University of Crete
Computer Science Department

FULL-SCALE VISUAL PROGRAMMING IDE:
PROJECTS, COLLABORATION AND DOMAIN PLUGINS

by
YANNIS VALSAMAKIS

In partial fulfillment of the requirements

for the Degree of Doctor of Philosophy

Heraklion, April 2021

University of Crete
Computer Science Department

FULL-SCALE VISUAL PROGRAMMING IDE:
PROJECTS, COLLABORATION AND DOMAIN PLUGINS

by
YANNIS VALSAMAKIS

A thesis submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

Yannis Valsamakis, University of Crete

Examination Committee: _——_
Supervisor =3

Anthony Savidis, Professor, University of Crete

Digitally signed by

Author:

Maria Maria Papadopoull
Member Papadopoull R o

Maria Papadopouli, Professor, University of Crete
DIMITRIOS-STAVROS GRAMMENOS e e g CRAMMENDS

Member
Dimitris Grammenos, Researcher, ICS FORTH
@af.-b—"_"
Member .
Nikolaos S. Papaspyrou, Professor, National Technical University
of Athens
X [/ Digitally signed by DIOMIDIS
Member = SPINELLIS
Diomidis Spinellis, Professor, Athens University of Economics
and Business —
KONSTANTINOS Eg;;:!::‘ﬁ;egshh:AGOUﬂS
MAGOUTIS Date: 2021.05.10 08:38:06 +0300°
Member
Kostas Magoutis, Associate Professor, University of Crete
H . + o Digitally signed by Polyvios Pratikakis
Member POIY\”OS Pratikakis Date: 2021.05.12 08:54:13 +03'00'
Polivios Prgtikakis, Assistant Professor, University of Crete
r
Approved by:
Antonis A.\Wrgyros, Professor, University of Crete

Chairman of the Graduate Studies Committee

Heraklion, April 2021

iii

FULL-SCALE VISUAL PROGRAMMING IDE:
PROJECTS, COLLABORATION AND DOMAIN PLUGINS

YANNIS VALSAMAKIS
PhD Thesis

University of Crete
Computer Science Department

Abstract

Today, visual programming languages (VPLs) are the most popular programming
system for non-professional developers. Originally, they have been introduced for
teaching purposes, as experimental tools encouraging children to program small-scale
games. Nowadays, they are increasingly treated as instruments that can give more
powerful and flexible configuration, customization and extension features to the end-
users of software systems, through controllable programmability relying on some
exposed underlying system functionality. Such an approach has already been applied
within various large-scale systems via scripting frameworks, but is still targeted to

more professional users and is very demanding for the general end-user.

Overall, in the rapidly emerging era of end-user development (EUD) the adoption of
VPLs seems more promising and hotter than ever before. In fact, the broad
proliferation of Internet of Things (10T) technologies has set end-user development as
the vehicle to accommodate the increased personalization demands for smart
automations. In particular, the 1oT domain still faces a low commercial acceptance,
something attributed to the low popularity of monolithic and all-in-one solutions. It is
clear that there is trend towards more flexible and open infrastructures that end-users
may directly tailor to their individual requirements, and even functionally combine

into new ways with custom-made programmable personal automations.

However, the existing VVPLs are supported with very primitive and poor tool chains,
missing the notion of a full-scale integrated development environment (IDE) with all
the inherently required high-quality production toolset. In this sense, the missing
features should be explicitly focused on genuinely optimizing the end-user

programming process, meaning the mirroring of typical IDE functionality of the

professional software development domain is insufficient and rather inappropriate.

To this end, as part of this thesis we set one grand challenge: define, develop and
validate in a demanding real domain what an integrated toolset for end-user
development should offer. To this end, the primary technical challenge has been the
development of a full-scale IDE for VPLs, capable to accommodate and host virtually
any VPL editor. Then, our research has revealed and supported a number of primary
disciplines in the context of EUD that we have fully designed, implemented and tested
in the context of our IDE: (i) assisted project management, (ii) collaborative editing

and debugging, and (iii) open interactive domain plugins.

In particular, the role of the domain plugins is very crucial, far more than mere
extension packages, with the purpose of enriching the interactive IDE functionality
with extra development features optimally suiting a target domain. This notion is
novel to EUD, with no counterpart in traditional IDEs, and aims to address the
inherent complexity of domains for EUD due to the custom programming models and
libraries that are very hard to manage without extra toolboxes on top of the IDE. To
test and validate our proposition we have developed, on top of our IDE, a complete
full-scale 10T plugin, including a very rich interactive toolset, for EUD support of

personal smart automations.

Vi

Oloxinpopévo Meprpariov Avantoing
IN'o Ontiko [poypoppotiopo:

Epyoieio Awoyeipiong, Zvvepyooiog kot Enektacsov

IQANNHY BAAXAMAKHZX
Adaktopikn Atatpipn

[Mavemotuo Kpnng
Tunua Emotung Yroloyiotmv

MepiAnywn
2Nuepa, Ot YADGGEG KOl TOL GLUGTHUOTO OTTIKOL TPOYPOUUATICHOD gival To To
ONUOPIAN CLGTILLOTA Y10, 1] EMAYYEALATIEG TPOYPAUUATIOTES. APYKd epQovIcTKAY
Y10 EKTONOEVTIKOVS GKOTTOVS, (G TEWPAUUATIKA epyareia Tov evBapphvovy Ta ToudLd Vo
TPOYPAUHOTIGOVY TTayviota pukpng KAipakag. Ta epyaieio ontikod TpoypoUUaTIGHOD
OTIG PEPES Hag avTLETOMILovVTaL OAO KOl TEPICCOTEPO MG TPOYPAULOTO TOV UTOPOVV
VO TPOGPEPOVY TTLO 1GYVPES KOl EVEMKTES dVVATOTNTEG OLOUOPPOCNG, TPOGOUPLOYNG
KOl EMEKTOONG OE YPNOTEC TOV CLOTNUATOV AOYIGUIKOV, HEC® TNG EAEYEWUNG
dvvoTdTTOS Yo TPOYPAUUaTIcHO Tov Paciletal oty eEaywyn AEITOVPYIKOTNTOS TOV
EKACTOTE GLOTNUATOG. Mo Té€tol mPocEyylon &xel NoON €Paproctel 6e ddpopa
cuoTNUATO PEYAANG KAILaKOG HEGH TAAIGIOV 0EGUNG evepyEl®V, aAAd eEakoAovDel
Vo ameLOVVETOL TEPIGGOTEPO GE EMAYYEALATIEG YPNOTES Kot Evar TOAD QITOTNTIKY| Yol

TOV YEVIKO TEMKO YpNOTN.

2UVoMKd, otV TaxEmg avadvopevn enoyn un mpoypappatict®v (EUD) n vioBétmon
YAwoomv ontikov mpoypappatiopod (VPL) eaivetarl mo edmidopdpa and moté. Ty
TPAYUATIKOTNTO, 1 €VPEiDL 0180001 TV TEYVOLOYLDV Y10l TO O1ASTIKTVO TOV TPOYUATWV
€xel Béoel MV avAmTLEN €QAPUOY®OV OO UN TPOYPOUUATIOTEG MG TO OYNUO Yo Vo
Qro&evnoet TIg aENUEVES amottoElS Yot ELTVOVG OVTOUATICLOVS. ZVYKEKPIUEVA, O
Topéag Tov dadiktoov Tev wpoaypdtov (10T) egokolovbel va avipetonilel younin
EUTOPIKT] QITOd0YY|, KATL TOV ATOSIOETOL GTN YOUNAT] ONUOTIKOTNTO T®V LOVOMOKOV
Kol 0o o €va Avoewv. Eival cagég 0Tt vdpyetl pua Taom mTpog TiG Mo EVEAKTEG Kol

aVOLYTEG VTTOOOUEG TTOV Ol TEMKOL YPNOTEG VO UTOPOVV VO TIC TPOCAUPUOCOVV GTIS

vii

TPOCMOTIKES TOLG OMOLTNOELS KOl OKOUN KOl VO TIG GLUVOLACOVV UECH amd VEOUG

TPOTOVG LE TPOGAPLOGLEVOLS TPOYPOUUUATIGILOVS TPOGMTIKOVS OV TOUATIGUOVG.

Qo61660, Ol VIAPYOVGES YAMGGES OMTIKOV TPOYPUUUATICHOV vrootnpilovtal amd
TOAD TPOTOYOVO KOl QTOYG OLVOAN epyoieimv, yopic v £€vvola €vOg
oAokAnpopévoy meptarioviog avantuéne (IDE) minipovg khipokoc pe Olo To
EYYEVAOC QMOLTOVUEVO, GUVOA EPYOAEI®V VYNANG TO1OTNTOS. YO auTiv TNV €vvola, ot
Aertovpyiec mov Agimovv Bo mpémer vo eoTidlovv 1010ITEPA OTNV TPAYLOTIKN
BeltioTomoinon g d1adKOGIOG TPOYPOUUUATIGHOD Y10, U1 TPOYPOUUATICTES, TPAYLLOL
mov onuatvel 0Tt 0 KOTOMTPIGUOC NG Tumikhg Aettovpywomtas IDE tov
EMAYYEALOTIKOD TOUEN OVATTLENG AOYIGHIKOD glval aVETMOPKNG Kol UAAAOV

aKOTAAANAOC.

['a tov okomd awtd, MG PEPOG avTNHG TNG dlatpPng Bétovpe o peydAn Tpdkinon: va
opicovLE, Vo avamTOEOVILE KOl VO ETIKVPMOGOVUE GE £VAV TPOYUATIKO KO OTOLTNTIKO
Topéa Tt Ba TPEMEL VoL TPOGPEPEL £VOL OLOKANP®UEVO GUVOAO EpYOrEi®V Yo ovamTLEN
EQOUPUOYADV OO U1 TPOYPOUUOTIOTES. XTO TAOUGLOL OVTE, N TPOTAPYIKY TPOKANGN
ntav n ovarntuén evog mAnpovg IDE yio omtikd mpoypoppotiopd, wKovo vo
QUA0EEVNOEL OTOLOONTOTE GLVTAKTY ONTIKOV TPOYPOUUATIGHOD. XTNV GLVEXEW, 1
épeuva pog, eppdvice Kot vmootpiEée Evav aplBud amd Poacikods KAAOovS oTo
TAOicloL EPYOAEI®V TPOYPOUUOTICHOD Y100 UN TPOYPOUUOTIOTEG TO Omoio Ko
oyedwotnKay, viomombnkav kot eAEyyOnkov TANP®G o©TO. TAOUCL TOL
OAOKANPOUEVOL TTEPIBAAAOVTOC avamTuéng Yo omTikd mpoypappatiopd: (i)
vmofonboduevy owyeipion épywv, (i) epyalsio ovvepyaciog oto mAaiolo TG
emelepyoociac Kol TOL EVIOTIOUOD o@oiuctwv Kol (iil) oavorytol 0100pacTIKOol

TPOGTIOEUEVOL TOUEIC EPAPULOYDV.

2UYKEKPIUEVO, O POAOC TV TPOCTIOEUEVOV TOHE®V €ival TOAD KpIoHOG, TOAD
TEPIGCOTEPO OO OMAQ TOKETO EMEKTOONG, HE OKOMO TOV EUTAOLTIOUO 1TNG
odpaoTikng Asttovpywotntag tov IDE pe emumAéov dvuvatdteg avantuéng mov
taplalovv PEATIOTO GE €vav GUYKEKPIUEVO TOUEN EQOPUOYDV. AvTi 1 évvoln givan
VEQ Y10L TOL EPYOAELR Y10 LT TPOYPOUUATIOTEG, YWPIG AvVTIGTOLYNON GTO TOPAOOGLUKE
OAOKANPOUEVA TTPOYPOUUOTICTIKA TEPIBAALOVTO Y10 EXOYYEALOTIES TPOYPOUUATIOTEG,
Kol 0TOYEVEL VO OVTILETOTICEL TNV €YYEVI] TOALTAOKOTNTO TOV TOUEDV EQPAPLOYDV

YL TO. €PYOAEiD. Yoo UN TPOYPOUUOTIOTEG AOY® TMV EEEOIKEVUEVOV HOVTEAW®V

viii

TPOYPOUUOTICHOD Kot TV BiPAtodnkdv mov elval mold d06KOAO va doyeploToHV
yopig emmAéov epyorerodnkeg maveo amd to IDE. INa va dokiudoovpe Ko vo
EMKVPDOGOVE TNV TPOTACT HOG, £XOVHE avamTOEEL, TAVED amd TO OAOKANP®UEVO
TePPAALOV OTTTIKOD TPOYPAUUATICUOD, VO TANPEG TPOCHETO TOUEN EPAPLLOYNG Y10 TO
O1001KTLO TOV TPAYUATOV, TOL TEPIAAUPEVEL £va TTOAD TAOVGLO d1adPACTIKO GVVOLO
EPYOAELDV, Y100 VTOGTAPIEN TOV UN TPOYPOUUOTIOTOV £TCL MOTE VO, TOVG evOappOVEL

VO TPOYPOUUOTIGOVY TOVG TPOSMTIKOVS TOVG EELTVOVG AV TOUOTIGLOVG.

EuxapioTieg (Acknowledgements)

Ba MBeha vo guyoploTNo® 1WOWHTEPO TOV EMOMT KOV KOOMYNTH TOL TUNUOATOG
Emotung Yrnoroywotdv tov Ilavemommuiov Kpnmge, k. Aviovn Zappidn, yu ™
ocvveyn kabodnynon Kot VTooTPEN] TOV GTO TANIGIO TNG CLVEPYACING HOG OAO TO
xpovia oto Epyaotipio AAAnienidpaong AvOpomov-Ymoroyioth, tov Ivetitovtov
[TAnpoopikng tov Idpdpatog Texvoroyiag kot ‘Epevvag, edikdtepa 6to TAIGI0 TG

EKTOVNONG TNG OOOKTOPIKNG OV S TPIPNC.

Ba NBela eniong va eVYAPIGTACO TO LEAN TNG TPYLEAOVS EMTPOTNG TNG OOAKTOPIKNG
pov owtppng, k. Mopia IlomadomodAn, xabnyntpie tov tuqpotos Emotiung
Ymoloywotav tov Iavemomuiov Kprtng kou k. Anuntpn pappévo, gpevvnt tov
WWOTITOVTOV TTANPOPOPIKNG TOV 1OPVUOTOG TEXVOAOYIOG KOl €peuvag, Yo TIG
EMOIKOOOUNTIKEG TOPATNPNOELS Kol OYOAO TOL £KOVOV KOTA TO GTASO. OLTNG TNG

gpyaciog.

EminAéov, guyapiotd to Anuntpn Awvapitn yo T cuvepyacia Hog 6TO KOUUATL TNG
avartuéng tov framework vy é&umvovg avtopaticpove ®¢ mpocHnkn o©To

OAOKANPOUEVO TPOYPUUUATIOTIKO TEPPAAAOV TOV OTTIKOV TPOYPOUUATIGLOV.

Eniong Ba f0eha va euyopltomom toug ¢ilovg Hov yio v vTosTpiEn Toug OAa ovTd
ta ypovio. Télog, mo moAv amd 6Aovg Ba MBeda Vo EVYAPLOTACH TOVS YOVEIS LOL

OAwpa ko Nixo. Eipon gvyvapov yior 6AnN Toug v oy Kot vtostpién.

Xi

xii

List of Publications

Visual End-User Programming of Personalized AAL in the Internet of Things.
Y. Valsamakis, A. Savidis - European Conference on Ambient Intelligence,
2017.

Sharable Personal Automations for Ambient Assisted Living.

Y. Valsamakis, A. Savidis - PETRA 2017.

Personal Applications in the Internet of Things Through Visual End-User
Programming. Y. Valsamakis, A. Savidis - Book Chapter in Digital
Marketplaces Unleashed, 2018.

Collaborative Visual Programming Workspace for Blockly.

Y. Valsamakis, A. Savidis, E. Agapakis, A. Katsarakis — VL/HCC 2020.
Smart Automations for Everybody: When IoT Meets Visual Programming.

Y. Valsamakis, A. Savidis — IOT Companion 2020.

Xiii

Xiv

Table of contents

FIQUres of Chapter 1 ..o XXI
FIgures of Chapter 3 ... XXI
FIgures of Chapter 4 ... XXii
FIgures of Chapter 5 ... XXil
FIQUres Of Chapter 6ooiiiiiiiice e podl
FIgUIrES Of Chapter 7 ... XXiii
Figures of Chapter 8 ..o XXiii
Figures of Chapter 9 ... XXV
1.1 Background and MOTIVALIONcceoiiieriiiiiiieceeeee e 35
1.1.1 End-User Programming........ccccceeeeieiieieenieseese e seeseenesnesnens 36

1.1.2 Visual Programming LanguUageSccccveruerrerenierieneseneeeeeenes 36

1.1.3 Internet of ThINGScooiieiicc e, 37

1.2 Definition of the Problem and OBJectiVes...........cccovveiiiiiiiiiicee 39
1.2.1 Full-Scale IDE for Visual Programming..........cccccccevvvevveiveinennnn, 39

1.2.2 Collaborative Visual Programming..........cccccoeereneneneneniesiennnennns 41

1.2.3 Smart Automations for Everybodycccooeviiiiiiiiiiicicceen, 41
1.2.3.1 Smart Objects in Daily Lifecccccooeiiiiniiiiiicen, 42

1.2.3.2 Scenarios for Personal Automations.............c.ccevvvenenne. 42

1.2.3.3 Scenarios for Ambient Assisted Livingcccceevenennn. 45

1.3 Technical Approach and Contributions............cccceevveiieiieecie e 51
L4 OULHNG ..o 54
2.1 Visual Programming WOrKSPACESc.ccueeriieiiieeiiieiie s siee e 57
2.1.1 Block-Based LanQUAagES.......ccccoeruerierieriiniiieienie e 57

2.1.2 Flow-Based LangUAgEScccererrieerierienieeiesiesieesie et 59

2.1.3 Game Development Visual Programming Editors................c....... 60

XV

2.2

2.3

2.4

2.5
2.6
2.7

3.1

3.2
3.3
3.4

4.1

2.1.4 Visual Programming Approaches for the 10Tccccocevevviienenn 60

2.1.5 DISCUSSION ..cuviniiiiiiitisie sttt 61
EXtENdabIe IDES ..o 61
Tools for Debugging in End-User Programmingcccccocevvieneninieennenn 61
2.3.1 Debugging and Testing for 10T automationsccccceeevvrvennenn 63
Collaborative Programming WOrkSPaces...........ccccveiveriereneneneseseeieeeenes 64
2.4.1 Collaboration in Text-Based Programmingcccccceevverieiivennnnn 64
2.4.2 Collaboration in Visual Programmingccccceeeverenenenenieennenn 65
Collaborative DebUggingcccecvveiiiiieiieie e 65
Teaching and Learning Tools for Debuggingccccceoeviiiniiininiicn, 66
(0000 (oI 4 T0] 0L PSSR 67
SOftware ArCNITECIUIE.couiiiiieiceee s 69
L1 ShEll s 71

3. 111 Menu TOoOoIDAr. ... 71

3.1.1.2 Workspace Toolbar..........ccccceveiviiiieiececeece e 72
3.1.2 Configuration Management.............coovrirerirrieneneniesese s 72

3.1.2.1 BasIiC Property VIEWS........ccccevveivieieerieiie e 74

3.1.2.2 Select Property VIEWcccccooeieieneneneseseseseeeeees 75

3.1.2.3 Aggregate Property VIEW.........ccccvvevieiiieiie e, 76
3.1.3 Communication with Third-Party Applications.............cc.cceeueeene. 76
3.1.4 Openness and EXtensibIlitycccooveiiiiiiciiiccccce e 79
Extension Mechanism for Application Domain Frameworks..................... 80
Browsing and Handling Projects of the Application Domains 82
Sharing and Versioningccocveveerenineiisesesee e 84
General-Purpose Visual Programming Editorsccccovvvvviiinieniieieennnnn, 87
4.1.1 BIOCKIY EQItOr ...ccviiieiiicieciecieee e 88
4.1.2 Configuration of Editor INStanCescccevvrieeiieienieesieneeee e 90

XVi

4.2

5.1

5.2

5.3

6.1

6.2
6.3
6.4
6.5
7.1
7.2
7.3

7.4

4.1.3 Visual Code SNIPPELSc.evverieeieiieie e cee e 92
4.1.3.1 AdMINIStering SNIPPELS........covvreereiereieseseseeeeeeeee 93
4.1.3.2 USING SNIPPELS ...vecveeieee sttt 94

Domain-Specific Visual Programming Language Elements and Editors ...94

4.2.1 Supporting Behavior of Domain VPL Elements............c.ccccco.... 96
4.2.2 Linked Visual Programming Elementsccccoovviiinininicnenn 97
ProOJECT IMANAGETeveeieeeie ettt ettt ettt e te e raenne e 99
5.1.1 Authoring Project Structure for Application Domains 100
5.1.2 Functionality and Style............cccoeveiiiiieiii i 101
5.1.3 Settings for Project EIements..........ccocvvveiiiencieneneseceee 102
5.1.4 User Action Hooks and Validation for Project Elements 103
5.1.5 Using Alternative Project Manager or NON€..........c.cccovrvrvenennns 104
5.1.6 Authoring by Using JSON Schemas...........c.ccccevevvereiieieennene 104
Project EIBMENTS.cci i 104
521 TeMPIALES .ocvviiiiiecccecce s 105
5.2.2 Hosting and Browsing Project Elements.............c.ccocvovniiiininnn. 107
Project DEPENUENCIESccuveivieiecieeie ettt 107
Hosting the Runtime ENVIrONMEeNt.........c.coocviiiiiiniiieie e 109
6.1.1 Running Projects of the Application Domains...........c.c.ccccuvene.. 111
Selective Project EXECULIONcoiiiiiiiieieeee e 113
INPUE-OULPUL CONSOIEeiiiiciie e 114
Hosting User-Interface of Application Domains at Runtime................... 115
Exporting Project to an Isolated Applicationcccoccvevieiiieviieciiecnnn 116
Initiating the Debugging PrOCESScccociiiiiiiiiiiceee e 118
Debugger’s TOOIDAr.........c.cciiiiiiiiiic e 119
BreaKPOINTS. .. .ccuveece e 119
Conditional BreakpointS.........cccooeiiiiiienieiene e 121

7.5
7.6
7.7
7.8
7.9

8.1

8.2

I U011 o SR 123

WALCHES ... 124
EXECULION SNAPSNOLS.ccveiiieiecccie e 125
EXPIANATIONS ... s 126
Supporting Debugging for Application Domain Frameworks.................. 127
Collaborative EditiNgccooviiiiiiiiecieiee e 129
8.1.1 PEEIROIES. ... e 130
8.1.2 LOCal WOIKSPACE........cciiiieiieieienierie e 132
8.1.2.1 Personal Project Elements..........cccccevvevevvevnciieseennan, 132
8.1.2.2 Toggling Live SYNCING........ccoveviereiirienininiecieeeeen, 133
8.1.2.3 Selective Project EXecutioncccccvevevveveciiesienenn, 133
8.1.3 Initiating Collaborative SeSSIONS...........cccoveieieniienininieeee 134
8.1.4 Collaboration TOOIDAcccoiiiiiiiieieee e 135
8.1.5 Supported Collaboration Modelsc..cccoevevviiiiieniieieeee 137
8.1.6 EVAIUALION. ..ottt 137
8.1.6.1 AIMS and DeSIigN.......cccocvriiiriiieiieie e, 138
8.1.6.2 Use Case SCENAIIOScceeruereeiriirieieiesiesieesie e 138
8.1.6.3 PartiCipantS........ccccererirerininieiesese e, 140
8.1.6.4 PIOCESScoviiviiiiiiiiiiieiti ettt 140
8.1.6.5 RESUILS.....eceeiiieii e 141
Collaborative Debuggingccoeiiiiiieiiecce e 142
8.2.1 Initiating Collaborative SeSSIONS...........ccoovvveiiniieiiiireeeene 144
8.2.2 Debugging ROOMS.......couiiiieiieiii it 145
8.2.3 Visual DEDUGQET........coviiiiiiieiec e 148
8.2.4 Correction SUQGESTIONScieerueriirieeiesie et 151
8.2.5 Discussion of Supported Applications...........ccccovvvereiinrvernenne 154
8.2.6 Empirical StudY.........cooiiiiiii s 154

8.2.6.1 Preparing the Environmentccccccveveviveivcieceenenn, 155

8.2.6.2 PartiCipantS........ccccooeririiiiinieieree e 155

8.2.6.3 PrOCEAUIEoviiiiieiiiieieese e 157

8.2.6.4 RESUITS......eeiiiiiiice e 158

9.1 Visual Programming Editor for Smart Objectscccceveviviieiiciveee, 162
9.1.1 Communicating with Smart ODJECtSccceoeririniirinieieien, 162

9.1.2 Managing Smart Objects Through Domain Visual Programming
Language EIBMENTS.........ccoiiiiiieieeee s 163
9.1.2.1 SMArt DEVICEScveuiiviieiciisieieeieie et 164

9.1.2.2 Smart Device ENVIFONMENTSccccceveririninieneieen, 166

9.1.2.3 Smart Device GroUPS......ccccvvevveerieieenieeiesee e eee e, 167

9.1.3 Loading Shared AutOMatioNS..........ccccerireeiierienieneseseseeeeeee 170

9.2 Visual Programming Blocks for the Behavior of Smart Objects.............. 171
9.3 Visual Programming Blocks for Conditional Automations 175
9.4 Visual Programming Blocks for Scheduled Automations 177
9.5 Authoring Project for IoT AUtOMALIONSccoovrierieiirieneseeeeeeeieee 178
9.5.1 Creating IoT Automation Project..........ccccovvevvivieieenecie s 179

9.5.2 Project EIBMENTS........ocoviiiiiiiiiii e 180
9.5.2.1 SMArt DEVICEScveuiiviieiciiiieeeieie e 180

9.5.2.2 Smart DeViCe GrOUPScccoueeereerierierieniesiesiesieeeeeeneens 182

9.5.2.3 Visual Programming Blocks for Project Elements of
Automations 182

9.5.2.4 Automations for BasiC Tasksc.ccccuvririniiiinninennn, 184

9.5.2.5 Automations for Conditional Tasks...........c.cc.cceevruennnn. 185

9.5.2.6 Automations for Scheduled Taskscc.ceevrivinennne. 187

9.5.2.7 Handling Dependenciescccccvvvereeiesieesnereeseennenn, 189

9.6 Running Smart AUtOMALIONSccoveruiiieiiieiesie e 190
9.6.1 Execution of I0T AULOMALIONS........cccovvveierireieine e 190

XiX

9.6.1.1 Interacting with Smart Objectscccccevvvevvcvieieennnn, 191

9.6.1.2 Running Conditional and Scheduled Tasks 192
9.6.2 User-Interface of 10T AUtOMALIONSceeeeeeeeeeeeeeeeeee e 193
9.6.2.1 Smart DeviceS VIBW......cooveeeeeeeeeeee 194

9.6.2.2 Calendar View for Automations of Scheduled Tasks...196

9.6.2.3 HISIONY VIBW ..ottt 198

9.6.2.4 Explaining Why Automations Occurred....................... 200

9.7 Debugging and Testing Facilities for [oT Automations..............cccccveenee. 201
9.7.1 Simulating Smart EnVironment............cccccovvveveiiieieene e s 202

9.7.2 Simulating Smart DEVICES..........cccoreriririeieiene e 204

9.7.3 Testing AULOMALIONSccveiieiiciesieee e 206

0.8 CASE STUAY ...ttt 208
9.8.1 Discussing of Use Case for Morning Automations..................... 208

9.8.2 Initiating of the End-User Development Process............ccccccue.... 208

9.8.3 Visual Programming of Scheduled and Conditional Tasks 213

9.8.4 Running Morning Automationscceceevvereneneneneneeeeeenen 214

9.8.5 Morning Automations TeStiNgcccevevieieeriiiieieece e 216

9.9 EVAIUALION ..ottt 219
9.9.1 AIMS aNd deSIgNcoovieiiieiieeiie et 219

9.9.2 USE CASE SCENAIIO ...vouviiiiieiieiieiesie sttt sttt 219

0.9.3 PartiCIPaNtS.....ccueeiieiiic et 221

0.9.4 PIOCESS. ...c.tiiuieiiieitiee sttt 221

9.9.5 RESUIS ..o 221

10.1 SUMMAIY ittt bttt sr e nneas 223
10.2 CONCIUSIONS ...t 225
10.3 FULUIE WOTK ... 229

XX

List of Figures

Figures of Chapter 1

Figure 1.1. Layered Architecture Of 10T.ccooieiiieii i 38

Figure 1.2. The flow of remote hospitality application and the involved smart objects.

.. 43
Figure 1.3. Morning Automations triggered by environment events................c.c........ 44
Figure 1.4. Tina's daily activities, contacts and smart objects.cccccevveieieennenn, 46
Figure 1.5. Tina's morning autOmMatioNS.cccoreriririnieeieiese s 47
Figure 1.6. Tina’s daily activities, destinations and smart objects.ccoeververnene. 48
Figure 1.7. Tina's transportation automations to Visit AliCe.ccccevevvvevrciieieennnnn, 49

Figure 1.8. (T1) Tina's peace of mind automation; (T2, T3, T4) her children's peace of

MINA QUEOMATIONS. ..o 50

Figure 1.9. The notion of professional developers (i.e., application domain authors)
and end-user developers & users (i.e. novices, non-programmers) in the visual

Programming IDE.ccioiiiioie et 51

Figures of Chapter 3

Figure 3.1. The component-based infrastructure of Blockly Studio; IDE’s component
infrastructure for the Ul view and the component functionality is required (top-left).70

Figure 3.2. IDE's menu toolbar including the logo of the IDE and menu items which

are declared by the registered COMPONENTS.ccivieiieiiiieiiiie e 71

Figure 3.3. Dialogue of the Configuration Management to configurate the dialogue
PAIS OF TESEIT. oot nreas 73

Figure 3.4. Dynamic extra number property value appears on selecting the option
'number’ for the HTML font size select property value.cccoooeiiiiininnienicnen, 75

XXi

Figure 3.5. Extension layer for the Blockly Studio communication with third-party

APPHICALIONS. ..viieieieee et e et e aeaaenres 77
Figure 3.6. Communication among third-party applications and the Blockly Studio. 78

Figure 3.7. Making application domain-specific frameworks for visual programming
on the top of BIOCKIY StUdIO.covviieiiee e 81

Figure 3.8. Having choose the application domain “~“Smart Automation in the Internet
of Things" at the Start Page of the Blockly Studio IDE.c.cccooeiiiviiiiniiciieen, 83

Figure 3.9. Configuring the dialogue to create new application based on specific

APPHICAtION OMAIN. ..ot eae e e are s 84

Figures of Chapter 4

Figure 4.1. Blockly Editor privileges modes; editing mode (tag A), read-only mode
(tag B) and not accessible (tag C).voveiiiiieierieeneee e 89

Figure 4.2. Default View of Blockly's instance (top); Alternate View of Blockly's

INSEANCE (DOTEOM). .ot sre e ens 91
Figure 4.3. Visual Code Snippets TOOIDAr. ..o 92
Figure 4.4. Pop-up dialogue for Blockly’s code snippets creation............cc.cceevevenenne. 93

Figure 4.5. Extension mechanism for Blockly to automatically manage the behavior

handling set of blocks for visual programming language domain elements................ 96

Figure 4.6. Linked visual programming language element with other visual sources. 98

Figures of Chapter 5

Figure 5.1. Configurable view parts of the project manager component................... 100
Figure 5.2. Authoring settings for project element type.cccceevveviiiiiciie e 103

Figure 5.3. Example of a project element template; project element information (tag
1); interactive parts of the template (tag 2); area for visual programming editors (tag
K) RSSO P PRSPPSO PP 106

XXii

file:///C:/Users/user/Dropbox/jvalsam-thesis.docx%23_Toc69647260
file:///C:/Users/user/Dropbox/jvalsam-thesis.docx%23_Toc69647260
file:///C:/Users/jvalsam/Dropbox/PhD/PhD_jvalsam_SharedFiles/jvalsam-thesis.docx%23_Toc64061100

Figure 5.4. Splitted in two project element instances area vertically. 107

Figure 5. 5. Visual programming project sources of application and dependencies

among the visual programming language elements.ccccooerieriniinienenie s, 108

Figures of Chapter 6

Figure 6.1. Authoring runtime of a domain project and runtime environment system of

the BIOCKIY StUAIO IDE.cooiiiieiiee et 111
Figure 6.2. Selective execution dialogue for ‘Morning Automations’ project. 113
Figure 6.3. Console input is enabled and the corresponding block is browsed. 115

Figures of Chapter 7

Figure 7.1. Debugger's TOOIDAr.c.cccveiiiiiiice e 118
Figure 7.2. Breakpoint icons for Blockly Editor...........ccccoooeiviiiiiiiiieecc e 120
Figure 7.3. Handling breakpoints by right clicking on Blockly blocks....................... 121
Figure 7.4. Conditional breakpoint's dialogue.ccovveiiieiene i, 122

Figure 7.5. Automatic variable inspection and the Evaluate operation which works for
any kind of block, enabling to re-evaluate on-the fly (during debugging) any code
] 1] o= ST TPV PP R PRTPRP 123

Figure 7. 6. Adding explanations for the execution of smart automations based on the

ENVIFONMENT tEMPEIALUIE. ...ovviiiieiie ettt re e saee s 126

Figures of Chapter 8

Figure 8.1. Collaborative Project “Morning Automations” with 3 participants
(George, Mary and James). George’s view of the collaborative project (see 1) and

JAMES (SEE LAY 2). veveeieeiieie ettt 130

Figure 8.2. Dialogue to create new visual code correction suggestion for a project
BIEIMEBNL. ...t sate e e et be e e e b e e e bt e e e bee e s beeeebeeeenreas 131

ol

file:///C:/Users/user/Dropbox/jvalsam-thesis.docx%23_Toc69647234
file:///C:/Users/user/Dropbox/jvalsam-thesis.docx%23_Toc69647234
file:///C:/Users/user/Dropbox/jvalsam-thesis.docx%23_Toc69647234
file:///C:/Users/user/Dropbox/jvalsam-thesis.docx%23_Toc69647211
file:///C:/Users/user/Dropbox/jvalsam-thesis.docx%23_Toc69647211

Figure 8.3. Dialogue to view the visual code suggestion in order to accept or deny it.

.. 132
Figure 8.4. Left: Starting share the project; Right: Joining the collaboration. 134
Figure 8.5. Collaboration project SEttings.cccvvrererieiieieiese e, 135
Figure 8.6. Collaboration TOOIDA.ccccccveiieiiciccee e 136
Figure 8.7. Participants' time to accomplish each of the scenarios..............cccccocue..ee. 142
Figure 8.8. High level of our collaborative debugging approach.cc.cceevennnee. 143

Figure 8.9. Starting view (i.e., home page) of the collaborative debugging session. 145

Figure 8.10. Modal to create a new debugging room.cccccvevverieeieerieseeseesnenns 146
Figure 8.11. Viewing 'Debug ROOM 4'.........cocoiiiiieeee e 147
Figure 8.12. Using Visual Debugger of BIockly.ccooeviiiiiiiiiicce, 149

Figure 8.13. Visual debugger’s architecture for classic debugger version (left),

collaborative debugger version (Fght).ccccoeiieiiiie i 150
Figure 8.14. Debug Control (left); Give floor control dialog (right).c...c....... 151

Figure 8.15. Creating new Correction Suggestion for “Alarm Clock Rings” project

BIBIMBNL. oottt ettt e e e e e e e ee e e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenennennns 151

Figure 8.16. Debug the project by choosing the project items will participate and
which of the project items will be original and which of them will be correction

010 1= €] PSSR 152

Figure 8.17. Choosing which of the correction suggestions will be applied to original

project and which of them will be saved.cccoove i 153

Figure 8.18. Teaching application domain for the collaborative debugging

e AT 0] A1 11T | TR TRRURRRRRRRRR 155

XXIV

file:///C:/Users/user/Dropbox/jvalsam-thesis.docx%23_Toc69647215

Figure 8.19. Exercises asked to debug individually under supervision. (top) Program
swaps X and y and adds them. Find the bug.; (bottom) Program calculates the amount
of money for wages(w): w<1000 =50, 1000<=w<1500 =100, 1500<=w<2000 =150
and W>=2000 =300,ccueireieieieiere e se st ra s 156

Figure 8.20. Exercises asked to debug in groups under supervision. (top) Program
attempts to output the sum of the input number’s digits; (bottom) Program attempts to

recognize PAlINAIOME.ooiiiiiiiie e 157

Figures of Chapter 9

Figure 9.1. The notion of personalized custom automations in the Internet of Things

through an End-User Programming framework.c.ccccoovveve i, 161
Figure 9.2. Importing SMart DEVICEccceviiiiiiiiisieseee e 163
Figure 9.3. The view parts of a registered air-conditioning device.cccceevneee. 164
Figure 9.4. Smart device group for air-conditioning.cccccoeveveeiieieevecie e 166
Figure 9.5. The view of air-condition living room.c.ccccoeveveiieie e 167
Figure 9.6. The view of air-condition [iving ro0M.ccceoevinineniniiecieeee, 168
Figure 9. 7. Handling smart object groups for the alarm clock.cccccovvinnnnee. 169

Figure 9.8. Replacing the ‘dir Condition’ smart device of the shared application with

a compatible SMArt DEVICE.ccvi i s 170

Figure 9.9. Basic Blockly Blocks for Smart Objects; actions for smart objects (tag A),
setters, getters (tag B, C) and input, output for smart object properties in the 1/0
(O0] 1 1570] 1= OSSO 172

Figure 9.10. Dynamic change of a Blockly block based on the choice during the end-

USEr DEVEIOPIMENT. . .iiiiie ettt et e e te e saeeebeesrne s 173
Figure 9.11. Blockly Blocks for Smart Object GroupS........cccevververiieieerieseeieerienns 173
Figure 9.12. Conditional Event Blockly Blocks for Smart Automations. 174

XXV

file:///C:/Users/user/Dropbox/jvalsam-thesis.docx%23_Toc69647161
file:///C:/Users/user/Dropbox/jvalsam-thesis.docx%23_Toc69647161
file:///C:/Users/user/Dropbox/jvalsam-thesis.docx%23_Toc69647163
file:///C:/Users/user/Dropbox/jvalsam-thesis.docx%23_Toc69647165
file:///C:/Users/user/Dropbox/jvalsam-thesis.docx%23_Toc69647166

Figure 9.13. Scheduled Event Blockly Blocks for Smart Automations. 176

Figure 9.14. Configuring the create application dialogue for 10T Automations and the

Project Manager view based on the user’s input data.cccocceereniirninniienieceenne 178

Figure 9.15. Project element template that includes information and hosts one visual

Programming editor INSTANCE.cccveiieieiie e 180
Figure 9.16. Menu options for the Smart Devices Category.c.ccocevvevverveereereene 181

Figure 9.17. Creating new smart group device by choosing smart device that will
export its functionality INTErfaCe.cocuoiiiriiii s 181

Figure 9.18. Choosing if automation will start automatically in the beginning of

project execution or later with visual programming block element instruction. 183

Figure 9.19. Authoring Blockly blocks to enable the end-user developers handle
manually start and stop of the automations for project elements..............ccccevvenennee. 184

Figure 9.20. Automations for ‘Basic Tasks’ configuration of Blockly editor's toolbox.

Figure 9.21. Automations for 'Conditional Tasks' configuration of Blockly editor's
10010] | o0 GRS PTTRPR 187

Figure 9.22. Automations for 'Scheduled Tasks' configuration of Blockly editor's

EOOIDOX. e 188
Figure 9.23. Dialogues in case the end-user chooses to delete a Smart Device 189
Figure 9.24. Dialogue on connection issues of the smart devices.ccccecveeennen. 192
Figure 9.25. Runtime environment for 10T automations.cccceeveiieeviecieesinns 194
Figure 9.26. Request to set input in property of a smart device.cccevevveiiennnnnn 194
Figure 9.27. Display of the Smart Devices at runtime environment.cc....... 195
Figure 9.28. Enabling control smart devices during the project execution. 196

XXVi

file:///C:/Users/user/Dropbox/jvalsam-thesis.docx%23_Toc69647177
file:///C:/Users/user/Dropbox/jvalsam-thesis.docx%23_Toc69647177

Figure 9.29. Monitoring scheduled automations in the runtime environment of loT

101 0] TV o] 4TSRS 196
Figure 9.30. Browsing project elements that includes the scheduled blocks............. 197
Figure 9.31. Interactive bubble which depicts action of the history panel view. 198

Figure 9.32. Monitoring conditional tasks and browsing respective visual code

] 110 1] £SO 199

Figure 9.33. Filtering executed explanations per scheduled (top) and conditional
(bottom) automations by enabling info button that opens dialogue which present them

SEPAIALEIY. ..ot e e r e e e nreens 201

Figure 9.34. Simulation Environment View: tests control panel (left), date & time

SIMUIALION (FIGNT). .o 203
Figure 9.35. Managing Simulation Behavior and Expected Values Tests. 204
Figure 9.36. Simulating smart device actions for debugging purposes. 205
Figure 9.37. Simulating behavior of smart devices at specific time periods. 206

Figure 9.38. End-user development of tests for expected values in smart devices
O] 1=] TSSO 207

Figure 9.39. Warning message in case a test of expected values of smart device

PrOPEITIES TAIlS. ...i i e 207
Figure 9.40. Morning home automations example.ccccoovrinininnininceee, 208
Figure 9.41. Creating morning automations and defining bedroom lighting device. 209

Figure 9.42. Workspace view having define the smart devices for morning

AULOMATIONS. .o eeeeeeeeee et ettt ettt ettt ettt e e et et e e eeeeeeeeee e e eeeeeeeeeeeeeeeeeeeeneeeeeeeeeeeeeeennennennns 212

Figure 9.43. Visual programming scheduled and conditional tasks for morning

AUEOIMIALIONS. ...ttt e e e e ettt e e e e e e e e eeeeeeeeeea e eeeeeeeeeean i nneeeeeeaaans 213

Figure 9.44. Smart Devices monitoring values for 'Morning Automations' project..214

XXVii

file:///C:/Users/user/Dropbox/jvalsam-thesis.docx%23_Toc69647190

Figure 9.45. Calendar view of the scheduled tasks for ‘Morning Automations'. 215

Figure 9.46. History actions view of the tasks that will be shown running '‘Morning

AULOMIALIONS . et nnnn 215

Figure 9. 47. Preparing state of smart device properties (tag A) and go at specific time

in order to trigger scheduled task of ‘Morning Automations’.cccceevvveeniiveennnnn. 216
Figure 9.48. Implemented actions for smart devices of ‘"Morning Automations'....... 217

Figure 9.49. Testing 'Home Safety' conditional task of 'Morning Automations'
Adding breakpoint (tag A); Simulating behavior of the smoke sensor (tag B);
Stepping in until the simulated fire extinguisher starts and view variables and smart
device properties state (tag C); View actions history to verify the fire extinguisher
SEAITEA (T8 D)} coveveeeieiie et 218

XXVilii

List of Tables

Table 1. Project EIement PrivilEges.coviieiiiiiiiiieeeeeee e 133
Table 2. Efficiency and Usability.cccoiriiiiiiiieeee e 141
Table 3. FIelds OF USE.ooviiiiice e 141
Table 4. Questions focusing on learning programming and debugging. 158
Table 5. Questions focusing on the collaborative debugging environment................ 159
Table 6. Standard SUS QUESHIONNAITE.cccovveeiriiiie e 160
Table 7. Smart Devices that are used for Morning 10T Automations........................ 210

Table 8. SUS Questionnaire for the Smart Automations Workspace Environment. . 222

XXiX

30

31

To my family

32

“Professional developers have integrated development environments and full-scale
tools for programming applications. Non-programmers and learners behoove to be

provided with more efficient end-user programming tools in their arsenal for

developing and learning purposes”

33

34

Chapter 1

Introduction

“The whole of science is nothing more than a refinement of everyday thinking.”

- Albert Einstein

More and more devices are connected in networks resulting exponentially increasing
need of development applications. As a result, these needs are not able to be covered
by professional developers and the end-user programming research area attempts to
address this need by empowering non-programmers to program through appropriate
approaches and tools. We strongly believe that such tools could not be less powerful
than the existing software tools for professional developers. We base this on two
reasons. Firstly, novices or non-programmers needs more support to program an
application and secondly provided tools could be the vehicle of teaching and learning
programming. In this context, our work focuses on contributing by empowering non-
programmers with efficient tools. In this Chapter, we analyze the background and
motivation of this PhD thesis. We present the research questions and the objectives of
this work. Then, we briefly describe the technical approach and discuss the

contributions of our work.

1.1 Background and Motivation

Nowadays, most software programs are written by people who are not professional
software engineers [1], but they may have expertise in other domains. This arises
from two main reasons. First, the innumerable needs of programming that cannot be
covered from professional developers. Second, there are specific requirements that are
well known from people who use them and need them rather than software engineers.
Using correspondent software tools, people who are not professional programmers
acquire the power to develop their programming purposes without significant
knowledge of a programming language. For example, a user interface designer could
use a user-interface builder to develop user interfaces. This concept is an active

research topic called End User Programming.

35

1.1.1 End-User Programming
End User Development (EUD) or End User Programming (EUP) can be defined as a

set of methods, techniques and tools that allow users of software systems, who are
acting as nonprofessional software developers, at some point to create, modify, or
extend a software artifact [2]. There are various techniques and approaches which
have been developed in previous decades in EUP. The most used end-user
programming approach is the Spreadsheets that are used in the industry from
professionals in several applications [3]. Some use case examples are teachers that
write grading spreadsheets to save time grading, receptionists that use spreadsheets

for reservations, accountants that write accounting spreadsheets for their job etc.

Another EUD technique is the use of natural language phrases interpretation. Natural
languages are mainly attempt to eliminate the need for language constructs all
together, and focuses on the presence of keywords in a command expression that call
them as keyword commands [4], [5]. In addition, there is approach in case does not
know how to perform step, try to help user with development by predicting and
suggesting possible alternative phrase commands [6]. Yet another EUD approach is
the scripting languages. Using scripting languages, the end-users are able to extend
and adapt an existing application (e.g., Open Office Scripting Framework [7]). On the
one hand scripts are the most powerful EUD tools, but on the other hand present users
with a considerable learning burden and in addition scripts are prone to errors.
Furthermore, there are scripting languages which use in parallel graphical tiles, giving
one more friendly way to write scripts and able the possibility to have more complex
and expressive scripting languages [8]. This hybrid technique from the view of the
graphical drag and drop context seems with the Visual Programming which is

discussed in the following section.

