
Computer Science Department
University of Crete

A Fully-Automated Desynchronization Flow for Synchronous Circuits

Master’s Thesis

Andrikos Nikolaos

February 2006
Heraklion, Greece

���������
	 �
������	 �������������
����� ���"!��#�$	&%(')�*%+��	-,.�#�(��������/0	1%
')�324�
	 �
������')�

,.�������524�
	 �
���������*67��� ��� /0	 �
��')�

A Fully-Automated Desynchronization Flow for Synchronous Circuits

28��/9���0:;�<���(=5= ����>���� ?0��%(��� ��@"�A� �*B�	1%(@������DCE� F���:;%(�
G �H���I� 	&%(�5�#%(������� G ���5� G �5� ����	 �����-� G �*/0	;�<��� �<� ��@
%(�������

JK�#�I� ����=��-	1� %+�
L5MD	1����'4��� �I�(�H2N	1F :1%+�I=������

��=�/�/9����O0PI��� Q

RSRSRSRSRSRSRSRSRSRSRSRSRSRSRUT
B�	1%(@������(�ECE� F���:;%(�
� V
,.�������524�
	 �W���������367�
� ��� /0	 �
��')�

2X	 ��� /-���$	&%(�"24�
	 ����������Q

RSRSRSRSRSRSRSRSRSRSRSRSRSRSRUT
JY��� @������7�H� �$�Z>
��: � ��� V+����?9� /-������� V-28��@��������

RSRSRSRSRSRSRSRSRSRSRSRSRSRSRUT
C7��@
�
�I�����(�7,.�$��/9����: ����� V+����?9� /-������� V-JYP#���
�

RSRSRSRSRSRSRSRSRSRSRSRSRSRSRUT
MD	 � ��L��������E���#=���� �$	&%+[�I�(� V+CE� � ������� G ����������?9� /-������� V-JYP#���
�

,.�������5\E���#%(����� ��	&%(')�]JK��������	&%(')�
&

JK��������	1%
')�567��� ��� /0	 �W��')�(V-�7����= ���I�(� �A:&�5�����������

RSRSRSRSRSRSRSRSRSRSRSRSRSRSRUT
^H�����
�I�(�H� G ������:&�
=+V-��=����I��/9��_�@
���Z���
�`2X�$�I=����������7ab� T ac,d2.V+24�(>���P#� G �

M5�#%
����Q

RSRSRSRSRSRSRSRSRSRSRSRSRSRSRUT
M<�������������H�E���Ie��
=��9[%
��� V(CE��� ������� G �����7����?9� /-�������
����@
�IF��$�
�`28�
	 �����
�����HJY���A� ����=��-	1� %(')�5�����
=�F$')�

\��$[%(���A	 �0V�f��Z>
�$�(=�[���	 �
��g�h�h�i

A Fully-Automated Desynchronization Flow for Synchronous Circuits

by

Andrikos Nikolaos

Master’s Thesis

Department of Computer Science

University of Crete

Abstract

Variability is one of today’s fundamental problems faced by nano-scale electronic circuits, and is

posing a very serious threat to the continuation of Moore’s law. Alternative design and implementation

methodologies, with respect to the conventional synchronous scheme, have been presented in the past

for managing timing and environmental variations.

Desynchronization is an approach that converts a post-synthesized synchronous gate-level circuit

to a more robust asynchronous one. This work implements the first fully-automated EDA design flow

using industrial tools for synthesis, DFT insertion, placement, routing and so on. The flow includes

an extra desynchronization step, implemented using a desynchronization tool that automatically ap-

plies the desynchronization technique, converting the synchronous circuits and generating scripts for

standard tools, in particular to control static timing analysis and physical design.

Two test designs were implemented in a 90nm industrial library down to the mask layout level, in

order to validate the technique and compare the desynchronized circuits to their synchronous counter-

parts. The desynchronized circuits exhibit significantly better variability tolerance, typical instead of

worst corner case performance with reasonable area and power consumption overhead.

Keywords: Asynchronous circuits, Desynchronization, Tool automation, Variability.

Thesis Supervisor: Manolis Katevenis, Professor

Thesis Vice-Supervisor: Christos P. Sotiriou, Collaborating Researcher ICS-FORTH

ii

���������
	���
������������������������ ����!#"��%$���	�&'����()��*,+-�.��"��/(0����12*3���%451�*,+-�.��"��
67��8���9��������

:<;>=@?#ACBEDEFHGJICBEK>L�MND�F

O�PRQ MTS Q@UNV ICMTBEWYX0?[Z�MN\�A]M

^`_ W _ MaX)SEIb\ Q W _�c FedfSED#L�D>Z�Ib\ Q[g ;
h M>; P SEIb\ Q W _ IiDkje?@W Q@c F

h<P ?#ACL cTl�c
\ %+� �I����%+�I=����
�$	&%(�5���#�I�$>�������@������I�5�A: ����	+P�� �<� ��@D�I�*%+L�� 	1�3������>�������� �I�*���(=<�����$;���#� G �
: _$�(=��]�A�

�������I� 	 ��[3�����#%
�$�$� ��	&%+[�%+= %
��'4��� �I�3%
��: ��� %+���.� �����(��P#���$�(=�%+��	+� �������#���I:��
:;�3������L*�9��>
���$�<� ���I	1���*/0	1�
��� �-=���PI�-	 ��� �A�
= � @(���(=��I�(=

Moore m 2 � � ����� %(�$	1%(PI�<����?0�(F$����� /0:;�I�3�-���IF :;���-���3%+��	
= �����
�(:&������� V �-�
��� �$: ?0�I��� ���]�I� �-=���>
� ��	&%+@ �9L�/9���$� ��� �-�+�����+V
P#���(=��D�������
=��9	;���
���A:W�
�I� �
���$�#� ?0@ �5/0	;����� ����� �$;��� T
��' �
	 ���"� G �5���$� ��	&%(')�3%(��	-���I��	 >
� ���������$	1%
')�<���#�A�$>
� ��')� m

n � ���
�9=�/9���$� ��	 �9��@
� �A: ����	X��:;� ����?0�(F�� ��� /0: �Y= ���
���+:&������� V�� �
���(: � ���#�I� ����P#���A	NP�� � �9L�/9���$� ���
%+L %
� G ��� �#�
	1��PIF$�(= ��= ��')� �-�KP���� ���-L�/9����� ���U����[����/9� m C�= ��� �U�#��/9���9: � = ���
���(;�A:d��� � ����' ���
������� G �E��= �I�
��� �I���
�(����P����*�����]�����#%
�$�$� ��	&%(���.�-���IF�: �������`���$���9	1�������+	&')� �I���7�-=���>
� �$	1%([�>(�
����������	&%+[
�I��/9� ���A: �8/0	;�d�-L���?0�I����V��A	 �-��/ G /9�.= �
�
�
����� 	1e$���)%+� �I����%+�I=����W��	&%(��� F$�
%+	;����� V��I�
����? P���������V�F 	1���-L���F$�I���
%+��% m \ �$�
�`���I��	1������>
[�� �A	 P����`�#�
	&����PI� �d>������7� ���(�-=�/9����� ��	 �-���(L+V = ���
���+	 ����P����H�������9	;�����
�(1')���I���NP����
�I��/9� ���A:&�*���(=*�#O ������@
_��A	
��= �A�
��[� G �E��� �3���I�(��	1%
�*�I�(=3� �
�
�-=�/9����� ��	 �-���(L+V+���#�I� ����P#��� � �I���E�9L�/9���$� ���
%+= %
��'4��� �A� %+� ��[��������� %(��	
�����$[�/9� � �I���<F�PI�-���I�<��� �I� ��')�po

scripts q /0	1� %+��? 	1�I� G ��P�� � �I��/9� ���A:;�+V /0	1�
���<= ���(�
������: e��I	-�
�I� ��	&%(�"���$� ��	&%(�<����[��=����5%+��	-O =��9	&%(�D�-���IF :;���-�5���7�I� �-=���>
� �$	1%(@ ����@���� m

M5L��3F���%�	1�����W��	&%+[7%+= %(��'4��� �I�H= �������+	&� ?9��%+�����-�N�
:;�E>(�(����������	1%
�7>(>���	 ��?9��%
�sr�h
nm

