
Keyword Search with Multiple Interactive

Perspectives and Question Answering over

RDF Datasets

Christos Nikas

Thesis submitted in partial fulfillment of the requirements for the

Masters’ of Science degree in Computer Science and Engineering

University of Crete
School of Sciences and Engineering

Computer Science Department
Voutes University Campus, 700 13 Heraklion, Crete, Greece

Thesis Advisor: Associate Prof. Yannis Tzitzikas

This work has been performed at the University of Crete, School of Sciences and Engineering,
Computer Science Department.

The work has been supported by the Foundation for Research and Technology - Hellas
(FORTH), Institute of Computer Science (ICS).

Keyword Search with Multiple Interactive
Perspectives and Question Answering over RDF

Datasets

Abstract

Since the task of accessing RDF datasets through structured query languages
like SPARQL is rather demanding for ordinary users, there are various approaches
that attempt to exploit the simpler and widely used keyword-based search paradigm.
However, this task is challenging since there is no clear unit of retrieval and pre-
sentation, the user information needs are in most cases not clearly formulated, the
underlying RDF datasets are in most cases incomplete, and there is not a single
presentation method appropriate for all kinds of information needs. As a means
to alleviate these problems, in this thesis we investigate a multi-perspective in-
teraction approach that offers to the user multiple interactive views of the search
results, allowing the user to easily switch between these perspectives and thus
exploit the added value that each such perspective offers.

We present a set of fundamental perspectives, we discuss the benefits from each
one, we compare the proposed approach with related existing systems and report
the results of a task-based evaluation with users. The key finding of the task-
based evaluation is that users not familiar with RDF (a) managed to complete the
information-seeking tasks with performance very close to that of the experienced
users, and (b) they rated positively the approach.

We also focus on the Question Answering Perspective and to this end we in-
troduce a QA pipeline that involves a general purpose entity search service over
RDF, SPARQL, and pre-trained neural networks, including a two-stage method for
semantic answer type prediction using BERT and class-specificity rewarding, and
finally we report very promising quantitative results over well-known benchmarks.

Αναζήτηση μέσω Λέξεων-Κλειδιών με Πολλαπλές

Διαδραστικές Προβολές και Απάντηση Ερωτήσεων

επί Συνόλων Δεδομένων RDF

Περίληψη

Η πρόσβαση σε σύνολα δεδομένων RDF μέσω δομημένων γλωσσών επερωτήσεων,
όπως η SPARQL, είναι μια δύσκολη διαδικασία για τους απλούς χρήστες. Για το λόγο
αυτό έχουν προταθεί διάφορες προσεγγίσεις που επιχειρούν να εκμεταλλευτούν το πιο

απλό, και ευρέως χρησιμοποιημένο, υπόδειγμα της αναζήτησης μέσω λέξεων-κλειδιών.

Ωστόσο, αυτή η διαδικασία αποτελεί πρόκληση καθώς δεν υπάρχει ξεκάθαρη μονάδα

ανάκτησης και παρουσίασης, τις περισσότερες φορές οι πληροφοριακές ανάγκες του

χρήστη δεν είναι διατυπωμένες ξεκάθαρα, τα υποκείμενα σύνολα δεδομένων RDF
έχουν ελλείψεις, και δεν υπάρχει μία μοναδική μέθοδος παρουσίασης που να είναι

κατάλληλη για όλα τα είδη πληροφοριακών αναγκών.

Για να απαλύνουμε αυτό το πρόβλημα, σε αυτή την εργασία προτείνουμε και α-

ξιολογούμε μια προσέγγιση αλληλεπίδρασης σε πολλαπλές προοπτικές που παρέχει

στο χρήστη πολλαπλές διαδραστικές προβολές των αποτελεσμάτων της αναζήτησης,

επιτρέποντας του να εναλλάσσει εύκολα τις προβολές και έτσι να αξιοποιεί την προ-

στιθέμενη αξία που παρέχει κάθε μία από αυτές. Παρουσιάζουμε ένα σύνολο από

θεμελιώσεις διαδραστικές προβολές, εξετάζουμε τα πλεονεκτήματα της κάθε μιας, συ-

γκρίνουμε την προτεινόμενη προσέγγιση με σχετικά υπάρχοντα συστήματα και σχο-

λιάζουμε τα αποτελέσματα μίας αξιολόγησης με πραγματικούς χρήστες. Το βασικό

συμπέρασμα της αξιολόγησης είναι ότι ακόμα και οι χρήστες που δεν είναι εξοικειω-

μένοι με την RDF (α) κατάφεραν να ολοκληρώσουν τις εργασίες αναζήτησης σχεδόν
το ίδιο καλά με τους έμπειρους χρήστες και (β) αξιολόγησαν θετικά την όλη προσέγ-

γιση.

Στην εργασία αυτή επίσης μελετάμε την διαδραστική προβολή που αντιστοιχεί στην

Απάντηση Ερωτήσεων (Question Answering), και για το σκοπό αυτό προτείνουμε
μια διαδικασία απάντησης ερωτήσεων η οποία εμπλέκει την υπηρεσία αναζήτησης ο-

ντοτήτων, επερωτήσεις SPARQL, και μια μέθοδο δύο σταδίων για την πρόβλεψη του
σημασιολογικού τύπου της επιδιωκόμενης απάντησης χρησιμοποιώντας το νευρωνικό

δίκτυο BERT με επιβράβευση βασισμένη στην εξειδίκευση των κλάσεων. Τέλος, σχο-
λιάζουμε τα πολύ θετικά ποσοτικά αποτελέσματα αποτελεσματικότητας επί γνωστών

συλλογών αξιολόγησης.