1.1.2 Visual Programming Languages

Visual Programming Languages (VPLs) and systems are amongst the most popular
tools of end-user development (EUD) thanks to learning programming purposes
which are targeted primarily at children (e.g., Scratch [9], Tynker [10], MakeCode
[11], LEGO MINDSTORMS [12], LEGO in MakeCode [13], LearnBlock [14], etc.).
VPLs allow programming with visual expressions. The basic idea is to associate icons

to high-level functionalities that are important for the specific domain experts. There

36

are two main categories of VPLs, the jigsaws and the flow diagrams. Most of the
existing approaches are focused on playing-learning purposes and they don’t attempt

to provide full-scale toolset of programming.

Recently, application domains in visual programming have been appeared which are
not targeted at learning. The mobile applications constitute such domain for the end-
users. Particularly, the use of smart phones and tablets in people’s daily life lead to
the explosion of mobile applications. App Inventor [15] is a visual programming
environment that empowers the end-users with the ability to build fully functional
applications for smart phones and tablets. However, this visual programming
environment does not support full-scale toolset for end-user programming (e.g.
debugging, project management, versioning features are missing). Moreover,
BlocklyDuino [16] and ArduBlock [17] are two visual programming workspaces that

focus on the application domain of programming in the context of Arduino [18].

In general, based on new arising technologies, new application domains in which
visual programming is able to be applied in order to empower novices or non-
programmers to program related applications. In this direction, a notable application
domain for visual programming which motivated us to begin this PhD Journey is
based on the Internet of Things era. In the next section, we discuss about the Internet
of Things era. Afterwards, we analyze the research questions and the objectives of
this PhD thesis. We then present the technical approach and the contributions of our

work.

1.1.3 Internet of Things

The Internet of Things (l1oT) is a new paradigm which refers to advanced connectivity
of devices, systems, and services. The term loT has become recently popular to
emphasize the vision of a dynamic global network infrastructure of physical objects or
“things” which are embedded with electronics, software, sensors and connectivity
capabilities. The connection of physical things to the Internet gives them the
capability of producing data, collecting information and accessing remote sensor data.
Furthermore, this connectivity also allows for the control of the physical world from a
distance by users. In addition, the inserted intelligence into physical objects enables
them to communicate with each other and even to control each other’s functional

state, e.g., a thermostat sensor can control the state of an air conditioning unit by
37

turning it on or off when the room has reached a certain temperature reading, or by
activating the window shutters. Alternatively, this kind of everyday physical objects is
called Smart Objects (SOs) and is the building block of the IoT.

Application Layer

Middleware Layer

Network Layer

Hardware Layer

{Sensors, Tags, Connected things, NFC, Bluetooth, BLE)

Figure 1.1. Layered Architecture of 10T.

Internet of Things has been based on a layered architecture. In Figure 1.1 is depicted,
the architecture of 10T that is consisted of four main layers. The bottom layer of IoT is
the hardware layer which consists of RFID tags, sensor networks and generally all
kind of connected things. All kinds of information of the physical things in world that
participate in loT era are perceived and collected in this layer. The above layer of
hardware is the network layer which includes access and core network, provides
transparent data transmission capability. The data from hardware layer can be sent to
this layer using existing mobile communication network. The upper layer from
network is middleware layer. This is a software layer which facilitates the
development of application. In particular, middleware hides the details of different
technologies and the heterogeneity of smart objects in order to exempt the developers
from issues that are not directly pertinent of their focus. The topmost layer of 10T
architecture is the Application layer. This layer responsible for the delivery of a
variety of applications which are provided through the middleware layer to different

applications and users in 10T based systems.

38

The novelty of the IoT concept is not in any new disruptive technology, but is the
pervasive deployment in the environment of a variety of smart objects around us, such
as sensors, actuators, mobile phones, Radio Frequency Identification (RFID) tags, etc.
More specifically, it is appreciated that in the next few years, smart objects that will
be connected in the Internet will be approximate trillions [19]. A key part of the future
Internet will be that through wireless and wired connections and unique addressing
schemes are able to interact with each other and cooperate with other smart objects in

order to create new services and reach common goals.

This has as a result more and more in the community of researchers and industrials
moving their interest in this new trend and trying to address the new challenges,
defining and creating the new world of the 10T. The main strength of the 10T idea is
the high impact it will have in the behavior of people who will use it and generally in
several aspects of their everyday life such as personal, societal, social, businesses,

medical, environmental etc.

1.2 Definition of the Problem and Objectives

Our work targets to three main research directions. Starting the PhD journey, our first
direction is focused on how could smart automations be developed by everybody
exploiting the Internet of Things era and visual programming languages. This research
direction led us to the next two directions of providing full-scale IDE in the context of
visual programming languages which will include collaborative facilities. In this
section we discuss each of them including the research questions, the key missing

end-user development facilities and our work objectives.

1.2.1 Full-Scale IDE for Visual Programming

The professional programmers are empowered by integrated development
environments (IDEs) which include several advanced and efficient facilities in order
to program applications. However, in case of non-programmers and novices, the
visual programming workspaces are treated as children of a lesser God. In particular,
the existing visual programming frameworks are missing a full-scale end-user
development toolset. The existing approaches are mainly targeted to children learning

within the context of a game. In addition, several visual programming features are at

39

an infant level or not mature enough (e.g., project management, remote collaboration,

debugging, intelligence, etc.).

Additionally, the visual programming frameworks are limited to specialized
requirements resulting in satisfying a narrow set of needs for end-user programming.
This set of needs is specialized either in the application domains (e.g. Scratch is a
visual programming framework only for end-user development of animations) or in
the audience knowledge and level of experience (e.g. focusing on end-users that have
experience on flow diagrams will not be efficient for end-users that may have only
experience on jigsaws). Moreover, taking into account that new applications are
arising, existing application domain requirements for visual programming are fluid
and third-party technologies are updated continually, constantly changing
requirements for developing new IDEs for visual programming languages. For
example, in the context of the 10T, communication libraries (e.g. loTivity), smart
services and devices are upgraded and each one of them uses different technology
based on the circumstances. However, the development of an IDE for visual
programming languages from scratch for each new application domain is no trivial

process and it is extremely expensive.

Moreover, with the absence of one full-scale IDE for visual programming languages
the non-programmers are affected as this would happen in case of developers if they
didn’t have an IDE. This might have been acceptable in the case of application
domains that are targeted primarily on learning programming. However, there are
application domains that the end-user would like to be fully empowered such as the
case of personalized ambient assisted living automations in the Internet of Things we
analyze in section 1.2.3. In addition, learning programming would be more efficient
by using an appropriate full-scale IDE which will provide adequate end-user

development facilities.

Our objective in this PhD concerns the development of an extendable IDE for visual
programming languages, while offering full-scale end-user programming facilities

and a mechanism to plug-in application domain frameworks.

40

1.2.2 Collaborative Visual Programming

One of the key features in the visual end-user programming is the collaborative
programming. Visual programming languages users are novice programmers for
which collaboration as a learning and support instrument is more important compared
to typical experienced programmers. In particular, this feature could be notably useful
in the case of using it for teaching and learning programming purposes. Additionally,
this feature is able to be used in the context of asking for help from more experienced
users, co-working for automations etc. Moreover, errors are able to be corrected
through collaborative testing and debugging. The later makes it important for groups
of end-user developers to have suitable tools to support their collaborative
programming tasks. However, existing works are focusing on co editing of the visual
programming process (e.g., App Inventor approach [20]), without caring to sort out
the collaborative programming process. In addition, there is no approach that

undertakes the testing and debugging collaboratively.

The objective of our work concerns the development of a full-scale toolset for
collaborative visual programming which is able to empower novices to cooperate for
end-user development process. We also target this toolset efficiently support the
novices to test and debug their applications collaboratively. Last but not least
objective is to support teaching and learning programming through the provided

facilities.

1.2.3 Smart Automations for Everybody

In the IoT context, people’s daily lives could benefit from using smart objects, as they
can offer an environment of automations for everyday activities. However, in practice,
the demands for such automations are highly personalized and fluid, resulting in a
respective digital market that is either inexistent or marginal. Consequently, in order
to fully benefit from the capabilities of this environment, individuals should be able to
interact with smart objects, potentially managing, parameterizing and even
programming applications involving them. In this section, we discuss the introduction
of smart objects in daily life. To better represent the requirements and the benefits of
smart automations in 10T, we describe potential scenarios of personal automations

that could be developed.

41

1.2.3.1 Smart Objects in Daily Life

The 10T concept is the pervasive deployment of a variety of network connected smart
objects around us, including physical things, smart devices, applications, etc. in the
environment. Furthermore, devices which are commonly used in daily life have been
evolved to smart connected devices by offering extra services and automations (e.g.
tracking information, remote control, exchanging data with other smart objects etc.).
The refrigerator is a representative example of a device used on a daily basis. Its main
function is to maintain and store food items and fresh produce. But as a smart object,
apart from the above functions, it will also be able to do other more complex
functions such as identifying, enumerating, and holding important information about
the food items it contains. Smart refrigerator notifies users when a food item is close
to expire or if it has already expired. Furthermore, the refrigerator is able to display
through an embedded screen, recipes based on the food items that are currently stored.

Moreover, the users can remotely view what is stored in their refrigerator.

In addition, apart from the physical connected things and the smart devices, there is a
huge number of applications online and day by day this exponentially increases.
These applications could be used in the world of 10T and could be considered as smart
objects which are connected online and are able to communicate through web-
services. Such applications could be available via digital market-places. Examples of
applications could be weather forecast, a clock, a chronometer etc. Furthermore,
examples of such applications that could be interoperated with the smart refrigerator
are a nutrition calendar and online shopping. Using these smart objects, the user will
be able to program a weekly meal plan based on which the refrigerator could

automatically place online orders in authorized food shops.

Taking into account the aforementioned about regarding smart objects which are
available in people’s daily life, people may like to have custom automations based on

their needs. In the next section, we discuss scenarios of possible personal applications.

1.2.3.2 Scenarios for Personal Automations

Using existing smart objects, we discuss potential scenarios which could be developed
by end-users based on the visual end-user environment we develop. However, the

scenarios discussed below are just indicative, since by offering end-user programming

42

features and due to the fact that there is a huge variety of smart objects available, the

possibilities are endless.

Remote Hospitality

People would often like to be at home (or office) when their doorbell rings but instead
they happen to be somewhere else. This happens either when there is a meeting for
which they couldn’t be there on time or in case of a surprise visit. Before the
existence of 10T concept, visitors could only call the potential hosts in order to
communicate with them. Thanks to 10T, people are able to use smart doorbells which
are supported by appropriate software applications. The latter notify users when the
doorbell rings and help them communicate with the person who rang it. On the one
hand, smart doorbell software provides support for all possible services of the device,
on the other hand, it is impossible to provide sup-port for other smart objects that
users would like to use with the smart doorbell. For example, end-users may like to
have an application which uses home smart objects in order to host visitors remotely
until they go back at home as depicted in Figure 1.2. The smart door gives access to
the visitors, while the smart lights turn on or window blinds open depending on the
time of the day. Furthermore, home temperature can be regulated using the air
conditioning system and the thermometer. Then, the smart Hi-Fi or TV could take on
the visitors’ entertainment. In addition, drinks can be prepared by the smart coffee
machine or the smart kettle.

Notify when q
the Bell rings N

Talk via Door
phone

Ignore Current
Bell rings

Door phone
call ends

— r7i
Turn on the Lights Prepare .'O'. —_—
[Open window BIindsJ[Coffee or Tea J L u)

Handling the Switch on g
[Air-conditioning][the Hi-Fi or the TV] 8 é BEB

Figure 1.2. The flow of remote hospitality application and the involved smart objects.

43

Someone would wonder why we have to create a new application using smart objects
and not use all the provided applications from our smart objects. The answer is
twofold. First, users would like to have custom automations without having to use
each of the applications of the smart objects. In addition, running applications for
each smart object would be impossible in case of using several smart objects for one
task something which would be a common scenario in the concept of the 10T which is
based on the pervasive deployment of smart objects around the world. Second, there
are several cases that smart objects are based on the events and data of other smart
objects. A representative example of such application is discussed on the next section

describing morning automations.

Morning Automations

One of the most difficult times of the day for people is wake up doing their morning
habitual tasks. There are several things that people have to do when they wake up
such as, have a bath, prepare their breakfast, be informed about the news and their
messages, prepare for their work, leave home for work etc. Using the existing smart
objects, several processes could be automated and users would gain some more
minutes of sleep, find their home temperature regulated, not for-get to be informed
about the news, leave home without worrying if they forgot to lock the windows or
turn off lights, electric devices etc. All these automations can be accomplished when

related events are triggered as depicted on the Figure 1.3.

| p - — .
/ [Air Conditioning Heater starts Coffee Machine
(\M\enkhﬂ:’d«?u) S s off starts regulating]L preparing water]L starts preparing]
\ programmed toring & e) _home temper ature for bath coffee

[ian watar s '][Window Binds
-‘.\‘ d >» MMW mn]

Whencoffeeis >» Notify wser that ‘

prepared coffee is ready :
/ Y)
| When the bath doa>_) i tits S!M:::'u*s
\ Opers S v AN J

Whenjug is (» [View daily tasks,
, removed from [Music stops { 1.:';”' ”::: l Messages and
__soffee machine J J emaily
[y, | Locksllwindows | Tumifalithe || Switchoff slithe
\ B and doors lights electricdevices
. forS minutes “

Figure 1.3. Morning Automations triggered by environment events.

44

The first event of application is based on the time that the alarm clock is programmed
to ring. When the event is fired, the alarm clock is switched off before it rings, then
the air conditioning regulates the home temperature, while heater starts preparing
water for a morning bath and the coffee machine prepares the first coffee of the day.
Once the water for the bath is ready, the alarm clock rings and the window blinds
open. Also, when coffee is prepared, the coffee machine notifies the user. Afterwards,
when the user opens the bath door, the smart Hi-Fi automatically starts playing music
and the smart bed makes itself. Afterwards, when the user starts serving coffee (once
she has finished with her bath) music stops and it is time to catch up with the news
and view the daily tasks she has to do, messages or email she has received. Finally,
when leaving home for work, smart objects take on the home safety by locking all
windows, window blinds and out-doors which are still open, switching off not used
electric devices such as the air conditioning, the TV etc. turning off the lights and

activating the alarm system.

1.2.3.3 Scenarios for Ambient Assisted Living

Moreover, in the context of smart personal automations could be developed
applications that will focus in the Ambient Assisted Living (AAL). AAL aims to
support the elderly and disabled in their daily routine and health care by extending
their independent living as far as possible. Particularly, in the case of elderly people,
AAL attempts to encourage and maintain their autonomy by increasing their safety in
their home environment, improving their daily life activities and reducing the burden
on societal economics from the assisted care of elderly people [21]. Main categories
of applications of AAL for the elderly are health (e.g. medications, pill reminder),
safety (e.g. emergency button, fall detection), peace of mind, social contact, mobility,
security etc. Applications of Ambient Assisted Living can be implemented on top of
the Internet of Things [22][23][24], the emerging paradigm regarding the deployment
of network connected smart objects in the environment, including physical things,

smart devices, applications, etc.

In this section, we discuss scenarios that are focused mainly on the elderly and on the
way their daily life can benefit from the use of smart objects through custom
automations supporting everyday activities. The demands for such AAL automations

are very personalized, while the requirements may also change on a regular basis due

45

to seasons, social life, health conditions or the progress of ageing. We discuss the case

of Tina, being 72, lives alone, has diabetes and is overweight.

Tina should carry out specific tasks in her daily life due to diabetes, including daily
workout, medical therapy and medical examinations (e.g. track insulin glucose),
check her weight and have a strict diet. Furthermore, she has to take bath on a regular
basis in order to prevent possible infections. Tina’s tasks are split in three parts of the
day as depicted in Figure 1.4 (right), while the people she communicates with are
family, nurse which gets blood samples once a week, nutritionist and doctors, as
depicted in Figure 1.4 (left, top). Tina wakes up every morning at 7 o’clock; using an
alarm clock in order to get the required pill for her therapy. She has to track her
weight, track glucose in her blood, get breakfast with specific ingredients and take her
morning bath. However, Tina’s morning tasks will be different every Monday for the
next two months during which a nurse will be coming to her home once a week. The
nurse will take blood samples, which require from Tina not to have received any
medication or breakfast on that particular morning. All these changing tasks are
difficult to follow for an elderly patient either because they may forget to do some of
the tasks (e.g. forget to check weight, remember not to get a pill on the day of blood

sampling etc.) or forget to abide by the rules of a strict diet.

(Contacts X Daily activities

)
(1 Weight Tracking \
t) % OO
/“

Glucose Tracking
\b / ‘

Take morning Bath
(Smart Objects

Nurse get blood sample (*once a week)
Get Pill(s)
Walking(Workout), Social communicatioy
o W {) k J
©BA- - <
8O 6. .
Evening Get Pill(s)
ao\e)
A)Q Sleeping)

Figure 1.4. Tina's daily activities, contacts and smart objects.

Morning

J
=) Glucose Tracking I
Get Pill(s)

Lunch

Siesta

Get Pill(s)
Watching live program TV/Radio J
Glucose Tracking 3
Dinner

Afternoon

BONAGE UGN BG GOSN P

46

Thanks to 10T, Tina is able to use smart objects such as Bee+ [25] tracking glucose,
smart scale tracking weight, and smart heater preparing water for bath. In particular,
Bee+ is able to track glucose and send data to the doctor directly for further analysis
and alert to do this task at a specific time daily. However, Bee+ does not provide
functionality to remind her to track glucose after activities such as tracking weight or
finishing the bath. Such customized automations require ways to introduce extra

algorithmic logic across smart objects.

In Figure 1.5, such extra automations are shown to remind and guide Tina for all
morning tasks, like track weight and glucose levels, get pills in time, prepare heated
water for the morning bath, and regulate home temperature wake up. Furthermore,
automations which are depicted in Figure 5 care to remind Tina not to receive any

medication or breakfast every Monday morning before doing her blood tests.

Triggering Condition Personalized Automations
Air Conditioning starts Heater starts preparing water
T1 Alarm clock rings *
regulating home temperaturel [for bath]

™ Alarm clock stop Smart TV & Refrigerator remind
rings her to track weight and glucose

Water for bath is Hi-Fi notifies Tina that water is
& ready) prepared for bath

When scale gets) TV shows diagrams of weight [Refrigerator reminds]

—_—

T4

e

weight measurement tracking blood sampling

TV & Refrigerator remind her
to get pilland breakfast

—_—

< When blood

T sampling completed

T6 < When scale gets ‘>) [TV shows diagrams of welght] [TV & Refrigerator remind Other Days

weight measuremen tracking her to get pill and breakfast

17 Pill Box opens Hi-Fi reminds her of the next })[Hi-Fi starts playing morning

pill of the day music

Saves blood glucose
measurements

Refrigerator shows Hi-Fi stops plavin TV informs her about
the breakfast she . [Y_ € 1. weather forecast and

has to eat ACLIILE AL walking/workout

—

e })[Resultsto the medical center

When track glucose
T9 and get pill are
completed

>
T8 When insulin tracker +
>

Figure 1.5. Tina's morning automations.

Moreover, using smart devices for automations, Tina is able to be benefited on
alternative cases of her mobility requirements. Tina has intense social life and has to
move around the city to visit her contacts on a daily basis. In particular, Tina visits her
son’s family twice a week, goes to the gym three times a week, goes to the nutritionist

once a week and she visits her friend Alice twice a month. In order to go to all these

47

places, it is required from Tina to follow different routes as depicted in Figure 1.6
while on longer distances, she is required to take pill(s) and/or track blood glucose. In
addition, Tina takes her emergency bag and personal belongings with her during her
journeys. Furthermore, Tina has difficulty using the means of transport due to vision
issues which arose two months ago. Tina’s son, Nick is anxious that his mother may
neglect her health by forgetting to take her medication or to track glucose levels
during travelling. She may also forget her emergency equipment bag in the means of
transport. Furthermore, he worries that his mother may be confused and get lost if she
gets the wrong bus or gets off the train/metro at the wrong stop. Also, Nick knows

how important it is for his mother to continue her social life as earlier.

(Destinations X Mobility Activities

7
~ O . Walk
OO) — IR 2 Take the correct bus/metro
Travelling

3. Validatetickets

“\ (guug) 4. Get off the bus/metro
T N
~ 1. Get medication
m Health Care
. = J 2. Track Glucose
g Smart Objects \J Be reminded to take her
\l)p ~ | Peace belongings from the bus/metro

N

AN

.

Boo E
ﬂ) of mind Emergency call in case she has

a problem

2
@ D é Her I Her children be warned in case)

@ —————————————————————————— children’s she goes on unexpected routes
Q | | peace of Her children be warned in case
— A_ mind

. she has a diabetes crisis y,

Figure 1.6. Tina’s daily activities, destinations and smart objects.

Thanks to loT, Tina is able to use smart objects such as Bee+, e-ticket and smart
metro assistant. In particular, Bee+ is able to track glucose and send data directly to
the doctor for further analysis and alert the user to take a sample at a specific time.
However, Bee+ does not provide functionality to remind her to track glucose after
different activities such as getting on the train. Furthermore, e-ticket works with NFC
technology which requires from her to go close to the ticket reader. But it may be

difficult for her to find the device to validate her ticket due to visual impairments.
48

Such customized automations require ways to introduce extra algorithmic logic across

smart objects.

Triggering Condition Personalized Automations
(Smart watch reminds | (Smart phone reminds
T1 At 8 o’clock =» | her to startwalking || her of the things she
_ to go to the metro J(needs to take with her
(" Smart bag checks if Tina)
T2 |{When door opens } =» | got her belongings. If not
_ smart watch warns her |
3minutes before (Smart watch notifies her)
13 | {the metro carriage) = | that she needs togo
door opens close to the carriage
e -)
; Smart phone validates e-
1a |{ T2 rg:‘a;:r%n the =>» | ticket using smart metro
L assistant)
[Smart watch & mobile
T5 At 9:30 > remind her to
track glucose)
Before metro Smart watch & Smart watch & mobile
T6 reaches the > mobile warn to Remind her to get her
appropriate stop § get off belongings
(™
-~ Tina reaches the Smart watch notifies her
bus station => | about the ETA of her bus
3 minutes (s h
T8 P > Smart watch notifies her
the bus starts to get on the bus
\« J
(Smart watch & mobile)
T9 At10 o'clock)} =3 | notify that she needs to
L take her pill)
Before the bus Smart watch & Smart watch & mobile
T10 reachesthe }=3| mobile warnto Remind her to get her
appropriate stop § get off belongings

Figure 1.7. Tina's transportation automations to visit Alice.

Using smart objects which exist on the market (see in Figure 1.6, label 1 and 2) and
smart objects which are provided by the metro/train (see Figure 1.6, label 3) such as
e-tickets, route assistant, ticket reader, Nick could develop custom applications for his
mother’s necessities. In particular, Tina needs one application for each journey due to
different requirements per travel (e.g. different means of transport, get medical

therapy or not etc.). These applications require different automations that are

49

categorized as shown in Figure 1.6, i.c. the first category is for Tina’s travelling, the
second is for Tina’s health care, the third is for the Tina’s peace of mind and the final

category is for her children’s peace of mind.

We choose to discuss about the required automations for the journey from Tina’s
home to Alice’s (see Figure 1.7) because of the longest route. In particular, this route
demands from Tina to walk to the metro station, get the metro at 9:00 o’clock, get off
at a particular stop, get the bus and get off at a stop near Alice’s home. Also, after
Tina has got on the metro, she has to take her medication at 9:30. Moreover, during

traveling by bus Tina has to track her blood glucose.

In addition, for Tina’s and her children peace of mind, Nick could has developed an

extra application with automations as depicted in Figure 1.8.

Triggering Condition Personalized Automations
Tina forgets to Nick’s smart watch warns him
T1 |{ take a pill or track) that his mother didn’t take a
glucose in time pill or didn’t track glucose
Tina’s wearable [Nick’ssmartwatch)(Tina’s doctor
T2 detects a =3 | warns him of the is notified for
diabetes crisis | diabetescrisis || the diabetes crisis
Tina press [Nick’s smartwatch)(Police station is
13 emergency) warns him of danger || warned for danger
button . of his mother’s life of Tina’s life.
Tina gets on (Nick’s smart watch warns him
T4 unexpected metro) that his mother has
carriage | got on wrong metro carriage

Figure 1.8. (T1) Tina's peace of mind automation; (T2, T3, T4) her children's peace of mind

automations.

The objective of our work is to provide end-users with the necessary tools enabling
them to easily and quickly craft, test and change the automations they desire. Now,
the latter is not an easy task as it implies end-users to directly manipulate smart
objects in a developer perspective, ranging from parameterizing and linking together,
to actually programming the control and coordination of a set of smart objects. In this

context, we target to address challenges of communicating, managing, programming,

50

testing and running smart automations in the 10T context by developing all required

end-user programming facilities.

1.3 Technical Approach and Contributions

Our approach aims to develop an open IDE for visual end-user programming
languages by not limiting it on a specific application domain and aiming on
extendibility of new visual programming features (see Figure 1.9). In order to cope
with these requirements, the IDE focuses on two directions, the domain application
adaptability of the IDE and the extendibility of the IDE.

—
) ~§— Applications

| 'ﬂ ﬁfEXPORTS/
o e Veup EXECUTES
o & &4 V\A Y

Blockly Studio IDE
PLUGGABLE
ADDONS
~4——3> | Application Domain
AUTHORING & Framework
DEVELOPMENT

\

Domain VP Editors &

Domain
‘ VPL Elements E h» Libraries

Figure 1.9. The notion of professional developers (i.e., application domain authors) and end-user

developers & users (i.e. novices, non-programmers) in the visual programming IDE.

In particular, based on the requirements of visual programming in application domain,

the developers (i.e., domain application authors) are able to define new application

51

domain(s) for visual programming workspaces by authoring the required visual
programming language elements, adapting the core components of the IDE through
meta-data definitions and developing domain specific components as plugins if
required. They are also able to reuse all components and definitions of other
application domains. Moreover, they are able to contribute by developing adaptable
tools for visual programming that will be used by the application domains.
Furthermore, following our approach, the developers are able to use all provided
visual programming features of the IDE for each of the authored application domains.

Since the visual programming IDE for VPLs has to be extendable, our approach is
following component-based architecture. The core of the IDE includes the
component’s communication which is based on Blackboard pattern and the Shell
Component which is responsible for the user-interface management. Each component
is independent from others and communicates through the provided communication of
the IDE. We present our IDE approach and extension mechanism for new application
domains in Chapter 3. Using this approach, the developers are able to add new visual
end-user programming features through the development of new IDE components.

Overall, our work of this thesis is categorized in three main directions. Firstly, the
development of a visual programming IDE with a full-scale end-user development
toolset. Secondly, we focus on embracing visual programming domain variations as
pluggable domain frameworks in the IDE. The last direction of our work is the
development of a pluggable application domain framework for smart automations in
the internet of Things. Based on these three directions, the contributions of this PhD

thesis are following.

e We provide an extendable visual programming IDE that allows programmers
to extend it in two perspectives. The first perspective is that of new visual end-
user programming features and the second is that of the new application
domains. Our approach could be used for existing (e.g., smart automation in
the Internet of Things, mobile applications, etc.) and emerging application
domains and technologies.

e We introduce the notion of application domain authors which is the role that

developers are able to play in order to build new application domains as

52

frameworks based on the arisen technologies and requirements for visual
programming workspaces.

We develop a full-scale collaborative editing approach that sorts out the
process by introducing peer roles and project element privileges. Additionally,
our proposed approach supports multiple collaboration models (i.e., Pair
Programming in one or more groups, teaching and learning purposes, working
in small teams, etc.) by regulating the settings are provided in order to
configure the collaboration process when it starts.

We facilitate debugging and testing for novices by providing collaborative
debugging process that can be used for personal and collaborative EUD
projects. The collaboration proposed approach guarantees the preservation of
the project’s visual code by isolating it, creating a local replica for each one of
the collaboration members. In this context, the users are able to create
correction suggestions per project element. Those correction suggestions are
shared among the participants. During the debugging session, one user at a
time is able to handle the debugger instructions (i.e., master of the debug
session). However, the rest of the members (i.e., observers) are able to
navigate the visual code to acquire information independently of other
members browsing, without interfering with the experience of any
collaboration member.

We propose an alternative model of collaborative debugging in order to
contribute to teaching and learning in the context of debugging and
programming. Particularly, the tool can be used by teachers to demonstrate the
debugging process to students in real-time. The students are able to perceive
the flow of a program and learn the process of debugging. Additionally, our
approach introduces multiple debugging rooms in a session by enabling the
students to live debug programs, individually or collaboratively while
allowing the teachers to supervise all the debugging processes.

We introduce conditional breakpoints for domain-specific visual programming
language elements contributing in the debugging process.

We propose code snippets for visual programming languages by developing

infrastructure to manage and use them in the context of general purpose

53

(common loops, branches, etc.) and specific purposes for the application
domains.

We provide a full-scale management for the smart devices in the context of
EUD including user actions to authenticate, organize, customize smart devices
in order to enable isolation and handling of the numerous existing smart
devices.

We provide a full-scale visual programming workspace environment for
personalized internet of things automations including conditional and
scheduled tasks and choice of starts them automatically or manually during the
project execution.

We provide GUI for the runtime environment that cares for monitoring and
interacting with smart automations, facilitating the end-user developers by
removing the requirement to program user interfaces for their smart
automations.

We provide facilities in the context of testing and debugging the smart
automations by developing infrastructure to enable the users to simulate the
smart devices, the behavior of the smart devices, the date and the time that the
automations will be executed.

We address the issue of responding to the arising user questions about
automations which caused during the execution of the constructed IloT
applications.

We demonstrate how visual programming IDEs can be used to address the
highly personalized and fluid requirements of Ambient Assisted Living

through custom personalized automations in the context of Internet of Things.

1.4 Outline

This thesis is organized as follows. Chapter 2 discusses the related work, focusing on

visual programming workspaces and toolset support for end-user development.

Chapter 3 presents the core system of the visual programming IDE, including the

software architecture, the extension mechanism for application domain frameworks

and the IDE’s core components. Chapter 4 describes the visual programming editors

presenting the types and hosting of the editors. In addition, we discuss the main visual

programming editor which is incorporated in the IDE and basic features are supported

54

by editors. Moreover, we analyze the domain-specific VPL editors and elements and
how their behavior is handled by our approach. Chapter 5 presents the authoring of
application domain projects including the Project Manager’s functionality, the
application structure, the project elements, etc. Chapter 6 explores the runtime
environment of the IDE, presenting how application domain projects are supported to
be executed. Moreover, we present the I/O console of the visual programming IDE
and how hosting user-interface of application domains at runtime is supported.
Chapter 7 discusses the debugger of the visual programming IDE including full-scale
block-level debugger for Blockly editor and appropriate features of debugging for
novices. Chapter 8 presents our approach of collaborative visual programming which
focuses on two directions, the collaborative editing and the collaborative debugging.
Chapter 9 discusses the visual programming framework for 10T automations we have
developed, including the smart object editor which manages the smart devices, the
visual programming language elements for the behavior of smart objects, authoring of
the application structure, the user-interface which is viewed at runtime and the
simulator for the runtime which contributes the debugging process. Chapter 10
summarizes the key points of this thesis, draws key conclusions and discusses

directions for future research.

55

56

Chapter 2

Related Work

“The greatest part of a writer's time is spent in reading, in order to write: a man will

turn over half a library to make one book.”

- Samuel Johnson

Our work in this thesis is focused on three directions, the full-scale visual
programming IDE that will not be limited on a specific application domain, the
collaborative visual programming and the I1oT automations through visual
programming. The related work is organized in three areas: visual programming
workspaces, extension mechanisms of IDEs, visual debuggers in the context of end-

user development, collaborative programming and code snippets.

2.1 Visual Programming Workspaces

There are several visual programming approaches the past two decades. In this section

we outline the most current or remarkable approaches.

2.1.1 Block-Based Languages

The most popular category of graphic artifacts for the visual programming languages
are the jigsaws. This technique is based in the traditional jigsaws which all people has
already experienced during their childhood and beyond. Each jigsaw has mapped with
correspondent functionality of the visual programming language. Alternatively, this
approach is called as block-based languages. There are several approaches of visual
programming languages based on this technique. One of the most popular approaches
is the Scratch [26]. It is a web-based application and online multimedia authoring tool
that can be used by end-users to program their own interactive stories, games,
animations and simulations. Additionally, Scratch gives the ability creations can be
shared [27]. Inspiring from the work of Scratch, several research works have been
developed such as Phratch [28], Snap! [29], etc.

57

Another approach that resembles Scratch is the Blockly which is a project of Google
[30]. Blockly uses blocks that link together like a puzzle in order to make writing code
easier. It can generate source code in JavaScript, Python and Dart [31]. Using Blockly,
people learn about coding and logic of programming. In the same context, yet another
approach is the App Inventor Blocks Editor which is specialized for the development

of the logic of applications for devices running Android [32].

In the context of robotics, the Lego Mindstorms is another approach that uses blocks
too [33]. Lego Mindstorms blocks’ has been mapped in a higher level of functionality
than Blockly and are specialized in the concept of robots that can be programmed by
youngsters. This visual programming approach combines block-based programming
with flow-based programming we discuss in the following paragraphs. An approach
which resembles with the MindStorms is the MODK:it [34]. MODK:it product provides
two versions of products, the first is related by micro controllers and the second is
related by robotics. Moreover, an extension of Scratch is named as mBlock [35] and

focuses on the end-user development of Arduino and robotics.

Yet another approach uses block parts is Tynker [10] and is targeted for children.
Using Tynker, kids educated on programming web applications, building custom
games, interfacing with hardware (e.g. program motors, LEDs, speakers etc.),
drawing math art etc. In addition, students which use it, are able to learn fundamental
programming concepts. This arises from the included ability coding visually or to
write JavaScript source code and viewing in parallel the results of blocks and vice

versa.

In addition, there is yet another authoring tool which is based on blocks [36]. This
authoring tool focuses on the development of mobile services. The interesting with
this approach is that provides to users the ability of the choice between two levels of
programming. The first level of programming is for beginners and it is based on
programming with questions. The second level is based on blocks. All above
approaches using jigsaws for visual programming run either as a desktop application
or as a web application. Additionally, in literature there is a framework called Puzzle
which supports a visual based environment for opportunistically creating mobile
applications [37].

58

In addition, there are two approaches which use their own technique for visual
programming. First approach belongs to the Microsoft Research and is called
TouchDevelop [38]. Using TouchDevelop, end-users can develop in their mobile
devices [39]. Through TouchDevelop, applications can be created to access data,
media, and sensors on smart phone, tablet or PC. End-Users could program without
coding technology, but only by touch predefined statements and expressions to
express logic. Touchdevelop uses tree view of steps that define windows, events, logic
source code and in parallel provides advices in order to help user understand which
have to be the current and next step of development. Microsoft retired the Touch
Develop platform in June 2019. However, Microsoft continue research in the world of
visual programming by introducing the MakeCode which focuses on two different
directions, the game development of Arcade [40] and the MakeCode editors [41]

which focus on the educational part through programming via blocks.

An alternative visual programming approach is called Thyrd [42]. Thyrd is a VPL that
both data and code are stored in cells. Thyrd is an attempt to reduce the spreadsheet
programming model to its minimal aspects by focusing on a small set of central

concepts.

2.1.2 Flow-Based Languages

Another category of visual programming languages is the flow diagrams. There are
icons with high level functionality as in the aforementioned VVPLs based on jigsaws,
but there is the concept of design flow diagrams. One of the approaches following the
concept of design flow diagrams is the Microsoft VPL [43]. This VPL is specialized
for building robotics applications. It can be used by both professional and non-
professional developers. In this direction, a research work which is related with
robotics and 10T is the research work of VIPPLE [44]. Another of robotics kit is the
ROBO Pro [45]. This approach is specialized for robotics as toys for children. The
robotic process control is based in the design of flow diagrams. In the concept of flow
diagrams there are several approaches which are specialized on education such as
LabVIEW [46], Flowgorithm [47], LARP [48], Raptor [49], Visual Logic [50] etc. All
these languages are targeted on learning the concept of programming using designers

in order to construct flow diagrams and execute them by correspondent interpreters.

59

Another approach for flow-based visual programming tools is Rete [51]. Rete is a
JavaScript framework for visual programming by enabling the developers to build
flow-based visual programming languages based on their requirements as the Blockly
library accomplishes in case block-based visual programming languages.

2.1.3 Game Development Visual Programming Editors

Another category for visual programming is in the area of game development
editors. Using this kind of authoring tools, end-users can design virtual worlds using
predefined actors and objects. Such software tools are used for end-user development
of customs games. One very well-known approach is Kodu [52] from the Microsoft
research. Kodu provides numerous words and character artifacts that can be used in
order to design a game. Furthermore, in this context, there are several approaches
such as Construct 2 [53] developed by Scirra, GODOT [54] developed by OKAM
Studio, GameSalad [55], etc. Moreover, AgentCubes [56] is an educational
programming language for children to create 3D and 2D online games and

simulations.

2.1.4 Visual Programming Approaches for the lIoT

HomeKit [57] is product from Apple allowing control connected home accessories
when compatible with HomeKit, and supports to a certain degree user-defined
automations as combinations of accessory control actions. It is not an end-user
programming system as such, and focuses mostly on smart home solutions with
emphasis on advanced configurations. Puzzle [58] is a visual development system for

custom automations with smart objects in 10T adopting the jigsaw metaphor.

Extending the App-Inventor, the developed blocks ‘When’ for sensors in the context
of 10T [59][60]. Another approach is the Smart Block [61] which is based on Blockly
library. The Smart Block is a visual block programming language for Smart-Things
loT application development. This approach is based on the loTa calculus by creating
new custom blocks for ECA rules, events, conditions, and actions. Additionally,
Node-Red is a visual tool developed for wiring 10T centric applications. Moreover,
NETLab Toolkit [63] is a flow-based programming approach in the context of the
Internet of Things, providing a simple web interface to connect sensors, actuators,

media, and networks associated with smart widgets.

60

2.1.5 Discussion

Existing visual programming workspaces are missing a full-scale end-user
development toolset, while most of them are limited on specific application domains.
In case of visual programming approaches for the 10T automations, existing
approaches are limited on full-scale workspace environment for visual programming.
Particularly, they are limited on programming expressiveness (i.e. provided
conditional events are limited on basic expressions, while there is no approach that
deals with time and calendar events). Additionally, there is no provided full-scale
management of smart objects. Moreover, there are not adequate runtime environments
for smart automations in the context of visual programming workspaces. Furthermore,
there are not visual end-user development facilities that empowers the novices in

order to test and debug their creations.

2.2 Extendable IDEs

To our knowledge there is no visual programming IDE which is extendable in the
context of plugins or application domain frameworks enabling configurable and
adaptable components in which the developers can develop and author their visual
programming workspaces for specific application domains. However, most of classic
IDEs are extendable in the context of developing plugins by providing infrastructure
which enables the developers to incorporate their plugins such as IntelliJ [64], Eclipse
[65], Visual Studio Code [66], etc.

In the context of programming frameworks which are able to be hosted as plugins in
the IDEs there two approaches. Eclipse IDE supports hosting of application domain
frameworks. A representative example of developed frameworks is the Eclipse
Modeling Framework (EMF) [67] which a modeling framework and code generation
facility for building tools and other applications based on a structured data model.
Another IDE supports the domain-specific development framework is the Sparrow
IDE [68]. An example is the Game Maker 1.0, being a domain-specific application

development environment for cartoon-like games.

2.3 Tools for Debugging in End-User Programming

There are errors which arise during the development process and programmers have

to resolve them by using debugging methodologies and strategies. Some of the

61

techniques used by professional programmers have been adapted in the end-user
development tools. In the context of debuggers for end-user programming, research
work attempts to elicit the way end-users think in the case of correcting an error
[69][70]. Furthermore, another research study analyzes possible gender-based
differences that may exist in the debugging strategies that end-users following in
order to eliminate errors [71]. Moreover, a study [72] demonstrates that end-user
debugging process is more efficient through pair collaboration. In addition, a study
[73] investigates the debugging process that early childhood preservice teachers used
during the process of block-based programming. This study reports the types of errors

commonly made and how teachers debugged them.

In general, most of the approaches to end-user debugging are based on analyzing
dependencies. There are several approaches that attempt to help users in the context of
finding errors in spreadsheets. ExceLint [74] is an approach that uses static analysis
for Microsoft Excel. UCheck [75] is an approach for spreadsheets that applies type
checking in order to detect errors automatically. UCheck automatically infers the
labels associated with cells and uses this information to carry out consistency
checking of the formulas. Another approach uses a combination of spatial and
semantic label analysis aiming to improve the rate of detected errors [76]. StratCel
[77] is an Excel add-on that improves the process of finding errors. Participants using
it, found twice as many bugs as participants using standard Excel, they fixed four
times as many bugs, and all this in only a small fraction of the time. Another
approach, GoalDebug [78] lets the end-user set the correct expected value of a cell,
then generates a list with all possible solutions and suggests them to the end-user in
order to choose the correct one.

In the case of debugging in visual programming workspaces, the first approach
proposes an interrogative debugging interface for the Alice programming environment
[79]. This approach [80] is a debugging paradigm in which end-users are able to ask
why and why not questions about their program’s run-time failures. In addition, there
are approaches which adapt classic visual debuggers to debuggers for visual
programming languages. MakeCode [81] incorporates a visual debugger which offers
watcher view for variables, step-in, restart and slow-motion step execution actions.

Starting the visual debugging process, MakeCode’s view mode changes by turning

62

from editing to debugging mode (i.e. the visual code blocks turn in read-only mode
and their view changes by adding ‘holes’ to enable adding breakpoints functionality
etc.). Also, Tynker [10] has developed a debugger tool [82] which includes start,
pause and resume actions, while stepping is allowed only by using breakpoints. The
breakpoints are inserted in the visual code by adding specific breakpoint blocks that
have been defined. When the program runs in a different mode (i.e. release mode), the

breakpoint blocks remain present but are ignored.

In the context of Blockly Library, there are two approaches of debugging. The first
one is a demo approach [83] for Blockly which provides only step execution of the
program without functionality for watching variables, breakpoints etc. The second
approach provides a full-scale visual debugging toolset for Blockly, working over
blocks, supporting the full-range of debugging features [84].

2.3.1 Debugging and Testing for loT automations

Moreover, in the context of end-user programming for the Internet of Things,
EUDebug [85] is a system that enables end-users to debug trigger-action rules that are
composed in a web-based application like IFTTT [86]. Additionally, My IoT Puzzle
[88] is a debugging approach for IF-THEN rules through the jigsaw metaphor. Yet
another approach that supports end-user debugging of trigger-action rules for loT
smart automations is [87], providing answers to why and why not questions

considering the execution of the rules.

However, in the context of visual programming there are not approaches to test and
debug the automations. In this context, we developed a simulator which is able to
simulate smart object actions, simulate the behavior of smart object during the project
execution. Additionally, simulates the time, date and enables the end-users to author
tests of expected values of the smart object properties during the project execution.
Using this, the end-users are able to debug and test their applications without

communicating with real devices.

There is no existing tool that provides infrastructure in order to debug smart
automations in the context of visual end-user programming. However, there are
research approaches and experiences in case of professional developers. Particularly,

debugging loT control system correctness for building automation experience is

63

presented on [89]. Additionally, a framework for debugging IoT wireless applications

[90] has been developed.

Additionally, simulators have been developed for debugging purposes in case of
processors such as Simulics Platform Simulator [91]. Additionally, there is approach
of a versatile emulator for the identification of vulnerabilities of IoT devices [92].
Moreover, an emulator has been developed in the context of debugging service

programs in Ad Hoc networks [93].

2.4 Collaborative Programming Workspaces

One of the cases that collaborative debugging is notably useful is the collaborative
programming of applications. There are several collaborative programming
approaches for software integrated development tools and end-user development
tools. Collaborative spreadsheets with concurrent cursors (i.e. one cursor per
member), such as Google Docs [94], and Office Online [95] constitute one of the most

popular approaches.

2.4.1 Collaboration in Text-Based Programming

In the case of software developers, the collaboration process is mainly based on
version control systems such as Git [96] and SVN [97]. The developers work locally
on different replicas of the project and merge their changes in the repository.
However, during the development process, conflicts may appear and the programmers
have to resolve them. In addition, each programmer has to set up the workspace in
order to participate in the collaborative project. Moreover, visualization tools have
been developed for the history of changes and handling them e.g. Bellevue [98] as an

IDE extension and Sourcetree [99] as an independent software tool.

Furthermore, in the case of text-based programming, real-time collaboration features
have been developed for IDEs. As previously mentioned, Visual Studio and Visual
Studio Code enable developers to collaborate in real-time through Visual Studio Live.
Using this tool, the developers have concurrent cursors and are able to edit the
project’s source code in parallel. Collabode [100] is a web-based IDE for Java that
supports real-time collaborative editing through concurrent editors, isolating the error
report only for their own changes. Moreover, Codiad [101] is another web-based IDE
that supports real-time collaborative editing via concurrent cursors. Jimbo [102] is a
64

collaborative IDE that attempts to provide better collaboration and communication

between designers and developers.

Also, Saros [103] is an open-source plugin-in for IDEs which offers distributed
collaborative editing and pair programming. This plugin has been incorporated into
Eclipse IDE and has recently been added to IntelliJ. In addition, another plug-in that
has been developed for Eclipse is Ripple [104]. This plug-in enables the students to
collaborate for educational purposes, incorporating a chat software tool for

communication.

Furthermore, plugins for remote collaboration have been developed for text and
source code editors (i.e., RemoteCollab [105] for SublimeText [106] and Teletype
[107] for Atom [108]). Moreover, Codeshare [109] is an online code editor that is
used for sharing code in real-time with developers and incorporates a video call

software for communication purposes.

2.4.2 Collaboration in Visual Programming

In the case of visual programming, full-scale collaboration facilities are missing.
However, approaches of collaboration for visual programming tools have appeared.
An extension of App Inventor [110] that supports collaboration using concurrent
cursors has been developed. Additionally, there is an approach for collaboration in
Scratch that includes a shared stage screen in which each child develops one animated
character and then merges it with the other animated characters in the shared stage of
the application [111]. An approach of co-located collaborative block-based
programming [112] has been developed for exploring block-based programming in a
cross-device environment consisting of digital tabletops, mobile tablets and laptops.
Furthermore, an approach in TouchDevelop [113] focuses on a merge algorithm
which is conflict free, thanks to reasoning on changes at the level of AST [114].
Moreover, extending Alice Framework, there is work that enables interaction and

collaboration among students [115].