��PI����	����(:1��� T
F�����[���%+��� V /0	;�E� �7�#��� ��� ? �#= �$�I:������I�(��	&%(�7%(��	 /0	1�E���7�-=�/-%+��	 ?0�(L��`�I��� ���(�-=�/9����� ��	 �-��P����E%(= %(��'4��� �I�
�����I����� �$:&�W�A�(���H�-L�/9�-�$� ��� m ,.��� ���(�-=�/9����� ��	 �-��P�� �H%(= %(��'4��� �I�����(1F��I	1%���L��
=��������������$	1%([�%(� ��L ���I�$�
�������+� �
��� ���#�I�$>�������@������I�+V
� ��@(F��
��� �W��� �"�$= �
	&%(� ��� �$: /0	1� ���A:;� 	 �
��� ���I� :1��� G ��� ���3�IL ����/9� �#�
	 >
[T
��=�� ���D�-���I��>
��F$@��3%(��	-%(� �A��� [� G ���"	 �-��L��(� m

24��@
�������HJY�#�I� ���$=��-	1� %(����28��/9���9: ��� Q)JY����@ �����7��� ���Z>
��: ����� V+����?0� /-�������

iii

24�
	 >���P#� G � JY���A� ����=��-	;� %
���D28��/9���9: ��� Q�^H�$���W�A�
�5� m � G ������:&�(=+V ��=����#��/9��_$@(����� �
�<28�$�I=�� �������5ac� T
ab,d2

iv

Acknowledgments

Firstly, I am grateful to my familly for their support all these years. If it was not for their help I

would have never made it to here.

I would like to recognize the contribution of my supervisor, Dr. Christos Sotiriou, to the comple-

tion of this work and thank him for his guidance, his constructive remarks and the time he devoted.

This work was conducted in collaboration with the ICS-FORTH and funded by it.

Part of this work was conducted in STMicroelectonics, Agrate site, Italy. I am especially thankful

to Dr. Davide Pandini and Prof. Luciano Lavagno for their support during my stay there.

Last but not least, I thank all the people with whom I have worked side by side during this thesis.

Sharing everyday ideas and experiences has been invaluable.

v

vi

To the circuits yet to be desynchronized

vii

viii

Contents

1 Introduction 1

2 The Desynchronization Approach 5

2.1 General description . 5

2.2 Latch Controllers . 7

2.3 Flip-flop Substitution . 8

2.4 Clock Removal . 9

2.4.1 Data Dependencies Graph . 9

2.4.2 Controller Network . 10

2.4.3 C-Muller Elements . 10

2.4.4 Delay of Combinational Logic . 11

2.4.5 Network Inter-Connections . 12

2.5 Resultant timing . 13

3 A CAD Tool for Desynchronization 15

3.1 Technology Library Support . 15

3.1.1 Library Information . 16

3.1.2 Extra Latches . 16

3.1.3 Latch Controllers . 18

3.1.4 Delay Elements . 18

3.1.5 C-Muller Elements . 18

3.2 Circuit Desynchronization . 19

3.2.1 Design Import . 19

ix

3.2.2 Automatic Region Creation . 19

3.2.3 Flip-Flop Substitution . 23

3.2.4 Data Dependency Graph . 23

3.2.5 Delay Element Creation . 23

3.2.6 Control Network Insertion . 23

3.2.7 Design Export . 24

4 A Fully-Automated Desynchronization EDA Methodology 25

4.1 Circuit Specification . 26

4.2 Synthesis . 26

4.3 Design for Testability . 27

4.4 Desynchronization . 27

4.5 Timing Constraints . 27

4.5.1 Latch Enable . 27

4.6 Controller Network . 28

4.6.1 Loop Breaking . 30

4.6.2 Allowing Only Safe Optimizations . 30

4.7 Placement and Routing (P&R) . 30

4.8 Simulation . 32

5 Results 33

5.1 Experimental Procedure . 33

5.2 DLX RISC CPU . 34

5.2.1 Area Comparison . 35

5.2.2 Timing Comparison . 36

5.2.3 Power . 37

5.3 ARM RISC CPU . 38

5.3.1 Area . 39

6 Conclusions 41

References 42

x

List of Figures

2.1 General view of desynchronization flow. 6

2.2 Sample initial circuit. 6

2.3 General picture of a controller. 7

2.4 Desynchronization protocol ordering according to allowed concurrency. 8

2.5 Example of flip-flop loop, where skew cannot be tolerated. 9

2.6 Data dependency graph of the circuit. 9

2.7 Controllers network. 10

2.8 Modeling logic delay with delay elements. 11

2.9 Inner structure of an asymmetric (slow rise, fast fall) delay element. 12

2.10 Modeling logic delay with completion detection techniques. 12

2.11 Fully connected desynchronized circuit. 13

3.1 Flip-flop to latch conversion. 17

3.2 Four-phase semi-decoupled controllers . 18

3.3 Grouping algorithm steps. 20

3.4 Grouping algorithm pseudocode. 21

3.5 False logic dependencies induced by buffer insertion. 22

3.6 Grouping based on net buses. 22

4.1 Desynchronization flow. 26

4.2 Clock constraints transformation. 28

4.3 Effective timing view of the desynchronized datapath. 29

4.4 Example of four-phase Desynchronization Controllers 29

xi

4.5 Breaking timing loops within the controllers. 31

5.1 Experimental procedure. 34

5.2 Block diagram of the DLX microprocessor. 35

5.3 Timing results for DLX and DDLX. 37

5.4 Real operation delay comparison between DLX and DDLX. 38

5.5 Power results for DLX and DDLX. 39

xii

List of Tables

2.1 Truth table of a C-Muller element. 10

5.1 Area results for synchronous and desynchronized DLX. 36

5.2 Area results for synchronous and desynchronized ARM. 40

xiii

xiv

1
Introduction

Manufacturing variability is the uncertainty of predicting the exact properties of a fabricated chip

beforehand, i.e. at design time [1]. Variability is closely related to varying process parameters, voltage

variations, due to IR drops, and temperature fluctuations, thus it has a both a static and a dynamic

component. Today, variability is among the most fundamental problems in VLSI circuit design and as

the technology constantly scales it is posing a serious threat to the continuation of Moore’s Law. This

is due to the fact that, although typical corner case may be able to follow Moore’s Law, synchronous

circuits have to be designed in worst corner case, which deviates more and more from the typical one.

There are two research schools of thought with different proposals for tackling the problem. The

first proposes to increase the effort of characterization and analysis of both the design and the libraries.

The most representative example is the Statistical Static Timing Analysis (SSTA) methodology [2]

where all the variability contributing factors are analyzed statistically and probabilistic results are

obtained.

The alternative proposal is to design adaptive circuits which are capable of tolerating parametric

1

2 CHAPTER 1. INTRODUCTION

variations. Asynchronous circuits have the natural ability to adapt their timing, thus designing out

parametric variability, however their disadvantages, such as being potentially more difficult to design

and higher area occupancy, must be tackled. However, one of the key problems related to the adoption

of asynchronous techniques is the lack of industrial-quality Electronic Design Automation (EDA)

tools capable of supporting their extra complexity of design and implementation and integration with

other EDA tools and thus, their adoption by industry is hindered.

Desynchronization [3, 4, 5, 6] is an implementation methodology of producing circuits with a

degree of “asynchronicity” using existing EDA tools and flows. Its key characteristic is that it can au-

tomatically convert any synchronous circuit to an asynchronous one by replacing the former’s clock

network with a network of handshaking latch controllers. It has been formally proved [4] that desyn-

chronized circuits exhibit a property known as flow-equivalence [7]. The flow-equivalence property

implies that sequences of data of a desynchronized circuit is identical to that of a corresponding syn-

chronous one. As a result, all of the conventional synchronous testing techniques (DFT, simulation,

etc.) can be applied in the same way also to desynchronized circuits. Desynchronized circuits are

adaptable to variability as their timing is not dictated by an external timing signal, but is manifested

through a self-timed latch controller network living inside the chip, which is influenced by the same

parametric variations as the circuit itself.

The aim of this master’s thesis has been to develop a fully-automated EDA flow for support-

ing the desynchronized methodology. The new flow is based on an industrial design flows and uses

standard tools paired with a desynchronization tool called drdesync, which has been implemented

from scratch for supporting the desynchronization methodology. drdesync automatically applies the

desynchronization methodology through handling i) synchronous circuit conversion ii) the backend

timing constraint generation and iii) Static Timing Analysis (STA) automatically. In order to demon-

strate the operation of the desynchronization EDA flow, it has been used to implement, down to mask

the layout level, two design case studies using the STMicroelectronics CORE9 90nm library. Two

versions of each design, i.e. as synchronous and as desynchronized one, were implemented and com-

pared in terms of area, power, timing and tolerance to variability.

