops or conditional-statements. In the context of visual end-user programming there

are not approaches. However, in case of software development there are several

approaches in different languages and IDEs. For example, in Visual Studio Code there

is support of code snippets that appears in IntelliSense [131]. Wing Pythion IDE

supports code snippets too [132]. Moreover, IntelliJ supports code snippets

mechanism through plugin which is called TagMyCode [134]. In addition, there is

study of providing better code snippets by exploring how code snippet recall differs

with programming experience [133].

68

69

Chapter 3

CORE SYSTEM

“The formulation of a problem is often more essential than its solution, which may be

merely a matter of mathematical or experimental skill.”

- Albert Einstein

Using the Blockly library, we have developed a full-scale IDE for visual programming

languages (VPLs) on the top of it. Our approach is focusing on an open IDE for

Visual Programming Languages by not limiting it on a specific application domain

and aiming on extendibility of new end-user visual programming features. In this

chapter, we present the IDE’s core system; outlining the software architecture, the

functionality for extending the IDE’s application domains, the communication with

third party applications and the core components of the system.

3.1 Software Architecture

Blockly Studio IDE is a web-based IDE, including login system where someone signs

up for the IDE using their credentials, namely their email and password. The projects

are retrieved based on the account privileges. The projects are saved, shared and

loaded by the back-end of the Blockly Studio; written in Node.js and its MongoDB

data base. The backbone of the IDE follows a component-based infrastructure

enabling components to be added or removed via a centralized components registry.

Components can be activated or deactivated on-the-fly while the IDE is running. Each

component is independent and communicates with the IDE via an extended custom

version of the Blackboard pattern that has been developed as depicted in Figure 3.1.

For each of the component plugins is required to export which is the functionality is

provided and which is the required functionality in order to be hosted in the IDE. In

addition, each component has to define which are the messages (i.e. signals) that will

be sent potentially during the execution, as well as the messages that will be listened.

Defining this information, the system validates and warns in case something goes

wrong with the communication among the registered components of the IDE. These

70

validity checks are applied during the build-time of the IDE and concern the static

dependency analysis of the components’ communication. However, there are cases in

which the components’ dependencies are changed dynamically during the run-time.

As a result, there are components which are not able to define total messages will be

exchanged and the whole exchanged functionality that will be required and exported

during the execution. In this case, the IDE enables a component to define that will be

included communication by exception.

Figure 3.1. The component-based infrastructure of Blockly Studio; IDE’s component infrastructure for

the UI view and the component functionality is required (top-left).

The infrastructure of each IDE Component (see top-left of the Figure 3.1) is based on

two main parts: The Component Base Class and the View. The View handles the user

interfaces that are hosted in the system (i.e. rendering HTML from Lodash templates,

applying the style from the defined CSS and attaching the events). Moreover, the

View handles everything related to attach and detach the events that are declared for

the template on render and on close action respectively. The IDE Component Base

Class cares about the export and import of the functionality and the messages that will

be exchanged between the IDE and the component.

71

3.1.1 Shell

The IDE’s core component is the Shell component that registers in the system and

then undertakes the hosting of the rest IDE UI components. It consists of three user-

interface parts, the menu toolbar, the workspace toolbar and the main action area of

the IDE. In this context, UI components could define their menu items, their area for

the tool items (available when components are active) and their configurable settings

for allowing adaptation to the end-user’s needs. Moreover, in the main action area one

or more UI components are hosted depending on the circumstances. Starting the IDE,

the Shell component installs the “Menu toolbar” component. Afterwards, the “Start

Page” component is initiated in the main action area by which users are able to

browse and handle their projects (see section 3.3). In the following sub sections, we

analyze each of these parts of the IDE.

3.1.1.1 Menu Toolbar

Each component that is registered to the IDE requires declaring menu options. These

options will export functionality that will be available to the users. In this context, the

top user-interface part of the IDE constitutes the menu toolbar which is registered as a

UI component of the IDE. The components have the access control of the menu

options of the toolbar by using two methods.

Figure 3.2. IDE's menu toolbar including the logo of the IDE and menu items which are declared by the

registered components.

The first method deals with the static definition of the menu items that would like to

be inserted on loading time of the IDE (see Figure 3.2). In particular, each component

can include a JSON file that will define which are the sub menus, menu options and

separators would like to be presented on the IDE starting it. In this context, JSON file

72

includes definition of the location (i.e. path) in the menu toolbar for each sub menu

and menu item, their labels, their icon images (optional) and their tooltips (optional).

The second method relates to the dynamic editing of the defined menu items,

separators by the components. This method is provided by the functionality which is

exported by the menu toolbar as an IDE component. Using the exported API, the

components could enable, disable, add, edit, remove menu items in which they are the

owners based on their functionality.

3.1.1.2 Workspace Toolbar

Moreover, each component that is registered on the IDE, requires to declare their tool

items which will be available in the end-user development time. In this context, the

workspace toolbar is initiated below the menu toolbar when the visual programming

workspace area is initiated. Thereafter, each component which is instantiated on the

workspace, defines their tool items by including the icon, the tooltip and the function

handler that will be fired on click the tool item. In addition, the components could

define the order which tool items will be added among the components. This order

number works similar to z-index in CSS, which means that in case there are tool item

groups defined by components with same order number, first request gets previous

location versus the next request. Additionally, the API enables functionality to handle

the tool items by providing actions add new items, edit, remove, disable etc. Closing a

component during the end-user development process, the workspace toolbar

component is notified in order to detach the event handlers of the tool items and

remove them from the toolbar view.

3.1.2 Configuration Management

The IDE provides configuration management in order to enable the end-user

developers to personalize their workspace based on their preferences. The

configuration preferences are separated into two categories. The first category is the

global view preferences of the IDE (e.g., dark/white/colorful view mode, font

preferences, etc.) and the second category which includes the configuration parts of

specific components. In the first category, the components that are registered on the

IDE have to support the style for each of the view modes by defining which UI part(s)

of the components correspond to the view choices. Using these declarations, the

73

configuration management handles the whole IDE presentation (i.e. all IDE UI

components).

In the second category, the configuration management provides functionality of

configuration control for the personalization of each one of the built-in components

and the pluggable components that may be added later. For each one of the registered

components, the configuration management inserts a menu option which enables the

user to choose in order to configure them. When one of these menu options are

chosen, a dialogue opens which consists of three parts: the title which defines the

component that will be configured, the configuration contents and the actions (i.e.

save, reset, cancel).

Figure 3.3. Dialogue of the Configuration Management to configurate the dialogue parts of itself.

74

In the context of the component’s configuration contents, each component defines the

configuration parts that are supported by them by listing them in a JSON file. Each of

the list items includes the property title and the property value of the configuration. In

this context, the configuration management supports specific UI types for the values

of the configuration parts. Based on these types, the configuration management

generates a dialogue which includes the user-interface of the configuration for each of

the components. Moreover, the configuration management undertakes to save or reset

the preferences of the user. Additionally, the configuration management as component

of the IDE defines its configuration including the background color, the font of the

title and the contents of the configurations dialogue as depicted in Figure 3.3. In the

following sub-sections, we analyze the value UI types that are supported for the UI

code generation of the component’s configuration parts. Each of them inherits

Property View which inherits the aforementioned View infrastructure. The Property

View undertakes the functionality of collecting and retrieving the values of each

property when a configuration dialogue closes and opens respectively.

3.1.2.1 Basic Property Views

The first category of values for the configuration properties are the basic property

views, including number, color, percentage, text, text area, date, checkbox, image and

file. These basic types are following the input HTML tag; introducing default values,

placeholders, min. max, step values, etc. depending on the input type. Moreover, in

case of images and files, there is an extra view for the values that are selected. In the

case of a file, a link with the name is presented, while in the case of an image, a

preview of the image is depicted. Using these property types, the developers are able

to define the property values of basic configuration parts for their components.

In addition, for each of the basic property types, it is provided to define messages that

will be presented in case user selects specific values for the properties. In particular, a

list of set with a Comparator function and the warn message could be defined for

each of the property value types. The Comparator function is defined as a handler in

the “onChange” event of the property value. In case it evaluates to true, the message

will be shown, otherwise the message will be hidden.

75

3.1.2.2 Select Property View

The second category of values for the configuration properties are the ENUM property

view type or the select property view alternatively in the context of HTML tags. There

are cases in which the users have to choose one option among a list of values (e.g.,

IDE view: dark, white or colorful mode). Furthermore, for a better organization of the

options in a select property view, our approach supports grouping options. Moreover,

options could be images instead of texts.

Figure 3.4. Dynamic extra number property value appears on selecting the option 'number' for the

HTML font size select property value.

Additionally, we have introduced a dynamic select property view which includes

extra property views on selection of specific values. For example, in case of the CSS

font size there are options which include more property value such as the number (see

Figure 3.4), rem and percentage. The extra property value type could be one of the

aforementioned basic property views, select property view or dynamic select view as

well. Finally, potential notification and warning messages could be defined to be

presented in case of specific circumstances as in case of basic property views.

76

3.1.2.3 Aggregate Property View

The third category of values for the configuration properties is focusing on supporting

the definition of more complicated types by grouping a list of property views. An

aggregate property view includes the group title and the list of pairs property name,

value. The property values could be basic property view, select property view or

aggregate property view as well. The ingredients of the aggregate property view are

contained on a UI box.

A common deployment of the aggregate property view that we have developed and

introduced as an independent property view type is the “Font Property View” which

supports the HTML font style including family, text color, size, weight and style as

the list of the inner properties (see its use in Figure 3.3).

Based on the aforementioned property view types are supported and the features are

included, the developers are able to define any property value for the configuration

parts of the components.

3.1.3 Communication with Third-Party Applications

As we have showed earlier, Blockly Studio follows component-based architecture in

which components communicate through an extended blackboard pattern including

support for “Function Requests”, “Function Responses”, and exchange messaging

through “Signal Post”, “Signal Listen” actions. In this context, the developers are

able to add components as plugins in the IDE. However, this communication is

limited on the components which are registered and running in the context of the IDE.

There are components that could require to run in an independent context in order to

prevent freeze the rest IDE UI functionality during their operations such as the IDE’s

run-time environment. Additionally, independent third-party applications may

interoperate with the IDE as plugins. Moreover, conflicts could be identified among

the components in the context of CSS rules. In this context, we extended our approach

in order to enable hosting of third-party applications that will run in different runtime

context from the IDE. In this direction, we have extended the aforementioned

communication of components in order to support communication among components

of individual applications.

77

Third-party applications of a JavaScript application that runs in the same domain are

hosted in IFRAME tags. The applications communicate by exchanging messages

through the provided “window.postMessage” function [135]. Using pure exchanging

messages approach, the provided functionality of components requires extra

development in order to support listen and receive messages, coding and encoding in

order to accomplish the requests. However, following this approach, each one of the

provided parts has to deal with this requirement in the side of IDE and in the side of

the third part applications. Moreover, in case communication between third-party

applications which are hosted by the IDE is required, this could not be carried out. In

this context, we have built an extra layer for the communication among third-party

applications and the IDE.

Figure 3.5. Extension layer for the Blockly Studio communication with third-party applications.

Extending the components communication, we have added an extra optional field for

the function requests which included the third-party application name in case the

request is not addressed for a local IDE component. In this case, the components

communication forwards the function request to the third-party applications

communication infrastructure. This infrastructure (see Figure 3.5) handles the

communication of components by converting requests for a component (i.e. function

request/response, post/listen signal) to messages by pinning unique ID and inserting

appropriate function callback by using this unique ID to the requests’ communication

map. In case, there is response of the function request, this function callback is

78

utilized in order to communicate with the respective component which sent the

function request. Moreover, the infrastructure undertakes message exchanging by

decoding received messages from other applications in order to apply the requests for

components or handle responses from other applications.

The aforementioned infrastructure is able to be used in both sides (third-party

application and the IDE). Using it in the third-party applications, each application is

responsible for the development of the dispatcher that will handle their

communication locally for their components. Additionally, the infrastructure for

communication of third applications supports the signals mechanism that is provided

by the components of the IDE. In this context, the third-party applications have to

undertake the definition of which signals are listened and their handlers, use the

mechanism to post signals (if exist) to the IDE.

Figure 3.6. Communication among third-party applications and the Blockly Studio.

In addition, the IDE supports serving of the communication among third-party

applications by playing the role of router in the function requests that are received and

that are not addressed to the IDE. In particular, every message request is received by

the IDE is decoded and routed either in the component communication of the IDE or

it is forwarded to the respective third-party application by playing the root node of the

communication among the applications as depicted in Figure 3.6.

79

Using our communication approach, the developers are able to extend the IDE’s

functionality by developing either new components and glue them as plugins (see

bottom-left of the Figure 3.1) or new independent applications that will be injected in

IFRAME. However, this is not adequate to support end-user development for different

domains. The components of the existing visual programming workspaces are

restricted on one specific application domain. In the following paragraph, we analyze

our approach for the infrastructure of the IDE in order to set up and extend it

developing new application domains.

3.1.4 Openness and Extensibility

As mentioned earlier, IDE is following component-based architecture by using an

extended version of the blackboard pattern for the communication of components.

Particularly, each component publishes the exported functionality by using

precompiled customized annotation tags of the IDE that are developed by using

decorators that are provided by TypeScript. All the defined functionality is able to be

used by all installed IDE components. Moreover, each component defines the

functionality that is required and has to be provided by the IDE from other

components. During the compilation process, IDE collects defined functionality that

is exported and required, then checks if required functionality is provided. Moreover,

system checks their validity at runtime (i.e. asserts in case there is call request of

functionality which is not defined).

All components communication for the IDE is handled by the blackboard pattern. In

particular, the blackboard pattern has information about all the components provided

and required functionality in the context of using it as a plugin. The blackboard

pattern provides the functionality which is able to be used by the components in order

to request a function (i.e. ComponentsCommunication.functionRequest

(destComponent: string, funcName: string, args: Array<any>)). In

this context, before apply the requests, starts with the validation checks of the

communication. Moreover, the components are able to define which is the

functionality that they are interested when happens from another components. In this

case, the components which perform this functionality are responsible to post signals

of the functionality with respective data

(i.e. ComponentsCommunication.postSignal (signal: string, data:

80

any)). Components that are interested for the functionality of other components are

responsible to define that they listen their signals by developing the respective

functionality they would like to be executed (i.e. callback). In this case, when a signal

is posted, the blackboard pattern is responsible to broadcast the signal to the interested

components that have been registered in the IDE. An example of basic signals which

is listened by different components is the ‘PROJECT_ELEMENT_CREATED’,

‘PROJECT_ELEMENT_DELETED’ and ‘PROJECT_ELEMENT_EDITED’ that are

posted by the project manager when respective actions are performed by the end-

users. These signals are used by the domains management component in order to care

about the update process of the respective visual programming language elements, the

collaboration component in order to care about the broadcast updates of the project

manager to other peer members of the shared project.

The developed components communication mechanism is extended in order to notify

the developers about the provided and required API for each one of the registered

components. In particular, the developers are able to request the API for one or more

components that are registered in the IDE (i.e.

ComponentsCommunication.consoleLog(compName: string)). Using this

functionality, the developers are able to be informed about the API for each one of the

communication components and they are able to test their component’s API. In this

context, they are able to add new components or even replace existing IDE

components with others just by implementing their functionality. Incorporating

components to the IDE, developers have to program the glue code which defines the

aforementioned requirements of the functionality and the exported API which is

provided by the component which has to be written in Typescript in order to use the

annotation compile time tags. Moreover, the IDE components which include user-

interface has a selector of empty DIV that is hosted.

3.2 Extension Mechanism for Application Domain

Frameworks

As we have already discussed, the visual programming workspaces are limited on one

application domain. Additionally, new application domains are arising, existing

application domain (e.g. games, learning, IoT, etc.) requirements for visual

programming are fluid and third-party technologies are updated continually,

81

constantly changing requirements for developing new IDEs for visual programming

languages. However, the process of developing an IDE for visual programming

languages offering a full-scale end-user development toolset for each new application

domain, is not trivial process and is extremely expensive.

In the case of the developers, the setup for an application domain in the IDE (i.e.

installing and using third party libraries, editors, models etc.) is handled by them. For

example, using user-interfaces for applications requires a GUI library and maybe the

use of an What You See Is What You Get (WYSIWYG) editor. Developers are able to

setup the environment of the IDE by installing appropriate libraries and tools based on

their requirements. This task is not able to be done by the non-programmers.

Our approach enables the developers to setup the visual programming environments

for application domains on the top of Blockly Studio. In this context, the developers

will be able to author application domains based on the requirements of the end-user

developers, consolidating domain third party libraries, visual programming editors,

etc. (see Figure 3.7). Blockly Studio supports the development of application domain

frameworks by providing the following features:

Figure 3.7. Making application domain-specific frameworks for visual programming on the top of

Blockly Studio.

82

• As have already mentioned, extensibility mechanism to add new IDE

components (e.g. Domain-Specific Visual Programming Language Editors,

etc.).

• Adaptable and/or extendable core components of the IDE (e.g. Project

Manager, Runtime environment etc.) that provide full-scale functionality and

enable adapting them based on the application domains. Additionally, the

ability to overwrite them by developing new components with relevant

functionality.

• Authoring of the application domain project structure with automatic loading

and handling of the project elements.

• A mechanism that handles the end-user development dependencies between

the visual programming language elements automatically by cooperating with

domain-specific editors (e.g. WYSIWYG editor) and the general-purpose

visual programming editors (e.g. Blockly editor) in order to provide the

appropriate visual programming elements (e.g. Blockly blocks) for the end-

user development of the domain-specific elements (e.g. UI widgets).

• Reusing whole (or parts) of the developed application domain frameworks.

For example, an application domain framework for mobile applications,

including GUI library and WYSIWYG editor. The part of GUI can be reused

for the application domain of smart automations in the IoT.

Authoring the application domain visual programming frameworks, developers will

be benefited from the full-scale end-user development toolset, while they will be able

to extend it by developing new features for end-user development. In the next

chapters, we analyze the end-user development features and the infrastructure for the

development of an application domain framework in Blockly Studio.

3.3 Browsing and Handling Projects of the Application

Domains

Loading the Blockly Studio IDE, the start page presents the applications which have

been developed by the user. This page is separated on three different parts (see in

Figure 3.8). In the first part, the user chooses which of the application domain is

interested by a drop-down list, while in the second the user views the information of

the domain application (i.e. image and description). In third part of the start page, it is

83

presented the applications have been developed in the application, the user is given

the option to create, open, delete, version, share an application, get a replica or join a

shared application. On choose the application domain would like to view, the last two

parts of the user interface are refreshed automatically. Moreover, when one

application domain is added, edited or removed for the Blockly Studio IDE, the drop-

down list is updated.

Moreover, the domain author is able to configure the dialogue in which the end-user

developer uses in order to create new applications based on the requirements of the

application domain. Using the automatic user-interface generation which developed

for the configuration system (see section 3.1.2), the Blockly Studio IDE interprets the

domain defined parts. Additionally, the domain author is able to configure the header

title of the create project dialogue (see Figure 3.9). The extra defined information that

the end-user developers fill-in is able to be used by the workspace components which

are configurable based on the application domains such as the Project Manager, the

Figure 3.8. Having choose the application domain ``Smart Automation in the Internet of Things" at

the Start Page of the Blockly Studio IDE.

84

Runtime Environment, etc.

Figure 3.9. Configuring the dialogue to create new application based on specific application domain.

3.4 Sharing and Versioning

As discussed in previous section, the “Start Page” component give access in a set of

actions. Three of these actions are addressed by the “Start Page” component itself,

while other actions are requested to be addressed by other components. The first

action is addressed is deletion of an application. The other two actions are the creation

version of an application and sharing an application. We are going to describe in

details these actions in the next two paragraphs.

End-users would be able to re-use existing applications developed by them or by other

end-users and may be inspired by them. In addition, various applications need

versioning so as to restore previously saved applications, make new ones or even use

them interchangeably due to circumstances. Furthermore, each end-user develops

several applications for different requirements. For example, the end-users could

develop automations for other persons, but also, they could design automations for

their personal requirements. Based on these requirements, our approach provides the

end-user with the ability to define groups of applications. Also, the end-user is able to

create new version(s) of the developed automations in order to apply the required

changes and at the same time maintain previously developed version(s).

In addition, our approach supports sharing of applications. Upon starting the use of a

shared application, a replica is created in the end-user’s environment. Sharing

functionality is supported by several visual programming workspace approaches (e.g.

TouchDevelop [136], Scratch [26], etc.). However, there are application domains

85

which require extra development steps. For example, in case of the visual

programming applications involving smart objects require an extra step. In particular,

the first development step of a new application for the end-users is to define which of

the registered smart objects will be involved. As a result, the first (i.e. extra)

development step for shared applications is the replacement of the smart objects

which participate. In Chapter 9, we discuss the handling of loading shared

applications in case of Internet of Things automations in section 9.1.3. Moreover, this

issue is appeared by other application domains that are focusing on the end-user

development of devices in general (e.g. mobile phones, Arduino, sensors, robotics,

etc.).

86

87

Chapter 4

Editors

"To the designer of programming languages, I say: unless you can support the

paradigms I use when I program, or at least support by extending your language into

one that does support my programming methods, I don't need your shiny new

languages."

-Robert Floyd

Basic weapon for developing source code by using programming languages

constitutes the text editors. In this context, important features have been added to the

advanced text editors and editors that are incorporated to IDEs, including invalid

syntax highlighting, specific color in programming keywords, source code folding-

unfolding, source code autocompletion, etc. These features do facilitate the

professional programmers to develop their projects. However, critical skills and

programming knowledge is required in order to develop applications. In case of non-

programmers and programming learners, visual programming editors have been

developed in order to encourage programming applications without syntax

knowledge. In particular, coding by avoiding text-based programming and promoting

visual-based programming which is categorized into icon-based languages, form-

based languages, and diagram languages. In the context, of an IDE for visual

programming languages, there are two different types of visual programming editors.

The first category is first category is the general-purpose editors which supports basic

programming operations and the second is the domain-specific editors which are

specialized on application domains. In the following two sections, we analyze these

two categories that are appearing in our IDE.

4.1 General-Purpose Visual Programming Editors

The first visual programming editor category is the general-purpose visual

programming editors. These editors empower the end-user to develop basic

programming expressions including variables, assignments, mathematic and logic

88

operations, branches, loops, data structures, function definitions and calls. The

general-purpose visual programming languages could be used in the programming

independent of the application domains. There are two basic approaches of general-

purpose visual programming editors: the block-based editors or jigsaws (e.g.,

Blockly) and the diagram-based editors (e.g., Flowgorithm). Both of these approaches

are able to support programming for the aforementioned basic approaches.

In our approach, we have used the Blockly Library which is open source and follows

the block-based approach. However, we could use another or more than one general-

purpose visual programming editors by deploying to all the editors the respective

logic that is described in this chapter.

4.1.1 Blockly Editor

As already referred in this thesis, our IDE is extendable through the development of

new components that could communicate to each other. In this context, we have

developed a general-purpose visual programming editor component of the IDE by

incorporating the Blockly. In particular, each visual programming editor has to

support a set of functionalities in order to undertake the role of an editor for the IDE.

In the next paragraphs, we are going to discuss these functionalities.

The main functionality of visual programming editors is the opening of visual

sources in editor workspace instances. Loading sources in editor instances includes

several settings. One of them is the user privileges (i.e. read-only, editing, not

accessible). In case of visual programming editors, there are two main parts. The first

part of a visual programming editor is the toolbar(s) which are used to select and

handle the visual graphic parts during the end-user development process. The second

part is the main workspace area in which the visual sources are be visualized. In this

context, the user privileges for the visual programming editor instances are handled

by loading the toolbar(s) in case of editing mode and not loading the toolbar(s) in case

of read-only mode. In addition, in case that a visual source is not accessible, the visual

programming editor instance does not load the source and present an appropriate

warning message. In case of the Blockly editor, three privilege modes are supported

as depicted in Figure 4.1.

89

Figure 4.1. Blockly Editor privileges modes; editing mode (tag A), read-only mode (tag B) and not

accessible (tag C).

Another two important functionalities that are required for an editor of the IDE are the

following: Closing and saving visual sources. Closing an editor workspace instance

means that instance used memory will be deleted and the view that is inserted in

DOM will be removed in order to prevent memory leaks. In this context, the Blockly

library provides API to dispose the workspace. Moreover, the Project Manager (see

Chapter 5) undertakes the functionality of save the editor workspace instance by

communicating with the back-end of the IDE in order to save project data in the data

base. However, it requires from each visual programming editor to provide the

respective visual source (i.e. model) of the editor instance. In this context, the Blockly

editor exports and imports the visual sources in the form of XML.

Moreover, in case of the real-time collaborative editing (see section 8.1), functionality

of syncing is required. Sending peer to peer message with whole updated visual

source and updating the visual source to the other peer could work and be tolerable

from the peer users (i.e. without lagging issues). However, Blockly editor supports

syncing by send only the change event data and applying them in the other peer side.

In addition, functionality of browsing specific visual elements is required in order to

open and highlight them (e.g. ask which visual element caused an action, request

highlight a visual block for the peer users for presentation purposes in collaboration

editing). In this context, the project manager provides functionality that requests from

the responsible visual programming editor to open a visual source and then, request

from the editor to highlight specific visual elements.

Furthermore, each visual programming editor is responsible to export source code or

data that will be used for the execution of the project. In this context, Blockly library

90

provides API that generates JavaScript source code from the workspace instance.

Additionally, each visual programming editor instance has to support basic actions

such as copy, cut, duplicate, delete visual programming language elements and undo-

redo functionality as well. Blockly library supports these actions and we incorporated

them in the Blockly editor instances. Moreover, functionality of tracking the visual

programming language elements that have been developed for each of the visual

programming editor instances is required. We have built an extra layer with API on

the top of Blockly editor component that can provide information about the use of

each visual programming language element and the visual programming instances that

are loaded.

Moreover, there are two more directions of functionalities for visual programming

editors. The first direction is the configuration of the editor instances in the context of

authoring application domains. The second direction is based on the intelligence of

visual programming editors including automatic visual code suggestions, visual code

assistance, visual code snippets, etc. In the next two sections, we will discuss

regarding the configuration of visual programming editors and the visual code

snippets.

4.1.2 Configuration of Editor Instances

The visual programming editor instances could be configured either from the end-user

developer as previously discussed (see section 3.1.2) or from the developer of the

application domain. In the context of the application domain, the developer is able to

define the configuration of visual programming editor instances based on the concept,

the parts and the style of the project elements of the application domain. The visual

programming editor configuration includes two categories as follows.

The first category refers to the customization of the visual programming editor’s style

for a specific visual source instance. For example, Blockly’s visual source instance

can be rendered by default (e.g. toolbox is positioned vertically along the leading

edge, the positions of the undo/redo buttons are in the bottom-leading edge corner and

the trash can button is in the bottom edge corner) as depicted on the top of Figure 4.2

or could be rendered alternatively (i.e. toolbox is positioned horizontally along the

bottom edge, undo/redo buttons are in the top-leading edge corner and the trash can is

located in the trailing edge corner) as presented on the bottom of Figure 4.2.

91

Moreover, Blockly editor enables to customize the view (e.g., background color, etc.)

apart from the layout of the user-interface parts.

Figure 4.2. Default View of Blockly's instance (top); Alternate View of Blockly's instance (bottom).

The second category refers to the customization of the visual programming editor’s

filter for the visual domain elements. In particular, the domain author chooses which

of the supported VPL domain elements will be enabled in the toolbar of the visual

programming editor configuration. Based on the configuration, the IDE undertakes to

refresh the toolboxes of the visual programming editor instances (if needs) when a

VPL domain element instance is created, edited or deleted (see section 4.2.1). For

example, on the top of Figure 4.2, Blockly’s editor instance is filtered not to include

the last two categories of the Blockly Blocks in the toolbar (i.e., Variables and

Functions).

92

4.1.3 Visual Code Snippets

Code snippets are small blocks of reusable code that can be inserted in a source code

file by using a right-click menu (context menu) command or a combination of hotkeys

(i.e. shortcuts). They typically contain commonly used code blocks such as loops or

conditional statements, but they also can be used to insert entire classes or methods,

etc.

In the case of visual end-user programming, we introduce the visual code snippets.

The visual code snippets could be defined either by the domain authors or by the end-

users. The domain authors are able to define visual code snippets based on the

requirements of their application domain. For example, in case of the user interfaces,

visual code snippets could be added that iterate all the designed screen areas and

change specific properties (e.g., the background color). Additionally, the end-users

can define their visual code snippets or edit existing ones in order to reuse them for

their applications. However, this feature could be usable by more experienced end-

users only.

Figure 4.3. Visual Code Snippets Toolbar.

Compared with the code snippets for developers, the visual code snippets require to support

extra features for their efficient functionality and usability for the visual programming IDE. In

particular, visual code snippets must be presented by the visual programming editors. This

requires the toolboxes that will be hosted by each visual programming editor, their minimized

93

view in the toolboxes, their categorization, etc. As a result of this, the visual code snippets are

dependent on the visual programming editors. In this paragraph, we discuss the functionality

of the features by using the Blockly editor as an example. However, the same logic has to be

followed by other general-purpose visual programming editors. Although the visual code

snippets are handled by the visual programming editors, there is a main visual code snippets

toolbar which is responsible for viewing and managing the visual code snippets presented in

Figure 4.3.