2.5 Collaborative Debugging

In the case of developers, there are approaches to integrated development

environments (IDEs) for collaborative debugging. Visual Studio and Visual Studio

Code enable developers to collaborate in real-time by using Visual Studio Live [116].
65

In this context, Visual Studio Live enables collaborative debugging features by
communicating with the debuggers that are provided by Visual Studio. IntelliJ with its
plugin, Code With Me [117], is another IDE that has recently released collaborative
programming features. In addition, CloudStudio [118] is a web-based IDE that

supports collaborative software development on the web [119].

2.6 Teaching and Learning Tools for Debugging

Debugging is one of the most important tasks of the programming process. However,
it is also a challenging task from which novice programmers can learn. In this context,
there are research studies that attempt to teach the debugging process and improve the
debugging skills of novices. There are several approaches which aim to facilitate them
by using game-based applications. RoboBUG [120] aims to help students learn
effective debugging techniques by playing a puzzle-type game, focusing on students
who are learning to debug for the first time. G4D [121] is another approach which
aims to teach debugging to novice programmers through interactive games. Ladebug
[122] is an online software tool that aims to help novice programmers to improve their
debugging skills. Using Ladebug, students follow a structured debugging process to
find and fix errors in predefined exercises. Furthermore, Gidget [123] is an online

debugging game for learning.

Moreover, a study [124] proposes a teaching model for learning debugging by
designing worksheets to guide students on how to apply debugging strategies in order
to find errors and correct them. ViDA [125] is a virtual debugging advisor that
supports students' learning. CMeRun [126] is a software tool that enables the user to
see each statement in a program during execution. Backstop [127] is a software tool
that provides extra debugging features and attempts to be user-friendly in order to

facilitate novices to understand run-time errors and correct them.

Furthermore, DESUS [128] is a tool that aims to support beginners of programming
by providing them guide for tracing which benefit them to better understand the
behavior of their programs. Additionally, LondonTube [129] is a visual programming
language that blends dataflow and actor-based programming paradigms. An IDE
plugin [130] aims to show where in the code the computation breaks down and help
the programmer to understand why the code is not working.

66

2.7 Code Snippets

Code snippets are templates that make easier to enter repeating code patterns, such as
loops or conditional-statements. In the context of visual end-user programming there
are not approaches. However, in case of software development there are several
approaches in different languages and IDEs. For example, in Visual Studio Code there
is support of code snippets that appears in IntelliSense [131]. Wing Pythion IDE
supports code snippets too [132]. Moreover, IntelliJ supports code snippets
mechanism through plugin which is called TagMyCode [134]. In addition, there is
study of providing better code snippets by exploring how code snippet recall differs

with programming experience [133].

67

68

Chapter 3

CORE SYSTEM

“The formulation of a problem is often more essential than its solution, which may be

merely a matter of mathematical or experimental skill.”

- Albert Einstein

Using the Blockly library, we have developed a full-scale IDE for visual programming
languages (VPLs) on the top of it. Our approach is focusing on an open IDE for
Visual Programming Languages by not limiting it on a specific application domain
and aiming on extendibility of new end-user visual programming features. In this
chapter, we present the IDE’s core system; outlining the software architecture, the
functionality for extending the IDE’s application domains, the communication with

third party applications and the core components of the system.

3.1 Software Architecture

Blockly Studio IDE is a web-based IDE, including login system where someone signs
up for the IDE using their credentials, namely their email and password. The projects
are retrieved based on the account privileges. The projects are saved, shared and
loaded by the back-end of the Blockly Studio; written in Node.js and its MongoDB
data base. The backbone of the IDE follows a component-based infrastructure
enabling components to be added or removed via a centralized components registry.
Components can be activated or deactivated on-the-fly while the IDE is running. Each
component is independent and communicates with the IDE via an extended custom

version of the Blackboard pattern that has been developed as depicted in Figure 3.1.

For each of the component plugins is required to export which is the functionality is
provided and which is the required functionality in order to be hosted in the IDE. In
addition, each component has to define which are the messages (i.e. signals) that will
be sent potentially during the execution, as well as the messages that will be listened.
Defining this information, the system validates and warns in case something goes

wrong with the communication among the registered components of the IDE. These
69

validity checks are applied during the build-time of the IDE and concern the static
dependency analysis of the components’ communication. However, there are cases in
which the components’ dependencies are changed dynamically during the run-time.
As a result, there are components which are not able to define total messages will be
exchanged and the whole exchanged functionality that will be required and exported
during the execution. In this case, the IDE enables a component to define that will be

included communication by exception.

IDE Component Infrastructure

Blockly Studio

. extend
mVIlew IDE Deployment Interface
, selector,
e, €35 Component (Shell)
A A y ¥
extend extend hosted
A 4
Component IDE Ul |
View Component Components
Communication
Blackboard
| 00\“0(\06" acKpoar
\.- s‘ra
: S :
extend Plugln extend // ?;
ofc
— hold Calnmtponent 8 %
Ul View Component — R £
Gluer Gluer . -

Component
Loader

create instance I
\

A 4 \ 4 hold

.
Component & View
Component Implementation L Registry, Factory

load

Figure 3.1. The component-based infrastructure of Blockly Studio; IDE’s component infrastructure for
the Ul view and the component functionality is required (top-left).
The infrastructure of each IDE Component (see top-left of the Figure 3.1) is based on
two main parts: The Component Base Class and the View. The View handles the user
interfaces that are hosted in the system (i.e. rendering HTML from Lodash templates,
applying the style from the defined CSS and attaching the events). Moreover, the
View handles everything related to attach and detach the events that are declared for
the template on render and on close action respectively. The IDE Component Base
Class cares about the export and import of the functionality and the messages that will

be exchanged between the IDE and the component.

70

3.1.1 Shell

The IDE’s core component is the Shell component that registers in the system and
then undertakes the hosting of the rest IDE Ul components. It consists of three user-
interface parts, the menu toolbar, the workspace toolbar and the main action area of
the IDE. In this context, Ul components could define their menu items, their area for
the tool items (available when components are active) and their configurable settings
for allowing adaptation to the end-user’s needs. Moreover, in the main action area one
or more Ul components are hosted depending on the circumstances. Starting the IDE,
the Shell component installs the “Menu toolbar” component. Afterwards, the “Start
Page” component is initiated in the main action area by which users are able to
browse and handle their projects (see section 3.3). In the following sub sections, we

analyze each of these parts of the IDE.

3.1.1.1 Menu Toolbar

Each component that is registered to the IDE requires declaring menu options. These
options will export functionality that will be available to the users. In this context, the
top user-interface part of the IDE constitutes the menu toolbar which is registered as a

Ul component of the IDE. The components have the access control of the menu

options of the toolbar by using two methods.

Blockly Studio Home Configure ~ Blockly ¥ Runtime ¥ SmartObjectEditor ~

. Menu
Blockly

.............

ProjectManager
RuntimeManager
SmartObjectEditor

Figure 3.2. IDE's menu toolbar including the logo of the IDE and menu items which are declared by the
registered components.

The first method deals with the static definition of the menu items that would like to

be inserted on loading time of the IDE (see Figure 3.2). In particular, each component

can include a JSON file that will define which are the sub menus, menu options and

separators would like to be presented on the IDE starting it. In this context, JSON file

71

includes definition of the location (i.e. path) in the menu toolbar for each sub menu

and menu item, their labels, their icon images (optional) and their tooltips (optional).

The second method relates to the dynamic editing of the defined menu items,
separators by the components. This method is provided by the functionality which is
exported by the menu toolbar as an IDE component. Using the exported API, the
components could enable, disable, add, edit, remove menu items in which they are the

owners based on their functionality.

3.1.1.2 Workspace Toolbar

Moreover, each component that is registered on the IDE, requires to declare their tool
items which will be available in the end-user development time. In this context, the
workspace toolbar is initiated below the menu toolbar when the visual programming
workspace area is initiated. Thereafter, each component which is instantiated on the
workspace, defines their tool items by including the icon, the tooltip and the function
handler that will be fired on click the tool item. In addition, the components could
define the order which tool items will be added among the components. This order
number works similar to z-index in CSS, which means that in case there are tool item
groups defined by components with same order number, first request gets previous
location versus the next request. Additionally, the API enables functionality to handle
the tool items by providing actions add new items, edit, remove, disable etc. Closing a
component during the end-user development process, the workspace toolbar
component is notified in order to detach the event handlers of the tool items and

remove them from the toolbar view.

3.1.2 Configuration Management

The IDE provides configuration management in order to enable the end-user
developers to personalize their workspace based on their preferences. The
configuration preferences are separated into two categories. The first category is the
global view preferences of the IDE (e.g., dark/white/colorful view mode, font
preferences, etc.) and the second category which includes the configuration parts of
specific components. In the first category, the components that are registered on the
IDE have to support the style for each of the view modes by defining which Ul part(s)
of the components correspond to the view choices. Using these declarations, the

72

configuration management handles the whole IDE presentation (i.e. all IDE Ul

components).

In the second category, the configuration management provides functionality of
configuration control for the personalization of each one of the built-in components
and the pluggable components that may be added later. For each one of the registered
components, the configuration management inserts a menu option which enables the
user to choose in order to configure them. When one of these menu options are
chosen, a dialogue opens which consists of three parts: the title which defines the
component that will be configured, the configuration contents and the actions (i.e.

save, reset, cancel).

Background =] e

Font (Config Title Elements)

Family Helvetica v
Text Colour ‘E|

Size rem v 125

Weight number v 400

Font (Config Elements)

Family Helvetica h
Text Colour ‘E|

Size rem vii1

Weight number v 500

Style normal v

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1| Style normal v
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 3.3. Dialogue of the Configuration Management to configurate the dialogue parts of itself.

73

In the context of the component’s configuration contents, each component defines the
configuration parts that are supported by them by listing them in a JSON file. Each of
the list items includes the property title and the property value of the configuration. In
this context, the configuration management supports specific Ul types for the values
of the configuration parts. Based on these types, the configuration management
generates a dialogue which includes the user-interface of the configuration for each of
the components. Moreover, the configuration management undertakes to save or reset
the preferences of the user. Additionally, the configuration management as component
of the IDE defines its configuration including the background color, the font of the
title and the contents of the configurations dialogue as depicted in Figure 3.3. In the
following sub-sections, we analyze the value Ul types that are supported for the Ul
code generation of the component’s configuration parts. Each of them inherits
Property View which inherits the aforementioned View infrastructure. The Property
View undertakes the functionality of collecting and retrieving the values of each

property when a configuration dialogue closes and opens respectively.

3.1.2.1 Basic Property Views

The first category of values for the configuration properties are the basic property
views, including number, color, percentage, text, text area, date, checkbox, image and
file. These basic types are following the input HTML tag; introducing default values,
placeholders, min. max, step values, etc. depending on the input type. Moreover, in
case of images and files, there is an extra view for the values that are selected. In the
case of a file, a link with the name is presented, while in the case of an image, a
preview of the image is depicted. Using these property types, the developers are able

to define the property values of basic configuration parts for their components.

In addition, for each of the basic property types, it is provided to define messages that
will be presented in case user selects specific values for the properties. In particular, a
list of set with a Comparator function and the warn message could be defined for
each of the property value types. The Comparator function is defined as a handler in
the “onChange” event of the property value. In case it evaluates to true, the message

will be shown, otherwise the message will be hidden.

74

3.1.2.2 Select Property View

The second category of values for the configuration properties are the ENUM property
view type or the select property view alternatively in the context of HTML tags. There
are cases in which the users have to choose one option among a list of values (e.g.,
IDE view: dark, white or colorful mode). Furthermore, for a better organization of the
options in a select property view, our approach supports grouping options. Moreover,

options could be images instead of texts.

Size small v

Size small N v

xx-small
x-small
small
medium
large
x-large
xx-large
smaller
larger
number
rem
percentage
initial

Size number v 16

Figure 3.4. Dynamic extra number property value appears on selecting the option 'number' for the
HTML font size select property value.
Additionally, we have introduced a dynamic select property view which includes
extra property views on selection of specific values. For example, in case of the CSS
font size there are options which include more property value such as the number (see
Figure 3.4), rem and percentage. The extra property value type could be one of the
aforementioned basic property views, select property view or dynamic select view as
well. Finally, potential notification and warning messages could be defined to be

presented in case of specific circumstances as in case of basic property views.

75

3.1.2.3 Aggregate Property View

The third category of values for the configuration properties is focusing on supporting
the definition of more complicated types by grouping a list of property views. An
aggregate property view includes the group title and the list of pairs property name,
value. The property values could be basic property view, select property view or
aggregate property view as well. The ingredients of the aggregate property view are

contained on a Ul box.

A common deployment of the aggregate property view that we have developed and
introduced as an independent property view type is the “Font Property View” which
supports the HTML font style including family, text color, size, weight and style as

the list of the inner properties (see its use in Figure 3.3).

Based on the aforementioned property view types are supported and the features are
included, the developers are able to define any property value for the configuration

parts of the components.

3.1.3 Communication with Third-Party Applications

As we have showed earlier, Blockly Studio follows component-based architecture in
which components communicate through an extended blackboard pattern including
support for “Function Requests”, “Function Responses”, and exchange messaging
through “Signal Post”, “Signal Listen” actions. In this context, the developers are
able to add components as plugins in the IDE. However, this communication is
limited on the components which are registered and running in the context of the IDE.
There are components that could require to run in an independent context in order to
prevent freeze the rest IDE UI functionality during their operations such as the IDE’s
run-time environment. Additionally, independent third-party applications may
interoperate with the IDE as plugins. Moreover, conflicts could be identified among
the components in the context of CSS rules. In this context, we extended our approach
in order to enable hosting of third-party applications that will run in different runtime
context from the IDE. In this direction, we have extended the aforementioned
communication of components in order to support communication among components

of individual applications.

76

Third-party applications of a JavaScript application that runs in the same domain are
hosted in IFRAME tags. The applications communicate by exchanging messages
through the provided “window.postMessage ” function [135]. Using pure exchanging
messages approach, the provided functionality of components requires extra
development in order to support listen and receive messages, coding and encoding in
order to accomplish the requests. However, following this approach, each one of the
provided parts has to deal with this requirement in the side of IDE and in the side of
the third part applications. Moreover, in case communication between third-party
applications which are hosted by the IDE is required, this could not be carried out. In
this context, we have built an extra layer for the communication among third-party

applications and the IDE.

I Third-Party App Communication I

Function Requests
& Post Signals
Receiver

Function Requests
& Post Signals
Dispatcher

Receive Response
Function Request

Message
Converter

Message
Decoder

Requests
Messages Map

receive

Figure 3.5. Extension layer for the Blockly Studio communication with third-party applications.

Extending the components communication, we have added an extra optional field for
the function requests which included the third-party application name in case the
request is not addressed for a local IDE component. In this case, the components
communication forwards the function request to the third-party applications
communication infrastructure. This infrastructure (see Figure 3.5) handles the
communication of components by converting requests for a component (i.e. function
request/response, post/listen signal) to messages by pinning unique ID and inserting
appropriate function callback by using this unique ID to the requests’ communication

map. In case, there is response of the function request, this function callback is

77

utilized in order to communicate with the respective component which sent the
function request. Moreover, the infrastructure undertakes message exchanging by
decoding received messages from other applications in order to apply the requests for
components or handle responses from other applications.

The aforementioned infrastructure is able to be used in both sides (third-party
application and the IDE). Using it in the third-party applications, each application is
responsible for the development of the dispatcher that will handle their
communication locally for their components. Additionally, the infrastructure for
communication of third applications supports the signals mechanism that is provided
by the components of the IDE. In this context, the third-party applications have to
undertake the definition of which signals are listened and their handlers, use the
mechanism to post signals (if exist) to the IDE.

Third-party Application 1 Blockly Studio IDE
DOM
M
7| DOM

B IFRAMEL | = | IFRAMEN |

Create,
Delete

Communication |~

1

~~|Component K

Components ‘rf Component 1
A

|r', Components
Component 1|4 | Communication

- ”\ Blackboard
Third-party Application N S o

Component K

Figure 3.6. Communication among third-party applications and the Blockly Studio.

In addition, the IDE supports serving of the communication among third-party
applications by playing the role of router in the function requests that are received and
that are not addressed to the IDE. In particular, every message request is received by
the IDE is decoded and routed either in the component communication of the IDE or
it is forwarded to the respective third-party application by playing the root node of the
communication among the applications as depicted in Figure 3.6.

78

Using our communication approach, the developers are able to extend the IDE’s
functionality by developing either new components and glue them as plugins (see
bottom-left of the Figure 3.1) or new independent applications that will be injected in
IFRAME. However, this is not adequate to support end-user development for different
domains. The components of the existing visual programming workspaces are
restricted on one specific application domain. In the following paragraph, we analyze
our approach for the infrastructure of the IDE in order to set up and extend it
developing new application domains.

3.1.4 Openness and Extensibility

As mentioned earlier, IDE is following component-based architecture by using an
extended version of the blackboard pattern for the communication of components.
Particularly, each component publishes the exported functionality by using
precompiled customized annotation tags of the IDE that are developed by using
decorators that are provided by TypeScript. All the defined functionality is able to be
used by all installed IDE components. Moreover, each component defines the
functionality that is required and has to be provided by the IDE from other
components. During the compilation process, IDE collects defined functionality that
is exported and required, then checks if required functionality is provided. Moreover,
system checks their validity at runtime (i.e. asserts in case there is call request of

functionality which is not defined).

All components communication for the IDE is handled by the blackboard pattern. In
particular, the blackboard pattern has information about all the components provided
and required functionality in the context of using it as a plugin. The blackboard
pattern provides the functionality which is able to be used by the components in order
to request a function (i.e. ComponentsCommunication. functionRequest
(destComponent: string, funcName: string, args: Array<any>)).In
this context, before apply the requests, starts with the validation checks of the
communication. Moreover, the components are able to define which is the
functionality that they are interested when happens from another components. In this
case, the components which perform this functionality are responsible to post signals
of the functionality with respective data

(i.e. ComponentsCommunication.postSignal (signal: string, data:

79

any)). Components that are interested for the functionality of other components are
responsible to define that they listen their signals by developing the respective
functionality they would like to be executed (i.e. callback). In this case, when a signal
is posted, the blackboard pattern is responsible to broadcast the signal to the interested
components that have been registered in the IDE. An example of basic signals which
is listened by different components is the ‘PROJECT ELEMENT CREATED’,
‘PROJECT ELEMENT DELETED’ and ‘PROJECT ELEMENT EDITED’ that are
posted by the project manager when respective actions are performed by the end-
users. These signals are used by the domains management component in order to care
about the update process of the respective visual programming language elements, the
collaboration component in order to care about the broadcast updates of the project

manager to other peer members of the shared project.

The developed components communication mechanism is extended in order to notify
the developers about the provided and required APl for each one of the registered
components. In particular, the developers are able to request the API for one or more
components that are registered in the IDE (i.e.
ComponentsCommunication.consolelLog(compName: string)). Using this
functionality, the developers are able to be informed about the API for each one of the
communication components and they are able to test their component’s APL. In this
context, they are able to add new components or even replace existing IDE
components with others just by implementing their functionality. Incorporating
components to the IDE, developers have to program the glue code which defines the
aforementioned requirements of the functionality and the exported API which is
provided by the component which has to be written in Typescript in order to use the
annotation compile time tags. Moreover, the IDE components which include user-

interface has a selector of empty DIV that is hosted.

3.2 Extension Mechanism for Application Domain
Frameworks

As we have already discussed, the visual programming workspaces are limited on one

application domain. Additionally, new application domains are arising, existing

application domain (e.g. games, learning, loT, etc.) requirements for visual

programming are fluid and third-party technologies are updated continually,

80

constantly changing requirements for developing new IDEs for visual programming
languages. However, the process of developing an IDE for visual programming
languages offering a full-scale end-user development toolset for each new application

domain, is not trivial process and is extremely expensive.

In the case of the developers, the setup for an application domain in the IDE (i.e.
installing and using third party libraries, editors, models etc.) is handled by them. For
example, using user-interfaces for applications requires a GUI library and maybe the
use of an What You See Is What You Get (WYSIWYG) editor. Developers are able to
setup the environment of the IDE by installing appropriate libraries and tools based on

their requirements. This task is not able to be done by the non-programmers.

Our approach enables the developers to setup the visual programming environments
for application domains on the top of Blockly Studio. In this context, the developers
will be able to author application domains based on the requirements of the end-user
developers, consolidating domain third party libraries, visual programming editors,
etc. (see Figure 3.7). Blockly Studio supports the development of application domain

frameworks by providing the following features:

A
7

> Blockly Studio

Project Manager

Visual Code Snippets

Runtime Environment

Blockly Debugger
Library

Versioning and Sharing

Collaborative Programming

Application Domain Framework

Authoring + Domain Spemﬂc + 3r Par_ty
Conf. Data VPL Editor(s) domain lib(s)

Figure 3.7. Making application domain-specific frameworks for visual programming on the top of
Blockly Studio.

81

e As have already mentioned, extensibility mechanism to add new IDE
components (e.g. Domain-Specific Visual Programming Language Editors,
etc.).

e Adaptable and/or extendable core components of the IDE (e.g. Project
Manager, Runtime environment etc.) that provide full-scale functionality and
enable adapting them based on the application domains. Additionally, the
ability to overwrite them by developing new components with relevant
functionality.

e Authoring of the application domain project structure with automatic loading
and handling of the project elements.

e A mechanism that handles the end-user development dependencies between
the visual programming language elements automatically by cooperating with
domain-specific editors (e.g. WYSIWYG editor) and the general-purpose
visual programming editors (e.g. Blockly editor) in order to provide the
appropriate visual programming elements (e.g. Blockly blocks) for the end-
user development of the domain-specific elements (e.g. Ul widgets).

e Reusing whole (or parts) of the developed application domain frameworks.
For example, an application domain framework for mobile applications,
including GUI library and WYSIWYG editor. The part of GUI can be reused
for the application domain of smart automations in the 1oT.

Authoring the application domain visual programming frameworks, developers will
be benefited from the full-scale end-user development toolset, while they will be able
to extend it by developing new features for end-user development. In the next
chapters, we analyze the end-user development features and the infrastructure for the

development of an application domain framework in Blockly Studio.

3.3 Browsing and Handling Projects of the Application

Domains

Loading the Blockly Studio IDE, the start page presents the applications which have

been developed by the user. This page is separated on three different parts (see in

Figure 3.8). In the first part, the user chooses which of the application domain is

interested by a drop-down list, while in the second the user views the information of

the domain application (i.e. image and description). In third part of the start page, it is
82

presented the applications have been developed in the application, the user is given
the option to create, open, delete, version, share an application, get a replica or join a
shared application. On choose the application domain would like to view, the last two
parts of the user interface are refreshed automatically. Moreover, when one
application domain is added, edited or removed for the Blockly Studio IDE, the drop-

down list is updated.

Moreover, the domain author is able to configure the dialogue in which the end-user
developer uses in order to create new applications based on the requirements of the
application domain. Using the automatic user-interface generation which developed
for the configuration system (see section 3.1.2), the Blockly Studio IDE interprets the
domain defined parts. Additionally, the domain author is able to configure the header
title of the create project dialogue (see Figure 3.9). The extra defined information that
the end-user developers fill-in is able to be used by the workspace components which

are configurable based on the application domains such as the Project Manager, the

Blockly Studio Home Configure ~ Blockly ~ Runtime ~ SmartObjectEditor ~

Domain Smart Automations in the Internet of Things v

9 L~ @ [@ This domain is designed to help end-users develop automations for their
w! W i) I, daily activities using their smart objects such as smart phone, smart watch,
i A l_:] =9
=)
~

Krj_/“" & air-conditioning etc.

o Applications | +»@

Automations Demo H Morning Automati... H Automation Exam...

s

Demo for automations Automations on wake-up Examples for the automations

Last updated Tue, 15 Dec 2020 2237:58 Last updated Tue. 22 Dec 2020 08:41:49 Last updated Wed, 23 Dec 2020 17:31:03

Figure 3.8. Having choose the application domain ~~Smart Automation in the Internet of Things" at
the Start Page of the Blockly Studio IDE.

83

Runtime Environment, etc.

Name: Enter Application Name

Description:

Figure 3.9. Configuring the dialogue to create new application based on specific application domain.

3.4 Sharing and Versioning

As discussed in previous section, the “Start Page” component give access in a set of
actions. Three of these actions are addressed by the “Start Page” component itself,
while other actions are requested to be addressed by other components. The first
action is addressed is deletion of an application. The other two actions are the creation
version of an application and sharing an application. We are going to describe in

details these actions in the next two paragraphs.

End-users would be able to re-use existing applications developed by them or by other
end-users and may be inspired by them. In addition, various applications need
versioning so as to restore previously saved applications, make new ones or even use
them interchangeably due to circumstances. Furthermore, each end-user develops
several applications for different requirements. For example, the end-users could
develop automations for other persons, but also, they could design automations for
their personal requirements. Based on these requirements, our approach provides the
end-user with the ability to define groups of applications. Also, the end-user is able to
create new version(s) of the developed automations in order to apply the required

changes and at the same time maintain previously developed version(s).

In addition, our approach supports sharing of applications. Upon starting the use of a

shared application, a replica is created in the end-user’s environment. Sharing

functionality is supported by several visual programming workspace approaches (e.g.

TouchDevelop [136], Scratch [26], etc.). However, there are application domains
84

which require extra development steps. For example, in case of the visual
programming applications involving smart objects require an extra step. In particular,
the first development step of a new application for the end-users is to define which of
the registered smart objects will be involved. As a result, the first (i.e. extra)
development step for shared applications is the replacement of the smart objects
which participate. In Chapter 9, we discuss the handling of loading shared
applications in case of Internet of Things automations in section 9.1.3. Moreover, this
issue is appeared by other application domains that are focusing on the end-user
development of devices in general (e.g. mobile phones, Arduino, sensors, robotics,

etc.).

85

86

Chapter 4

Editors

"To the designer of programming languages, | say: unless you can support the
paradigms | use when | program, or at least support by extending your language into
one that does support my programming methods, | don't need your shiny new

languages."

-Robert Floyd

Basic weapon for developing source code by using programming languages
constitutes the text editors. In this context, important features have been added to the
advanced text editors and editors that are incorporated to IDEs, including invalid
syntax highlighting, specific color in programming keywords, source code folding-
unfolding, source code autocompletion, etc. These features do facilitate the
professional programmers to develop their projects. However, critical skills and
programming knowledge is required in order to develop applications. In case of non-
programmers and programming learners, visual programming editors have been
developed in order to encourage programming applications without syntax
knowledge. In particular, coding by avoiding text-based programming and promoting
visual-based programming which is categorized into icon-based languages, form-
based languages, and diagram languages. In the context, of an IDE for visual
programming languages, there are two different types of visual programming editors.
The first category is first category is the general-purpose editors which supports basic
programming operations and the second is the domain-specific editors which are
specialized on application domains. In the following two sections, we analyze these

two categories that are appearing in our IDE.

4.1 General-Purpose Visual Programming Editors

The first visual programming editor category is the general-purpose visual
programming editors. These editors empower the end-user to develop basic

programming expressions including variables, assignments, mathematic and logic

87

operations, branches, loops, data structures, function definitions and calls. The
general-purpose visual programming languages could be used in the programming
independent of the application domains. There are two basic approaches of general-
purpose visual programming editors: the block-based editors or jigsaws (e.g.,
Blockly) and the diagram-based editors (e.g., Flowgorithm). Both of these approaches

are able to support programming for the aforementioned basic approaches.

In our approach, we have used the Blockly Library which is open source and follows
the block-based approach. However, we could use another or more than one general-
purpose visual programming editors by deploying to all the editors the respective

logic that is described in this chapter.

4.1.1 Blockly Editor

As already referred in this thesis, our IDE is extendable through the development of
new components that could communicate to each other. In this context, we have
developed a general-purpose visual programming editor component of the IDE by
incorporating the Blockly. In particular, each visual programming editor has to
support a set of functionalities in order to undertake the role of an editor for the IDE.

In the next paragraphs, we are going to discuss these functionalities.

The main functionality of visual programming editors is the opening of visual
sources in editor workspace instances. Loading sources in editor instances includes
several settings. One of them is the user privileges (i.e. read-only, editing, not
accessible). In case of visual programming editors, there are two main parts. The first
part of a visual programming editor is the toolbar(s) which are used to select and
handle the visual graphic parts during the end-user development process. The second
part is the main workspace area in which the visual sources are be visualized. In this
context, the user privileges for the visual programming editor instances are handled
by loading the toolbar(s) in case of editing mode and not loading the toolbar(s) in case
of read-only mode. In addition, in case that a visual source is not accessible, the visual
programming editor instance does not load the source and present an appropriate
warning message. In case of the Blockly editor, three privilege modes are supported

as depicted in Figure 4.1.

88

o p | €EZTIITN
£ Count - 1)
~

Figure 4.1. Blockly Editor privileges modes; editing mode (tag A), read-only mode (tag B) and not
accessible (tag C).

Another two important functionalities that are required for an editor of the IDE are the
following: Closing and saving visual sources. Closing an editor workspace instance
means that instance used memory will be deleted and the view that is inserted in
DOM will be removed in order to prevent memory leaks. In this context, the Blockly
library provides API to dispose the workspace. Moreover, the Project Manager (see
Chapter 5) undertakes the functionality of save the editor workspace instance by
communicating with the back-end of the IDE in order to save project data in the data
base. However, it requires from each visual programming editor to provide the
respective visual source (i.e. model) of the editor instance. In this context, the Blockly

editor exports and imports the visual sources in the form of XML.

Moreover, in case of the real-time collaborative editing (see section 8.1), functionality
of syncing is required. Sending peer to peer message with whole updated visual
source and updating the visual source to the other peer could work and be tolerable
from the peer users (i.e. without lagging issues). However, Blockly editor supports
syncing by send only the change event data and applying them in the other peer side.
In addition, functionality of browsing specific visual elements is required in order to
open and highlight them (e.g. ask which visual element caused an action, request
highlight a visual block for the peer users for presentation purposes in collaboration
editing). In this context, the project manager provides functionality that requests from
the responsible visual programming editor to open a visual source and then, request

from the editor to highlight specific visual elements.

Furthermore, each visual programming editor is responsible to export source code or

data that will be used for the execution of the project. In this context, Blockly library

89

provides API that generates JavaScript source code from the workspace instance.
Additionally, each visual programming editor instance has to support basic actions
such as copy, cut, duplicate, delete visual programming language elements and undo-
redo functionality as well. Blockly library supports these actions and we incorporated
them in the Blockly editor instances. Moreover, functionality of tracking the visual
programming language elements that have been developed for each of the visual
programming editor instances is required. We have built an extra layer with API on
the top of Blockly editor component that can provide information about the use of
each visual programming language element and the visual programming instances that

are loaded.

Moreover, there are two more directions of functionalities for visual programming
editors. The first direction is the configuration of the editor instances in the context of
authoring application domains. The second direction is based on the intelligence of
visual programming editors including automatic visual code suggestions, visual code
assistance, visual code snippets, etc. In the next two sections, we will discuss
regarding the configuration of visual programming editors and the visual code

snippets.

4.1.2 Configuration of Editor Instances

The visual programming editor instances could be configured either from the end-user
developer as previously discussed (see section 3.1.2) or from the developer of the
application domain. In the context of the application domain, the developer is able to
define the configuration of visual programming editor instances based on the concept,
the parts and the style of the project elements of the application domain. The visual

programming editor configuration includes two categories as follows.

The first category refers to the customization of the visual programming editor’s style
for a specific visual source instance. For example, Blockly’s visual source instance
can be rendered by default (e.g. toolbox is positioned vertically along the leading
edge, the positions of the undo/redo buttons are in the bottom-leading edge corner and
the trash can button is in the bottom edge corner) as depicted on the top of Figure 4.2
or could be rendered alternatively (i.e. toolbox is positioned horizontally along the
bottom edge, undo/redo buttons are in the top-leading edge corner and the trash can is

located in the trailing edge corner) as presented on the bottom of Figure 4.2.
90

Moreover, Blockly editor enables to customize the view (e.g., background color, etc.)

apart from the layout of the user-interface parts.

| a random colour
[=]

S)

-

1

! i

! random colour |
1

1

b N N | I,

]
Logic Loops Math Text Lists :: Variables Functions i
L

Figure 4.2. Default View of Blockly's instance (top); Alternate View of Blockly's instance (bottom).

The second category refers to the customization of the visual programming editor’s
filter for the visual domain elements. In particular, the domain author chooses which
of the supported VPL domain elements will be enabled in the toolbar of the visual
programming editor configuration. Based on the configuration, the IDE undertakes to
refresh the toolboxes of the visual programming editor instances (if needs) when a
VPL domain element instance is created, edited or deleted (see section 4.2.1). For
example, on the top of Figure 4.2, Blockly’s editor instance is filtered not to include
the last two categories of the Blockly Blocks in the toolbar (i.e., Variables and

Functions).

91

4.1.3 Visual Code Snippets

Code snippets are small blocks of reusable code that can be inserted in a source code
file by using a right-click menu (context menu) command or a combination of hotkeys
(i.e. shortcuts). They typically contain commonly used code blocks such as loops or
conditional statements, but they also can be used to insert entire classes or methods,

etc.

In the case of visual end-user programming, we introduce the visual code snippets.
The visual code snippets could be defined either by the domain authors or by the end-
users. The domain authors are able to define visual code snippets based on the
requirements of their application domain. For example, in case of the user interfaces,
visual code snippets could be added that iterate all the designed screen areas and
change specific properties (e.g., the background color). Additionally, the end-users
can define their visual code snippets or edit existing ones in order to reuse them for

their applications. However, this feature could be usable by more experienced end-

BB Snippets

v Blockly [X +Ke;

users only.

ctatements v

>] Rete LY+ R e

Figure 4.3. Visual Code Snippets Toolbar.

Compared with the code snippets for developers, the visual code snippets require to support
extra features for their efficient functionality and usability for the visual programming IDE. In
particular, visual code snippets must be presented by the visual programming editors. This

requires the toolboxes that will be hosted by each visual programming editor, their minimized

92

view in the toolboxes, their categorization, etc. As a result of this, the visual code snippets are
dependent on the visual programming editors. In this paragraph, we discuss the functionality
of the features by using the Blockly editor as an example. However, the same logic has to be
followed by other general-purpose visual programming editors. Although the visual code
snippets are handled by the visual programming editors, there is a main visual code snippets
toolbar which is responsible for viewing and managing the visual code snippets presented in

Figure 4.3.

4.1.3.1 Administering Snippets

The first feature that has to be supported for visual code snippets is the ability to build
new snippets. There are two ways for the end-user to create a new one: The first way
is by creation of a new snippet from scratch by providing a menu item choice “New
Snippet” for each of the visual programming editors as presented in Figure 4.3. The
second way is to select the visual code that the end-user would like to define as a new

code snippet by the visual programming editor instance, click right mouse button and

Visual Code Snippet *

¥ Buill-:n
Logic
Loops
Math
Tt
Lists
Colowr

|
1
|
1
|
I vanables
|
|
|
|
|

Functons

Condrtgnal
Scheduler
Time/Date

I Smart Devices

Dezcription

Figure 4.4. Pop-up dialogue for Blockly’s code snippets creation.

93

choose from the menu option “New Snippet”. Then, a pop-up dialog opens which
includes the visual programming editor instance area for the visual code and a form to
fill-in the category, the title and the description of the visual code snippet as depicted
in Figure 4.4. In addition, this pop-up dialogue opens when editing the visual code
snippet. Finally, the end-users are able to delete a visual code snippet by using the

menu option “Delete”.

The visual code snippets are separated into two main categories, the general purpose and the
domain specific visual code snippets. In addition, the domain authors and the end-users are
able to define sub categories for the visual code snhippets. In this context, they are able to
rearrange the order of appearance, as well as to delete, initialize, rename or hide a category.
Moreover, the order of appearance could be adapted based on the recently or most used

snippets category.

4.1.3.2 Using Snippets

The developers use keyboard shortcuts in order to insert the source code snippets. In case of
visual code snippets, the end-users are be able to search them through an appropriate search
toolbar. Each visual code snippet includes a label and category that the search mechanism

uses to find the appropriate information as presented in Figure 4.3.

Each visual programming editor which supports visual code snippets, has to provide a
hosting area of the toolbox whose visual code snippets are visualized. The end-user
developers are able to instantiate a visual code snippet either by right click or by drag
and drop in the visualization main area of the visual programming editor. When a new
visual code snippet is instantiated, there are fields which have to be filled-in. The
visual programming editor focuses on these fields (i.e. values and variables) and the
end-user developer is allowed to handle them. Alternatively, a pop-up could open per

each of these fields in order to handle them all.

4.2 Domain-Specific Visual Programming Language Elements
and Editors

The domain-specific visual programming language editors are used to develop and/or

handle one or more domain visual programming language elements of the application.

For example, the graphical elements of the user interfaces are developed using

WYSIWYG editors. Each graphical element corresponds to a domain visual

94

programming language element. Additionally, smart objects in the context of personal
automations in the Internet of Things domain are developed using a Visual Smart
Object Editor (see section 9.1). The smart object corresponds to a domain visual
programming language element and each smart object which is registered in the
application corresponds to one visual programming language element instance which

includes its personal data.

The developers of an application domain framework have to incorporate domain-
specific visual programming editors for their application domains. These visual
programming editors will be used by novices in order to be able to develop the
corresponding VPL elements for their applications. Thanks to the component-based
architecture which is followed by the Blockly Studio IDE, the domain author is able to
develop it as new plugin(s). In addition, third party libraries could be used by the
visual programming editors for the application domain. For example, in the case of
the domain of the personal automations in the Internet of Things, middleware for the
communication among the end-user developed applications and the smart objects is
required (e.g. loTivity).

Additionally, the domain-specific visual programming editors, apart from developing
and handling the domain visual programming language elements, are responsible for
the source code generation which corresponds to the visual sources that are created. In
particular, the developed VPL elements are saved by the domain-specific visual
programming editors in visual sources (i.e. DSL format). Based on these visual
sources, the domain-specific visual programming editors generate source code.
Source code generation targets either the project execution or the debugging process
in the context of the IDE workspace.

Moreover, the domain-specific visual programming editor has to export data from the
visual domain element instances which are handled and notify the IDE with appropriate
signals for end-user actions (e.g. create, edit, remove etc.). This helps the aforementioned
mechanism, developed on the top of Blockly, which automatically handles the
development dependencies between the project elements. This mechanism is analyzed in

the following section.

95

4.2.1 Supporting Behavior of Domain VPL Elements

Designing instances of domain VPL elements is not adequate for the end-user
programming of an application. In particular, their behavior must be developed in the
applications. For example, in the case of the graphical elements, the end-users have to
develop the logic and the events for an interactive user-interface. In the case of smart
objects, the domain VPL editor is specialized in registration and communication
between the smart objects and the applications. However, the domain specific visual
programming editors do not include the logic and the instructions of the behavior of
an application. This requires the definition of a behavior handling set of new visual
elements (e.g. blocks in case of Blockly) for each domain VPL element. The role of
visual programming in this part of the application is handled by general purpose VPL

editors (e.g. Blockly editor for our approach) that are registered in the IDE.

’ Domain VPL Element I

i

-
VPL Editors Project Elements
(e.g. WYSIWYG builder) Manager

f ﬁ
Blockly WsP Blockly
Instances VPL Editor

- |
T

Project
Manager

Blockly
Library

Factory Blockly Blockly Toolbox
Blocks Manager Manager

Figure 4.5. Extension mechanism for Blockly to automatically manage the behavior handling set of
blocks for visual programming language domain elements.
Each Blockly editor instance consists of two main parts, the block canvas area in
which visual code is designed and the toolbox that is the side menu through which the
user may create new blocks. The Blockly Library supports creating custom blocks and

configuring the toolbox for its Blockly editor workspace instances. Based on this, we
96

are able to define new blocks and toolboxes for the project elements. However, this is
not adequate for managing the project element dependencies. Particularly, existing
Blockly blocks and toolboxes have to be dynamically changed during the development
process. For example, in the case of personal smart automations in the Internet of
Things, when new smart objects are registered (i.e. added) in the project, new blocks
have to be defined and the toolboxes have to be updated by adding these blocks. In
the same context, when a smart object is unregistered (i.e. removed) from the project,
the corresponding definitions of blocks have to be deleted, the toolboxes have to be
updated and possible instances of these blocks in Blockly editor workspace instances

have to be removed.

The latter led us to build a layer on top of the Blockly library for our IDE (see Figure
4.5). This extension requires to define the behavior handling set of Blockly blocks for
each one of the visual programming language domain elements. The visual
programming language domain elements information is exported by the specific
domain visual programming editors through which they are managed (i.e. create,
delete, edit etc.) by end-users. Getting this information as input in our mechanism and
using the behavior handling set of Blockly block definitions, our tool undertakes to
automatically define the required Blockly blocks as well as to generate and update the
Blockly editor toolboxes. In this context, the development dependencies between the
project elements are handled. When end-users attempt to delete a defined domain
element instance from the project (e.g. a registered smart object), they are warned

which project elements will be affected in this case.

4.2.2 Linked Visual Programming Elements

The domain authors are able to define links among the visual programming language
elements by adding in their definition an extra field of visual source data that corresponds in
the link. Moreover, the visual programming editor has to support right click functionality in
the visual programming language elements. Afterwards, when the end-user developer chooses
to browse the linked visual programming editor instance, the editor manager component

undertakes to open the responsible visual programming editor.

For example, using RETE, a flow-based programming editor, defining the nodes of the editor,
the domain authors are able to define the browsing linkage. In particular, they are able to

include an extra field of linking the visual source information. In this case, extra menu items

97

are added for the specific visual domain element (by right clicking) in the visual programming

editor (see Figure 4.6). The visual programming editor communicates with the editor

manager which handles the browsing by using the authoring data.

| ® Alarm Clock Rings George # George
Basic -
Conditions © Alarm Clock

Observers Rings & When
& Instruction
3 Coffee Machine AL Tidy up
Ready ;

Open —
Delete

| ® Alarm Clock Rings George # Georg

Logic

Loops

Math LY Time ~ KL TE BTE Give the time £/

I:‘s repeat n times

Color CCRLITIEY Kid's Bedroom Alarm Ring ~ |

Variables 7 CX Parents' Bedroom Alarm Ring ~

Eunctions o) if | = ~ I true ~ |

do (XIS ofloop

Figure 4.6. Linked visual programming language element with other visual sources.

98

Chapter 5

Projects

"Man is a tool-using animal. Without tools he is nothing, with tools he is all."

- Thomas Carlyle

The set of sources that are developed for the programming of a software application
constitute its project. Since every project consists of many sources with different
extensions, it is sometimes hard to find, create and handle them. In this context, the
project manager is one of the core components of the IDE by undertaking to manage
the application sources. The common view of a project manager is a tree view in
which every node represents a project element that relates with a folder or a source of
the applications. The project managers facilitate the developers to better organize and
structure their projects, however, this is not an easy process for novices or non-
programmers. In this context, in case of visual end-user programming workspaces, the
project managers have to be more user-friendly and targeted in order to facilitate the
application structure and development process in general. In this chapter, it is firstly
presented the project manager of our IDE that is configurable based on application
domains project manager we have developed, Then, we will discuss about the project
elements that can be authored for application domains and the editor manager

provided features for the browsing of project elements.

5.1 Project Manager

The project manager is one of the core components of the IDE. This component
undertakes the managing of the application sources that the end-users develop.
However, the project manager is more demanding in the case of novices than in the
case of software developers. This could be easily perceived by considering that
novices are not experienced in structuring the sources of the project of their
applications. Due to this the project manager has to be more use-friendly and targeted
on specific application domain by restricting the structure of the project elements, the

project element types would be available to create in the development process, the
99

available user options, etc. However, each application domain has different
requirements for features, different project element types available for the

development process, etc.

5.1.1 Authoring Project Structure for Application Domains

In this context, we have developed the project manager in order to be configurable
based on the application domain that the visual end-user development focuses on. The
developer of the application domain is able to author the project structure and the
functionality of the project manager. In particular, the project manager is configurable
based on four sections as depicted in Figure 5.1.

"app_structure” : {
"title" : "Personal IoT Applicatios”, “options” : [m],
i ages/iot/iot-app-domain.png" “pitem_categories” : [
: "BlueStyle”,
“"options” : [=], "type" : "SmartObjects”,

“renderParts” : [
{ "type” : “color", “"value" : "blue" },
. i { "type" : "img", "value" : "fa-industry-alt" },
1 Q Personal loT Automations = { "type"” : "title", “"value" : "Smart Objects" }
]

>

: . 5 “options” : [m],

v % Morning Automations : "validChildren" : ["SmartObject”, “SOEnvironment™”],
v | & Smart Objects = "Pitf"‘s" 2 0

8
| ® Alarm clock & "type” : "SmartObject”,
| ™ camera = “penderParts” :

] & Coffee Machine & "ty * : "yellow" },
T 1 1 "ty img", "de " : "fa-tablet” },
vi | 1i& HiEnvironment Events ; H o i & 2
baclpnilecccccccccccaacaaaad | S}
v | 15 Condition i y retrie : 4
=== s -- iy e
Il Alarm Clock Rings || +e+ | N : :
HIheedt] i HEH

r'ig Water Is Ready
| & Coffee Is Ready
> | & Calendar
v Tasks
I » Start application
/& Clean the house
| =® Anti-theft
| = Prepare for movie

Figure 5.1. Configurable view parts of the project manager component.

The first section is the application domain label consisting of the application domain
image, title and menu options. Using the latter, the application domain author is able
to restrict which will be the abilities of an application domain (e.g., create new

project, open project, open all projects, delete project, exit etc.).

The second configurable section is focused on the application domain projects
contents. In particular, the domain author defines the structure of the projects’ visual
sources, authors the project categories (i.e., folders in case of text-based development)
and the project element types that can be created by the end-users. Additionally, the

100

application domain author is able to select which will be the menu options (e.g., close

project, rename project, share project, delete project etc.).

The third section is the definition of each one of the categories of the projects. Each
category view includes the color (optional), the image (optional) and the title (see tag
3 of Figure 5.1). Each category optionally includes a list of available sub-category
types and project element types. Moreover, predefined sub-categories and project
element instances are able to be developed by the domain author for the end-users.
Furthermore, predefined visual sources may be authored as read-only with the
possibility of being not renamable and not removable. All the aforementioned options
for the project structure are addressed by defining the specific options that will be

available for the users.

The fourth section of configuration is the project element types. For each project
element type, the domain author has to author the view (see tag 4 of Figure 5.1).
Particularly, they have to select which of the information will be included (i.e., color,
image, title) and optionally define any extra data view. For example, in the case of the
smart objects, the application domain author may define the state of the smart devices
(e.g., online, offline, etc.). Moreover, extra elements are able to be rendered due to

project element properties (e.g., shared elements, read-only elements, etc.).