This master’s thesis is organized as follows. In Chapter 2 we present and discuss desynchroniza-

tion. In Chapter 3 we detail the implemented desynchronization tool. In Chapter 4 we describe the

desynchronization design flow structure and in Chapter 5 we present and comment on the results ob-

tained for applying the flow to two designs. Finally, Chapter 6 presents the conclusions of this work

3

along with possible future work.

4 CHAPTER 1. INTRODUCTION

2
The Desynchronization Approach

In this chapter, the desynchronization methodology is described in detail. A sample synchronous

circuit example is used to demonstrate the desynchronization conversion steps.

2.1 General description

Desynchronization is a methodology for converting a synchronous circuit to an asynchronous equiv-

alent. In desynchronization, the global clock network is replaced automatically by a network of in-

tercommunicating latch controllers, whereas the datapath remains intact. This transformation has

been shown [4] to preserve a property known as flow-equivalence, which means that each individ-

ual sequential element in the desynchronized circuit will possess the exact same data sequence as its

synchronous counterpart. This allows for the application of standard synchronous testing techniques.

The main advantage of this methodology is that it can use existing industrial EDA tools, thus the

designer is not required to have any knowledge of asynchronous circuits. It is the only methodology

for asynchronous circuit design that can use standard libraries and tools starting from HDL specifica-

tion.

5

6 CHAPTER 2. THE DESYNCHRONIZATION APPROACH

The desynchronization transformation is performed to post-synthesis circuits before proceeding

to the backend part of the flow, i.e. physical design. An overview of the desynchronization flow can

be seen in Figure 2.1 and a full description is detailed in Chapter 4.

Synthesis

Backend

Desynchronization

Desynchronized
Netlist

Desynchronized
Layout

RTL
description

DFT

Synchronous
Netlist

Test Vectors

Figure 2.1: General view of desynchronization flow.

Figure 2.2 shows an example of a synchronous circuit. The clouds indicate combinational logic

driving flip-flops. The dashed lines indicate the regions of the circuit. By region we define a combi-

national logic cloud with the flip-flops it drives. The regions can be specified either manually by the

designer or derived automatically by the desynchronization tool and their outputs are considered to

always be driven by registers.

G2

G5

G4

G3G1

CLK

CL5

CL4

CL3

CL2

CL1

Figure 2.2: Sample initial circuit.

2.2. LATCH CONTROLLERS 7

2.2 Latch Controllers

The main element used in the controller network is a latch controller which is an asynchronous circuit

implementing a handshake protocol. The general picture of a latch controller can be seen in Figure 2.3.

On the left hand side of the figure, the signal ri, i.e. the input request, indicates that the group of

the predecessor controller(s) has (re)finished computing the output data, while the signal ai, i.e.

the input acknowledgement, signals a response to indicate that this group has processed its current

data and they can be replaced by new ones. On the right hand side, we have the corresponding

signals communicating with the successor controller(s). Thus, signal ro, i.e. the output request,

informs the target controller for the validity of this group’s output data, while signal ao, i.e. the

output acknowledgement, indicates that the target group has processed these data. Signal g, i.e. the

latch enable, is used for driving a set of latches, while the signal rst, i.e. the reset, is used for the

controller’s initialization.

Latch
Controller

ri

aoai

ro

rst

g

Figure 2.3: General picture of a controller.

For flow-equivalent operation controllers may implement any handshake protocol suitable for

desynchronization [4], e.g. semi-decoupled, fully-decoupled or desynchronization controller types

are all valid. Signal Transition Graphs (STGs) of protocols can be seen in Figure 2.4. STGs are con-

strained PetriNets [8], which represent the signal dependencies and sequence. In the Figure, signals

A and B correspond to two latch controls of two latches in sequence. The protocol implementation

can be either 4-phase or 2-phase. This work uses 4-phase semi-decoupled controllers, as they have

been shown to exhibit a good tradeoff of signal concurrency and asynchronous circuit complexity [9].

The protocols indicated as not live or not flow − equivalent in the Figure cannot be used for

desynchronization as they will exhibit deadlocks and data overwriting respectively [4].

8 CHAPTER 2. THE DESYNCHRONIZATION APPROACH

B+

A−

A+

B−

B+

B−A−

A+

A−

A+

B−

B+

B+

A− B−

A+ B+

A− B−

A+

simple
(Furber & Day)

de−synchronization
model

semi−decoupled
(Furber & Day)

not
flow−equivalent

live and
flow−equivalent

(fully decoupled,
rise−decoupled

Furber & Day)

non−overlapping
A−

A+

B−

B+

B+

A− B−

A+B+

A− B−

A+

co
nc

ur
re

nc
y

re
du

ct
io

n

no
t l

iv
e

(10 states)

(8 states)

(6 states)

(5 states)

(4 states)

fall−decoupled

Figure 2.4: Desynchronization protocol ordering according to allowed concurrency.

2.3 Flip-flop Substitution

If the synchronous design is flip-flop based then, for desynchronization to be applied, its flip-flops have

to be substituted by latches. A D flip-flop is both conceptually composed of a pair of master-slave

latches and this internal structure must be explicitly and practically revealed to maintain equivalent

behavior.

This transformation is essential in order to be able to tolerate variable amount of skew imposed

at different regions by the controllers. A problematic case can be seen in Figure 2.5. If two flip-flops

were to be driven by different latch controllers, skew at their leaves A and B cannot be guaranteed,

thus data overwriting will occur.

Also, the conversion of a flip-flop-based circuit into a latch based one can improve performance,

albeit area increases. This conversion is not specific to the desynchronization framework only and

is known to give better performance even for synchronous systems [10] and, for this reason, it has a

value by itself.

2.4. CLOCK REMOVAL 9

LC1

A

LC2

B

Figure 2.5: Example of flip-flop loop, where skew cannot be tolerated.

2.4 Clock Removal

As mentioned above, the main difference between a synchronous circuit and its desynchronized coun-

terpart is that the former’s clock network is replaced by a network of intercommunicating latch con-

trollers, which generate the signals fed to the desynchronized circuit’s sequential elements. This

section describes what this network is composed of, how it is connected to the synchronous datapath,

and how controllers must be connected to each other so that correct circuit operation is ensured.

2.4.1 Data Dependencies Graph

The controller network must respect data flow dependencies among the various parts of the circuit.

Thus, the first step in a circuit analysis for desynchronization is to construct a data dependency graph

representation of the circuit. In this graph, nodes represent circuit regions and edges data dependen-

cies. Each data dependency between two regions in the circuit, i.e. a path from an output of a region to

an input of another, is indicated by a directed edge between the two corresponding nodes of the graph.

Figure 2.6 shows the dependency graph corresponding to the synchronous circuit of Figure 2.2.

G1

G4

G3
G5

G2

Figure 2.6: Data dependency graph of the circuit.

10 CHAPTER 2. THE DESYNCHRONIZATION APPROACH

Inputs Output

All 0’s 0

All 1’s 1

Other Unchanged

Table 2.1: Truth table of a C-Muller element.

2.4.2 Controller Network

The data dependency graph is used for constructing the controller network. Each circuit region, rep-

resented by a node in the data dependency graph, will be controlled by a pair of master-slave latch

controllers. The master and slave latch pair of a node must be appropriately connected to all its pre-

decessor and successor nodes using synchronization elements (C-Muller gates). Figure 2.7 shows the

resulting controller network. For the cases that there are multiple input requests or output acknowl-

edges, C-Muller gates are used as synchronization elements, as shown in the Figure.

C

C

C

C

C

G1
M

G1
S

G2
M

G2
S

G4
M

G4
S

G3
M

G3
S

G5
M

G5
S

Figure 2.7: Controllers network.

2.4.3 C-Muller Elements

These gates are used to synchronize multiple input requests or output acknowledges. These are the

cases when there are many source or target controllers respectively. A C-Muller (or rendezvous)

element [11, 12] waits for all of its inputs to be deasserted before deasserting its output and all of its

inputs to be asserted before asserting it, thus synchronizing multiple input signals. Its truth table can

be seen in Table 2.1.

2.4. CLOCK REMOVAL 11

2.4.4 Delay of Combinational Logic

The desynchronized circuit has to respect setup constraints of its sequential elements. This implies

that the combinational logic clouds have to be given enough time to compute their data. Since the

request signal is the one that indicate that the logic has finished computing and there are valid data,

these signals have to be appropriately delayed for so long as the combinational logic’s critical path

delay. There are two possible methods to achieve this, i.e. using delay elements to mimic the delay of

the combinational logic or modifying the combinational logic and embed completion detection.