4.1.3.1 Administering Snippets

The first feature that has to be supported for visual code snippets is the ability to build

new snippets. There are two ways for the end-user to create a new one: The first way

is by creation of a new snippet from scratch by providing a menu item choice “New

Snippet” for each of the visual programming editors as presented in Figure 4.3. The

second way is to select the visual code that the end-user would like to define as a new

code snippet by the visual programming editor instance, click right mouse button and

Figure 4.4. Pop-up dialogue for Blockly’s code snippets creation.

94

choose from the menu option “New Snippet”. Then, a pop-up dialog opens which

includes the visual programming editor instance area for the visual code and a form to

fill-in the category, the title and the description of the visual code snippet as depicted

in Figure 4.4. In addition, this pop-up dialogue opens when editing the visual code

snippet. Finally, the end-users are able to delete a visual code snippet by using the

menu option “Delete”.

The visual code snippets are separated into two main categories, the general purpose and the

domain specific visual code snippets. In addition, the domain authors and the end-users are

able to define sub categories for the visual code snippets. In this context, they are able to

rearrange the order of appearance, as well as to delete, initialize, rename or hide a category.

Moreover, the order of appearance could be adapted based on the recently or most used

snippets category.

4.1.3.2 Using Snippets

The developers use keyboard shortcuts in order to insert the source code snippets. In case of

visual code snippets, the end-users are be able to search them through an appropriate search

toolbar. Each visual code snippet includes a label and category that the search mechanism

uses to find the appropriate information as presented in Figure 4.3.

Each visual programming editor which supports visual code snippets, has to provide a

hosting area of the toolbox whose visual code snippets are visualized. The end-user

developers are able to instantiate a visual code snippet either by right click or by drag

and drop in the visualization main area of the visual programming editor. When a new

visual code snippet is instantiated, there are fields which have to be filled-in. The

visual programming editor focuses on these fields (i.e. values and variables) and the

end-user developer is allowed to handle them. Alternatively, a pop-up could open per

each of these fields in order to handle them all.

4.2 Domain-Specific Visual Programming Language Elements

and Editors

The domain-specific visual programming language editors are used to develop and/or

handle one or more domain visual programming language elements of the application.

For example, the graphical elements of the user interfaces are developed using

WYSIWYG editors. Each graphical element corresponds to a domain visual

95

programming language element. Additionally, smart objects in the context of personal

automations in the Internet of Things domain are developed using a Visual Smart

Object Editor (see section 9.1). The smart object corresponds to a domain visual

programming language element and each smart object which is registered in the

application corresponds to one visual programming language element instance which

includes its personal data.

The developers of an application domain framework have to incorporate domain-

specific visual programming editors for their application domains. These visual

programming editors will be used by novices in order to be able to develop the

corresponding VPL elements for their applications. Thanks to the component-based

architecture which is followed by the Blockly Studio IDE, the domain author is able to

develop it as new plugin(s). In addition, third party libraries could be used by the

visual programming editors for the application domain. For example, in the case of

the domain of the personal automations in the Internet of Things, middleware for the

communication among the end-user developed applications and the smart objects is

required (e.g. IoTivity).

Additionally, the domain-specific visual programming editors, apart from developing

and handling the domain visual programming language elements, are responsible for

the source code generation which corresponds to the visual sources that are created. In

particular, the developed VPL elements are saved by the domain-specific visual

programming editors in visual sources (i.e. DSL format). Based on these visual

sources, the domain-specific visual programming editors generate source code.

Source code generation targets either the project execution or the debugging process

in the context of the IDE workspace.

Moreover, the domain-specific visual programming editor has to export data from the

visual domain element instances which are handled and notify the IDE with appropriate

signals for end-user actions (e.g. create, edit, remove etc.). This helps the aforementioned

mechanism, developed on the top of Blockly, which automatically handles the

development dependencies between the project elements. This mechanism is analyzed in

the following section.

96

4.2.1 Supporting Behavior of Domain VPL Elements

Designing instances of domain VPL elements is not adequate for the end-user

programming of an application. In particular, their behavior must be developed in the

applications. For example, in the case of the graphical elements, the end-users have to

develop the logic and the events for an interactive user-interface. In the case of smart

objects, the domain VPL editor is specialized in registration and communication

between the smart objects and the applications. However, the domain specific visual

programming editors do not include the logic and the instructions of the behavior of

an application. This requires the definition of a behavior handling set of new visual

elements (e.g. blocks in case of Blockly) for each domain VPL element. The role of

visual programming in this part of the application is handled by general purpose VPL

editors (e.g. Blockly editor for our approach) that are registered in the IDE.

Figure 4.5. Extension mechanism for Blockly to automatically manage the behavior handling set of

blocks for visual programming language domain elements.

Each Blockly editor instance consists of two main parts, the block canvas area in

which visual code is designed and the toolbox that is the side menu through which the

user may create new blocks. The Blockly Library supports creating custom blocks and

configuring the toolbox for its Blockly editor workspace instances. Based on this, we

97

are able to define new blocks and toolboxes for the project elements. However, this is

not adequate for managing the project element dependencies. Particularly, existing

Blockly blocks and toolboxes have to be dynamically changed during the development

process. For example, in the case of personal smart automations in the Internet of

Things, when new smart objects are registered (i.e. added) in the project, new blocks

have to be defined and the toolboxes have to be updated by adding these blocks. In

the same context, when a smart object is unregistered (i.e. removed) from the project,

the corresponding definitions of blocks have to be deleted, the toolboxes have to be

updated and possible instances of these blocks in Blockly editor workspace instances

have to be removed.

The latter led us to build a layer on top of the Blockly library for our IDE (see Figure

4.5). This extension requires to define the behavior handling set of Blockly blocks for

each one of the visual programming language domain elements. The visual

programming language domain elements information is exported by the specific

domain visual programming editors through which they are managed (i.e. create,

delete, edit etc.) by end-users. Getting this information as input in our mechanism and

using the behavior handling set of Blockly block definitions, our tool undertakes to

automatically define the required Blockly blocks as well as to generate and update the

Blockly editor toolboxes. In this context, the development dependencies between the

project elements are handled. When end-users attempt to delete a defined domain

element instance from the project (e.g. a registered smart object), they are warned

which project elements will be affected in this case.

4.2.2 Linked Visual Programming Elements

The domain authors are able to define links among the visual programming language

elements by adding in their definition an extra field of visual source data that corresponds in

the link. Moreover, the visual programming editor has to support right click functionality in

the visual programming language elements. Afterwards, when the end-user developer chooses

to browse the linked visual programming editor instance, the editor manager component

undertakes to open the responsible visual programming editor.

For example, using RETE, a flow-based programming editor, defining the nodes of the editor,

the domain authors are able to define the browsing linkage. In particular, they are able to

include an extra field of linking the visual source information. In this case, extra menu items

98

are added for the specific visual domain element (by right clicking) in the visual programming

editor (see Figure 4.6). The visual programming editor communicates with the editor

manager which handles the browsing by using the authoring data.

Figure 4.6. Linked visual programming language element with other visual sources.

99

Chapter 5

Projects

"Man is a tool-using animal. Without tools he is nothing, with tools he is all."

- Thomas Carlyle

The set of sources that are developed for the programming of a software application

constitute its project. Since every project consists of many sources with different

extensions, it is sometimes hard to find, create and handle them. In this context, the

project manager is one of the core components of the IDE by undertaking to manage

the application sources. The common view of a project manager is a tree view in

which every node represents a project element that relates with a folder or a source of

the applications. The project managers facilitate the developers to better organize and

structure their projects, however, this is not an easy process for novices or non-

programmers. In this context, in case of visual end-user programming workspaces, the

project managers have to be more user-friendly and targeted in order to facilitate the

application structure and development process in general. In this chapter, it is firstly

presented the project manager of our IDE that is configurable based on application

domains project manager we have developed, Then, we will discuss about the project

elements that can be authored for application domains and the editor manager

provided features for the browsing of project elements.

5.1 Project Manager

The project manager is one of the core components of the IDE. This component

undertakes the managing of the application sources that the end-users develop.

However, the project manager is more demanding in the case of novices than in the

case of software developers. This could be easily perceived by considering that

novices are not experienced in structuring the sources of the project of their

applications. Due to this the project manager has to be more use-friendly and targeted

on specific application domain by restricting the structure of the project elements, the

project element types would be available to create in the development process, the

100

available user options, etc. However, each application domain has different

requirements for features, different project element types available for the

development process, etc.

5.1.1 Authoring Project Structure for Application Domains

In this context, we have developed the project manager in order to be configurable

based on the application domain that the visual end-user development focuses on. The

developer of the application domain is able to author the project structure and the

functionality of the project manager. In particular, the project manager is configurable

based on four sections as depicted in Figure 5.1.

Figure 5.1. Configurable view parts of the project manager component.

The first section is the application domain label consisting of the application domain

image, title and menu options. Using the latter, the application domain author is able

to restrict which will be the abilities of an application domain (e.g., create new

project, open project, open all projects, delete project, exit etc.).

The second configurable section is focused on the application domain projects

contents. In particular, the domain author defines the structure of the projects' visual

sources, authors the project categories (i.e., folders in case of text-based development)

and the project element types that can be created by the end-users. Additionally, the

101

application domain author is able to select which will be the menu options (e.g., close

project, rename project, share project, delete project etc.).

The third section is the definition of each one of the categories of the projects. Each

category view includes the color (optional), the image (optional) and the title (see tag

3 of Figure 5.1). Each category optionally includes a list of available sub-category

types and project element types. Moreover, predefined sub-categories and project

element instances are able to be developed by the domain author for the end-users.

Furthermore, predefined visual sources may be authored as read-only with the

possibility of being not renamable and not removable. All the aforementioned options

for the project structure are addressed by defining the specific options that will be

available for the users.

The fourth section of configuration is the project element types. For each project

element type, the domain author has to author the view (see tag 4 of Figure 5.1).

Particularly, they have to select which of the information will be included (i.e., color,

image, title) and optionally define any extra data view. For example, in the case of the

smart objects, the application domain author may define the state of the smart devices

(e.g., online, offline, etc.). Moreover, extra elements are able to be rendered due to

project element properties (e.g., shared elements, read-only elements, etc.).

5.1.2 Functionality and Style

As previously mentioned, the project manager supports user actions (i.e. create,

delete, edit, etc.) that are available either by click on three dots button which

positioned on the right side of each node of the tree view or by right click in the node.

When user triggers the action, an appropriate dialogue opens to serve it. In particular,

the developers of the application domain are able to define which will be the

ingredients of the dialogue for the specific user action. They are able to choose which

of the project element values (title, image, color, etc.) will be available to be handled

by the user, which of them will be visible on dialogue, etc. In addition, they are able

to define the actions that will be available at the bottom of the dialogue. The domain

authors are able to develop extra actions that will be accomplished by their added

components.

102

Also, default functionality of a Project Manager such as search project elements, drag

and drop, automatically-sorted project elements etc. exists and the domain author is

able to select it or not according to the needs of the application domain. Last but not

least, the domain author is able to customize the style of the project manager by

defining new styles or by using existing ones from other application domains that

have already been authored.

5.1.3 Settings for Project Elements

For each project element type, the domain author could define settings that are

relevant to the specific element and/or the whole domain project. There are standard

types of settings that are supported, including drop-down list of choices (see example

in Figure 5.2). In particular, the application domain author is able to define any value

type either basic or aggregate by reusing the user-interface code generation that is

developed for the purposes if the “Configuration Manager” as mentioned earlier on

section 3.1.2.

Furthermore, the application domain author is able to define function name that will

be used as callback in order to get the option values in case of select HTML view.

This could be useful in case the options depend on the end-user development process

(i.e., by development actions the list of options is affected). Additionally, the

application domain authors are able to define types which will be handled by specific

third part tools (e.g., one Blockly workspace instance could be defined in order to

handle dynamic settings through visual programming) and will be injected in the

dialogue with other settings.

The values of these settings are accessible in the visual programming editors, the

project element templates (described in the section 5.2.1) and the runtime

environment (described in Chapter 6). Moreover, the options are available by choose

to view the project element settings. As a result, the end-user developers are able to

edit the values of these options during the development. However, the application

domain authors may would like to base the construction of the project element in

these options and wouldn’t like to allow edit in specific option(s). In this context, we

enable two more choices in authoring of the options. The first choice enables the

application domain author to render the value option as read-only when the project

103

element has been constructed, while the second choice enables that the option will not

be visible.

This implies that the application domain author could express them in the visual end-

user programming time by rendering different visual programming view areas or

different view parts. For example, the user could choose to develop the project

element by using the Blockly Editor or alternative editor (if exists) and then

constructing the project element, the chosen editor could be used. The latter means

that the project element types could be dynamic driven by the user settings for the

project elements. Furthermore, the users define the experience level in the context of

programming. Using settings of the project element, the domain author is able to

define rendering of different project elements per the user experience. Additionally,

settings are able to be utilized during the execution time by interpreting their meaning.

For example, the user may choose when or how to execute the project elements

during the project execution as depicted in Figure 5.2.

Figure 5.2. Authoring settings for project element type.

5.1.4 User Action Hooks and Validation for Project Elements

Additionally, the project manager supports real-time validity check through rules for

user actions (i.e., create, edit, delete) of the project elements. In case users insert

invalid input, an appropriate message is rendered on the top of the input field. In the

context of tests, standard rules have been developed such as prevent duplicate names,

start labels with/without specific names etc. Moreover, based on the application

domains, different rules have to be applied. In this context, the application domain

author has to define which rule or rules will be applied per project element type.

Moreover, they are able to define new rules through scripts.

104

Furthermore, based on the rules of the application domain project, our approach

empowers the domain authors to develop user action hooks. In particular, they are

able to develop functionality that will be applied before and after a user action. Using

this feature, the application domain authors are able to prevent an action based on the

rules that they would like to follow in their application domain framework. In

addition, they are able to add functionality to the before and after user action. For

example, they are able to add or change the user action dialogues for the specific user

action based on the project state, the project element state, etc.

5.1.5 Using Alternative Project Manager or None

Moreover, As discussed earlier, the Blockly Studio IDE is extendable following

component-based architecture and each of the components is loaded dynamically

when the IDE initializes. Based on this, the domain author could configure which

components will be loaded. Each component implements a specific interface. So, the

domain author is able to replace the provided project manager if it is required for its

domain application. Moreover, the domain author could choose not to use the Project

Manager for the domain application at all. This means that the domain application

project will be limited to one project element. However, this choice does not mean

that it will be limited to one visual programming editor instance. This depends on the

authoring of the project elements that are described in the following section (see

section 5.2).

5.1.6 Authoring by Using JSON Schemas

The application domain authoring for the project manager is written in the form of

JSON and has to satisfy the JSON Schema Validator [137]. Using this mechanism, the

platform will notify the domain author of any possible mistakes regarding the

authoring process. The same logic applies to the authoring of the project manager's

style. Alternatively, the project manager exports an API through which developers

may customize and author the application structure of the project, instead of doing it

by defining JSON data.

5.2 Project Elements

Each type of project element includes by default one visual source which is loaded

and handled by specific visual programming editor(s). However, project elements

105

apart from the visual editor data, include information (i.e., color, image, title, author

etc.) and values of the settings (see section 5.1.3) that domain authors may would like

to interpret them in specific style. Additionally, they may would like to define more

complicated project element types including more than one visual programming editor

instances which will be injected in a customized user-interface. Moreover, the number

of visual programming editor instances that are included in a project element may

changes during the end-user development. In this context, we introduced authoring of

project element templates in Blockly Studio IDE.

5.2.1 Templates

For each project element type, the domain authors are able to describe the contents

will be included in project element instances. In particular, they can author the view,

the interactivity, the injected visual programming sources and which visual

programming editor will handle them. Using templates, the project element

information can be rendered (e.g., the file name and/or path of the project element, the

date created, the current end-user actions, the author etc.). Furthermore, the

functionality and the style can be developed through JavaScript and CSS in the case of

more fancy and interactive project elements. Additionally, the domain author could

define one or more visual programming sources of visual programming editor

instances that will be injected in the designed empty DIV elements during

instantiation of a project element. The templates are saved in a repository and the

domain authors are able to develop new ones or re-use already existing ones. The

development of such templates includes the following parts:

1. Lodash template [138] (i.e. HTML enriched by template tags).

2. Cascading Style Sheets (CSS) used for the presentation.

3. Map of the empty DIV elements (i.e., Selectors) and the configuration for

visual programming editor instances (see section 4.1.2) will be injected.

Additionally, for each of the visual programming editor instance is defined if

the instance will be loaded or not when the project element is loading.

4. Required functionality for project elements (e.g., on focus view, on close,

etc.).

5. Required functionality of the rendered HTML from Lodash template.

106

The IDE handles these templates in order to address the functionality of the project

element (e.g., create, open, close etc.). Using this mechanism of templates, the domain

authors are empowered to design and develop any project element type that will be

required for their application domain frameworks.

Figure 5.3. Example of a project element template; project element information (tag 1); interactive

parts of the template (tag 2); area for visual programming editors (tag 3).

An example could be the following template. We have developed a classic tab view in

which each tab area hosts one Blockly workspace instance. The template includes

three parts (see Figure 5.3). The first part presents the information of a project

element (i.e., file name, author and owner). The second part of the project element

enables the end-users to browse among the visual programming editor instances,

create new tasks (i.e., Blockly workspace editor instances), rename the name of a task

and delete a task. The last part of the project element template includes the areas in

which the visual programming editor instances are hosted (see tag 3 of Figure 5.3).

Another example could be the form-based smart object editor that is discussed in

Chapter 9. This visual programming editor loads a dynamic number of actions based

on the functionality that is provided by each smart device. We provide Blockly editor

instances for each of these actions in order to simulate the functionality of the action

in case of debugging the smart IoT automations. In this case, the only visual

107

programming editor instance that opens is the smart object editor and the Blockly

editor instances loads only when event is triggered by the smart object editor.

5.2.2 Hosting and Browsing Project Elements

The “Editor Manager Component” of the IDE handles the view of the project

elements. The end-user could view one or more project elements in parallel by

splitting the editor manager’s area horizontally or vertically as depicted in Figure 5.4.

During the end-user development process, the end-users are able to browse the project

elements through the Project Manager. Additionally, two options are given by

Blockly Studio IDE to provide browsing of project elements. The first option is by

enabling the action of “GOTO” previous or next project element that was loaded,

using the previous and next tool items appearing in the toolbar (see second red

rectangle of Figure 5.4).

Figure 5.4. Splitted in two project element instances area vertically.

5.3 Project Dependencies

There are dependencies among project elements and visual sources that are included

in the context of a project. In the case of software developers, dependencies are

handled by them. For example, when developing a GUI application, the design screen

parts constitute project elements on which graphic elements are designed. The logic of

these elements is developed in other source(s) which depend on the aforementioned

project element and the developer has to handle it. Also, the developer has to handle

graphical elements which have been created, edited or deleted.

In the case of visual programming languages, the Blockly Studio IDE handles the

dependencies automatically. The project dependencies are caused by the visual

108

programming language elements which have been developed in the visual sources

during the end-user development process (see Figure 5. 5). As we have already

presented in this thesis, the dependencies of the visual programming language

elements are handled by the extra layer mechanism of our approach (see section

4.2.1). This mechanism is based on signals are posted when one of the basic actions

(i.e., create, edit and delete) happens during the end-user development time. However,

this mechanism is defined for dependencies among general-purpose visual

programming editors either from specific domain visual programming editors or from

general-purpose visual programming editors. In case of dependencies between

domain-specific visual programming editors (e.g., dependency for WYSIWYG editor

and Smart Object Editor), the domain authors have to handle them by utilizing the

posted signals.

Figure 5. 5. Visual programming project sources of application and dependencies among the visual

programming language elements.

109

Chapter 6

Runtime Environment

“Nevertheless, I consider OOP as an aspect of programming in the large; that is, as

an aspect that logically follows programming in the small and requires sound

knowledge of procedural programming.”

-Niklaus Wirth

When software developers write programs, they need to execute and test them.

Therefore, the integrated development environments include runtime environment

components that allows the programmers to execute their programs and interacts with

the input-output console, the extra user-interface view based on domains, etc. Based

on the programming languages and the libraries are used for the development of an

application, the software developers have to set up the environment by installing

compiler or interpreter, libraries, etc. In case of novices and non-programmers, the

visual programming IDE has to handle the setup of the environment without

burdening them. In our approach, the runtime environment has to support the

execution for every domain application. In this chapter, we discuss the runtime

environment for the Blockly Studio IDE and how our approach is envisaged to work

for all the potential application domains. Additionally, we discuss the selective

execution feature that we introduce, the input-output console and the hosting of extra

user-interfaces for the application domains. Concluding, we discuss the potential of

isolating a project as an independent application.

6.1 Hosting the Runtime Environment

Based on the component-based architecture which is followed by Blockly Studio IDE,

we developed the runtime environment as an independent component. Loading the

workspace of the IDE, the runtime environment is initiated by registering the tool

items in the IDE’s toolbar (see sub section 3.1.1.2). When users choose to run the

application, the IDE instantiates the project execution by retrieving the project data of

110

the application. In this context, the users would like to be able to use the IDE in

parallel during the project execution. However, hosting the project execution in the

same execution context with the IDE, issues will be appeared. In particular, executing

the application’s source code, the event loop system of JavaScript could be locked and

the IDE could freeze until the end of the execution of the program. There are two

different approaches which could be used to solve this issue and host the run-time

environment in the IDE:

The first approach could address the issue by code decoration. In particular, the run-

script could be executed in the same context with the IDE by using code decoration

(or instrumentation). The latter is a technique that applies the insertion of extra

special-purpose instructions, either at source or at the binary level, with the intent of

introducing additional mission-specific functionality, however, without altering the

original observed behavior of the subject program. Based on code decoration and the

JavaScript Generators, the run-time system executes each visual programming

language instruction, then gets the control to satisfy possible IDE’s requests and

afterwards continues to the next instruction and so on. This technique requires to care

for the naming of the variables and the events must not override the IDE. However,

this is not a problem, due to the context of visual programming and code generation.

This means that the domain authors have to follow specific rules for the names that

will be used in the run-script and the code generation by always using a prefix e.g.

“__runtime_script_” for all of them. This technique will be used by the system to

address user actions (i.e. stop, pause application) as discussed in the following

section. Applying this approach, brings extra requirements for third-party domain-

specific visual programming editors.

As result, we adopted the classic approach of runtime environments for IDEs. In this

direction, we developed the project execution manager of the runtime environment as

a third-party application (see right top of Figure 6.1). This application communicates

with the IDE’s runtime environment by using the communication infrastructure which

discussed previously in section 3.1.3. Following this approach, the issue of IDE

freezing is addressed, while the IDE environment is not affected by the project

execution environment.

111

Figure 6.1. Authoring runtime of a domain project and runtime environment system of the Blockly

Studio IDE.

6.1.1 Running Projects of the Application Domains

Each project which is constructed using the IDE has a different way to be executed

based on the application domain it belongs. This issue arises from the authoring of

application domains which differs in the application structure (see section 5.1.1) and

the set up (i.e. third-party domain libraries, etc.).

In this context, the execution of the project is based on appropriate scripts that are

developed per application domain. These scripts are the entry points of the application

and undertake to load the required third-party application domain libraries, initialize

the required application domain data and the extra application domain run-time view

(if exists). Moreover, the run-script exports functions to handle user actions of the

IDE (i.e., Start Application, Stop Application, Pause Application and Continue

Application) to run the application (see left of Figure 6.1). In the following

paragraphs, we describe each of the user actions:

Start Application: When the user chooses to run the application, the IDE instantiates

the project execution of the runtime environment. Then, the runtime environment

requests the project environment data from the project manager. In this context,

respective JavaScript source code and/or execution data are generated for each visual

programming source, for each one of the project elements, using the responsible code

112

generators that are provided by the visual programming editors. The generated source

code data is mirrored with the application domain structure which is defined by the

domain author. Afterwards, the run-time environment calls the exported function

‘StartApplication’ of the script, giving the generated source code data as input. The

run-script function uses the EVAL function [139] to execute the generated source

code parts.

Stop Application: The action of “stop” requires control of the flow of the application

execution. The runtime system accomplishes the stop action by using the JavaScript

control flow and error handling [140]. In particular, when the end-user chooses to stop

the run process, the run-time system has to interrupt the execution of the application

by causing internal exception (i.e. throw exception) and then handle it appropriately.

However, the visual programming elements are not matched with source code

instruction one by one. This would interrupt the execution of the project in an

unexpected state of the run-script (i.e. not completed execution of the current visual

programming element). In this context, the code generator of each one of the VPL

editor’s code generator injects an extra instruction in the end of each visual

programming element. This instruction checks if there is system state to stop or pause

the execution of the application and undertakes throwing the exception in expected

state. Moreover, this would not be an adequate approach to solve this issue. There are

applications which run asynchronously or applications that include asynchronous and

sequential instructions. The run-script will be responsible to notify the run-time

system when the sequential instructions have been executed and if other sequential

instructions have started from an event. In case there are not sequential instructions,

the run-time system throws the internal exception to stop the execution by itself

instantly. Then, handling this exception, the run-time system calls the function

“StopApplication” which will be exported by the run-script. This function is

responsible to reset and/or delete the required data included in the run-script.

Furthermore, the script is responsible to unregister all the events that are registered in

the context of the project execution.

Pause Application: The action of “pause” follows the same logic with “stop” action.

The difference is that instead of throwing exception, in case of pause, the runtime

system activates a busy waiting loop that waits until the user chooses to continue or

113

stop the execution. Before the activation of waiting state, “PauseApplication”

function is called. This function is responsible to unregister the events which are

activated in the context of the project execution.

Continue Application: The action of “continue” needs to call the

“ContinueApplication” function which is exported by the run-script and activates

back the existing events which was activated in the context of the project execution.

Afterwards, the busy waiting loop is deactivated and the project execution continues

with the next visual code instruction.

6.2 Selective Project Execution

Running the project during the development process in order to verify if it is working

as expected is one of the main tasks. In this context, we introduced an alternative way

of running the project. In particular, the end-users are empowered to run the project

selectively. Starting the execution process, the default choice is to run the project

including all the project elements. However, the end-user developer could choose

which project elements will be included in the execution process (see Figure 6.2).

Figure 6.2. Selective execution dialogue for ‘Morning Automations’ project.

114

Selective execution allows the end-users to run the application partially which means

that testing the functionality of their tasks will be easier. In general, separating the

execution of source(s), as a feature contributes to testing the project. Moreover, the

users will be able to run the project elements as independent applications.

However, selecting which project elements will participate in the project is not that

simple. The project elements include dependencies between other project element(s)

as discussed earlier. Having the knowledge of these dependencies, the visual

programming workspace automatically adds the project elements that are dependent

on the selected project elements (e.g., see the dependency of the condition event

‘Alarm Clock Rings’ with the smart object ‘Alarm clock’ in Figure 6.2). Moreover,

there are project elements which are required for the execution of the project (e.g., the

main task of the project). For such source(s), the application removes the option of

deselection.

6.3 Input-Output Console

End-users are familiar with instant messaging software tools (e.g. Skype, Messenger

etc.). Based on this, we simulated the output console for the applications as a chat. In

particular, when an output block is executed, the users receive the corresponding

messages via the console. The input text area is disabled by default and when the end-

user developer has to input text in the application, it alters to enabled as depicted in

Figure 6.3. Moreover, the output console interacts with the project manager. In

particular, when a Blockly input block is executed the project manager opens the

respective project elements of this block. In addition, the bubbles (i.e. text messages)

are interactive too. When the end-user developer clicks on each bubble, the project

manager opens the respective project element which triggered the message in the run-

time output console.

Additionally, based on the authoring of domain visual programming language

elements, the domain author can define alternative user interfaces of the messages by

replacing the bubbles. For example, input could be a form of element(s) completion.

This functionality is possible thanks to the API provided by the Console Output

component which enables functionality to adapt input and output messages.

Moreover, the domain author is able to define input/output domain visual

programming language elements by adding extra I/O devices (e.g., gamepad, Joypad,

115

microphone, camera etc.) with their respective third-party libraries according to the

application domain requirements.

Figure 6.3. Console input is enabled and the corresponding block is browsed.

6.4 Hosting User-Interface of Application Domains at Runtime

The domain author may want to add extra input-output view component(s). For

example, in case of GUI Application, the domain author would want to present the

GUI of the application during the project execution. In case of a Game Application,

the domain author would want to present the game view during the project execution

process. Finally, in case of the personal automations in the Internet of Things, the

domain author would want to add view components for the state and control of the

smart objects which will participate in the application.

The domain author could define one or more domain views as components that will

be initiated and hosted during the project execution. The workspace provides the

116

required empty div elements. The domain author is responsible for handling these

components in the run-script by using the provided empty div elements.

6.5 Exporting Project to an Isolated Application

The end-user would like to export the project to an isolated application. This would

require from the domain author to develop an additional appropriate script as the entry

point of the application. This script would include only function of

“StartApplication” with input argument the project data (i.e. application structure

with code generated parts).

Furthermore, the authored visual programming language elements would require to

develop separate definitions of code generation in case there is interaction between

the application and the IDE. In this context, there is an optional field in the authoring

“exportGen” that will be used by the code generation process instead of “codeGen”

or “debugGen” which are defined in the domain visual programming element.