5.1.2 Functionality and Style

As previously mentioned, the project manager supports user actions (i.e. create,
delete, edit, etc.) that are available either by click on three dots button which
positioned on the right side of each node of the tree view or by right click in the node.
When user triggers the action, an appropriate dialogue opens to serve it. In particular,
the developers of the application domain are able to define which will be the
ingredients of the dialogue for the specific user action. They are able to choose which
of the project element values (title, image, color, etc.) will be available to be handled
by the user, which of them will be visible on dialogue, etc. In addition, they are able
to define the actions that will be available at the bottom of the dialogue. The domain
authors are able to develop extra actions that will be accomplished by their added

components.

101

Also, default functionality of a Project Manager such as search project elements, drag
and drop, automatically-sorted project elements etc. exists and the domain author is
able to select it or not according to the needs of the application domain. Last but not
least, the domain author is able to customize the style of the project manager by
defining new styles or by using existing ones from other application domains that

have already been authored.

5.1.3 Settings for Project Elements

For each project element type, the domain author could define settings that are
relevant to the specific element and/or the whole domain project. There are standard
types of settings that are supported, including drop-down list of choices (see example
in Figure 5.2). In particular, the application domain author is able to define any value
type either basic or aggregate by reusing the user-interface code generation that is
developed for the purposes if the “Configuration Manager” as mentioned earlier on

section 3.1.2.

Furthermore, the application domain author is able to define function name that will
be used as callback in order to get the option values in case of select HTML view.
This could be useful in case the options depend on the end-user development process
(i.e., by development actions the list of options is affected). Additionally, the
application domain authors are able to define types which will be handled by specific
third part tools (e.g., one Blockly workspace instance could be defined in order to
handle dynamic settings through visual programming) and will be injected in the

dialogue with other settings.

The values of these settings are accessible in the visual programming editors, the
project element templates (described in the section 5.2.1) and the runtime
environment (described in Chapter 6). Moreover, the options are available by choose
to view the project element settings. As a result, the end-user developers are able to
edit the values of these options during the development. However, the application
domain authors may would like to base the construction of the project element in
these options and wouldn’t like to allow edit in specific option(s). In this context, we
enable two more choices in authoring of the options. The first choice enables the

application domain author to render the value option as read-only when the project

102

element has been constructed, while the second choice enables that the option will not

be visible.

This implies that the application domain author could express them in the visual end-
user programming time by rendering different visual programming view areas or
different view parts. For example, the user could choose to develop the project
element by using the Blockly Editor or alternative editor (if exists) and then
constructing the project element, the chosen editor could be used. The latter means
that the project element types could be dynamic driven by the user settings for the
project elements. Furthermore, the users define the experience level in the context of
programming. Using settings of the project element, the domain author is able to
define rendering of different project elements per the user experience. Additionally,
settings are able to be utilized during the execution time by interpreting their meaning.
For example, the user may choose when or how to execute the project elements

during the project execution as depicted in Figure 5.2.

"settings": [

{ New Automation for Scheduled Tasks X
Name: Automation for Scheduled Tasks 2
Image: Choose File |No file chosen

1

Background-colour —

)
"selected
“renderOn

Starts Automatically g

"selectedBy": 5
>

Figure 5.2. Authoring settings for project element type.

1,

5.1.4 User Action Hooks and Validation for Project Elements

Additionally, the project manager supports real-time validity check through rules for
user actions (i.e., create, edit, delete) of the project elements. In case users insert
invalid input, an appropriate message is rendered on the top of the input field. In the
context of tests, standard rules have been developed such as prevent duplicate names,
start labels with/without specific names etc. Moreover, based on the application
domains, different rules have to be applied. In this context, the application domain
author has to define which rule or rules will be applied per project element type.

Moreover, they are able to define new rules through scripts.

103

Furthermore, based on the rules of the application domain project, our approach
empowers the domain authors to develop user action hooks. In particular, they are
able to develop functionality that will be applied before and after a user action. Using
this feature, the application domain authors are able to prevent an action based on the
rules that they would like to follow in their application domain framework. In
addition, they are able to add functionality to the before and after user action. For
example, they are able to add or change the user action dialogues for the specific user
action based on the project state, the project element state, etc.

5.1.5 Using Alternative Project Manager or None

Moreover, As discussed earlier, the Blockly Studio IDE is extendable following
component-based architecture and each of the components is loaded dynamically
when the IDE initializes. Based on this, the domain author could configure which
components will be loaded. Each component implements a specific interface. So, the
domain author is able to replace the provided project manager if it is required for its
domain application. Moreover, the domain author could choose not to use the Project
Manager for the domain application at all. This means that the domain application
project will be limited to one project element. However, this choice does not mean
that it will be limited to one visual programming editor instance. This depends on the
authoring of the project elements that are described in the following section (see

section 5.2).

5.1.6 Authoring by Using JSON Schemas

The application domain authoring for the project manager is written in the form of
JSON and has to satisfy the JSON Schema Validator [137]. Using this mechanism, the
platform will notify the domain author of any possible mistakes regarding the
authoring process. The same logic applies to the authoring of the project manager's
style. Alternatively, the project manager exports an API through which developers
may customize and author the application structure of the project, instead of doing it
by defining JSON data.

5.2 Project Elements

Each type of project element includes by default one visual source which is loaded

and handled by specific visual programming editor(s). However, project elements

104

apart from the visual editor data, include information (i.e., color, image, title, author
etc.) and values of the settings (see section 5.1.3) that domain authors may would like
to interpret them in specific style. Additionally, they may would like to define more
complicated project element types including more than one visual programming editor
instances which will be injected in a customized user-interface. Moreover, the number
of visual programming editor instances that are included in a project element may
changes during the end-user development. In this context, we introduced authoring of
project element templates in Blockly Studio IDE.

5.2.1 Templates

For each project element type, the domain authors are able to describe the contents
will be included in project element instances. In particular, they can author the view,
the interactivity, the injected visual programming sources and which visual
programming editor will handle them. Using templates, the project element
information can be rendered (e.g., the file name and/or path of the project element, the
date created, the current end-user actions, the author etc.). Furthermore, the
functionality and the style can be developed through JavaScript and CSS in the case of
more fancy and interactive project elements. Additionally, the domain author could
define one or more visual programming sources of visual programming editor
instances that will be injected in the designed empty DIV elements during
instantiation of a project element. The templates are saved in a repository and the
domain authors are able to develop new ones or re-use already existing ones. The

development of such templates includes the following parts:

1. Lodash template [138] (i.e. HTML enriched by template tags).

2. Cascading Style Sheets (CSS) used for the presentation.

3. Map of the empty DIV elements (i.e., Selectors) and the configuration for
visual programming editor instances (see section 4.1.2) will be injected.
Additionally, for each of the visual programming editor instance is defined if
the instance will be loaded or not when the project element is loading.

4. Required functionality for project elements (e.g., on focus view, on close,
etc.).

5. Required functionality of the rendered HTML from Lodash template.

105

The IDE handles these templates in order to address the functionality of the project
element (e.g., create, open, close etc.). Using this mechanism of templates, the domain
authors are empowered to design and develop any project element type that will be
required for their application domain frameworks.

G | ® Alarm Clock Rings George # George

i
q Condition Task 1 (X3 Task2 X}

el Logic
d Loops
1 math T Give the time 12
' Text .
] LUists
1 color LR Kid's Bedroom Alarm Ring ~
I Variables L7 Parents' Bedroom Alarm Ring ~
AL O S Everyone's awake - I =~ I trve - |

N break out - L1

Figure 5.3. Example of a project element template; project element information (tag 1); interactive
parts of the template (tag 2); area for visual programming editors (tag 3).

An example could be the following template. We have developed a classic tab view in
which each tab area hosts one Blockly workspace instance. The template includes
three parts (see Figure 5.3). The first part presents the information of a project
element (i.e., file name, author and owner). The second part of the project element
enables the end-users to browse among the visual programming editor instances,
create new tasks (i.e., Blockly workspace editor instances), rename the name of a task
and delete a task. The last part of the project element template includes the areas in
which the visual programming editor instances are hosted (see tag 3 of Figure 5.3).
Another example could be the form-based smart object editor that is discussed in
Chapter 9. This visual programming editor loads a dynamic number of actions based
on the functionality that is provided by each smart device. We provide Blockly editor
instances for each of these actions in order to simulate the functionality of the action

in case of debugging the smart loT automations. In this case, the only visual

106

programming editor instance that opens is the smart object editor and the Blockly

editor instances loads only when event is triggered by the smart object editor.

5.2.2 Hosting and Browsing Project Elements

The “Editor Manager Component” of the IDE handles the view of the project
elements. The end-user could view one or more project elements in parallel by
splitting the editor manager’s area horizontally or vertically as depicted in Figure 5.4.
During the end-user development process, the end-users are able to browse the project
elements through the Project Manager. Additionally, two options are given by
Blockly Studio IDE to provide browsing of project elements. The first option is by
enabling the action of “GOTO” previous or next project element that was loaded,
using the previous and next tool items appearing in the toolbar (see second red

rectangle of Figure 5.4).

> & k& OO Sloda ocamad

| @ Alarm Clock Rings George ~ George | & water Is Ready & James # James

@ Personal loT Automation =
¥ Logic
v #% Morning Automations : I Loops

, | LU B Give the time 20
v | & Smart Objects I Tex
1 © Alarm clock # I Usts ropeat T umes L Kia's becroom aierm ~ LA Ring 122

I @ Comera I coor L Kids Becroom Alarm Fing -]
1 Sk ol I verabes [20) Parents Boaroom Al Fing =]
v Environment Events 5]
+ 1 & Condition [Rt Oy ™ oo
| ® Alarm Clock Rings L2 break out - 1)
| = waterIs Ready ~—
| & Coffeels Ready
> | & Calendar
v | B Tasks
I » Startapplication
/& Clean the house &
| & Antitheft a

-l Parent’s bedroom alarm - IR Ring 2

ORI E veryon's awake - = - T True L0

Figure 5.4. Splitted in two project element instances area vertically.

5.3 Project Dependencies

There are dependencies among project elements and visual sources that are included
in the context of a project. In the case of software developers, dependencies are
handled by them. For example, when developing a GUI application, the design screen
parts constitute project elements on which graphic elements are designed. The logic of
these elements is developed in other source(s) which depend on the aforementioned
project element and the developer has to handle it. Also, the developer has to handle

graphical elements which have been created, edited or deleted.

In the case of visual programming languages, the Blockly Studio IDE handles the

dependencies automatically. The project dependencies are caused by the visual

107

programming language elements which have been developed in the visual sources
during the end-user development process (see Figure 5. 5). As we have already
presented in this thesis, the dependencies of the visual programming language
elements are handled by the extra layer mechanism of our approach (see section
4.2.1). This mechanism is based on signals are posted when one of the basic actions
(i.e., create, edit and delete) happens during the end-user development time. However,
this mechanism is defined for dependencies among general-purpose visual
programming editors either from specific domain visual programming editors or from
general-purpose visual programming editors. In case of dependencies between
domain-specific visual programming editors (e.g., dependency for WYSIWYG editor
and Smart Object Editor), the domain authors have to handle them by utilizing the

posted signals.

Total Project Sources

VPL toolbox VPL toolbox

VPLelem. type 154 VPLelem. type 1%f
VPLelem. type 2 VPLelem. type 2

VPLelem. type N VPLelem. type N

Visual Source 2nd

VPL toolbox VPL toolbox

VPLelem. type 154 VPLelem. type 1%f
VPLelem. type 2™ VPLelem. type 2"

VPLelem. type N VPLelem. type N

Figure 5. 5. Visual programming project sources of application and dependencies among the visual
programming language elements.

108

Chapter 6

Runtime Environment

“Nevertheless, I consider OOP as an aspect of programming in the large; that is, as
an aspect that logically follows programming in the small and requires sound

knowledge of procedural programming.”

-Niklaus Wirth

When software developers write programs, they need to execute and test them.
Therefore, the integrated development environments include runtime environment
components that allows the programmers to execute their programs and interacts with
the input-output console, the extra user-interface view based on domains, etc. Based
on the programming languages and the libraries are used for the development of an
application, the software developers have to set up the environment by installing
compiler or interpreter, libraries, etc. In case of novices and non-programmers, the
visual programming IDE has to handle the setup of the environment without
burdening them. In our approach, the runtime environment has to support the
execution for every domain application. In this chapter, we discuss the runtime
environment for the Blockly Studio IDE and how our approach is envisaged to work
for all the potential application domains. Additionally, we discuss the selective
execution feature that we introduce, the input-output console and the hosting of extra
user-interfaces for the application domains. Concluding, we discuss the potential of

isolating a project as an independent application.

6.1 Hosting the Runtime Environment

Based on the component-based architecture which is followed by Blockly Studio IDE,
we developed the runtime environment as an independent component. Loading the
workspace of the IDE, the runtime environment is initiated by registering the tool
items in the IDE’s toolbar (see sub section 3.1.1.2). When users choose to run the
application, the IDE instantiates the project execution by retrieving the project data of

109

the application. In this context, the users would like to be able to use the IDE in
parallel during the project execution. However, hosting the project execution in the
same execution context with the IDE, issues will be appeared. In particular, executing
the application’s source code, the event loop system of JavaScript could be locked and
the IDE could freeze until the end of the execution of the program. There are two
different approaches which could be used to solve this issue and host the run-time

environment in the IDE:

The first approach could address the issue by code decoration. In particular, the run-
script could be executed in the same context with the IDE by using code decoration
(or instrumentation). The latter is a technique that applies the insertion of extra
special-purpose instructions, either at source or at the binary level, with the intent of
introducing additional mission-specific functionality, however, without altering the
original observed behavior of the subject program. Based on code decoration and the
JavaScript Generators, the run-time system executes each visual programming
language instruction, then gets the control to satisfy possible IDE’s requests and
afterwards continues to the next instruction and so on. This technique requires to care
for the naming of the variables and the events must not override the IDE. However,
this is not a problem, due to the context of visual programming and code generation.
This means that the domain authors have to follow specific rules for the names that
will be used in the run-script and the code generation by always using a prefix e.g.
“ _runtime_script " for all of them. This technique will be used by the system to
address user actions (i.e. stop, pause application) as discussed in the following
section. Applying this approach, brings extra requirements for third-party domain-

specific visual programming editors.

As result, we adopted the classic approach of runtime environments for IDEs. In this
direction, we developed the project execution manager of the runtime environment as
a third-party application (see right top of Figure 6.1). This application communicates
with the IDE’s runtime environment by using the communication infrastructure which
discussed previously in section 3.1.3. Following this approach, the issue of IDE
freezing is addressed, while the IDE environment is not affected by the project

execution environment.

110

Run-time Environment App.

» DOM [
I

Blockly Studio
v

. } DOM
S L [iFrAME @
= | 7

’ %

—~ —1

ETEE RIS Sl (SO e
o ' :
Projects| ! Blockly Other VPE Sea!
DB || Generator | | Generator i

Figure 6.1. Authoring runtime of a domain project and runtime environment system of the Blockly
Studio IDE.

6.1.1 Running Projects of the Application Domains

Each project which is constructed using the IDE has a different way to be executed
based on the application domain it belongs. This issue arises from the authoring of
application domains which differs in the application structure (see section 5.1.1) and
the set up (i.e. third-party domain libraries, etc.).

In this context, the execution of the project is based on appropriate scripts that are
developed per application domain. These scripts are the entry points of the application
and undertake to load the required third-party application domain libraries, initialize
the required application domain data and the extra application domain run-time view
(if exists). Moreover, the run-script exports functions to handle user actions of the
IDE (i.e., Start Application, Stop Application, Pause Application and Continue
Application) to run the application (see left of Figure 6.1). In the following
paragraphs, we describe each of the user actions:

Start Application: When the user chooses to run the application, the IDE instantiates
the project execution of the runtime environment. Then, the runtime environment
requests the project environment data from the project manager. In this context,
respective JavaScript source code and/or execution data are generated for each visual

programming source, for each one of the project elements, using the responsible code

111

generators that are provided by the visual programming editors. The generated source
code data is mirrored with the application domain structure which is defined by the
domain author. Afterwards, the run-time environment calls the exported function
‘StartApplication’ of the script, giving the generated source code data as input. The
run-script function uses the EVAL function [139] to execute the generated source

code parts.

Stop Application: The action of “stop” requires control of the flow of the application
execution. The runtime system accomplishes the stop action by using the JavaScript
control flow and error handling [140]. In particular, when the end-user chooses to stop
the run process, the run-time system has to interrupt the execution of the application
by causing internal exception (i.e. throw exception) and then handle it appropriately.
However, the visual programming elements are not matched with source code
instruction one by one. This would interrupt the execution of the project in an
unexpected state of the run-script (i.e. not completed execution of the current visual
programming element). In this context, the code generator of each one of the VPL
editor’s code generator injects an extra instruction in the end of each visual
programming element. This instruction checks if there is system state to stop or pause
the execution of the application and undertakes throwing the exception in expected
state. Moreover, this would not be an adequate approach to solve this issue. There are
applications which run asynchronously or applications that include asynchronous and
sequential instructions. The run-script will be responsible to notify the run-time
system when the sequential instructions have been executed and if other sequential
instructions have started from an event. In case there are not sequential instructions,
the run-time system throws the internal exception to stop the execution by itself
instantly. Then, handling this exception, the run-time system calls the function
“StopApplication” which will be exported by the run-script. This function is
responsible to reset and/or delete the required data included in the run-script.
Furthermore, the script is responsible to unregister all the events that are registered in

the context of the project execution.

Pause Application: The action of “pause” follows the same logic with “stop” action.
The difference is that instead of throwing exception, in case of pause, the runtime

system activates a busy waiting loop that waits until the user chooses to continue or

112

stop the execution. Before the activation of waiting state, “PauseApplication”
function is called. This function is responsible to unregister the events which are

activated in the context of the project execution.

Continue Application: The action of “continue” needs to call the
“ContinueApplication” function which is exported by the run-script and activates
back the existing events which was activated in the context of the project execution.
Afterwards, the busy waiting loop is deactivated and the project execution continues

with the next visual code instruction.

6.2 Selective Project Execution

Running the project during the development process in order to verify if it is working
as expected is one of the main tasks. In this context, we introduced an alternative way
of running the project. In particular, the end-users are empowered to run the project
selectively. Starting the execution process, the default choice is to run the project
including all the project elements. However, the end-user developer could choose

which project elements will be included in the execution process (see Figure 6.2).

Start Application

rraR

v 2% Morning Automations

v | & Smart Objects &
voll ® Alarm clock
| ™ camera &
ol ® Coffee Machine
v | § Environment Events
v || Y Condition &
v | ® Alarm Clock Rings
| % wateris Ready &
v | & Coffee Is Ready
> | & cCalendar =
v | B Tasks
| » Startapplication
/& Clean the house &
| ® Antitheft &
I = Prepare for movie

Figure 6.2. Selective execution dialogue for ‘Morning Automations’ project.

113

Selective execution allows the end-users to run the application partially which means
that testing the functionality of their tasks will be easier. In general, separating the
execution of source(s), as a feature contributes to testing the project. Moreover, the
users will be able to run the project elements as independent applications.

However, selecting which project elements will participate in the project is not that
simple. The project elements include dependencies between other project element(s)
as discussed earlier. Having the knowledge of these dependencies, the visual
programming workspace automatically adds the project elements that are dependent
on the selected project elements (e.g., see the dependency of the condition event
‘Alarm Clock Rings’ with the smart object ‘Alarm clock’ in Figure 6.2). Moreover,
there are project elements which are required for the execution of the project (e.g., the
main task of the project). For such source(s), the application removes the option of

deselection.

6.3 Input-Output Console

End-users are familiar with instant messaging software tools (e.g. Skype, Messenger
etc.). Based on this, we simulated the output console for the applications as a chat. In
particular, when an output block is executed, the users receive the corresponding
messages via the console. The input text area is disabled by default and when the end-
user developer has to input text in the application, it alters to enabled as depicted in
Figure 6.3. Moreover, the output console interacts with the project manager. In
particular, when a Blockly input block is executed the project manager opens the
respective project elements of this block. In addition, the bubbles (i.e. text messages)
are interactive too. When the end-user developer clicks on each bubble, the project
manager opens the respective project element which triggered the message in the run-

time output console.

Additionally, based on the authoring of domain visual programming language
elements, the domain author can define alternative user interfaces of the messages by
replacing the bubbles. For example, input could be a form of element(s) completion.
This functionality is possible thanks to the API provided by the Console Output
component which enables functionality to adapt input and output messages.
Moreover, the domain author is able to define input/output domain visual

programming language elements by adding extra 1/0 devices (e.g., gamepad, Joypad,

114

microphone, camera etc.) with their respective third-party libraries according to the

application domain requirements.

| ® Alarm Clock Rings George # George

I Logic
= Loops () @) Example for I/O Console

Math
I Text -4 Time v R0) (:: input (7 Give the time |2/
I Lists 2 1 1
I cor repeat UKD | | ‘i €53 ©
I variables ST Hello World! 12,
I Functions f .

st (XD o | (GITED X @
— . :

B Application Run-time Console

Console 16:12
i Required Input: Give the time

Console 16:14
i Required Input: Give the time

Input

Figure 6.3. Console input is enabled and the corresponding block is browsed.

6.4 Hosting User-Interface of Application Domains at Runtime

The domain author may want to add extra input-output view component(s). For
example, in case of GUI Application, the domain author would want to present the
GUI of the application during the project execution. In case of a Game Application,
the domain author would want to present the game view during the project execution
process. Finally, in case of the personal automations in the Internet of Things, the
domain author would want to add view components for the state and control of the

smart objects which will participate in the application.

The domain author could define one or more domain views as components that will

be initiated and hosted during the project execution. The workspace provides the

115

required empty div elements. The domain author is responsible for handling these

components in the run-script by using the provided empty div elements.

6.5 Exporting Project to an Isolated Application

The end-user would like to export the project to an isolated application. This would
require from the domain author to develop an additional appropriate script as the entry
point of the application. This script would include only function of
“StartApplication” with input argument the project data (i.e. application structure
with code generated parts).

Furthermore, the authored visual programming language elements would require to
develop separate definitions of code generation in case there is interaction between
the application and the IDE. In this context, there is an optional field in the authoring
“exportGen” that will be used by the code generation process instead of “codeGen”
or “debugGen” which are defined in the domain visual programming element.
Moreover, in case of 1/0 actions the domain author could use the Console Output that
is provided by the IDE by incorporating this component to the application or could
develop an alternative approach based on the “exportGen”. Finally, the workspace
would export the package of the JavaScript sources including the defined entry script
without adding the code instrumentation for the project execution in the context of the
Blockly Studio IDE.

116

Chapter 7

Debugger

"Programming allows you to think about thinking, and while debugging you learn

learning."

- Nicholas Negroponte

Debugging is the systematic process of detecting and fixing bugs within software
programs. Visual Debuggers are the core tools for debugging process that are
provided by the IDEs. These tools include facilities for tracing source code, viewing
memory of the programs (e.g. variables, data structures, etc.), browsing the call stack
of the function calls, etc. In the context, of visual end-user programming for our IDE,
we have developed a full-scale visual debugger including the facilities of classic
visual debuggers and aiming to support novices with extra features in order to boost

them for accomplishing the debugging process.

The Visual Debuggers are separated in two main components, the front-end
(debugger) and the back-end (debuggee). The front-end of visual debugger
encourages the user to test and debug programs by enabling step by step control of
execution, handling of breakpoints, and monitoring values of variables. The back-end
of visual debugger is computing the application or a process which a debugger acts.

We are following this approach in case of the Blockly Studio IDE.

In the context of visual debuggers for IDEs, front-end components cooperate with the
text editor component is used in order to handle the breakpoints, highlight source code
lines and view memory of values on mouse over the respective source code. In the
case of Blockly Studio IDE, the front-end debugger communicates with each of the

visual programming editors that are registered.

In the following subsections, for each of the visual debugger’s facilities, we analyze
the functionality of the visual debugger’s front-end and back-end in order to

accomplish them.

117

@.‘ Debugging

Debugger Control

N N

Debugger data

Variahles | Watches Explanations

v I Conditional Tasks
" Home Safety
™ Leaving Home
. Waking Up
v g Scheduled Tasks
Before Wake Up
v = Smart Devices
v ® Air condition
P AutoMode
v #% Configure
(<] device-temperature_arg : undefined
(<] swing_arg : undefined
P TurnOff
P TurnOn
© device-temperature : 22
© environment-temperature : 23

Breakpoints

e | Before Wake Up - ID 1 []
e | Waking Up - ID 2]
e | Leaving Home - ID 3 []
o | Home safety - ID 4 []

Conditional Breakpoints

There are no breakpoints added.

Figure 7.1. Debugger's Toolbar.

7.1 Initiating the Debugging Process

When the user starts the debugging process by selecting the debug tool item from the
runtime environment, the front-end debugger is initiated by loading the toolbar.

118

Afterwards, the front-end debugger component communicates in order to start the
debuggee. The runtime environment requests from the project manager component to
retrieve the debugging environment data for the project by asking for each of the
responsible visual programming editors to generate source code or data for the

debugging process.

Similarly, to the project execution (see section 6.1), the debuggee is executed in
another execution context from the Blockly Studio IDE. In this context, it retrieves the
appropriate domain authored debug-script and calls the ‘StartApplication’ function. In
order to accomplish the communication among the debugger and the debuggee, the
code generation for debugging injects appropriate code snippets between the
generated source code. Executing these code snippets, checks the debugger state,
refreshes the debugger toolbar, etc.

7.2 Debugger’s Toolbar

When the debugging process starts, the debugger’s toolbar appears in the visual
programming workspace (see the Figure 7.1) in the right side of the main project
elements area. Using this toolbar, the members are able to view memory variables of
the application and handle the features that are provided for the debugging process.
On the top of the toolbar resides the toolset of handling the debug process (i.e., start,
pause, stop, step, collaboration and selective debug). Below this toolset, the toolbar is
separated into three different rows. In the first row of the toolbar displays the watches,
the variables and the explanations. In the second row the breakpoints are located,
while in the third-row conditional breakpoints are shown. Each of these parts are

discussed in the following sections.

7.3 Breakpoints

One of the most important concepts that supported by debuggers is handling the
source code points in which developers would like to pause in order to monitor the
state of the projects which is known as breakpoints. In source-level (text-based)
debuggers, breakpoints are inserted per line, left to the editor area, usually at a special
column reserved for custom icon annotations by the programming tools of the
development environment. It is usual that such annotations are inserted by the

bookmarker, source manager, IntelliSense, and the debugger frontend.

119

In the case of the visual programming editors, breakpoints are inserted per visual
programming language elements that have to be supported. In this context, typical
breakpoint icons have to be injected in visual programming elements. In case of the
Blockly Editor we designed a typical breakpoint icon, located on the top-left of each
of one of the Blockly blocks as presented in Figure 7.2. In the same logic with
breakpoints in text-based visual debuggers, there are different views respective with
the state of the breakpoint. The state of breakpoints can be enabled or disabled, while once
an enabled breakpoint is hit, it is highlighted.

R breakpoints areq ~---«-««-«---

Y Y. "

: . ‘. O

2l 2mal - am
enabled disabled is current

Figure 7.2. Breakpoint icons for Blockly Editor.

Moreover, adding new breakpoints in the visual programming language elements is
provided by the visual programming editors. This could be done either using their
toolbars or using right click on the visual programming language elements. In case of
the Blockly editor, we developed this option by using right click options. The rest of
the handling user actions (i.e., enable, disable, delete a breakpoint) are provided by
the visual debugger toolbar (see Figure 7.1) and communicating with the respective
visual programming editor instances in order to sync the information of the
breakpoints. However, the visual programming editors are able to provide them. The
visual debugger provides appropriate API that can be used by the visual programming

editors to handle the breakpoints.

The association of breakpoints to individual blocks is implemented on top of the
Blockly as follows: Internally, Blockly exposes the actual object reference of every
single block. This is actually a well-documented and standard feature of Blockly
library. We use it to directly associate, as part of the breakpoint manager, the block
references to their breakpoint state. Then, as part of the code instrumentation, the code
generated per block is decorated to post an event both to: (i) the Blockly library, with
a request to highlight the block; and (ii) the breakpoint manager, to test if a breakpoint
is hit — if the latter is true, meaning a stop point is met, execution will break and a

trace command will be expected by the debugger User-Interface so as to proceed.
120

Logic

Loops ELALIE (O m
Math Duplicate
Text 1 Add Comment

Collapse Block
Lists

Disable Block
Color .

Vanables Add Breakpoint
Functions
Run to cursor
block__
Help

Create ‘get n

Figure 7.3. Handling breakpoints by right clicking on Blockly blocks.

7.4 Conditional Breakpoints

The breakpoints are related to the general-purpose visual programming editors. In the
context of specific-domain visual programming editors that are specialized on
handling the visual domain elements, there is not source flow in order to control
where to stop. However, in this case, there data objects and the end-users may like to
be notified when a field of the data object changes. In this context, we have developed

conditional breakpoints for the visual programming language elements.

The conditional breakpoints are triggered on change value of visual programming domain
element property or on get specific value of a property etc. Moreover, the end-user will be
able to choose how many times will be activated the breakpoint observer and/or begin to be
activated after N times, pause execution in case something not happens in specific time etc.
Using these breakpoints, the end-user developers will be able to view the memory variables
and the state of the applications when specific domain element property changes, while they

will be notified for the history of the domain element property values.

The conditional breakpoints have been developed thanks to the information of data
objects are handled by specific domain visual programming editors. In particular, as
we have already mentioned (see section 4.2.1), the domain-specific visual
programming editors notify the domain manager system for the data objects that are

constructed and handled. In this context, the front-end debugger retrieves total data

121

objects that are created in the end-user development process. Using this information,
the dialogue which handles conditional breakpoints generates the selections of the

visual programming elements and their properties (see Figure 7.4).

Conditional Breakpoint X

Observ

erver for
Visual programming element | 4= Thermometer >

Property of the element Living room temperature v e

Triggers on

° Create trigger

Triggers when First N times v
After N times

Every time

Figure 7.4. Conditional breakpoint's dialogue.

In order to address the conditional breakpoints, we have injected an extra code snippet
per visual programming language statement that iterates each of the enable
conditional breakpoints and checks if there are triggered by using function calls that
are developed in the debug-script. In case there is triggered conditional breakpoint,
the debugging execution pauses and opens a dialogue that informs about the previous

and the current value.

In addition, the end-user developer is notified if this change happened by the project’s
visual code execution or by external factors (e.g., in case of the domain of mobile
application, mobile sensor changed by the environment, in case of graphical user
interfaces, the user pressed a button, etc.). In case change has been caused by the
visual code, there is available link to browse and highlight the visual programming
language element, opening the respective project element and the visual programming

editor instance.

122

7.5 Tracing

As already pointed out, visual programming elements tracing is functionally similar to
source-level tracing, however, with a few important differences. The first variation
concerns the basic “Step In” and “Step Over” commands. These two operations,
originating from source-level debuggers, control whether a function call expression is
evaluated thoroughly (Step Over), or if the execution progresses by evaluating all
actual arguments and then by stopping into the first instruction of the invoked
function (Step In). In our case, besides this behavior regarding function invocations,
these commands work as follows given a current visual programming element during
debugging: “Step In” stops in the first inner (child) visual programming element, and
“Step Over” enters the next sibling visual programming element. Otherwise, if no
inner or sibling visual programming elements exists, they stop in the next executing
visual programming element, following the control flow. Interestingly, these
variations are possible due to the hierarchical structure of code, enabling users skip
entire visual programming elements of visual code during tracing, something not

possible when using typical source-level debuggers. In particular, in order

. 1. n=undefined at start
3. n=4 after manual evaluation of the n=n*2

expression block _______©° e

= =il oo a

Duplicate
Add Comment
Disable Block

Delete 4 Blocks Name Value Type

Add Breakpoint

—> n undefined undefined
Run to cursor
n 2 number <
Evaluate T |
block___ n 4 number

Help

Create 'get n’'

Figure 7.5. Automatic variable inspection and the Evaluate operation which works for any kind of

block, enabling to re-evaluate on-the fly (during debugging) any code snippet.

123

programmers to skip entire visual programming elements of text code, they would
have to either use the “Run To Cursor” command or, alternatively, place temporary
breakpoints and then use the Continue command. However, for nested expressions
this far from straightforward: positioning the cursor in a single line or setting a
breakpoint is not precise enough to trace particular subexpressions, unless the source

code is manually reworked to place one such subexpression per line.

In case of Blockly Figure 7.5, the behavior of “Step In” and “Step Over” is shown
once execution meets a breakpoint in Figure 7.3. In this example, the expression
n=n*2 is actually split in two blocks: the outer assignment block and the inner
multiplication block. The latter allows, as shown in Figure 7.3, to separately evaluate
n*2 with a “Step In” command, something not possible directly with a typical source-
level debugger. The same mechanics apply to the “Run To command ” as well, which
works for the currently selected block and will cause execution to stop exactly before

evaluating this block.

7.6 Watches

Inspecting program variables, commonly known as watches, is also in two ways. Via
the variables pane, showing all variables at the current scope (sometimes designated
as autos in various source-level debuggers), and the watches pane, in which inspected
variables can be added or removed during debugging by the user through the visual

debugger’s toolbar (see first two tabs in tag 2 of Figure 7.1).

As earlier discussed, for each project element is included a list of visual sources that
are handled by specific visual programming editors. Each of them may include
variables that would like to display them. In this context, the front-end debugger
provides API in order to add, edit, disable, etc. the information view of program
variables. This APl can be used by the code generation process of the visual

programming editors when a variable change.

In case of Blockly, all variables reside in the global scope, thus used throughout the
entire visual program, meaning the presence of the watch pane is somehow redundant.
However, it is still possible in Blockly to implement a custom block type for the
declaration of a local variable, simile to the let specifier of JavaScript. In this case,
autos will enumerate only the local variables at the current block scope, and watches

124

will show the particular user-chosen variables. In our implementation, if no local
variables exist, the variables window automatically displays all global program
variables. In Figure 7.5, the automatic display of program variables is shown in a

debugging session, in a simple example program involving a single n variable.

Besides variable inspection, it is possible to manually evaluate entire Blockly blocks,
something being more flexible and expressible than typical expression evaluation. For
instance, in the example of Figure 7.5, at Step 3, the manual reevaluation of the
current block is chosen. This is actually an extra evaluation with respect to the normal
program execution. As a result, the expression n = n*2 is executed once more,
causing n to gain 4 value, meaning it is also allowed to change program variables via
watches. Concluding, note that the same logic is able to be followed for all general-

purpose visual programming editors.

In the case of watching the domain visual programming language elements, the
domain author is responsible to use the provided visual debugger’s API in order to

display their values during the debugging process.

7.7 Execution Snapshots

Non-programmers are not experienced in the debugging process. As a result, the
visual debugger has to empower them with extra features. In this context, we

developed the history of variable values.

Debugging the application during the end-user development process in order to verify
if it is working as expected, the end-user is able to browse the execution flow history
of the visual programming elements. In this context, the end-user developers are able
to view the history of the values for each of the visual programming language
elements. In particular, by clicking on specific visual programming element, the end-
user programmer is able to view the watches values, the visual programming elements
had at a specific execution time. In addition, the end-user is able to view all the
history of the visual programming element values. However, this is not a
straightforward process, due to the classic visual debuggers that enable the current

values of the programming elements.

In order to solve the above issue, we have added extra decoration code per visual
programming statement. This decoration code requests an execution snapshot for all

125

the programming elements which are watched. In addition, the decoration code saves
information (i.e. visual source and visual programming element ID) for the visual
programming element currently executed. Thanks to this technique, the debugger
saves the history of the watched values and provides the backwards and forwards

browsing of the project execution.

7.8 Explanations

In order to give an extra weapon in the end-user debugging arsenal, we have
introduced new visual programming elements that could be helpful in the debugging
process. In particular, we have defined a new category of Blockly blocks named as
“Explanations . These blocks can be used by the end-user developers in order to
explain what will happen or happened in the above or below visual code instructions
they develop.

Using these blocks, relative messages can be posted in the input-output console of the
IDE during the execution. However, there is the option to choose when the block is
executing to pop up dialogue, pause the project execution and display the message
instead of post it in the input-output console.

Is 1 MainDoor- then

== Air Condition : get value from (= - I>)
' .'I S enE1l) Environment temperature has been reached 25 cels. ..

Arriving home

Figure 7. 6. Adding explanations for the execution of smart automations based on the environment

temperature.

The handling of these blocks is hosted by the visual debugger’s front-end (see tag 2 of
Figure 7.1) in the last tab. In addition, the history of the executed explanation blocks

126

is displayed during the debugging process. Furthermore, the end-user developer can
handle them through the Blockly editor workspaces as classic blocks. Furthermore,

there is ability to activate or deactivate them in the release project execution.

7.9 Supporting Debugging for Application Domain
Frameworks

As described in this chapter, a debug-script has to be developed for the debugging
process of a specific application domain framework. Similarly, with the runtime
environment, this script is the entry point of the debug execution by initiating the
application domain libraries, the global variables, etc. The source code generation for
the visual programming language elements differs in order to inject the extra required
information for the debugging process and the extra communication and checks that

are required in order to accomplish the visual debugger’s functionality.

Additionally, debugging information may have to be initiated. Moreover, there are
cases in which the release runtime environment may differs with the debug mode. In
particular, in case of the mobile applications, the developers debug and test their
applications not in mobile phones but in mobile phone emulators. In this direction,
sensors and properties of the mobile phones have to be displayed by the variables
view of the visual debugger. In order to accomplish this requirement, the visual
debugger provides API to define the information data that will be shown during the
debugging process. Another example could be the debugging process of smart
automations in the Internet of Things, which is impractical to test the automations in
smart devices and sensors (see section 9.7). However, using the debug-script, extra
software infrastructure could be developed and used that will be utilized for specific

application domains.

127

128

Chapter 8

Remote Collaboration

“None of us is as smart as all of us.”

- Will Harvey

We consider that collaboration is a key feature in end-user programming and could be
notably useful in the case of teaching and learning purposes, asking for help from
more experienced users, co-working for automations etc. The later makes it important
for groups of end-user developers to have suitable tools to support their collaborative
programming tasks. Our motivation to extend the Blockly Studio IDE in order to
provide a full-scale collaboration toolset in the context of end-user development is
based on the aforementioned fact. Our approach focuses on two directions, the
collaborative editing and the collaborative debugging.

8.1 Collaborative Editing

In this section, we present the full-scale collaborative editing facilities for end-user
development process that are developed for the workspace of the Blockly Studio IDE
(see Figure 8.1). In our approach, we focus on sorting out of the editing process by
introducing peer roles, access and edit privileges for project elements. Additional
features include: personal project elements, toggling live syncing during editing,
viewing peer action history, and enabling local execution without disrupting the
collaboration session. Moreover, through several settings that are exported, our
approach enables the domain authors and the end-user developers to configure them
in order to accomplish their requirements based on the circumstances of their end-user
development process. In the following sub sections, we present each of them, we
analyze the collaboration models that can be supported. Finally, use case scenarios

and the conduct of an evaluation process are discussed.

129

> Blockly Studio Configure Blockly

ODB 9caAmAN
— & i ’ : —
| © Alarm Clock Rings George #George < I % Water Is Ready NS (4 Jemes I 2 Collaboration
Logic

v Members
v Me

> Q George

v Collaborators

v #% Morning Automations
v | & Smart Objects
1 ® Alarmclock &
| ™ Camera &
| & Coffee Machine =
v | § Environment Events
v | & Condition
| © Alarm Clock Rings &

® % Water Is Ready
| = Water Is Ready = > ® James
| & Coffee Is Ready = g , 4
> | @@ Calendar George is the owner of Alarm Clock Rings’, James Personal Files - Joseph

v | B Tasks is able to view (read-only) the edits in real-time.

vaMary

Mary suggests visual code changes for the ‘Alarm
— Blockly Studio Configure Blockly Clock Rings’ and ‘Water is Ready’ project item.

OD B 9caAmAS

James 7 James

© Alarm Clock Rings & George /Gm«qel & Collaboration =

v #% Morning Automations ¥ Members
v | & Smart Objects v Me
1 ® Alamclock # > ® James
| @ Camera &
| & Coffee Machine & v Collaborators
v | § Environment Events v ° Mary
v | & Condition
| © Alarm Clock Rings & o © Alarm Clock Rings
| = Water Is Ready = > e George
| & Coffee is Ready &
> | B Calendar v Personal Files - Joseph
v | B Tasks > Smart Objects
1 » Startapplication & v Events
/& Clean the house v Condition
| = Antitheft = | & Coffee Is Ready

Figure 8.1. Collaborative Project “Morning Automations” with 3 participants (George, Mary and
James). George’s view of the collaborative project (see 1) and James (see tag 2).

8.1.1 Peer Roles

The first step of the collaboration process is the agreement among a group of people
for co-working in the end-user development project. The main data that are
distributed in each collaboration session is the shared project, on which the members
are working. In order to sort out the shared data we identified roles for the
participants. The first-class subject of our approach focuses on the members that join
the collaboration session of the shared project. We are aiming to better organize the
collaboration among the members, so we have introduced roles for each of the
participating members.

The lead role of the collaboration process belongs to the master of the shared project.
In the beginning of the process, this role is given to the end-user that shares the
project. The master has full access privileges in all the project elements of the shared
project. Furthermore, the master gets decisions for the development process of the
project. In particular, other members request to add or delete shared project elements
and the master replies to these requests. However, the master has the option to
configure the requirements of the requests for actions in the shared project elements
(i.e., no request needs, disable the ability to add/delete actions from other members

130

etc.) according to the circumstances of the collaboration process. Additionally, the

master is allowed to delegate his role to another member.

The second role is the owner of each project element. Only one member is qualified to
edit a shared project element. In particular, we consider that co-editing of visual
sources in parallel using multiple cursors is working well in the documentation and
the design tools. However, in the context of end-user development, we strongly
believe that it is a first-class subject to organize and structure the projects in small
scale project sources, that would be easier for the end-user developers to handle. For
this purpose, it is pointless to provide the ability of co-editing. Moreover, supporting
parallel co-editing of sources could cause confusion among the members [141]. The
author of the shared project element gets the role of the owner. Then, during
development, the owner is able to transfer the edit privileges to another member.
Furthermore, the master of the project is qualified to get the edit privileges of any

shared project element.

Suggestion - Water Is Ready X

Water Is Ready ® Water Is Ready - Suggested o Joseph Bird

Logic

Manage Suggestion

v Comment

Loops
Math

I
|
1
§ Text
|
1
1
1

set (EEB o | @
o (pint || CETXEZD
s EE b | (| | @ |

Color fad Count - JLRi 1]

fépeat i m 8 This item’s suggestions

Variables

— EL s , , @ newsuggestion
set (CEITID to o B -Suke
(= L ©® vy
@ James

Figure 8.2. Dialogue to create new visual code correction suggestion for a project element.

In addition, the members are able to request authoring new shared project elements or
add existing ones from their local project elements. Also, they are allowed to request
for edit privileges from the existing shared project elements. Furthermore, in case they
don’t have edit privileges of one project element, they are able to add notes and
correction suggestions for visual code changes (see Figure 8.2). Adding a suggestion,
the owners of the project elements are notified and are qualified to accept or deny the

changes (see Figure 8.3). However, based on the circumstances, the master of the

131

project is able to disable the notes and/or the corrections suggestions for all or for
specific collaborator members. Moreover, features for communication (i.e., instant
chat or video calls) are not provided. We consider that several software tools could be
used for communication and it would be pointless to embed communication software

technologies in the visual programming workspace.

Suggestion - Water Is Ready X

Water |s Ready @ Water Is Ready - Suggested o Joseph Bird

[Warning] This file was edited after this suggestion was made. v Comment

Fixed a minor bug.

Accept this suggestion v X
T Count - LRI
repeat (XD e
LT Hello World! £
el DI

L.

set @D o | €
repeat (D |\ €X3' @

TSN Hello World! E2)
st CIE L | | TV O 0

Figure 8.3. Dialogue to view the visual code suggestion in order to accept or deny it.

8.1.2 Local Workspace

One of the most important domains of the collaborative editing is the work that will
be able to do each of the collaborator members without affect the productivity of the
others by developing and testing their tasks in the shared project. In this context, we

developed facilities by focusing on the local workspace.

8.1.2.1 Personal Project Elements

The members are able to create new personal elements in their local workspace which
are merged with the shared project. However, these project elements are not parts of
the shared project. The personal project elements are used for member’s local testing
as drafts of their end-user programming tasks. Potentially, they could be added as
shared project elements later in the development process. Furthermore, the members
are allowed to view personal project elements of other members. However, the master
is qualified to choose if these project elements will be viewed or not by other
members due to the collaboration circumstances. For example, a teacher may would

132

like to set personal project elements to be private from students for their assignments.
In addition, the master chooses whether other members will be allowed to create
personal project elements or not. Moreover, the members are the masters of their
personal project elements. They are able to share them to one or more specific

members. They are qualified to give privileges of editing and cancel them.

Table 1. Project Element Privileges.

Project Author Owner Shared Hidden

Element

Member Member Enumerated Boolean

Concluding, the privileges of the project elements are summarized in the above table.
The information of the “Shared” column is enumerated among the not shared, shared

in project and shared personal project elements.

8.1.2.2 Toggling Live Syncing

Our proposed approach supports real-time collaboration which means that members
view live changes of other members by default. This is extremely useful for members
that are following the process. However, the members have the option to deactivate
real-time syncing of the shared project elements they manage and/or the other shared
project elements. By disabling real-time syncing, we allow the end-user developers to
test their changes locally without any waiting from other members. However, in case
the members would like to give editing privileges, they have to sync the specific

project element or to revert the changes until the last synced state.

8.1.2.3 Selective Project Execution

Running the project during the development process in order to verify if it is working
as expected is one of the main tasks. In real-time collaboration process, testing the
shared project could be unmanageable for the members. Specifically, the development
progress between the shared project elements may differ. Some members may have
finished their tasks, however other members may haven’t. As a result, the members

have to wait for other members in the development process.

In order to solve the above issue, we extended the aforementioned feature of selective
project execution (see section 6.2) in the context of collaborative editing. In

particular, starting the execution process, the default choice is to run the shared

133

project. However, the end-user could choose which project elements will be included
in the execution process as happens with not shared project as well. In addition, as an
advanced choice for more experienced users, it is allowed to replace shared project
elements with personal project elements or choose to replace an original project
element with its corresponding suggested changes of visual code. Selective execution
allows the end-users to run the application partially which means that testing the

functionality of their tasks will be easier.