Delay Elements

The first possible method is the use of delay elements for mimicking the logic’s delay. In this approach

the request signals pass through a delay element before reaching the target controller. Thus, there is

one delay element for each circuit region. Figure 2.8 shows how the delay of delay elements is

computed in the general case. The buffers indicate the low-skew buffer trees. The setup constraints

are satisfied if delem length + CT target ≤ CT source + CL delay. In the case when the clock

trees are balanced or not present. i.e. of zero latency, CT target = CT source, the relation becomes

delem length ≤ CL delay and the delay element corresponds to the logic’s critical path delay.

LC1

L1

LC2

CL

Delem_length

CL_delay

CT_source CT_target

delem

L1

Figure 2.8: Modeling logic delay with delay elements.

The delay elements used are implemented as symmetric in the case of 2-phase handshaking or

as asymmetric in the 4-phase handshaking. Symmetric delay elements have the same rise and fall

time, whereas asymmetric have high rise time and minimum fall. An example of an asymmetric delay

element can be seen in Figure 2.9. A multiplexer may be inserted to configure the final real delay after

12 CHAPTER 2. THE DESYNCHRONIZATION APPROACH

layout. In the case of symmetric delay elements the AND gates are substituted by buffers or pairs of

inverters.

...
...

Figure 2.9: Inner structure of an asymmetric (slow rise, fast fall) delay element.

Completion Detection

An alternative to delay elements is to implant completion detection capable logic [13]. In this case,

the combinational logic is transformed in a such way that it generates a completion detection signal

indicating computation completion and data validity. This signal can then be used as an input request

to a controller. This technique has the main advantage that it allows the circuit to operate in actual,

average case delay taking into account both the parametric variations and operating data. Its main dis-

advantage is that the logic transformation induces significant area and power overhead (approximately

x2) and thus this approach was not followed in this work.

LC1

L1

LC2

CL

CL_delay

CT_source CT_target

L2

CD

Figure 2.10: Modeling logic delay with completion detection techniques.

2.4.5 Network Inter-Connections

In the last desynchronization step, the entire network of the latch controllers is connected to the

original synchronous datapath. The network includes the controller pairs, the C-Muller elements and

2.5. RESULTANT TIMING 13

the delay elements. The final desynchronized circuit derived from the original synchronous circuit of

Figure 2.2 is shown in Figure 2.11. The bold lines indicate the controller network. It can be seen that

every region of the original circuit has a combinational logic cloud, a corresponding delay element,

one pair of controllers and C-Muller elements used to synchronize multiple input requests or output

acknowledgments.

�
_CL2

CL2 CL4

CL1 CL3

CL5

C
�

_CL4

�
_CL1 C

�
_CL3

C
�

_CL5

CC

G1 G3

G5

G2 G4

M S

M S

M S

M S

M S

M S

M S

M S

M S

M S

Figure 2.11: Fully connected desynchronized circuit.

2.5 Resultant timing

Desynchronized circuits do not possess external clock signals, as synchronization is achieved inter-

nally by the latch controller network. Hence, the timing reference is not external but the result of a

self-timed network inside the chip.

Delay elements used are influenced by variability factors, i.e. process, voltage and temperature

variation, in the same way as the logic they model. This is because they reside in the same chip

and special constraints can be used to be placed close to the logic they model. Of course, delay

elements must include margins to cope with uncorelated variability, but these margins are far less

wider than in the synchronous scheme. Thus, inter-chip process variation and dynamic operating

conditions affecting performance can be better tolerated with respect to the synchronous circuits and

the circuit’s timing can be adjusted automatically and dynamically. Hence, their resultant effective

period, is elastic and adaptable to process, voltage and temperature variability factors [14].

In the case of completion detection techniques, the circuit does not only tolerate intra-chip vari-

ations but exhibits average case performance as well. Average case relates to the performance de-

14 CHAPTER 2. THE DESYNCHRONIZATION APPROACH

pending on the dynamic data of the logic, thus the delay does not always equal to the critical path

delay.

3
A CAD Tool for Desynchronization

Since theory is useless without practice, an automated tool was developed to apply the desynchro-

nization methodology. This chapter describes this custom implemented tool called drdesync which

enumerates about 10000 lines of C code and numerous scripts for its implementation. drdesync

transforms a gate-level synchronous Verilog netlist into a desynchronized one. Before being able to

do this special preparation is needed for supporting the target technology library.

3.1 Technology Library Support

Before the desynchronization tool can be used, the technology library must be prepared for it. This

has to be done once for each library migration and special effort has been given to be as automated

as possible. This phase practically implements all the elements which will be used during circuit

desynchronization later. Below there is the description of which is each such element, where it used

during the desynchronization conversion and how it is implemented during this phase.

15

16 CHAPTER 3. A CAD TOOL FOR DESYNCHRONIZATION

3.1.1 Library Information

The first and most important part of the preparation is the creation the file called gatefile which

contains information about the library cells. This file is created using a custom script that parses the

.lib standard technology file. For each cell in the library its name, its type (flip-flop, latch, combina-

tional logic gate) its pins, their name and type (input, output, inout, clock) are extracted and put in the

gatefile. In addition, the gatefile contains replacement rules used during the flip-flop substitution

phase of the desynchronization methodology used for replacing the flip-flops with the appropriate

pairs of latches. In the cases where the library does not include the required latches new latch names

are used and these latches are implemented later as composite modules composed of other standard

cells.

3.1.2 Extra Latches

Generally a D flip-flop is substituted by a pair of simple latches. In the cases of more complex

flip-flops the technology library may not include all the required latches which they have to be imple-

mented combining existing latches and extra logic. One such important case may be the absence of

scan latches in a technology library for replacing the circuit’s scan flip-flops. After the gatefile has

been created, a list of all the needed latches is generated and the user implements any missing latches

by hand. Figure 3.1 contains some examples of possible cases where latches equivalent of flip-flops

must be created. We assume that the only latch included in the library is the simplest possible.

Scan Flip-flops In the cases of scan flip-flops, an extra multiplexer is inserted before the master latch

like in Figure 3.1(a)

Synchronous Set/Reset When we have flip-flops with synchronous reset an AND gate with an in-

verted input is put before the master latch like in Figure 3.1(b). If there is synchronous set

instead, we use an OR gate.

Asynchronous Set/Reset The case is more complex when the set or reset signal is asynchronous.

In this case we have to take care of two things. First, the latches must open during the asyn-

chronous signal assertion so that the value passes. Second, the latches must close before the

signal resets back. Figure 3.1(c) shows the latch circuit that substitutes a flip-flop with asyn-

chronous set. If there is synchronous set instead, we use an AND gate with inverted input before

the master latch like in the previous example. Also, the AND cells gating the asynchronous reset

3.1. TECHNOLOGY LIBRARY SUPPORT 17

D

SI

SE

Q QDQD
D

SI

SE

Q

G G

Clk GsGm

(a) Scan flip-flop.

D Q QDQD Q

Reset

Clk Gs

G G

Gm

D
Reset

(b) Synchronous Reset.

D Q QDQD Q

ASet

Clk

G G

D

Gs

ASet

Gm

(c) Asynchronous Set.

D Q QDQDD Q

Cen

Clk Gs

Cen

G G

Gm

(d) Clock Gating.

Figure 3.1: Flip-flop to latch conversion.

signal do not have inverted input.

Clock Gating The case of clock gating is solved by gating the latch enable signals with an AND gate

and can be seen in Figure 3.1(d).

Other Cases Of course this list is not exhaustive. There can also be other examples that they more or

less fall in the aforementioned or even hybrid cases that combine two or more of the previous

situations.

This transformation models the flip-flop behavior but has a serious disadvantage. Due to increased

number of cells the circuit area and power consumption worsen. The ideal case would be to have dual

gate latches in the libraries. This would decouple the inner latch enable signals and induce no area or

power penalty in the circuit.

18 CHAPTER 3. A CAD TOOL FOR DESYNCHRONIZATION

3.1.3 Latch Controllers

After all the library information has been gathered and any required extra latch types have been im-

plemented, latch controllers must be implemented for the target library. These are specially designed

circuits which need to be hazard-free. Thus, standard logic synthesis cannot be used and the user has to

perform technology mapping by hand without decomposing the gates. Figure 3.1.3 shows the 4-phase

semi-decoupled controller implementation, used for this work. This circuit has been designed from

an Signal Transition Graph (STG) specification in the petrify tool [15]. Any other controller suitable

for desynchronization can be used, or even hybrid approaches with various types of controllers.