Ευχαριστίες

Ευχαριστώ τον επόπτη καθηγητή μου Γιάννη Τζίτζικα για την πολύτιμη υποστήρι-

ξη και καθοδήγηση του από την πρώτη μου επαφή με το Πανεπιστήμιο Κρήτης μέχρι

και την ολοκλήρωση αυτής της εργασίας. Ακόμη θέλω να εκφράσω τις ευχαριστίες

μου στον κ. Δημήτρη Πλεξουσάκη και στον κ. Γιώργο Φλουρή για την προθυμία τους

να συμμετέχουν στην τριμελή επιτροπή. Επίσης, ευχαριστώ τον Παύλο Φαφαλιό, τον

Παναγιώτη Παπαδάκο, τον Γιάννη Μαρκετάκη και τον Γιώργο Καντηλιεράκη για τη

συνεισφορά τους σε αυτή την εργασία και το Ινστιτούτο Πληροφορικής του ΙΤΕ για

την υποτροφία που μου προσέφερε κατα τη διάρκεια της μεταπτυχιακής μου εργασίας.

Τέλος, θα ήθελα να ευχαριστήσω την οικογενειά μου για τη συνεχή στήριξη και

εμπιστοσύνη τους.

Contents

Table of Contents i

List of Tables iii

List of Figures v

1 Introduction 1

1.1 Publications related to this thesis 4

2 Background & Related Work 5

2.1 Background: RDF . 5

2.2 Keyword Search over RDF Datasets 5

2.3 Visualization of RDF Search Results 6

2.4 BERT . 8

2.5 Question Answering over Keyword search upon Knowledge Graphs 9

3 Multi-Perspective Presentation of Search Results 11

3.1 Rationale and Architecture . 11

3.1.1 Rationale . 11

3.1.2 Architecture . 12

3.2 The Fundamental Perspectives of Keywords Search Results 12

3.2.1 Triples Tab . 13

3.2.2 Entities Tab . 13

3.2.3 Graph Tab . 14

3.2.4 Schema Tab . 15

3.2.5 Question Answering Tab . 17

3.2.6 Tabs’ Roles and Extra Tabs 18

3.3 Implementation . 23

4 Question Answering 25

4.1 Introduction . 25

4.2 Overview of the Approach . 26

4.3 Answer Type Prediction . 27

4.3.1 Overview . 27

i

4.3.2 Question Category & Literal Type Prediction 28
4.3.3 Resource Answer Type Prediction 29
4.3.4 Tuning of the k Parameter 30
4.3.5 Model Selection . 30

4.4 Entities Retrieval and Expansion 30
4.4.1 Retrieval . 30
4.4.2 Expansion . 31

4.5 Answer Extraction . 31
4.6 Related Work . 32

5 Evaluation 33
5.1 User Survey . 33

5.1.1 Comparing the Functionality with Related Systems 33
5.1.2 Efficiency . 34
5.1.3 Evaluation of Effectiveness 35
5.1.4 Evaluation with Users . 35

5.1.4.1 Information Seeking Tasks 35
5.1.4.2 Participants, Questionnaire and Results 36
5.1.4.3 Results Analysis and Discussion 37
5.1.4.4 Log Analysis . 40
5.1.4.5 Discussion: Related Systems 40

5.2 Answer Type Prediction Evaluation 41
5.2.1 Evaluation Metrics . 41
5.2.2 Results on split of the DBpedia training set 41
5.2.3 Results over the final DBpedia test set 43
5.2.4 Efficiency . 43

5.3 Question Answering Evaluation . 44
5.3.1 Experiment 1: Webquestions 44
5.3.2 Without Answer Type Prediction 46
5.3.3 Experiment 2: DBpedia Entity: QA 46
5.3.4 Experiment 3: DBpedia Entity: QA+RANKING 47
5.3.5 Executive Summary . 48
5.3.6 Efficiency . 49

6 Conclusion & Future Work 51

Bibliography 53

ii

List of Tables

4.1 Results for different values of k . 30
4.2 Answer examples . 32

5.1 Search Systems over DBpedia . 34
5.2 Average load times for each perspective 34
5.3 Evaluation Tasks . 36
5.4 Evaluation results . 42
5.5 Results for different values of k . 42
5.6 Confusion matrices for category (top left), literal (top right), and

resource (bottom) type prediction. 43
5.7 Evaluation results over the final test set 43
5.8 F1 and Exact scores over WebQuestions 45
5.9 Precision @1, @3, @5 for varying answer score threshold over DB-

pedia Entity . 47
5.10 NDCG scores over Natural Language Questions of the DBpedia En-

tity collection for approach I: Keep Initial Scores 48
5.11 NDCG scores over Natural Language Questions of the DBpedia En-

tity collection for approach II: Sum Scores 48
5.12 Average time cost for each stage of the pipeline 49

iii

iv

List of Figures

1.1 Access Methods over RDF . 2
1.2 Search results for the query “El Greco museum”. 3

2.1 The user interface of LOTUS Tab 7
2.2 The user interface of DBpedia Precision Search & Find 7
2.3 BERT classification example . 8

3.1 The Triples Tab . 13
3.2 The Entities Tab . 14
3.3 The Graph Tab . 15
3.4 The Schema Tab (Tesla) . 17
3.5 The Schema Tab (Crete and Mars) 17
3.6 The QA Tab . 18
3.7 The QA Tab . 18
3.8 The Added Value of each Perspective 19
3.9 Search results for the query “El Greco and Kazantzakis”. 20
3.10 Search results for the query “Paintings with dogs”. 21
3.11 Search results for the query “Which cities does the Weser flow

through?”. 22
3.12 Search results for the query “Greek philosopher from Athens who