Moreover, in case of I/O actions the domain author could use the Console Output that

is provided by the IDE by incorporating this component to the application or could

develop an alternative approach based on the “exportGen”. Finally, the workspace

would export the package of the JavaScript sources including the defined entry script

without adding the code instrumentation for the project execution in the context of the

Blockly Studio IDE.

117

Chapter 7

Debugger

"Programming allows you to think about thinking, and while debugging you learn

learning."

- Nicholas Negroponte

Debugging is the systematic process of detecting and fixing bugs within software

programs. Visual Debuggers are the core tools for debugging process that are

provided by the IDEs. These tools include facilities for tracing source code, viewing

memory of the programs (e.g. variables, data structures, etc.), browsing the call stack

of the function calls, etc. In the context, of visual end-user programming for our IDE,

we have developed a full-scale visual debugger including the facilities of classic

visual debuggers and aiming to support novices with extra features in order to boost

them for accomplishing the debugging process.

The Visual Debuggers are separated in two main components, the front-end

(debugger) and the back-end (debuggee). The front-end of visual debugger

encourages the user to test and debug programs by enabling step by step control of

execution, handling of breakpoints, and monitoring values of variables. The back-end

of visual debugger is computing the application or a process which a debugger acts.

We are following this approach in case of the Blockly Studio IDE.

In the context of visual debuggers for IDEs, front-end components cooperate with the

text editor component is used in order to handle the breakpoints, highlight source code

lines and view memory of values on mouse over the respective source code. In the

case of Blockly Studio IDE, the front-end debugger communicates with each of the

visual programming editors that are registered.

In the following subsections, for each of the visual debugger’s facilities, we analyze

the functionality of the visual debugger’s front-end and back-end in order to

accomplish them.

118

Figure 7.1. Debugger's Toolbar.

7.1 Initiating the Debugging Process

When the user starts the debugging process by selecting the debug tool item from the

runtime environment, the front-end debugger is initiated by loading the toolbar.

119

Afterwards, the front-end debugger component communicates in order to start the

debuggee. The runtime environment requests from the project manager component to

retrieve the debugging environment data for the project by asking for each of the

responsible visual programming editors to generate source code or data for the

debugging process.

Similarly, to the project execution (see section 6.1), the debuggee is executed in

another execution context from the Blockly Studio IDE. In this context, it retrieves the

appropriate domain authored debug-script and calls the ‘StartApplication’ function. In

order to accomplish the communication among the debugger and the debuggee, the

code generation for debugging injects appropriate code snippets between the

generated source code. Executing these code snippets, checks the debugger state,

refreshes the debugger toolbar, etc.

7.2 Debugger’s Toolbar

When the debugging process starts, the debugger’s toolbar appears in the visual

programming workspace (see the Figure 7.1) in the right side of the main project

elements area. Using this toolbar, the members are able to view memory variables of

the application and handle the features that are provided for the debugging process.

On the top of the toolbar resides the toolset of handling the debug process (i.e., start,

pause, stop, step, collaboration and selective debug). Below this toolset, the toolbar is

separated into three different rows. In the first row of the toolbar displays the watches,

the variables and the explanations. In the second row the breakpoints are located,

while in the third-row conditional breakpoints are shown. Each of these parts are

discussed in the following sections.

7.3 Breakpoints

One of the most important concepts that supported by debuggers is handling the

source code points in which developers would like to pause in order to monitor the

state of the projects which is known as breakpoints. In source-level (text-based)

debuggers, breakpoints are inserted per line, left to the editor area, usually at a special

column reserved for custom icon annotations by the programming tools of the

development environment. It is usual that such annotations are inserted by the

bookmarker, source manager, IntelliSense, and the debugger frontend.

120

In the case of the visual programming editors, breakpoints are inserted per visual

programming language elements that have to be supported. In this context, typical

breakpoint icons have to be injected in visual programming elements. In case of the

Blockly Editor we designed a typical breakpoint icon, located on the top-left of each

of one of the Blockly blocks as presented in Figure 7.2. In the same logic with

breakpoints in text-based visual debuggers, there are different views respective with

the state of the breakpoint. The state of breakpoints can be enabled or disabled, while once

an enabled breakpoint is hit, it is highlighted.

Figure 7.2. Breakpoint icons for Blockly Editor.

Moreover, adding new breakpoints in the visual programming language elements is

provided by the visual programming editors. This could be done either using their

toolbars or using right click on the visual programming language elements. In case of

the Blockly editor, we developed this option by using right click options. The rest of

the handling user actions (i.e., enable, disable, delete a breakpoint) are provided by

the visual debugger toolbar (see Figure 7.1) and communicating with the respective

visual programming editor instances in order to sync the information of the

breakpoints. However, the visual programming editors are able to provide them. The

visual debugger provides appropriate API that can be used by the visual programming

editors to handle the breakpoints.

The association of breakpoints to individual blocks is implemented on top of the

Blockly as follows: Internally, Blockly exposes the actual object reference of every

single block. This is actually a well-documented and standard feature of Blockly

library. We use it to directly associate, as part of the breakpoint manager, the block

references to their breakpoint state. Then, as part of the code instrumentation, the code

generated per block is decorated to post an event both to: (i) the Blockly library, with

a request to highlight the block; and (ii) the breakpoint manager, to test if a breakpoint

is hit – if the latter is true, meaning a stop point is met, execution will break and a

trace command will be expected by the debugger User-Interface so as to proceed.

121

Figure 7.3. Handling breakpoints by right clicking on Blockly blocks.

7.4 Conditional Breakpoints

The breakpoints are related to the general-purpose visual programming editors. In the

context of specific-domain visual programming editors that are specialized on

handling the visual domain elements, there is not source flow in order to control

where to stop. However, in this case, there data objects and the end-users may like to

be notified when a field of the data object changes. In this context, we have developed

conditional breakpoints for the visual programming language elements.

The conditional breakpoints are triggered on change value of visual programming domain

element property or on get specific value of a property etc. Moreover, the end-user will be

able to choose how many times will be activated the breakpoint observer and/or begin to be

activated after N times, pause execution in case something not happens in specific time etc.

Using these breakpoints, the end-user developers will be able to view the memory variables

and the state of the applications when specific domain element property changes, while they

will be notified for the history of the domain element property values.

The conditional breakpoints have been developed thanks to the information of data

objects are handled by specific domain visual programming editors. In particular, as

we have already mentioned (see section 4.2.1), the domain-specific visual

programming editors notify the domain manager system for the data objects that are

constructed and handled. In this context, the front-end debugger retrieves total data

122

objects that are created in the end-user development process. Using this information,

the dialogue which handles conditional breakpoints generates the selections of the

visual programming elements and their properties (see Figure 7.4).

Figure 7.4. Conditional breakpoint's dialogue.

In order to address the conditional breakpoints, we have injected an extra code snippet

per visual programming language statement that iterates each of the enable

conditional breakpoints and checks if there are triggered by using function calls that

are developed in the debug-script. In case there is triggered conditional breakpoint,

the debugging execution pauses and opens a dialogue that informs about the previous

and the current value.

In addition, the end-user developer is notified if this change happened by the project’s

visual code execution or by external factors (e.g., in case of the domain of mobile

application, mobile sensor changed by the environment, in case of graphical user

interfaces, the user pressed a button, etc.). In case change has been caused by the

visual code, there is available link to browse and highlight the visual programming

language element, opening the respective project element and the visual programming

editor instance.

123

7.5 Tracing

As already pointed out, visual programming elements tracing is functionally similar to

source-level tracing, however, with a few important differences. The first variation

concerns the basic “Step In” and “Step Over” commands. These two operations,

originating from source-level debuggers, control whether a function call expression is

evaluated thoroughly (Step Over), or if the execution progresses by evaluating all

actual arguments and then by stopping into the first instruction of the invoked

function (Step In). In our case, besides this behavior regarding function invocations,

these commands work as follows given a current visual programming element during

debugging: “Step In” stops in the first inner (child) visual programming element, and

“Step Over” enters the next sibling visual programming element. Otherwise, if no

inner or sibling visual programming elements exists, they stop in the next executing

visual programming element, following the control flow. Interestingly, these

variations are possible due to the hierarchical structure of code, enabling users skip

entire visual programming elements of visual code during tracing, something not

possible when using typical source-level debuggers. In particular, in order

Figure 7.5. Automatic variable inspection and the Evaluate operation which works for any kind of

block, enabling to re-evaluate on-the fly (during debugging) any code snippet.

1. n=undefined at start

2. n=2 after first iteration

3. n=4 after manual evaluation of the n=n2
expression block

124

programmers to skip entire visual programming elements of text code, they would

have to either use the “Run To Cursor” command or, alternatively, place temporary

breakpoints and then use the Continue command. However, for nested expressions

this far from straightforward: positioning the cursor in a single line or setting a

breakpoint is not precise enough to trace particular subexpressions, unless the source

code is manually reworked to place one such subexpression per line.

In case of Blockly Figure 7.5, the behavior of “Step In” and “Step Over” is shown

once execution meets a breakpoint in Figure 7.3. In this example, the expression

n=n*2 is actually split in two blocks: the outer assignment block and the inner

multiplication block. The latter allows, as shown in Figure 7.3, to separately evaluate

n*2 with a “Step In” command, something not possible directly with a typical source-

level debugger. The same mechanics apply to the “Run To command” as well, which

works for the currently selected block and will cause execution to stop exactly before

evaluating this block.

7.6 Watches

Inspecting program variables, commonly known as watches, is also in two ways. Via

the variables pane, showing all variables at the current scope (sometimes designated

as autos in various source-level debuggers), and the watches pane, in which inspected

variables can be added or removed during debugging by the user through the visual

debugger’s toolbar (see first two tabs in tag 2 of Figure 7.1).

As earlier discussed, for each project element is included a list of visual sources that

are handled by specific visual programming editors. Each of them may include

variables that would like to display them. In this context, the front-end debugger

provides API in order to add, edit, disable, etc. the information view of program

variables. This API can be used by the code generation process of the visual

programming editors when a variable change.

In case of Blockly, all variables reside in the global scope, thus used throughout the

entire visual program, meaning the presence of the watch pane is somehow redundant.

However, it is still possible in Blockly to implement a custom block type for the

declaration of a local variable, simile to the let specifier of JavaScript. In this case,

autos will enumerate only the local variables at the current block scope, and watches

125

will show the particular user-chosen variables. In our implementation, if no local

variables exist, the variables window automatically displays all global program

variables. In Figure 7.5, the automatic display of program variables is shown in a

debugging session, in a simple example program involving a single n variable.

Besides variable inspection, it is possible to manually evaluate entire Blockly blocks,

something being more flexible and expressible than typical expression evaluation. For

instance, in the example of Figure 7.5, at Step 3, the manual reevaluation of the

current block is chosen. This is actually an extra evaluation with respect to the normal

program execution. As a result, the expression n = n*2 is executed once more,

causing n to gain 4 value, meaning it is also allowed to change program variables via

watches. Concluding, note that the same logic is able to be followed for all general-

purpose visual programming editors.

In the case of watching the domain visual programming language elements, the

domain author is responsible to use the provided visual debugger’s API in order to

display their values during the debugging process.

7.7 Execution Snapshots

Non-programmers are not experienced in the debugging process. As a result, the

visual debugger has to empower them with extra features. In this context, we

developed the history of variable values.

Debugging the application during the end-user development process in order to verify

if it is working as expected, the end-user is able to browse the execution flow history

of the visual programming elements. In this context, the end-user developers are able

to view the history of the values for each of the visual programming language

elements. In particular, by clicking on specific visual programming element, the end-

user programmer is able to view the watches values, the visual programming elements

had at a specific execution time. In addition, the end-user is able to view all the

history of the visual programming element values. However, this is not a

straightforward process, due to the classic visual debuggers that enable the current

values of the programming elements.

In order to solve the above issue, we have added extra decoration code per visual

programming statement. This decoration code requests an execution snapshot for all

126

the programming elements which are watched. In addition, the decoration code saves

information (i.e. visual source and visual programming element ID) for the visual

programming element currently executed. Thanks to this technique, the debugger

saves the history of the watched values and provides the backwards and forwards

browsing of the project execution.

7.8 Explanations

In order to give an extra weapon in the end-user debugging arsenal, we have

introduced new visual programming elements that could be helpful in the debugging

process. In particular, we have defined a new category of Blockly blocks named as

“Explanations”. These blocks can be used by the end-user developers in order to

explain what will happen or happened in the above or below visual code instructions

they develop.

Using these blocks, relative messages can be posted in the input-output console of the

IDE during the execution. However, there is the option to choose when the block is

executing to pop up dialogue, pause the project execution and display the message

instead of post it in the input-output console.

Figure 7. 6. Adding explanations for the execution of smart automations based on the environment

temperature.

The handling of these blocks is hosted by the visual debugger’s front-end (see tag 2 of

Figure 7.1) in the last tab. In addition, the history of the executed explanation blocks

127

is displayed during the debugging process. Furthermore, the end-user developer can

handle them through the Blockly editor workspaces as classic blocks. Furthermore,

there is ability to activate or deactivate them in the release project execution.

7.9 Supporting Debugging for Application Domain

Frameworks

As described in this chapter, a debug-script has to be developed for the debugging

process of a specific application domain framework. Similarly, with the runtime

environment, this script is the entry point of the debug execution by initiating the

application domain libraries, the global variables, etc. The source code generation for

the visual programming language elements differs in order to inject the extra required

information for the debugging process and the extra communication and checks that

are required in order to accomplish the visual debugger’s functionality.

Additionally, debugging information may have to be initiated. Moreover, there are

cases in which the release runtime environment may differs with the debug mode. In

particular, in case of the mobile applications, the developers debug and test their

applications not in mobile phones but in mobile phone emulators. In this direction,

sensors and properties of the mobile phones have to be displayed by the variables

view of the visual debugger. In order to accomplish this requirement, the visual

debugger provides API to define the information data that will be shown during the

debugging process. Another example could be the debugging process of smart

automations in the Internet of Things, which is impractical to test the automations in

smart devices and sensors (see section 9.7). However, using the debug-script, extra

software infrastructure could be developed and used that will be utilized for specific

application domains.

128

129

Chapter 8

Remote Collaboration

“None of us is as smart as all of us.”

- Will Harvey

We consider that collaboration is a key feature in end-user programming and could be

notably useful in the case of teaching and learning purposes, asking for help from

more experienced users, co-working for automations etc. The later makes it important

for groups of end-user developers to have suitable tools to support their collaborative

programming tasks. Our motivation to extend the Blockly Studio IDE in order to

provide a full-scale collaboration toolset in the context of end-user development is

based on the aforementioned fact. Our approach focuses on two directions, the

collaborative editing and the collaborative debugging.

8.1 Collaborative Editing

In this section, we present the full-scale collaborative editing facilities for end-user

development process that are developed for the workspace of the Blockly Studio IDE

(see Figure 8.1). In our approach, we focus on sorting out of the editing process by

introducing peer roles, access and edit privileges for project elements. Additional

features include: personal project elements, toggling live syncing during editing,

viewing peer action history, and enabling local execution without disrupting the

collaboration session. Moreover, through several settings that are exported, our

approach enables the domain authors and the end-user developers to configure them

in order to accomplish their requirements based on the circumstances of their end-user

development process. In the following sub sections, we present each of them, we

analyze the collaboration models that can be supported. Finally, use case scenarios

and the conduct of an evaluation process are discussed.

130

Figure 8.1. Collaborative Project “Morning Automations” with 3 participants (George, Mary and

James). George’s view of the collaborative project (see 1) and James (see tag 2).

8.1.1 Peer Roles

The first step of the collaboration process is the agreement among a group of people

for co-working in the end-user development project. The main data that are

distributed in each collaboration session is the shared project, on which the members

are working. In order to sort out the shared data we identified roles for the

participants. The first-class subject of our approach focuses on the members that join

the collaboration session of the shared project. We are aiming to better organize the

collaboration among the members, so we have introduced roles for each of the

participating members.

The lead role of the collaboration process belongs to the master of the shared project.

In the beginning of the process, this role is given to the end-user that shares the

project. The master has full access privileges in all the project elements of the shared

project. Furthermore, the master gets decisions for the development process of the

project. In particular, other members request to add or delete shared project elements

and the master replies to these requests. However, the master has the option to

configure the requirements of the requests for actions in the shared project elements

(i.e., no request needs, disable the ability to add/delete actions from other members

131

etc.) according to the circumstances of the collaboration process. Additionally, the

master is allowed to delegate his role to another member.

The second role is the owner of each project element. Only one member is qualified to

edit a shared project element. In particular, we consider that co-editing of visual

sources in parallel using multiple cursors is working well in the documentation and

the design tools. However, in the context of end-user development, we strongly

believe that it is a first-class subject to organize and structure the projects in small

scale project sources, that would be easier for the end-user developers to handle. For

this purpose, it is pointless to provide the ability of co-editing. Moreover, supporting

parallel co-editing of sources could cause confusion among the members [141]. The

author of the shared project element gets the role of the owner. Then, during

development, the owner is able to transfer the edit privileges to another member.

Furthermore, the master of the project is qualified to get the edit privileges of any

shared project element.

In addition, the members are able to request authoring new shared project elements or

add existing ones from their local project elements. Also, they are allowed to request

for edit privileges from the existing shared project elements. Furthermore, in case they

don’t have edit privileges of one project element, they are able to add notes and

correction suggestions for visual code changes (see Figure 8.2). Adding a suggestion,

the owners of the project elements are notified and are qualified to accept or deny the

changes (see Figure 8.3). However, based on the circumstances, the master of the

Figure 8.2. Dialogue to create new visual code correction suggestion for a project element.

132

project is able to disable the notes and/or the corrections suggestions for all or for

specific collaborator members. Moreover, features for communication (i.e., instant

chat or video calls) are not provided. We consider that several software tools could be

used for communication and it would be pointless to embed communication software

technologies in the visual programming workspace.

Figure 8.3. Dialogue to view the visual code suggestion in order to accept or deny it.

8.1.2 Local Workspace

One of the most important domains of the collaborative editing is the work that will

be able to do each of the collaborator members without affect the productivity of the

others by developing and testing their tasks in the shared project. In this context, we

developed facilities by focusing on the local workspace.

8.1.2.1 Personal Project Elements

The members are able to create new personal elements in their local workspace which

are merged with the shared project. However, these project elements are not parts of

the shared project. The personal project elements are used for member’s local testing

as drafts of their end-user programming tasks. Potentially, they could be added as

shared project elements later in the development process. Furthermore, the members

are allowed to view personal project elements of other members. However, the master

is qualified to choose if these project elements will be viewed or not by other

members due to the collaboration circumstances. For example, a teacher may would

133

like to set personal project elements to be private from students for their assignments.

In addition, the master chooses whether other members will be allowed to create

personal project elements or not. Moreover, the members are the masters of their

personal project elements. They are able to share them to one or more specific

members. They are qualified to give privileges of editing and cancel them.

Table 1. Project Element Privileges.

Project

Element

Author Owner Shared Hidden

Member Member Enumerated Boolean

Concluding, the privileges of the project elements are summarized in the above table.

The information of the “Shared” column is enumerated among the not shared, shared

in project and shared personal project elements.

8.1.2.2 Toggling Live Syncing

Our proposed approach supports real-time collaboration which means that members

view live changes of other members by default. This is extremely useful for members

that are following the process. However, the members have the option to deactivate

real-time syncing of the shared project elements they manage and/or the other shared

project elements. By disabling real-time syncing, we allow the end-user developers to

test their changes locally without any waiting from other members. However, in case

the members would like to give editing privileges, they have to sync the specific

project element or to revert the changes until the last synced state.

8.1.2.3 Selective Project Execution

Running the project during the development process in order to verify if it is working

as expected is one of the main tasks. In real-time collaboration process, testing the

shared project could be unmanageable for the members. Specifically, the development

progress between the shared project elements may differ. Some members may have

finished their tasks, however other members may haven’t. As a result, the members

have to wait for other members in the development process.

In order to solve the above issue, we extended the aforementioned feature of selective

project execution (see section 6.2) in the context of collaborative editing. In

particular, starting the execution process, the default choice is to run the shared

134

project. However, the end-user could choose which project elements will be included

in the execution process as happens with not shared project as well. In addition, as an

advanced choice for more experienced users, it is allowed to replace shared project

elements with personal project elements or choose to replace an original project

element with its corresponding suggested changes of visual code. Selective execution

allows the end-users to run the application partially which means that testing the

functionality of their tasks will be easier.

8.1.3 Initiating Collaborative Sessions

In order to start a new collaboration session, the end-user needs to share a project and

configure the aforementioned settings based on the requirements of the collaboration

(see Figure 8.5). Using the modal depicted in the left section of Figure 8.4, the users

have to fill-in their personal information which will be viewed by other collaboration

members. A unique URL is generated and the users are able to notify the members

they would like to join by sending them this URL. When the users join the shared

project, they will be asked to fill-in their personal information too (right section of

Figure 8.4).

Figure 8.4. Left: Starting share the project; Right: Joining the collaboration.

In the beginning of the collaboration session, the visual programming workspace

components are visually and functionally configured. In particular, the project

workspace manager user interface is modified in order to visualize and separate the

shared project elements from the personal project elements by using appropriate tags

next to the titles. In addition, the shared project elements that are updated by other

members and the user hasn’t read yet are marked with bold style until the user

135

browses them. Moreover, menu items have been added for each project elements,

based on the member’s role and the edit & access privileges in each project element.

Additionally, thanks to VPL editors’ area splitter, the end-users are able to work in

their files and view (read-only) the others’ files in parallel (see Figure 8.1).

Figure 8.5. Collaboration project settings.

8.1.4 Collaboration Toolbar

The collaboration toolbar appears in the visual programming IDE’s workspace (see

the Figure 8.6), when the collaboration end-user development session starts. Using

this toolbar, the members could view and handle data about the collaboration process.

The toolbar is separated into four different rows of information. The first row of data

is the main presented information of the toolbar and displays the collaborators of the

project. Furthermore, the decisions for requests and correction suggestions of each

member are displayed below the personal information of the member (e.g. see the

highlighted ‘Water is Ready’ element of Figure 8.6). Moreover, the end-users are

allowed to transfer the ownership of the viewed project element in case they are the

136

owners of the specific element. The second row of the toolbar visualizes the personal

project elements of a member. When the user selects another member from the above

list of members, this specific member’s personal project elements are displayed. In

case no members are selected, the users are able to view their personal elements

isolated from the shared project. However, the master chooses if this information will

be visible or hidden for the members. The information regarding handling the shared

personal project elements is visualized in the next row of the toolbar. These files are

Figure 8.6. Collaboration Toolbar.

137

separated into two tabs, the first includes the personal elements shared by the user and

the second includes the personal project elements that are shared to the user by other

members. In the bottom of the toolbar, the actions history of the collaborative end-

user development process is visualized as chat message bubbles and each member is

able to browse them.

8.1.5 Supported Collaboration Models

Applying the above roles and rules in the shared project, our approach is capable to

support Pair programming in one or more groups of members that have joined the

shared project. In the beginning of the collaboration session, the master of the project

is able to organize members in groups, comprising of the driver and the navigator for

specific end-user development tasks.

Moreover, our approach could be used in the context of a teaching classroom. The

teacher would be the master of the project and the students would be simple members

that could watch the teacher develop in the context of a lesson. Then, the teacher

would be qualified to assign development tasks to the students as assignments of the

lecture.

In addition, this approach would work well for the collaborative development of

applications in groups of small teams (e.g. friends, family etc.). In the context of

personal automations in the Internet of Things, such projects could be automations for

a family’s smart home etc. Furthermore, less experienced end-users could ask for help

and share their artifacts with more experienced users or professionals. The

applications of collaboration are better represented through the use case scenarios that

are described in the following section.

8.1.6 Evaluation

When our work led to well-formed requirements and implemented most of the

collaboration facilities, we decided to evaluate our proposed system in the context of

collaboration for the end-user development process. In order to assess our approach,

we conducted an evaluation study on users. In this section, we discuss the aims and

design of our study, present the use case scenarios, outline the evaluation’s

participants, describe the evaluation process and analyze the results.

138

8.1.6.1 Aims and Design

The evaluation we conducted aims on observing how users operate and use our

system’s key features as well as on assessing the system’s usability. Particularly, we

dedicated our study’s focus to evaluating the collaboration toolset. For each

collaboration feature that we considered important, we designed a use case scenario

that focused on deciding whether the chosen approach was indeed appropriate and

well-integrated. For obtaining usability measurements, we used the System Usability

Scale (SUS).

8.1.6.2 Use Case Scenarios

We use hypothetical users to discuss the scenarios. Each of the following use case

scenarios are separated in two parts, the description and the goal. The description of

each scenario refers to the real-world situation that contextualizes the goal. The goal

of each scenario refers to the task that should be accomplished. The scenarios’

contexts are realistic and the goals are kept simple and short in order to evaluate the

usability of specific features of our approach for collaborative editing. The used

scenarios are following.

1) Starting a new collaboration session

Description: George has bought a new Smart TV and wants to configure it but

unfortunately has little to no experience. However, his sister Tina has

programmed smart devices in the past and can help him.

Goal: The participants were asked to create a project and start a new

collaboration session.

2) Handling suggestion requests, opening a personal project element

Description: Bob’s grandparents need help for setting up their alarm clock, pill

reminder and water heater. For that purpose, Bob has created and shared a

project with his family members. His family members have finished working

with the project elements “Alarm Clock” and “Pill Reminder” and have

suggested them for inclusion. However, his brother hasn’t yet made any

correction suggestions for the water heater and Bob wants to check on his

progress.

139

Goal: The participants had to accept inclusion requests for the two project

elements. Furthermore, the participants were asked to locate a specific user’s

personal file and open it in the editor.

3) Creating a new personal project element and asking for inclusion

Description: Alice has joined her teacher’s project, in which she is instructed

to create a new personal project element for controlling the class’ air condition

machine. Once her code is ready, her teacher has instructed her to make a

request for the project element to be included in the shared project.

Goal: The participants were asked to create a new personal project element

named “Air Condition” and make an inclusion request for the project element

to be included in the shared project.

4) Exchanging the editing rights

Description: Mike is currently configuring his new smart refrigerator along

with his friend, Adam. Mike is facing difficulties and Adam offers to help. For

that purpose, Adam asks for the editing rights. After Adam’s contribution,

Mike retakes the editing rights to continue coding.

Goal: The participants were asked to pass the editing rights of an existing

project element to another user. On success, the participants were asked to

regain the editing rights.

5) Suggesting changes for a project element

Description: Laura notices a certain error in a project element named “Coffee

Is Ready”. However, the person in charge of the file is currently busy and

cannot give her the editing rights. In order to eliminate the error, Laura adds a

correction suggestion that contains the correction suggestion for that specific

project element.

Goal: The participants were asked to add a correction suggestion for a specific

file.

6) Selective execution of a project element

Description: John is working on a project with Maria and Peter. John has

finished his assigned work and wants to test his code. However, Maria and

Peter are still working on their assigned parts, which means that the project is

not on a stable state.

Goal: The participants were asked to execute their own project element

isolated from the rest of the project.

140

7) Configuring the options of the shared session

Description: Jake is a teacher and wants to setup a test for his students. In

order to do that Jake creates a shared project and makes sure students cannot

cheat by configuring the shared project’s options.

Goal: The participants were asked to create a new project, share it and

configure its options so that personal project elements are not visible to simple

members.

8) Sharing personal project elements

Description: In order to keep his collaborative project in a stable state Joseph

is working on a personal project element. However, he is facing issues and

asks his collaborator, Mark, for help.

Goal: The participants were asked to share a personal project element to

another user and pass the editing rights.

8.1.6.3 Participants

We asked 18 participants (M = 13, F = 5) aged between 14 and 31 to help us. Most of

the participants were from our university departments (i.e. Computer Science,

Mathematics and Physics). Additionally, 6 of the participants were high school

students that have previous experience with Scratch. Moreover, we found 2

individuals that had no previous experience with programming or visual

programming.

8.1.6.4 Process

Each participant was evaluated individually. We firstly discussed and presented the

classic Blockly Editor. Then, we presented our visual programming workspace for

Blockly and afterwards the collaboration end-user development toolset. Next, each of

the aforementioned use case scenarios was described to the users and they were asked

to interact with the prototypes in order to accomplish each task. For each task and

participant, we measured the time required for completion and we recorded the user

behavior. Finally, the users were asked to fill-in the questionnaire which is presented

in the Appendix.

141

8.1.6.5 Results

We summarized and further analyzed all the answers given from our participants. The

SUS questionnaire was designed in order to export results in two main dimensions.

The first was focused on the collaboration end-user development efficiency and

usability (see Table 2). Results showed that the vast majority of participants were

satisfied with the collaboration toolset. Furthermore, the second dimension was

focused on the application fields of use (see 0). Most of the users considered the tool

useful for teaching or learning purposes and would use it for their collaborative

projects.

Table 2. Efficiency and Usability.

 SD D N A SA

Q1. The collaboration component is well integrated into

the workspace.
0 1 2 8 7

Q2. I find the collaboration process unnecessarily

complex.
8 9 1 0 0

Q3. I find the collaboration user interface intuitive and

easy to use.
0 0 2 10 6

Q4. I feel confident using the application with

guidance.
0 1 0 11 6

Q5. I can use the application in the future without any

help.
0 1 4 7 6

Q6. The collaboration toolset offers limited options. 8 7 3 0 0

Furthermore, based on the aforementioned measurements we constructed the

following diagram that visualizes the average, the best and the worst time recorded for

each scenario. All the users completed the tasks and most of the worst time

measurements are not far from the average, while the best are not far from the average

too. Moreover, during the evaluation, we realized that after the 3rd scenario, most of

the users were more familiar with the tool. The latter is also depicted in the decreased

time to complete equally difficult tasks.