8.1.3 Initiating Collaborative Sessions

In order to start a new collaboration session, the end-user needs to share a project and
configure the aforementioned settings based on the requirements of the collaboration
(see Figure 8.5). Using the modal depicted in the left section of Figure 8.4, the users
have to fill-in their personal information which will be viewed by other collaboration
members. A unique URL is generated and the users are able to notify the members
they would like to join by sending them this URL. When the users join the shared
project, they will be asked to fill-in their personal information too (right section of
Figure 8.4).

Collaboration X Collaboration X
o Choose
Choose

SHARE

Figure 8.4. Left: Starting share the project; Right: Joining the collaboration.

In the beginning of the collaboration session, the visual programming workspace
components are visually and functionally configured. In particular, the project
workspace manager user interface is modified in order to visualize and separate the
shared project elements from the personal project elements by using appropriate tags
next to the titles. In addition, the shared project elements that are updated by other

members and the user hasn’t read yet are marked with bold style until the user

134

browses them. Moreover, menu items have been added for each project elements,
based on the member’s role and the edit & access privileges in each project element.
Additionally, thanks to VPL editors’ area splitter, the end-users are able to work in

their files and view (read-only) the others’ files in parallel (see Figure 8.1).

€ Collaboration Settings G

General

Real-time syncing

Project items

Allow members to create project items

Requests for the creation of project items

Allow members to make visual code suggestions
Allow members to make notes

Start as the owner of all shared project items
Allow members to request for ownership
Personal items

Allow members to create personal items

Allow members to see others’ personal items
Allow members to share their personal items
Allow members to make visual code suggestions

Allow members to make notes

APPLY

Figure 8.5. Collaboration project settings.

8.1.4 Collaboration Toolbar

The collaboration toolbar appears in the visual programming IDE’s workspace (see
the Figure 8.6), when the collaboration end-user development session starts. Using
this toolbar, the members could view and handle data about the collaboration process.
The toolbar is separated into four different rows of information. The first row of data
is the main presented information of the toolbar and displays the collaborators of the
project. Furthermore, the decisions for requests and correction suggestions of each
member are displayed below the personal information of the member (e.g. see the
highlighted ‘Water is Ready’ element of Figure 8.6). Moreover, the end-users are

allowed to transfer the ownership of the viewed project element in case they are the

135

owners of the specific element. The second row of the toolbar visualizes the personal
project elements of a member. When the user selects another member from the above
list of members, this specific member’s personal project elements are displayed. In
case no members are selected, the users are able to view their personal elements
isolated from the shared project. However, the master chooses if this information will
be visible or hidden for the members. The information regarding handling the shared

personal project elements is visualized in the next row of the toolbar. These files are

38 Collaboration

v Members

> g George

v Collaborators

v o Mary

%~ Water Is Ready v X

> @ James

v Personal Files - Mary
> Smart Objects
v Events
v Condition
| % Garden watering
| = Start TV
> Calendar
> Tasks

v Shared files
From me To me

v | ™ Garden watering
& Mary
James
George
v /& Clean the house
George
@ Mary
@ James

v~ Recent Actions

@ James 01:04

Created /€ Clean the house

Figure 8.6. Collaboration Toolbar.

136

separated into two tabs, the first includes the personal elements shared by the user and
the second includes the personal project elements that are shared to the user by other
members. In the bottom of the toolbar, the actions history of the collaborative end-
user development process is visualized as chat message bubbles and each member is

able to browse them.

8.1.5 Supported Collaboration Models

Applying the above roles and rules in the shared project, our approach is capable to
support Pair programming in one or more groups of members that have joined the
shared project. In the beginning of the collaboration session, the master of the project
is able to organize members in groups, comprising of the driver and the navigator for

specific end-user development tasks.

Moreover, our approach could be used in the context of a teaching classroom. The
teacher would be the master of the project and the students would be simple members
that could watch the teacher develop in the context of a lesson. Then, the teacher
would be qualified to assign development tasks to the students as assignments of the

lecture.

In addition, this approach would work well for the collaborative development of
applications in groups of small teams (e.g. friends, family etc.). In the context of
personal automations in the Internet of Things, such projects could be automations for
a family’s smart home etc. Furthermore, less experienced end-users could ask for help
and share their artifacts with more experienced users or professionals. The
applications of collaboration are better represented through the use case scenarios that

are described in the following section.

8.1.6 Evaluation

When our work led to well-formed requirements and implemented most of the
collaboration facilities, we decided to evaluate our proposed system in the context of
collaboration for the end-user development process. In order to assess our approach,
we conducted an evaluation study on users. In this section, we discuss the aims and
design of our study, present the use case scenarios, outline the evaluation’s

participants, describe the evaluation process and analyze the results.

137

8.1.6.1 Aims and Design

The evaluation we conducted aims on observing how users operate and use our
system’s key features as well as on assessing the system’s usability. Particularly, we
dedicated our study’s focus to evaluating the collaboration toolset. For each
collaboration feature that we considered important, we designed a use case scenario
that focused on deciding whether the chosen approach was indeed appropriate and
well-integrated. For obtaining usability measurements, we used the System Usability
Scale (SUS).

8.1.6.2 Use Case Scenarios

We use hypothetical users to discuss the scenarios. Each of the following use case
scenarios are separated in two parts, the description and the goal. The description of
each scenario refers to the real-world situation that contextualizes the goal. The goal
of each scenario refers to the task that should be accomplished. The scenarios’
contexts are realistic and the goals are kept simple and short in order to evaluate the
usability of specific features of our approach for collaborative editing. The used

scenarios are following.

1) Starting a new collaboration session
Description: George has bought a new Smart TV and wants to configure it but
unfortunately has little to no experience. However, his sister Tina has
programmed smart devices in the past and can help him.

Goal: The participants were asked to create a project and start a new
collaboration session.

2) Handling suggestion requests, opening a personal project element
Description: Bob’s grandparents need help for setting up their alarm clock, pill
reminder and water heater. For that purpose, Bob has created and shared a
project with his family members. His family members have finished working
with the project elements “Alarm Clock” and “Pill Reminder” and have
suggested them for inclusion. However, his brother hasn’t yet made any
correction suggestions for the water heater and Bob wants to check on his

progress.

138

3)

4)

5)

6)

Goal: The participants had to accept inclusion requests for the two project
elements. Furthermore, the participants were asked to locate a specific user’s
personal file and open it in the editor.

Creating a new personal project element and asking for inclusion

Description: Alice has joined her teacher’s project, in which she is instructed
to create a new personal project element for controlling the class’ air condition
machine. Once her code is ready, her teacher has instructed her to make a
request for the project element to be included in the shared project.

Goal: The participants were asked to create a new personal project element
named “Air Condition” and make an inclusion request for the project element
to be included in the shared project.

Exchanging the editing rights

Description: Mike is currently configuring his new smart refrigerator along
with his friend, Adam. Mike is facing difficulties and Adam offers to help. For
that purpose, Adam asks for the editing rights. After Adam’s contribution,
Mike retakes the editing rights to continue coding.

Goal: The participants were asked to pass the editing rights of an existing
project element to another user. On success, the participants were asked to
regain the editing rights.

Suggesting changes for a project element

Description: Laura notices a certain error in a project element named “Coffee
Is Ready”. However, the person in charge of the file is currently busy and
cannot give her the editing rights. In order to eliminate the error, Laura adds a
correction suggestion that contains the correction suggestion for that specific
project element.

Goal: The participants were asked to add a correction suggestion for a specific
file.

Selective execution of a project element

Description: John is working on a project with Maria and Peter. John has
finished his assigned work and wants to test his code. However, Maria and
Peter are still working on their assigned parts, which means that the project is
not on a stable state.

Goal: The participants were asked to execute their own project element

isolated from the rest of the project.
139

7) Configuring the options of the shared session
Description: Jake is a teacher and wants to setup a test for his students. In
order to do that Jake creates a shared project and makes sure students cannot
cheat by configuring the shared project’s options.
Goal: The participants were asked to create a new project, share it and
configure its options so that personal project elements are not visible to simple
members.

8) Sharing personal project elements
Description: In order to keep his collaborative project in a stable state Joseph
is working on a personal project element. However, he is facing issues and
asks his collaborator, Mark, for help.
Goal: The participants were asked to share a personal project element to

another user and pass the editing rights.

8.1.6.3 Participants

We asked 18 participants (M = 13, F = 5) aged between 14 and 31 to help us. Most of
the participants were from our university departments (i.e. Computer Science,
Mathematics and Physics). Additionally, 6 of the participants were high school
students that have previous experience with Scratch. Moreover, we found 2
individuals that had no previous experience with programming or visual

programming.

8.1.6.4 Process

Each participant was evaluated individually. We firstly discussed and presented the
classic Blockly Editor. Then, we presented our visual programming workspace for
Blockly and afterwards the collaboration end-user development toolset. Next, each of
the aforementioned use case scenarios was described to the users and they were asked
to interact with the prototypes in order to accomplish each task. For each task and
participant, we measured the time required for completion and we recorded the user
behavior. Finally, the users were asked to fill-in the questionnaire which is presented
in the Appendix.

140

8.1.6.5 Results

We summarized and further analyzed all the answers given from our participants. The
SUS questionnaire was designed in order to export results in two main dimensions.
The first was focused on the collaboration end-user development efficiency and
usability (see Table 2). Results showed that the vast majority of participants were
satisfied with the collaboration toolset. Furthermore, the second dimension was
focused on the application fields of use (see 0). Most of the users considered the tool
useful for teaching or learning purposes and would use it for their collaborative

projects.

Table 2. Efficiency and Usability.

SD|D|N| A | SA

Q1. The collaboration component is well integrated into ol1121s 7
the workspace.

Q2. | find the collaboration process unnecessarily slol1lo 0
complex.

Q3. I find the collaboration user interface intuitive and olol21l10 6
easy to use.

Q4. | feel confident using the application with 0 110l 11 6
guidance.

Q5. I can use the application in the future without any 0 1| a 7 6
help.

Q6. The collaboration toolset offers limited options. 8 |7 (1310 0

Furthermore, based on the aforementioned measurements we constructed the
following diagram that visualizes the average, the best and the worst time recorded for
each scenario. All the users completed the tasks and most of the worst time
measurements are not far from the average, while the best are not far from the average
too. Moreover, during the evaluation, we realized that after the 3rd scenario, most of
the users were more familiar with the tool. The latter is also depicted in the decreased

time to complete equally difficult tasks.

Table 3. Fields of Use.

SD|D| N| A | SA

Q1. I would like to use the tool for my personal
projects with my family/friends.

Q2. I don’t see the point of collaborating. 12510 |1 0

Q3. I find the application useful for teaching and
learning purposes.

141

Finally, based on the free form questions (Appendix), we summarized that participants
were generally satisfied. In addition, some of them commented that the application
would be useful to ask more experienced users for help remotely in Blockly.
Moreover, they were satisfied by the tool’s user interface, however, they spotted some
design mismatches that we fixed (e.g., missing URL information after sharing

process).

miin mMax mAverage

i Li=
i
F 4 EY
4 i & F e F
1 s A =
P4 { [
[~ * 18 e ke
O
- = " £ P . &
Fd o - . Lo I o

CEIanos

11E{ SSCO011

Figure 8.7. Participants' time to accomplish each of the scenarios.

8.2 Collaborative Debugging

Debugging is one of the most demanding activities in the software development
process. In the case of novices, the debugging process could be extremely challenging
or problematic [142]. Moreover, the debugging process for novices can be more
efficient through pair collaboration [143]. Additionally, learning debugging programs
is essential for novices. In this context, we consider that collaborative debugging is a
key feature in visual end-user programming and could be notably useful in the case of
using it for teaching and learning purposes, asking for help from more experienced
users, debugging collaborative projects etc. This motivated us to extend the Blockly
Studio IDE in order to provide a full-scale collaboration debugging toolset. Our

approach (see Figure 8.8) focuses on two directions: firstly, on efficiently supporting

142

the collaborative debugging process among the end-users and secondly, on providing

the infrastructure for teaching and learning debugging.

In the first direction, we facilitate debugging and testing for novices in the context of
the end-user development process. The tool can be used for personal end-user
development projects (i.e. asking for help from other users which are more
experienced) or collaborative end-user development projects (i.e. debugging project

that will be developed by more than one end-users) hosted by the Blockly Studio IDE.

Collaborative \
Debugging
Session

N

| Correction g;;n/

Debugging Room 1 <Suggestions J Debugging Room N -Suggestions
[] [) [] []
3 3 -— 3

Front-end
_ Debugger .

"
Debugger

Figure 8.8. High level of our collaborative debugging approach.

Front-end
__Debugger

[] (L
-— -—
Front-end Front-end o Front-end H E B
Debugger Debugger __Debugger
Back-end |, [
g

Debugger

The collaboration approach we propose, guarantees the preservation of the project’s
visual code by isolating it, creating a local replica for each one of the collaboration
members. In this context, the users are able to create correction suggestions per
project element. Those correction suggestions are shared among the participants. In
this context, at the beginning of each debug session, we allow the end-users to select
which version of visual code will participate in the project execution. During the
debugging session, one user at a time is able to handle the debugger instructions (i.e.
master of the debug session). However, the rest of the members (i.e. observers) are
able to navigate the visual code to acquire information independently of other
members browsing, without interfering with the experience of any collaboration
member. In addition, they are able to add breakpoints to stop the execution at crucial
points and use watchers in order to view values independently. Finishing the
collaborative debug session, the end-users are given the ability to decide which of the
correction suggestions will be applied to the original project and may choose to

143

include them in the original project as suggestion visual code corrections without
applying them. The latter could be useful for new ideas which may arise during the

collaborative debugging process.

In the second direction, we aim to contribute to teaching and learning in the context of
debugging and programming. The tool can be used by teachers (i.e. masters of the
collaboration session) to demonstrate the debugging process to students (i.e. other
members of the collaboration session) in real-time. In such demonstrations, the
students will be able to perceive the flow of a program and learn the process of
debugging. Additionally, the tool enables students to live debug programs,
individually or collaboratively while allowing the teachers to supervise all the
debugging processes. In particular, the collaboration approach we propose, introduces
debugging rooms. The users are able to create debugging rooms in which debugging
sessions can be hosted (i.e. one debug session per room at a time). Other members
may be permitted or forbidden to join a debugging room and the correction
suggestions may be visible to anyone or only to the members of the debugging room.
The master of the collaboration session is able to customize the facilities based on
their needs. In this section, we present the proposed collaborative debugging

approach.

8.2.1 Initiating Collaborative Sessions

In order to start the collaborative debugging session, the end-users have to share the
project that they would like to debug. This project can be either a personal project or a
collaborative project which is already shared with other users. Using an appropriate
modal, the users have to fill-in their personal information which will be viewed by
other collaboration members. In addition, they have to configure the settings of the
collaboration based on the requirements of the collaborative debugging (i.e. teaching-
learning or debugging purposes). A unique URL is generated and the users are able to
notify the members they would like to join by sending them this URL. When the users
join the shared project, they are asked to fill-in their personal information too via a
similar modal. In the case the end-users start a collaborative debugging session for a
collaboration project, there is already personal information from the collaboration
editing session. This information is used and the end-users are prompted to just
confirm the beginning of a collaborative debugging session. In particular, the

144

collaboration members from the collaborative editing session are notified and asked to
choose if they would like to join the collaborative debugging session or not.
Moreover, the collaborative debugging session’s unique URL is available in case they
would like to invite additional members. Members are able to join the session and
catch up on the collaborative debugging process at any time, as long as the session is
active.

Blockly Studio Home Configure = Blockly > Runtime ~ SmartObjectEditor ~

> & B L& >PUNCHL T m & OomBg » ARAE °GeorgeWoIfsberg

> personal loT Automations = 1115, Alam Clock Rings 38 Collaborative Debugging
Logic

v # My first project Loops Session Link: #mqqu2307_labm834pQ L]

1 Mat =T rumber - R0 1902803704600
v | T3 Main Folder | Text set ETIED to AT
1 » sumDigits Lists .

I Gt repeat (TXD " number - | n (> - 1] @ Create a debugging room

I Vvariables do 5ol CITTER 10 remainderof CVZED ~ W & Working on the rendering bug

| Functions ®

Join

i Conflict resolution algorithm .
®

v Members

@ oceorge wolfsberg
° Mary Belgart
® James Hood

B3 Application Run-time Console [o I

Console 16:12
i Required Input: Give the time

Input

Figure 8.9. Starting view (i.e., home page) of the collaborative debugging session.

After joining the collaborative debugging session, the end-users are able to browse the
project using the project manager (see right of Figure 8.9). The collaborative
debugging toolbar is located on the right of the IDE. The collaborative debugging
toolbar includes the members which participate in the session, the debugging rooms,
the correction suggestions and the current member actions logger. In the next,

paragraphs, we analyze each one of them.

8.2.2 Debugging Rooms

In the collaborative debugging session, the members by default run one debugging

process at the time. In particular, a single user is allowed to handle the debugger

commands (i.e. master of the debug session). The other members of the team (i.e.

observers) are able to navigate the visual code to acquire information independently
145

of other members browsing, without interfering with the experience of any

collaboration member.

In addition, they are able to add breakpoints to stop the execution at crucial points and
use watchers in order to view values independently. Moreover, at any time during the
session, the master can switch roles with one of the other users. This is often useful
when the execution reaches parts of the code with which the master is not familiar;
the master may then decide to become an observer and promote a more
knowledgeable collaborator, who takes the lead without having to start over with a
new debugging session. Furthermore, the end-users are allowed to deactivate the
master mode (i.e. deactivates the functionality which restricts that only one member is
able to handle the debugger) through settings, in the case they consider that it is
tedious to exchange the visual debugger control.

Moreover, the collaborative debugging environment doesn’t provide an embedded
voice chat. We consider that such tools are not part of the collaborative debugging
environment and the members are able to use a third-party communication tool.
However, the members are able to view the recent user actions logger (see on the
bottom right side of Figure 8.9). Moreover, they are able to add notes for each one of

the project items which will be accessible to the other members.

Create debug room X

. Debug room name

Invite members

Select all
e Mary Belgart
@ James Hood

(<]

Allow new members to join

CREATE

Figure 8.10. Modal to create a new debugging room.

146

However, instead of one team, more teams are required in the case of teaching and
learning. In particular, the tool enables the teachers (i.e. masters of the collaborative
debugging sessions) to demonstrate the debugging process to students (i.e. observers
of the collaborative debugging session) in real-time. In such demonstrations, the
students are able to perceive the execution flow of a program. Also, they can be
educated by teachers on debugging techniques and practices. The tool enables
students to live debug programs, individually or collaboratively while allowing the
teachers to supervise all the debugging processes. In this context, we introduce

debugging rooms in our collaborative debugging environment.

— Blockly Studio Home Configure Blockly Collaboration

» & m s & NG+ Im < % OB 9cAPA2R @ Herman King
N T g | W Exercised-Orignal @) Fixioy Mary £ Collaborative Debugging -
Logic Correction suggestions G

~ [0 Exercises Loops & Debug Room 4 i]
Math
Text
Lists
Color
Variables

Functions

@ Creste anew suggestion based
~ | T3 Main Folder on the item viewed on the editor

I W Exercise1 ~ Members

Exercise 4 - Original
M Exercise 2 In Origina

I W Exercise3
I W Exercise4

@ George Wolfsberg
| W Fixby Mary ° o Mary Belgart
@ Herman King

¥ Colapse Block
Disable Biock
Delete 4 Blocks
Add Breskpoint

~ Debugger control

@ Herman King

n ~ L1 w
mock_ neaz: o= ¥
Help
Create 'get X v Debug Data
Variables Watches
@ Create a new watch
v | W Bxercise 4
(Z+w)/2 10
w 17
z 3
B8 Application Run-time Consoll o -
B Application Run-time Console v Breakpoints O o
Consol : @ | W Exercise 4- Original:iD 1 []
) - . “,'11 ® | W Exercise 4- OriginalD 2 O
E Required Input: Give the time:
v Suggested Corrections
~ | W Exercise 4
Fix by Mary [}
~ Recent Actions 9
Input ° Mary Belgart 01:17
Ined Lnnint s Aabkon Aame. 1

Figure 8.11. Viewing '‘Debug Room 4'.

The users are able to create debugging rooms in which debugging sessions can be
hosted (i.e., one debug session per room at a time). For the creation of a new
debugging room, the author has to specify the name of the room and the members that
will have access (see Figure 8.10). Based on the circumstances, the master of the
collaborative debugging session decides whether the other members are able to create
debugging rooms or not. The users are allowed to be members of more than one

rooms but are only able to browse one room at a time.

147

Joining the debugging room, the end-user developers see the current state of the room
as depicted in Figure 8.11. In particular, they are able to catch up on the debugger
session state if there is an ongoing collaborative debugging process in the debugger
room. In this context, they are able to view the visual debugger information including
instructions control (i.e., step in, pause, continue, etc.), debug data and breakpoints
(see tag A of Figure 8.11). The user can also view which users are members of the
debugging room and which of them are active (see green bubble on George’s icon of
Figure 8.11). Additionally, they are able to view the current member actions of the
debugging room and the debugging session (see tag B of Figure 8.11). Furthermore,
they are able to view the list of the correction suggestions and may create new ones
(see tag C of Figure 8.11). Moreover, the owner of a debugging room and the master
of the collaborative debugging session are able to remove a member or destroy the

room.

8.2.3 Visual Debugger

As earlier mentioned, we have developed a full-scale block-level visual debugger for
Blockly into the Blockly Studio IDE. This visual debugger is full-scale block-based
featured, offering all of the classic stepping and inspection (watches) features in
analogy to source-level debuggers. In particular, control actions such as start, pause,
continue, restart, step over, step in, step out and stop are included (see Control Debug
on the right of Figure 8.12). Also, inspection of variables and evaluation of
expressions are available. Additionally, breakpoints are inserted per individual block,
with a typical breakpoint icon, located on the top-left of the associated block as
depicted in Figure 8.12. Breakpoints can be enabled or disabled and once an enabled
breakpoint is hit, the correspondent block is highlighted. Using the visual debugger
toolbar, the user is able to activate or deactivate breakpoints, add or remove watch

expressions and use any control action for tracing.

However, in order to support collaborative debugging, the visual debugger of our IDE
was extended and customized (see on the right of the Figure 8.13). In particular, the
visual debugger consists of two component parts, the front-end and the back-end. The
front-end includes the visuals of the debugger including the control commands, the
breakpoints, the watcher, the express evaluations etc. The back-end of the debugger
includes the execution of the visual source code of the project, the logic for

148

interacting with the front-end and the required debugger’s data that have to be
maintained for the debugging process. The back-end runs in a different thread from
the IDE using JavaScript Web Workers [144] and interacts with the front-end through
messages. We extended the back-end of the debugger by exporting its API in order to
be able to handle messages that are posted and received via the peer to peer
mechanism of the collaborative debugging session. Moreover, we add roles to visual
debugger peer instances in order to identify which are the obligations of each one
during the debugging process (i.e., view of the debugger control, post messages to
collaborative debugging peer and/or apply them to the debugger back-end system

etc.).

il Exercise 4 .
I u @‘ Debugging
Logic

et to
I Loops EXBto | v Debugger control
| wmath
I Text S (x 7
l Lists
Color
1 v Debug Data
l Variables Duplicate
I Functions Add Comment Variables = Watches
Collapse Block
i © Create a new watch
Delete 4 Blocks v | W Exercise4
Add Breakpoint (X T y) /2 10
117/
Run to cursor &
block___ N 3
Help
Create ‘get x' v Breakpoints O e-e

e | i Exercise4-1D1
o | | Exercise4-1D2

(<
= m

Figure 8.12. Using Visual Debugger of Blockly.

When an end-user starts the debugging process, the back-end (i.e. debuggee) of their
debugger is activated by getting the master role of the process (see on the right of
Figure 8.13). In order to avoid parallel debugging processes, the master visual
debugger peer posts a message to the other debugger peers in order to request the
initiation of the debugging process. The other visual debugger peers at first notify
their front-end part to disable the debug control user interface and change debugger
state (i.e. observer) and afterwards respond that they are ready to participate in the
collaborative debugging process as observers. Then, the master visual debugger peer
starts the code execution (i.e. only one of the visual debugger peers executes the

source code) and notifies the other visual debugger peers via messages that the

149

debugging process started. Then, the other debugger back-end peers notify their front-
end to sync the debuggers data. In this context, the visual debugger data (i.e. debug
data, breakpoints etc.) are saved in the master and they are transmitted to all the peers
in order to be synced.

Block-based Visual Debugger

@ ngugData I
N

I
I
I
I
I
I
: I
i : I
Project i Back-end I
Manager v Debugger :
| Collaborative System (Peer 1)

[

Front-end : / \
Debugger I
1
|
[
1
1
1
]
|
|
]
]
]

Block-based Visual Debugger (Master)

Front-end
Debugger

Projects I

F.

L 2
Project } Back-end — i
Manager H Debugger <¢=»>» DebugData | |

Ld %
Collaborative System (Peer 2) Collaborative System (Peer N)

Back-end
Debugger

Back-end
Debugger

-]

I |
Front-end Front-end
Debugger Debugger
Block-based Visual Debugger Block-based Visual Debugger

Figure 8.13. Visual debugger’s architecture for classic debugger version (left), collaborative debugger

version (right).

In the debugging room, the participants are able to run one debug session at a time.
The end-user developer that starts the debugging session is the master of the
debugger. In particular, this user handles the debug control while the other users are
the observers of the process. However, the other users are able to browse the code
independently, add breakpoints, watch variables and expressions of the debug process
during the debugging session. Moreover, the master of the process is able to pass the
role to one of the other members by clicking the extra button on the right side of the
debug control toolbar (see on the left of the Figure 8.14) and choosing who of the
members will acquire the debugger control. Also, the master of the collaborative
debugging session is able to configure the settings of the session in order to have no
restrictions on who may control the debugger. Moreover, only the active members
participate in the debugging process. Additionally, the members catch up on the
current debugging session state watching the current debug member actions (e.g. step-
in, step-over, add breakpoints, applied expressions, members joined or left the room,
etc.). If the master of the debugging process leaves the debugging room, the current

debug session stops.

150

28 Collaborative Debugging .ee

&4 Debug Room 4 I]

v Members

@ George Woitsberg Give debugger control X

e Mary Belgart

@ Herman King Select a member
v Debugger control e e George Wolfsberg
o Mary Belgart @

@ Herman King
@ Herman King
NGt 1 & 5=

> Debug Data see GIVE CONTROL

> Breakpoints

> Suggested Corrections

> Recent Actions

Figure 8.14. Debug Control (left); Give floor control dialog (right).

| ® Alarm Clock Rings

Correction suggestions

Create a new suggestion based
. on the item viewed on the editor

I» myApp - original

Create Correction Suggestion
@) Fixed Round Call

— Title
‘ Correction Title

Description
Correction Description

CREATE

@ Create a new suggestion based on this item

Figure 8.15. Creating new Correction Suggestion for “Alarm Clock Rings” project element.

8.2.4 Correction Suggestions

Starting the collaborative debugging session, a replica of the shared project is created

for each of the members that join the session. The members are able to debug the

project locally by editing the replica of the project. However, if the members would
151

like to apply changes to debug the project collaboratively, they have to share the
changes of the project element(s). In this context, our approach introduces correction

suggestions.

In particular, when the users edit one of the project items of the local project, the
system warns them that in order to share the changes, they need to create a new
correction suggestion. To create a new correction suggestion, the user has to choose
its title and description. The other members of the debugging room are able to view
the correction suggestion that is instantly added on the right of the project item, as
depicted in the Figure 8.15. However, only the owner of the correction suggestion has
privileges of write access. The other members are able to watch live the visual code
changes the owner applies. This is necessary for the members in order to be able to
browse the correct version of the visual source that is included on a debug session.
Furthermore, this could be a useful tool for the teacher to present live development or

ask from a student to live give a solution to a problem.

Selective Debugging X

Select project items and versions

O Project item Version
O I W Exercise1 Original -
O Bl Exercise 2 Original -
O I W Exercise3 Original -
| W Exercise4 Original

Fix by Mary

®e -

Finally found the bug

DEBUG

Figure 8.16. Debug the project by choosing the project items will participate and which of the project
items will be original and which of them will be correction suggestions.

In addition, users are able to create new correction suggestions based on other

correction suggestions independent of who their owner is. Moreover, correction

suggestions can be accessible to all the members from the main page of the

collaborative debugging session outside of the debugging rooms. This depends on the

152

settings configured by the master in the beginning of the collaborative debugging
session. However, the master is always able to view all the correction suggestions in

the main page.

The users are able to start the debugging session and choose which of the project
items will participate in the process as earlier mentioned in the selective execution
feature of the section 8.1.2.3. Furthermore, in each debugging session, the user who
initiated it, is able to choose which of the project items and which of the versions (i.e.,
the original version or any of the correction suggestions for this project item) will be
run (see Figure 8.16).

In the end, when the collaborative debugging process is completed, the master of the
session is able to choose which of the correction suggestions will be applied to the
original project, replacing the corresponding original project item visual sources as
depicted in Figure 8.17. Moreover, they are able to choose which of the correction

suggestions will survive as correction suggestions in the original project’s visual code.

Complete Collaborative Debugging Session b4

Apply Corfection Suggestions

B Exercise 2 Fixed bug with ¥ =

I W Exercised Finally found the bug -
Fix by Mary °
Finally found the bug @

Save Correction Suggestions None

[0 W Exercise2
(] Fixed bug with Y ®
Il W Exercises
Fix by Mary
Finally found the bug

26

Figure 8.17. Choosing which of the correction suggestions will be applied to original project and which

of them will be saved.

153

8.2.5 Discussion of Supported Applications

Using the above features that are provided by the collaborative debugging
environment, our approach is capable of supporting four different types of
applications. Firstly, in the case of novice programmers, our approach supports asking
for help from more experienced users. The novices can start a collaborative
debugging session in which they are able to invite one or more users to help with
correcting their project’s errors. In the same context, the second supported application
contributes to our collaborative programming environment. During real-time remote
collaborative editing, the members are able to initiate collaborative debugging
sessions and debug their shared project together in real-time. The third supported
application contributes to early childhood preservice teachers [145] in order to find
their errors easier and more quickly. The teachers are able to set up the collaborative
debugging environment in order to supervise and help the children with their

programming tasks.

Additionally, an interesting supported application of our collaborative debugging
environment focuses on teaching and learning debugging. Learning debugging is
crucial for novice programmers. We provide a full-scale toolset for teachers to carry
out live debugging sessions in order to present debugging techniques and practices to
the students. At the same time the teachers able to supervise the debugging process
whether they ask from students to develop an assignment or find errors in provided
visual code. To investigate our toolset’s efficiency in such setting, we have carried out
a user study, in which we play the role of teachers and the participants play the role of

students. We discuss the empirical study in the next session.

8.2.6 Empirical Study

Debugging is a crucial process for learning and understanding programming through
comprehending the execution flow of programs. Additionally, through collaborative
programming, the learning process can be significantly improved. In this context, one
of our main goals is to provide a full-scale toolset, capable of being used in real
teaching circumstances. To evaluate our IDE’s collaborative debugging environment
for teaching, learning and furthermore improve its usability, we have carried out a

study with novices.

154

The study contains a short visual-programming tutorial for the participants and a more
analytical tutorial with the goal to teach the basic debugging actions (i.e. step in, step
out, step over, continue etc.) and features (i.e. breakpoints, watches etc.) that the
IDE’s debugger supports. The visuals of the tutorials were organized using the IDE
and hosted in the IDE itself. Following, the attendees were asked to individually as
well as collaboratively debug block-based programs while being supervised by the

tutors.

8.2.6.1 Preparing the Environment

As we have earlier mentioned, our IDE for visual programming languages is
configurable and adaptable through the development of application domain
frameworks. Based on this, we have developed an application domain for hosting
project items which model educational exercises and examples (see Figure 8.18). For
the study’s purposes, the chosen model for the exercises and the examples consists of
two areas: the question area and the visual code area. In particular, the question area
allows loading an image which presents the questions in the context of a lesson.
Alternatively, they are able to type the question through an embedded text editor. The
visual code area is handed by a Blockly workspace through which the teachers and/or

the students are able to program-solve the assignments.

> & w5 & NG 1w <& ¢ ODODH 9CcARsE

a o — B Exercises/Mathematics/Exercise 4
i' Let's Learn Debugging Together = I

s OO Examples Choose a way to author your assignment:
v ™M Exerc:les :) Upload a photo from your computer.
~ | ™ Mathematics @ Open text editor.
I @ Exercise1 PROCCED
W Exercise?2
| i Exercise3
| B Exercise4
I & Branches
I & Loops
1 & Functions
[Variables

Logic
Loops
Math
Text
Lists.
Color

>
>
>
> Variables
Functions

Figure 8.18. Teaching application domain for the collaborative debugging environment.

8.2.6.2 Participants

We undertook the role of the tutors in the study having prior teaching experience and
the necessary knowledge of the IDE and its debugging features. However, our study

focuses on the students and the efficiency of learning through the collaborative

155

debugging environment. In this context, 22 first year university students (M=18 F=4,
aged from 17 to 19) in the first semester of computer science, taking the introductory

course to programming were asked to participate in our study.

In the beginning, the participants were asked to fill in a form with information about
their programming experience (i.e. block-based and text-based programming),
experience with visual debuggers and their familiarity with collaborative
programming. In particular, 12 of them had previous experience with visual
programming languages (i.e. Scratch, App Inventor and Tynker) while 7 of them had
tried text-based programming previously and all of them had previous experience
with pseudocode via high school lessons. Furthermore, none of them had previous
experience with debuggers. Moreover, 2 of them had tried to collaborate in

programming through sharing screens.

Figure 8.19. Exercises asked to debug individually under supervision. (top) Program swaps x and y and
adds them. Find the bug.; (bottom) Program calculates the amount of money for wages(w): w<1000
=50, 1000<=w<1500 =100, 1500<=w<2000 =150 and w>=2000 =300.

156

8.2.6.3 Procedure

We prepared 4 exercises which include basic programming parts (i.e. variables,
mathematics, branches, loops etc.) for our study. We solved the exercises by using
Blockly’s workspace and then, we modified them in order to add errors in the visual
code. Starting the study process, we created a new collaborative debugging session

and invited the students by sending them URL via chat.

Y number + Ji 902803704600 sel o 1902803704600
st EBto | [set EEDtc | O

repeat [TICED repeat CLCED
= (number - I+~ T 10 k= L1 m cadly B9 ©

do set EMCIM ©© | remainder of Cnumber - I n do set CTICIEM 10 | remainder of number - MRS ﬂ
et N current ~ (- - i sum - e L curerc - I+ - T sum -

ET number -+ LI round - . —e—— S || e ca iR

—

e N round cown - IR S g - X - ¢ | [T I siring - W= T 2 |
do set (M “intext ETED oot (A (D
[PY L N string ~ | n (-~ 1 i -]

R it - = - I okt
L isPaiindrome - [U faise -
breakout - 1)

Change (K3 by

IT'S A PALINDROME

IT'S NOT A PALINDROME

Figure 8.20. Exercises asked to debug in groups under supervision. (top) Program attempts to output

the sum of the input number’s digits; (bottom) Program attempts to recognize palindrome.

The study procedure was separated into four parts. The first part was a 20-minute
block-based programming tutorial in Blockly’s workspace. The second part was a 40-
minute tutorial in which, we presented the collaborative debugging environment, then,
the visual debugger features and we analyzed and debugged two of the
aforementioned exercises in real-time. Afterwards, we created one debugging room
for each one of the students and one tutor was added as a member to each room. We
asked students to join their corresponding debugging rooms and individually find the
bugs of the first two exercises (see Figure 8.19) by using the visual debugger for up to
10 minutes. Additionally, the students were asked to think aloud during the debugging

process. Each tutor was responsible for monitoring the debugging process of their
157

corresponding student and tracking their actions for the purposes of the evaluation.
Meanwhile, the tutors supervised the students in the debugging process, providing
hints if it was required. During the process, tutors kept notes with the total time spent
to solve the bug, the number of breakpoints that were added, the number of step-ins
and step-overs used, the number of variables watched, the number of the debug

sessions initiated and if hints were needed or not.

For the last part of the study procedure, we asked the students to collaborate in groups
of two in order to find the bugs of the last two exercises (see Figure 8.20) by using the
visual debugger for up to 10 minutes. We created new debugging rooms for this part
of the study and invited the students to join them. Furthermore, the tutors followed a
similar approach for monitoring and tracking the debugging process. The tutors
additionally kept notes for the number of times the students exchange the master
privileges. Finally, the students were asked to fill-in online a SUS questionnaire and a
second questionnaire with questions that were more specific to our collaborative

visual debugging environment.

8.2.6.4 Results

We summarized and further analyzed all the answers given from our participants in
two questionnaires. Our primary goal was to evaluate the collaborative debugging
environment of our IDE as a teaching tool. As presented in Table 4, the students
improve their knowledge for block-based programming through the debugging
process. Additionally, the students learnt the basic concepts of a visual debugger and

feel confident using it in the future.

Table 4. Questions focusing on learning programming and debugging.

Q1. My understanding of block-based programming
improved using the debugger.

Q2. I understand the basic actions (breakpoint, step in, step
out, step over, continue) of the debugger.

Q3. | feel confident that I can use the debugger to inspect
values of variables or expressions (watches).

Q4. 1 don't think that collaborative debugging can be used
as a teaching tool.

1416 0| 2] 0

An important part of our evaluation was to test the understandability and the usability

of the introduced collaborative debugging features. To the best of our knowledge, the

158

concept of correction suggestions we presented is new and novices could not have
relevant experiences. However, as presented in Table 5, the students felt confident
with this feature while the results are relatively similar with the known concept of
rooms from communication tools (e.g., Discord, Microsoft Teams, etc.). Moreover, it
is important for collaboration tools to offer fluent and natural interactions between
users without them feeling restricted by the tool. Based on the first two questions of
Table 5, the students are satisfied with the user-to-user interaction via our
collaborative debugging environment. In order to thoroughly evaluate our system, we
asked the students to fill-in the standard version of the SUS questionnaire (see
Moreover, during the evaluation, we perceived two issues of our user-interface in the
collaborative debugging environment. The first issue was about the action of creating
a correction suggestion. The concept of the correction suggestions is closely related to
the concept of project items; thus, the students were expecting to find the option to
create a new correction suggestion by right clicking a project item in the project
manager. After this observation, we added this option to the right click menu of the
project items. The second issue was that the users expected to find the choice of
promoting a member to master in the right click menu of the debugging room’s
members and had some difficulty on spotting the dedicated button next to the debug

control. After observing this, we added this option to the right click of each member.

Table 6), resulting in an encouraging outcome.

Based on the data collected by the tutors, we noticed that some of the students which
avoided using the visual debugger when debugging individually, started to become
more familiar and use it more when asked to debug collaboratively. Furthermore, in
general when students debugged collaboratively, they had more targeted and thought
out actions. In this context, they achieved approximately the same times to find the
bugs, even though, the last two exercises were more complex to solve. However, this
may have happened from the experience gained from the previous tasks using the tool
and/or from the process.

Table 5. Questions focusing on the collaborative debugging environment.

1 (2|3 |4]|65

Q1. Collaborative debugging interactions with other

students or the teacher felt fluent. 0 113|108

159

Q2. Using the debugger (breakpoint, step in, step out,

step over, continue) collaboratively with others felt 0|0 |2 |16 4
natural.

Q3. The correction suggestion mechanism seems 150511 0
complicated.

Q4. The concept of debug rooms is easy to understand. 0|0 0| 616

Q5. Getting help from a friend for debugging seems easy
using this tool.

Q6. In a future collaborative project with friends, | would
use collaborative debugging.

Moreover, during the evaluation, we perceived two issues of our user-interface in the
collaborative debugging environment. The first issue was about the action of creating
a correction suggestion. The concept of the correction suggestions is closely related to
the concept of project items; thus, the students were expecting to find the option to
create a new correction suggestion by right clicking a project item in the project
manager. After this observation, we added this option to the right click menu of the
project items. The second issue was that the users expected to find the choice of
promoting a member to master in the right click menu of the debugging room’s
members and had some difficulty on spotting the dedicated button next to the debug

control. After observing this, we added this option to the right click of each member.

Table 6. Standard SUS Questionnaire.

112]|3]|4 5
Q1. I think that | would like to use this system frequently. o|0|6]|9]|7
Q2. | found the system unnecessarily complex. 65110 0
Q3. I thought the system was easy to use. 0|1 |1] 2] 18

Q4. | think that | would need the support of a technical
person to be able to use this system.

Q5. | found the various functions in this system were well
integrated.

Q6. | thought there was too much inconsistency in this
system.

Q7. I would imagine that most people would learn to use
this system very quickly.

1516 | 1]0]| 0

188|310 0

Q8. | found the system very cumbersome to use. 5/7]0 0] 0

Q9. | felt very confident using the system. 0|2 |0 7] 13

Q10. I needed to learn a lot of things before I could get
going with this system.

12110 0| 0| O

160

Chapter 9

loT Automations

“If you think that the internet has changed your life, think again. The Internet of

Things is about to change it all over again!”

-Brendan O’Brien

An application domain for visual programming which increasingly gets attention is
the smart automations in the Internet of Things. Thanks to IoT era, personal smart
devices and services are available in the environment and potentially everybody
would like to create micro applications for their daily activities. The vehicle for this
goal is the visual programming workspace environment (see Figure 9.1). However,
there are several challenges that have to be addressed to achieve this goal. In this

context, and in order to better represent our approach, we developed an application

Sl R M eoxvY
Everyday Activities

[Office, Work] [Health Care]
[Banking | (Baby Sitting | [Home Care |
(Entertainment | | Leisure | [Cafe, Restaurant]

[Transportation]

Personalized Automations

End-User Programming

Middleware

HTTP, WiFi, BT, BLE, NFC, etc.
Smart Objects

Appliances, Sensors, Actuators,
Mobile devices, Web Services, etc.

MEOBELF R O

Figure 9.1. The notion of personalized custom automations in the Internet of Things through an

End-User Programming framework.

161

domain framework for smart automations in the 10T by using the infrastructure of the
Blockly Studio IDE. In this chapter, we analyze each of the challenges of a visual
programming workspace environment for 10T automations and discuss how they have
been addressed in the application domain framework we built. This work constitutes
the main case study of our approach for a domain extendable visual programming
IDE.

9.1 Visual Programming Editor for Smart Objects

Connected smart devices and services (also known as smart objects) constitute the
first-class element of visual programming in the context of smart automations in the
loT. In particular, the development of applications for smart automations includes
actions to communicate with the smart objects, isolate and organize which of them
will be involved, filtering their properties and actions, group them, etc. In this context,
we developed a specific-domain visual programming editor for the smart objects. We
analyze the facilities that have been developed for the editor in the following

subsections.

9.1.1 Communicating with Smart Objects

The main functionality of the visual programming editor for smart objects is to make
communication possible with the smart objects. IoT middleware is software that
serves as an interface between components of the 1oT. There are several approaches
of 1oT Middleware in the bibliography [146]. For our work we use the loTivity
framework [147]. It is an open source software framework, reference implementation
of the Open Connectivity Foundation (OCF) standards for the loT. In addition, it
provides resource simulation tool that enables us to fully simulate resources (e.g.
devices, sensors and services etc.) for testing our platform. Furthermore, the iotivity-
node [148] provides a JavaScript API for OCF and it is implemented as a native
addon using loTivity as its backend. The visual programming editor for smart objects
uses the iotivity-node to communicate with the smart objects and carries out all the

required functionality.

162

9.1.2 Managing Smart Objects Through Domain Visual
Programming Language Elements

In the context of end-user development for smart automations in the 10T, individuals
should be able to interact with smart objects, potentially managing, parameterizing
and even programming applications involving them. In this context, the visual
programming editor for smart objects provides appropriate functionality by
introducing and handling domain visual programming language elements. In the next
subsections, we describe the functionality and each of the domain visual programming
language elements that are identified.

. . Air Condition
Define Smart Device b

Name: Smart Device 1

Scan
Image: Choose File | No file chosen

Background-colour: — E$ Unregistered Smart Object. Press Scan Button
0 o

Air Condition I

Scan

/3DPrinterResURI m
v
/AirConditionResURI
w
Name: /AirConditionResURI
1D: _air-condition
Properties:
device-temperature 20
environment-temperature 23
swing bottom
twrn on
/BatteryResURI

Figure 9.2. Importing Smart Device

163

9.1.2.1 Smart Devices

In the context of loT automations, the main elements have to be handled are the smart
objects. Hence, the main domain visual programming element that is introduced by
the smart object editor is the ‘Smart Device’. In this direction, the first steps of the
end-user development process are to scan and register the smart objects that will be
involved in a smart automation. In case there are already registered devices from
previous created projects, the users are enabled to choose already defined smart

devices.

Air Condition

Environment Home *

€© eopertesw]

device-temperature

20 &
universal-id: device-temperafure
environment-temperature

23 N
unaersal-idk eraronmend-femperat.. k
Sl bottom a
universal-id: swing

m
S on @
unraeral-wd: furm
6 Actions (4)

AutoMode Mot implemented for de.. L i) .}
Configure Not implemented for de.. N N
TurnOff Mot implemented for de... & .}
TurnOn Mot implemented for de... ' ¥ tl'

0 Smart Groups

There are no elements

Figure 9.3. The view parts of a registered air-conditioning device.

164

Defining a new ‘Smart Device’ for the 0T automation (see tag A of Figure 9.2), the
element is in initial state without selected a connected smart device (see tag B of
Figure 9.2). Then, the user chooses to scan for available smart objects and the list of
them is shown (see tag C of Figure 9.2). Afterwards, the user select which element

will register by clicking the ‘Register’ button.

When registration is completed successfully, the ‘Smart Device’ visual programming
language element instance is created. The visual programming editor for smart objects
propagates a signal for the creation of a ‘Smart Device’ instance which includes its
instance data. This signal will be used by the Domain Manager system (see section
4.2.1) in order to define automatically the appropriate Blockly blocks that are defined
in order to program the automations (see section 9.2).

Afterwards, the ‘Smart Device’ instance is established as registered and the smart
object editor presents its parts (see Figure 9.3). In particular, there are four different
parts. In the top of the smart object view, the user chooses which is the smart
environment which is defined (see next section). In the second part, the users can
view the properties that are exported by the smart object. In this context, the users are
able to handle if one property will be enabled for the development (create or not
Blockly blocks with the Domain manager system) by clicking the ‘eye’ toggle button
on the right of each property. Moreover, below of each property name, there is an
alias which is used for the smart object groups that we analyze them in the next
section. The third part of the smart object view relates with the exported actions of the
smart object which includes the ‘eye’ toggle button that has similar functionality with
the aforementioned properties. Additionally, the end-user developers are able to
program the behavior of each action that will be used during the debugging process
(see section 9.7). The fourth part of the smart object view shows the smart object

groups and it handling which are discussed in section 9.1.2.3.