is credited as one of the founders of Western philosophy”. 23

4.1 QA Pipeline . 27
4.2 Elas4RDF user interface for Question Answering 32

5.1 Age distribution of participants . 36
5.2 ‘Very Useful’ and ‘Useful’ preference percentages per tab and cate-

gory of users. 38
5.3 Success rates for experienced and inexperienced users. 39

v

vi

Chapter 1

Introduction

The Web of Data contains thousands of RDF datasets available online (see [44]
for a recent survey), including cross-domain knowledge bases (KBs) (e.g., DBpe-
dia and Wikidata), domain specific repositories (e.g., DrugBank [64], ORKG [29],
and recently COVID-19 related datasets [16]), as well as Markup data through
schema.org. These datasets are queried mainly through structured query lan-
guages, i.e. SPARQL. Faceted Search is a user-friendlier paradigm for interactive
query formulation and exploratory search, however the systems that support it (see
[61] for a survey) also need a keyword search engine as a flexible entry point to the
information space. Consequently, and since plain users are acquainted with web
search engines, an effective method for keyword search over RDF is indispensable.
Moreover, keyword search allows for multiple-word (even paragraph-long) queries
that can address many topics, and such information needs could be difficult to
formulate even in structured query languages. The results of such queries allow
users to detect associations of entities that they were not aware of, thus favoring
the discovery of new information.

In general we could say that structured queries (e.g., using SPARQL) and
unstructured queries (keyword search) are fundamental components of all access
methods over RDF. Figure 1.1 shows the general picture of access services over
RDF. Apart from Structured Query Languages and Keyword Search we can see the
category Interactive Information Access. That refers to access methods that are
beyond the simple “query-and-response” interaction, i.e. methods that offer more
interaction options to the user and exploit also the interaction session. In this
category, we have methods for browsing, methods for faceted search [61], methods
for formulating OLAP queries (e.g. [51]), and methods for assistive query building
(e.g. [34]). Finally, in the category natural language interfaces we have methods
for question answering, dialogue systems, and conversational interfaces. As the
figure shows, both interactive information access and natural language interfaces
pre-suppose effective and efficient support of structured and unstructured queries.

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Access Methods over RDF

However, keyword search over RDF datasets is a challenging task since (a)
in RDF there is no clear unit of retrieval and presentation, (b) it is difficult to
understand, from a usually small keyword query, the intent of the user, (c) the
data are in most of the cases incomplete (making the provision of effective retrieval
difficult), and (d) there is not a single presentation method appropriate for all kinds
of information needs.

To tackle these challenges, in this thesis we focus on the value stemming from
offering multiple-perspectives of the search results, i.e., multiple presentation meth-
ods, each presented as a separate tab, and allowing the user to easily switch between
these perspectives, and thus exploit the added value that each such perspective
offers. To grasp the idea, Figure 1.2 shows the search results for the query “El
Greco museum”, as presented in each of the five currently-supported tabs.

As basic keyword-search retrieval method, we assume the triple-centered ap-
proach proposed in [31] (which in turn relies on Elasticsearch) because it is
schema-agnostic (and thus general-purpose), and it offers efficient and scalable re-
trieval services with effectiveness comparable (as evaluated using DBpedia-Entity
test collection for entity search [23]) to the effectiveness of dedicated systems for
keyword search over RDF (more in [31]). Over this basic service, in this thesis
we motivate the provision of certain fundamental perspectives, we showcase the
benefits from each one, and we evaluate what users can achieve if they have all of
them at their disposal.

We also focus on the QA perspective. In comparison to the other perspectives
(tabs) that are offered by this approach, i.e. triple tab, entity tab, graph tab,
schema tab, the QA tab is supposed to provide a short and concise answer, if
that is feasible. To this end, in this thesis we investigate such an approach for
open-domain Question Answering over Knowledge Bases that could complement
general purpose keyword search over RDF.

In in this thesis: we motivate the multi-perspective approach, we discuss the
added value of each perspective, we introduce additional perspectives, we compare

3

the functionality of the implemented system with other systems over DBpedia, we
report the results of a task-based evaluation with users that provides interesting
insights related to the validation of the main research hypothesis of this work, i.e.
whether the provision of more than one tab is helpful for the users. The key finding
is that the success rate of all users was very high even of those users not familiar
with RDF. We also introduce and evaluate an approach for Question Answering
over the search results

Figure 1.2: Search results for the query “El Greco museum”.

This thesis is organized as follows: Chapter 1 introduces the topic of this the-
sis, the challenges of keyword search and question answering over RDF and our
approach to tackle these challenges. Chapter 2 includes background about the
topics discussed in this thesis and presents related work Chapter 3 focuses on the
Multi-Perspective Presentation of Search Results and specifically the Triples, En-
tities, Graph and Schema Tab. Chapter 4 presents our approach for the question
answering component which consists of the following stages Answer Type Predic-
tion, Entity Retrieval and Expansion and Answer Extraction. Chapter 5 discusses
the evaluation of the work performed for this thesis. This includes the task-based
evaluation with users of the Multi-Perspective interaction and numeric evaluation
for question answering including resuts specifically for the answer type prediction
component. Finally, Chapter 6 concludes the thesis and discusses ideas for future
work.

4 CHAPTER 1. INTRODUCTION

1.1 Publications related to this thesis

In this section we list publications written during the development of this thesis.

• G. Kadilierakis, C. Nikas, P. Fafalios, P. Papadakos, Y. Tzitzikas, Elas4RDF:
Multi-perspective Triple-centered Keyword Search over RDF using Elastic-
search, (Demo Paper), Proceedings of the 17th Extended Semantic Web
Conference (ESWC’2020), June 2020, Heraklion, Crete

In this work [32], we present a demo including the initial implementation of
the multi-perspective keyword search system. This work was presented as a
demo paper in ESWC 2020.

• C. Nikas, G. Kadilierakis, P. Fafalios, and Y. Tzitzikas, Keyword Search over
RDF: Is a Single Perspective Enough?, Big Data and Cognitive Computing,
vol. 4, no. 3, p. 22, Aug. 2020

In this work [47], we present more extensively each perspective, we add the
schema perspective and perform a task-based evaluation with users.