Table 3. Fields of Use.

 SD D N A SA

Q1. I would like to use the tool for my personal

projects with my family/friends.
0 1 2 9 6

Q2. I don’t see the point of collaborating. 12 5 0 1 0

Q3. I find the application useful for teaching and

learning purposes.
0 0 2 7 9

142

Finally, based on the free form questions (Appendix), we summarized that participants

were generally satisfied. In addition, some of them commented that the application

would be useful to ask more experienced users for help remotely in Blockly.

Moreover, they were satisfied by the tool’s user interface, however, they spotted some

design mismatches that we fixed (e.g., missing URL information after sharing

process).

Figure 8.7. Participants' time to accomplish each of the scenarios.

8.2 Collaborative Debugging

Debugging is one of the most demanding activities in the software development

process. In the case of novices, the debugging process could be extremely challenging

or problematic [142]. Moreover, the debugging process for novices can be more

efficient through pair collaboration [143]. Additionally, learning debugging programs

is essential for novices. In this context, we consider that collaborative debugging is a

key feature in visual end-user programming and could be notably useful in the case of

using it for teaching and learning purposes, asking for help from more experienced

users, debugging collaborative projects etc. This motivated us to extend the Blockly

Studio IDE in order to provide a full-scale collaboration debugging toolset. Our

approach (see Figure 8.8) focuses on two directions: firstly, on efficiently supporting

143

the collaborative debugging process among the end-users and secondly, on providing

the infrastructure for teaching and learning debugging.

In the first direction, we facilitate debugging and testing for novices in the context of

the end-user development process. The tool can be used for personal end-user

development projects (i.e. asking for help from other users which are more

experienced) or collaborative end-user development projects (i.e. debugging project

that will be developed by more than one end-users) hosted by the Blockly Studio IDE.

Figure 8.8. High level of our collaborative debugging approach.

The collaboration approach we propose, guarantees the preservation of the project’s

visual code by isolating it, creating a local replica for each one of the collaboration

members. In this context, the users are able to create correction suggestions per

project element. Those correction suggestions are shared among the participants. In

this context, at the beginning of each debug session, we allow the end-users to select

which version of visual code will participate in the project execution. During the

debugging session, one user at a time is able to handle the debugger instructions (i.e.

master of the debug session). However, the rest of the members (i.e. observers) are

able to navigate the visual code to acquire information independently of other

members browsing, without interfering with the experience of any collaboration

member. In addition, they are able to add breakpoints to stop the execution at crucial

points and use watchers in order to view values independently. Finishing the

collaborative debug session, the end-users are given the ability to decide which of the

correction suggestions will be applied to the original project and may choose to

144

include them in the original project as suggestion visual code corrections without

applying them. The latter could be useful for new ideas which may arise during the

collaborative debugging process.

In the second direction, we aim to contribute to teaching and learning in the context of

debugging and programming. The tool can be used by teachers (i.e. masters of the

collaboration session) to demonstrate the debugging process to students (i.e. other

members of the collaboration session) in real-time. In such demonstrations, the

students will be able to perceive the flow of a program and learn the process of

debugging. Additionally, the tool enables students to live debug programs,

individually or collaboratively while allowing the teachers to supervise all the

debugging processes. In particular, the collaboration approach we propose, introduces

debugging rooms. The users are able to create debugging rooms in which debugging

sessions can be hosted (i.e. one debug session per room at a time). Other members

may be permitted or forbidden to join a debugging room and the correction

suggestions may be visible to anyone or only to the members of the debugging room.

The master of the collaboration session is able to customize the facilities based on

their needs. In this section, we present the proposed collaborative debugging

approach.

8.2.1 Initiating Collaborative Sessions

In order to start the collaborative debugging session, the end-users have to share the

project that they would like to debug. This project can be either a personal project or a

collaborative project which is already shared with other users. Using an appropriate

modal, the users have to fill-in their personal information which will be viewed by

other collaboration members. In addition, they have to configure the settings of the

collaboration based on the requirements of the collaborative debugging (i.e. teaching-

learning or debugging purposes). A unique URL is generated and the users are able to

notify the members they would like to join by sending them this URL. When the users

join the shared project, they are asked to fill-in their personal information too via a

similar modal. In the case the end-users start a collaborative debugging session for a

collaboration project, there is already personal information from the collaboration

editing session. This information is used and the end-users are prompted to just

confirm the beginning of a collaborative debugging session. In particular, the

145

collaboration members from the collaborative editing session are notified and asked to

choose if they would like to join the collaborative debugging session or not.

Moreover, the collaborative debugging session’s unique URL is available in case they

would like to invite additional members. Members are able to join the session and

catch up on the collaborative debugging process at any time, as long as the session is

active.

Figure 8.9. Starting view (i.e., home page) of the collaborative debugging session.

After joining the collaborative debugging session, the end-users are able to browse the

project using the project manager (see right of Figure 8.9). The collaborative

debugging toolbar is located on the right of the IDE. The collaborative debugging

toolbar includes the members which participate in the session, the debugging rooms,

the correction suggestions and the current member actions logger. In the next,

paragraphs, we analyze each one of them.

8.2.2 Debugging Rooms

In the collaborative debugging session, the members by default run one debugging

process at the time. In particular, a single user is allowed to handle the debugger

commands (i.e. master of the debug session). The other members of the team (i.e.

observers) are able to navigate the visual code to acquire information independently

146

of other members browsing, without interfering with the experience of any

collaboration member.

In addition, they are able to add breakpoints to stop the execution at crucial points and

use watchers in order to view values independently. Moreover, at any time during the

session, the master can switch roles with one of the other users. This is often useful

when the execution reaches parts of the code with which the master is not familiar;

the master may then decide to become an observer and promote a more

knowledgeable collaborator, who takes the lead without having to start over with a

new debugging session. Furthermore, the end-users are allowed to deactivate the

master mode (i.e. deactivates the functionality which restricts that only one member is

able to handle the debugger) through settings, in the case they consider that it is

tedious to exchange the visual debugger control.

Moreover, the collaborative debugging environment doesn’t provide an embedded

voice chat. We consider that such tools are not part of the collaborative debugging

environment and the members are able to use a third-party communication tool.

However, the members are able to view the recent user actions logger (see on the

bottom right side of Figure 8.9). Moreover, they are able to add notes for each one of

the project items which will be accessible to the other members.

Figure 8.10. Modal to create a new debugging room.

147

However, instead of one team, more teams are required in the case of teaching and

learning. In particular, the tool enables the teachers (i.e. masters of the collaborative

debugging sessions) to demonstrate the debugging process to students (i.e. observers

of the collaborative debugging session) in real-time. In such demonstrations, the

students are able to perceive the execution flow of a program. Also, they can be

educated by teachers on debugging techniques and practices. The tool enables

students to live debug programs, individually or collaboratively while allowing the

teachers to supervise all the debugging processes. In this context, we introduce

debugging rooms in our collaborative debugging environment.

Figure 8.11. Viewing 'Debug Room 4'.

The users are able to create debugging rooms in which debugging sessions can be

hosted (i.e., one debug session per room at a time). For the creation of a new

debugging room, the author has to specify the name of the room and the members that

will have access (see Figure 8.10). Based on the circumstances, the master of the

collaborative debugging session decides whether the other members are able to create

debugging rooms or not. The users are allowed to be members of more than one

rooms but are only able to browse one room at a time.

148

Joining the debugging room, the end-user developers see the current state of the room

as depicted in Figure 8.11. In particular, they are able to catch up on the debugger

session state if there is an ongoing collaborative debugging process in the debugger

room. In this context, they are able to view the visual debugger information including

instructions control (i.e., step in, pause, continue, etc.), debug data and breakpoints

(see tag A of Figure 8.11). The user can also view which users are members of the

debugging room and which of them are active (see green bubble on George’s icon of

Figure 8.11). Additionally, they are able to view the current member actions of the

debugging room and the debugging session (see tag B of Figure 8.11). Furthermore,

they are able to view the list of the correction suggestions and may create new ones

(see tag C of Figure 8.11). Moreover, the owner of a debugging room and the master

of the collaborative debugging session are able to remove a member or destroy the

room.

8.2.3 Visual Debugger

As earlier mentioned, we have developed a full-scale block-level visual debugger for

Blockly into the Blockly Studio IDE. This visual debugger is full-scale block-based

featured, offering all of the classic stepping and inspection (watches) features in

analogy to source-level debuggers. In particular, control actions such as start, pause,

continue, restart, step over, step in, step out and stop are included (see Control Debug

on the right of Figure 8.12). Also, inspection of variables and evaluation of

expressions are available. Additionally, breakpoints are inserted per individual block,

with a typical breakpoint icon, located on the top-left of the associated block as

depicted in Figure 8.12. Breakpoints can be enabled or disabled and once an enabled

breakpoint is hit, the correspondent block is highlighted. Using the visual debugger

toolbar, the user is able to activate or deactivate breakpoints, add or remove watch

expressions and use any control action for tracing.

However, in order to support collaborative debugging, the visual debugger of our IDE

was extended and customized (see on the right of the Figure 8.13). In particular, the

visual debugger consists of two component parts, the front-end and the back-end. The

front-end includes the visuals of the debugger including the control commands, the

breakpoints, the watcher, the express evaluations etc. The back-end of the debugger

includes the execution of the visual source code of the project, the logic for

149

interacting with the front-end and the required debugger’s data that have to be

maintained for the debugging process. The back-end runs in a different thread from

the IDE using JavaScript Web Workers [144] and interacts with the front-end through

messages. We extended the back-end of the debugger by exporting its API in order to

be able to handle messages that are posted and received via the peer to peer

mechanism of the collaborative debugging session. Moreover, we add roles to visual

debugger peer instances in order to identify which are the obligations of each one

during the debugging process (i.e., view of the debugger control, post messages to

collaborative debugging peer and/or apply them to the debugger back-end system

etc.).

Figure 8.12. Using Visual Debugger of Blockly.

When an end-user starts the debugging process, the back-end (i.e. debuggee) of their

debugger is activated by getting the master role of the process (see on the right of

Figure 8.13). In order to avoid parallel debugging processes, the master visual

debugger peer posts a message to the other debugger peers in order to request the

initiation of the debugging process. The other visual debugger peers at first notify

their front-end part to disable the debug control user interface and change debugger

state (i.e. observer) and afterwards respond that they are ready to participate in the

collaborative debugging process as observers. Then, the master visual debugger peer

starts the code execution (i.e. only one of the visual debugger peers executes the

source code) and notifies the other visual debugger peers via messages that the

150

debugging process started. Then, the other debugger back-end peers notify their front-

end to sync the debuggers data. In this context, the visual debugger data (i.e. debug

data, breakpoints etc.) are saved in the master and they are transmitted to all the peers

in order to be synced.

Figure 8.13. Visual debugger’s architecture for classic debugger version (left), collaborative debugger

version (right).

In the debugging room, the participants are able to run one debug session at a time.

The end-user developer that starts the debugging session is the master of the

debugger. In particular, this user handles the debug control while the other users are

the observers of the process. However, the other users are able to browse the code

independently, add breakpoints, watch variables and expressions of the debug process

during the debugging session. Moreover, the master of the process is able to pass the

role to one of the other members by clicking the extra button on the right side of the

debug control toolbar (see on the left of the Figure 8.14) and choosing who of the

members will acquire the debugger control. Also, the master of the collaborative

debugging session is able to configure the settings of the session in order to have no

restrictions on who may control the debugger. Moreover, only the active members

participate in the debugging process. Additionally, the members catch up on the

current debugging session state watching the current debug member actions (e.g. step-

in, step-over, add breakpoints, applied expressions, members joined or left the room,

etc.). If the master of the debugging process leaves the debugging room, the current

debug session stops.

151

Figure 8.14. Debug Control (left); Give floor control dialog (right).

Figure 8.15. Creating new Correction Suggestion for “Alarm Clock Rings” project element.

8.2.4 Correction Suggestions

Starting the collaborative debugging session, a replica of the shared project is created

for each of the members that join the session. The members are able to debug the

project locally by editing the replica of the project. However, if the members would

152

like to apply changes to debug the project collaboratively, they have to share the

changes of the project element(s). In this context, our approach introduces correction

suggestions.

In particular, when the users edit one of the project items of the local project, the

system warns them that in order to share the changes, they need to create a new

correction suggestion. To create a new correction suggestion, the user has to choose

its title and description. The other members of the debugging room are able to view

the correction suggestion that is instantly added on the right of the project item, as

depicted in the Figure 8.15. However, only the owner of the correction suggestion has

privileges of write access. The other members are able to watch live the visual code

changes the owner applies. This is necessary for the members in order to be able to

browse the correct version of the visual source that is included on a debug session.

Furthermore, this could be a useful tool for the teacher to present live development or

ask from a student to live give a solution to a problem.

Figure 8.16. Debug the project by choosing the project items will participate and which of the project

items will be original and which of them will be correction suggestions.

In addition, users are able to create new correction suggestions based on other

correction suggestions independent of who their owner is. Moreover, correction

suggestions can be accessible to all the members from the main page of the

collaborative debugging session outside of the debugging rooms. This depends on the

153

settings configured by the master in the beginning of the collaborative debugging

session. However, the master is always able to view all the correction suggestions in

the main page.

The users are able to start the debugging session and choose which of the project

items will participate in the process as earlier mentioned in the selective execution

feature of the section 8.1.2.3. Furthermore, in each debugging session, the user who

initiated it, is able to choose which of the project items and which of the versions (i.e.,

the original version or any of the correction suggestions for this project item) will be

run (see Figure 8.16).

In the end, when the collaborative debugging process is completed, the master of the

session is able to choose which of the correction suggestions will be applied to the

original project, replacing the corresponding original project item visual sources as

depicted in Figure 8.17. Moreover, they are able to choose which of the correction

suggestions will survive as correction suggestions in the original project’s visual code.

Figure 8.17. Choosing which of the correction suggestions will be applied to original project and which

of them will be saved.

154

8.2.5 Discussion of Supported Applications

Using the above features that are provided by the collaborative debugging

environment, our approach is capable of supporting four different types of

applications. Firstly, in the case of novice programmers, our approach supports asking

for help from more experienced users. The novices can start a collaborative

debugging session in which they are able to invite one or more users to help with

correcting their project’s errors. In the same context, the second supported application

contributes to our collaborative programming environment. During real-time remote

collaborative editing, the members are able to initiate collaborative debugging

sessions and debug their shared project together in real-time. The third supported

application contributes to early childhood preservice teachers [145] in order to find

their errors easier and more quickly. The teachers are able to set up the collaborative

debugging environment in order to supervise and help the children with their

programming tasks.

Additionally, an interesting supported application of our collaborative debugging

environment focuses on teaching and learning debugging. Learning debugging is

crucial for novice programmers. We provide a full-scale toolset for teachers to carry

out live debugging sessions in order to present debugging techniques and practices to

the students. At the same time the teachers able to supervise the debugging process

whether they ask from students to develop an assignment or find errors in provided

visual code. To investigate our toolset’s efficiency in such setting, we have carried out

a user study, in which we play the role of teachers and the participants play the role of

students. We discuss the empirical study in the next session.

8.2.6 Empirical Study

Debugging is a crucial process for learning and understanding programming through

comprehending the execution flow of programs. Additionally, through collaborative

programming, the learning process can be significantly improved. In this context, one

of our main goals is to provide a full-scale toolset, capable of being used in real

teaching circumstances. To evaluate our IDE’s collaborative debugging environment

for teaching, learning and furthermore improve its usability, we have carried out a

study with novices.

155

The study contains a short visual-programming tutorial for the participants and a more

analytical tutorial with the goal to teach the basic debugging actions (i.e. step in, step

out, step over, continue etc.) and features (i.e. breakpoints, watches etc.) that the

IDE’s debugger supports. The visuals of the tutorials were organized using the IDE

and hosted in the IDE itself. Following, the attendees were asked to individually as

well as collaboratively debug block-based programs while being supervised by the

tutors.

8.2.6.1 Preparing the Environment

As we have earlier mentioned, our IDE for visual programming languages is

configurable and adaptable through the development of application domain

frameworks. Based on this, we have developed an application domain for hosting

project items which model educational exercises and examples (see Figure 8.18). For

the study’s purposes, the chosen model for the exercises and the examples consists of

two areas: the question area and the visual code area. In particular, the question area

allows loading an image which presents the questions in the context of a lesson.

Alternatively, they are able to type the question through an embedded text editor. The

visual code area is handed by a Blockly workspace through which the teachers and/or

the students are able to program-solve the assignments.

Figure 8.18. Teaching application domain for the collaborative debugging environment.

8.2.6.2 Participants

We undertook the role of the tutors in the study having prior teaching experience and

the necessary knowledge of the IDE and its debugging features. However, our study

focuses on the students and the efficiency of learning through the collaborative

156

debugging environment. In this context, 22 first year university students (M=18 F=4,

aged from 17 to 19) in the first semester of computer science, taking the introductory

course to programming were asked to participate in our study.

In the beginning, the participants were asked to fill in a form with information about

their programming experience (i.e. block-based and text-based programming),

experience with visual debuggers and their familiarity with collaborative

programming. In particular, 12 of them had previous experience with visual

programming languages (i.e. Scratch, App Inventor and Tynker) while 7 of them had

tried text-based programming previously and all of them had previous experience

with pseudocode via high school lessons. Furthermore, none of them had previous

experience with debuggers. Moreover, 2 of them had tried to collaborate in

programming through sharing screens.

Figure 8.19. Exercises asked to debug individually under supervision. (top) Program swaps x and y and

adds them. Find the bug.; (bottom) Program calculates the amount of money for wages(w): w<1000

=50, 1000<=w<1500 =100, 1500<=w<2000 =150 and w>=2000 =300.

157

8.2.6.3 Procedure

We prepared 4 exercises which include basic programming parts (i.e. variables,

mathematics, branches, loops etc.) for our study. We solved the exercises by using

Blockly’s workspace and then, we modified them in order to add errors in the visual

code. Starting the study process, we created a new collaborative debugging session

and invited the students by sending them URL via chat.

Figure 8.20. Exercises asked to debug in groups under supervision. (top) Program attempts to output

the sum of the input number’s digits; (bottom) Program attempts to recognize palindrome.

The study procedure was separated into four parts. The first part was a 20-minute

block-based programming tutorial in Blockly’s workspace. The second part was a 40-

minute tutorial in which, we presented the collaborative debugging environment, then,

the visual debugger features and we analyzed and debugged two of the

aforementioned exercises in real-time. Afterwards, we created one debugging room

for each one of the students and one tutor was added as a member to each room. We

asked students to join their corresponding debugging rooms and individually find the

bugs of the first two exercises (see Figure 8.19) by using the visual debugger for up to

10 minutes. Additionally, the students were asked to think aloud during the debugging

process. Each tutor was responsible for monitoring the debugging process of their

158

corresponding student and tracking their actions for the purposes of the evaluation.

Meanwhile, the tutors supervised the students in the debugging process, providing

hints if it was required. During the process, tutors kept notes with the total time spent

to solve the bug, the number of breakpoints that were added, the number of step-ins

and step-overs used, the number of variables watched, the number of the debug

sessions initiated and if hints were needed or not.

For the last part of the study procedure, we asked the students to collaborate in groups

of two in order to find the bugs of the last two exercises (see Figure 8.20) by using the

visual debugger for up to 10 minutes. We created new debugging rooms for this part

of the study and invited the students to join them. Furthermore, the tutors followed a

similar approach for monitoring and tracking the debugging process. The tutors

additionally kept notes for the number of times the students exchange the master

privileges. Finally, the students were asked to fill-in online a SUS questionnaire and a

second questionnaire with questions that were more specific to our collaborative

visual debugging environment.

8.2.6.4 Results

We summarized and further analyzed all the answers given from our participants in

two questionnaires. Our primary goal was to evaluate the collaborative debugging

environment of our IDE as a teaching tool. As presented in Table 4, the students

improve their knowledge for block-based programming through the debugging

process. Additionally, the students learnt the basic concepts of a visual debugger and

feel confident using it in the future.

Table 4. Questions focusing on learning programming and debugging.

 1 2 3 4 5

Q1. My understanding of block-based programming

improved using the debugger.
0 0 2 9 11

Q2. I understand the basic actions (breakpoint, step in, step

out, step over, continue) of the debugger.
0 0 0 3 19

Q3. I feel confident that I can use the debugger to inspect

values of variables or expressions (watches).
0 1 1 4 16

Q4. I don't think that collaborative debugging can be used

as a teaching tool.
14 6 0 2 0

An important part of our evaluation was to test the understandability and the usability

of the introduced collaborative debugging features. To the best of our knowledge, the

159

concept of correction suggestions we presented is new and novices could not have

relevant experiences. However, as presented in Table 5, the students felt confident

with this feature while the results are relatively similar with the known concept of

rooms from communication tools (e.g., Discord, Microsoft Teams, etc.). Moreover, it

is important for collaboration tools to offer fluent and natural interactions between

users without them feeling restricted by the tool. Based on the first two questions of

Table 5, the students are satisfied with the user-to-user interaction via our

collaborative debugging environment. In order to thoroughly evaluate our system, we

asked the students to fill-in the standard version of the SUS questionnaire (see

Moreover, during the evaluation, we perceived two issues of our user-interface in the

collaborative debugging environment. The first issue was about the action of creating

a correction suggestion. The concept of the correction suggestions is closely related to

the concept of project items; thus, the students were expecting to find the option to

create a new correction suggestion by right clicking a project item in the project

manager. After this observation, we added this option to the right click menu of the

project items. The second issue was that the users expected to find the choice of

promoting a member to master in the right click menu of the debugging room’s

members and had some difficulty on spotting the dedicated button next to the debug

control. After observing this, we added this option to the right click of each member.

Table 6), resulting in an encouraging outcome.

Based on the data collected by the tutors, we noticed that some of the students which

avoided using the visual debugger when debugging individually, started to become

more familiar and use it more when asked to debug collaboratively. Furthermore, in

general when students debugged collaboratively, they had more targeted and thought

out actions. In this context, they achieved approximately the same times to find the

bugs, even though, the last two exercises were more complex to solve. However, this

may have happened from the experience gained from the previous tasks using the tool

and/or from the process.

Table 5. Questions focusing on the collaborative debugging environment.

 1 2 3 4 5

Q1. Collaborative debugging interactions with other

students or the teacher felt fluent.
0 1 3 10 8

160

Q2. Using the debugger (breakpoint, step in, step out,

step over, continue) collaboratively with others felt

natural.

0 0 2 16 4

Q3. The correction suggestion mechanism seems

complicated.
15 5 1 1 0

Q4. The concept of debug rooms is easy to understand. 0 0 0 6 16

Q5. Getting help from a friend for debugging seems easy

using this tool.
0 1 2 7 12

Q6. In a future collaborative project with friends, I would

use collaborative debugging.
0 1 2 8 11

Moreover, during the evaluation, we perceived two issues of our user-interface in the

collaborative debugging environment. The first issue was about the action of creating

a correction suggestion. The concept of the correction suggestions is closely related to

the concept of project items; thus, the students were expecting to find the option to

create a new correction suggestion by right clicking a project item in the project

manager. After this observation, we added this option to the right click menu of the

project items. The second issue was that the users expected to find the choice of

promoting a member to master in the right click menu of the debugging room’s

members and had some difficulty on spotting the dedicated button next to the debug

control. After observing this, we added this option to the right click of each member.

Table 6. Standard SUS Questionnaire.

 1 2 3 4 5

Q1. I think that I would like to use this system frequently. 0 0 6 9 7

Q2. I found the system unnecessarily complex. 16 5 1 0 0

Q3. I thought the system was easy to use. 0 1 1 2 18

Q4. I think that I would need the support of a technical

person to be able to use this system.
15 6 1 0 0

Q5. I found the various functions in this system were well

integrated.
0 0 0 9 13

Q6. I thought there was too much inconsistency in this

system.
18 3 1 0 0

Q7. I would imagine that most people would learn to use

this system very quickly.
0 3 0 6 13

Q8. I found the system very cumbersome to use. 15 7 0 0 0

Q9. I felt very confident using the system. 0 2 0 7 13

Q10. I needed to learn a lot of things before I could get

going with this system.
12 10 0 0 0

161

Chapter 9

IοT Automations

“If you think that the internet has changed your life, think again. The Internet of

Things is about to change it all over again!”

-Brendan O’Brien

An application domain for visual programming which increasingly gets attention is

the smart automations in the Internet of Things. Thanks to IoT era, personal smart

devices and services are available in the environment and potentially everybody

would like to create micro applications for their daily activities. The vehicle for this

goal is the visual programming workspace environment (see Figure 9.1). However,

there are several challenges that have to be addressed to achieve this goal. In this

context, and in order to better represent our approach, we developed an application

Figure 9.1. The notion of personalized custom automations in the Internet of Things through an

End-User Programming framework.

162

domain framework for smart automations in the IoT by using the infrastructure of the

Blockly Studio IDE. In this chapter, we analyze each of the challenges of a visual

programming workspace environment for IoT automations and discuss how they have

been addressed in the application domain framework we built. This work constitutes

the main case study of our approach for a domain extendable visual programming

IDE.

9.1 Visual Programming Editor for Smart Objects

Connected smart devices and services (also known as smart objects) constitute the

first-class element of visual programming in the context of smart automations in the

IoT. In particular, the development of applications for smart automations includes

actions to communicate with the smart objects, isolate and organize which of them

will be involved, filtering their properties and actions, group them, etc. In this context,

we developed a specific-domain visual programming editor for the smart objects. We

analyze the facilities that have been developed for the editor in the following

subsections.

9.1.1 Communicating with Smart Objects

The main functionality of the visual programming editor for smart objects is to make

communication possible with the smart objects. IoT middleware is software that

serves as an interface between components of the IoT. There are several approaches

of IoT Middleware in the bibliography [146]. For our work we use the IoTivity

framework [147]. It is an open source software framework, reference implementation

of the Open Connectivity Foundation (OCF) standards for the IoT. In addition, it

provides resource simulation tool that enables us to fully simulate resources (e.g.

devices, sensors and services etc.) for testing our platform. Furthermore, the iotivity-

node [148] provides a JavaScript API for OCF and it is implemented as a native

addon using IoTivity as its backend. The visual programming editor for smart objects

uses the iotivity-node to communicate with the smart objects and carries out all the

required functionality.

163

9.1.2 Managing Smart Objects Through Domain Visual

Programming Language Elements

In the context of end-user development for smart automations in the IoT, individuals

should be able to interact with smart objects, potentially managing, parameterizing

and even programming applications involving them. In this context, the visual

programming editor for smart objects provides appropriate functionality by

introducing and handling domain visual programming language elements. In the next

subsections, we describe the functionality and each of the domain visual programming

language elements that are identified.

Figure 9.2. Importing Smart Device

164

9.1.2.1 Smart Devices

In the context of IoT automations, the main elements have to be handled are the smart

objects. Hence, the main domain visual programming element that is introduced by

the smart object editor is the ‘Smart Device’. In this direction, the first steps of the

end-user development process are to scan and register the smart objects that will be

involved in a smart automation. In case there are already registered devices from

previous created projects, the users are enabled to choose already defined smart

devices.

Figure 9.3. The view parts of a registered air-conditioning device.

2

1

3

4

165

Defining a new ‘Smart Device’ for the IoT automation (see tag A of Figure 9.2), the

element is in initial state without selected a connected smart device (see tag B of

Figure 9.2). Then, the user chooses to scan for available smart objects and the list of

them is shown (see tag C of Figure 9.2). Afterwards, the user select which element

will register by clicking the ‘Register’ button.

When registration is completed successfully, the ‘Smart Device’ visual programming

language element instance is created. The visual programming editor for smart objects

propagates a signal for the creation of a ‘Smart Device’ instance which includes its

instance data. This signal will be used by the Domain Manager system (see section

4.2.1) in order to define automatically the appropriate Blockly blocks that are defined

in order to program the automations (see section 9.2).

Afterwards, the ‘Smart Device’ instance is established as registered and the smart

object editor presents its parts (see Figure 9.3). In particular, there are four different

parts. In the top of the smart object view, the user chooses which is the smart

environment which is defined (see next section). In the second part, the users can

view the properties that are exported by the smart object. In this context, the users are

able to handle if one property will be enabled for the development (create or not

Blockly blocks with the Domain manager system) by clicking the ‘eye’ toggle button

on the right of each property. Moreover, below of each property name, there is an

alias which is used for the smart object groups that we analyze them in the next

section. The third part of the smart object view relates with the exported actions of the

smart object which includes the ‘eye’ toggle button that has similar functionality with

the aforementioned properties. Additionally, the end-user developers are able to

program the behavior of each action that will be used during the debugging process

(see section 9.7). The fourth part of the smart object view shows the smart object

groups and it handling which are discussed in section 9.1.2.3.

The user interface for the visualization of the smart objects differs per smart object

based on the exported functionality (i.e., properties and actions). In this context, the

user-interface is generated automatically based on the JSON data response from

scan’s request to the IoTivity.

166

9.1.2.2 Smart Device Environments

A smart automation in the IoT could include numerous smart objects. In order to

better organize them for the end-user development process, the visual programming

editor for smart objects introduces an extra domain visual programming element

named as ‘Smart Environment’ which helps the organization of the smart objects. In

particular, the end-user developer is able to define smart environments which include

either lists of smart objects or other inner smart environments.