The user interface for the visualization of the smart objects differs per smart object
based on the exported functionality (i.e., properties and actions). In this context, the
user-interface is generated automatically based on the JSON data response from

scan’s request to the loTivity.

165

9.1.2.2 Smart Device Environments

A smart automation in the 10T could include numerous smart objects. In order to
better organize them for the end-user development process, the visual programming
editor for smart objects introduces an extra domain visual programming element
named as ‘Smart Environment’ Which helps the organization of the smart objects. In
particular, the end-user developer is able to define smart environments which include

either lists of smart objects or other inner smart environments.

| == Air Condition Group

Properties (4)

device-temperature

universal-id: device-temperature

envEronment-temperature
universal-id: environment-temperature

swing
universal-id: swing

turn

universal-id: turn

Smart Devices

Air Condition ©

Figure 9.4. Smart device group for air-conditioning.

This feature enables the end-user developers to organize by defining groups (folders)
of smart objects. The end-users are able to choose which smart environment will be
included each smart object either by creating the smart object instance in the smart
environment or by choosing which is the smart environment that will be included
through the enable user-interface selection as displayed in the 1% tag of the Figure 9.3.
Furthermore, creating smart environments is optional and the end-user developers
have the choice of not using smart environments, which is useful for smart

automations which include a little number of smart objects.

166

9.1.2.3 Smart Device Groups

Additionally, several smart objects with common functionality could be involved in
loT automations (e.g. the smart light bulbs of a home). In this case, the end-user
developer may like to handle them as a group (e.g. switch on/off the smart light

bulbs). In this context, the smart object editor introduces the domain visual

programming language element named as ‘Smart Device Groups .

I = Air Condition Living Room

Environment

Properties (4)

device-temperature
universal-id: device-temperature

environment-temperature

Home W

25

23

universal-id: environment-temperat...

swing
universal-id: swing

turn
universal-id: turn

Actions (4)

AutoMode
Configure
TurnOff

TurnOn

Smart Groups

Air Condition Group €@

auto

off

Not implemented for de...

Mot implemented for de...

Not implemented for de...

Not implemented for de...

@ @ © @

® &
@ &
® B
® &

Figure 9.5. The view of air-condition living room.

167

In particular, the smart object editor attempts to identify which of the registered smart
objects of the smart automation have common functionality and organize them in
groups. These groups give the ability to develop-handle the smart objects in groups

instead of requiring to handle each one of the common smart devices.

In this context, the end-users are able to create new groups with common functionality
via the smart objects by exporting the smart object properties (i.e., click the “Create
Group” button presented in Figure 9.2). The created groups of common
functionalities include information of the name, the image and the color of the group.
In addition, they include the list of common functionalities and the list of the smart
objects that are included (see Figure 9.4). The end-user developers are able to remove

a smart object from the list in case they would like to handle it separately.

Select Group(s) for Air Condition Living Room X

* Smart Device Properties

Property Universal ID
device-temperature device-temperature
environment-temperature environment-temperature
swing swing

turn turn

Groups that match with your device Select all

& Air Condition Group

Groups that do not match with your device

There are no groups which are not matched with the smart object

o | rony

Figure 9.6. The view of air-condition living room.

Furthermore, several smart objects which could be included in a group have a
different exported API. The differences could be either some of the functionalities
that are not provided by one device or they provide all the functionality but it is
exported with different naming(s). In this context, the end-user developers are able to
edit the common functionality list (i.e., activate/deactivate items). This is useful in

168

case they wouldn’t like to include a specific common functionality in the group and
this functionality is not supported by one smart object that they would like to be
included in the group. Using the toggle turn on/off button which is presented on the
right of each property, the users can add or remove the functionality. In this case, the
smart object editor sends signal for editing with the respective data of the instance. In
this context, the generated Blockly blocks for the smart object group instance are
handled by the Domain Manager as happens in case of smart objects which earlier

discussed.

Moreover, in the process of the matching common functionality of smart objects, the
end-user developer is able to give for each one of the properties an alias. This is
useful in the case that smart objects support common functionality but export different
APIs. The matching mechanism attempts to match the original property name and
then in the case of failure tries to match with the given alias. In this context, a
dialogue opens when a smart object is created in order to view the smart object

information and manage the smart object groups related with this smart object.

Select Group(s) for Alarm Clock X

» Smart Device Properties

Property Universal ID
ring ring
ringtone ringtone
time time

turn turn

Groups that match with your device

There are no groups which are matched with the smart object

Groups that do not match with your device

AirCondition Group Air Condition Group Alarm Clock

Property Universal ID Property Universal ID (select group property)
device-temperature device-temperature ring device-temperature

environment-temperature environment-temperature -
ringtone swing s
swing swing
time environment-temperature *

Figure 9. 7. Handling smart object groups for the alarm clock.

For example, considering that we have define the smart object ‘Air-Condition’ with

the exported functionality as it is depicted in Figure 9.2. Then, creating another smart

169

object ‘Air-Condition Living Room’ which includes similar functionality (see Figure
9.5). In this case, the smart object editor suggests to the user to add it in the group
when the smart object is created by opening a pop-up dialogue that enables to choose
or not include the ‘Air Condition Living Room’ in the ‘Air Condition Group’.
Moreover, creating an ‘Alarm Clock’ as smart object the number of provided
functionalities matches (i.e., both ‘Adir Condition Group’ and ‘Alarm Clock’ have 4
properties), however, the API differs. In this context, the dialogue which handles the
smart object groups opens and enables the end-user to give appropriate aliases in

order to match the APIs (see Figure 9.6) and enable the choice to include it in the

group.

9.1.3 Loading Shared Automations

As earlier discussed, Blockly Studio IDE enables sharing of the end-user developed
applications. The end-users are able to search, download and use the shared
applications. In the case of the smart automations in the 10T, there are issues that have

to be addressed on loading shared applications of others.

{2} Air Condition —

Compatible Smart Devices

Q

AirCondition_Mits O

AirCondition_Whir

AirCondition_Xiao

Figure 9.8. Replacing the ‘Air Condition’ smart device of the shared application with a compatible

smart device.

170

In particular, before using a shared application, a replica is created in the end-user’s
environment. However, in the smart automations case, the first development step is to
define which of the registered smart objects will be involved. As a result, the first (i.e.
extra) development step for shared applications is the replacement of the smart objects
which participate. In particular, when loading the shared application for the first time,
the visual programming editor for smart objects marks all registered smart objects as
invalid and warns that the smart objects have to be replaced. Also, the end-user
developers are able to define extra smart objects for these smart automations in order
to modify and/or extend them. Furthermore, this process could be repeated during the

end-user development process.

The visual programming editor for smart objects firstly identifies the smart objects
which provide compatible functionality and are unique in the end-user’s environment.
In case these smart objects are not unique (e.g. two air-conditioning systems one at
home and another one at the office), the smart object visual programming editor asks
the end-users to select which of the smart objects will be used as depicted in Figure
9.8. Then, the smart objects which are not compatible with any of the end-user’s

smart objects have to be handled.

In the case there are smart objects which can replace these smart objects but export
different API, the end-users are able to use the alias and this will help in matching the
smart objects. Also, the end-users are able to remove the smart objects; whether their
functionality isn’t useful to them or they don’t have them available in their arsenal.
Removing defined smart objects prerequires that the author of the shared application
hasn’t defined these smart objects as mandatory. Furthermore, removing one or more
smart objects from a shared application could decrease functionality or even make the

application useless. The latter is the responsibility of the end-user.

9.2 Visual Programming Blocks for the Behavior of Smart
Objects

As mentioned in the previous section, there are three domain visual programming
language elements that are handled by the smart object visual programming editor: the

smart objects, the smart object environments and the smart object groups. In this

section, we discuss the behavior of the visual programming language elements that

171

were introduced for each one of the domain elements in order to handle their

functionality in smart automations.

As earlier mentioned, the application domain author has to develop constructors that
get, as input, the data which are exported by the specific domain visual programming
editors during the creation of visual domain elements. These constructors are used by
the mechanism (see 4.2.1) and automatically handle the management of new blocks.
The first categories of blocks that we will discuss in the following paragraphs are the
handling set of blocks for smart objects.

el G AutoMode ~ Q

& Air Condition: get value from e

Is Alarm clock ([ilERS

PO [) Mo 4 device-temperature » RG ‘ G

& Air Condition: set BT RS to ETCRS

ask value for g Air Condition O

print value for 48 Air Condition

Figure 9.9. Basic Blockly Blocks for Smart Objects; actions for smart objects (tag A), setters, getters

(tag B, C) and input, output for smart object properties in the 1/0 Console.

The behavior handling set of Blockly blocks for smart objects consists of four
categories. The first category of blocks is the basic handling of request actions (see
tag A of Figure 9.9). Using this block during the development, the end-user developer
is able to choose the action name that they would like to use. Based on the signature

of the function (i.e., no arguments as input, one or more arguments, type of the

172

arguments, etc.) the block changes automatically as shown in Figure 9.10. The second
category of blocks is the basic handling of getting, setting property values of smart
objects (see tag B and C of Figure 9.9). Using these blocks, the end-users are able to
request the functionality that is provided by the smart objects. Additionally, the end-
user developers are able to print the values of smart object properties in the Input
Output Console or ask from the application users to set values in smart object
properties through the Input Output Console (see tag D of Figure 9.9).

& ArCondiionf T R 2 & AirCondition

v AutoMode
Configure
TurnOff
TumOn

& Air Condition [T TI# with (device-temperature: ‘ , swing: ETCRES)

Figure 9.10. Dynamic change of a Blockly block based on the choice during the end-user development.

& Air Condition Group

Is % Air Condition Group ETLIIES to ETLES

¥ Air Condition Group ~set CEEXE =S to o]

% Air Condition Group: set swing * RG) auto - |

ask value for &% Air Condition Group

print value for &% Air Condition Group {lVI=RC N JIEI TN

Figure 9.11. Blockly Blocks for Smart Object Groups.

173

In an analogous way, blocks are defined for the domain visual programming language
element for smart groups. All the blocks which are defined for the smart objects are
used for the smart object groups except the blocks for getting property values as each
of the included devices may have different value (see Figure 9.11). These blocks are

handling all the smart objects which are included in the smart object group.

For example, using the block with the action ‘AutoMode’ of the ‘Air Condition
Group’ means that all the air conditions will be set in auto mode. Asking for a value
for device-temperature means that all the smart objects will get as device-temperature
the input that user will give through the input-output console. The Blockly block ‘Is’
checks if the state of a specific property applies for all the smart objects that are

included in the group.

A

(2) For B times(s): When u' then @

() After @ times(s) that W] then

~ =TS of When / After
and - [G

Figure 9.12. Conditional Event Blockly Blocks for Smart Automations.

174

9.3 Visual Programming Blocks for Conditional Automations

One of the main categories of visual programming language elements is the
conditional automations. The conditional automations empower the end-users to
define conditions based on the state of smart object properties (see Figure 9.12).
When these conditions are evaluated to true, their inner blocks (i.e., children) are

executed.

The Blockly blocks for the conditional automations are separated into two categories
based on repeatable and not repeatable conditional automations. In particular, the non-
repeatable conditional automation is triggered only once, when its defined condition is
evaluated as true. This means that the next time that the condition will be evaluated as
true nothing will happen. In case the end-user developers would like to develop
conditional automations that will happen more than one times, they have to use the
conditional Blockly blocks that are displayed on tag B of Figure 9.12. The first and
the third block is used to specify how many times conditional automations will be
triggered, while the second Blockly block’s children will be executed after the
condition is evaluated as true for a specific number of times. Finally, the last block
can be used as a child of the first or the third block in order to break or continue the

execution of its children.

Additionally, the end-users are able to define related descriptions for the functionality
of blocks. Based on this, the runtime environment interprets the information

respectively (see section 9.6).

Moreover, the end-user is able to use these blocks as either top-level blocks of the
conditional automation (i.e., without top-bottom input blocks) or repeatedly as
children in order to develop more complicated programming expressions. In this
context, the functionality of the inner conditional blocks change. Particularly, for
using nested conditional blocks, when the inner block starts, the parent block is
deactivated (its condition is not evaluated). When the children conditional blocks are
accomplished, the parent condition is activated again (i.e., triggers when its condition
is evaluated to true).

Moreover, three blocks contribute to the definition of conditions (see tag C of Figure
9.12). The third block gets, as its input inner block, a getter of a smart object property,
to check if this property’s value changed. This block is executed repeatedly. The first

175

time it initializes the value and for every next time it is executed, it retrieves the smart
object’s value and checks if something changed. The second block is used to compare
a value of a smart object property with another value. The first block is used to build
more complicated conditions using logic operators AND, OR. Moreover, when the
conditional event is triggered, inner condition blocks are reset in order to be available
for a possible next use, in the case this conditional automation will be invoked more

than one time (e.g., use it in the body of a loop or function definition).

A

B

D

Figure 9.13. Scheduled Event Blockly Blocks for Smart Automations.

176

9.4 Visual Programming Blocks for Scheduled Automations

Another main category of visual programming language elements is the scheduled
automations. The scheduled automations empower the end-users to define schedules
based on the state of smart object properties (see Figure 9.13). When the loT
automations project starts, the application calculates the calendar, the time and starts a
timer in JavaScript. Based on these values, the scheduled blocks are triggered on the
specific date and time which are selected by the end-user developer. When these
blocks are triggered, their inner blocks (i.e., children) are executed.

The Blockly blocks for the scheduled automations are separated into three categories
based on specific date or time and repeatable or not repeatable automations. In
particular, the block ‘Az’ gets as input the specific date or time that the children blocks
will be executed at. This block executes once during the project execution. Another
block that is executed once is the ‘Wait’ block. This block gets, as input, a specific
time period. When this time period will be completed, the children blocks will be
executed. The last category of blocks supports repeatable execution based on specific
time periods (see tag B of Figure 9.13). Particularly, ‘Every’ block gets as input the
time period (see tag D of Figure 9.13). Every time the defined time period is
completed, the children blocks are executed. Additionally, the second block handles
the flow of the repeatable loops by using break in order to stop the loop and continue

in order to stop the execution of the below children instructions of the ‘Every’ block.

Additionally, the end-users are able to define related description for the functionality
of each block. Based on this, the runtime environment interprets the information of

these blocks respectively (see section 9.6).

Moreover, the end-user is able to use these blocks as either top-level of the scheduled
automation (i.e., without top-bottom input blocks) or repeatedly as children in order to
develop more complicated programming expressions. However, in the case of the
‘Every’ blocks, restrictions have been added. Particularly, we disable the use of
‘Every’ blocks as children of ‘Every’ blocks. The reason for this is to prevent the
conflicts among the parent and the children ‘Every’ blocks.

177

9.5 Authoring Project for IoT Automations

The basic part of authoring an application domain framework is the project
application structure including the project options, the project element types, the
configurations of the visual programming editors, the project manager functionality,

etc. In the following subsections we analyze each one of them.

| 1
CreateiloT Automation X
Name: Morning Automations
Description: ‘ knter Application Description
Image: Choose File | No file chosen
Background-colour: E]

G loT Personal Automations

=) Morning Automations

Figure 9.14. Configuring the create application dialogue for 1oT Automations and the Project Manager

view based on the user’s input data.

178

9.5.1 Creating loT Automation Project

The first step for the end-user development of an application is to enable the user to
fill-in the information of the project. The Blockly Studio IDE provides a default
dialogue to create a new application. It also provides a view of the projects in Start
Page component (see section 3.3). We authored two more items in the dialogue when
the user creates new loT automations. The first extra element is an image for the
automation and the second is the basic background color of the Project Manager
component. Based on the selected color, the categories of project elements and the
project elements get lighter color automatically.

When the user selects the ‘Create’ button, the visual programming workspace opens
by initiating the Project Manager component. As earlier mentioned, the Project
Manager component is fully configurable as to the style, the content and the
functionality. In this context, we defined the title and the image that will be rendered

in case of the I0T automations (see Figure 9.14).

Additionally, the Project Manager component is configured based on the facilities
that will be enabled in the context of the application domain. The application domain
author is able to filter which of the Blockly Studio IDE facilities will be available for
the end-user development process based on the requirements of the domains and
which of the facilities have been authored. For example, the runtime environment and
the debugger are not able to be used if the domain author hasn’t developed the
appropriate run and debug scripts which are the entry points of the applications which
are executed, the collaborative editing component cannot be used in case the visual
programming editors which have been developed for the application domain do not

support functionality of syncing, etc.

A filtering of the provided Blockly Studio IDE facilities is accomplished by authoring
the menu options that are available through the “burger” which is provided by the
Project Manager component (see on the top of Figure 9.14). In addition, menu options
are defined for each of the projects. These project menu options open when users right
click the project label or by clicking on the three-dot button which is presented when

the user mouse over the label of each project.

179

9.5.2 Project Elements

Having created the project for IoT smart automations (see at the bottom of Figure
9.14), there are five categories available to the end-user developer for the visual
programming process: ‘Smart Devices’, ‘Smart Device Groups’, ‘Automations for
Basic Tasks’, ‘Automations for Conditional Tasks’ and ‘Automations for Scheduled
Tasks’ (see tags A-E of the Figure 9.14). The first two categories of project elements
targets at the management of smart objects and the last three categories of project
elements focus on the end-user development of automations. In the following

subsections, we analyze each of these categories.

9.5.2.1 Smart Devices

The main category of project elements is the ‘Smart Devices’ (See tag A of Figure
9.14). Using this category, the end-user developers are able to import the smart
objects and organize them through the use of smart environments which play the role
of subfolders. As earlier mentioned, the smart objects and the smart environment are
handled by the Smart Object Editor (see section 9.1). However, in order to render the
information of the project element instance, we developed a project element template
(see Figure 9.15) in which the visual programming smart object editor instance view
is hosted, including information that is related to the project element.

ir Condition Groupi

Empty DIV to host visual programming editor .

Figure 9.15. Project element template that includes information and hosts one visual programming

editor instance.

180

£ Smart Device Groups :
: "? Smart Devices @

4+ Define Smart Device

4+ New Smart Environment

B Delete All

Figure 9.16. Menu options for the Smart Devices Category.

In order to enable the creation of a new ‘Smart Device’ or ‘Smart Environment’, We
authored the menu options of this category. By clicking on the three dots which are
positioned on the right of the ‘Smart Devices’ label (see tag A of Figure 9.14) or using
right click, the menu options open (see Figure 9.16). In case the user chooses to
import smart devices, or to create a new environment, a respective dialogue opens in
order to fill-in the smart device information (i.e., name, image and color). Similar

options are presented in case of the smart environment menu options in order to give

Define Smart Device Group X

Name: Smart Group Air Condition

Image: Choose File |air-conditioner.png
Background-colour: \E'

Smart Device: Alarm Clock |

Air Condition
Air Condition Living Room
Alarm Clock

Figure 9.17. Creating new smart group device by choosing smart device that will export its

functionality interface.

181

ability of defining inner smart devices or creating inner smart environments.

9.5.2.2 Smart Device Groups

The second category of project elements is the ‘Smart Group Devices’ (see tag B of
Figure 9.14). Using this category, the end-user developers are able to group the
development of smart devices in case they have common functionality. In this
context, we have defined an extra option for the creation of smart groups (see Figure
9.17). Using this option, the end-user will be able to choose the smart device. The
functionality of this smart object will be used by the system in order to export it as the

smart group interface

Additionally, we defined this ‘Smart Device’ option to not be presented in the list of
options after the construction of the smart device group. Following this approach, we
prevent dependencies between the smart device and the smart device group. This
means that by removing the smart device, the smart device group is not required to be
removed. However, the smart device group has to be updated by removing from its
list the specific smart device. Moreover, as earlier mentioned, the end-user developers
are able to create new smart device groups through the smart device view by pressing

the button ‘Create Group’ which is available at the bottom (see Figure 9.5).

9.5.2.3 Visual Programming Blocks for Project Elements of
Automations

The next three categories of project elements are targeting at the end-user
development of automations. In order to enable the end-user developers with more
visual programming language expressiveness, we authored an extra option for these
three project element categories. This option enables the end-user developers to
choose if the automation will start automatically when the project execution starts or
manually through visual programming instructions during the project execution (see
Figure 9.18).

By authoring this option, we are focusing on enriching the end-user development

expressiveness. In particular we provide the ability of manual handling for when

automations need to start based on specific circumstances during the execution. This

happens through the run-script which gets, as input, the project environment data that

includes this information and chooses which of the project elements will be executed
182

on the beginning of the project execution. For example, when the user leaves home
(i.e. opens the door of the car), start automations for securing the house and

automations to tidy up by using the smart devices.

New Automation for Basic Tasks X
Name: My basic automations
Image: ‘ Choose File |No file chosen
Background-colour: [—
Starts: Manually v
Automatically
Manually

Figure 9.18. Choosing if automation will start automatically in the beginning of project execution or

later with visual programming block element instruction.

In order to start automations manually, appropriate Blockly blocks have to be defined
and handled during the end-user development process based on the project elements
of automations. These blocks handle starting or stopping an automation. As earlier
mentioned, the visual programming editors have to export signals when a domain
visual programming language element instance is handled (i.e. create, edit and delete).
Based on the provided functionality of the Blockly editor which posts appropriate
signals when the workspace instance changes (i.e., create, edit, delete), we authored
the domain visual programming language element with the respective Blockly blocks
(i.e., start automation, stop automation). In this context, the Domain Manager handles
the signals and automatically provides the updated Blockly blocks to the appropriate
Blockly editor instance toolboxes based on the defined configuration (see section
4.1.2).

183

:,'.‘,;‘:: A ‘\ 1 < Aut ion: Aut ti B . Tasks2

blocklyElems:

!
name: “"start_automation” Stop Aut tion: Aut tion for Basic Tasks 2
blockDef: (data) =>

;;‘) .

}))
codeGen: (block)

ify(block.pitemData.pitemId) +
fy(block.pitemDaté.pitemId) +

> >

signals: [

action: "onCreate",
name: “creat
mission: “e
provider: "Bl

Figure 9.19. Authoring Blockly blocks to enable the end-user developers handle manually start and stop

of the automations for project elements.

9.5.2.4 Automations for Basic Tasks

Having defined and having organized the smart objects, the end-user developers are
able to develop automations. There are three different categories of automations that
can be developed in a project for 10T automations. The first category of automations
IS ‘Basic Tasks’ (See tag E of Figure 9.14). Creating basic automations, the end-user
developer is able to define if the automation will start automatically or manually by

using appropriate visual programming block elements.

The project element of ‘Automations for Basic Tasks’ has developed a pure template
(see Figure 9.15). In addition, the Blockly editor instances configuration for the basic
tasks includes the general-purpose predefined blocks and the dynamic blocks which
are generated based on the smart object and smart object group instances that will be
developed during the end-user development through the smart object visual

programming editor (see Figure 9.20).

184

S i
Personal loT Automations = y° Care My Pet

» Built-in
-] & Morning Automations
:rIV Automations

Vi 7= Automations for Basic Tasks

- Basic Tasks
e l'ca'e_ My :e‘c e g Conditional Tasks
lomatons1onCondions Scheduled Tasks
|‘,~ Home Safety L
I
[rriLeaving Home il Smart Devices
LY, waking Up Alarm Clock
V| @ Automations for Scheduled Tasks H Coffee Machine
| = Before Wake Up Air Condition
| & cleaning Home Door
| Washing Clothes Garage Door
v £ Smart Device Groups i Robot Vacuum
I Home Doors Waching Machine
a Home_ Lights > Window Blinders
v = Smart Devices g Dehumidifier
lgAir Condition

Bath Heater

1% Alarm clock Living Room Lighting

| 8 Bath Heater

ighti Bedroom Lighting

. Bedroom Lighting
fi . TV
E Coffee Machine s

[ik Dehumidifier moke Sensor

i Window

m Door ;

- Fire Extioguisber____.

I E Fire Extinguisher
'\—TGarage Door
. Living Room Lighting
/& Robot Vacuum Home Lights
= Smoke Sensor
TV
.| Waching Machine
I Window
2] Window Blinders

Smart Device Groups
Home Doors

Figure 9.20. Automations for ‘Basic Tasks’ configuration of Blockly editor's toolbox.

This category of project elements can be used for pure automations in order to set a
number of instructions for the smart objects. For example, a program can be that after
running the project of automations, the blinders will close, the smart lights will turn to
the club mode and the smart hi-fi will start the user’s favorite club music. However,
thanks to the choice of starting the basic automations manually, the end-user
developers are able to use these automations combined with other project elements by

using the visual programming blocks in order to start the automations.

9.5.2.5 Automations for Conditional Tasks

The second category of project elements for automations is targeted at the
automations which are executed based on conditions of the smart object values. This
is one of the main categories for the end-user development of 10T automations. When
creating conditional automations, the end-user developer is able to define if this

project element will start automatically when the execution of the project will start, or

185

if the automation will start manually through the visual programming block element,

as it happens with the basic automations.

The project element of the ‘Automations for Conditional Tasks’ has developed a pure
template (see Figure 9.15). In addition, the Blockly editor instances configuration for
the conditional tasks includes all the Blockly blocks that are defined for the basic
tasks (i.e., built-in blocks, blocks for automations handling, blocks for smart objects

and smart object groups handling).

Additionally, the Blockly editor’s toolbox for conditional tasks includes two more
categories of blocks (see Figure 9.21). The first category is the conditional blocks
which was earlier discussed (see section 9.3) and is the main category for the end-user
development of the conditional tasks. In this context, the toolbox includes the
conditional blocks in two versions. In the first version, the conditional blocks are
defined as root blocks of the development (i.e. no siblings are able to be added).
However, in order to enable the development of more complicated conditional
automations, the second version of blocks is defined by including top-down input for
the conditional blocks. In this direction, the end-user developers are empowered to
develop conditional tasks which include inner conditional tasks. Moreover, in
conditional tasks, there are included blocks for scheduled tasks which can be inserted
as children of the conditional blocks without including their top-level blocks in the
‘Scheduler’ category (see on the right of Figure 9.21). In this context, we enable the
end-user developers to program more complicated conditional automations by
combining conditional tasks that are able to start scheduled tasks during the runtime

of the project, when they are triggered.

This category of project elements can be used for automations that will be based on
conditional events which happen in a smart environment by using smart objects.
Using the available conditional blocks, the end-user developers are able to build
simple conditions (e.g. temperature environment changes) and more complicated
conditions by using the provided AND, OR operators. Moreover, they are able to
handle when and how many times the conditional automation will be executed based
on the blocks (e.g. for N times when the condition is true, after N times when the
condition is true). In addition, their execution can be handled through the start/stop

conditional automations, which are available too.

186

@ Personal loT Automations I h‘n Waking Up
» Built-in

= & Morning Automations
o — S v Automations
'V #= Automations for Basic Tasks L Basic Tasks

- Conditional Tasks

() When W] then
LS maff::yandmndm < Scheduled Tasks (2) When ' Uiz
1
|4 Leaving Home

N

L e S — >
e g TREE T !
'V i Automations for Scheduled Tasks BT | CH B) For () times(s): When then
| = Before Wake Up IV Smart Devices i ' ~N ZTED of Every
I {il Cleaning Home Alarm Clock i
. 1= Washing Clothes . Coffee Machine S
v @ Smart Device Groups i Air Condition (2) For) times(s): When W] then z
I Home Doors Door
i _'§’ Home Lights N Garage Door
~ S
RS SmaHDeyices) § Robot Vacuum :
IgA" Condition Waching Machine E () After D times(s) that Wff] then
158 larm clock Window Blinders |
B BathHeater Dehumidifier L S—

. Bedroom Lighting

Bath Heater
Coffee Machii ; .
e D:h::,id;;:ne Living Room Lighting (2) After [times(s) that ' then
E Door Bedroom Lighting
v

IE Fire Extinguisher

T Garage Door Smoke Sensor 5 e
. Living Room Lighting Window orever. When
& Robot Vacuum Fire Extinguisher

? Smoke Sensor \IV Smart Device Groups

: v Home Doors o . ' e
| Waching Machine Home Lights
I Window

2] Window Blinders

Figure 9.21. Automations for 'Conditional Tasks' configuration of Blockly editor's toolbox.

9.5.2.6 Automations for Scheduled Tasks

The last but not least category of project elements for automations is targeted at the
automations which are executed based on scheduled events. By creating scheduled
tasks using a specific time and date, the end-user developer is able to define
automations in the form of a calendar. In addition, waiting for a specific time period
in order to apply the automations is another available scheduled task. The end-user
developer is able to choose if this type of project element will start automatically
when the execution of the project will start, or if the automation will start manually
through the visual programming block element, as it happens with the conditional
tasks and the basic automations.

The project element of ‘Automations for Scheduled Tasks’ has developed a pure
template (see Figure 9.15). In addition, the Blockly editor instances configuration for
the scheduled tasks includes all the Blockly blocks that are defined for the basic
automations (i.e., built-in blocks, blocks for automation handling, blocks for smart
objects and smart object group handling).

187

loT Personal Automations = l W\ Cleaning Home

» Built-in
() When M| then

(2) For [} times(s): When ‘ then

= Morning Automations
v Automations

Basic Tasks
Conditional Tasks
Scheduled Tasks

V' #= Automations for Basic Tasks
4»Care My Pet
v P Automations for Conditional Tasks
I'.‘ Home Safety

I(YA Leaving Home
1Y, waking up il _Conditional __________ | i
v @@ Automations for Scheduled Tasks i Time/Date i Z
I . Before Wake Up IV Smart Devices W : L iinatin ' =
| & cleaning Home Alarm Clock §
| . Washing Clothes Coffee Machine :
v £ Smart Device Groups i Air Condition Fﬂ BN F Forever: When off] then
I Home Doors Door &
v o Home Lights Garage Door
v = Smart Devices i Robot Vacuum
I®Bair condition Waching Machine
K;j Alarm Clock Window Blinders
| B Bath Heater Dehumidifier

. Bedroom Lighting
| B coffee Machine
% Dehumidifier

Bath Heater
Living Room Lighting
Bedroom Lighting

Door

I E Fire Extinguisher v
T Garage Door Smoke Sensor
. Living Room Lighting W'ndow . -
/8 Robot Vacuum Fire Extinguisher
= Smoke Sensor v Smart Device Groups
v Home Doors
| Waching Machine Home Lights

I Window
12! window Blinders

Figure 9.22. Automations for 'Scheduled Tasks' configuration of Blockly editor's toolbox.

Additionally, the Blockly editor’s toolbox for scheduled tasks includes three more
categories of blocks (see Figure 9.22). The first two categories of blocks are focused
on the end-user development of the scheduled tasks which were earlier discussed (see
Figure 9.13). In this context, the toolbox includes the scheduled blocks in two
versions. In the first version, the scheduled blocks are defined as root blocks of the
development (i.e., not siblings are able to be added). These blocks are playing the
dominant role in the development of scheduled automations. The second version
includes top-down input for the blocks. Using these blocks, the end-user developers
are able to define more complicated scheduled automations. Moreover, in this context,
there are available conditional blocks (see Figure 9.22) with top-down inputs in order
to be used as inner blocks of the main scheduled blocks.

This category of project elements is able to be used for automations that will be based
on scheduled events which contributes in smart loT automations by using the
calendar, the time, time periods and the smart objects. Using the available scheduled
blocks, the end-user developers are able to build simple conditions (e.g., every two

days clean up the house) and more complicated scheduled automations by using the

188

provided blocks. Moreover, they are able to handle when and how many times the
scheduled automation will be executed based on the blocks (i.e. break, continue,
branches, etc.). In addition, their execution can be handled through the start/stop

conditional automations, which are available too.

Remove Air Condition X

Deleting Air Condition element has no indo action. Are you sure you would like to
continue?

0 L ro] s

Delete Smart Device: Air Condition X

The smart device "Air Condition" has been used from project elements:

e TurnOn Air Condition

¢ When water is ready

Do you want to delete "Air Condition” and the respective blocks from the
above project elements?

o

Figure 9.23. Dialogues in case the end-user chooses to delete a Smart Device.

9.5.2.7 Handling Dependencies

During the end-user development process, the end-users create, edit and maybe delete
project elements. As earlier mentioned, there are dependencies between the project
elements. Each application domain might like to follow different rules for the
deletions of project elements, the editing, etc. In this context, the Blockly Studio IDE
enables the application domain author to develop the behavior before and after the
actions of creation, editing and deletion. Moreover, based on the API which is
provided by the Project Manager, the Blockly Editor and other visual programming
editors, we are able to retrieve which are the project element dependencies, the

responsible visual programming language elements, etc.

189

In the case of the 10T Automations domain, we decided to open a dialogue in case of
deleting a smart device or a smart device group, which will inform the end-user
developer of the project elements that this project element has dependencies with (see
tag B of Figure 9.23) and the respective visual programming language elements that
will be removed from these project elements. In case there aren’t dependencies with
other project elements, the end-user developer is asked to confirm their decision to

remove the smart device or the smart device group.

In both cases, the end-user developers are able to confirm or cancel the action. Using
the function which is called by the Project Manager after the action (authored by the
domain author), we developed the respective functionality of removing the respective

blocks from the dependent project elements.

In addition, in this function, having the knowledge of the completed delete action, the
smart object editor is able to post the respective delete signal. Based on this signal, the
Domain Manager is able to handle the deletion of the visual programming language
element. In this context, all the respective project elements have updated toolboxes in
their Blockly editor instances.

9.6 Running Smart Automations

As earlier mentioned, the runtime environment of the Blockly Studio IDE requires the
development of the entry point script (i.e. run-script) in order to execute a project of a
specific application domain. In addition, it is required by each visual programming
editor instance to generate the respective JavaScript source code or the run time
environment data from the visual code which has been created by the end-user
developers. In this context, we developed the respective generator function for the
smart object visual programming editor and developed the respective JavaScript
source code for the execution of each of the Blockly blocks.

9.6.1 Execution of IoT Automations

When the user starts the project execution, the runtime environment requests to get
the project’s runtime environment data. The project manager iterates each of the
constructed project elements. Each of them includes a list of visual programming

editor instances. For each one, it is requested to generate runtime source code or data.

190

In the context of 10T automations, there are two different visual programming editors,

the smart object editor and the Blockly editor.

9.6.1.1 Interacting with Smart Objects

In the case of the smart object editor, the generator for runtime produces data is
constructed for each one of the visual programming language elements (i.e., ‘Smart
Device’ and ‘Smart Device Group’ instance). These data are used when the execution
starts in order to communicate with the respective smart objects. By communicating
with the smart objects, the application gets the current properties’ values of the smart
devices (pre-caching data) and adds observers for them updates in case there are
changes in their values. The communication mechanism and the smart objects’ data
are available in the global runtime environment of the application (developed on the
top of the run-script).

Based on this implementation, respective source code is developed to be generated by
the Blockly blocks which handle the behavior of the smart devices and smart device
groups (see Figure 9.9, Figure 9.11). In particular, getters are handled by using the
pre-cached data instantly instead of requesting the loTivity middleware. This
improves the performance of the getter functions which is critical for the execution of
conditional blocks (see next paragraph). In the context of setters and actions of the
smart devices and smart device groups, we have developed them using promises in
order to have sequential execution (i.e. using await) of these instructions and avoid

async function calls.

During the project execution, the communication between the application and the
smart devices may be lost. In this case, the execution of the application is not able to
continue and a dialogue warns the user about the issue and the ending the of execution
process. Additionally, a specific smart device may be disconnected during the project
execution. In this case the application notifies the users and they are able to decide if
they will stop the execution or they will continue in case this smart device not affects
their automations (see Figure 9.24). Similarly, warning message is popped-up in case
a request in smart device could not be accomplished. For example, water is empty in

coffee machine and it is not able to prepare coffee.

191

1. Connection Issues X

Smart device "Air Condition” connection is lost! What would like
to do with the execution?

Figure 9.24. Dialogue on connection issues of the smart devices.

9.6.1.2 Running Conditional and Scheduled Tasks

Starting the execution of the project, there is a list of conditional automations which
are developed through the earlier mentioned Blockly blocks (see Figure 9.12). When
the defined conditions of the blocks are evaluated to true, their inner blocks (i.e.,
children) will be executed. Conditional blocks in 10T automations project could be
numerous in a project as they are basic in the context of smart automations. As a
result, the performance of their execution has to be efficient. Our approach is based on
the setTimeout [149] and setinterval [150] functions, which are provided by
JavaScript. In particular, based on the fact that a change of a state can be delayed of
observing it from the people (e.g., less than 0.5 second), we developed a repeatable
function call. In addition, there is a global list of conditional defined functions. When
a conditional block starts, its respective function is added to the global list, while
when a conditional block is deactivated, it is removed by this list. The repeatable
function call, iterates and invokes all the conditional functions. If the condition is
evaluated to true, the inner body of the conditional block is executed. Based on this
technique, we have used only one setinterval for all the conditional blocks. In this
context, the earlier mentioned pre-caching of values for getters is extremely important
for the implementation because the request of middleware is incomparably more

expensive.

In the case of scheduled blocks, real time and date is used. When the project
execution starts, we calculate the specific time for all the activated scheduled blocks
that have to be triggered and we use setTimeout in order to start the execution of their

inner body. In addition, global data are saved including the setTimeout ID in order to

192

use them in case there is an instruction of stop or pause for the specific scheduled

automation or the whole project.

9.6.2 User-Interface of loT Automations

In running the applications of 10T automations, the sole interaction of the user with
their automations, is the input-output console which is provided by the Blockly Studio
IDE. Through the input-output console, the end-user developer is able to ask input for
smart device properties and print the values of smart device properties. However, this
is not adequate in order to have a live monitoring of the 1oT automations, which are
developed through the visual programming environment we described above.

In the case of software developers, one of the main development tasks would be the
user-interface programming of the loT automations. In the case of visual end-user
development, existing approaches for building user interfaces for the applications are
the WYSIWYG editors (or screen designers). In this context, we could incorporate one
WYSIWYG editor for the application domain of 10T automations in order to enable the
end-user developers to program user interfaces for their applications. However,
building user interfaces for 10T automations and connecting with the visual code of
automations could be unmanageable or extremely difficult for novices. Moreover,
developing such user interfaces could be extremely time costly for users that would

like to develop simple automations.

In this context, we developed a full-scale graphical user-interface runtime
environment for monitoring and interacting with the smart devices, the conditional
and scheduled automations, etc. (see Figure 9.25). Also, this environment can be
configured by the user. As discussed on section 6.4, the Blockly Studio IDE is able to
host external domain graphical user-interfaces for their project execution. In
particular, the application domain authors are able to initiate and handle these views
through the run-script and the code generation of the domain visual programming
language elements which are developed using the visual programming editors. In the
following subsections, we describe each of the graphical user-interface parts of the

loT automations runtime environment.

193

Running Automations for Automations Demo -]

FEBURARY 02, 2021 HISTORY vi2,
. \ -
L Y :
— — _ , .
1 4
Wil 10 seconds 1o executé TurnOn Air
B 18 17 18 1B 20 2 232454 ond Comdiion
2 » H B ® A B 232454 -ond Wt 10 soconds to start leiovision
232455 end Wail 10 seconds o Invoke Frepare Bathroom
s s " nole n "
232509 -on Check every 35 soconds If boll nngs
& Air Candition @ Alarm Qock Bathroom Light B Rathroom Door R sed ¥ Redroom Light
device tema 20 ing tue calour purple lock unlock suate clean celour white
23 ingtone Classic seenc Night lock stotus false scene Night
swing bottom time 10:00 tum on | e open tuan off
i off off
O el 2 Coffer Machine B HiFi B Main Door ¥ Main Light El Refrigeration
nng start coftee-ready true music stop lock unlock colour white fals
ting stotus true wps 0 wack Gettin, Tock status false seene Night 60
prepae-cof. start wn off B ame open faise
on 45 velume 20 m rapic-reeze false

W Refrigeration’s Plug @ lelevision ¥ lelevision's Plug B water Heater % Window Blinds

Figure 9.25. Runtime environment for loT automations.

&= Air Condition

turn on v Set
on

Figure 9.26. Request to set input in property of a smart device.

9.6.2.1 Smart Devices View

One of the main views for the runtime environment of 10T automations is the smart
devices monitoring view. The user-interface for smart objects displays their state for
each of their properties live. In case a smart object’s property value changes, the
specific property view is highlighted with blue color (see red arrows of Figure 9.27)
for some seconds. The property values’ changes are able to arise via the execution of
the visual code developed by the end-user or via the device functionality. In this
context, we depict the source code and device mode changes by using different icons
next to their property values. The users are able to view the history of the values for
the properties by hovering on specific value boxes (see environment temperature of
the Air Conditioning in Figure 9.27).

194

== Air Condition o Alarm Clock Bathroom Light
23 - currently, 22 - 10:00a.m.,

21 -9:00 am. 20 - 8:00 a.m. |EElG] true colour purple
environment... 23 ringtone Classic scene Night
swing bottom time 10:00 turn on
turn off . tum on E .

O sel 2 Coffee Machine HiFi ‘
ring start coffee-ready true music play U
ring-status true cups 10 track Gettin...
prepare-coff... stop turn on
turn on . volume 20 .
¥ Refrigeration's Plug @ Television ¥ Television's Plug
turn off channel Movies... turn off
turn on
volume 25

Figure 9.27. Display of the Smart Devices at runtime environment.

In addition, when the blocks which ask property value as input from the user (see tag
D of Figure 9.9) are executed, a dialogue opens in order to insert a value for the
specific property of the smart device. The user-interface for the input is related with
the type of the property. For example, in case the input is of enumerated type, a select
input will be depicted (see Figure 9.26), in case of text, a text input will be depicted,

etc.

Furthermore, the end-user developer is able to choose if the runtime environment will
display an additional button on the header of each smart object through which the
users will be able to click them and change values for the properties of the smart
objects manually during the project execution. In particular, when the user clicks the
control button of a smart device, a dialogue opens with editable view of the smart
device’s properties (only if they are not read-only, see Figure 9.28).

195

& Air Condition @‘=> &= Air Condition)

device-temp... 20
device-lemperature 20 m
environment... 23 Mn 17 Max3d
swing bottom
|meeemee e ————— '
[]
tunn off [H} environment-temperat '3 -
-
| Peppp———————— -4
swing botom upoe
ten on v upase |

Figure 9.28. Enabling control smart devices during the project execution.

9.6.2.2 Calendar View for Automations of Scheduled Tasks

As earlier discussed one of the main categories of blocks, in the context of loT
automations, are the scheduled blocks. In a project of loT automations, the end-user
developers could use numerous scheduled blocks. However, when the application
runs, there is no feedback if these blocks have been developed correctly or not. In
addition, it is difficult to understand by just waiting for them to be triggered during
the project execution. Moreover, when a project runs the user has no feedback for

which scheduled automations are going to happen and when.

2021 FEBURARY 02, 2021

FEBURARY

TUE WED THU

Wait 10 seconds to execute TurnOn Air

15 16 17 18 19 20 21 2a2 s fend Condition
22 23 24 25 26 27 28 23:24:54 - end Wait 10 seconds to start television
1 2 3 4 5 6 7
2324:55 - end Wait 10 seconds to Invoke Prepare Bathroom
] 9 10 1" 12 13 14
23:25:09 - end Check every 35 seconds if bell rings

Figure 9.29. Monitoring scheduled automations in the runtime environment of 10T automations.

196

23:01:05 - end

23:01:15 -end

23:01:19 - end

23:01:25 -end

23:01:35 - end

23:02:25 - end

23:05:44 - end

I ‘:\ Bell rings

¥ Built-in

Logic
Loops
Math
Text

Lists
Colour
\ariables
Functions

I» Automations

l Scheduler

| conditional

| TimeDate

> smart Devices

I» Smart Device Groups

FEBURARY 2, 2021 >

Wait 10 seconds to execute TurnOn Air -
Condition

Wait 10 seconds to TurnOn Water Heater

Wait 10 seconds to Invoke Prepare Coffee
Wait 10 Seconds to TurnOff Water Heater
Wait 1 minute to StopPreparingCoffee

Bell rings in 5 minutes

v

» Main Light MoK
T Tumon

Figure 9.30. Browsing project elements that includes the scheduled blocks.

In this context, based on the execution of the scheduled blocks (see Figure 9.13) we
developed an appropriate view for the scheduled tasks which has been incorporated in
the runtime environment of loT automations. In particular, we have developed a
calendar view which is separated in two views: the calendar and the view of
scheduled tasks (see Figure 9.29). As earlier mentioned, when the execution of an

application starts, the date and time are calculated for each of the scheduled blocks

197

that are executed. In this context, we added extra source code in the blocks’ code
generation, in order to add the scheduled events in the calendar, using the API of the

runtime calendar we have developed.

However, it would be pointless to add scheduled events in a calendar without
appropriate description or notes. In this direction, we enable the end-user developer to
add description and/or notes for each scheduled block by using the Blockly block
comments (see Figure 9.13). When the scheduled events are added in the calendar, we
also insert the corresponding block comments as their description. Additionally, the
users are able to click on the table elements with the scheduled events and the run-
time is folded while the respective project element of the scheduled task automation
opens and the scheduled block is highlighted with its comment open (see Figure
9.30). When the scheduled tasks are completed, they are marked with green color and
checked as completed by filling the time and date that they finished. During the
project execution, the scheduled automations and scheduled blocks are able to
start/stop. In this context, the respective time and date that they will be triggered is
calculated and the calendar is refreshed.

9.6.2.3 History View

As earlier discussed, in the context of loT automations, one of the most important
categories of automations is the conditional tasks which are based on the conditional
blocks (see Figure 9.12). Another one of the main categories of blocks is the
scheduled blocks. During the execution, the users are not able have feedback if
conditional blocks have been triggered or not by only monitoring the changes of

values of the smart device properties.

_____________ <
F | Main Door 123:01:21, 02/02!

e——----
| Execute Action: Open

Figure 9.31. Interactive bubble which depicts action of the history panel view.

198

Running Automations X

I & When water is ready

¥ Built-in .

I Logic 2) When B Water Heater: get value from
I Loops '

I Math ¢) Wait E1) second(s) = then

I Text @ Window Blinds (518

I s = Air Conition

I Colour

I \Variables % Wait | €T second(s) | then

I Functions Start Automation: Prepare Bathroom
|> Automations

| conditional

I Scheduler o A

I Time/Date Condition, Invoke

I> Smart Devices Prepare Bathroom

I> Smart Device Gro

HISTORY

Figure 9.32. Monitoring conditional tasks and browsing respective visual code shippets.

In this context, the users are not able to know what exactly has happened to the 10T
automation and what could happen during the execution through the conditional tasks.
Moreover, users are watching changes of the smart devices through the smart devices
display (see red arrows of Figure 9.27) and they are informed if this change has arisen
through the 10T automation code or not, but they are not able to know through which

visual code part was executed.