• Christos Nikas, Pavlos Fafalios and Yannis Tzitzikas, Two-stage Semantic
Answer Type Prediction for Question Answering using BERT and Class-
Specificity Rewarding, SeMantic AnsweR Type prediction (SMART) Chal-
lenge, 2020 International Semantic Web Conference (ISWC’2020) Challenge,
Nov 2020.

In this work [46], we present the Answer Type Prediction component of the
Question Answering perspective. This work was published on ISWC 2020 for
the SeMantic AnsweR Type prediction task [41] and achieved second place.

• Christos Nikas, Pavlos Fafalios and Yannis Tzitzikas, Open Domain Question
Answering over Keyword Search upon Knowledge Graphs

In this work that is currently under preparation, we present the question
answering perspective in detail and we evaluate it over popular benchmarks.

Chapter 2

Background & Related Work

At first we provide some background about RDF (in Section 2.1), then we discuss
the existing approaches for keyword search over RDF (in Section 2.2), then we
discuss the visualization of RDF search results (in Section 2.3), and finally we
provide somebackground information about the language model BERT (in Section
2.4).

2.1 Background: RDF

RDF stands for Resource Description Framework and it is a framework for describ-
ing resources on the web. Essentially it is a structurally object-oriented model.
RDF uses Uniform Resource Identifiers (URIs), or anonymous nodes, to denote
resources, and literals to denote constants. Every statement in RDF can be rep-
resented as a triple. A triple is a statement of the form subject-predicate-object
〈s, p, o〉, and it is any element of T = (U ∪ B) × (U) × (U ∪ B ∪ L), where U ,
B and L are the sets of URIs, blank nodes and literals, respectively. Any finite
subset of T corresponds to an RDF graph (or dataset). We can divide the URIs
in three disjoint sets: entities (e.g., http://dbpedia.org/resource/Aristotle),
properties (e.g., http://dbpedia.org/property/dateOfBirth) and RDF classes
(e.g., http://dbpedia.org/ontology/Philosopher).

2.2 Keyword Search over RDF Datasets

Keyword search over RDF data can be supported either by translating keyword
queries to structured (SPARQL) queries (like in [20, 36]), or by building or adapt-
ing a dedicated information retrieval system using classical IR methods for indexing
and retrieval. This work builds upon approaches that follow the second direction.
In general systems of that kind construct the required indexing structures either
from scratch or by employing existing IR engines (like Lucene and Solr), adapt
the notion of a virtual document for the RDF data, and rank the results (entities,
triples or subgraphs) according to commonly used IR ranking functions. There

5

6 CHAPTER 2. BACKGROUND & RELATED WORK

are various systems that fall in this category, like [8, 12, 37]. Most such systems
rely on adaptations of the TD-IDF weighting, as in [11] where the keyword query
is translated to a logical expression that returns the ids of the matching entities.
Another direction is to return ranked subgraphs instead of relevant entity URIs,
like in [50], while in [19] the returned subgraphs are computed using statistical
language models.

Ranking is usually based on extensions of the BM25 model, e.g., in [7, 52]. [17]
introduces the TSA+VDP keyword search system, where the system first builds
offline an index of documents over a set of subgraphs via a breadth-first search
method, and at query-time, it returns a ranked list of these documents based on
a BM25 model. Regarding the retrieval unit, most works return either URIs or
subgraphs, except [27] and [31] that follow a triple-centered approach.

With respect to works that rely on document-centric information retrieval sys-
tems, LOTUS [27] makes use of Elasticsearch and provides a keyword-search en-
try point to the Linked Data cloud, focusing on issues of scalability. Elasticsearch
has been also used for indexing and querying Linked Bibliographic Data in JSON-
LD format [30]. Finally, [31] adapts Elasticsearch for supporting keyword search
over arbitrary RDF datasets. Through an extensive evaluation, the authors stud-
ied questions related to the selection of the triple data to index, the weighting of
the indexed fields, and the structuring and ranking of the retrieved results. In our
work, we make use of the approach proposed in [31] because it is schema-agnostic
and returns ranked lists of triples, which offers us the flexibility to provide different
visualisations of the search results.

2.3 Visualization of RDF Search Results

There are several approaches for browsing, exploring and visualizing RDF datasets
in general, e.g. see the surveys [6] and [10]. Regarding the visualization of SPARQL
results, there are a few works, however since the form of the results of such queries
is essentially that of a relational table, these approaches provide amenities for the
visualization of tabular data, i.e. various plots and charts for analytics [59, 35, 62].

As regards the visualization of keyword search results over RDF, which is the
main focus of our work, DBpedia Precision Search & Find (http://dbpedia.org/
fct/) returns entities and for each one it shows its URI, it’s title, the URI of the
named graph it belongs to, as well as a description with highlighted the query
terms. Also, the user can browse on the Linked Data by clicking on the shown
resources. The keyword search systems LOTUS [27, 26] and [31] do not focus on
presentation and visualisation. LOTUS returns triples by providing the full URIs
of the resources, while [31] returns triples and/or entities using an API. In general,
most works (including [54, 18]) do not pay attention to the presentation of results;
they focus on the ranking of entities/subgraphs that they compute.

Finally, [60] and [33] investigate the exploitation of semantics in the visual-
isation of search results. [60] utilizes visualization techniques for offering visual

2.3. VISUALIZATION OF RDF SEARCH RESULTS 7

feedback about the reasons a set of search results was retrieved and ranked as
relevant. [33] performed an analytical inspection and a user study of the interface
offered by two semantic search engines: Kngine and Sig.ma (both are not active
anymore). In particular, the authors investigated if the exploitation of semantics
enables a better visualization of search results and thus a better user experience.

To our knowledge, our work is the first that investigates and evaluates (with
real users) a multi-perspective interactive approach to present the search results
of a keyword search system over RDF.