Figure 9.4. Smart device group for air-conditioning.

This feature enables the end-user developers to organize by defining groups (folders)

of smart objects. The end-users are able to choose which smart environment will be

included each smart object either by creating the smart object instance in the smart

environment or by choosing which is the smart environment that will be included

through the enable user-interface selection as displayed in the 1st tag of the Figure 9.3.

Furthermore, creating smart environments is optional and the end-user developers

have the choice of not using smart environments, which is useful for smart

automations which include a little number of smart objects.

167

9.1.2.3 Smart Device Groups

Additionally, several smart objects with common functionality could be involved in

IoT automations (e.g. the smart light bulbs of a home). In this case, the end-user

developer may like to handle them as a group (e.g. switch on/off the smart light

bulbs). In this context, the smart object editor introduces the domain visual

programming language element named as ‘Smart Device Groups’.

Figure 9.5. The view of air-condition living room.

168

In particular, the smart object editor attempts to identify which of the registered smart

objects of the smart automation have common functionality and organize them in

groups. These groups give the ability to develop-handle the smart objects in groups

instead of requiring to handle each one of the common smart devices.

In this context, the end-users are able to create new groups with common functionality

via the smart objects by exporting the smart object properties (i.e., click the “Create

Group” button presented in Figure 9.2). The created groups of common

functionalities include information of the name, the image and the color of the group.

In addition, they include the list of common functionalities and the list of the smart

objects that are included (see Figure 9.4). The end-user developers are able to remove

a smart object from the list in case they would like to handle it separately.

Furthermore, several smart objects which could be included in a group have a

different exported API. The differences could be either some of the functionalities

that are not provided by one device or they provide all the functionality but it is

exported with different naming(s). In this context, the end-user developers are able to

edit the common functionality list (i.e., activate/deactivate items). This is useful in

Figure 9.6. The view of air-condition living room.

169

case they wouldn’t like to include a specific common functionality in the group and

this functionality is not supported by one smart object that they would like to be

included in the group. Using the toggle turn on/off button which is presented on the

right of each property, the users can add or remove the functionality. In this case, the

smart object editor sends signal for editing with the respective data of the instance. In

this context, the generated Blockly blocks for the smart object group instance are

handled by the Domain Manager as happens in case of smart objects which earlier

discussed.

Moreover, in the process of the matching common functionality of smart objects, the

end-user developer is able to give for each one of the properties an alias. This is

useful in the case that smart objects support common functionality but export different

APIs. The matching mechanism attempts to match the original property name and

then in the case of failure tries to match with the given alias. In this context, a

dialogue opens when a smart object is created in order to view the smart object

information and manage the smart object groups related with this smart object.

Figure 9. 7. Handling smart object groups for the alarm clock.

For example, considering that we have define the smart object ‘Air-Condition’ with

the exported functionality as it is depicted in Figure 9.2. Then, creating another smart

170

object ‘Air-Condition Living Room’ which includes similar functionality (see Figure

9.5). In this case, the smart object editor suggests to the user to add it in the group

when the smart object is created by opening a pop-up dialogue that enables to choose

or not include the ‘Air Condition Living Room’ in the ‘Air Condition Group’.

Moreover, creating an ‘Alarm Clock’ as smart object the number of provided

functionalities matches (i.e., both ‘Air Condition Group’ and ‘Alarm Clock’ have 4

properties), however, the API differs. In this context, the dialogue which handles the

smart object groups opens and enables the end-user to give appropriate aliases in

order to match the APIs (see Figure 9.6) and enable the choice to include it in the

group.

9.1.3 Loading Shared Automations

As earlier discussed, Blockly Studio IDE enables sharing of the end-user developed

applications. The end-users are able to search, download and use the shared

applications. In the case of the smart automations in the IoT, there are issues that have

to be addressed on loading shared applications of others.

Figure 9.8. Replacing the ‘Air Condition’ smart device of the shared application with a compatible

smart device.

171

In particular, before using a shared application, a replica is created in the end-user’s

environment. However, in the smart automations case, the first development step is to

define which of the registered smart objects will be involved. As a result, the first (i.e.

extra) development step for shared applications is the replacement of the smart objects

which participate. In particular, when loading the shared application for the first time,

the visual programming editor for smart objects marks all registered smart objects as

invalid and warns that the smart objects have to be replaced. Also, the end-user

developers are able to define extra smart objects for these smart automations in order

to modify and/or extend them. Furthermore, this process could be repeated during the

end-user development process.

The visual programming editor for smart objects firstly identifies the smart objects

which provide compatible functionality and are unique in the end-user’s environment.

In case these smart objects are not unique (e.g. two air-conditioning systems one at

home and another one at the office), the smart object visual programming editor asks

the end-users to select which of the smart objects will be used as depicted in Figure

9.8. Then, the smart objects which are not compatible with any of the end-user’s

smart objects have to be handled.

In the case there are smart objects which can replace these smart objects but export

different API, the end-users are able to use the alias and this will help in matching the

smart objects. Also, the end-users are able to remove the smart objects; whether their

functionality isn’t useful to them or they don’t have them available in their arsenal.

Removing defined smart objects prerequires that the author of the shared application

hasn’t defined these smart objects as mandatory. Furthermore, removing one or more

smart objects from a shared application could decrease functionality or even make the

application useless. The latter is the responsibility of the end-user.

9.2 Visual Programming Blocks for the Behavior of Smart

Objects

As mentioned in the previous section, there are three domain visual programming

language elements that are handled by the smart object visual programming editor: the

smart objects, the smart object environments and the smart object groups. In this

section, we discuss the behavior of the visual programming language elements that

172

were introduced for each one of the domain elements in order to handle their

functionality in smart automations.

As earlier mentioned, the application domain author has to develop constructors that

get, as input, the data which are exported by the specific domain visual programming

editors during the creation of visual domain elements. These constructors are used by

the mechanism (see 4.2.1) and automatically handle the management of new blocks.

The first categories of blocks that we will discuss in the following paragraphs are the

handling set of blocks for smart objects.

Figure 9.9. Basic Blockly Blocks for Smart Objects; actions for smart objects (tag A), setters, getters

(tag B, C) and input, output for smart object properties in the I/O Console.

The behavior handling set of Blockly blocks for smart objects consists of four

categories. The first category of blocks is the basic handling of request actions (see

tag A of Figure 9.9). Using this block during the development, the end-user developer

is able to choose the action name that they would like to use. Based on the signature

of the function (i.e., no arguments as input, one or more arguments, type of the

173

arguments, etc.) the block changes automatically as shown in Figure 9.10. The second

category of blocks is the basic handling of getting, setting property values of smart

objects (see tag B and C of Figure 9.9). Using these blocks, the end-users are able to

request the functionality that is provided by the smart objects. Additionally, the end-

user developers are able to print the values of smart object properties in the Input

Output Console or ask from the application users to set values in smart object

properties through the Input Output Console (see tag D of Figure 9.9).

Figure 9.10. Dynamic change of a Blockly block based on the choice during the end-user development.

Figure 9.11. Blockly Blocks for Smart Object Groups.

174

In an analogous way, blocks are defined for the domain visual programming language

element for smart groups. All the blocks which are defined for the smart objects are

used for the smart object groups except the blocks for getting property values as each

of the included devices may have different value (see Figure 9.11). These blocks are

handling all the smart objects which are included in the smart object group.

For example, using the block with the action ‘AutoMode’ of the ‘Air Condition

Group’ means that all the air conditions will be set in auto mode. Asking for a value

for device-temperature means that all the smart objects will get as device-temperature

the input that user will give through the input-output console. The Blockly block ‘Is’

checks if the state of a specific property applies for all the smart objects that are

included in the group.

Figure 9.12. Conditional Event Blockly Blocks for Smart Automations.

175

9.3 Visual Programming Blocks for Conditional Automations

One of the main categories of visual programming language elements is the

conditional automations. The conditional automations empower the end-users to

define conditions based on the state of smart object properties (see Figure 9.12).

When these conditions are evaluated to true, their inner blocks (i.e., children) are

executed.

The Blockly blocks for the conditional automations are separated into two categories

based on repeatable and not repeatable conditional automations. In particular, the non-

repeatable conditional automation is triggered only once, when its defined condition is

evaluated as true. This means that the next time that the condition will be evaluated as

true nothing will happen. In case the end-user developers would like to develop

conditional automations that will happen more than one times, they have to use the

conditional Blockly blocks that are displayed on tag B of Figure 9.12. The first and

the third block is used to specify how many times conditional automations will be

triggered, while the second Blockly block’s children will be executed after the

condition is evaluated as true for a specific number of times. Finally, the last block

can be used as a child of the first or the third block in order to break or continue the

execution of its children.

Additionally, the end-users are able to define related descriptions for the functionality

of blocks. Based on this, the runtime environment interprets the information

respectively (see section 9.6).

Moreover, the end-user is able to use these blocks as either top-level blocks of the

conditional automation (i.e., without top-bottom input blocks) or repeatedly as

children in order to develop more complicated programming expressions. In this

context, the functionality of the inner conditional blocks change. Particularly, for

using nested conditional blocks, when the inner block starts, the parent block is

deactivated (its condition is not evaluated). When the children conditional blocks are

accomplished, the parent condition is activated again (i.e., triggers when its condition

is evaluated to true).

Moreover, three blocks contribute to the definition of conditions (see tag C of Figure

9.12). The third block gets, as its input inner block, a getter of a smart object property,

to check if this property’s value changed. This block is executed repeatedly. The first

176

time it initializes the value and for every next time it is executed, it retrieves the smart

object’s value and checks if something changed. The second block is used to compare

a value of a smart object property with another value. The first block is used to build

more complicated conditions using logic operators AND, OR. Moreover, when the

conditional event is triggered, inner condition blocks are reset in order to be available

for a possible next use, in the case this conditional automation will be invoked more

than one time (e.g., use it in the body of a loop or function definition).

Figure 9.13. Scheduled Event Blockly Blocks for Smart Automations.

177

9.4 Visual Programming Blocks for Scheduled Automations

Another main category of visual programming language elements is the scheduled

automations. The scheduled automations empower the end-users to define schedules

based on the state of smart object properties (see Figure 9.13). When the IoT

automations project starts, the application calculates the calendar, the time and starts a

timer in JavaScript. Based on these values, the scheduled blocks are triggered on the

specific date and time which are selected by the end-user developer. When these

blocks are triggered, their inner blocks (i.e., children) are executed.

The Blockly blocks for the scheduled automations are separated into three categories

based on specific date or time and repeatable or not repeatable automations. In

particular, the block ‘At’ gets as input the specific date or time that the children blocks

will be executed at. This block executes once during the project execution. Another

block that is executed once is the ‘Wait’ block. This block gets, as input, a specific

time period. When this time period will be completed, the children blocks will be

executed. The last category of blocks supports repeatable execution based on specific

time periods (see tag B of Figure 9.13). Particularly, ‘Every’ block gets as input the

time period (see tag D of Figure 9.13). Every time the defined time period is

completed, the children blocks are executed. Additionally, the second block handles

the flow of the repeatable loops by using break in order to stop the loop and continue

in order to stop the execution of the below children instructions of the ‘Every’ block.

Additionally, the end-users are able to define related description for the functionality

of each block. Based on this, the runtime environment interprets the information of

these blocks respectively (see section 9.6).

Moreover, the end-user is able to use these blocks as either top-level of the scheduled

automation (i.e., without top-bottom input blocks) or repeatedly as children in order to

develop more complicated programming expressions. However, in the case of the

‘Every’ blocks, restrictions have been added. Particularly, we disable the use of

‘Every’ blocks as children of ‘Every’ blocks. The reason for this is to prevent the

conflicts among the parent and the children ‘Every’ blocks.

178

9.5 Authoring Project for IoT Automations

The basic part of authoring an application domain framework is the project

application structure including the project options, the project element types, the

configurations of the visual programming editors, the project manager functionality,

etc. In the following subsections we analyze each one of them.

Figure 9.14. Configuring the create application dialogue for IoT Automations and the Project Manager

view based on the user’s input data.

179

9.5.1 Creating IoT Automation Project

The first step for the end-user development of an application is to enable the user to

fill-in the information of the project. The Blockly Studio IDE provides a default

dialogue to create a new application. It also provides a view of the projects in Start

Page component (see section 3.3). We authored two more items in the dialogue when

the user creates new IoT automations. The first extra element is an image for the

automation and the second is the basic background color of the Project Manager

component. Based on the selected color, the categories of project elements and the

project elements get lighter color automatically.

When the user selects the ‘Create’ button, the visual programming workspace opens

by initiating the Project Manager component. As earlier mentioned, the Project

Manager component is fully configurable as to the style, the content and the

functionality. In this context, we defined the title and the image that will be rendered

in case of the IoT automations (see Figure 9.14).

Additionally, the Project Manager component is configured based on the facilities

that will be enabled in the context of the application domain. The application domain

author is able to filter which of the Blockly Studio IDE facilities will be available for

the end-user development process based on the requirements of the domains and

which of the facilities have been authored. For example, the runtime environment and

the debugger are not able to be used if the domain author hasn’t developed the

appropriate run and debug scripts which are the entry points of the applications which

are executed, the collaborative editing component cannot be used in case the visual

programming editors which have been developed for the application domain do not

support functionality of syncing, etc.

A filtering of the provided Blockly Studio IDE facilities is accomplished by authoring

the menu options that are available through the “burger” which is provided by the

Project Manager component (see on the top of Figure 9.14). In addition, menu options

are defined for each of the projects. These project menu options open when users right

click the project label or by clicking on the three-dot button which is presented when

the user mouse over the label of each project.

180

9.5.2 Project Elements

Having created the project for IoT smart automations (see at the bottom of Figure

9.14), there are five categories available to the end-user developer for the visual

programming process: ‘Smart Devices’, ‘Smart Device Groups’, ‘Automations for

Basic Tasks’, ‘Automations for Conditional Tasks’ and ‘Automations for Scheduled

Tasks’ (see tags A-E of the Figure 9.14). The first two categories of project elements

targets at the management of smart objects and the last three categories of project

elements focus on the end-user development of automations. In the following

subsections, we analyze each of these categories.

9.5.2.1 Smart Devices

The main category of project elements is the ‘Smart Devices’ (see tag A of Figure

9.14). Using this category, the end-user developers are able to import the smart

objects and organize them through the use of smart environments which play the role

of subfolders. As earlier mentioned, the smart objects and the smart environment are

handled by the Smart Object Editor (see section 9.1). However, in order to render the

information of the project element instance, we developed a project element template

(see Figure 9.15) in which the visual programming smart object editor instance view

is hosted, including information that is related to the project element.

Figure 9.15. Project element template that includes information and hosts one visual programming

editor instance.

181

Figure 9.16. Menu options for the Smart Devices Category.

In order to enable the creation of a new ‘Smart Device’ or ‘Smart Environment’, we

authored the menu options of this category. By clicking on the three dots which are

positioned on the right of the ‘Smart Devices’ label (see tag A of Figure 9.14) or using

right click, the menu options open (see Figure 9.16). In case the user chooses to

import smart devices, or to create a new environment, a respective dialogue opens in

order to fill-in the smart device information (i.e., name, image and color). Similar

options are presented in case of the smart environment menu options in order to give

Figure 9.17. Creating new smart group device by choosing smart device that will export its

functionality interface.

182

ability of defining inner smart devices or creating inner smart environments.

9.5.2.2 Smart Device Groups

The second category of project elements is the ‘Smart Group Devices’ (see tag B of

Figure 9.14). Using this category, the end-user developers are able to group the

development of smart devices in case they have common functionality. In this

context, we have defined an extra option for the creation of smart groups (see Figure

9.17). Using this option, the end-user will be able to choose the smart device. The

functionality of this smart object will be used by the system in order to export it as the

smart group interface

Additionally, we defined this ‘Smart Device’ option to not be presented in the list of

options after the construction of the smart device group. Following this approach, we

prevent dependencies between the smart device and the smart device group. This

means that by removing the smart device, the smart device group is not required to be

removed. However, the smart device group has to be updated by removing from its

list the specific smart device. Moreover, as earlier mentioned, the end-user developers

are able to create new smart device groups through the smart device view by pressing

the button ‘Create Group’ which is available at the bottom (see Figure 9.5).

9.5.2.3 Visual Programming Blocks for Project Elements of

Automations

The next three categories of project elements are targeting at the end-user

development of automations. In order to enable the end-user developers with more

visual programming language expressiveness, we authored an extra option for these

three project element categories. This option enables the end-user developers to

choose if the automation will start automatically when the project execution starts or

manually through visual programming instructions during the project execution (see

Figure 9.18).

By authoring this option, we are focusing on enriching the end-user development

expressiveness. In particular we provide the ability of manual handling for when

automations need to start based on specific circumstances during the execution. This

happens through the run-script which gets, as input, the project environment data that

includes this information and chooses which of the project elements will be executed

183

on the beginning of the project execution. For example, when the user leaves home

(i.e. opens the door of the car), start automations for securing the house and

automations to tidy up by using the smart devices.

Figure 9.18. Choosing if automation will start automatically in the beginning of project execution or

later with visual programming block element instruction.

In order to start automations manually, appropriate Blockly blocks have to be defined

and handled during the end-user development process based on the project elements

of automations. These blocks handle starting or stopping an automation. As earlier

mentioned, the visual programming editors have to export signals when a domain

visual programming language element instance is handled (i.e. create, edit and delete).

Based on the provided functionality of the Blockly editor which posts appropriate

signals when the workspace instance changes (i.e., create, edit, delete), we authored

the domain visual programming language element with the respective Blockly blocks

(i.e., start automation, stop automation). In this context, the Domain Manager handles

the signals and automatically provides the updated Blockly blocks to the appropriate

Blockly editor instance toolboxes based on the defined configuration (see section

4.1.2).

184

Figure 9.19. Authoring Blockly blocks to enable the end-user developers handle manually start and stop

of the automations for project elements.

9.5.2.4 Automations for Basic Tasks

Having defined and having organized the smart objects, the end-user developers are

able to develop automations. There are three different categories of automations that

can be developed in a project for IoT automations. The first category of automations

is ‘Basic Tasks’ (see tag E of Figure 9.14). Creating basic automations, the end-user

developer is able to define if the automation will start automatically or manually by

using appropriate visual programming block elements.

The project element of ‘Automations for Basic Tasks’ has developed a pure template

(see Figure 9.15). In addition, the Blockly editor instances configuration for the basic

tasks includes the general-purpose predefined blocks and the dynamic blocks which

are generated based on the smart object and smart object group instances that will be

developed during the end-user development through the smart object visual

programming editor (see Figure 9.20).

185

Figure 9.20. Automations for ‘Basic Tasks’ configuration of Blockly editor's toolbox.

This category of project elements can be used for pure automations in order to set a

number of instructions for the smart objects. For example, a program can be that after

running the project of automations, the blinders will close, the smart lights will turn to

the club mode and the smart hi-fi will start the user’s favorite club music. However,

thanks to the choice of starting the basic automations manually, the end-user

developers are able to use these automations combined with other project elements by

using the visual programming blocks in order to start the automations.

9.5.2.5 Automations for Conditional Tasks

The second category of project elements for automations is targeted at the

automations which are executed based on conditions of the smart object values. This

is one of the main categories for the end-user development of IoT automations. When

creating conditional automations, the end-user developer is able to define if this

project element will start automatically when the execution of the project will start, or

186

if the automation will start manually through the visual programming block element,

as it happens with the basic automations.

The project element of the ‘Automations for Conditional Tasks’ has developed a pure

template (see Figure 9.15). In addition, the Blockly editor instances configuration for

the conditional tasks includes all the Blockly blocks that are defined for the basic

tasks (i.e., built-in blocks, blocks for automations handling, blocks for smart objects

and smart object groups handling).

Additionally, the Blockly editor’s toolbox for conditional tasks includes two more

categories of blocks (see Figure 9.21). The first category is the conditional blocks

which was earlier discussed (see section 9.3) and is the main category for the end-user

development of the conditional tasks. In this context, the toolbox includes the

conditional blocks in two versions. In the first version, the conditional blocks are

defined as root blocks of the development (i.e. no siblings are able to be added).

However, in order to enable the development of more complicated conditional

automations, the second version of blocks is defined by including top-down input for

the conditional blocks. In this direction, the end-user developers are empowered to

develop conditional tasks which include inner conditional tasks. Moreover, in

conditional tasks, there are included blocks for scheduled tasks which can be inserted

as children of the conditional blocks without including their top-level blocks in the

‘Scheduler’ category (see on the right of Figure 9.21). In this context, we enable the

end-user developers to program more complicated conditional automations by

combining conditional tasks that are able to start scheduled tasks during the runtime

of the project, when they are triggered.

This category of project elements can be used for automations that will be based on

conditional events which happen in a smart environment by using smart objects.

Using the available conditional blocks, the end-user developers are able to build

simple conditions (e.g. temperature environment changes) and more complicated

conditions by using the provided AND, OR operators. Moreover, they are able to

handle when and how many times the conditional automation will be executed based

on the blocks (e.g. for N times when the condition is true, after N times when the

condition is true). In addition, their execution can be handled through the start/stop

conditional automations, which are available too.

187

Figure 9.21. Automations for 'Conditional Tasks' configuration of Blockly editor's toolbox.

9.5.2.6 Automations for Scheduled Tasks

The last but not least category of project elements for automations is targeted at the

automations which are executed based on scheduled events. By creating scheduled

tasks using a specific time and date, the end-user developer is able to define

automations in the form of a calendar. In addition, waiting for a specific time period

in order to apply the automations is another available scheduled task. The end-user

developer is able to choose if this type of project element will start automatically

when the execution of the project will start, or if the automation will start manually

through the visual programming block element, as it happens with the conditional

tasks and the basic automations.

The project element of ‘Automations for Scheduled Tasks’ has developed a pure

template (see Figure 9.15). In addition, the Blockly editor instances configuration for

the scheduled tasks includes all the Blockly blocks that are defined for the basic

automations (i.e., built-in blocks, blocks for automation handling, blocks for smart

objects and smart object group handling).

188

Figure 9.22. Automations for 'Scheduled Tasks' configuration of Blockly editor's toolbox.

Additionally, the Blockly editor’s toolbox for scheduled tasks includes three more

categories of blocks (see Figure 9.22). The first two categories of blocks are focused

on the end-user development of the scheduled tasks which were earlier discussed (see

Figure 9.13). In this context, the toolbox includes the scheduled blocks in two

versions. In the first version, the scheduled blocks are defined as root blocks of the

development (i.e., not siblings are able to be added). These blocks are playing the

dominant role in the development of scheduled automations. The second version

includes top-down input for the blocks. Using these blocks, the end-user developers

are able to define more complicated scheduled automations. Moreover, in this context,

there are available conditional blocks (see Figure 9.22) with top-down inputs in order

to be used as inner blocks of the main scheduled blocks.

This category of project elements is able to be used for automations that will be based

on scheduled events which contributes in smart IoT automations by using the

calendar, the time, time periods and the smart objects. Using the available scheduled

blocks, the end-user developers are able to build simple conditions (e.g., every two

days clean up the house) and more complicated scheduled automations by using the

189

provided blocks. Moreover, they are able to handle when and how many times the

scheduled automation will be executed based on the blocks (i.e. break, continue,

branches, etc.). In addition, their execution can be handled through the start/stop

conditional automations, which are available too.

Figure 9.23. Dialogues in case the end-user chooses to delete a Smart Device.

9.5.2.7 Handling Dependencies

During the end-user development process, the end-users create, edit and maybe delete

project elements. As earlier mentioned, there are dependencies between the project

elements. Each application domain might like to follow different rules for the

deletions of project elements, the editing, etc. In this context, the Blockly Studio IDE

enables the application domain author to develop the behavior before and after the

actions of creation, editing and deletion. Moreover, based on the API which is

provided by the Project Manager, the Blockly Editor and other visual programming

editors, we are able to retrieve which are the project element dependencies, the

responsible visual programming language elements, etc.

190

In the case of the IoT Automations domain, we decided to open a dialogue in case of

deleting a smart device or a smart device group, which will inform the end-user

developer of the project elements that this project element has dependencies with (see

tag B of Figure 9.23) and the respective visual programming language elements that

will be removed from these project elements. In case there aren’t dependencies with

other project elements, the end-user developer is asked to confirm their decision to

remove the smart device or the smart device group.

In both cases, the end-user developers are able to confirm or cancel the action. Using

the function which is called by the Project Manager after the action (authored by the

domain author), we developed the respective functionality of removing the respective

blocks from the dependent project elements.

In addition, in this function, having the knowledge of the completed delete action, the

smart object editor is able to post the respective delete signal. Based on this signal, the

Domain Manager is able to handle the deletion of the visual programming language

element. In this context, all the respective project elements have updated toolboxes in

their Blockly editor instances.

9.6 Running Smart Automations

As earlier mentioned, the runtime environment of the Blockly Studio IDE requires the

development of the entry point script (i.e. run-script) in order to execute a project of a

specific application domain. In addition, it is required by each visual programming

editor instance to generate the respective JavaScript source code or the run time

environment data from the visual code which has been created by the end-user

developers. In this context, we developed the respective generator function for the

smart object visual programming editor and developed the respective JavaScript

source code for the execution of each of the Blockly blocks.

9.6.1 Execution of IoT Automations

When the user starts the project execution, the runtime environment requests to get

the project’s runtime environment data. The project manager iterates each of the

constructed project elements. Each of them includes a list of visual programming

editor instances. For each one, it is requested to generate runtime source code or data.

191

In the context of IoT automations, there are two different visual programming editors,

the smart object editor and the Blockly editor.

9.6.1.1 Interacting with Smart Objects

In the case of the smart object editor, the generator for runtime produces data is

constructed for each one of the visual programming language elements (i.e., ‘Smart

Device’ and ‘Smart Device Group’ instance). These data are used when the execution

starts in order to communicate with the respective smart objects. By communicating

with the smart objects, the application gets the current properties’ values of the smart

devices (pre-caching data) and adds observers for them updates in case there are

changes in their values. The communication mechanism and the smart objects’ data

are available in the global runtime environment of the application (developed on the

top of the run-script).

Based on this implementation, respective source code is developed to be generated by

the Blockly blocks which handle the behavior of the smart devices and smart device

groups (see Figure 9.9, Figure 9.11). In particular, getters are handled by using the

pre-cached data instantly instead of requesting the IoTivity middleware. This

improves the performance of the getter functions which is critical for the execution of

conditional blocks (see next paragraph). In the context of setters and actions of the

smart devices and smart device groups, we have developed them using promises in

order to have sequential execution (i.e. using await) of these instructions and avoid

async function calls.

During the project execution, the communication between the application and the

smart devices may be lost. In this case, the execution of the application is not able to

continue and a dialogue warns the user about the issue and the ending the of execution

process. Additionally, a specific smart device may be disconnected during the project

execution. In this case the application notifies the users and they are able to decide if

they will stop the execution or they will continue in case this smart device not affects

their automations (see Figure 9.24). Similarly, warning message is popped-up in case

a request in smart device could not be accomplished. For example, water is empty in

coffee machine and it is not able to prepare coffee.

192

Figure 9.24. Dialogue on connection issues of the smart devices.

9.6.1.2 Running Conditional and Scheduled Tasks

Starting the execution of the project, there is a list of conditional automations which

are developed through the earlier mentioned Blockly blocks (see Figure 9.12). When

the defined conditions of the blocks are evaluated to true, their inner blocks (i.e.,

children) will be executed. Conditional blocks in IoT automations project could be

numerous in a project as they are basic in the context of smart automations. As a

result, the performance of their execution has to be efficient. Our approach is based on

the setTimeout [149] and setInterval [150] functions, which are provided by

JavaScript. In particular, based on the fact that a change of a state can be delayed of

observing it from the people (e.g., less than 0.5 second), we developed a repeatable

function call. In addition, there is a global list of conditional defined functions. When

a conditional block starts, its respective function is added to the global list, while

when a conditional block is deactivated, it is removed by this list. The repeatable

function call, iterates and invokes all the conditional functions. If the condition is

evaluated to true, the inner body of the conditional block is executed. Based on this

technique, we have used only one setInterval for all the conditional blocks. In this

context, the earlier mentioned pre-caching of values for getters is extremely important

for the implementation because the request of middleware is incomparably more

expensive.

In the case of scheduled blocks, real time and date is used. When the project

execution starts, we calculate the specific time for all the activated scheduled blocks

that have to be triggered and we use setTimeout in order to start the execution of their

inner body. In addition, global data are saved including the setTimeout ID in order to

193

use them in case there is an instruction of stop or pause for the specific scheduled

automation or the whole project.

9.6.2 User-Interface of IoT Automations

In running the applications of IoT automations, the sole interaction of the user with

their automations, is the input-output console which is provided by the Blockly Studio

IDE. Through the input-output console, the end-user developer is able to ask input for

smart device properties and print the values of smart device properties. However, this

is not adequate in order to have a live monitoring of the IoT automations, which are

developed through the visual programming environment we described above.

In the case of software developers, one of the main development tasks would be the

user-interface programming of the IoT automations. In the case of visual end-user

development, existing approaches for building user interfaces for the applications are

the WYSIWYG editors (or screen designers). In this context, we could incorporate one

WYSIWYG editor for the application domain of IoT automations in order to enable the

end-user developers to program user interfaces for their applications. However,

building user interfaces for IoT automations and connecting with the visual code of

automations could be unmanageable or extremely difficult for novices. Moreover,

developing such user interfaces could be extremely time costly for users that would

like to develop simple automations.