L
A
T
C
H

L
A
T
C
H

RST

Ai

Ri Ro

Ao
Ao

Ro

Ai

Ri

L L

COMBINATIONAL LOGIC

delaydelay

Figure 3.2: Four-phase semi-decoupled controllers

3.1.4 Delay Elements

The combinational logic delay of the combinational logic of each circuit region in this desynchroniza-

tion flow is modeled using delay elements. During this stage we implement delay elements of variable

logic depth, e.g. from 1 to 100 logic levels, and perform STA to measure their delay values. Since

4-phase controllers are used, delay elements are asymmetric and each delay element level consists of

an AND gate.

3.1.5 C-Muller Elements

Finally, the only elements used during the desynchronization conversion of the circuits yet to be imple-

mented are the C-Muller elements for multiple inputs. Multiple input, e.g. from 2 to 10 bits, C-Muller

elements are implemented by describing in Verilog HDL and then synthesizing with a conventional

3.2. CIRCUIT DESYNCHRONIZATION 19

synthesis tool.

In this point, the technology library has been adapted to drdesync and desynchronization of a

circuit may be performed.

3.2 Circuit Desynchronization

This section describes how drdesync performs the automatic circuit desynchronization. The tool has

a command line interface and the desynchronization operation consists of a sequence of steps. A

typical sequence of steps is presented below.

3.2.1 Design Import

The tool supports the full gate-level Verilog specification and reads designs in this format. During

design import, escaped names are substituted by simple ones and assign statements are replaced wher-

ever possible. These modifications produce a cleaner netlist without altering the design functionality.

After the synchronous netlist has been imported, it is ready to be desynchronized

There are two main advantages with the fact that drdesync operates in gate-level as opposed to

Register Transfer Level (RTL). Firstly, not always can be assured that the RTL specification of the

design is available, whereas a gate-level specification can be generated even from final layout. Sec-

ondly, in this level, the circuit is already logically optimized and thus only the true data dependencies

are kept. Hence, the algorithms performing the automatic grouping can produce better results.

3.2.2 Automatic Region Creation

An essential part of the desynchronization flow is the identification of the desynchronization circuit

regions. These regions contain combinational logic clouds with their driven flip-flops and for basic

version of the desynchronization methodology these logic clouds need to be independent, i.e. no con-

nections between logic clouds of different regions are allowed. This specification has to be automatic

because there are situations where the designer is not able to specify the regions by himself, e.g. the

case of a third party design which may be hard to read. Also, even if he is able to do this, he may

not partition it according to the actual data dependencies but according to the high-level architectural

view for example.

In this step of the flow, it is possible for the designer to choose whether the automatic grouping

algorithm will be used or the regions will be specified manually. If the automatic grouping stage is

skipped, the design has to comply with a certain form which requires a two-level netlist in which the

20 CHAPTER 3. A CAD TOOL FOR DESYNCHRONIZATION

top level module contains only flattened submodules considered as the circuit regions.

The automatic identification of the circuit regions is the most difficult part of the desynchro-

nization procedure since we needed to implement an algorithm solving a partitioning problem. The

algorithm used finds the independent combinational logic clouds, taking into account the connections

between combinational logic gates.

Grouping Algorithm

The algorithm is based upon the connections between the circuit gates. A high-level view can be seen

in Figure 3.3 whereas algorithm’s pseudocode is presented in more detail in Figure 3.4.

During the first step of the algorithm only connections starting from logic gates are taken into

account and each connected component is considered as one region. This includes the logic gates

along with their directly driven flip-flops. In the second step, any ungrouped flip-flops driven by

already grouped flip-flops are added to the latter’s region. In the final step, any remaining sequential

elements. i.e. flip-flops registering circuit inputs are grouped together in a new region. In addition

to the main idea described above, there are some additional features taking into consideration special

cases.

1. Group together all the combinational gates connected to each other.

2. Add to each group the sequential elements driven by the group’s members.

3. All the rest sequential elements are assigned to the extra Group 0.

Figure 3.3: Grouping algorithm steps.

Logic Cleaning

Since the grouping algorithm is based on the logic connections, we want these connections to corre-

spond to real data dependencies so that better results are produced. Thus, the netlist has to contain

only “clean logic”, i.e. free of buffers or pairs of inverters, added for signal buffering by the synthesis

tools. Before running the actual algorithm, these cells are removed so that they do not infer any logic

dependencies between the combinational gates. This is shown in Figure 3.5.

In the cases of In-Place Optimization (IPO) flow the removed logic does not need to be put back,

since it adds no real functionality and the optimization phases during the backend part of the flow deal

with any needed buffering insertion. If the designer wishes to use the automatic grouping but also

3.2. CIRCUIT DESYNCHRONIZATION 21

CONNECTIONGROUPING(Module)

1 # First step

2 for each Ungrouped Combinational gate in ModuleInstances

3 do

4 Group = newGroup()

5 Group.add(gate)

6 for each unvisited∗ cell in Group

7 do

8 Group.add(cell → CombinationalSourceCells)

9 if cell is Combinational

10 then Group.add(cell → TargetCells)

11

12 for each bus in cell → TargetBuses

13 do

14 Group.add(bus → SourceCells)

15

16 # Second step

17 for each Grouped Sequential gate in ModuleInstances

18 do

19 Group = gate → Group

20 for each unvisited∗ cell in Group

21 do

22 Group.add(cell → SequentialTargetCells)

23

24 # Third step

25 for each Ungrouped gate in ModuleInstances

26 do

27 Group0.add(gate)

* unvisited refers to each for each loop independently

Figure 3.4: Grouping algorithm pseudocode.

wants the circuit to remain intact during the backend phase, then he has to follow the next steps. First,

the circuit is automatically “cleaned” and grouped. Then, it is imported again in the synthesis tool

and any needed buffer insertion takes place. Finally, it is imported in the desynchronization tool and

22 CHAPTER 3. A CAD TOOL FOR DESYNCHRONIZATION

Figure 3.5: False logic dependencies induced by buffer insertion.

Figure 3.6: Grouping based on net buses.

continues to the rest of the desynchronization process skipping the grouping phase.

Buses

Another heuristic which is used is by-name grouping for buses. Buses can be determined only by

name and this rule can be used only if the synthesis tool has not collapsed the bus in individual nets,

i.e. bus[n] versus bus n naming. Its importance resides in the fact that buses are usually driven by

flip-flops or logic gates that the designer considered to be handled collectively. One such example can

be seen in Figure 3.6 where a multibit multiplexer would otherwise be splitted in multiple groups.

3.2. CIRCUIT DESYNCHRONIZATION 23

Flip-flop to Flip-flop Direct Connections

Flip-flops directly driven by other flip-flops are grouped together since their only purpose is to store

history of signals for a number of cycles. This heuristic is implemented during the second step of the

algorithm when, ungrouped flip-flops directly driven by already grouped flip-flops are added to the

latter’s corresponding region.

False Paths

Finally, the designer can mark net connections to be ignored when they refer to false paths. One such

case is global signals being connected to the whole circuit, e.g. synchronous reset, or clock gating

signals. This marking is specified via the tool’s command line.

3.2.3 Flip-Flop Substitution

The desynchronization technique requires a latch design to ensure that no data overwriting occurs.

Thus, the flip-flops in the circuit are substituted by pairs of latches of equivalent behavior according

to the rules in the gatefile. The transformation is possible using also the extra latches implemented

during the library integration.

3.2.4 Data Dependency Graph

After all the circuit regions have been specified and the flip-flops substituted, the data dependency

graph of the circuit is constructed following the rules described in Paragraph 2.4.1. It is reminded that

the nodes of this graph correspond to the circuit regions, whereas its directed edges correspond to the

data-dependencies between these regions.

3.2.5 Delay Element Creation

For each circuit region we compute the critical path delay of its combinational logic cloud. The delays

are computed by exporting the design to a file and then invoking any tool able to perform STA. The

values computed are used to choose the delay elements with the appropriate length according to the

values computed during the library integration. Also, the designer may specify in the tool’s command

line any wanted delay element multiplexing, which is implemented automatically.