199

In this context, based on the execution of the scheduled blocks (see Figure 9.12) we
developed an appropriate view for the conditional tasks which has been incorporated
in the runtime environment of loT automations. In particular, we have developed a
history view which includes facts that have happened in the loT automation during

the execution (see bottom part of Figure 9.32).

These facts are presented in the form of bubbles which includes title, icon,
description, date and time and background color (see Figure 9.31). Each of these
bubbles enables the users to browse the respective visual code which caused this
action by clicking on it (see Figure 9.32). The user is able to add comments in the
conditional blocks and the history panel uses them in order to display them when the
block is executed. Moreover, the background color is defined respectively.
Particularly, in the case of an action bubble which is rendered for a smart device, the

background color is the given color on defining this smart device.

9.6.2.4 Explaining Why Automations Occurred

During the execution of 0T automations, the users could wonder how an automation
has been arisen. For example, in the case of the Ambient-Assisted Living, the family
and caregivers can develop automations that will be used by elderlies. In this context,
elderlies may wonder why an automation happened. As result, it would be extremely
useful for loT Automations to be able to answer questions that may arise from the
users. However, the system is not able to explain what happened based on the visual
code which has been executed.

Using the above user-interface of the 10T automations, they are able to monitor what
happened and why it happened by using the comments that have been added in
conditional and scheduled Blockly blocks, in order to present them in the calendar and
history view. However, in the body of these blocks (i.e., children) different actions
could be executed through branches, loops and function calls. As result, comments of
the scheduled and conditional blocks are not able to answer exactly what happened in

a specific automation.

In this context, we use the earlier mentioned approach (see section 7.8) of defining

extra helpful blocks as annotations which are used for explanations during the project

execution. Using explanation blocks, the end-user developers are able to annotate
200

which actions are going to happen in the following visual code snippets. During the
project execution, the users are able to use the help button (positioned under the clock
in the left of Figure 9.25). A pop-up dialogue opens which resembles the history view
(see Figure 9.32) and presents the messages of the explanation blocks which have
been executed currently in the form of bubbles, informing the users why the

automations happened.

Additionally, the list of explanation blocks identities is pinned in the parent calendar
and scheduled blocks. During the execution, when an explanation block is executed,
the explanations data (i.e. end-user developer messages) includes their identity, in
order to render information, in case the user asks for what happened. In this context,
we are able to identify the parent blocks, and we add an extra help button in each of
the parent blocks in case they have to present more information about the executed

explanation blocks which are related (see Figure 9.33).

Figure 9.33. Filtering executed explanations per scheduled (top) and conditional (bottom) automations

by enabling info button that opens dialogue which present them separately.

9.7 Debugging and Testing Facilities for loT Automations

As earlier discussed, the Blockly Studio IDE includes debugging through its visual
debugger which supports a full-scale toolset (i.e., stepping, tracing, watching,
breakpoints, conditional breakpoints, etc.). However, in the case of 10T automations
there are several arising issues that make the debugging process impractical or even

impossible.

Particularly, ToT automations are included by smart devices’ behavior handling,
conditional and scheduled automation tasks. Scheduled automations could be
triggered for long periods of time. In this context, the end-user developers can’t wait

for these time periods in order to identify that automations work correctly. A solution

201

could be the editing of the time periods in the corresponding visual code in order to
shorten the waiting time. However, this requires extra effort from the end-user
developer and may cause errors in time periods, when completing the development
process. Additionally, conditional automations are based on the smart devices’ values
state. For example, a conditional automation could be “When smoke sensors warning
Then alarm starts” or “When environment temperature changes Then air-
conditioning starts . In this case, the end-user developers are not able to debug their
automations. Additionally, during the project execution the smart devices are affected
by the program (i.e. change their properties, requests for actions), while a debug

process may include several starts and stops of the visual debugger’s execution.

In this context, we developed facilities to simulate the smart devices, their behavior,
the date and the time that the automations will be executed. In particular, we replace
the real smart devices with simulated in the context of the debugging process.
Additionally, the end-user developers are able to create tests of expected values of the
properties of the smart devices at specific date & time or at specific conditions during
the project execution. As mentioned in section 7.9, Blockly Studio IDE supports the
extra domain-specific user-interface runtime view through the debug-script which has
to be developed by the application domain authors and the independent development
of applications which communicate with the IDE. In particular, using the debug-script
we initialize and handle the simulation facilities, while we have authored the code
generation of the domain Blockly blocks in order to cooperate with the facilities. In
the following subsections, we present each of the simulation features we developed in

order to contribute to the debugging process in the context of 10T automations.

9.7.1 Simulating Smart Environment

Starting the debugging process, the user interface of the runtime environment which is
displayed on release mode (see Figure 9.25) has been modified. In particular, there are
extra elements for the simulation facilities (see Figure 9.34). Next to the history view
(see Figure 9.32) there is a test control panel in which the user is able to view and
handle the simulation tests for the debugging process. They are able to edit specific
tests by clicking on them (bubbles), view if they have been executed (see green check
mark in the grey bubbles of Figure 9.34). Additionally, they are able to view all
authored tests and manage them by clicking on the folder button located on the

202

bottom of the test control panel. When you click this button, a dialogue opens (see
Figure 9.35) presenting the list of simulations for the smart objects; behavior and the
tests of expected values of properties of smart objects at specific time & date or
condition. The end-user developers are able to view, add or remove a test.

TESTS CONTROL PANEL 17:37:25 O

. \ 12
. Test Air Condition functionalities ~ P
17:35:41-17:35:46
Change environment- v 9 3
temperature value of Air Condition after 5 4/\ ™~
_ / 6 \
seconds, new value = 29

‘ Test Air Condition functionalities

P _ :
. 17:35:41 - 17:35:51 ‘ | . ‘ 'd ‘ ‘ |‘ ok "
Change device- 2) U= !

temperature value of Air Condition after
10 seconds, new value = 25

-|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

-

Day 03/02/2021 (3 |
|
|

I
I
I
I

| Time = 06:37:25 pp O]

I

I I

. mm@

!

Figure 9.34. Simulation Environment View: tests control panel (left), date & time simulation (right).

Moreover, except of the simulation of the smart objects’ behavior, the time and date
of the application runtime are also simulated (see right of Figure 9.34). The end-user
developers are able to stop, start the time, go slower by using the turtle button or go
faster by using the rabbit button. Additionally, they are able to go at a specific date
and time. Particularly, when the end-user developers click the button on the right of
the rabbit button, it opens a user interface that allows them to select specific date and
time. This action allows the end-user developers to see what will have happened by
executing all the simulated actions and the visual code of the automation. The end-
user developers are able to pause the time and view all the actions in history view, the
scheduled tasks in calendar view and the current values (and the history values) of the

smart objects’ properties.

203

As earlier mentioned, we have two different types that contribute to testing the
application: the simulation of smart devices and the tests of expected values. In the

following two subsections, we present them.

Tests for Morning Automations

Simulate Smart Objects Behavior

Expected Smart Objects State Tests

Figure 9.35. Managing Simulation Behavior and Expected Values Tests.

9.7.2 Simulating Smart Devices

When replacing the smart devices with simulated devices, there are issues that have to
be addressed. Firstly, the functionality of the actions of the smart devices (e.g., coffee
machine includes a prepareCoffee action) are not known to the simulation system. As
a result, during the runtime, actions are not able to be executed. In this context, we
developed the appropriate infrastructure for the end-user developers to be able to
program the actions of the smart devices.

In particular, the end-user developers are able to program each of the actions that are
provided by the smart devices by browsing the smart device and choose the debug
options button which is located in the right of each action (see Figure 9.36). When the
user clicks on the button, a dialogue opens with a Blockly editor workspace instance.
This instance is configured by isolating the specific smart device Blockly blocks in the

Blockly toolbox (see Figure 9.36).

204

‘ I 2 coffee Machine

Actions (4)

- ——
PrepareCoffee Implemented for debug ... : :—
Sl |

StopPreparingCoffee Not implemented for de... ‘}

E—s

Implementation of action "PrepareCoffee" that runs on debug mode X

W Built-in ©) (2) to
Logic 3 Coffee Machine: set (IR to EETED
Loops (’) Wait @3 minute(s) | then
Math . |
Text
Lists

[
0
I
[
i
I colour
[
l
[
i
i

&% Coffee Machine: set (I e-coffee
k

Variables
Functions

Conditional
Scheduler
Time/Date

Coffee Machine

Figure 9.36. Simulating smart device actions for debugging purposes.

Additionally, a function is predefined with a given name, same with that of the
action’s name. In this context, in case there are input arguments in the action of the
smart object, the predefined function is constructed with these input arguments and
there are created variables in the Blockly toolbox which refer to these arguments.
Moreover, the end-user developers are able to simulate the action by using scheduled
blocks as it is shown in the example of Figure 9.36. During the debugging process,
when a smart device action is requested, the respective end-user developed function
will be called. The end-user developers are able to add breakpoints and in case a
breakpoint is triggered, the dialogue of the specific Blockly editor workspace opens
and highlights the block which has currently paused the execution, as it happens in
classic Blockly editor workspaces of the project. In case there is no implementation

205

for some smart device’s action, the end-user developers are warned when they try to
start the debugging process. Moreover, when they browse a smart device, the actions
which are not simulated are highlighted, as displayed for the “StopPreparingCoffee”
action in Figure 9.36.

Having replaced the smart devices with simulated devices, the system has to enable
simulation and handling their properties and actions at time periods. In this context,
we enabled the end-user developers to program simulation smart device functionality
tests (see top of Figure 9.35). When the end-user developer chooses to add a new test,
or edit an existing one, they are able to choose specific time periods that they are able
to set changes for each of the smart devices, regarding one or more properties as it is
presented in Figure 9.37. Moreover, they have to set a name for the test which is
presented on the tests management page and a color which is rendered in the
execution, in the test control panel. Based on the time periods of these simulated tests
and the simulated time & date of the debugging process, the behavior of the smart

devices changes in order to enable the end-user developers to test their automations.

Edit test: Test Air Condition functionalities

Title Test Air Condition functionalities Color | [

Time Slots Changes
&
Time 5 w Air Condition
(seconds):
Description Default Description Properties
environment-temperature 29
Min:-10 Max:38
(= J o]
Time 10 w Air Condition

(seconds):

D

Figure 9.37. Simulating behavior of smart devices at specific time periods.

9.7.3 Testing Automations

We have developed an extra category of tests that the end-user developers are able to

use in order to help their debugging and testing process for their applications. In

206

particular, they defined two new Blockly blocks (see grey box of Figure 9.38). Using
them, end-user developers are able to build tests which run either as simple
instructions, or included in conditional blocks. The authoring of these tests, helps the
end-user developers to detect unexpected values of smart device properties either
during the whole debugging process or in specific circumstances by using conditional
blocks.

Edit Expected Value Checking Test: Check when device temperature goes to 25

Title Check when device temperature goes to 25 Color [
¥ Built-in
I Logic Wam me in case of
I Loors warming message: (22D
I wMath
-7
I Ie:t POt Pause running automations in case of
ists -~ -

" L =t default
I Colour T
I Variables Pt

"‘-

I Functions -

.-
——————————————— -
-
-

l Conditional
ID Smart Devices

‘Wam me in case of &8 Air Condition: get value from S n o ks B8 €5

Lo LR Device Temperature of Air Condition is now on 25

Figure 9.38. End-user development of tests for expected values in smart devices properties.

LT P by

01:27

Warning: Check when device 'ha-n'lr.l...s;'_.:llE X

Device Temperature of Air Condition is now on 25

Figure 9.39. Warning message in case a test of expected values of smart device properties fails.

When a checking block is triggered by an unexpected variable value, a dialogue (see

Figure 9.39) opens in order to warn the end-user developer and the project execution

pauses until the user chooses to continue using the visual debugger toolbar. This is

helpful in order to enable the end-user developers to check the values of their
207

programs in general by using the watches and variables which are provided by the

visual debugger’s toolbar.

9.8 Case Study

When we developed the integrated domain framework, we decided to carry out a case
study to better present the end-user development process, validate and test our visual

programming approach for personalized automations in the context of the loT.

v
= - Every day at > Air Conditioner Bath Heater Coffee Machine
= 7:00 o’clock | Turns On Prepares Water Prepares Coffee
g
£ - When water > Alarm Clock Window Blinds Reminder get]
g is prepared L Rings Open apill
.-E - When garage i All Lights Electric Devices Outer Doors &
= é‘ door closes | Switch Off Turn Off Windows Lock
A2
> O
& o When smoke Ask user to start Fire Extinguisher
U w »
:an o3 - L Fire extinguishers g L Starts
(] Windows open for)
Every 2 days at 3 ° Robot Vacuum Robot Vacuum Dehumidifier
jgz . 9:00 o’clock m = Sweeps g l Mops] -> [Starts]
= h
© Every Monday Washing Washing
» ==
o - At 9:00 o’clock |_Machine Starts | Machine Dryer

Figure 9.40. Morning home automations example.

9.8.1 Discussing of Use Case for Morning Automations

In this context, we describe a hypothetical scenario of automations in the morning as
it is one the most difficult time of the day for people is when they’re waking up.
People would like to earn more sleep in the morning while their water for their bath
and their coffee will be prepared. Additionally, they may like to be reminded to get a
pill, while they would like to have peace of their mind when they leave their home to
go for work by ensuring home safety, security and economy. Moreover, people would
like to clean their home, however, their free time is limited and they would like to
automate this task by using smart devices. All the aforementioned automation tasks
are able to be served based on their daily life and needs. An example of these tasks is

represented in the Figure 9.40Figure 9.2.

9.8.2 Initiating of the End-User Development Process

Starting the process, we chose the applications domain category of ‘Personal IoT
Automations’ between the application domain frameworks and create new project (see
208

on the left of Figure 9.41). The constructed project ‘Morning Automations’ is empty
of project elements (see on the top-right of Figure 9.41).

The first end-user development steps is to define and choose which of the smart
devices will be used for the automation. By using the right click of the project
manager’s element category ‘Smart Devices’ there are two option of creating smart
device or smart environment. When the end-user chooses to define smart device, the
project manager opens a dialogue to define the required data for the smart device (i.e.
name, image and color). Afterwards, the end-user is enabled to choose which of the
devices will be registered either picking one from the already registered or by
scanning to find new ones. The end-user is able to define or undefine smart devices
during the process. The smart devices that have been used are displayed on Table 7 in
order to represent their properties and actions.

G loT Personal Automations =

-] @ Morning Automations

7 Smart Devices [in

+ Define Smart Device

Define Smart Device ” x

Create New Application
Name: Bedroom Living

Image: [Choose File |ight.ong
Name: Morning Automations
Background-colour: —/)
Description: Enter Application Description

Image: Choose File | No file chosen

Il
v
=

Unregistered Smart Device, Press Choose Button

/BedroomLightResURI/3 Choose
v

Name: /BedroomLightResURI/3

1D: _bedroom-light

scene Night

turn off

Figure 9.41. Creating morning automations and defining bedroom lighting device.

209

Table 7. Smart Devices that are used for Morning loT Automations.

Smart Devices Properties Actions

Air Condition device-temperature: number | AutoMode ()
environment-temperature: Configure (device-temperature,
number swing)
swing: enum TurnOff ()
turn: on|off TurnOn ()

Alarm Clock ring: boolean SetAlarmTime (time: Time)
ringtone: enum TurnOff ()
time: Time TurnOn ()

Bath Heater turn: on|off TurnOn ()
water-ready: boolean TurnOff ()

Bedroom Lighting

colour: string

ChangeColour (colour: string)

Coffee Machine

scene: enum ChangeScene (scene: enum)
turn: on|off TurnOff ()
TurnOn ()

coffee-ready: boolean

PrepareCoffee ()

cups: number

StopPreparingCoffee ()

prepare-coffee: start|stop TurnOn ()

turn: on|off TurnOff ()
Dehumidifier humidity: number Service (service: enum)

mode: enum SilentMode ()

service: enum TurboMode ()

turn: on|off TurnOn ()
Main Door lock: enum Close ()

lock-status: boolean Lock ()

210

state:open|close

Open ()

Unlock ()

Fire Extinguisher measurement: number Start ()
state: enum Stop ()

Garage Door lock: enum Close ()
lock-status: boolean Lock ()
state:open|close Open ()

Unlock ()

Living Room Lighting

colour: string

ChangeColour (colour: string)

scene: enum

ChangeScene (scene: enum)

turn: on|off

TurnOff ()

TurnOn ()

Robot Vacuum

clean-program: enum

Mopping ()

state: enum

Program (clean: enum)

Turn: on|off

Sweep ()

TurnOff ()

Smoke Sensor

measurement: number

value: enum

TV

channel: string

TurnOn ()

ChangeChannel (channel: string)

turn: on|off

TurnOff ()

volume: number

TurnOn ()

Volume (value: number)

Washing Machine

child-lock: boolean Program (washing-program:
number)

speed: number Start ()

state: enum Stop ()

temperature: number

Temperature (temperature: number)

211

time-period: number TurnOn ()
washing-program TurnOff ()
Window lock: enum Close ()
lock-state: boolean Lock ()
state: enum Open ()
Window Blinders state: open|close Open ()

BlOCkly Studio Home Configure ¥ Blockly ¥ Runtime ¥ SmartObjectEditor ~

> & | §=) X

G Personal loT Automations = =1 Garage Door

(-] @ Morning Automations

Environment Home v

v = Automations for Basic Tasks i
v P Automations for Conditional Tasks i .
Properties (3)
v @ Automations for Scheduled Tasks H
‘v = Smart Device Groups i lock Tock @
V = Smart Devices i universal-id: lock o
IgAir Condition
| T Alarm Clock Iock-staFus false
I 2 Bath Heater universal-id: lock-status
. Bedroom Lighting state @
I [E Coffee Machine universal-id: state SEen
E’- Dehumidifier
m Door
I E Fire Extinguisher fictions (4)
:Garage Door =
r Y} Cl Not | ted for de...
i |_|v|ng Rooni L|ght|ng jose ot iImpiemented for de. &
_# Robot Vacuum R
-_T'- Smoke Sensor Lock Not implemented for de... t
v
| [Waching Machine Open Not implemented for de... &
I Window
T Window Blinders Unlock Not imnlemented for de .-.
'8 Application Run-time Console: o v ox
Console 2121

Your application starts when you click run or debug

button in the toolbar.

Figure 9.42. Workspace view having define the smart devices for morning automations.

Defining the above smart devices in the ‘Morning Automations’, the end-user
developers are able to browse them and handled by using the project manager as it is
depicted on Figure 9.42.

212

9.8.3 Visual Programming of Scheduled and Conditional Tasks

Having complete the definition of the smart devices for the morning automations, the
next step is to define for each of the tasks (T1-T6 in Figure 9.40) one project element
either scheduled or conditional as it is shown in Figure 9.43.

6 Personal loT Automations = ‘lv BUIItl:In . 2SI L AQN) -
ogic 2

At hour : 1) minute : i) second do

2 ﬁ Morning Automations l= :A?mps
A ? II Text Air Condition: set EYLIES to
asks Lists YT g TumOn - |
I'.’* Home Safety Colour
[rrALeaving Home Variables
. %
Waking Up Functions - e
=y > ?) Forever. When Is | Bath Heater then -
Tasks v Automations
I - Before Wake Up Basic Tasks © Alam Clock
| ﬁ Cleaning Home Conditional Tasks & Window Blinders ([€TTED
[[Washing Clothes Scheduled Tasks m TV set ORED o CED
e
7777777777 =l scheduler B T B T T)
Home Doors it
: h l\ Conditional ?) Forever. When Smoke Sensor: get value from (Z[T# changes
| i I \Timeate
VS v smartDevices | 8 Smoke Sensor. get value from (= i20)
] = Alarm Clock
! I 3 Alarm Clock Coffee Machine -
| i]g Bath Heater R - ————— = —— == === s e e
E . Bedroom Lighting Door 2) Forever: When |s [Garage Door then -
1 I E Coffee Machine Garage Door © Home Lights: set (TS to (KD
] Dehumidifier R°b°'_ Vacuum. -V sel (D o G
! Door “Wachlng Machine
: FE R, Window Blind 7.0ofee Machie
1 | & Fire Extinguisher indow Blinders
: EGarage Door Dehumidifier
! . — Bath Heater [l Home Doors: set to
] ‘4 Living Room Lighting o R
! & Robot Vacuum Living R°°'.“ nghtlng: __
] = Smoke Sensor :\eldroom Lioing] Every | 3 day(s) | do -
1 I -
: I = TV)) Smioke Sensor : At) hour : [0) minute : [f) second = do
! I W.achmg Machine Window ! B Window G208
. . o 1
] ! w!ndow] Fire Extinguisher ! }) Wait §[) minute(s) | then
| ___ 1WWindowBlinders = | [l¥ Smart Device Groups e T
¥, Home Doors i '
\\I'_iome Lights
B Waching Machine
L

Figure 9.43. Visual programming scheduled and conditional tasks for morning automations.

Defining the smart devices in the project, respective Blockly blocks have been
defined in order to handle their behavior. These Blockly blocks are available in each
of the tasks (i.e., ‘Automations for Basic Tasks’, ‘Automations for Conditional Tasks’
and ‘Automations for Scheduled Tasks’) as it is shown in Figure 9.43. Using these
Blockly blocks, visual code has been developed for each of the defined project
elements as it is displayed in T1-T6 tags of Figure 9.43.

213

9.8.4 Running Morning Automations

Having completed the end-user development of the scheduled and conditional tasks as
it is presented in previous section, we have run the project of ‘Morning Automations’
and in this section, we display the parts of the runtime view. The main runtime view
part is the visualization of the smart devices during the execution as they are shown in
Figure 9.44.

T Alarm Clock [E* Coffee Machine - Air Condition B} Door
ring false coffee-ready false device-temp. 25 lock unlock
ringtone Classic cups 10 environment.. 23 lock-status false
time 00:00 prepare-coff. stop swing top state open
turn off . tum off — tum off .
Waching Machine 8] Window Blinders fi» Denumidifier 8 Bath Heater
loc alse 3 ose d 80 on
————— mot silent false
“““ op 3 d
temperature 60 . turn off
Garage Door .8 Robot Vacuum Living Room Lighting Bedroom Lighting
lock unlock clean-program standard colour white colour wvhite
lock-status false state stop scene Night sceng Night
state open turn off turn off turn off
T ¥ Smoke Sensor Window f Fire Extinguisher
channe! News measurement 20 ock unlock measurement 20
on alue ensed & alse & 3

Figure 9.44. Smart Devices monitoring values for ‘Morning Automations' project.

Moreover, each of the scheduled tasks have been added in the calendar view as it is
shown in Figure 9.45. When a scheduled task is completed the calendar, view
underlines it and checks it as finished. In addition, when a scheduled task starts, the

calendar view updates the events by adding new event in calendar.

214

MARCH 21, 2021

22:24:30-end Wait Statement Block

=]
w
-
o
-
-
-
N
-
w
-
s

ey
w
-
N
-
par]
-
©
-
o
[
o
N
-

~

5 6 7 8 9 0 1

{J Living Room Lighting 22:20:31, 21003
Set property tum: old value = on, current value = off

@ Bedroom Lighting 22:20:31, 2103
Set property tum: old value = on, current value = off

iEV 22:29:31, 21103

Set property tum: old value = on, current value = off

Set property tum: old value = off, current value = on . Door 22:20:33, 2103
Execute Action: Lock

- Cleaning Home

_& Robot Vacuum 2224:30,21/03
Execute Action: Sweep
() Living Room Lighting 222223, 21103 _# Robot Vacuum 222431, 21103
Execute Action: TurnOn Execute Action: Mopping
{,) Bedroom Lighting 222223, 21103 E} Dehumidifier 222431,2103
Execute Action: TurnOn Execute Action: Service with arguments: normal

Figure 9.46. History actions view of the tasks that will be shown running ‘Morning Automations'.

Additionally, as earlier mentioned, for each of the tasks that are caused during the

runtime execution, a history actions logger with bubbles is displayed. In this context,

215

running the project of ‘Morning Automations’ actions bubbles are depicted in history
logger for T1, T2, T4 and T5 tasks as it is shown in Figure 9.46. However, T3 task
will only happen in case of fire and T6 tasks will happen one week later. In this
context, we have to ensure that visual code by using the simulator and the debugger
that are provided. In the next section, we present use of these tools in the context of

the ‘Morning Automations’ project.

9.8.5 Morning Automations Testing

Starting the debugging process, we have to simulate the behavior of the actions of
each of the smart devices as simulator replaces the real devices and enables the end-
user developers to implement by using Blockly instances as earlier discussed. Smart
device actions of simulated devices have been developed for each of the actions that
are used in the ‘Morning Automations’. An example of the implemented smart device

actions is the coffee machine as it is presented on Figure 9.48.

Title Prepare smart device properties state before day starts
Time Slots Changes
@

. r—==—==T=-=-= == =======
Time w air conditior

(seconds): 0

Properties

turn on v m

w bath heater

|
|
Properties 1
1
|
I

0 ey 3
O 150646

12
\ /,
~ C/ Day 03/23/2021 0
9 3 P e e m— |
g ~ I Time 07:00:00 AM ©
/ g \ T o

|
Exgs
==

Figure 9. 47. Preparing state of smart device properties (tag A) and go at specific time in order to

trigger scheduled task of ‘Morning Automations’.

216

The second step of using the simulator in order to test the ‘Morning Automations’ is
to build the behavior of the smart device property at specific time. In particular, smart
device properties are simulated by the user in order to design their expected state and
trigger the conditional tasks. In case of ‘Morning Automations’, ‘air condition’,
‘coffee maChine’ and ‘bath heater’ has to be simulated as turned off (see tag A of
Figure 9. 47). Afterwards, the end-user developer has to set specific time to go in
order to start the scheduled automation (T1 of Figure 9.43) as it is presented in tag B
of Figure 9. 47.

‘ /& Vacuum Robot

| . Vacuum Robot: set [THIED to CIED

. Vacuum Robot: set EZCES to NS

Actions (5)
Mopping Implemented for debug ...
Program Not implemented for de...
Sweep Implemented for debug ... ‘ Vacuum Robot: set (TRED to KD
. Vacuum Robot: set 16} sweep
TurnOff Not implemented for de...
2) Wait 5) minute(s) then
TurnOn Not implemented for de... - . Vacuum Robot: set (TS to CIED

‘ I B coffee Machine

Actions (4)) Wait =[] minute(s) | then
PrepareCoffee Implemented for debug ...
StopPreparingCoffee Implemented for debug ... v 90 @) "] StopPreparingCoffee |
2) Wait = [second(s) = then
TurnOff Not implemented for de...
T Coffee Machine: set [(5 Ell=ase,
AN
TurnOn Not implemented for de...

e o e = =

‘ | ; bedroom lighting

Actions (4) to e g with: colour_arg
© bedroom lighting: ~ set (TR to
ChangeColour Implemented for debug ...
ChangeScene Implemented for debug ... T DR C) ChangeScene RUIGREL S IET
- @ bedroom lighting: - set (I to
TurnOff Not implemented for de... ~
TurnOn Not implemented for de...

Figure 9.48. Implemented actions for smart devices of 'Morning Automations'.

217

Afterwards, we have to test the visual code for the conditional task of the home safety
in case the smoke sensor will change its value. The first step is to browse the ‘Home
Safety’ project element and add a breakpoint in IF block as it is shown in tag A of
Figure 9.49. Then, start debug process, create simulate tests of the smart devices
behavior and simulate the smoke sensor is activated with measurement 20 as it is
presented in tag B of Figure 9.49. This simulation will trigger the conditional task of
‘Home Safety’ and the execution will stop in the breakpoint. Afterwards, by using
step-in action of the debugger we are able to trace the visual code execution flow and
view values of the smart device properties in debugger’s data (see tag C of Figure
9.49). Finally, we are able to view the history actions in order to verify that

conditional task activated and the fire extinguisher started.

Smoke Sensor: get value from fEITEM changes then Q

Smoke Sensor: get value from 8 &
Duplicate .
Add Comment (7) Forever: When
Collapse Block 7

Disable Block Smoke Sensor: get value from (= - I 20
Delete 5 Blocks

Smoke Sensor: get value from [ZT-IE changes L

Help
Add Breakpoint

(1) Forever: When then

Smoke Sensor: get value from [EITJE changes

b

Smoke Sensor get value from CTFEn s EE ED

Run to cursor

Title Testing Safety

Debugger Contrq
.

Time Slots Changes 1 Paa
- > ol G
@o L

Time (seconds): 0 w Smoke Sensor Debugger data

e Properties Variables ~ Watches Explanations

2 sensed " >]:\ :ondit:;mal Tasks
Vv % Smart Devices
v E Fire Extinguisher

- Start
- Stop
© measurement : 20
© _state : start

1 ~ ¥ Smoke Sensor

| ® measurement : 20

o o Qvalvezzemed Lo

value:20

rern

Breakpoints

o | Home Safety - 1D 1 | |

Figure 9.49. Testing 'Home Safety' conditional task of ‘Morning Automations': Adding breakpoint (tag
A); Simulating behavior of the smoke sensor (tag B); Stepping in until the simulated fire extinguisher
starts and view variables and smart device properties state (tag C); View actions history to verify the

fire extinguisher started (tag D);

218

9.9 Evaluation

Having finished the case study of the integrated domain framework, we decided to
evaluate our proposed workspace in the context of the smart automation development
process. In this section, we discuss the aims and design of our study, present the use
case scenarios, outline the evaluation’s participants, describe the evaluation process

and analyze the results.

9.9.1 Aims and design

The evaluation we conducted aims on observing how users operate and use our
system’s key features as well as on assessing the system’s usability. Particularly, we
dedicated our study’s focus to evaluating the use of the project manager, the handling
of smart objects through the domain VPL editor and the development of automations
using the blocks we developed. For each one of them that we considered important,
we designed a use case scenario that focused on deciding whether the chosen
approach was indeed appropriate and well-integrated. For obtaining usability

measurements, we used the System Usability Scale (SUS).

9.9.2 Use case scenario

We use hypothetical user to discuss the use case scenario. In the use case scenario, we
introduce the hypothetical user Tina who bought new smart devices and wants to
develop smart automations. We have segmented the use case scenario in development
mini tasks. Each of the following tasks are separated in two parts, the description and
the goal. The description of task refers to the real-world situation that contextualizes
the goal. The goal of each development step refers to the task that should be
accomplished. The tasks’ contexts are realistic and the goals are kept simple and short
in order to evaluate the usability of specific features of our approach. The tasks of the

use case scenario are following.
1) Creating new smart environment and registering smart objects

Description: Tina has bought new smart alarm clock, smart coffee machine and smart
air-condition. She wants to create new environment, create new smart objects and

then, register them in order to develop smart automations.

219

Goal: The participants were asked to create new smart environment, create new smart

objects and register the smart objects.
2) Creating smart group for smart objects

Description: Tina has two more smart air-conditions in her home and wants to handle
them together in a new group. However, two other devices API differs in the property

of ‘device-temperature’ which are provided as ‘thermometer’.

Goal: The participants were asked to export smart group from the air-condition and
handle aliases in order to include in the group all air-conditions.

3) Developing conditional events

Description: Tina would like to create a smart automation in order when the alarm
clock rings to automatically prepare coffee, prepare warm water for her bath and
regulate the home temperature.

Goal: The participants were asked to create new project element in the category of

conditional events and using the available blocks to develop the automation.
4) Developing calendar events

Description: Tina leaves her home to go at work at 8:00 o’clock daily except the
week-ends. She would like to create a smart automation in order to turn off forgotten

devices and lock the door when she has left.

Goal: The participants were asked to create new project element in the category of
calendar events and using the available blocks to develop the automation.

5) Developing combined (conditional and time) events

Description: Tina would like to sleep some more minutes when alarm clock rings
while the coffee and the water will be prepared. In order to do this, she has to edit the

previous developed automation.

Goal: The participants were asked to edit the automation and add instruction to stop
the alarm clock rings, wait for 8 minutes (i.e. water and coffee will be ready) and ring

again the alarm clock.
220

9.9.3 Participants
We asked 15 participants (M =10, F = 5) aged between 13 and 32 to help us. Most of

the participants were from our university departments (i.e. Computer Science,
Mathematics and Physics). Additionally, 6 of the participants were high school
students that have previous experience with Scratch. Moreover, we found 3
individuals that had no previous experience with programming or visual

programming.

9.9.4 Process

Each participant was evaluated individually. We firstly discussed and presented the
classic Blockly editor. Then, we presented our visual programming workspace for
Blockly including the project manager, the smart object visual programming editor
and the new Blockly blocks that are generated based on the smart objects. Next, each
of the aforementioned tasks of the use case scenario was described to the users and
they were asked to use the workspace in order to accomplish each of them. For each
task and participant, we measured the time required for completion and we recorded

the user behavior. Finally, the users were asked to fill-in the SUS questionnaire.

9.9.5 Results

We summarized and further analyzed all the answers given from our participants. The
SUS questionnaire was designed in order to export results in two main dimensions.
The first was focused on the integration and usability of the workspace, the second
was focused on the efficiency of handling smart objects and groups through the Smart
Object visual programming editor and the third dimension was the use of the Blockly
blocks for smart automations. Results showed that the vast majority of participants
were satisfied with the workspace environment for smart automations. In general,
they are satisfied with the use of the Smart Object visual programming editor.
However, some users found difficult the concept of the smart groups. In this context,
we realize that extra helpful functionality and user interface has to be added. In
particular, when the user browses a Smart Group in order to choose from list of
possible smart objects and the view of what are the properties which don’t match were
missing. Based on this feedback, we fixed this design mismatches. Moreover, the
users were satisfied with the defined Blockly blocks for the development of smart
automations.
221

Table 8. SUS Questionnaire for the Smart Automations Workspace Environment.

SD| D|N| A |SA

Q1. The smart automations framework is
well integrated into the workspace.

Q2. | find the smart automations workspace
environment unnecessarily complex.

Q3. | find the smart object editor user
interface intuitive and easy to use.

Q4. Idon’t feel confident using the
application without guidance.

Q5. | feel confident using the project
manager.

Q6. The Blockly blocks for smart
automations offer limited options for 7 6 | 2] 0 0
development.

Q7. | find Blockly blocks for smart
automations complex to use them.

Q8. I would like to use the tool for my
personal projects with my family/friends.
Q9. | found easy to use the smart object
editor for smart groups

Q10. | found difficult to use the smart
object VVPL editor to handle the smart 8 6 | 1] 0 0
objects

Furthermore, based on the aforementioned measurements we focused on the average,
the best and the worst time recorded for each development step. All the users
completed the tasks and most of the worst time measurements are not far from the
average, while the best are not far from the average too. Moreover, during the
evaluation, we realized that after the 3rd task, most of the users were more familiar

with the workspace.

222

Chapter 10

Conclusions and Future Work

“Reasoning draws a conclusion, but does not make the conclusion certain, unless the

mind discovers it by the path of experience.”

-Roger Bacon

10.1 Summary

In this thesis we discuss the full-scale development of an extensible IDE for visual
programming languages, including project manager, visual debugger, collaborative
programming and pluggable domain frameworks. Our primary motivation was the
need for a full-scale visual programming environment for end-user development of
personalized loT automations in order to empower non-programmers craft, modify or
extend their automations. Existing visual programming approaches are facilitating by
introducing sophisticated editors; however, no IDEs are provided. In particular, the
existing approaches are mainly targeted to children learning within the context of a
game. Regarding several visual programming features, they are at an infant level or
not mature enough (e.g., collaboration, debugging, etc.), as well. We consider that
non-programmers and learners behoove to be provided with more efficient end-user
programming tools in their arsenal for developing and learning programming

purposes.

Moreover, the visual programming frameworks are limited to specialized
requirements of one application domain (e.g., Scratch is focused on development of
games and animations). However, visual programming radically differs across
domains (games, learning, IoT, etc.). Considering that new application domains are
arising, existing application domain requirements for visual programming are fluid
and third-party technologies are updated continually, constantly changing
requirements for developing new visual programming IDEs. In this context, we
embrace visual programming domain variations as domain frameworks in our IDE.

More specifically, we allow installing domains by introducing custom visual

223

programming language elements across IDE components (e.g. editor, project
manager, runtime environment). Namely, our approach provides application domain

plug-in mechanism in the IDE in order to support them.

We consider that collaboration is a key feature in EUD and could be notably useful in
the case of using it for teaching and learning purposes, asking for help from more
experienced users and co-working for automations. This thesis is focused on full-scale
collaborative visual programming facilities. These facilities are separated in two
categories, the collaborative editing and the collaborative debugging. Regarding
collaborative editing, we developed a full-scale collaborative editing approach that
sorts out the process by introducing peer roles and project element privileges. Our
proposed approach supports multiple collaboration models (i.e. Pair Programming in
one or more groups, teaching and learning purposes, working in small teams) by
regulating the settings are provided in order to configure collaboration process when it

starts.

In the case of collaborative debugging, our approach addresses two different
directions. First direction deals with facilitation of debugging and testing for novices
by providing collaborative debugging process that can be used for personal and
collaborative EUD projects. Collaboration proposed approach guarantees the
preservation of the project’s visual code by isolating it, creating a local replica for
each one of collaboration members. In this context, the users are able to create
correction suggestions per project element. During the debugging session, handling
the debugger instructions can be done by one user at a time. However, the rest
members are able to navigate the visual code to acquire information independently of
other members browsing, without interfering with the experience of any collaboration
member. The second direction of our approach includes an alternative model of
collaborative debugging that contributes in teaching and learning in the context of
debugging and programming. Particularly, this tool can be used by teachers to
demonstrate debugging process to students in real-time. Students are able to perceive
the flow of a program and learn the process of debugging through multiple debugging
rooms in a session that encourage the students to live debug programs, individually or

collaboratively while allowing the teachers to supervise each debugging process.

224

Finally, we discuss the development of a full-scale application domain framework in
the context of 10T automations using the IDE. We provide a full-scale management
for the smart devices in the context of EUD including user actions to organize and
customize smart devices in order to enable isolation and handling numerous existing
smart devices. Additionally, we provide a full-scale VPL workspace environment for
personalized loT automations including conditional and scheduled tasks and enabling
them automatically or manually during the project execution. We provide GUI for
runtime environment for monitoring and interacting with smart automations,
facilitating the end-user developers by removing the requirement to program Uls for
their automations. We also introduce facilities in the context of testing and debugging
the smart automations by developing infrastructure to enable users to simulate smart
devices, their behavior, date and time that the automations will be executed.
Moreover, we address the issue of responding to the arising user questions regarding

automations that caused during the execution of the constructed loT applications.

10.2Conclusions

Throughout the entire thesis we have emphasized to three primary arguments driving
our research work: (i) novices deserve efficient full-scale end-user development tools
in order to develop their applications and learn programming (ii) embracing visual
programming domain variations as domain frameworks in IDE (iii) efficient visual

programming facilities for end-user development of 10T personalized automations.

During the initial phases we focused on the efficient visual programming environment
for personalized loT automations. However, during the first steps of our work we
perceived that existing visual programming environments are narrowed in specific
targets by providing sophisticated editors, without providing full-scale toolset in end-
user development concept. Moreover, several key end-user development features are
in an infant level, or not mature enough, or even not provided. Therefore, we focused
on the development of an extendable full-scale IDE for visual programming
languages including key features such as project manager, visual debugger and

collaborative programming.

225

Developing the main components of the IDE, we quickly observed that components
have to provide additional support and adapt in the context of novices or non-

programmers.

Regarding project manager, it has to be restricted and drive end-user developers to
structure their applications by providing them specific options of their actions,
friendlier user-interface for the project elements view, helpful information messages
during end-user development process. In addition, in the direction where novice users
handle small scale project elements, the first-class subject focuses on organizing and

structuring project in small scale project elements.

Visual programming editors are vehicle for end-user developers to program their
visual code. In this context, we focused on facilitating editors’ usability by providing
filtered VPL elements in their toolboxes based on concept that they have to be
accomplished in specific workspace. In addition to that, we consider that it is
important to empower users with respective intelligence. For this reason, we
introduced visual code snippets through which end-user developers will be able to use
them instead of repeating building common small blocks of visual code.

Regarding debugging facilities for visual programming, a complete level debugger
has been developed for Blockly. Using tracing, watches and breakpoints is really
helpful for a novice user to understand the execution flow of a program, however,
finding bugs is not always a trivial process. In the context of the aforementioned
consideration, we focused on giving more weapons to end-users for the debugging
process. In particular, we introduced execution snapshots to provide browsing of
history of values for program variables, selection of project elements that will
participate from the project execution and collaborative debugging.

Concerning collaborative programming, we consider from the early phase of this
thesis that is a key feature in end-user development context and we targeted to provide
a full-scale toolset approach. Our approach was focused on two directions, the
collaborative editing and the collaborative debugging. In the context of collaborative
editing, the end-users have to cooperate on a shared project. The first-class subject of
our approach is targeted to organize and structure project in small project elements.

Therefore, we have introduced peer roles and project element privileges for the

226

participants. Moreover, concerning the productivity for member in the collaborative
editing process, we focused on the local workspace of members by introducing
personal project elements, toggling live syncing and selective execution (i.e., replace
shared project elements with personal or visual code suggestions). Finally, we
introduce several settings to enable the master of the process and to configure it based

on the circumstances.

Regarding collaborative debugging, we have introduced two different models. The
first collaborative debugging model focuses on the collaborative debugging for a team
to solve bugs for a shared or not project. In order to avoid the project element
privileges and guarantee preservation of the project’s visual code by isolating it,
creating a read-only replica for each one of the collaborative members. We enable
end-user developers to add corrections fixes for a specific project element and thanks
to extension of selective project elements’ execution, they are able to test their
corrections. The second collaborative debugging model focuses on teaching and
learning debugging and programming process. In particular, extending the first model,
we have introduced debugging rooms in order to enable teachers define teams of the
students (or alone). In the debugging rooms, independent debugging sessions run and
correction suggestions are local in the room. Based on this, the teachers are able to
supervise and help students independently by visiting the rooms and joining current
state of the debugging session of the room.

Concerning support of different application domains, we designed and developed an
extension mechanism that allows to embrace visual programming domain variations
as domain frameworks in the IDE. In this context, we encourage developers to
configure all the main components of the IDE based on the requirements of the
domain. We enable the developers to define the application structure of the project
manager, choose functionality, intervene the process of user's actions about project
elements, define respective rules. In this direction, from the early phase of the
development, we perceived that in the context of domain, there are cases in which
more complicated project elements could be required instead of just displaying a
visual programming editor. We have also introduced templates that empowers the
developers to design and develop any project element ingredients. Moreover, the main

part of project elements are the visual programming editors are injected. Developers

227

are able to configure the view of these editors and the VPL elements that will be

included in their toolboxes.

Furthermore, we have identified two types of editors: a) general purpose editors
which cares about basic programming expressions and b) domain-specific editors
which contribute in the design or handling of domain objects. However, the behavior
of domain objects is handled by a set of VPL elements that has to be provided
automatically based on the domain objects that are developed by end-user developers.
We have developed a mechanism which cooperates with domain-specific editors in
order to bridge the general-purpose editor (i.e., Blockly) required updates of the
toolboxes with the appropriate Blockly blocks to handle domain objects. In the
context of running and debugging process, based on the different authored application
structures and domain libraries developers have to define the entry point script that

will bridge all required parts in order to execute domain projects.

Finally, we focus on the initial goal of this PhD thesis, which is the development of a
visual programming workspace for 10T automations. Using the earlier mentioned
mechanism for domain frameworks, we developed 10T automations framework. In
this context, we provide a full-scale management for smart devices in the context of
EUD including user actions to organize and customize smart devices in order to
enable isolation and handling of numerous existing smart devices. Additionally, we
provide a full-scale VPL workspace environment for personalized IoT automations
including conditional and scheduled tasks and choice of starts them automatically or

manually during the project execution.

In the context of runtime for loT automations, users would like to build appropriate
user-interface for their automations. However, building user-interfaces for
automations costs extremely and it is impractical in the concept of creating micro
automations. Additionally, WYSIWYG editors improve user-interface development
process, but needs to have experience in the context of events. In this direction, we
were driven to provide user interface that cares for monitoring and interacting with
smart automations, facilitating end-user developers by removing the requirement to

program Uls for their automations.

228

In the context of debugging IoT automations, there are several issues that arise by just
using the visual debugger is provided. Firstly, developed automations are based on
scheduled automations that may include tasks that will be executed much later. {How
the end-user developers will be able to test such automations.} Additionally, smart
devices and sensors include values that change based on the environment (e.g.,
environment temperature, smoke sensor). End-user developers are not able to debug
and test their IoT automations. In this context, we introduced facilities for testing and
debugging smart automations by developing infrastructure to enable the users to
simulate smart devices, the behavior of smart devices, date and time that the
automations will be executed. Moreover, we address the issue of responding to the
arising user questions about automations which caused during the execution of the

constructed loT applications.

Overall, this thesis focused on providing efficient visual end-user programming
toolsets through an IDE for visual programming languages. We consider that non-
programmers and learners behoove to be provided with more efficient end-user
programming tools in their arsenal for developing and learning purposes.
Additionally, we emphasize on the collaborative programming as we consider it as a
key feature for novices to cooperate and learn programming. Furthermore, supporting
extendibility in the context of application domains, guarantees that our work will be
able to be applied for new challenges and requirements of visual programming
purposes. Finally, contributing in visual programming development for IloT
automations, we empower the novices to create, modify, debug, test and use their
personal automations in order to benefit their daily life and activities taking advantage

of the smart devices.

10.3Future Work

In this thesis, we focused on the most prominent of the identified requirements, while
some of the areas remain open and require additional research work. Below, we

briefly discuss key topics for future work.

One of the identified issues is the research on facilitating the debugging process. Non-
programmers and novices are not able to use efficiently the visual debugger that is
provided in order to detect bugs in their projects. In this context, we introduced the

229

collaborative debugging. However, another dimension to facilitate end-user
developers without cooperate with other users could be the development of a

debugger assistant that will drive users on the debugging process.

Another identified issue is the general-purpose visual programming editors where
more work is needed to be done in the context of intelligence in order to facilitate
their use. For example, auto-complete visual code suggestions, suggestions of editing
visual code that is repeatable, warnings in cases of missing body of visual

programming language elements, etc.

Moreover, based on the audience could be familiar with different visual programming
languages (jigsaws, diagrams, etc.). It would be interesting to explore of defining a
top visual code model that through this, visual programming editors will be able to
load and save their visual code. Using this mechanism, they will be able to view and
handle visual code in different visual programming editors based on their preferences.
However, general-purpose visual programming editors may differ in the context of
supported elements (variables, branches, loops, etc.) with another concept of
messages and objects. This means that the conversion is not a straight forward process
and has to be identified if it is feasible. Moreover, the development of alternative

approaches of visual programming languages seems to be a good idea.