In this context, we developed a full-scale graphical user-interface runtime

environment for monitoring and interacting with the smart devices, the conditional

and scheduled automations, etc. (see Figure 9.25). Also, this environment can be

configured by the user. As discussed on section 6.4, the Blockly Studio IDE is able to

host external domain graphical user-interfaces for their project execution. In

particular, the application domain authors are able to initiate and handle these views

through the run-script and the code generation of the domain visual programming

language elements which are developed using the visual programming editors. In the

following subsections, we describe each of the graphical user-interface parts of the

IoT automations runtime environment.

194

Figure 9.25. Runtime environment for IoT automations.

Figure 9.26. Request to set input in property of a smart device.

9.6.2.1 Smart Devices View

One of the main views for the runtime environment of IoT automations is the smart

devices monitoring view. The user-interface for smart objects displays their state for

each of their properties live. In case a smart object’s property value changes, the

specific property view is highlighted with blue color (see red arrows of Figure 9.27)

for some seconds. The property values’ changes are able to arise via the execution of

the visual code developed by the end-user or via the device functionality. In this

context, we depict the source code and device mode changes by using different icons

next to their property values. The users are able to view the history of the values for

the properties by hovering on specific value boxes (see environment temperature of

the Air Conditioning in Figure 9.27).

195

Figure 9.27. Display of the Smart Devices at runtime environment.

In addition, when the blocks which ask property value as input from the user (see tag

D of Figure 9.9) are executed, a dialogue opens in order to insert a value for the

specific property of the smart device. The user-interface for the input is related with

the type of the property. For example, in case the input is of enumerated type, a select

input will be depicted (see Figure 9.26), in case of text, a text input will be depicted,

etc.

Furthermore, the end-user developer is able to choose if the runtime environment will

display an additional button on the header of each smart object through which the

users will be able to click them and change values for the properties of the smart

objects manually during the project execution. In particular, when the user clicks the

control button of a smart device, a dialogue opens with editable view of the smart

device’s properties (only if they are not read-only, see Figure 9.28).

196

Figure 9.28. Enabling control smart devices during the project execution.

9.6.2.2 Calendar View for Automations of Scheduled Tasks

As earlier discussed one of the main categories of blocks, in the context of IoT

automations, are the scheduled blocks. In a project of IoT automations, the end-user

developers could use numerous scheduled blocks. However, when the application

runs, there is no feedback if these blocks have been developed correctly or not. In

addition, it is difficult to understand by just waiting for them to be triggered during

the project execution. Moreover, when a project runs the user has no feedback for

which scheduled automations are going to happen and when.

Figure 9.29. Monitoring scheduled automations in the runtime environment of IoT automations.

197

In this context, based on the execution of the scheduled blocks (see Figure 9.13) we

developed an appropriate view for the scheduled tasks which has been incorporated in

the runtime environment of IoT automations. In particular, we have developed a

calendar view which is separated in two views: the calendar and the view of

scheduled tasks (see Figure 9.29). As earlier mentioned, when the execution of an

application starts, the date and time are calculated for each of the scheduled blocks

Figure 9.30. Browsing project elements that includes the scheduled blocks.

198

that are executed. In this context, we added extra source code in the blocks’ code

generation, in order to add the scheduled events in the calendar, using the API of the

runtime calendar we have developed.

However, it would be pointless to add scheduled events in a calendar without

appropriate description or notes. In this direction, we enable the end-user developer to

add description and/or notes for each scheduled block by using the Blockly block

comments (see Figure 9.13). When the scheduled events are added in the calendar, we

also insert the corresponding block comments as their description. Additionally, the

users are able to click on the table elements with the scheduled events and the run-

time is folded while the respective project element of the scheduled task automation

opens and the scheduled block is highlighted with its comment open (see Figure

9.30). When the scheduled tasks are completed, they are marked with green color and

checked as completed by filling the time and date that they finished. During the

project execution, the scheduled automations and scheduled blocks are able to

start/stop. In this context, the respective time and date that they will be triggered is

calculated and the calendar is refreshed.

9.6.2.3 History View

As earlier discussed, in the context of IoT automations, one of the most important

categories of automations is the conditional tasks which are based on the conditional

blocks (see Figure 9.12). Another one of the main categories of blocks is the

scheduled blocks. During the execution, the users are not able have feedback if

conditional blocks have been triggered or not by only monitoring the changes of

values of the smart device properties.

Figure 9.31. Interactive bubble which depicts action of the history panel view.

199

Figure 9.32. Monitoring conditional tasks and browsing respective visual code snippets.

In this context, the users are not able to know what exactly has happened to the IoT

automation and what could happen during the execution through the conditional tasks.

Moreover, users are watching changes of the smart devices through the smart devices

display (see red arrows of Figure 9.27) and they are informed if this change has arisen

through the IoT automation code or not, but they are not able to know through which

visual code part was executed.

200

In this context, based on the execution of the scheduled blocks (see Figure 9.12) we

developed an appropriate view for the conditional tasks which has been incorporated

in the runtime environment of IoT automations. In particular, we have developed a

history view which includes facts that have happened in the IoT automation during

the execution (see bottom part of Figure 9.32).

These facts are presented in the form of bubbles which includes title, icon,

description, date and time and background color (see Figure 9.31). Each of these

bubbles enables the users to browse the respective visual code which caused this

action by clicking on it (see Figure 9.32). The user is able to add comments in the

conditional blocks and the history panel uses them in order to display them when the

block is executed. Moreover, the background color is defined respectively.

Particularly, in the case of an action bubble which is rendered for a smart device, the

background color is the given color on defining this smart device.

9.6.2.4 Explaining Why Automations Occurred

During the execution of IoT automations, the users could wonder how an automation

has been arisen. For example, in the case of the Ambient-Assisted Living, the family

and caregivers can develop automations that will be used by elderlies. In this context,

elderlies may wonder why an automation happened. As result, it would be extremely

useful for IoT Automations to be able to answer questions that may arise from the

users. However, the system is not able to explain what happened based on the visual

code which has been executed.

Using the above user-interface of the IoT automations, they are able to monitor what

happened and why it happened by using the comments that have been added in

conditional and scheduled Blockly blocks, in order to present them in the calendar and

history view. However, in the body of these blocks (i.e., children) different actions

could be executed through branches, loops and function calls. As result, comments of

the scheduled and conditional blocks are not able to answer exactly what happened in

a specific automation.

In this context, we use the earlier mentioned approach (see section 7.8) of defining

extra helpful blocks as annotations which are used for explanations during the project

execution. Using explanation blocks, the end-user developers are able to annotate

201

which actions are going to happen in the following visual code snippets. During the

project execution, the users are able to use the help button (positioned under the clock

in the left of Figure 9.25). A pop-up dialogue opens which resembles the history view

(see Figure 9.32) and presents the messages of the explanation blocks which have

been executed currently in the form of bubbles, informing the users why the

automations happened.

Additionally, the list of explanation blocks identities is pinned in the parent calendar

and scheduled blocks. During the execution, when an explanation block is executed,

the explanations data (i.e. end-user developer messages) includes their identity, in

order to render information, in case the user asks for what happened. In this context,

we are able to identify the parent blocks, and we add an extra help button in each of

the parent blocks in case they have to present more information about the executed

explanation blocks which are related (see Figure 9.33).

Figure 9.33. Filtering executed explanations per scheduled (top) and conditional (bottom) automations

by enabling info button that opens dialogue which present them separately.

9.7 Debugging and Testing Facilities for IoT Automations

As earlier discussed, the Blockly Studio IDE includes debugging through its visual

debugger which supports a full-scale toolset (i.e., stepping, tracing, watching,

breakpoints, conditional breakpoints, etc.). However, in the case of IoT automations

there are several arising issues that make the debugging process impractical or even

impossible.

Particularly, IoT automations are included by smart devices’ behavior handling,

conditional and scheduled automation tasks. Scheduled automations could be

triggered for long periods of time. In this context, the end-user developers can’t wait

for these time periods in order to identify that automations work correctly. A solution

202

could be the editing of the time periods in the corresponding visual code in order to

shorten the waiting time. However, this requires extra effort from the end-user

developer and may cause errors in time periods, when completing the development

process. Additionally, conditional automations are based on the smart devices’ values

state. For example, a conditional automation could be “When smoke sensors warning

Then alarm starts” or “When environment temperature changes Then air-

conditioning starts”. In this case, the end-user developers are not able to debug their

automations. Additionally, during the project execution the smart devices are affected

by the program (i.e. change their properties, requests for actions), while a debug

process may include several starts and stops of the visual debugger’s execution.

In this context, we developed facilities to simulate the smart devices, their behavior,

the date and the time that the automations will be executed. In particular, we replace

the real smart devices with simulated in the context of the debugging process.

Additionally, the end-user developers are able to create tests of expected values of the

properties of the smart devices at specific date & time or at specific conditions during

the project execution. As mentioned in section 7.9, Blockly Studio IDE supports the

extra domain-specific user-interface runtime view through the debug-script which has

to be developed by the application domain authors and the independent development

of applications which communicate with the IDE. In particular, using the debug-script

we initialize and handle the simulation facilities, while we have authored the code

generation of the domain Blockly blocks in order to cooperate with the facilities. In

the following subsections, we present each of the simulation features we developed in

order to contribute to the debugging process in the context of IoT automations.

9.7.1 Simulating Smart Environment

Starting the debugging process, the user interface of the runtime environment which is

displayed on release mode (see Figure 9.25) has been modified. In particular, there are

extra elements for the simulation facilities (see Figure 9.34). Next to the history view

(see Figure 9.32) there is a test control panel in which the user is able to view and

handle the simulation tests for the debugging process. They are able to edit specific

tests by clicking on them (bubbles), view if they have been executed (see green check

mark in the grey bubbles of Figure 9.34). Additionally, they are able to view all

authored tests and manage them by clicking on the folder button located on the

203

bottom of the test control panel. When you click this button, a dialogue opens (see

Figure 9.35) presenting the list of simulations for the smart objects; behavior and the

tests of expected values of properties of smart objects at specific time & date or

condition. The end-user developers are able to view, add or remove a test.

Figure 9.34. Simulation Environment View: tests control panel (left), date & time simulation (right).

Moreover, except of the simulation of the smart objects’ behavior, the time and date

of the application runtime are also simulated (see right of Figure 9.34). The end-user

developers are able to stop, start the time, go slower by using the turtle button or go

faster by using the rabbit button. Additionally, they are able to go at a specific date

and time. Particularly, when the end-user developers click the button on the right of

the rabbit button, it opens a user interface that allows them to select specific date and

time. This action allows the end-user developers to see what will have happened by

executing all the simulated actions and the visual code of the automation. The end-

user developers are able to pause the time and view all the actions in history view, the

scheduled tasks in calendar view and the current values (and the history values) of the

smart objects’ properties.

204

As earlier mentioned, we have two different types that contribute to testing the

application: the simulation of smart devices and the tests of expected values. In the

following two subsections, we present them.

Figure 9.35. Managing Simulation Behavior and Expected Values Tests.

9.7.2 Simulating Smart Devices

When replacing the smart devices with simulated devices, there are issues that have to

be addressed. Firstly, the functionality of the actions of the smart devices (e.g., coffee

machine includes a prepareCoffee action) are not known to the simulation system. As

a result, during the runtime, actions are not able to be executed. In this context, we

developed the appropriate infrastructure for the end-user developers to be able to

program the actions of the smart devices.

In particular, the end-user developers are able to program each of the actions that are

provided by the smart devices by browsing the smart device and choose the debug

options button which is located in the right of each action (see Figure 9.36). When the

user clicks on the button, a dialogue opens with a Blockly editor workspace instance.

This instance is configured by isolating the specific smart device Blockly blocks in the

Blockly toolbox (see Figure 9.36).

205

Figure 9.36. Simulating smart device actions for debugging purposes.

Additionally, a function is predefined with a given name, same with that of the

action’s name. In this context, in case there are input arguments in the action of the

smart object, the predefined function is constructed with these input arguments and

there are created variables in the Blockly toolbox which refer to these arguments.

Moreover, the end-user developers are able to simulate the action by using scheduled

blocks as it is shown in the example of Figure 9.36. During the debugging process,

when a smart device action is requested, the respective end-user developed function

will be called. The end-user developers are able to add breakpoints and in case a

breakpoint is triggered, the dialogue of the specific Blockly editor workspace opens

and highlights the block which has currently paused the execution, as it happens in

classic Blockly editor workspaces of the project. In case there is no implementation

206

for some smart device’s action, the end-user developers are warned when they try to

start the debugging process. Moreover, when they browse a smart device, the actions

which are not simulated are highlighted, as displayed for the “StopPreparingCoffee”

action in Figure 9.36.

Having replaced the smart devices with simulated devices, the system has to enable

simulation and handling their properties and actions at time periods. In this context,

we enabled the end-user developers to program simulation smart device functionality

tests (see top of Figure 9.35). When the end-user developer chooses to add a new test,

or edit an existing one, they are able to choose specific time periods that they are able

to set changes for each of the smart devices, regarding one or more properties as it is

presented in Figure 9.37. Moreover, they have to set a name for the test which is

presented on the tests management page and a color which is rendered in the

execution, in the test control panel. Based on the time periods of these simulated tests

and the simulated time & date of the debugging process, the behavior of the smart

devices changes in order to enable the end-user developers to test their automations.

Figure 9.37. Simulating behavior of smart devices at specific time periods.

9.7.3 Testing Automations

We have developed an extra category of tests that the end-user developers are able to

use in order to help their debugging and testing process for their applications. In

207

particular, they defined two new Blockly blocks (see grey box of Figure 9.38). Using

them, end-user developers are able to build tests which run either as simple

instructions, or included in conditional blocks. The authoring of these tests, helps the

end-user developers to detect unexpected values of smart device properties either

during the whole debugging process or in specific circumstances by using conditional

blocks.

Figure 9.38. End-user development of tests for expected values in smart devices properties.

Figure 9.39. Warning message in case a test of expected values of smart device properties fails.

When a checking block is triggered by an unexpected variable value, a dialogue (see

Figure 9.39) opens in order to warn the end-user developer and the project execution

pauses until the user chooses to continue using the visual debugger toolbar. This is

helpful in order to enable the end-user developers to check the values of their

208

programs in general by using the watches and variables which are provided by the

visual debugger’s toolbar.

9.8 Case Study

When we developed the integrated domain framework, we decided to carry out a case

study to better present the end-user development process, validate and test our visual

programming approach for personalized automations in the context of the IoT.

Figure 9.40. Morning home automations example.

9.8.1 Discussing of Use Case for Morning Automations

In this context, we describe a hypothetical scenario of automations in the morning as

it is one the most difficult time of the day for people is when they’re waking up.

People would like to earn more sleep in the morning while their water for their bath

and their coffee will be prepared. Additionally, they may like to be reminded to get a

pill, while they would like to have peace of their mind when they leave their home to

go for work by ensuring home safety, security and economy. Moreover, people would

like to clean their home, however, their free time is limited and they would like to

automate this task by using smart devices. All the aforementioned automation tasks

are able to be served based on their daily life and needs. An example of these tasks is

represented in the Figure 9.40Figure 9.2.

9.8.2 Initiating of the End-User Development Process

Starting the process, we chose the applications domain category of ‘Personal IoT

Automations’ between the application domain frameworks and create new project (see

209

on the left of Figure 9.41). The constructed project ‘Morning Automations’ is empty

of project elements (see on the top-right of Figure 9.41).

The first end-user development steps is to define and choose which of the smart

devices will be used for the automation. By using the right click of the project

manager’s element category ‘Smart Devices’ there are two option of creating smart

device or smart environment. When the end-user chooses to define smart device, the

project manager opens a dialogue to define the required data for the smart device (i.e.

name, image and color). Afterwards, the end-user is enabled to choose which of the

devices will be registered either picking one from the already registered or by

scanning to find new ones. The end-user is able to define or undefine smart devices

during the process. The smart devices that have been used are displayed on Table 7 in

order to represent their properties and actions.

Figure 9.41. Creating morning automations and defining bedroom lighting device.

210

Table 7. Smart Devices that are used for Morning IoT Automations.

Smart Devices Properties Actions

Air Condition device-temperature: number AutoMode ()

environment-temperature:

number

Configure (device-temperature,

swing)

swing: enum TurnOff ()

turn: on|off TurnOn ()

Alarm Clock ring: boolean SetAlarmTime (time: Time)

ringtone: enum TurnOff ()

time: Time TurnOn ()

turn: on|off

Bath Heater turn: on|off TurnOn ()

water-ready: boolean TurnOff ()

Bedroom Lighting colour: string ChangeColour (colour: string)

scene: enum ChangeScene (scene: enum)

turn: on|off TurnOff ()

 TurnOn ()

Coffee Machine coffee-ready: boolean PrepareCoffee ()

cups: number StopPreparingCoffee ()

prepare-coffee: start|stop TurnOn ()

turn: on|off TurnOff ()

Dehumidifier humidity: number Service (service: enum)

mode: enum SilentMode ()

service: enum TurboMode ()

turn: on|off TurnOn ()

 TurnOff ()

Main Door lock: enum Close ()

lock-status: boolean Lock ()

211

state:open|close Open ()

 Unlock ()

Fire Extinguisher measurement: number Start ()

state: enum Stop ()

Garage Door lock: enum Close ()

lock-status: boolean Lock ()

state:open|close Open ()

 Unlock ()

Living Room Lighting colour: string ChangeColour (colour: string)

scene: enum ChangeScene (scene: enum)

turn: on|off TurnOff ()

 TurnOn ()

Robot Vacuum clean-program: enum Mopping ()

state: enum Program (clean: enum)

Turn: on|off Sweep ()

 TurnOff ()

 TurnOn ()

Smoke Sensor measurement: number

value: enum

TV channel: string ChangeChannel (channel: string)

turn: on|off TurnOff ()

volume: number TurnOn ()

 Volume (value: number)

Washing Machine child-lock: boolean Program (washing-program:

number)

speed: number Start ()

state: enum Stop ()

temperature: number Temperature (temperature: number)

212

time-period: number TurnOn ()

washing-program TurnOff ()

Window lock: enum Close ()

lock-state: boolean Lock ()

state: enum Open ()

 Unlock

Window Blinders state: open|close Open ()

 Close ()

Figure 9.42. Workspace view having define the smart devices for morning automations.

Defining the above smart devices in the ‘Morning Automations’, the end-user

developers are able to browse them and handled by using the project manager as it is

depicted on Figure 9.42.

213

9.8.3 Visual Programming of Scheduled and Conditional Tasks

Having complete the definition of the smart devices for the morning automations, the

next step is to define for each of the tasks (T1-T6 in Figure 9.40) one project element

either scheduled or conditional as it is shown in Figure 9.43.

Figure 9.43. Visual programming scheduled and conditional tasks for morning automations.

Defining the smart devices in the project, respective Blockly blocks have been

defined in order to handle their behavior. These Blockly blocks are available in each

of the tasks (i.e., ‘Automations for Basic Tasks’, ‘Automations for Conditional Tasks’

and ‘Automations for Scheduled Tasks’) as it is shown in Figure 9.43. Using these

Blockly blocks, visual code has been developed for each of the defined project

elements as it is displayed in T1-T6 tags of Figure 9.43.

214

9.8.4 Running Morning Automations

Having completed the end-user development of the scheduled and conditional tasks as

it is presented in previous section, we have run the project of ‘Morning Automations’

and in this section, we display the parts of the runtime view. The main runtime view

part is the visualization of the smart devices during the execution as they are shown in

Figure 9.44.

Figure 9.44. Smart Devices monitoring values for 'Morning Automations' project.

Moreover, each of the scheduled tasks have been added in the calendar view as it is

shown in Figure 9.45. When a scheduled task is completed the calendar, view

underlines it and checks it as finished. In addition, when a scheduled task starts, the

calendar view updates the events by adding new event in calendar.

215

Figure 9.45. Calendar view of the scheduled tasks for 'Morning Automations'.

Figure 9.46. History actions view of the tasks that will be shown running 'Morning Automations'.

Additionally, as earlier mentioned, for each of the tasks that are caused during the

runtime execution, a history actions logger with bubbles is displayed. In this context,

216

running the project of ‘Morning Automations’ actions bubbles are depicted in history

logger for T1, T2, T4 and T5 tasks as it is shown in Figure 9.46. However, T3 task

will only happen in case of fire and T6 tasks will happen one week later. In this

context, we have to ensure that visual code by using the simulator and the debugger

that are provided. In the next section, we present use of these tools in the context of

the ‘Morning Automations’ project.

9.8.5 Morning Automations Testing

Starting the debugging process, we have to simulate the behavior of the actions of

each of the smart devices as simulator replaces the real devices and enables the end-

user developers to implement by using Blockly instances as earlier discussed. Smart

device actions of simulated devices have been developed for each of the actions that

are used in the ‘Morning Automations’. An example of the implemented smart device

actions is the coffee machine as it is presented on Figure 9.48.

Figure 9. 47. Preparing state of smart device properties (tag A) and go at specific time in order to

trigger scheduled task of ‘Morning Automations’.

217

The second step of using the simulator in order to test the ‘Morning Automations’ is

to build the behavior of the smart device property at specific time. In particular, smart

device properties are simulated by the user in order to design their expected state and

trigger the conditional tasks. In case of ‘Morning Automations’, ‘air condition’,

‘coffee machine’ and ‘bath heater’ has to be simulated as turned off (see tag A of

Figure 9. 47). Afterwards, the end-user developer has to set specific time to go in

order to start the scheduled automation (T1 of Figure 9.43) as it is presented in tag B

of Figure 9. 47.

Figure 9.48. Implemented actions for smart devices of 'Morning Automations'.

218

Afterwards, we have to test the visual code for the conditional task of the home safety

in case the smoke sensor will change its value. The first step is to browse the ‘Home

Safety’ project element and add a breakpoint in IF block as it is shown in tag A of

Figure 9.49. Then, start debug process, create simulate tests of the smart devices

behavior and simulate the smoke sensor is activated with measurement 20 as it is

presented in tag B of Figure 9.49. This simulation will trigger the conditional task of

‘Home Safety’ and the execution will stop in the breakpoint. Afterwards, by using

step-in action of the debugger we are able to trace the visual code execution flow and

view values of the smart device properties in debugger’s data (see tag C of Figure

9.49). Finally, we are able to view the history actions in order to verify that

conditional task activated and the fire extinguisher started.

Figure 9.49. Testing 'Home Safety' conditional task of 'Morning Automations': Adding breakpoint (tag

A); Simulating behavior of the smoke sensor (tag B); Stepping in until the simulated fire extinguisher

starts and view variables and smart device properties state (tag C); View actions history to verify the

fire extinguisher started (tag D);

219

9.9 Evaluation

Having finished the case study of the integrated domain framework, we decided to

evaluate our proposed workspace in the context of the smart automation development

process. In this section, we discuss the aims and design of our study, present the use

case scenarios, outline the evaluation’s participants, describe the evaluation process

and analyze the results.

9.9.1 Aims and design

The evaluation we conducted aims on observing how users operate and use our

system’s key features as well as on assessing the system’s usability. Particularly, we

dedicated our study’s focus to evaluating the use of the project manager, the handling

of smart objects through the domain VPL editor and the development of automations

using the blocks we developed. For each one of them that we considered important,

we designed a use case scenario that focused on deciding whether the chosen

approach was indeed appropriate and well-integrated. For obtaining usability

measurements, we used the System Usability Scale (SUS).

9.9.2 Use case scenario

We use hypothetical user to discuss the use case scenario. In the use case scenario, we

introduce the hypothetical user Tina who bought new smart devices and wants to

develop smart automations. We have segmented the use case scenario in development

mini tasks. Each of the following tasks are separated in two parts, the description and

the goal. The description of task refers to the real-world situation that contextualizes

the goal. The goal of each development step refers to the task that should be

accomplished. The tasks’ contexts are realistic and the goals are kept simple and short

in order to evaluate the usability of specific features of our approach. The tasks of the

use case scenario are following.

1) Creating new smart environment and registering smart objects

Description: Tina has bought new smart alarm clock, smart coffee machine and smart

air-condition. She wants to create new environment, create new smart objects and

then, register them in order to develop smart automations.

220

Goal: The participants were asked to create new smart environment, create new smart

objects and register the smart objects.

2) Creating smart group for smart objects

Description: Tina has two more smart air-conditions in her home and wants to handle

them together in a new group. However, two other devices API differs in the property

of ‘device-temperature’ which are provided as ‘thermometer’.

Goal: The participants were asked to export smart group from the air-condition and

handle aliases in order to include in the group all air-conditions.

3) Developing conditional events

Description: Tina would like to create a smart automation in order when the alarm

clock rings to automatically prepare coffee, prepare warm water for her bath and

regulate the home temperature.

Goal: The participants were asked to create new project element in the category of

conditional events and using the available blocks to develop the automation.

4) Developing calendar events

Description: Tina leaves her home to go at work at 8:00 o’clock daily except the

week-ends. She would like to create a smart automation in order to turn off forgotten

devices and lock the door when she has left.

Goal: The participants were asked to create new project element in the category of

calendar events and using the available blocks to develop the automation.

5) Developing combined (conditional and time) events

Description: Tina would like to sleep some more minutes when alarm clock rings

while the coffee and the water will be prepared. In order to do this, she has to edit the

previous developed automation.

Goal: The participants were asked to edit the automation and add instruction to stop

the alarm clock rings, wait for 8 minutes (i.e. water and coffee will be ready) and ring

again the alarm clock.

221

9.9.3 Participants

We asked 15 participants (M = 10, F = 5) aged between 13 and 32 to help us. Most of

the participants were from our university departments (i.e. Computer Science,

Mathematics and Physics). Additionally, 6 of the participants were high school

students that have previous experience with Scratch. Moreover, we found 3

individuals that had no previous experience with programming or visual

programming.

9.9.4 Process

Each participant was evaluated individually. We firstly discussed and presented the

classic Blockly editor. Then, we presented our visual programming workspace for

Blockly including the project manager, the smart object visual programming editor

and the new Blockly blocks that are generated based on the smart objects. Next, each

of the aforementioned tasks of the use case scenario was described to the users and

they were asked to use the workspace in order to accomplish each of them. For each

task and participant, we measured the time required for completion and we recorded

the user behavior. Finally, the users were asked to fill-in the SUS questionnaire.

9.9.5 Results

We summarized and further analyzed all the answers given from our participants. The

SUS questionnaire was designed in order to export results in two main dimensions.

The first was focused on the integration and usability of the workspace, the second

was focused on the efficiency of handling smart objects and groups through the Smart

Object visual programming editor and the third dimension was the use of the Blockly

blocks for smart automations. Results showed that the vast majority of participants

were satisfied with the workspace environment for smart automations. In general,

they are satisfied with the use of the Smart Object visual programming editor.

However, some users found difficult the concept of the smart groups. In this context,

we realize that extra helpful functionality and user interface has to be added. In

particular, when the user browses a Smart Group in order to choose from list of

possible smart objects and the view of what are the properties which don’t match were

missing. Based on this feedback, we fixed this design mismatches. Moreover, the

users were satisfied with the defined Blockly blocks for the development of smart

automations.

222

Table 8. SUS Questionnaire for the Smart Automations Workspace Environment.

 SD D N A SA

Q1. The smart automations framework is
well integrated into the workspace.

0 1 2 6 6

Q2. I find the smart automations workspace

environment unnecessarily complex.
6 8 1 0 0

Q3. I find the smart object editor user

interface intuitive and easy to use.
0 0 2 8 5

Q4. I don’t feel confident using the
application without guidance.

5 9 0 1 0

Q5. I feel confident using the project

manager.
0 1 3 5 6

Q6. The Blockly blocks for smart

automations offer limited options for

development.

7 6 2 0 0

Q7. I find Blockly blocks for smart

automations complex to use them.
5 7 2 1 0

Q8. I would like to use the tool for my

personal projects with my family/friends.
0 1 2 7 5

Q9. I found easy to use the smart object

editor for smart groups
0 2 6 5 2

Q10. I found difficult to use the smart

object VPL editor to handle the smart
objects

8 6 1 0 0

Furthermore, based on the aforementioned measurements we focused on the average,

the best and the worst time recorded for each development step. All the users

completed the tasks and most of the worst time measurements are not far from the

average, while the best are not far from the average too. Moreover, during the

evaluation, we realized that after the 3rd task, most of the users were more familiar

with the workspace.

223

Chapter 10

Conclusions and Future Work

“Reasoning draws a conclusion, but does not make the conclusion certain, unless the

mind discovers it by the path of experience.”

-Roger Bacon

10.1 Summary

In this thesis we discuss the full-scale development of an extensible IDE for visual

programming languages, including project manager, visual debugger, collaborative

programming and pluggable domain frameworks. Our primary motivation was the

need for a full-scale visual programming environment for end-user development of

personalized IoT automations in order to empower non-programmers craft, modify or

extend their automations. Existing visual programming approaches are facilitating by

introducing sophisticated editors; however, no IDEs are provided. In particular, the

existing approaches are mainly targeted to children learning within the context of a

game. Regarding several visual programming features, they are at an infant level or

not mature enough (e.g., collaboration, debugging, etc.), as well. We consider that

non-programmers and learners behoove to be provided with more efficient end-user

programming tools in their arsenal for developing and learning programming

purposes.