3.2.6 Control Network Insertion

This is the final and main phase of the desynchronization technique. For each group, the count of

incoming and outgoing edges is computed. These numbers equal to the fanin and fanout of the cor-

24 CHAPTER 3. A CAD TOOL FOR DESYNCHRONIZATION

responding node of the data dependency graph. Then, these numbers are exported to an external tool

which decides and implements the appropriate controller, which is then read back in the tool. The

controllers along with the delay elements implemented in the previous step are connected to whole

circuit. After this, the desynchronized circuit is ready for the backend phase of layout generation.

3.2.7 Design Export

After all the phases are completed, the desynchronized design is ready to continue in the backend

flow. The tool exports the desynchronized design along with physical timing constraints. The gate-

level netlist is in Verilog format, but BLIF format for exporting to SIS tool [16] is also supported.

4
A Fully-Automated Desynchronization EDA

Methodology

This chapter describes the EDA methodology for desynchronization, which uses conventional syn-

chronous Hardware Description Languages (HDL) and tools. It begins with a synchronous circuit

specification and generates desynchronized mask layout. Initially, circuit synthesis takes place gen-

erating gate-level netlist. Next, Design for Testability (DFT) insertion is used in order to be able to

test the design after manufacturing. Later, the desynchronization step takes place, desynchronizing

the netlist. Then, during the backend phase, the placement and routing of the circuit is performed

and final mask layout is generated. Finally, behavioral simulation is used to verify the correct circuit

functionality. A general view of the flow can be see in Figure 4.1.

The desynchronization flow is compatible with any conventional synchronous EDA flow, and the

only change is the desynchronization step insertion before the backend phase. No specific assumptions

are made about the tools used for the synthesis or backend parts.

25

26 CHAPTER 4. A FULLY-AUTOMATED DESYNCHRONIZATION EDA METHODOLOGY

Synchronous
Netlist

Desynchronized
Netlist

Desynchronized
Mask Layout

Single-clock
Synchronous
specification

Synthesis

Desynchronization

SynthesisPlacement
and Routing

Simulation

Physical Timing
Constraints

Syncrhonous netlist
with Scan

DFT Tets Vectors

Figure 4.1: Desynchronization flow.

4.1 Circuit Specification

The circuit has to be specified in a HDL. Also, all the power and timing constraints corresponding to

the intended circuit application have to be provided. The desynchronization EDA flow’s purpose is

to generate a desynchronized mask layout. This layout must behave equivalently to the initial circuit

specification and satisfy the constraints given. Currently, the desynchronization flow supports only

single clock circuits.

4.2 Synthesis

The first step of the desynchronization EDA flow is the synthesis stage which may be performed using

any conventional synthesis tool. Initially, the logic synthesis of the synchronous circuit specification

is performed. This results to the translation of the RTL specification into boolean logic functions.

Then the technology mapping phase follows which maps the boolean logic functions to the desired

technology library. Finally, the gate-level netlist is generated.

4.3. DESIGN FOR TESTABILITY 27

4.3 Design for Testability

Chips must be capable of being tested also after fabrication. Hence, after synthesis, there is the

DFT phase where all the sequential elements, i.e. flip-flops or latches, are substituted by scan ones

connected in a scan chain, for making the circuit observable. After the scan chain insertion the test

vectors are extracted. These vectors are used after fabrication to detect any chip errors. The netlist

with the scan chain is then passed to the desynchronization tool.

4.4 Desynchronization

The desynchronization step takes place using the drdesync tool. The input to the tool is the syn-

chronous post-synthesized gate-level Verilog netlist and its output corresponds to a desynchronized

netlist which is ready to go through the rest of the backend flow. Also, the tool generates all the extra

timing constraints needed because of the desynchronization transformation. An important issue is that

drdesync uses standard file formats (Verilog for netlist, Synopsys SDC for timing constraints, etc)

and thus, it may be embedded to virtually any modern industrial EDA flow.

4.5 Timing Constraints

The desynchronized circuit has the exactly same datapath as its synchronous counterpart, however i)

it is a latch design and ii) it contains an asynchronous controller network. Thus, its physical timing

constraints are stricter. Below, it is described how we managed to constrain both the controller network

and the original datapath.

4.5.1 Latch Enable

As flip-flops are substituted by latches, original clock signal descriptions must be changed. For the

clock input signal in the original design two non-overlapping signals must be specified for the corre-

sponding master and slave latches respectively. Each of these is driven by multiple source pins, all the

master and slave enable signals of the controllers network respectively.

Figure 4.2 shows an example of such timing constraint transformation and the resulting timing

relation between the signals. The period is the same as with the original clock. The falling edge of the

master signal and the rising of the slave coincide with the rising edge of the original clock. This is the

equivalent behavior when considering the master-slave nature of a D flip-flop. The other edges are not

that important expect of course the fact that the signals have to be non-overlapping. Although during

the circuit operation the generated enable signals may overlap, this does not pose any thread since this

28 CHAPTER 4. A FULLY-AUTOMATED DESYNCHRONIZATION EDA METHODOLOGY

create clock -name ”Clk” -period 2.4 -waveform {0 1.2} [get ports clk]

(a) Clock specification

create clock -name ”ClkM” -period 2.4 -waveform {1.0 2.4} [get pins {* Ctrl/core/master/g out/Z}]

create clock -name ”ClkS” -period 2.4 -waveform {2.4 2.8} [get pins {* Ctrl/core/slave/g out/Z}]

(b) Master-Slave latch enable specification

Clk

ClkS
ClkM

(c) Resulting timing relation

Figure 4.2: Clock constraints transformation.

occurs only when it is safe for the circuit, guaranteed by the controller network. Hold constraints are

automatically satisfied since we have a latch design and sufficiently wide pulses.

Specifying the enable signals like this, allows for the backend tool to consider the datapath in-

dependently of the controller network. Figure 4.3 shows what is the effective view to the backend

tool. In this way, it is ensured that the datapath will be optimized using the same approach as with

a synchronous version. This method of specifying the enable signals takes into account also any dif-

ferences in the depth of low-skew buffer trees of each enable signal, as these will be matched by the

Clock Tree Synthesis (CTS) algorithm of the backend tool. The low-skew buffers in the previous

Figure are indicated by buffers.

Alternatively, the buffers can by bypassed by specifying the latch enable pins as source pins for

the enable signals. In this case, any buffer tree depth difference must be modeled in the delay elements

as described in Paragraph 2.4.4.

4.6 Controller Network

The controller network is a fully asynchronous circuit, thus it contains cycles, which can be a problem

for conventional EDA tools, e.g. when running Static Timing Analysis during buffering and physical

design. Figure 4.6 shows the semi-decoupled 4-phase latch controller implementation [4, 17] used in

this work.

4.6. CONTROLLER NETWORK 29

CL2 CL4

CL1 CL3

CL5

ClkM

ClkS

Figure 4.3: Effective timing view of the desynchronized datapath.

L
A
T
C
H

L
A
T
C
H

RST

Ai

Ri Ro

Ao
Ao

Ro

Ai

Ri

L L

COMBINATIONAL LOGIC

delaydelay

Figure 4.4: Example of four-phase Desynchronization Controllers

When STA is performed, any cycles in the combinational netlist must be broken, i.e. some edges

must be removed. Such edges can be, for example, those classified as back-edges by the STA graph

traversal algorithm. The definition of a back-edge during the algorithm execution depends on the order

of graph traversal. Thus, the places where the graph is cut are arbitrary with respect to the designs

functionality. In the synchronous case, this is safe, since feedback loops in combinational logic can

never be sensitized.

For an asynchronous circuit, such as the one shown in Figure 4.6, cutting the cycles at arbitrary

locations may imply a significant performance penalty if the cut edge is part of the critical cycle [18]

30 CHAPTER 4. A FULLY-AUTOMATED DESYNCHRONIZATION EDA METHODOLOGY

of the circuit. The critical cycle of an asynchronous circuit is one whose delay determines the perfor-

mance, i.e. effective period, of the circuit. If a connection in the critical cycle remains unconstrained,

during the execution of the timing-driven P&R algorithms it may easily become very slow seriously

affecting overall performance.

4.6.1 Loop Breaking

In this work the loops in the controllers had to be cut by hand, making sure that critical loops are fully

constrained. This procedure has to be performed only once for each controller implementation.

Firstly, the critical path in the controller network has to be found, which is a loop traversing

multiple gates. The portions of the critical path for a full rise/fall period can be seen in Figure 4.5(a).

Most gates are included twice in the path. Then, all these connections are combined together and the

minimum graph to constraint is obtained (Figure 4.5(b)).