Another interesting approach in the context of collaborative programming for smart
automations could be the development of smart devices that are used by different
users in different connected networks. Collaborative execution of smart automations
could allow smart devices to interact each other by identifying who is their owner and
each of the smart devices instructions of the shared project will be executed in the

specific peer user side respectively.

Another perspective of a future work could be the development of other application
domains using the Blockly Studio IDE including games for learning. In the context of
a new application domain, an interesting application domain could be the
development of application domain that will be able to modify or create new
application domains from end-user developers. Based on the circular architecture of
the IDE in which the components export their functionality, it will be able create

appropriate visual programming language elements that will be used in order to

230

develop and modify functionality. In addition, extra ingredients will be required (e.g.,
build IDE components and their user-interfaces). In this context, this could be used
only by experienced users. It looks to be more feasible empowering end-user
developers to modify the existing application domain frameworks or configure the
settings of the visual programming IDE through general-purpose visual programming

editors (i.e., Blockly editor in our case).

Furthermore, having finished the development of the IDE for visual programming
languages including framework for smart automations, our future work focuses on
conducting a full-scale evaluation of our visual programming workspace in a high

school class.

231

Bibliography

[1].

[2].
[3].

[4].

[5].

[6].

[7].

[8].

[9].

[10].

[11].

Andrew J. Ko, Robin Abraham, Laura Beckwith, Alan Blackwell, Margaret
Burnett, Martin Erwig, Chris Scaffidi, Joseph Lawrance, Henry Lieberman,
Brad Myers, Mary Beth Rosson, Gregg Rothermel, Mary Shaw, and Susan
Wiedenbeck. 2011. The state of the art in end-user software engineering. ACM
Comput. Surv. 43, 3, Article 21 (April 2011), 44 pages.
DOI1=10.1145/1922649.1922658 http://doi.acm.org/10.1145/1922649.1922658.

H. Lieberman, F. Patern’o, and V.Wulf, Eds., End-User Development, Human
Computer Interaction Series, Springer, New York, NY, USA, 2006.

Alexandre Santos, Joaquim Macedo, Antoénio Costa, M. Joao Nicolau, Internet
of Things and Smart Objects for M-health Monitoring and Control, Procedia
Technology, Volume 16, 2014, Pages 1351-1360, ISSN 2212-0173 (2014).

A Greg Little and Robert C. Miller. 2006. Translating keyword commands into
executable code. In Proceedings of the 19th annual ACM symposium on User
interface software and technology (UIST '06). ACM, New York, NY, USA,
135-144. DOI=10.1145/1166253.1166275
http://doi.acm.org/10.1145/1166253.1166275.

Greg Little, Tessa A. Lau, Allen Cypher, James Lin, Eben M. Haber, and Eser
Kandogan. 2007. Koala: capture, share, automate, personalize business
processes on the web. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI '07). ACM, New York, NY, USA, 943-
946. DOI1=10.1145/1240624.1240767
http://doi.acm.org/10.1145/1240624.1240767

Scaffidi, C.; Bogart, C.; Burnett, M.; Cypher, A.; Myers, Brad; Shaw, M.,
"Predicting reuse of end-user web macro scripts,” Visual Languages and
Human-Centric Computing, 2009. VL/HCC 2009. IEEE Symposium on , vol.,
no., pp.93,100, 20-24 Sept. 2009 doi: 10.1109/VLHCC.2009.5295290.

Open Office Scripting Framework. Open Office feature allows users to write
and run macros for Apache OpenOffice. Official Website:
https://wiki.openoffice.org/wiki/Documentation/DevGuide/Scripting/Scripting
Framework Accessed Online: 02/2021.

Warth, A.; Yamamiya, T.; Ohshima, Y.; Wallace, S., "Toward A More Scalable
End-User Scripting Language,” Creating, Connecting and Collaborating through
Computing, 2008. C5 2008. Sixth International Conference on , vol., no.,
pp.172,178, 14-16 Jan. 2008 doi: 10.1109/C5.2008.33.

Mitchel Resnick, John Maloney, Andr'’es Monroy-Hern andez, Natalie Rusk,
Evelyn Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver,
Brian Silverman, and Yasmin Kafai. Scratch: programming for all.
Communications of the ACM, 52(11):60-67, November 2009.

Tynker web IDE. Educational programming platform aimed at teaching children
how to make games and programs. First appeared 2012. Official website:
https://www.tynker.com/ Accessed online 2/2021.

MakeCode: Hands on computing education. Producer: Microsoft. Released on:
08/2019. Official website: https://www.microsoft.com/en-us/makecode
Accessed online 2/2021.

232

http://doi.acm.org/10.1145/1922649.1922658
http://doi.acm.org/10.1145/1166253.1166275
http://doi.acm.org/10.1145/1240624.1240767
https://wiki.openoffice.org/wiki/Documentation/DevGuide/Scripting/Scripting_Framework
https://wiki.openoffice.org/wiki/Documentation/DevGuide/Scripting/Scripting_Framework
https://www.tynker.com/
https://www.microsoft.com/en-us/makecode

[12].

[13].

[14].

[15].

[16].

[17].

[18].

[19].

[20].

[21].

[22].

[23].

[24].

[25].

Seung Han Kim and Jae Wook Jeon, "Programming LEGO mindstorms NXT
with visual programming,” 2007 International Conference on Control,
Automation and Systems, Seoul, 2007, pp. 2468-2472.

P. Vostinar, "Programming LEGO EV3 in Microsoft MakeCode," 2020 IEEE
Global Engineering Education Conference (EDUCON), Porto, Portugal, 2020,
pp. 1868-1872, doi: 10.1109/EDUCON45650.2020.9125170.

P. Bachiller-Burgos, |. Barbecho, L. V. Calderita, P. Bustos and L. J. Manso,
"LearnBlock: A Robot-Agnostic Educational Programming Tool,” in IEEE
Access, vol. 8, pp. 30012-30026, 2020.

MIT App Inventor. Producer: Google, MIT Media Lab. Initial release on
12/2010. Official site: http://appinventor.mit.edu/ Accessed online 02/2021.

BlocklyDuino: The web-based, graphical programming editor based on Blockly.
Official Website: https://github.com/BlocklyDuino/BlocklyDuino Accessed
Online 02/2021

ArduBlock: Visual Programming Environment for Arduino. Official Website:
http://blog.ardublock.com/ Accesed Online: 02/2021.

Arduino: An open-source hardware and software company, project and user
community that designs and manufacturers single-board microcontrollers and
microcontroller kits for building digital devices. Official Website:
https://www.arduino.cc/ Accessed Online: 02/2021.

Haller, S., Karnouskos, S., & Schroth, C. (2009). The Internet of Things in an
enterprise context. In J. Domingue, F. Dieter, & T. Paolo (Eds.), Future internet
— FIS 2008, lecture notes in computer science (Vol. 5468, pp. 14-28). Berlin:
Springer.

Xinyue Deng. Group Collaboration with App Inventor. Thesis: M. Eng.,
Massachusetts Institute of Technology, Department of Electrical Engineering
and Computer Science, 2017.

P. Rashidi and A. Mihailidis, "A Survey on Ambient-Assisted Living Tools for
Older Adults," in IEEE Journal of Biomedical and Health Informatics, vol. 17,
no. 3, pp. 579-590, May 2013. doi: 10.1109/JBHI.2012.2234129.

Stephan Haller, Stamatis Karnouskos, and Christoph Schroth. 2009. The Internet
of Things in an Enterprise Context. In Future Internet --- FIS 2008, John
Domingue, Dieter Fensel, and Paolo Traverso (Eds.). Lecture Notes In
Computer Science, Vol. 5468. Springer-Verlag, Berlin, Heidelberg 14-28.
DOI=http://dx.doi.org/10.1007/978-3-642-00985-3 2.

A. Dohr, R. Modre-Opsrian, M. Drobics, D. Hayn, and G. Schreier. 2010. The
Internet of Things for Ambient Assisted Living. In Proceedings of the 2010
Seventh International Conference on Information Technology: New Generations
(ITNG '10). IEEE Computer Society, Washington, DC, USA, 804-809.
DOI=http://dx.doi.org/10.1109/ITNG.2010.104.

Alexandre Santos, Joaquim Macedo, Antonio Costa, M. Jodo Nicolau, Internet
of Things and Smart Objects for M-health Monitoring and Control, Procedia
Technology, Volume 16, 2014, Pages 1351-1360, ISSN 2212-0173,
http://dx.doi.org/10.1016/j.protcy.2014.10.152.

Bee+, developed by Vigilant. Official site:
https://www.arm.com/innovation/products/bee-smart-diabetes-tracker.php
Accessed Online: 12/2016.

233

http://appinventor.mit.edu/
https://github.com/BlocklyDuino/BlocklyDuino
http://blog.ardublock.com/
https://www.arduino.cc/
http://dx.doi.org/10.1016/j.protcy.2014.10.152
https://www.arm.com/innovation/products/bee-smart-diabetes-tracker.php

[26].

[27].
[28].

[29].

[30].

[31].

[32].

[33].
[34].
[35].

[36].

[37].

[38].

[39].

[40].

[41].

[42].

Scratch: Block-based visual programming language and website targeted
primarily at children 8-16 as an educational tool for coding. First appeared on
2003. Official Website: https://scratch.mit.edu/.

Scratch Studio — Sharing is caring. Platform enables sharing the creations.
Official Website: https://scratch.mit.edu/studios/4164419/.

Phratch. VPL based on a jigsaw puzzle on top of Phraro. Official Website:
https://github.com/janniklaval/phratch Accessed online 02/2021.

Snap! Berkeley, extension of Scratch. Build Your Own Blocks. Open-
sourcewritten by Jens Monig and Brian Harvey, Berkeley. Official Website:
http://snap.berkeley.edu/ Accessed online 02/2021.

Pasternak, E., Fenichel, R., Marshall, A. N. Tips for creating a block language
with blockly. IEEE Blocks and Beyond Workshop (B&B), Raleigh, NC, USA,
pp. 21-24 (2017).

Dart, Web programming language developed by Google. Official Website:
https://www.dartlang.org/ Accessed online 02/2021.

App Inventor 2: Create your own Android Apps. Second Edition 2014 Book by
David Wolber, Hal Abelson, Ellen Spertus, Liz Looney. Official Website:
http://www.appinventor.org/book O'Reilly ISBN-13: 978-1491906842.

Lego Mindstorms. Official Website: http://www.lego.com/en-us/mindstorms
Accessed online 02/2021.

MODK:Iit Micro. Official Website http://www.modkit.com/ Accessed online
02/2021.

Makeblock | mBlock: Extension of Scratch for Arduino and robotics. Official
Website: https://mblock.makeblock.com/en-us/ Accessed online: 02/2021.

Danado, Marcin Davies, Paulo Ricca, and Anna Fensel. 2010. An authoring tool
for user generated mobile services. In Proceedings of the Third future internet
conference on Future internet (FIS'10), Arne J. Berre, Asunci & Gmez-Perez,
Kurt Tutschku, and Dieter Fensel (Eds.). Springer-Verlag, Berlin, Heidelberg,
118-127.

J. Danado and F. Paterno, “Puzzle: a visual-based environment for end user
development in touch-based mobile phones,” in Human-Centered Software
Engineering, vol. 7623 of Lecture Notes in Computer Science, pp. 199-216,
2012.

TouchDevelop, Microsoft Research. Established 07/2011. Official Website:
https://www.microsoft.com/en-us/research/project/touchdevelop/ Accessed
online 02/2021.

Tillmann, N., Moskal, M., Halleux, J., Fahndrich, M., and Burckhardt, S. 2012.
Touch-Develop: app development on mobile devices. In Proceedings of the
ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering (FSE '12). ACM, New York, NY, USA, , Article 39, 2 pages.
Microsoft MakeCode Arcade. Official Website:
https://arcade.makecode.com/#editor Accessed online: 02/2021.

Microsoft MakeCode editors: Computing education. Brings computer science to
life for all students with fun projects, Official Website:
https://www.microsoft.com/en-us/makecode?rtc=1 Accessed online: 02/2021.
Thyrd: An Experimental Reflective Visual Programming Language, Mercurio,
Philip J. Talk presented at OSCON Emerging Languages Camp, Portland,
Oregon, July 2010.

234

https://scratch.mit.edu/
https://scratch.mit.edu/studios/4164419/
https://github.com/janniklaval/phratch
http://snap.berkeley.edu/
https://www.dartlang.org/
http://www.appinventor.org/book
http://www.lego.com/en-us/mindstorms%20Accessed%20online%2002/2021
http://www.lego.com/en-us/mindstorms%20Accessed%20online%2002/2021
http://www.modkit.com/
https://mblock.makeblock.com/en-us/
https://www.microsoft.com/en-us/research/project/touchdevelop/
https://arcade.makecode.com/#editor
https://www.microsoft.com/en-us/makecode?rtc=1

[43].

[44].

[45].
[46].
[47].
[48].
[49].
[50].

[51].

[52].
[53].
[54].
[55].

[56].

[57].

[58].

[59].

[60].

Microsoft VPL. Official Website: https://msdn.microsoft.com/en-
us/library/bb483088.aspx Accessed online 02/2021.

Y. Chen and G. De Luca, "VIPLE: Visual lIoT/Robotics Programming Language
Environment for Computer Science Education,” 2016 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW),
Chicago, IL, 2016, pp. 963-971, doi: 10.1109/IPDPSW.2016.55.

ROBO Pro, FischerTechnik. Official Website:
http://www.fischertechnik.de/en/Home.aspx Accessed online 02/2021.

LabView. Official Website: http://www.ni.com/labview/ Accessed online
02/2021.

Flowgorithm 2015. Official Website: http://flowgorithm.org/ Accessed online
02/2021.

LARP, Logic of Algorithms for Resolution of Problems. Official Website:
http://www.marcolavoie.ca/larp/en/default.ntm Accessed online 02/2021.
Raptor. Official Website: http://raptor.martincarlisle.com/ Accessed online
02/2021.

Visual Logic. Official Website: http://www.visuallogic.org/download/ Accessed
online 02/2021.

Rete: The JavaScript framework for flow-based visual programming. Official
Website:
https://rete.js.org/#/#lang=en&tosearch=The%20JavaScript%20framework%20f
0r%20visual%20programming Accessed online 02/2021.

Kodu, Microsoft Research. Official Website: http://www.kodugamelab.com/
Accessed online 02/2021.

Construct 2, Scirra. Official Website: https://www.scirra.com/ Accessed online
02/2021.

GODOT, OKAM Studio. Official Website: http://www.godotengine.org/
Accessed online 02/2021.

GameSalad. From Game Player to Game Maker. Official Website:
http://gamesalad.com/ Accessed online 02/2021.

AgentCubes: An educational programming language for children in the context
of craeting 3D and 2D games. Authored by Alexander Repenning. First

Appeared on 2006. Official Website: https://agentsheets.com/ Accessed
online: 02/2021.
HomeKit developed by Apple. Official Website:

http://www.apple.com/ios/homekit/ Accessed online 02/2021.

Jos¢ Danado and Fabio Paterno. 2015. A Mobile End-User Development
Environment for 10T Applications Exploiting the Puzzle Metaphor. ERCIM
News 101. Link: http://ercim-news.ercim.eu/en101/special/a-mobile-end-user-
development-environment-for-iot-applications-exploiting-the-puzzle-metaphor
Accessed online: 02/2021.

Ruiz-Rube, I.; Mota, J.M.; Person, T.; Corral, J.M.R.; Dodero, J.M. Block-
Based Development of Mobile Learning Experiences for the Internet of Things.
Sensors 2019, 19, 5467. https://doi.org/10.3390/s19245467.

K. E. Hendrickson, “Writing and Connecting IoT and Mobile Applications in
MIT App Inventor,” Master dissertation, Department of Electrical Engineering
and Computer Science, MIT, May 2018.

235

https://msdn.microsoft.com/en-us/library/bb483088.aspx%20Accessed%20online%2002/2021
https://msdn.microsoft.com/en-us/library/bb483088.aspx%20Accessed%20online%2002/2021
http://www.fischertechnik.de/en/Home.aspx
http://www.ni.com/labview/
http://flowgorithm.org/
http://www.marcolavoie.ca/larp/en/default.htm%20Accessed%20online%2002/2021
http://raptor.martincarlisle.com/
http://www.visuallogic.org/download/
https://rete.js.org/#/
https://rete.js.org/#/
http://www.kodugamelab.com/
https://www.scirra.com/
http://www.godotengine.org/
http://gamesalad.com/
https://agentsheets.com/
http://www.apple.com/ios/homekit/
http://ercim-news.ercim.eu/en101/special/a-mobile-end-user-development-environment-for-iot-applications-exploiting-the-puzzle-metaphor
http://ercim-news.ercim.eu/en101/special/a-mobile-end-user-development-environment-for-iot-applications-exploiting-the-puzzle-metaphor
https://doi.org/10.3390/s19245467

[61].

[62].

[63].

[64].

[65].
[66].

[67].

[68].

[69].

[70].

[71].

[72].

[73].

Nayeon Bak, Byeong-Mo Chang, Kwanghoon Choi, Smart Block: A visual
block language and its programming environment for 10T, Journal of Computer
Languages, Volume 60, 2020, 100999, ISSN 2590-1184,
https://doi.org/10.1016/j.cola.2020.100999.

Node-RED: programming tool for wiring together hardware devices, APIs and
online services. Authored by IBM Emerging Technology. Official Website:
https://nodered.org/ Accessed online: 02/2021.

NetLab Toolkit: An authoring system empowers the users to design and build
tangible Internet of Things projects. Official Website:
https://www.netlabtoolkit.org/ Accessed online: 02/2021.

IntelliJ Platform Plugin SDK. Authored by JetBrains. Initial Released on
01/2001. Official Website: https://plugins.jetbrains.com/docs/intellij/creating-
plugin-project.html Accessed online: 02/2021.

Eclipse Plugin Architecture. Official Website:
https://wiki.eclipse.org/Plugin_Architecture Accessed online: 02/2021.

Visual Studio extension API. Official Website: https://code.visualstudio.com/api
Accessed online: 02/2021.

Eclipse Modeling Framework: A modeling framework and code generation
facility for building tools and other applications based on a structured data
model. Official Website: https://www.eclipse.org/modeling/emf/ Accessed
online: 02/2021.

Savidis A, Bourdenas T, Georgalis J. An adaptable circular meta-IDE for a
dynamic programming language. In Proceedings of the 4th International
Workshop on Rapid Integration of Software Engineering Techniques (RISE
2007), Luxemburg, 2007; 99-114. Available at:
http://www.ics.forth.gr/hci/files/plang/sparrow.pdf.

Neeraja Subrahmaniyan, Laura Beckwith, Valentina Grigoreanu, Margaret
Burnett, Susan Wiedenbeck, Vaishnavi Narayanan, Karin Bucht, Russell
Drummond, and Xiaoli Fern. 2008. Testing vs. code inspection vs. what else?:
male and female end users' debugging strategies. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI '08). ACM, New
York, NY, USA, 617-626.

Valentina Grigoreanu, Margaret Burnett, Susan Wiedenbeck, Jill Cao, Kyle
Rector, and Irwin Kwan. 2012. End-user Debugging Strategies: A Sensemaking
Perspective. ACM Transaction on Computer-Human Interaction 19, 1, Article 5
(May 2012), 28 pages. https://doi.org/10.1145/2147783.2147788.

Grigoreanu, V.; Beckwith, L.; Fern, X.; Yang, S.; Komireddy, C.; Narayanan,
V.; Cook, C.; Burnett, M., "Gender Differences in End-User Debugging,
Revisited: What the Miners Found,"” Visual Languages and Human-Centric
Computing, 2006. VL/HCC 2006. IEEE Symposium on , vol., no., pp.19,26, 4-8
Sept. 2006 doi: 10.1109/VLHCC.2006.24.

Chintakovid, T.; Wiedenbeck, S.; Burnett, M.; Grigoreanu, V., "Pair
Collaboration in End-User Debugging,” Visual Languages and Human-Centric
Computing, 2006. VL/HCC 2006. IEEE Symposium on , vol., no., pp.3,10, 4-8
Sept. 2006 doi: 10.1109/VLHCC.2006.36.

Kim, C., Yuan, J., Vasconcelos, L. et al. Debugging during block-based
programming. Instr Sci 46, 767—787 (2018). https://doi.org/10.1007/s11251-
018-9453-5.

236

https://doi.org/10.1016/j.cola.2020.100999
https://nodered.org/
https://www.netlabtoolkit.org/
https://plugins.jetbrains.com/docs/intellij/creating-plugin-project.html
https://plugins.jetbrains.com/docs/intellij/creating-plugin-project.html
https://wiki.eclipse.org/Plugin_Architecture
https://code.visualstudio.com/api
https://www.eclipse.org/modeling/emf/
http://www.ics.forth.gr/hci/files/plang/sparrow.pdf
https://doi.org/10.1145/2147783.2147788
https://doi.org/10.1007/s11251-018-9453-5
https://doi.org/10.1007/s11251-018-9453-5

[74].

[75].

[76].

[77].

[78].

[79].

[80].

[81].

[82].

[83].

[84].

[85].

Daniel W. Barowy, Emery D. Berger, and Benjamin Zorn. 2018. ExceL.int:
automatically finding spreadsheet formula errors. Proc. ACM Program. Lang. 2,
OOPSLA, Article 148 (November 2018), 26 pages. DOI:
https://doi.org/10.1145/3276518.

R. Abraham and M. Erwig. UCheck: A Spreadsheet Unit Checker for End
Users. Journal of Visual Languages and Computing, 18(1):71-95, 2007.

Chris Chambers and Martin Erwig. Combining Spatial and Semantic Label
Analysis. In VLHCC ’09: Proceedings of the 2009 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), pages 225-232,
Washington, DC, USA, 2009. IEEE Computer Society.

Valentina I. Grigoreanu, Margaret M. Burnett, and George G. Robertson. 2010.
A strategy-centric approach to the design of end-user debugging tools. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI '10). ACM, New York, NY, USA, 713-722.
DOI=10.1145/1753326.1753431 http://doi.acm.org/10.1145/1753326.1753431.

R. Abraham and M. Erwig, "GoalDebug: A Spreadsheet Debugger for End
Users,"” 29th International Conference on Software Engineering (ICSE'07),
Minneapolis, MN, 2007, pp. 251-260, doi: 10.1109/ICSE.2007.39.

Linda Werner, Shannon Campe, and Jill Denner. 2012. Children learning
computer science concepts via Alice game-programming. In Proceedings of the
43rd ACM technical symposium on Computer Science Education (SIGCSE '12).
Association for Computing Machinery, New York, NY, USA, 427-432. DOI:
https://doi.org/10.1145/2157136.2157263.

A.J. Ko and B. A. Myers. 2004. Designing the Whyline: A Debugging Interface
for Asking Questions About Program Behavior. In Proceedingsof the SIGCHI
Conference on Human Factors in Computing Systems (CHI’04). ACM, New
York, NY, USA, 151-158. https://doi.org/10.1145/985692.985712.

James Devine, Joe Finney, Peli de Halleux, Michat Moskal, Thomas Ball, and
Steve Hodges. 2018. MakeCode and CODAL.: intuitive and efficient embedded
systems programming for education. SIGPLAN Not. 53, 6 (June 2018), 19-30.
DOI: https://doi.org/10.1145/3299710.3211335.

Tynker web IDE: The Debugger Tool. Official Website:
https://www.tynker.com/blog/articles/ideas-and-tips/debugger/ Accessed online:
02/2021.

Blockly Step Execution with JS Interpreter. Official Website: https://blockly-
demo.appspot.com/static/demos/interpreter/step-execution.html Accessed
online: 02/2021.

Savidis A., Savaki C. (2020) Complete Block-Level Visual Debugger for
Blockly. In: Ahram T., Karwowski W., Pickl S., Taiar R. (eds) Human Systems
Engineering and Design Il. IHSED 2019. Advances in Intelligent Systems and
Computing, vol 1026. Springer, Cham. https://doi.org/10.1007/978-3-030-
27928-8_43.

Fulvio Corno, Luigi De Russis, and Alberto Monge Roffarello. 2019.
Empowering End Users in Debugging Trigger-Action Rules. In Proceedings of
the 2019 CHI Conference on Human Factors in Computing Systems (CHI '19).
Association for Computing Machinery, New York, NY, USA, Paper 388, 1-13.
DOI: https://doi.org/10.1145/3290605.3300618.

237

https://doi.org/10.1145/3276518
http://doi.acm.org/10.1145/1753326.1753431
https://doi.org/10.1145/2157136.2157263
https://doi.org/10.1145/985692.985712
https://doi.org/10.1145/3299710.3211335
https://www.tynker.com/blog/articles/ideas-and-tips/debugger/
https://blockly-demo.appspot.com/static/demos/interpreter/step-execution.html
https://blockly-demo.appspot.com/static/demos/interpreter/step-execution.html
https://doi.org/10.1007/978-3-030-27928-8_43
https://doi.org/10.1007/978-3-030-27928-8_43
https://doi.org/10.1145/3290605.3300618

[86].

[87].

[88].

[89].

[90].

[91].

[92].

[93].

[94].

[95].

[96].

[97].

Blase Ur, Melwyn Pak Yong Ho, Stephen Brawner, Jiyun Lee, Sarah
Mennicken, Noah Picard, Diane Schulze, and Michael L. Littman. 2016.
Trigger-Action Programming in the Wild: An Analysis of 200,000 IFTTT
Recipes. In Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems (CHI '16). Association for Computing Machinery, New
York, NY, USA, 3227-3231. DOI: https://doi.org/10.1145/2858036.2858556.

Marco Manca, Fabio, Paterno, Carmen Santoro, Luca Corcella, Supporting end-
user debugging of trigger-action rules for loT applications, International Journal
of Human-Computer Studies, Volume 123, 2019, Pages 56-69, ISSN 1071-
58109, https://doi.org/10.1016/j.ijhcs.2018.11.005.

Corno F., De Russis L., Monge Roffarello A. (2019) My loT Puzzle: Debugging
IF-THEN Rules Through the Jigsaw Metaphor. In: Malizia A., Valtolina S.,
Morch A., Serrano A., Stratton A. (eds) End-User Development. IS-EUD 20109.
Lecture Notes in Computer Science, vol 11553. Springer, Cham.
https://doi.org/10.1007/978-3-030-24781-2_2.

Chieh-Jan Mike Liang, Lei Bu, Zhao Li, Junbei Zhang, Shi Han, Borje F.
Karlsson, Dongmei Zhang, and Feng Zhao. 2016. Systematically Debugging loT
Control System Correctness for Building Automation. In Proceedings of the 3rd
ACM International Conference on Systems for Energy-Efficient Built
Environments (BuildSys '16). Association for Computing Machinery, New
York, NY, USA, 133-142. DOI:https://doi.org/10.1145/2993422.2993426.

F. Gringoli, N. Ali, F. Guerrini and P. Patras, "A Flexible Framework for
Debugging 10T Wireless Applications,” 2018 Workshop on Metrology for
Industry 4.0 and loT, Brescia, 2018, pp. 230-235, doi:
10.1109/METROI4.2018.8428337.

Simulics Platform Simulator: A Deeper Insight into Your System. Official
Website: http://www.simulics.com/index_en.php#simulator Accessed online:
02/2021.

Khelif, Mohamed Amine & Lorandel, Jordane & Romain, Olivier & Regnery,
Matthieu & Baheux, Denis. (2019). A Versatile Emulator of MitM for the
identification of vulnerabilities of 10T devices, a case of study: smartphones. 1-
6. 10.1145/3341325.3342019.

K. Kawada and T. Ohta, "An Emulator for Debugging Service Programs in Ad
Hoc Networks,” 2009 Fourth International Conference on Software Engineering
Advances, Porto, 2009, pp. 326-330, doi: 10.1109/ICSEA.2009.54.

Google Docs, web-based software office suite offered by Google within Google
Drive. Developed in JavaScript. Released on 2006. Official website:
https://www.google.com/docs/about/ Accessed online 02/2021.

Office Online, online office suite offered by Microsoft. Released on 2010.
Official site: https://products.office.com/en/free-office-online-for-the-web
Accessed online 02/2021.

Git: a distributed version-control system for tracking changes in source code
during software development. Initial released 2005. Author: Linus Torvalds.
Official Website: https://git-scm.com/ Accessed online 02/2021.

SVN: a software versioning and revision control system distributed as open
source under the Apache License. Apache Software Foundation. Initial Release
2000. Official Website: https://subversion.apache.org/ Accessed online 02/2021.

238

https://doi.org/10.1145/2858036.2858556
https://doi.org/10.1016/j.ijhcs.2018.11.005
https://doi.org/10.1007/978-3-030-24781-2_2
http://www.simulics.com/index_en.php#simulator
https://www.google.com/docs/about/
https://products.office.com/en/free-office-online-for-the-web
https://git-scm.com/
https://subversion.apache.org/

[98]. Anja Guzzi, Alberto Bacchelli, Yann Riche, and Arie van Deursen. 2015.
Supporting Developers’ Coordination in the IDE. In Proceedings of the 18th
ACM Conference on Computer Supported Cooperative Work & Social
Computing (CSCW ’15). Association for Computing Machinery, New York,
NY, USA, 518-532.

[99]. Sourcetree: a software tool that visualizes and manages repositories. Offered by
Atlassian. Official site: https://www.sourcetreeapp.com/ Accessed online
02/2021.

[100]. Max Goldman, Greg Little, and Robert C. Miller. 2011. Real-time
collaborative coding in a web IDE. In Proceedings of the 24th annual ACM
symposium on User interface software and technology (UIST '11). ACM, New
York, NY, USA, 155-164. DOI=10.1145/2047196.2047215 DOI:
http://doi.acm.org/10.1145/2047196.2047215.

[101]. Codiad Web-based IDE framework. Started on 2012 from Fluidbyte. Official
Website: http://codiad.com/ Accessed online 02/2021.

[102]. Soroush Ghorashi and Carlos Jensen. 2016. Jimbo: a collaborative IDE with
live preview. In Proceedings of the 9th International Workshop on Cooperative
and Human Aspects of Software Engineering (CHASE ’16). Association for
Computing Machinery, New York, NY, USA, 104-107. DOI:
https://doi.org/10.1145/2897586.2897613.

[103]. Stephan Salinger, Christopher Oezbek, Karl Beecher, and Julia Schenk. 2010.
Saros: an eclipse plug-in for distributed party programming. In Proceedings of
the 2010 ICSE Workshop on Cooperative and Human Aspects of Software
Engineering (CHASE °10). Association for Computing Machinery, New York,
NY, USA, 48-55. DOI: https://doi.org/10.1145/1833310.1833319.

[104]. Kristy Elizabeth Boyer, August A. Dwight, R. Taylor Fondren, Mladen A.
Vouk, and James C. Lester. 2008. A development environment for distributed
synchronous collaborative programming. SIGCSE Bull. 40, 3 (June 2008), 158—
162. DOI: https://doi.org/10.1145/1597849.1384315.

[105]. Remote Collab: open-source SublimeText plugin for remote pair
programming. Developed by TeamRemote. Started on 2014. Official Website:
http://teamremote.github.io/remote-sublime/ Accessed online 02/2021.

[106]. Sublime Text: A sophisticated text editor for code, markup and prose.
Developed by Sublime HQ, Author: Jon Skinner. Official Website:
https://www.sublimetext.com/ Accessed online: 02/2021.

[107]. Teletype: Collaborate in real time in Atom. Started on 2017. Official Website:
https://teletype.atom.io/ Accessed online 02/2021.

[108]. Atom: A hackable text editor for 21st century. Developed by GitHub
(subsidiary of Microsoft). Official Website: https://atom.io/ Accessed online:
02/2021.

[109]. Codeshare: Share Code in Real-time with Developers. Created by Lee Munroe
and Tejesh Mehta. Official Website: https://codeshare.io/ Accessed online
02/2021.

[110]. Xinyue Deng. Group Collaboration with App Inventor. Thesis: M. Eng.,
Massachusetts Institute of Technology, Department of Electrical Engineering
and Computer Science, 2017.

[111]. Fukuma Y., Tsutsui K., Takada H., Piumarta I. (2017) A Scratch-Based
Collaborative Learning System with a Shared Stage Screen. In: Yoshino T.,

239

https://www.sourcetreeapp.com/
http://doi.acm.org/10.1145/2047196.2047215
http://codiad.com/
https://doi.org/10.1145/2897586.2897613
https://doi.org/10.1145/1833310.1833319
https://doi.org/10.1145/1597849.1384315
http://teamremote.github.io/remote-sublime/
https://www.sublimetext.com/
https://teletype.atom.io/
https://atom.io/
https://codeshare.io/

Yuizono T., Zurita G., Vassileva J. (eds) Collaboration Technologies and Social
Computing. CollabTech 2017. Lecture Notes in Computer Science, vol 10397.
Springer, Cham.

[112]. B. Selwyn-Smith, C. Anslow, M. Homer and J. R. Wallace, "Co-located
Collaborative Block-Based Programming,” 2019 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), Memphis, TN, USA,
2019, pp. 107-116.

[113]. N. Tillmann, M. Moskal, J. de Halleux, M. Fahndrich, and S. Burckhardt,
“TouchDevelop: app development on mobile devices,” in FSE, Demo, 2012, pp.
39:1-39:2.

[114]. Jonathan Protzenko, Sebastian Burckhardt, Michat Moskal, and Jedidiah
McClurg. 2015. Implementing real-time collaboration in TouchDevelop using
AST merges. In Proceedings of the 3rd International Workshop on Mobile
Development Lifecycle (MobileDeLi 2015). Association for Computing
Machinery, New York, NY, USA, 25-217.
DOl:https://doi.org/10.1145/2846661.2846672.

[115]. Al-Jarrah, Ahmad & Pontelli, Enrico. (2015). AliCe-ViLlagE Alice as a
Collaborative Virtual Learning Environment. Proceedings - Frontiers in
Education Conference, FIE. 2015. 10.1109/FIE.2014.7044089.

[116]. Microsoft Visual Studio Live Share: enables developers to collaborate in real-
time. Developed by Mixrosoft. Initial Released on 2017. Official Website:
https://visualstudio.microsoft.com/services/live-share/ Accessed online 02/2021.

[117]. Code With Me: Plugin of the IntelliJ IDEA. First released: 09/2020. Official
Website: https://www.jetbrains.com/help/idea/code-with-me.html Accessed
online: 02/2021.

[118]. Nordio, M., Meyer, B., & Estler, H. (2011). Collaborative Software
Development on the Web. ArXiv, abs/1105.0768.

[119]. H. C. Estler, M. Nordio, C. A. Furia and B. Meyer, "Collaborative
Debugging,” 2013 IEEE 8th International Conference on Global Software
Engineering, Bari, 2013, pp. 110-119, doi: 10.1109/ICGSE.2013.21.

[120]. Michael A. Miljanovic and Jeremy S. Bradbury. 2017. RoboBUG: A Serious
Game for Learning Debugging Techniques. In Proceedings of the 2017 ACM
Conference on International Computing Education Research (ICER '17).
Association for Computing Machinery, New York, NY, USA, 93-100. DOI:
https://doi.org/10.1145/3105726.3106173.

[121]. Venigalla, A., Chimalakonda, S. G4D - a treasure hunt game for novice
programmers to learn debugging. Smart Learn. Environ. 7, 21 (2020).
https://doi.org/10.1186/s40561-020-00129-4.

[122]. Andrew Luxton-Reilly, Emma McMillan, Elizabeth Stevenson, Ewan
Tempero, and Paul Denny. 2018. Ladebug: an online tool to help novice
programmers improve their debugging skills. In Proceedings of the 23rd Annual
ACM Conference on Innovation and Technology in Computer Science
Education (ITiCSE 2018). Association for Computing Machinery, New York,
NY, USA, 159-164. DOI: https://doi.org/10.1145/3197091.3197098.

[123]. M. J. Lee, "Gidget: An online debugging game for learning and engagement in
computing education,” 2014 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), Melbourne, VIC, 2014, pp. 193-194,
doi: 10.1109/VLHCC.2014.6883051.

240

https://visualstudio.microsoft.com/services/live-share/
https://www.jetbrains.com/help/idea/code-with-me.html
https://doi.org/10.1145/3105726.3106173
https://doi.org/10.1186/s40561-020-00129-4
https://doi.org/10.1145/3197091.3197098

[124]. Chiung-Fang Chiu and Hsing-Yi Huang, "Guided Debugging Practices of
Game Based Programming for Novice Programmers,” International Journal of
Information and Education Technology vol. 5, no. 5, pp. 343-347, 2015.

[125]. Lee, VCS, Yu, YT, Tang, CM, Wong, TL, Poon, CK. ViDA: A virtual
debugging advisor for supporting learning in computer programming courses. J
Comput Assist Learn. 2018; 34: 243— 258. https://doi.org/10.1111/jcal.12238.

[126]. Jim Etheredge. 2004. CMeRun: program logic debugging courseware for
CS1/CS2 students. SIGCSE Bull. 36, 1 (March 2004), 22-25. DOI:
https://doi.org/10.1145/1028174.971311.

[127]. Christian Murphy, Eunhee Kim, Gail Kaiser, and Adam Cannon. 2008.
Backstop: a tool for debugging runtime errors. SIGCSE Bull. 40, 1 (March
2008), 173-177. DOI: https://doi.org/10.1145/1352322.1352193.

[128]. Tsuruko Egi and Akira Takeuchi. 2007. An Analysis on a Learning Support
System for Tracing in Beginner's Debugging. In Proceedings of the 2007
conference on Supporting Learning Flow through Integrative Technologies. 10S
Press, NLD, 509-516.

[129]. Christopher Scaffidi, Andrew Dove, and Tahmid Nabi. 2016. LondonTube:
Overcoming Hidden Dependencies in Cloud-Mobile-Web Programming.
Association for Computing Machinery, New York, NY, USA, 3498-3508. DOI:
https://doi.org/10.1145/2858036.2858076.

[130]. L. Ganesan, C. Scaffidi and A. Dove, "Support for learning while debugging
in a distributed visual programming language,” 2017 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC), Raleigh, NC,
2017, pp. 267-271, doi: 10.1109/VLHCC.2017.8103477.

[131]. Code Snippets in Visual Studio Code. Official = Website:
https://code.visualstudio.com/docs/editor/userdefinedsnippets Accesed online:
02/2021.

[132]. Wingware Python Code Snippets. Oficial Website:
https://wingware.com/doc/edit/snippets Accessed online: 02/2021.

[133]. M. Ichinco and C. Kelleher, "Towards better code snippets: Exploring how
code snippet recall differs with programming experience,” 2017 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC),
Raleigh, NC, 2017, pp. 37-41, doi: 10.1109/VLHCC.2017.8103448.

[134]. TagMyCode: IntelliJ pluggin suports mechanism of code snippets Official
Website: https://plugins.jetbrains.com/plugin/7540-tagmycode Accessed online
02/2021.

[135]. Window.postMessage method safely enables cross-origin communication
between Window objects. Official Website: https://developer.mozilla.org/en-
US/docs/Web/API/Window/postMessage Accessed online: 02/2021.

[136]. Tillmann, Nikolai & Moskal, Michaa & Halleux, Jonathan & Fahndrich,
Manuel. (2011). TouchDevelop—Programming Cloud-Connected Mobile
Devices via Touchscreen. 10.1145/2048237.2048245.

[137]. JSON Schema validator: JavaScript Library. Authored by: Tom de Grunt
tom@degrunt.nl, Released on 2012-2015. Official Web-page:
https://github.com/tdegrunt/jsonschema#readme Accessed online: 02/2021.

[138]. Lodash template: interpolate data properties in “interpolate” delimiters,
HTML-escape interpolated data properties in “escape” delimiters. Lodash

241

https://doi.org/10.1111/jcal.12238
https://doi.org/10.1145/1028174.971311
https://doi.org/10.1145/1352322.1352193
https://doi.org/10.1145/2858036.2858076
https://code.visualstudio.com/docs/editor/userdefinedsnippets
https://wingware.com/doc/edit/snippets
https://plugins.jetbrains.com/plugin/7540-tagmycode%20Accessed%20online%2002/2021
https://plugins.jetbrains.com/plugin/7540-tagmycode%20Accessed%20online%2002/2021
https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage
https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage
https://github.com/tdegrunt/jsonschema#readme

JavaScript Library released on 2009. Last updated on 9th May of 2020. Official
Website: https://lodash.com/docs/4.17.15#template Accessed online: 02/2021.

[139]. Eval function evaluates JavaScript code represented as a string. Official

Website: https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global Objects/eval Accessed online:
02/2021.

[140]. Control flow and error handling in JavaScript. Official Website:
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Guide/Control_flow _and_error _handling#throw_state
ment Accessed online 02/2021.

[141]. Martin Kleppmann, Victor B. F. Gomes, Dominic P. Mulligan, and Alastair R.
Beresford. 2019. Interleaving anomalies in collaborative text editors. In
Proceedings of the 6th Workshop on Principles and Practice of Consistency for
Distributed Data (PaPoC ’19). Association for Computing Machinery, New
York, NY, USA, Article 6, 1-7. DOI:https://doi.org/10.1145/3301419.3323972.

[142]. Basma S. Algadi and Jonathan I. Maletic. 2017. An Empirical Study of
Debugging Patterns Among Novices Programmers. In Proceedings of the 2017
ACM SIGCSE Technical Symposium on Computer Science Education
(SIGCSE '17). Association for Computing Machinery, New York, NY, USA,
15-20. DOI: https://doi.org/10.1145/3017680.3017761.

[143]. Chintakovid, T.; Wiedenbeck, S.; Burnett, M.; Grigoreanu, V., "Pair
Collaboration in End-User Debugging,” Visual Languages and Human-Centric
Computing, 2006. VL/HCC 2006. IEEE Symposium on , vol., no., pp.3,10, 4-8
Sept. 2006 doi: 10.1109/VLHCC.2006.36.

[144]. JavaScript WebWorkers: run scripts in background threads. The worker thread
can perform tasks without interfering with the UIl. Official Website:
https://developer.mozilla.org/en-
US/docs/Web/AP1/Web_Workers_API/Using_web_workers Accessed online:
02/2021.

[145]. Kim, C., Yuan, J., Vasconcelos, L. et al. Debugging during block-based
programming. Instr Sci 46, 767-787 (2018). https://doi.org/10.1007/s11251-
018-9453-5.

[146]. Palade, A., Cabrera, C., Li, F., White, G., Razzaque, M. A., & Clarke, S.
(2018). Middleware for internet of things: an evaluation in a small-scale IoT
environment. Journal of Reliable Intelligent Environments.

[147]. loTivity. An open source software framework enabling seamless device-to-
device connectivity to address the emerging needs of the Internet of Things.
Retrieved from https://iotivity.org/ Accessed online: 02/2021.

[148]. iotivity-node: Provides a JavaScript APl for OCF functionality. Using loTivity
as its backend. Developed by Gabriel Schulhof. Official Website:
https://www.npmjs.com/package/iotivity-node Accessed Online: 02/2021.

[149]. WindowOrWorkerGlobalScope.setTimeout: method sets a timer which
executes a function or specified piece of code once the timer expires. Official

Website: https://developer.mozilla.org/en-
US/docs/Web/AP1/WindowOrWorkerGlobalScope/setTimeout Accessed online:
02/2021.

[150]. WindowOrWorkerGlobalScope.setinterval: method which repeatedly calls a
function or executes a code snippet, with a fixed time delay between each call.

242

https://lodash.com/docs/4.17.15#template
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Control_flow_and_error_handling#throw_statement
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Control_flow_and_error_handling#throw_statement
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Control_flow_and_error_handling#throw_statement
https://doi.org/10.1145/3017680.3017761
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://doi.org/10.1007/s11251-018-9453-5
https://doi.org/10.1007/s11251-018-9453-5
https://iotivity.org/
https://www.npmjs.com/package/iotivity-node
https://developer.mozilla.org/en-US/docs/Web/API/WindowOrWorkerGlobalScope/setTimeout
https://developer.mozilla.org/en-US/docs/Web/API/WindowOrWorkerGlobalScope/setTimeout

Official Website: https://developer.mozilla.org/en-
US/docs/Web/AP1/WindowOrWorkerGlobalScope/setinterval Accessed online:
02/2021.

243

https://developer.mozilla.org/en-US/docs/Web/API/WindowOrWorkerGlobalScope/setInterval
https://developer.mozilla.org/en-US/docs/Web/API/WindowOrWorkerGlobalScope/setInterval

244

Appendix A

In this appendix we provide information for the evaluation of the collaborative

programming of our work.
Collaborative Editing Evaluation

A. Background Information
1) What is your age?
2) What is your gender?
3) What’s your occupation?
4) How many hours per week do you spend in front of a computer on
average?
5) How much experience do you have with programming?
6) Do you have any experience with visual programming?
B. System Usability Survey
The following SUS questionnaire was aimed to assess the usability of our
system’s collaboration component. The questions were answered on a scale
from 1 to 5, 1 being “Strongly Disagree” and 5 being “Strongly Agree” (i.e. 5-
point Likert scale).
1) | find the transition from Blockly editor to the Blockly workspace easy.
2) The collaboration component is well integrated into the Blockly
workspace.
3) | find the collaboration process unnecessarily complex.
4) 1 find the collaboration User Interface intuitive and easy to use.
5) | feel confident using the application with guidance.
6) | can use the application in the future without any help.
7) The collaboration toolset offers limited options.
8) 1 would like to use the collaboration tool for my personal projects with
my family or friends.
9) I don’t see the point of collaborating.
10) I find the application useful for teaching and learning purposes.

C. Freeform Questions

245

1)

2)

3)

As you see it, what are the advantages and disadvantages of using the
collaborative visual programming workspace for Blockly over using
classic Blockly Editor?

Do you find the application useful? If yes, what uses do you have in
mind? Do you think it could be used for teaching and learning
purposes? Explain your thoughts briefly.

Do you have any suggestions for possible improvements on existing
features? Any features would like to be added? Explain your

suggestions briefly.

246

Appendix B

In this appendix we provide a list of demos that constructed in order to demonstrate

our work.
List of Demos

A. Building smart automations

e Description: Using visual programming workspace components, we

craft automations for daily tasks at home.

e Link: https://www.youtube.com/watch?v=ItZKgMInEIE

B. Running and testing automations
e Description: In the first part, we run automations that are developed in
previous demo. In the second part, we use the debugger and simulator
in order to test the automations.

e Link: https://www.youtube.com/watch?v=KQ1j3uRPZ-w

C. Let’s code together
e Description: Three collaborators work together in order to develop
their office automations.
e Link: https://www.youtube.com/watch?v=Gg7fnA34RF4

247

https://www.youtube.com/watch?v=ltZKqMlnEIE
https://www.youtube.com/watch?v=KQ1j3uRPZ-w
https://www.youtube.com/watch?v=Gg7fnA34RF4