Figure 2.1: The user interface of LOTUS Tab

Figure 2.2: The user interface of DBpedia Precision Search & Find

8 CHAPTER 2. BACKGROUND & RELATED WORK

2.4 BERT

BERT [14], or Bidirectional Encoder Representations from Transformers, is a lan-
guage representation model based on the Transformer model architecture of [63].
A pre-trained BERT model can be fine-tuned with just one additional output
layer to create state-of-the-art models for a wide range of tasks, such as question
answering and language inference, without substantial task-specific architecture
modifications. Because of BERT’s massive success and popularity, several meth-
ods have been presented to improve BERT on its prediction metrics, by using more
data and computational speed [38, 66], or by creating lighter and faster models
that compromise on prediction metrics [55].

The use of BERT as a sequence classifier can be summarized in figure 2.3
1. The input sequence is tokenized, then special tokens are added to separate
sentences and apply padding and each token is mapped to a numeric ID. Then
the tokenized input is passed through BERT and finally through a Classifier layer.
The output of the classifier is a probability for each possible class and the class
with the maximum probability is chosen as the final output.

Figure 2.3: BERT classification example

In this work, we use 2 variations of BERT for different purposes. Specifically,
we use DistilBERT (more in section 4.3.5) in the Answer Type Prediction com-
ponent of the Question Answering tab (section 4.3). This model has a sequence
classification/regression final layer which allows it to work as a classifier. It re-
ceives a question as input and produces an integer as output which indicates the
class that the question belongs to.

We also use RoBERTa (more in section 4.3.5) in the Answer Extraction com-
ponent of the Question Answering tab to perform extractive Question Answering.
This model has a span classification layer on top for extractive question-answering
tasks. It receives a question and a text that contains the answer to the question as

1Taken from https://jalammar.github.io/illustrated-bert/

2.5. QUESTION ANSWERINGOVERKEYWORD SEARCHUPONKNOWLEDGEGRAPHS9

input and produces the indices in the text that corrrespond to the start and end
of the answer.

In this thesis, we make use of all BERT-based models using HuggingFace’s
Transformers library [65].

2.5 Question Answering over Keyword search upon
Knowledge Graphs

In comparison to related work, e.g. see [58] for a recent overview of QA approaches
over DBpedia, the most related works are: [25] which converts the natural language
question into two subqueries: SPARQL query and keyword search. That work
uses a keyword index for special keywords rather than a whole knowledge graph
for keyword search and produces the final answer using an algorithm to combine
SPARQL results and keyword search results.

Another work regarding Question Answering and Keyword Search is SINA
[57]. This system performs query preprocessing to tokenize, remove stopwords and
lemmatize terms in the query, then groups keywords into segments and generates
conjunctive federated SPARQL queries to retrieve answers. In contrast to our
approach, this work relies fully on a SPARQL endpoint instead of using a dataset-
specific index for keyword search. Also, it does not use any neural network based
methods to perform answer extraction.

To the best of our knowledge, no other work has investigated the effect of
Answer Type Prediction in Question Answering over knowledge graphs.

10 CHAPTER 2. BACKGROUND & RELATED WORK

Chapter 3

Multi-Perspective Presentation
of Search Results

3.1 Rationale and Architecture

3.1.1 Rationale

The rationale for the multi-perspective (and tabs-switching interaction) approach
that we propose can be summarized as:

• No Clear Unit of Retrieval and Presentation. In RDF data, there is not the
notion of document or web page as it is the case in web searching. Therefore
the retrieval, presentation and visualisation of RDF data is challenging due
to the complex, interlinked, and multi-dimensional nature of this data type
[10].

• No Clear Information Need. The user query is just an attempt to formulate
his/her information need. Some user needs require a single fact, others a list
of entities or a set of facts, other how a set of entities are connected, other
have an exploratory nature, and so on.

• Incomplete Data. The underlying dataset is in most cases incomplete [43]
(also evidenced by the number of papers that aim at completing the missing
data [4]), therefore the retrieved triples cannot be considered neither com-
plete, nor appropriately ranked. However the provision of more than one
method, each consuming different proportions of the list of top hits (and of
their context), increases the probability that one method achieves to return
something that is useful for the user’s information need.

• There is not a single presentation method appropriate for all kinds of infor-
mation needs. An established method on how to present RDF results for
arbitrary query types does not exist yet, and it seems that a single approach

11

12CHAPTER 3. MULTI-PERSPECTIVE PRESENTATIONOF SEARCH RESULTS

can not suit all possible requirements. Different kinds of information needs
need different ways to present the results.

For the above reason we propose a multi-perspective approach, where each per-
spective is presented in a different tab, stressing a different aspect (and proportion)
of the hits. The user can inspect all tabs and get a better overview and under-
standing of the search results. The tabs-switching interaction that we propose is
easy to understand and perform by the user, just like plain Web search engines
offer various such tabs (for images, videos, news, etc). Below, in Section 3.2,
we shall discuss the rationale (added value) of each particular tab and how it is
defined. An orthogonal but important challenge is how to provide several such
presentation methods at real time, for enabling the user to switch fast between
the different perspectives, i.e. the multi-perspective and tab-switching approach
should not add a noticeable latency to the responses.

3.1.2 Architecture

As keyword search service we adopt the approach proposed in [31] because it is
schema agnostic, directly applicable, has good evaluation results, and its triple-
centered approach facilitates the multi-perspective approach. Specifically, we ex-
ploit the REST API that is offered by that service which accepts keyword queries
and returns results in JSON format (code available at https://github.com/

SemanticAccessAndRetrieval/Elas4RDF-search). On top of this search service
we build the multi-perspective approach.