Since this graph needs to be acyclic to perform STA, one more gate pin has to be timing-disabled

(the X in Figure 4.5(b)) so that all the timing loops are broken. Fortunately, this specific gate can be

constrained through its other pins. Finally, some other connections not creating loops are also allowed

and the final acyclic timing graph is produced. Figure 4.5(c) shows the whole internal circuit of the

semi-decoupled controller sued in this work with the X’s showing the timing-disabled pins. In all

the paths remaining min/max input-to-output timing constraints were used, so that the timing-driven

algorithms could optimize also the controllers network.

4.6.2 Allowing Only Safe Optimizations

The controllers are specially implemented circuits to guarantee that the desynchronized circuit func-

tions equivalently to its synchronous counterpart, thus their signal transitions have to be hazard-free.

Allowing any logic re-synthesis algorithm to decompose the controller gates may potentially create

hazards. Hence, the gates within the controllers are specified as “size only”, so that the Placement

and Routing (P&R) tool can optimize the circuit by gate resizing and buffer insertion, but not using

any re-synthesis techniques.

4.7 Placement and Routing (P&R)

After all the constraints and the overall specification is completed and checked, the design is ready

for the backend stage of P&R. In this phase the circuit gates are placed, low-skew buffer trees are

inserted and the circuit nets are routed. During all these steps special emphasis is given to satisfy the

4.7. PLACEMENT AND ROUTING (P&R) 31

ri

ai
aoax

rx ro

ro

ao

ri

ai

1. ri+ -> ai+

2. ao+ -> ax- -> rx+

rx

3. rx+ -> ax+ -> ro-

ax

4. ri- -> ai-

5. ao- -> ro+

(a) The controllers’ critical path portions.

ri

ai

ao

ax

rorx

(b) The collective graph with the critical portions.

ri

ai ao
ax

rorx

rst
g1 g2

(c) Semi-decoupled controller circuit with timing-disabled pins.

Figure 4.5: Breaking timing loops within the controllers.

32 CHAPTER 4. A FULLY-AUTOMATED DESYNCHRONIZATION EDA METHODOLOGY

constraints. Finally, the final layout is generated.

4.8 Simulation

After all the final layout is ready, functional simulation is performed to verify the correct behavior of

the design. The simulation uses delays derived from the actual layout with full parasitic extraction.

It is worth noting that testbenches for the desynchronized versions are almost identical to those for

the synchronous designs. The only change needed is the replacement of the clock references by

corresponding request/acknowledge signals due to the flow-equivalence property.

5
Results

This chapter describes the experimental procedure to evaluate the EDA desynchronization flow. In

order to do this two designs were used. They were implemented in a 90nm fabrication process, using

a conventional synchronous and the desynchronization design flow respectively. The two versions

of each design, i.e. synchronous and desynchronized, were then compared in terms of layout area,

equivalent frequency and power consumption for both best and worst case conditions 1. The results

acquired are presented and commented.

5.1 Experimental Procedure

This section describes the exact procedure followed to evaluate the desynchronization flow. Two ver-

sions of each design were implemented by using the Synopsys-Avanti STMicrolectronics

in-house synchronous design flow. We used the flow as is for the synchronous version,

whereas we integrated it to the desynchronization flow for the desynchronized version. Both

synchronous and desynchronized flows use the exact same tools and libraries so that a fair

1The library does not include typical case conditions

33

34 CHAPTER 5. RESULTS

Synchronous
Netlist

Desynchronized
Netlist

Desynchronized
Mask Layout

Single-clock
Synchronous
specification

Synthesis

Desynchronization

SynthesisPlacement
and Routing

Simulation

Physical Timing
Constraints

DFT Tets Vectors

Synchronous
Mask Layout

SynthesisPlacement
and Routing

Simulation

Synchronous netlist
with Scan

Results
Comparison

Figure 5.1: Experimental procedure.

comparison can be made. A high-level view of the whole procedure can be seen in Fig-

ure 5.1. The tools used are Synopsys Design Compiler for logic synthesis and scan inser-

tion, Synopsys PrimeTool for design and constraints checks, Synopsys Astro for P&R,

Mentor Graphics Calibre for Design Rules Check (DRC) and Layout Versus Schematic

(LVS) checks and Cadence VerilogXL-Simvision environment for functional simulation.

5.2 DLX RISC CPU

The first design used is an implementation of the RISC DLX microprocessor [19] which is widely used

in academia. DLX has been implemented in Verilog HDL, supports the full DLX integer ISA and it

has no data forwarding between the pipeline stages. The automatically assigned desynchronization

regions in this case matched the 4 pipeline stages of the processor. The block diagrams of the DLX

design, for both synchronous and desynchronized versions, can be seen in Figure 5.2. The target

library has been the High-Speed version of the ST CORE9 90nm library.

5.2. DLX RISC CPU 35

IF ID EX MEM

CLK

(a) Synchronous version.

IF ID EX MEM

C
C

C
C

(b) Desynchronized version.

Figure 5.2: Block diagram of the DLX microprocessor.

5.2.1 Area Comparison

The area results were taken from the Astro tool used for Placement and Routing (P&R). Also post-

synthesis results are presented so that extra comparisons are possible to be made. Table 5.1 presents

the area results for the two versions of the DLX processor with DDLX referring to the desynchronized

one. The total area overhead (core size) of the desynchronized circuit compared to the synchronous

one is about 13.5%. We can notice that this overhead is mainly coming from the flip-flop substitution

by latches (+17.66%) meaning that it can be significantly improved if the target libraries contain two-

clock flip-flops or if their latches are more optimized.

36 CHAPTER 5. RESULTS

Design

Phase
Area Property DLX

DDLX

% Overhead

Post

Synthesis

nets 14925 16636 11.46

cells 14855 16550 11.41

cell area (µm2) 188321.49 200593.14 6.52

combinational logic (µm2) 134443.56 137200.78 2.05

sequential logic (µm2) 53877.93 63392.36 17.66

Post

Layout

nets 15016 16783 11.77

cells 14951 16781 12.24

standard cell area (µm2) 196951.34 214266.98 8.79

core size (µm2) 207195.54 235048.18 13.44

core utilization (%) 95.06 91.16 4.10

Table 5.1: Area results for synchronous and desynchronized DLX.

5.2.2 Timing Comparison

Comparisons about speed performance were made by taking simulation results for both the two design

versions. The desynchronized version included 8 input multiplexed delay elements so that we are able

to calibrate their length. The multiplexers selection setup was the same for all the delay elements.

Figure 5.3 presents the different results in relation to each value used for the multiplexer inputs.

The dashed lines refer to the setups in which the delay elements become too short for the logic they

match. The most important thing to note is that this happens on the same point (delay selection 2) for

both best and worst case. This shows that the delay elements follow the logic in the same way for both

the extreme corner cases which indicates that they should also follow it for every case in between.

Typical Case Operation

If the best working setup is taken into consideration (delay selection 2) and if we operate both syn-

chronous and desynchronized version in the worst case setup then the overhead is about 20%. This

corresponds to the 3 complex gates control overhead between the the falling edge of the slave enable

signal to the rising edge of the master one, while the DLX critical path includes 13 levels. For designs

with longer critical paths this overhead is lower.

However, one must keep in mind that a fundamental motivation to move to asynchronous design

5.2. DLX RISC CPU 37

Operational Period

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

7 6 5 4 3 2 1 0

Delay Selection

P
er

io
d

(n
s)

DDLX Best Case DLX Best Case
DDLX Worst Case DLX Worst Case
Too short delay elements

Figure 5.3: Timing results for DLX and DDLX.

is to operate the circuit at its real speed, not at their worst-case speed, e.g. under power supply, tem-

perature or manufacturing variations. This means that on average a desynchronized circuit is much

faster than the worst corner case. In Figure 5.4 the desynchronized real average case is compared to

the synchronous worst case. We have assumed that the desynchronized real average case is a normal

distribution between the two extreme cases, exactly like SSTA does for variability factors. The desyn-

chronized circuit is presented to be faster than the synchronous one in 90% (the shaded area of the

figure) of the cases. Moreover, the use of delay elements performs this frequency scaling dynamically

and automatically without any user or designer intervention.