Moreover, the visual programming frameworks are limited to specialized

requirements of one application domain (e.g., Scratch is focused on development of

games and animations). However, visual programming radically differs across

domains (games, learning, IoT, etc.). Considering that new application domains are

arising, existing application domain requirements for visual programming are fluid

and third-party technologies are updated continually, constantly changing

requirements for developing new visual programming IDEs. In this context, we

embrace visual programming domain variations as domain frameworks in our IDE.

More specifically, we allow installing domains by introducing custom visual

224

programming language elements across IDE components (e.g. editor, project

manager, runtime environment). Namely, our approach provides application domain

plug-in mechanism in the IDE in order to support them.

We consider that collaboration is a key feature in EUD and could be notably useful in

the case of using it for teaching and learning purposes, asking for help from more

experienced users and co-working for automations. This thesis is focused on full-scale

collaborative visual programming facilities. These facilities are separated in two

categories, the collaborative editing and the collaborative debugging. Regarding

collaborative editing, we developed a full-scale collaborative editing approach that

sorts out the process by introducing peer roles and project element privileges. Our

proposed approach supports multiple collaboration models (i.e. Pair Programming in

one or more groups, teaching and learning purposes, working in small teams) by

regulating the settings are provided in order to configure collaboration process when it

starts.

In the case of collaborative debugging, our approach addresses two different

directions. First direction deals with facilitation of debugging and testing for novices

by providing collaborative debugging process that can be used for personal and

collaborative EUD projects. Collaboration proposed approach guarantees the

preservation of the project’s visual code by isolating it, creating a local replica for

each one of collaboration members. In this context, the users are able to create

correction suggestions per project element. During the debugging session, handling

the debugger instructions can be done by one user at a time. However, the rest

members are able to navigate the visual code to acquire information independently of

other members browsing, without interfering with the experience of any collaboration

member. The second direction of our approach includes an alternative model of

collaborative debugging that contributes in teaching and learning in the context of

debugging and programming. Particularly, this tool can be used by teachers to

demonstrate debugging process to students in real-time. Students are able to perceive

the flow of a program and learn the process of debugging through multiple debugging

rooms in a session that encourage the students to live debug programs, individually or

collaboratively while allowing the teachers to supervise each debugging process.

225

Finally, we discuss the development of a full-scale application domain framework in

the context of IoT automations using the IDE. We provide a full-scale management

for the smart devices in the context of EUD including user actions to organize and

customize smart devices in order to enable isolation and handling numerous existing

smart devices. Additionally, we provide a full-scale VPL workspace environment for

personalized IoT automations including conditional and scheduled tasks and enabling

them automatically or manually during the project execution. We provide GUI for

runtime environment for monitoring and interacting with smart automations,

facilitating the end-user developers by removing the requirement to program UIs for

their automations. We also introduce facilities in the context of testing and debugging

the smart automations by developing infrastructure to enable users to simulate smart

devices, their behavior, date and time that the automations will be executed.

Moreover, we address the issue of responding to the arising user questions regarding

automations that caused during the execution of the constructed IoT applications.

10.2 Conclusions

Throughout the entire thesis we have emphasized to three primary arguments driving

our research work: (i) novices deserve efficient full-scale end-user development tools

in order to develop their applications and learn programming (ii) embracing visual

programming domain variations as domain frameworks in IDE (iii) efficient visual

programming facilities for end-user development of IoT personalized automations.

During the initial phases we focused on the efficient visual programming environment

for personalized IoT automations. However, during the first steps of our work we

perceived that existing visual programming environments are narrowed in specific

targets by providing sophisticated editors, without providing full-scale toolset in end-

user development concept. Moreover, several key end-user development features are

in an infant level, or not mature enough, or even not provided. Therefore, we focused

on the development of an extendable full-scale IDE for visual programming

languages including key features such as project manager, visual debugger and

collaborative programming.

226

Developing the main components of the IDE, we quickly observed that components

have to provide additional support and adapt in the context of novices or non-

programmers.

Regarding project manager, it has to be restricted and drive end-user developers to

structure their applications by providing them specific options of their actions,

friendlier user-interface for the project elements view, helpful information messages

during end-user development process. In addition, in the direction where novice users

handle small scale project elements, the first-class subject focuses on organizing and

structuring project in small scale project elements.

Visual programming editors are vehicle for end-user developers to program their

visual code. In this context, we focused on facilitating editors’ usability by providing

filtered VPL elements in their toolboxes based on concept that they have to be

accomplished in specific workspace. In addition to that, we consider that it is

important to empower users with respective intelligence. For this reason, we

introduced visual code snippets through which end-user developers will be able to use

them instead of repeating building common small blocks of visual code.

Regarding debugging facilities for visual programming, a complete level debugger

has been developed for Blockly. Using tracing, watches and breakpoints is really

helpful for a novice user to understand the execution flow of a program, however,

finding bugs is not always a trivial process. In the context of the aforementioned

consideration, we focused on giving more weapons to end-users for the debugging

process. In particular, we introduced execution snapshots to provide browsing of

history of values for program variables, selection of project elements that will

participate from the project execution and collaborative debugging.

Concerning collaborative programming, we consider from the early phase of this

thesis that is a key feature in end-user development context and we targeted to provide

a full-scale toolset approach. Our approach was focused on two directions, the

collaborative editing and the collaborative debugging. In the context of collaborative

editing, the end-users have to cooperate on a shared project. The first-class subject of

our approach is targeted to organize and structure project in small project elements.

Therefore, we have introduced peer roles and project element privileges for the

227

participants. Moreover, concerning the productivity for member in the collaborative

editing process, we focused on the local workspace of members by introducing

personal project elements, toggling live syncing and selective execution (i.e., replace

shared project elements with personal or visual code suggestions). Finally, we

introduce several settings to enable the master of the process and to configure it based

on the circumstances.

Regarding collaborative debugging, we have introduced two different models. The

first collaborative debugging model focuses on the collaborative debugging for a team

to solve bugs for a shared or not project. In order to avoid the project element

privileges and guarantee preservation of the project’s visual code by isolating it,

creating a read-only replica for each one of the collaborative members. We enable

end-user developers to add corrections fixes for a specific project element and thanks

to extension of selective project elements’ execution, they are able to test their

corrections. The second collaborative debugging model focuses on teaching and

learning debugging and programming process. In particular, extending the first model,

we have introduced debugging rooms in order to enable teachers define teams of the

students (or alone). In the debugging rooms, independent debugging sessions run and

correction suggestions are local in the room. Based on this, the teachers are able to

supervise and help students independently by visiting the rooms and joining current

state of the debugging session of the room.

Concerning support of different application domains, we designed and developed an

extension mechanism that allows to embrace visual programming domain variations

as domain frameworks in the IDE. In this context, we encourage developers to

configure all the main components of the IDE based on the requirements of the

domain. We enable the developers to define the application structure of the project

manager, choose functionality, intervene the process of user's actions about project

elements, define respective rules. In this direction, from the early phase of the

development, we perceived that in the context of domain, there are cases in which

more complicated project elements could be required instead of just displaying a

visual programming editor. We have also introduced templates that empowers the

developers to design and develop any project element ingredients. Moreover, the main

part of project elements are the visual programming editors are injected. Developers

228

are able to configure the view of these editors and the VPL elements that will be

included in their toolboxes.

Furthermore, we have identified two types of editors: a) general purpose editors

which cares about basic programming expressions and b) domain-specific editors

which contribute in the design or handling of domain objects. However, the behavior

of domain objects is handled by a set of VPL elements that has to be provided

automatically based on the domain objects that are developed by end-user developers.

We have developed a mechanism which cooperates with domain-specific editors in

order to bridge the general-purpose editor (i.e., Blockly) required updates of the

toolboxes with the appropriate Blockly blocks to handle domain objects. In the

context of running and debugging process, based on the different authored application

structures and domain libraries developers have to define the entry point script that

will bridge all required parts in order to execute domain projects.

Finally, we focus on the initial goal of this PhD thesis, which is the development of a

visual programming workspace for IoT automations. Using the earlier mentioned

mechanism for domain frameworks, we developed IoT automations framework. In

this context, we provide a full-scale management for smart devices in the context of

EUD including user actions to organize and customize smart devices in order to

enable isolation and handling of numerous existing smart devices. Additionally, we

provide a full-scale VPL workspace environment for personalized IoT automations

including conditional and scheduled tasks and choice of starts them automatically or

manually during the project execution.

In the context of runtime for IoT automations, users would like to build appropriate

user-interface for their automations. However, building user-interfaces for

automations costs extremely and it is impractical in the concept of creating micro

automations. Additionally, WYSIWYG editors improve user-interface development

process, but needs to have experience in the context of events. In this direction, we

were driven to provide user interface that cares for monitoring and interacting with

smart automations, facilitating end-user developers by removing the requirement to

program UIs for their automations.

229

In the context of debugging IoT automations, there are several issues that arise by just

using the visual debugger is provided. Firstly, developed automations are based on

scheduled automations that may include tasks that will be executed much later. {How

the end-user developers will be able to test such automations.} Additionally, smart

devices and sensors include values that change based on the environment (e.g.,

environment temperature, smoke sensor). End-user developers are not able to debug

and test their IoT automations. In this context, we introduced facilities for testing and

debugging smart automations by developing infrastructure to enable the users to

simulate smart devices, the behavior of smart devices, date and time that the

automations will be executed. Moreover, we address the issue of responding to the

arising user questions about automations which caused during the execution of the

constructed IoT applications.

Overall, this thesis focused on providing efficient visual end-user programming

toolsets through an IDE for visual programming languages. We consider that non-

programmers and learners behoove to be provided with more efficient end-user

programming tools in their arsenal for developing and learning purposes.

Additionally, we emphasize on the collaborative programming as we consider it as a

key feature for novices to cooperate and learn programming. Furthermore, supporting

extendibility in the context of application domains, guarantees that our work will be

able to be applied for new challenges and requirements of visual programming

purposes. Finally, contributing in visual programming development for IoT

automations, we empower the novices to create, modify, debug, test and use their

personal automations in order to benefit their daily life and activities taking advantage

of the smart devices.

10.3 Future Work

In this thesis, we focused on the most prominent of the identified requirements, while

some of the areas remain open and require additional research work. Below, we

briefly discuss key topics for future work.

One of the identified issues is the research on facilitating the debugging process. Non-

programmers and novices are not able to use efficiently the visual debugger that is

provided in order to detect bugs in their projects. In this context, we introduced the

230

collaborative debugging. However, another dimension to facilitate end-user

developers without cooperate with other users could be the development of a

debugger assistant that will drive users on the debugging process.

Another identified issue is the general-purpose visual programming editors where

more work is needed to be done in the context of intelligence in order to facilitate

their use. For example, auto-complete visual code suggestions, suggestions of editing

visual code that is repeatable, warnings in cases of missing body of visual

programming language elements, etc.

Moreover, based on the audience could be familiar with different visual programming

languages (jigsaws, diagrams, etc.). It would be interesting to explore of defining a

top visual code model that through this, visual programming editors will be able to

load and save their visual code. Using this mechanism, they will be able to view and

handle visual code in different visual programming editors based on their preferences.

However, general-purpose visual programming editors may differ in the context of

supported elements (variables, branches, loops, etc.) with another concept of

messages and objects. This means that the conversion is not a straight forward process

and has to be identified if it is feasible. Moreover, the development of alternative

approaches of visual programming languages seems to be a good idea.

Another interesting approach in the context of collaborative programming for smart

automations could be the development of smart devices that are used by different

users in different connected networks. Collaborative execution of smart automations

could allow smart devices to interact each other by identifying who is their owner and

each of the smart devices instructions of the shared project will be executed in the

specific peer user side respectively.

Another perspective of a future work could be the development of other application

domains using the Blockly Studio IDE including games for learning. In the context of

a new application domain, an interesting application domain could be the

development of application domain that will be able to modify or create new

application domains from end-user developers. Based on the circular architecture of

the IDE in which the components export their functionality, it will be able create

appropriate visual programming language elements that will be used in order to

231

develop and modify functionality. In addition, extra ingredients will be required (e.g.,

build IDE components and their user-interfaces). In this context, this could be used

only by experienced users. It looks to be more feasible empowering end-user

developers to modify the existing application domain frameworks or configure the

settings of the visual programming IDE through general-purpose visual programming

editors (i.e., Blockly editor in our case).

Furthermore, having finished the development of the IDE for visual programming

languages including framework for smart automations, our future work focuses on

conducting a full-scale evaluation of our visual programming workspace in a high

school class.

232

Bibliography

[1]. Andrew J. Ko, Robin Abraham, Laura Beckwith, Alan Blackwell, Margaret

Burnett, Martin Erwig, Chris Scaffidi, Joseph Lawrance, Henry Lieberman,

Brad Myers, Mary Beth Rosson, Gregg Rothermel, Mary Shaw, and Susan

Wiedenbeck. 2011. The state of the art in end-user software engineering. ACM

Comput. Surv. 43, 3, Article 21 (April 2011), 44 pages.

DOI=10.1145/1922649.1922658 http://doi.acm.org/10.1145/1922649.1922658.

[2]. H. Lieberman, F. Patern`o, and V.Wulf, Eds., End-User Development, Human

Computer Interaction Series, Springer, New York, NY, USA, 2006.

[3]. Alexandre Santos, Joaquim Macedo, António Costa, M. João Nicolau, Internet

of Things and Smart Objects for M-health Monitoring and Control, Procedia

Technology, Volume 16, 2014, Pages 1351-1360, ISSN 2212-0173 (2014).

[4]. A Greg Little and Robert C. Miller. 2006. Translating keyword commands into

executable code. In Proceedings of the 19th annual ACM symposium on User

interface software and technology (UIST '06). ACM, New York, NY, USA,

135-144. DOI=10.1145/1166253.1166275

http://doi.acm.org/10.1145/1166253.1166275.

[5]. Greg Little, Tessa A. Lau, Allen Cypher, James Lin, Eben M. Haber, and Eser

Kandogan. 2007. Koala: capture, share, automate, personalize business

processes on the web. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems (CHI '07). ACM, New York, NY, USA, 943-

946. DOI=10.1145/1240624.1240767

http://doi.acm.org/10.1145/1240624.1240767

[6]. Scaffidi, C.; Bogart, C.; Burnett, M.; Cypher, A.; Myers, Brad; Shaw, M.,

"Predicting reuse of end-user web macro scripts," Visual Languages and

Human-Centric Computing, 2009. VL/HCC 2009. IEEE Symposium on , vol.,

no., pp.93,100, 20-24 Sept. 2009 doi: 10.1109/VLHCC.2009.5295290.

[7]. Open Office Scripting Framework. Open Office feature allows users to write

and run macros for Apache OpenOffice. Official Website:

https://wiki.openoffice.org/wiki/Documentation/DevGuide/Scripting/Scripting_

Framework Accessed Online: 02/2021.

[8]. Warth, A.; Yamamiya, T.; Ohshima, Y.; Wallace, S., "Toward A More Scalable

End-User Scripting Language," Creating, Connecting and Collaborating through

Computing, 2008. C5 2008. Sixth International Conference on , vol., no.,

pp.172,178, 14-16 Jan. 2008 doi: 10.1109/C5.2008.33.

[9]. Mitchel Resnick, John Maloney, Andr´es Monroy-Hern´andez, Natalie Rusk,

Evelyn Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver,

Brian Silverman, and Yasmin Kafai. Scratch: programming for all.

Communications of the ACM, 52(11):60–67, November 2009.

[10]. Tynker web IDE. Educational programming platform aimed at teaching children

how to make games and programs. First appeared 2012. Official website:

https://www.tynker.com/ Accessed online 2/2021.

[11]. MakeCode: Hands on computing education. Producer: Microsoft. Released on:

08/2019. Official website: https://www.microsoft.com/en-us/makecode

Accessed online 2/2021.

http://doi.acm.org/10.1145/1922649.1922658
http://doi.acm.org/10.1145/1166253.1166275
http://doi.acm.org/10.1145/1240624.1240767
https://wiki.openoffice.org/wiki/Documentation/DevGuide/Scripting/Scripting_Framework
https://wiki.openoffice.org/wiki/Documentation/DevGuide/Scripting/Scripting_Framework
https://www.tynker.com/
https://www.microsoft.com/en-us/makecode

233

[12]. Seung Han Kim and Jae Wook Jeon, "Programming LEGO mindstorms NXT

with visual programming," 2007 International Conference on Control,

Automation and Systems, Seoul, 2007, pp. 2468-2472.

[13]. P. Voštinár, "Programming LEGO EV3 in Microsoft MakeCode," 2020 IEEE

Global Engineering Education Conference (EDUCON), Porto, Portugal, 2020,

pp. 1868-1872, doi: 10.1109/EDUCON45650.2020.9125170.

[14]. P. Bachiller-Burgos, I. Barbecho, L. V. Calderita, P. Bustos and L. J. Manso,

"LearnBlock: A Robot-Agnostic Educational Programming Tool," in IEEE

Access, vol. 8, pp. 30012-30026, 2020.

[15]. MIT App Inventor. Producer: Google, MIT Media Lab. Initial release on

12/2010. Official site: http://appinventor.mit.edu/ Accessed online 02/2021.

[16]. BlocklyDuino: The web-based, graphical programming editor based on Blockly.

Official Website: https://github.com/BlocklyDuino/BlocklyDuino Accessed

Online 02/2021

[17]. ArduBlock: Visual Programming Environment for Arduino. Official Website:

http://blog.ardublock.com/ Accesed Online: 02/2021.

[18]. Arduino: An open-source hardware and software company, project and user

community that designs and manufacturers single-board microcontrollers and

microcontroller kits for building digital devices. Official Website:

https://www.arduino.cc/ Accessed Online: 02/2021.

[19]. Haller, S., Karnouskos, S., & Schroth, C. (2009). The Internet of Things in an

enterprise context. In J. Domingue, F. Dieter, & T. Paolo (Eds.), Future internet

– FIS 2008, lecture notes in computer science (Vol. 5468, pp. 14–28). Berlin:

Springer.

[20]. Xinyue Deng. Group Collaboration with App Inventor. Thesis: M. Eng.,

Massachusetts Institute of Technology, Department of Electrical Engineering

and Computer Science, 2017.

[21]. P. Rashidi and A. Mihailidis, "A Survey on Ambient-Assisted Living Tools for

Older Adults," in IEEE Journal of Biomedical and Health Informatics, vol. 17,

no. 3, pp. 579-590, May 2013. doi: 10.1109/JBHI.2012.2234129.

[22]. Stephan Haller, Stamatis Karnouskos, and Christoph Schroth. 2009. The Internet

of Things in an Enterprise Context. In Future Internet --- FIS 2008, John

Domingue, Dieter Fensel, and Paolo Traverso (Eds.). Lecture Notes In

Computer Science, Vol. 5468. Springer-Verlag, Berlin, Heidelberg 14-28.

DOI=http://dx.doi.org/10.1007/978-3-642-00985-3_2.

[23]. A. Dohr, R. Modre-Opsrian, M. Drobics, D. Hayn, and G. Schreier. 2010. The

Internet of Things for Ambient Assisted Living. In Proceedings of the 2010

Seventh International Conference on Information Technology: New Generations

(ITNG '10). IEEE Computer Society, Washington, DC, USA, 804-809.

DOI=http://dx.doi.org/10.1109/ITNG.2010.104.

[24]. Alexandre Santos, Joaquim Macedo, António Costa, M. João Nicolau, Internet

of Things and Smart Objects for M-health Monitoring and Control, Procedia

Technology, Volume 16, 2014, Pages 1351-1360, ISSN 2212-0173,

http://dx.doi.org/10.1016/j.protcy.2014.10.152.

[25]. Bee+, developed by Vigilant. Official site:

https://www.arm.com/innovation/products/bee-smart-diabetes-tracker.php

Accessed Online: 12/2016.

http://appinventor.mit.edu/
https://github.com/BlocklyDuino/BlocklyDuino
http://blog.ardublock.com/
https://www.arduino.cc/
http://dx.doi.org/10.1016/j.protcy.2014.10.152
https://www.arm.com/innovation/products/bee-smart-diabetes-tracker.php

234

[26]. Scratch: Block-based visual programming language and website targeted

primarily at children 8-16 as an educational tool for coding. First appeared on

2003. Official Website: https://scratch.mit.edu/.

[27]. Scratch Studio – Sharing is caring. Platform enables sharing the creations.

Official Website: https://scratch.mit.edu/studios/4164419/.

[28]. Phratch. VPL based on a jigsaw puzzle on top of Phraro. Official Website:

https://github.com/janniklaval/phratch Accessed online 02/2021.

[29]. Snap! Berkeley, extension of Scratch. Build Your Own Blocks. Open-

sourcewritten by Jens Mönig and Brian Harvey, Berkeley. Official Website:

http://snap.berkeley.edu/ Accessed online 02/2021.

[30]. Pasternak, E., Fenichel, R., Marshall, A. N. Tips for creating a block language

with blockly. IEEE Blocks and Beyond Workshop (B&B), Raleigh, NC, USA,

pp. 21-24 (2017).

[31]. Dart, Web programming language developed by Google. Official Website:

https://www.dartlang.org/ Accessed online 02/2021.

[32]. App Inventor 2: Create your own Android Apps. Second Edition 2014 Book by

David Wolber, Hal Abelson, Ellen Spertus, Liz Looney. Official Website:

http://www.appinventor.org/book O'Reilly ISBN-13: 978-1491906842.

[33]. Lego Mindstorms. Official Website: http://www.lego.com/en-us/mindstorms

Accessed online 02/2021.

[34]. MODKit Micro. Official Website http://www.modkit.com/ Accessed online

02/2021.

[35]. Makeblock | mBlock: Extension of Scratch for Arduino and robotics. Official

Website: https://mblock.makeblock.com/en-us/ Accessed online: 02/2021.

[36]. Danado, Marcin Davies, Paulo Ricca, and Anna Fensel. 2010. An authoring tool

for user generated mobile services. In Proceedings of the Third future internet

conference on Future internet (FIS'10), Arne J. Berre, Asunci & Gmez-Perez,

Kurt Tutschku, and Dieter Fensel (Eds.). Springer-Verlag, Berlin, Heidelberg,

118-127.

[37]. J. Danado and F. Paternò, “Puzzle: a visual-based environment for end user

development in touch-based mobile phones,” in Human-Centered Software

Engineering, vol. 7623 of Lecture Notes in Computer Science, pp. 199–216,

2012.

[38]. TouchDevelop, Microsoft Research. Established 07/2011. Official Website:

https://www.microsoft.com/en-us/research/project/touchdevelop/ Accessed

online 02/2021.

[39]. Tillmann, N., Moskal, M., Halleux, J., Fahndrich, M., and Burckhardt, S. 2012.

Touch-Develop: app development on mobile devices. In Proceedings of the

ACM SIGSOFT 20th International Symposium on the Foundations of Software

Engineering (FSE '12). ACM, New York, NY, USA, , Article 39 , 2 pages.

[40]. Microsoft MakeCode Arcade. Official Website:

https://arcade.makecode.com/#editor Accessed online: 02/2021.

[41]. Microsoft MakeCode editors: Computing education. Brings computer science to

life for all students with fun projects, Official Website:

https://www.microsoft.com/en-us/makecode?rtc=1 Accessed online: 02/2021.

[42]. Thyrd: An Experimental Reflective Visual Programming Language, Mercurio,

Philip J. Talk presented at OSCON Emerging Languages Camp, Portland,

Oregon, July 2010.

https://scratch.mit.edu/
https://scratch.mit.edu/studios/4164419/
https://github.com/janniklaval/phratch
http://snap.berkeley.edu/
https://www.dartlang.org/
http://www.appinventor.org/book
http://www.lego.com/en-us/mindstorms%20Accessed%20online%2002/2021
http://www.lego.com/en-us/mindstorms%20Accessed%20online%2002/2021
http://www.modkit.com/
https://mblock.makeblock.com/en-us/
https://www.microsoft.com/en-us/research/project/touchdevelop/
https://arcade.makecode.com/#editor
https://www.microsoft.com/en-us/makecode?rtc=1

235

[43]. Microsoft VPL. Official Website: https://msdn.microsoft.com/en-

us/library/bb483088.aspx Accessed online 02/2021.

[44]. Y. Chen and G. De Luca, "VIPLE: Visual IoT/Robotics Programming Language

Environment for Computer Science Education," 2016 IEEE International

Parallel and Distributed Processing Symposium Workshops (IPDPSW),

Chicago, IL, 2016, pp. 963-971, doi: 10.1109/IPDPSW.2016.55.

[45]. ROBO Pro, FischerTechnik. Official Website:

http://www.fischertechnik.de/en/Home.aspx Accessed online 02/2021.

[46]. LabView. Official Website: http://www.ni.com/labview/ Accessed online

02/2021.

[47]. Flowgorithm 2015. Official Website: http://flowgorithm.org/ Accessed online

02/2021.

[48]. LARP, Logic of Algorithms for Resolution of Problems. Official Website:

http://www.marcolavoie.ca/larp/en/default.htm Accessed online 02/2021.

[49]. Raptor. Official Website: http://raptor.martincarlisle.com/ Accessed online

02/2021.

[50]. Visual Logic. Official Website: http://www.visuallogic.org/download/ Accessed

online 02/2021.

[51]. Rete: The JavaScript framework for flow-based visual programming. Official

Website:

https://rete.js.org/#/#lang=en&tosearch=The%20JavaScript%20framework%20f

or%20visual%20programming Accessed online 02/2021.

[52]. Kodu, Microsoft Research. Official Website: http://www.kodugamelab.com/

Accessed online 02/2021.

[53]. Construct 2, Scirra. Official Website: https://www.scirra.com/ Accessed online

02/2021.

[54]. GODOT, OKAM Studio. Official Website: http://www.godotengine.org/

Accessed online 02/2021.

[55]. GameSalad. From Game Player to Game Maker. Official Website:

http://gamesalad.com/ Accessed online 02/2021.

[56]. AgentCubes: An educational programming language for children in the context

of craeting 3D and 2D games. Authored by Alexander Repenning. First

Appeared on 2006. Official Website: https://agentsheets.com/ Accessed

online: 02/2021.

[57]. HomeKit developed by Apple. Official Website:

http://www.apple.com/ios/homekit/ Accessed online 02/2021.

[58]. Josè Danado and Fabio Paternò. 2015. A Mobile End-User Development

Environment for IoT Applications Exploiting the Puzzle Metaphor. ERCIM

News 101. Link: http://ercim-news.ercim.eu/en101/special/a-mobile-end-user-

development-environment-for-iot-applications-exploiting-the-puzzle-metaphor

Accessed online: 02/2021.

[59]. Ruiz-Rube, I.; Mota, J.M.; Person, T.; Corral, J.M.R.; Dodero, J.M. Block-

Based Development of Mobile Learning Experiences for the Internet of Things.

Sensors 2019, 19, 5467. https://doi.org/10.3390/s19245467.

[60]. K. E. Hendrickson, “Writing and Connecting IoT and Mobile Applications in

MIT App Inventor,” Master dissertation, Department of Electrical Engineering

and Computer Science, MIT, May 2018.

https://msdn.microsoft.com/en-us/library/bb483088.aspx%20Accessed%20online%2002/2021
https://msdn.microsoft.com/en-us/library/bb483088.aspx%20Accessed%20online%2002/2021
http://www.fischertechnik.de/en/Home.aspx
http://www.ni.com/labview/
http://flowgorithm.org/
http://www.marcolavoie.ca/larp/en/default.htm%20Accessed%20online%2002/2021
http://raptor.martincarlisle.com/
http://www.visuallogic.org/download/
https://rete.js.org/#/
https://rete.js.org/#/
http://www.kodugamelab.com/
https://www.scirra.com/
http://www.godotengine.org/
http://gamesalad.com/
https://agentsheets.com/
http://www.apple.com/ios/homekit/
http://ercim-news.ercim.eu/en101/special/a-mobile-end-user-development-environment-for-iot-applications-exploiting-the-puzzle-metaphor
http://ercim-news.ercim.eu/en101/special/a-mobile-end-user-development-environment-for-iot-applications-exploiting-the-puzzle-metaphor
https://doi.org/10.3390/s19245467

236

[61]. Nayeon Bak, Byeong-Mo Chang, Kwanghoon Choi, Smart Block: A visual

block language and its programming environment for IoT, Journal of Computer

Languages, Volume 60, 2020, 100999, ISSN 2590-1184,

https://doi.org/10.1016/j.cola.2020.100999.

[62]. Node-RED: programming tool for wiring together hardware devices, APIs and

online services. Authored by IBM Emerging Technology. Official Website:

https://nodered.org/ Accessed online: 02/2021.

[63]. NetLab Toolkit: An authoring system empowers the users to design and build

tangible Internet of Things projects. Official Website:

https://www.netlabtoolkit.org/ Accessed online: 02/2021.

[64]. IntelliJ Platform Plugin SDK. Authored by JetBrains. Initial Released on

01/2001. Official Website: https://plugins.jetbrains.com/docs/intellij/creating-

plugin-project.html Accessed online: 02/2021.

[65]. Eclipse Plugin Architecture. Official Website:

https://wiki.eclipse.org/Plugin_Architecture Accessed online: 02/2021.

[66]. Visual Studio extension API. Official Website: https://code.visualstudio.com/api

Accessed online: 02/2021.