The full DBpedia 2015-10 dataset has been indexed using 2 approaches (i.e.,
baseline and extended, described in [31]). We have used that version of DBpedia
because it is the version used in the DBpedia-Entity test collection for entity search
[23], which allowed us to get comparable results related the effectiveness of the
approach (as detailed in [31]). The number of virtual documents (triples) in both
cases is 395,569,688. In our setup and experiments, the average query execution
time is around 0.7 sec for the baseline method and 1.6 sec for the extended, and
depends on the query type.

3.2 The Fundamental Perspectives of Keywords Search
Results

Below we describe each individual perspective (for short tab) and then (in Section
3.2.6) we discuss the role of each in tab in the general search process. In the
description of each perspective we consider the DBpedia 2015-10 dataset and the
query qrun = “El Greco museum” as our running example.

3.2. THE FUNDAMENTAL PERSPECTIVES OF KEYWORDS SEARCH RESULTS13

3.2.1 Triples Tab

Rationale: This tab is generally the most useful one since the user can inspect all
components of each triple, and understand the reason why that triple is returned.
The addition of images help the user to easily understand which triples involve the
same entities.

Description: A ranked list of triples is displayed to the user (as fetched from the
search service described in Section 3.1.2), where each triple is shown in a separate
row. For visualising a triple, we create a snippet for each triple element (subject,
predicate, object). The snippet is composed of: i) a title (the text indexed by the
baseline method), ii) a description (the text indexed by the extended index; if any),
and iii) the URI of the resource (if the element is a resource). If the triple element
is a resource, its title is displayed as a hyperlink, allowing the user to further
explore it. We also retrieve and show an image of this resource (if any). For the
query qrun = “El Greco museum”, more than 4.2 millions triples are retrieved.
The first two triples are about the Museum of El Greco in Crete, the third about
the El Greco Museum in Toledo, the fourth about the entity El Greco, the fifth is
a triple about a list of works by El Greco, and so on. A screenshot of this tab for
the query ”Crete and Mars” is displayed on figure 3.1.

Figure 3.1: The Triples Tab

3.2.2 Entities Tab

Rationale: If the user is interested in entities, and not in particular facts, this
view provides the main entities.

Description: Here the retrieved triples are grouped based on entities (subject and
object URIs), and the entities are ranked following the approach described in [31]
which considers the weighted gain factor of the ranking order of the triples in

14CHAPTER 3. MULTI-PERSPECTIVE PRESENTATIONOF SEARCH RESULTS

which the entities appear. Then, a ranked list of entities is displayed to the user,
where each entity is shown in a different row. For visualising an entity, we create
the same snippet like previously. The title is displayed as a hyperlink, since the
entities are resources, allowing the user to further explore the entity. For qrun the
returned entities include “El Greco”, the two museums of El Greco (in Crete and
Toledo), particular paintings, like “Saint Peter and Saint Paul”, the music album
“El Greco” by Vangelis, the film “El Greco (2007)”, and so on. A screenshot of
this tab for the query ”Crete and Mars” is displayed on figure 3.2.

Figure 3.2: The Entities Tab

3.2.3 Graph Tab

Rationale: This tab allows the user to inspect a larger number of triples without
having to scroll down. Most importantly, this view reveals the grouping of triples,
how they are connected, and whether there is one or more poles and interesting
connections.

Description: The retrieved triples are visualised as a graph for stressing how the
triples are connected. By default, the graph shows the top-15 triples, however the
user can increase or decrease this number, while the nodes are clickable, pointing to
the corresponding resource in DBpedia. In our implementation we use JavaScript
InfoVis Toolkit (https://philogb.github.io/jit/). For qrun the user can see
how the top ranked triples are connected and can spot easily the nodes that have
high connectivity. A screenshot of this tab for the query ”Crete and Mars” is
displayed on figure 3.3.

3.2. THE FUNDAMENTAL PERSPECTIVES OF KEYWORDS SEARCH RESULTS15

Figure 3.3: The Graph Tab

3.2.4 Schema Tab

Rationale: The objective is to show which are the more frequent schema elements
of the retrieved triples. This is useful for (a) understanding the conceptual context
of the hits, (b) for exploring (restricting) interactively the triples or entities of
the answer (by filtering with respect to class or property), and (c) for helping
an experienced user to inspect which classes and properties occur in the answer,
if after the keyword search, the user would like to formulate a SPARQL query
(directly or through a faceted search system, or through a query builder in general
like [49, 34]).

Description: The schema tab is divided in four frames as shown in Figure 3.4.

Upper Left Frame: It shows the more frequent classes and properties, accompanied
by their frequency. Let A be the top-K triples retrieved for the current query, P
the properties in A, i.e. P = {p | (s, p, u) ∈ A}, and C the classes of the URIs
in the triples of A, i.e. C = { c | (s, rdf : type, c), s ∈ SP}. For each c ∈ C, its
frequency is defined as freq(c) = |{ o ∈ SP | (o, rdf : type, c) ∈ KB}|, while for
each p ∈ P , freq(p) = |{(s, p, o) ∈ A}|. Through a parameter F we control the
number of visible elements, i.e. initially the user can see only the F in number
elements of C with the highest frequency, and the F in number elements of P with
the highest frequency (however the user can expand the visible elements to see
all of them). By clicking a class or a property the user can see the corresponding
triples and entities in the frames at the right side that will be described later on.

Bottom Left Frame: It shows graphically the more frequent classes and properties.