5.2.3 Power

The power consumption results were also taken by functional simulation. Initially, VCD (Vector

Change Dump) files were written during the simulation and then the Synopsys vcd2saif tool

was used to generate the equivalent SAIF files. Finally, the design was read along with the SAIF

files in the Synopsys Design Compiler tool and the power reports were generated. Figure 5.5

38 CHAPTER 5. RESULTS

Effective Operational Period

2.982.441.411.14

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

Delay (ns)

P
ro

b
ab

ili
ty

DDLX Worst Case DLX Worst Case
DDLX Best Case DLX Best Case
DDLX Average Timing

Figure 5.4: Real operation delay comparison between DLX and DDLX.

shows the comparative results of power consumption correspondingly to the previous ones of speed

performance. The main overhead is again because of the increased number of cells due to the flip-flop

substitution. The values are rising when the selection number lowers because the circuit operates in

higher frequency.

5.3 ARM RISC CPU

The second design implemented is ARM966E-S microprocessor [20]. The synchronous design was

already implemented and used as is for the comparisons with the desynchronized version. All the pro-

cedure followed is the same as for the DLX processor, except the fact that the Low-Leakage instead of

the High-Speed version of the library is used, since the original synchronous circuit was implemented

using this library.

Due to lack of any testbenches, only area results can be presented. Also, because of the ARM

design’s complexity and the limited knowledge of its inner architecture neither automatic nor manual

grouping was possible. Thus, the ARM design was implemented using only one group. More complex

5.3. ARM RISC CPU 39

Total Power Consumption

50

60

70

80

90

100

110

120

130

7 6 5 4 3 2

Delay Selection

P
o

w
er

 (
m

W
)

DDLX Worst Case DLX Worst Case

DDLX Best Case DLX Best Case

Figure 5.5: Power results for DLX and DDLX.

grouping algorithms supporting such complexity constitute part of the future work.

5.3.1 Area

The area results were taken from the Astro tool. The results in Table 5.2 are presented like the ones for

the DLX. DARM refers to the desynchronized version of the ARM core. We notice that the results are

similar to those of DLX and the total overhead (7.94%) is coming from the sequential elements. The

ARM is a scan design. The combinational logic overhead because of the scan flip-flops substitution

is included in the sequential logic overhead and this is why this overhead (40.70%) is significantly

increased with respect to the corresponding one in the DLX design.

40 CHAPTER 5. RESULTS

Design

Phase
Area Property ARM

DARM

% Overhead

Post

Synthesis

nets 34690 45626 31.52

cells 31549 45489 44.19

cell area (µm2) 578227.77 684791.86 18.43

combinational logic (µm2) 318108.19 318792.02 0.21

sequential logic (µm2) 260119.58 365999.84 40.70

Post

Layout

nets 38328 49514 29.18

cells 35218 49574 40.76

standard cell area (µm2) 633642.86 754822.12 19.12

core size (µm2) 792598.22 855551.00 7.94

core utilization (%) 79.95 88.23 -10.36

Table 5.2: Area results for synchronous and desynchronized ARM.

6
Conclusions

This work has shown that the desynchronization methodology can be easily integrated to conventional

industrial EDA flows without any major changes. The desynchronized circuits are implemented using

the exact same procedure and tools, with the additional use of an automated desynchronization tool

and the specification of some extra timing constraints. The results show that there is hardly any real

overhead comparing to the corresponding synchronous versions and moreover, these results can be

further improved by the existence of two-clock (master/slave) flip-flops in the target libraries.

This methodology allows the designer to have in an automated way all the advantages of a circuit

without global clock. Firstly, the delay elements are influenced in the same way as the logic they match

by both static (process) and dynamic (voltage, temperature) variability factors, at least for inter-chip

variability. They are automatically and dynamically calibrated changing their delay value without the

need of any extra circuitry or designer intervention, making this technique even better than binning.

Moreover, voltage scaling is much easier since the delay elements are influenced in an analogous way

as the logic.

41

42 CHAPTER 6. CONCLUSIONS

The future work mainly consists of the implementation of more study case circuits to evaluate

how much the results can be generalized. Moreover, SSTA can be used to verify how well the delay

elements match the logic delay across the whole spectrum of operation conditions. Floorplanning

constraints can be given to the backend tools to control the placement of the delay elements. Making

the tools place them close to the logic they match more variability correlation is achieved. Also, after

the final layout, Engineering Change Order (ECO) can be used to calibrate the length of the delay

elements taking into consideration the final delays including full parasitics extraction. Finally, more

advanced grouping algorithms capable of producing better grouping results for more complex circuits

and multiple clock domain support can be implemented.

Bibliography

[1] S.R Nassif. Modeling and analysis of manufacturing variations. In Proc. of Asia and South

Pacific Design Automation Conference, May 2001.

[2] Chirayu S. Amin, Noel Menezes, Kip Killpack, Florentin Dartu, Umakanta Choudhury, Nagib

Hakim, and Yehea I. Ismail. Statistical static timing analysis: how simple can we get? In DAC,

pages 652–657, 2005.

[3] J. Cortadella, A. Kondratyev, L. Lavagno, and C. Sotiriou. A concurrent model for de-

synchronization. In Proc. International Workshop on Logic Synthesis, pages 294–301, 2003.

[4] I. Blunno, J. Cortadella, A. Kondratyev, L. Lavagno, K. Lwin, and C. Sotiriou. Handshake

protocols for de-synchronization. In Proc. International Symposium on Advanced Research in

Asynchronous Circuits and Systems, pages 149–158, 2004.

[5] J. Cortadella, A. Kondratyev, L. Lavagno, K. Lwin, and C. Sotiriou. From synchronous to

asynchronous: An automatic approach. In Proc. Design, Automation and Test in Europe (DATE),

volume 2, pages 1368–1369, 2004.

[6] Abhijit Davare, Kelvin Lwin, Alex Kondratyev, and Alberto L. Sangiovanni-Vincentelli. The

best of both worlds: the efficient asynchronous implementation of synchronous specifications.

In Proc. ACM/IEEE Design Automation Conference, pages 588–591, 2004.

[7] P. Le Guernic, J.-P. Talpin, and J.-C. Le Lann. Polychrony for system design. Journal of Circuits,

Systems and Computers, April 2003.

[8] T. Murata. Petri Nets: Properties, analysis and applications. Proceedings of the IEEE, pages

541–580, April 1989.

43

44 BIBLIOGRAPHY

[9] Evangelos Vlachos. Study of asynchronous controllers’ circuits in de-synchronized systems.

Technical Report 337, ICS-FORTH, 2004.

[10] D. Chinnery and K. Keutzer. Reducing the timing overhead. In Closing the Gap between ASIC

and Custom: Tools and Techniques for High-Performance ASIC design, chapter 3. Kluwer Aca-

demic Publishers, 2002.

[11] David E. Muller and W. S. Bartky. A theory of asynchronous circuits. In Proceedings of an

International Symposium on the Theory of Switching, pages 204–243. Harvard University Press,

April 1959.

[12] Ivan E. Sutherland. Micropipelines. Communications of the ACM, 32(6):720–738, June 1989.

[13] J. Cortadella, A. Kondratyev, and C. P. Sotiriou. Coping with the variability of combinational

logic delays. In Proc. International Conf. Computer Design (ICCD), 2004.

[14] J. Cortadella, A. Kondratyev, L. Lavagno, and C. Sotiriou. De-synchronization: synthesis of

asynchronous circuits from synchronous specifications. IEEE Transactions on Computer-Aided

Design, 0(0):0–0, January 2006.

[15] Jordi Cortadella, Michael Kishinevsky, Alex Kondratyev, Luciano Lavagno, and Alexandre

Yakovlev. Petrify: a tool for manipulating concurrent specifications and synthesis of asyn-

chronous controllers. In XI Conference on Design of Integrated Circuits and Systems, Barcelona,

November 1996.

[16] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj, P. R.

Stephan, R. K. Brayton, and A. Sangiovanni-Vincentelli. SIS: A system for sequential circuit

synthesis. Technical report, U.C. Berkeley, May 1992.

[17] Stephen B. Furber and Paul Day. Four-phase micropipeline latch control circuits. IEEE Trans-

actions on VLSI Systems, 4(2):247–253, June 1996.

[18] H. Hulgaard, S. M. Burns, T. Amon, and G. Borriello. An algorithm for exact bounds on the

time separation of events in concurrent systems. IEEE Transactions on Computers, 44(11):1306–

1317, November 1995.

[19] J. L. Hennessy and D. Patterson. Computer Architecture: a Quantitative Approach. Morgan

Kaufmann Publisher Inc., 1990.

BIBLIOGRAPHY 45

[20] Advanced Risc Machines (ARM) Limited. ARM966E-S (Rev 2) Technical Reference Manual,

February 2002.