[67]. Eclipse Modeling Framework: A modeling framework and code generation

facility for building tools and other applications based on a structured data

model. Official Website: https://www.eclipse.org/modeling/emf/ Accessed

online: 02/2021.

[68]. Savidis A, Bourdenas T, Georgalis J. An adaptable circular meta‐IDE for a

dynamic programming language. In Proceedings of the 4th International

Workshop on Rapid Integration of Software Engineering Techniques (RISE

2007), Luxemburg, 2007; 99–114. Available at:

http://www.ics.forth.gr/hci/files/plang/sparrow.pdf.

[69]. Neeraja Subrahmaniyan, Laura Beckwith, Valentina Grigoreanu, Margaret

Burnett, Susan Wiedenbeck, Vaishnavi Narayanan, Karin Bucht, Russell

Drummond, and Xiaoli Fern. 2008. Testing vs. code inspection vs. what else?:

male and female end users' debugging strategies. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems (CHI '08). ACM, New

York, NY, USA, 617-626.

[70]. Valentina Grigoreanu, Margaret Burnett, Susan Wiedenbeck, Jill Cao, Kyle

Rector, and Irwin Kwan. 2012. End-user Debugging Strategies: A Sensemaking

Perspective. ACM Transaction on Computer-Human Interaction 19, 1, Article 5

(May 2012), 28 pages. https://doi.org/10.1145/2147783.2147788.

[71]. Grigoreanu, V.; Beckwith, L.; Fern, X.; Yang, S.; Komireddy, C.; Narayanan,

V.; Cook, C.; Burnett, M., "Gender Differences in End-User Debugging,

Revisited: What the Miners Found," Visual Languages and Human-Centric

Computing, 2006. VL/HCC 2006. IEEE Symposium on , vol., no., pp.19,26, 4-8

Sept. 2006 doi: 10.1109/VLHCC.2006.24.

[72]. Chintakovid, T.; Wiedenbeck, S.; Burnett, M.; Grigoreanu, V., "Pair

Collaboration in End-User Debugging," Visual Languages and Human-Centric

Computing, 2006. VL/HCC 2006. IEEE Symposium on , vol., no., pp.3,10, 4-8

Sept. 2006 doi: 10.1109/VLHCC.2006.36.

[73]. Kim, C., Yuan, J., Vasconcelos, L. et al. Debugging during block-based

programming. Instr Sci 46, 767–787 (2018). https://doi.org/10.1007/s11251-

018-9453-5.

https://doi.org/10.1016/j.cola.2020.100999
https://nodered.org/
https://www.netlabtoolkit.org/
https://plugins.jetbrains.com/docs/intellij/creating-plugin-project.html
https://plugins.jetbrains.com/docs/intellij/creating-plugin-project.html
https://wiki.eclipse.org/Plugin_Architecture
https://code.visualstudio.com/api
https://www.eclipse.org/modeling/emf/
http://www.ics.forth.gr/hci/files/plang/sparrow.pdf
https://doi.org/10.1145/2147783.2147788
https://doi.org/10.1007/s11251-018-9453-5
https://doi.org/10.1007/s11251-018-9453-5

237

[74]. Daniel W. Barowy, Emery D. Berger, and Benjamin Zorn. 2018. ExceLint:

automatically finding spreadsheet formula errors. Proc. ACM Program. Lang. 2,

OOPSLA, Article 148 (November 2018), 26 pages. DOI:

https://doi.org/10.1145/3276518.

[75]. R. Abraham and M. Erwig. UCheck: A Spreadsheet Unit Checker for End

Users. Journal of Visual Languages and Computing, 18(1):71–95, 2007.

[76]. Chris Chambers and Martin Erwig. Combining Spatial and Semantic Label

Analysis. In VLHCC ’09: Proceedings of the 2009 IEEE Symposium on Visual

Languages and Human-Centric Computing (VL/HCC), pages 225–232,

Washington, DC, USA, 2009. IEEE Computer Society.

[77]. Valentina I. Grigoreanu, Margaret M. Burnett, and George G. Robertson. 2010.

A strategy-centric approach to the design of end-user debugging tools. In

Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems (CHI '10). ACM, New York, NY, USA, 713-722.

DOI=10.1145/1753326.1753431 http://doi.acm.org/10.1145/1753326.1753431.

[78]. R. Abraham and M. Erwig, "GoalDebug: A Spreadsheet Debugger for End

Users," 29th International Conference on Software Engineering (ICSE'07),

Minneapolis, MN, 2007, pp. 251-260, doi: 10.1109/ICSE.2007.39.

[79]. Linda Werner, Shannon Campe, and Jill Denner. 2012. Children learning

computer science concepts via Alice game-programming. In Proceedings of the

43rd ACM technical symposium on Computer Science Education (SIGCSE '12).

Association for Computing Machinery, New York, NY, USA, 427–432. DOI:

https://doi.org/10.1145/2157136.2157263.

[80]. A. J. Ko and B. A. Myers. 2004. Designing the Whyline: A Debugging Interface

for Asking Questions About Program Behavior. In Proceedingsof the SIGCHI

Conference on Human Factors in Computing Systems (CHI’04). ACM, New

York, NY, USA, 151–158. https://doi.org/10.1145/985692.985712.

[81]. James Devine, Joe Finney, Peli de Halleux, Michał Moskal, Thomas Ball, and

Steve Hodges. 2018. MakeCode and CODAL: intuitive and efficient embedded

systems programming for education. SIGPLAN Not. 53, 6 (June 2018), 19–30.

DOI: https://doi.org/10.1145/3299710.3211335.

[82]. Tynker web IDE: The Debugger Tool. Official Website:

https://www.tynker.com/blog/articles/ideas-and-tips/debugger/ Accessed online:

02/2021.

[83]. Blockly Step Execution with JS Interpreter. Official Website: https://blockly-

demo.appspot.com/static/demos/interpreter/step-execution.html Accessed

online: 02/2021.

[84]. Savidis A., Savaki C. (2020) Complete Block-Level Visual Debugger for

Blockly. In: Ahram T., Karwowski W., Pickl S., Taiar R. (eds) Human Systems

Engineering and Design II. IHSED 2019. Advances in Intelligent Systems and

Computing, vol 1026. Springer, Cham. https://doi.org/10.1007/978-3-030-

27928-8_43.

[85]. Fulvio Corno, Luigi De Russis, and Alberto Monge Roffarello. 2019.

Empowering End Users in Debugging Trigger-Action Rules. In Proceedings of

the 2019 CHI Conference on Human Factors in Computing Systems (CHI '19).

Association for Computing Machinery, New York, NY, USA, Paper 388, 1–13.

DOI: https://doi.org/10.1145/3290605.3300618.

https://doi.org/10.1145/3276518
http://doi.acm.org/10.1145/1753326.1753431
https://doi.org/10.1145/2157136.2157263
https://doi.org/10.1145/985692.985712
https://doi.org/10.1145/3299710.3211335
https://www.tynker.com/blog/articles/ideas-and-tips/debugger/
https://blockly-demo.appspot.com/static/demos/interpreter/step-execution.html
https://blockly-demo.appspot.com/static/demos/interpreter/step-execution.html
https://doi.org/10.1007/978-3-030-27928-8_43
https://doi.org/10.1007/978-3-030-27928-8_43
https://doi.org/10.1145/3290605.3300618

238

[86]. Blase Ur, Melwyn Pak Yong Ho, Stephen Brawner, Jiyun Lee, Sarah

Mennicken, Noah Picard, Diane Schulze, and Michael L. Littman. 2016.

Trigger-Action Programming in the Wild: An Analysis of 200,000 IFTTT

Recipes. In Proceedings of the 2016 CHI Conference on Human Factors in

Computing Systems (CHI '16). Association for Computing Machinery, New

York, NY, USA, 3227–3231. DOI: https://doi.org/10.1145/2858036.2858556.

[87]. Marco Manca, Fabio, Paternò, Carmen Santoro, Luca Corcella, Supporting end-

user debugging of trigger-action rules for IoT applications, International Journal

of Human-Computer Studies, Volume 123, 2019, Pages 56-69, ISSN 1071-

5819, https://doi.org/10.1016/j.ijhcs.2018.11.005.

[88]. Corno F., De Russis L., Monge Roffarello A. (2019) My IoT Puzzle: Debugging

IF-THEN Rules Through the Jigsaw Metaphor. In: Malizia A., Valtolina S.,

Morch A., Serrano A., Stratton A. (eds) End-User Development. IS-EUD 2019.

Lecture Notes in Computer Science, vol 11553. Springer, Cham.

https://doi.org/10.1007/978-3-030-24781-2_2.

[89]. Chieh-Jan Mike Liang, Lei Bu, Zhao Li, Junbei Zhang, Shi Han, Börje F.

Karlsson, Dongmei Zhang, and Feng Zhao. 2016. Systematically Debugging IoT

Control System Correctness for Building Automation. In Proceedings of the 3rd

ACM International Conference on Systems for Energy-Efficient Built

Environments (BuildSys '16). Association for Computing Machinery, New

York, NY, USA, 133–142. DOI:https://doi.org/10.1145/2993422.2993426.

[90]. F. Gringoli, N. Ali, F. Guerrini and P. Patras, "A Flexible Framework for

Debugging IoT Wireless Applications," 2018 Workshop on Metrology for

Industry 4.0 and IoT, Brescia, 2018, pp. 230-235, doi:

10.1109/METROI4.2018.8428337.

[91]. Simulics Platform Simulator: A Deeper Insight into Your System. Official

Website: http://www.simulics.com/index_en.php#simulator Accessed online:

02/2021.

[92]. Khelif, Mohamed Amine & Lorandel, Jordane & Romain, Olivier & Regnery,

Matthieu & Baheux, Denis. (2019). A Versatile Emulator of MitM for the

identification of vulnerabilities of IoT devices, a case of study: smartphones. 1-

6. 10.1145/3341325.3342019.

[93]. K. Kawada and T. Ohta, "An Emulator for Debugging Service Programs in Ad

Hoc Networks," 2009 Fourth International Conference on Software Engineering

Advances, Porto, 2009, pp. 326-330, doi: 10.1109/ICSEA.2009.54.

[94]. Google Docs, web-based software office suite offered by Google within Google

Drive. Developed in JavaScript. Released on 2006. Official website:

https://www.google.com/docs/about/ Accessed online 02/2021.

[95]. Office Online, online office suite offered by Microsoft. Released on 2010.

Official site: https://products.office.com/en/free-office-online-for-the-web

Accessed online 02/2021.

[96]. Git: a distributed version-control system for tracking changes in source code

during software development. Initial released 2005. Author: Linus Torvalds.

Official Website: https://git-scm.com/ Accessed online 02/2021.

[97]. SVN: a software versioning and revision control system distributed as open

source under the Apache License. Apache Software Foundation. Initial Release

2000. Official Website: https://subversion.apache.org/ Accessed online 02/2021.

https://doi.org/10.1145/2858036.2858556
https://doi.org/10.1016/j.ijhcs.2018.11.005
https://doi.org/10.1007/978-3-030-24781-2_2
http://www.simulics.com/index_en.php#simulator
https://www.google.com/docs/about/
https://products.office.com/en/free-office-online-for-the-web
https://git-scm.com/
https://subversion.apache.org/

239

[98]. Anja Guzzi, Alberto Bacchelli, Yann Riche, and Arie van Deursen. 2015.

Supporting Developers’ Coordination in the IDE. In Proceedings of the 18th

ACM Conference on Computer Supported Cooperative Work & Social

Computing (CSCW ’15). Association for Computing Machinery, New York,

NY, USA, 518–532.

[99]. Sourcetree: a software tool that visualizes and manages repositories. Offered by

Atlassian. Official site: https://www.sourcetreeapp.com/ Accessed online

02/2021.

[100]. Max Goldman, Greg Little, and Robert C. Miller. 2011. Real-time

collaborative coding in a web IDE. In Proceedings of the 24th annual ACM

symposium on User interface software and technology (UIST '11). ACM, New

York, NY, USA, 155-164. DOI=10.1145/2047196.2047215 DOI:

http://doi.acm.org/10.1145/2047196.2047215.

[101]. Codiad Web-based IDE framework. Started on 2012 from Fluidbyte. Official

Website: http://codiad.com/ Accessed online 02/2021.

[102]. Soroush Ghorashi and Carlos Jensen. 2016. Jimbo: a collaborative IDE with

live preview. In Proceedings of the 9th International Workshop on Cooperative

and Human Aspects of Software Engineering (CHASE ’16). Association for

Computing Machinery, New York, NY, USA, 104–107. DOI:

https://doi.org/10.1145/2897586.2897613.

[103]. Stephan Salinger, Christopher Oezbek, Karl Beecher, and Julia Schenk. 2010.

Saros: an eclipse plug-in for distributed party programming. In Proceedings of

the 2010 ICSE Workshop on Cooperative and Human Aspects of Software

Engineering (CHASE ’10). Association for Computing Machinery, New York,

NY, USA, 48–55. DOI: https://doi.org/10.1145/1833310.1833319.

[104]. Kristy Elizabeth Boyer, August A. Dwight, R. Taylor Fondren, Mladen A.

Vouk, and James C. Lester. 2008. A development environment for distributed

synchronous collaborative programming. SIGCSE Bull. 40, 3 (June 2008), 158–

162. DOI: https://doi.org/10.1145/1597849.1384315.

[105]. Remote Collab: open-source SublimeText plugin for remote pair

programming. Developed by TeamRemote. Started on 2014. Official Website:

http://teamremote.github.io/remote-sublime/ Accessed online 02/2021.

[106]. Sublime Text: A sophisticated text editor for code, markup and prose.

Developed by Sublime HQ, Author: Jon Skinner. Official Website:

https://www.sublimetext.com/ Accessed online: 02/2021.

[107]. Teletype: Collaborate in real time in Atom. Started on 2017. Official Website:

https://teletype.atom.io/ Accessed online 02/2021.

[108]. Atom: A hackable text editor for 21st century. Developed by GitHub

(subsidiary of Microsoft). Official Website: https://atom.io/ Accessed online:

02/2021.

[109]. Codeshare: Share Code in Real-time with Developers. Created by Lee Munroe

and Tejesh Mehta. Official Website: https://codeshare.io/ Accessed online

02/2021.

[110]. Xinyue Deng. Group Collaboration with App Inventor. Thesis: M. Eng.,

Massachusetts Institute of Technology, Department of Electrical Engineering

and Computer Science, 2017.

[111]. Fukuma Y., Tsutsui K., Takada H., Piumarta I. (2017) A Scratch-Based

Collaborative Learning System with a Shared Stage Screen. In: Yoshino T.,

https://www.sourcetreeapp.com/
http://doi.acm.org/10.1145/2047196.2047215
http://codiad.com/
https://doi.org/10.1145/2897586.2897613
https://doi.org/10.1145/1833310.1833319
https://doi.org/10.1145/1597849.1384315
http://teamremote.github.io/remote-sublime/
https://www.sublimetext.com/
https://teletype.atom.io/
https://atom.io/
https://codeshare.io/

240

Yuizono T., Zurita G., Vassileva J. (eds) Collaboration Technologies and Social

Computing. CollabTech 2017. Lecture Notes in Computer Science, vol 10397.

Springer, Cham.

[112]. B. Selwyn-Smith, C. Anslow, M. Homer and J. R. Wallace, "Co-located

Collaborative Block-Based Programming," 2019 IEEE Symposium on Visual

Languages and Human-Centric Computing (VL/HCC), Memphis, TN, USA,

2019, pp. 107-116.

[113]. N. Tillmann, M. Moskal, J. de Halleux, M. Fahndrich, and S. Burckhardt,

“TouchDevelop: app development on mobile devices,” in FSE, Demo, 2012, pp.

39:1–39:2.

[114]. Jonathan Protzenko, Sebastian Burckhardt, Michał Moskal, and Jedidiah

McClurg. 2015. Implementing real-time collaboration in TouchDevelop using

AST merges. In Proceedings of the 3rd International Workshop on Mobile

Development Lifecycle (MobileDeLi 2015). Association for Computing

Machinery, New York, NY, USA, 25–27.

DOI:https://doi.org/10.1145/2846661.2846672.

[115]. Al-Jarrah, Ahmad & Pontelli, Enrico. (2015). AliCe-ViLlagE Alice as a

Collaborative Virtual Learning Environment. Proceedings - Frontiers in

Education Conference, FIE. 2015. 10.1109/FIE.2014.7044089.

[116]. Microsoft Visual Studio Live Share: enables developers to collaborate in real-

time. Developed by Mixrosoft. Initial Released on 2017. Official Website:

https://visualstudio.microsoft.com/services/live-share/ Accessed online 02/2021.

[117]. Code With Me: Plugin of the IntelliJ IDEA. First released: 09/2020. Official

Website: https://www.jetbrains.com/help/idea/code-with-me.html Accessed

online: 02/2021.

[118]. Nordio, M., Meyer, B., & Estler, H. (2011). Collaborative Software

Development on the Web. ArXiv, abs/1105.0768.

[119]. H. C. Estler, M. Nordio, C. A. Furia and B. Meyer, "Collaborative

Debugging," 2013 IEEE 8th International Conference on Global Software

Engineering, Bari, 2013, pp. 110-119, doi: 10.1109/ICGSE.2013.21.

[120]. Michael A. Miljanovic and Jeremy S. Bradbury. 2017. RoboBUG: A Serious

Game for Learning Debugging Techniques. In Proceedings of the 2017 ACM

Conference on International Computing Education Research (ICER '17).

Association for Computing Machinery, New York, NY, USA, 93–100. DOI:

https://doi.org/10.1145/3105726.3106173.

[121]. Venigalla, A., Chimalakonda, S. G4D - a treasure hunt game for novice

programmers to learn debugging. Smart Learn. Environ. 7, 21 (2020).

https://doi.org/10.1186/s40561-020-00129-4.

[122]. Andrew Luxton-Reilly, Emma McMillan, Elizabeth Stevenson, Ewan

Tempero, and Paul Denny. 2018. Ladebug: an online tool to help novice

programmers improve their debugging skills. In Proceedings of the 23rd Annual

ACM Conference on Innovation and Technology in Computer Science

Education (ITiCSE 2018). Association for Computing Machinery, New York,

NY, USA, 159–164. DOI: https://doi.org/10.1145/3197091.3197098.

[123]. M. J. Lee, "Gidget: An online debugging game for learning and engagement in

computing education," 2014 IEEE Symposium on Visual Languages and

Human-Centric Computing (VL/HCC), Melbourne, VIC, 2014, pp. 193-194,

doi: 10.1109/VLHCC.2014.6883051.

https://visualstudio.microsoft.com/services/live-share/
https://www.jetbrains.com/help/idea/code-with-me.html
https://doi.org/10.1145/3105726.3106173
https://doi.org/10.1186/s40561-020-00129-4
https://doi.org/10.1145/3197091.3197098

241

[124]. Chiung-Fang Chiu and Hsing-Yi Huang, "Guided Debugging Practices of

Game Based Programming for Novice Programmers," International Journal of

Information and Education Technology vol. 5, no. 5, pp. 343-347, 2015.

[125]. Lee, VCS, Yu, YT, Tang, CM, Wong, TL, Poon, CK. ViDA: A virtual

debugging advisor for supporting learning in computer programming courses. J

Comput Assist Learn. 2018; 34: 243– 258. https://doi.org/10.1111/jcal.12238.

[126]. Jim Etheredge. 2004. CMeRun: program logic debugging courseware for

CS1/CS2 students. SIGCSE Bull. 36, 1 (March 2004), 22–25. DOI:

https://doi.org/10.1145/1028174.971311.

[127]. Christian Murphy, Eunhee Kim, Gail Kaiser, and Adam Cannon. 2008.

Backstop: a tool for debugging runtime errors. SIGCSE Bull. 40, 1 (March

2008), 173–177. DOI: https://doi.org/10.1145/1352322.1352193.

[128]. Tsuruko Egi and Akira Takeuchi. 2007. An Analysis on a Learning Support

System for Tracing in Beginner's Debugging. In Proceedings of the 2007

conference on Supporting Learning Flow through Integrative Technologies. IOS

Press, NLD, 509–516.

[129]. Christopher Scaffidi, Andrew Dove, and Tahmid Nabi. 2016. LondonTube:

Overcoming Hidden Dependencies in Cloud-Mobile-Web Programming.

Association for Computing Machinery, New York, NY, USA, 3498–3508. DOI:

https://doi.org/10.1145/2858036.2858076.

[130]. L. Ganesan, C. Scaffidi and A. Dove, "Support for learning while debugging

in a distributed visual programming language," 2017 IEEE Symposium on

Visual Languages and Human-Centric Computing (VL/HCC), Raleigh, NC,

2017, pp. 267-271, doi: 10.1109/VLHCC.2017.8103477.

[131]. Code Snippets in Visual Studio Code. Official Website:

https://code.visualstudio.com/docs/editor/userdefinedsnippets Accesed online:

02/2021.

[132]. Wingware Python Code Snippets. Oficial Website:

https://wingware.com/doc/edit/snippets Accessed online: 02/2021.

[133]. M. Ichinco and C. Kelleher, "Towards better code snippets: Exploring how

code snippet recall differs with programming experience," 2017 IEEE

Symposium on Visual Languages and Human-Centric Computing (VL/HCC),

Raleigh, NC, 2017, pp. 37-41, doi: 10.1109/VLHCC.2017.8103448.

[134]. TagMyCode: IntelliJ pluggin suports mechanism of code snippets Official

Website: https://plugins.jetbrains.com/plugin/7540-tagmycode Accessed online

02/2021.

[135]. Window.postMessage method safely enables cross-origin communication

between Window objects. Official Website: https://developer.mozilla.org/en-

US/docs/Web/API/Window/postMessage Accessed online: 02/2021.

[136]. Tillmann, Nikolai & Moskal, Michaa & Halleux, Jonathan & Fähndrich,

Manuel. (2011). TouchDevelop–Programming Cloud-Connected Mobile

Devices via Touchscreen. 10.1145/2048237.2048245.

[137]. JSON Schema validator: JavaScript Library. Authored by: Tom de Grunt

tom@degrunt.nl, Released on 2012-2015. Official Web-page:

https://github.com/tdegrunt/jsonschema#readme Accessed online: 02/2021.

[138]. Lodash template: interpolate data properties in “interpolate” delimiters,

HTML-escape interpolated data properties in “escape” delimiters. Lodash

https://doi.org/10.1111/jcal.12238
https://doi.org/10.1145/1028174.971311
https://doi.org/10.1145/1352322.1352193
https://doi.org/10.1145/2858036.2858076
https://code.visualstudio.com/docs/editor/userdefinedsnippets
https://wingware.com/doc/edit/snippets
https://plugins.jetbrains.com/plugin/7540-tagmycode%20Accessed%20online%2002/2021
https://plugins.jetbrains.com/plugin/7540-tagmycode%20Accessed%20online%2002/2021
https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage
https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage
https://github.com/tdegrunt/jsonschema#readme

242

JavaScript Library released on 2009. Last updated on 9th May of 2020. Official

Website: https://lodash.com/docs/4.17.15#template Accessed online: 02/2021.

[139]. Eval function evaluates JavaScript code represented as a string. Official

Website: https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Reference/Global_Objects/eval Accessed online:

02/2021.

[140]. Control flow and error handling in JavaScript. Official Website:

https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Guide/Control_flow_and_error_handling#throw_state

ment Accessed online 02/2021.

[141]. Martin Kleppmann, Victor B. F. Gomes, Dominic P. Mulligan, and Alastair R.

Beresford. 2019. Interleaving anomalies in collaborative text editors. In

Proceedings of the 6th Workshop on Principles and Practice of Consistency for

Distributed Data (PaPoC ’19). Association for Computing Machinery, New

York, NY, USA, Article 6, 1–7. DOI:https://doi.org/10.1145/3301419.3323972.

[142]. Basma S. Alqadi and Jonathan I. Maletic. 2017. An Empirical Study of

Debugging Patterns Among Novices Programmers. In Proceedings of the 2017

ACM SIGCSE Technical Symposium on Computer Science Education

(SIGCSE '17). Association for Computing Machinery, New York, NY, USA,

15–20. DOI: https://doi.org/10.1145/3017680.3017761.

[143]. Chintakovid, T.; Wiedenbeck, S.; Burnett, M.; Grigoreanu, V., "Pair

Collaboration in End-User Debugging," Visual Languages and Human-Centric

Computing, 2006. VL/HCC 2006. IEEE Symposium on , vol., no., pp.3,10, 4-8

Sept. 2006 doi: 10.1109/VLHCC.2006.36.

[144]. JavaScript WebWorkers: run scripts in background threads. The worker thread

can perform tasks without interfering with the UI. Official Website:

https://developer.mozilla.org/en-

US/docs/Web/API/Web_Workers_API/Using_web_workers Accessed online:

02/2021.

[145]. Kim, C., Yuan, J., Vasconcelos, L. et al. Debugging during block-based

programming. Instr Sci 46, 767–787 (2018). https://doi.org/10.1007/s11251-

018-9453-5.

[146]. Palade, A., Cabrera, C., Li, F., White, G., Razzaque, M. A., & Clarke, S.

(2018). Middleware for internet of things: an evaluation in a small-scale IoT

environment. Journal of Reliable Intelligent Environments.

[147]. IoTivity. An open source software framework enabling seamless device-to-

device connectivity to address the emerging needs of the Internet of Things.

Retrieved from https://iotivity.org/ Accessed online: 02/2021.

[148]. iotivity-node: Provides a JavaScript API for OCF functionality. Using IoTivity

as its backend. Developed by Gabriel Schulhof. Official Website:

https://www.npmjs.com/package/iotivity-node Accessed Online: 02/2021.

[149]. WindowOrWorkerGlobalScope.setTimeout: method sets a timer which

executes a function or specified piece of code once the timer expires. Official

Website: https://developer.mozilla.org/en-

US/docs/Web/API/WindowOrWorkerGlobalScope/setTimeout Accessed online:

02/2021.

[150]. WindowOrWorkerGlobalScope.setInterval: method which repeatedly calls a

function or executes a code snippet, with a fixed time delay between each call.

https://lodash.com/docs/4.17.15#template
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Control_flow_and_error_handling#throw_statement
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Control_flow_and_error_handling#throw_statement
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Control_flow_and_error_handling#throw_statement
https://doi.org/10.1145/3017680.3017761
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://doi.org/10.1007/s11251-018-9453-5
https://doi.org/10.1007/s11251-018-9453-5
https://iotivity.org/
https://www.npmjs.com/package/iotivity-node
https://developer.mozilla.org/en-US/docs/Web/API/WindowOrWorkerGlobalScope/setTimeout
https://developer.mozilla.org/en-US/docs/Web/API/WindowOrWorkerGlobalScope/setTimeout

243

Official Website: https://developer.mozilla.org/en-

US/docs/Web/API/WindowOrWorkerGlobalScope/setInterval Accessed online:

02/2021.

https://developer.mozilla.org/en-US/docs/Web/API/WindowOrWorkerGlobalScope/setInterval
https://developer.mozilla.org/en-US/docs/Web/API/WindowOrWorkerGlobalScope/setInterval

244

245

Appendix A

In this appendix we provide information for the evaluation of the collaborative

programming of our work.

Collaborative Editing Evaluation

A. Background Information

1) What is your age?

2) What is your gender?

3) What’s your occupation?

4) How many hours per week do you spend in front of a computer on

average?

5) How much experience do you have with programming?

6) Do you have any experience with visual programming?

B. System Usability Survey

The following SUS questionnaire was aimed to assess the usability of our

system’s collaboration component. The questions were answered on a scale

from 1 to 5, 1 being “Strongly Disagree” and 5 being “Strongly Agree” (i.e. 5-

point Likert scale).

1) I find the transition from Blockly editor to the Blockly workspace easy.

2) The collaboration component is well integrated into the Blockly

workspace.

3) I find the collaboration process unnecessarily complex.

4) I find the collaboration User Interface intuitive and easy to use.

5) I feel confident using the application with guidance.

6) I can use the application in the future without any help.

7) The collaboration toolset offers limited options.

8) I would like to use the collaboration tool for my personal projects with

my family or friends.

9) I don’t see the point of collaborating.

10) I find the application useful for teaching and learning purposes.

C. Freeform Questions

246

1) As you see it, what are the advantages and disadvantages of using the

collaborative visual programming workspace for Blockly over using

classic Blockly Editor?

2) Do you find the application useful? If yes, what uses do you have in

mind? Do you think it could be used for teaching and learning

purposes? Explain your thoughts briefly.

3) Do you have any suggestions for possible improvements on existing

features? Any features would like to be added? Explain your

suggestions briefly.

247

Appendix B

In this appendix we provide a list of demos that constructed in order to demonstrate

our work.

List of Demos

A. Building smart automations

• Description: Using visual programming workspace components, we

craft automations for daily tasks at home.

• Link: https://www.youtube.com/watch?v=ltZKqMlnEIE

B. Running and testing automations

• Description: In the first part, we run automations that are developed in

previous demo. In the second part, we use the debugger and simulator

in order to test the automations.

• Link: https://www.youtube.com/watch?v=KQ1j3uRPZ-w

C. Let’s code together

• Description: Three collaborators work together in order to develop

their office automations.

• Link: https://www.youtube.com/watch?v=Gg7fnA34RF4

https://www.youtube.com/watch?v=ltZKqMlnEIE
https://www.youtube.com/watch?v=KQ1j3uRPZ-w
https://www.youtube.com/watch?v=Gg7fnA34RF4