16CHAPTER 3. MULTI-PERSPECTIVE PRESENTATIONOF SEARCH RESULTS

A parameter K (just like in the graph tab) controls the number of triples that
feed the schema tab (the user can increase decrease it as she wishes to). In par-
ticular, the graph Γ = (Nodes,Edges) that is visualized is defined as Nodes = C,
and Edges = {(c, c′) ∈ C × C ′ | (s, p, o), (s, rdf : type, c), (o, rdf : type, c′) ∈ A},
i.e. an edge connects two classes c and c′ if there is at least one triple in A that
connects an instance of c with one instance of c′. Ideally the graph visualization
should make evident the frequencies, i.e. the more frequent classes and prop-
erties should be visualized with bigger boxes and arrows. It is not hard to see
that the number of edges, i.e. |E|, can be higher than the number of distinct
properties that occur in A, e.g. if (s, p, o) ∈ A and s is classified to two classes
c1 and c2, and o to two classes c3 and c4, then the graph will contain the four
edges {(n(c1), n(c3)), (n(c1), n(c4)), (n(c2), n(c3))(n(c2), n(c4))}. The reverse is
also possible, i.e. |E| can be less than the number of distinct properties, e.g. if
(s, p1, o) and (s, p2, o) belong to A, and each of s and o is classified to one class,
then only one edge will be visible between these two classes. Note that several vari-
ations and extensions are possible from the area of semantic model visualization
and summarization.
Right Upper and Right Bottom Frames: These frames show the triples and enti-
ties, related with the user’s click. Suppose the user has clicked on a frequent
class “c1(18)”. The triples frame will show all triples {(s, p, o) ∈ A | (s, rdf :
type, c1) ∧ (o, rdf : type, c1)}, and let call this set T . The entities frame will show
the more frequent entities that occur in T . If the user clicks on a frequent property
“p2(10)”, the triple frame will show the 10 triples A that have p2 as property, let
call this set T , and the entity frame will show the more frequent entities of those
occurring in T . The above behaviour is supported also by the graph, i.e. clicking
on a node is interpreted as if the user had clicked on the corresponding frequent
class.

Returning to qrun, we can see the classes Person, Agent, Location, Work,

etc. and various properties. The right frames show the triples and entities after
having clicked on “Architectural Structure”, i.e. triples and entities that are
related to the query and classified under the class “Architectural Structure”
(we can see information about a museum in Florina, another in Bilbao, etc.).

As another example, for the query “Tesla”, the user is getting what is shown
in Figure 3.4, enabling him to focus to the desired triples or entities, i.e. to
those related to: Tesla Motors (Organization), Nicola Tesla (Agent), Tesla Model
X (Mean Of Transportation), Tesla West Virginia (Place). By increasing the
number of triples he can also find Tesla Band (Group). By clicking on the property
“author” the user can directly see the triple related to works authored by Nicola
Tesla. In general in this tab the user can increase a lot the number of consumed
triples: although more classes and properties will appear their number is not high,
hence in most cases they will not clutter the diagram (in the example of Figure
3.4 the schema tab consumes 75 triples).

A screenshot of this tab for the query ”Crete and Mars” is displayed on figure
3.5.

3.2. THE FUNDAMENTAL PERSPECTIVES OF KEYWORDS SEARCH RESULTS17

Figure 3.4: The Schema Tab (Tesla)

Figure 3.5: The Schema Tab (Crete and Mars)

3.2.5 Question Answering Tab

The task of Question Answering (QA) is to identify the question type and the
expected answer type, therefore, based on the analysis of the QA perspective, a
short answer (presented in the appropriate way), could be promoted (just like WSE
do), therefore one direction for further research is to investigate the applicability of
approaches like [9] and [40] for complex questions. We focus on this tab extensively
in chapter 4. Screenshots of this tab for the queries ”Who is the father of Queen
Elizabeth II?” and ”Which country does Greenland belong to?” are displayed on

18CHAPTER 3. MULTI-PERSPECTIVE PRESENTATIONOF SEARCH RESULTS

figures 3.6 and 3.7.

Figure 3.6: The QA Tab

Figure 3.7: The QA Tab

3.2.6 Tabs’ Roles and Extra Tabs

There are several other tabs that could be supported and could be useful in certain
kinds of information needs, e.g. image tab, geo tab, time tab, etc. Each can be
construed as a tool that could aid the user to focus on a particular aspect, based
on the task/information need at hand, each enacted by a simple click (therefore
the required effort is minimal). One rising question is how to provide an overview
of these in an effortless manner, and/or how to rank them if that is desired. For
reasons of transparency and exploration, it is beneficial to make the user aware of
the existence of these, instead of promoting and showing only one, as some Web
Search Engines (WSE) do.

In this work we confine ourselves on the previous five tabs since we believe that
they are both KB-independent and task-independent, hence they can be considered

3.2. THE FUNDAMENTAL PERSPECTIVES OF KEYWORDS SEARCH RESULTS19

as fundamental. The added value from each of these basic perspectives is summa-
rized in Figure 3.8. The diagram also shows some main paths that indicate why
a user may decide, in a tab-switching interaction, to move from a tab to another
(of course the user is free to follow any order). Below we provide a few additional
examples showcasing the benefits from using more than one tab.

Figure 3.8: The Added Value of each Perspective

For the query q=“El Greco and Kazantzakis” in the Entities Tab, as shown
in Figure 3.9, the user can find in the first two positions the two main entities
of the query, i.e. “El Greco” (the painter), and “Nikos Kazantzakis” (the writer
and philosopher), while in the Triples Tab the user can find a triple that connects
these two entities. From the Graph Tab the user can see the triples grouped in
two poles (one for each entity) and the user can realize that there is only one triple
that connect these two poles (in the top-35 triples). Finally, with the Schema Tab
the user can refine to Location and find entities whose name is related to the main
entities, like “El Greco Apartments” and “Nikos Kazantzakis (municipality)”.

20CHAPTER 3. MULTI-PERSPECTIVE PRESENTATIONOF SEARCH RESULTS

Figure 3.9: Search results for the query “El Greco and Kazantzakis”.

As another example, for the query “Paintings with dogs” in the Triples Tab,
as shown in Figure 3.10, the user can find relevant specific information including
information about “Painted Dog Conservation” (a non profit organization for the
protection of the painted dog, or African wild dog), information about particular
paintings, information about “Greg Rasmussen” the founder of the “Painted Dog
Conservation”, etc. In the Entities tab the user can find the main entities, including
the “Painted Dog Conservation”, the species “African Wild Dog”, one painting of
Goya (The Dog), the “Dogs Playing Poker” (the series of sixteen oil paintings by C.
M. Coolidge), etc. The Schema Tab shows the classes and properties of the found
triples, through which the user can understand that there are related: species, (art)
works, locations, etc. Moreover the user can refine/explore the information space
as she wishes to. In Figure 3.10 the user has refined using the class “Work” and
in the right bottom frame he can find various paintings with dogs including: “The
Dog (Goya)”, “The Sentry (painting)”, “The Hunt In The Forest”, “Interior With
A Young Couple And A Dog” “Portrait Of Charles V With A Dog” etc. Finally,
the QA Tab returns two entities “Francisco Goya” (the painter of the painting
“The Dog”), and “Coenraad Jacob Temminck” (a Dutch aristocrat, zoologist, and
museum director who first described scientifically in 1820 the species African Wild
Dog).

3.2. THE FUNDAMENTAL PERSPECTIVES OF KEYWORDS SEARCH RESULTS21

Figure 3.10: Search results for the query “Paintings with dogs”.

For list questions, i.e. questions with a set of elements as the correct response,
like “Which cities does the Weser flow through?” the user may decide to inspect
only the QA Tab and the Entities Tab as shown in Figure 3.11.

22CHAPTER 3. MULTI-PERSPECTIVE PRESENTATIONOF SEARCH RESULTS

Figure 3.11: Search results for the query “Which cities does the Weser flow

through?”.

Longer queries are also possible, for instance for the query “Greek philosopher
from Athens who is credited as one of the founders of Western philosophy”, from
the Entity Tab (as shown in Figure 3.12) the user we can see that Socrates received
the higher score, while from the QA tab the user can see various other philosophers
as candidate answers.

3.3. IMPLEMENTATION 23

Figure 3.12: Search results for the query “Greek philosopher from Athens who

is credited as one of the founders of Western philosophy”.

3.3 Implementation

The Elas4RDF web application has been developed using Java, the Spring Boot
framework for the Web API and Thymeleaf to render the front end templates. For
the graph tab, we also used the JavaScript InfoVis Toolkit 1 The Question Answer-
ing component is developed using Python. We used HuggingFace’s Transformers
library [65] for the language models. The Question Answering component com-
municates with the Elas4RDF web application through a REST API built using
Flask 2.

1https://philogb.github.io/jit/
2https://flask.palletsprojects.com

24CHAPTER 3. MULTI-PERSPECTIVE PRESENTATIONOF SEARCH RESULTS

Chapter 4

Question Answering

4.1 Introduction

Question answering over knowledge bases (KBQA) is an important NLP task be-
cause of the rapid growth of knowledge bases (KBs) on the web and the commercial
value they bring for real-world applications [48]. In knowledge bases, where data
is represented as a graph, e.g. using the Resource Description Framework (RDF),
methods relying on Graph Processing and SPARQL Query Generation are adopted
in order to extract the desired information [15]. At the same time, neural network-
based (NN-based) Question Answering methods have received increasing attention
in recent years and have already achieved impressive results [1].

Nevertheless in vague or complex information needs and questions, that require
considering and joining facts, QA methods are not that good. the same time, there
is not a single QA component per QA task that is perfect, and the performance
of a QA component varies based on questions with different features [58]. For this
method in this work, we refine and investigate an approach where at its core has
a keyword search service, since keyword search can provide relevant hits for any
kind of information need. Specifically, we consider the multi-perspective keyword
search over RDF presented in [47], and focus on one of these perspectives: the
QA perspective. In comparison to the rest perspectives (tabs) that are offered by
that approach, i.e. triple tab, entity tab, graph tab, schema tab, the QA tab is
supposed to provide a short and concise answer, if that is feasible.

To this end, in this work we investigate such an approach for open-domain
Question Answering over Knowledge Bases that could complement general purpose
keyword search over RDF.

We present a QA approach over DBpedia that relies on: (i) an entity search
system to retrieve unstructured textual descriptions for entities, (ii) a Semantic
Answer Type prediction component to predict the answer type, (iii) SPARQL
to retrieve structured information matching the predicted answer type, (iv) an
entity expansion component to expand the textual description with the information
retrieved from the triple store, and (v) a powerful language model fine-tuned for

25

26 CHAPTER 4. QUESTION ANSWERING

question answering to extract the final answers.

In brief, given a natural language question, we first retrieve the top-k entities
and their textual descriptions (through keyword search), then we get the triples
only of these entities that have the predicted answer type, then we generate natural
language sentences and we apply extractive question answering using pre-trained
neural networks.

Related research questions are: (a) How good the QA pipeline over DBpedia
can be, in comparison to approaches and benchmarks freebase?, (b) how the An-
swer Type Prediction affects the quality of QA? (c) how answers from this QA
pipeline can contribute to the entity retrieval task over DBpedia Entity dataset,
and entity ranking in general?

The results of our evaluation indicate that the answers generated by this ap-
proach provide additional value for entity search when combined with the initial
entities retrieved by the search service used. Our approach can also perform well
on difficult question answering datasets (> 52% Accuracy), without having been
trained on the specific datasets, but relying on the structured and unstructured
information retrieval methods that we use.

In brief, the main contribution of this work are: (a) we investigate a process
for QA in the context of an keyword search access paradigm, (b) we detail the QA
pipeline that comprises components for Answer Type Prediction, Entity Retrieval
& Expansion, and neural network based approach for Answer Extraction, (c) we
evaluate the pipeline over multiple datasets, showcasing the value added by our
approach for different information needs.

The rest of this chapter is organized as follows: Section 4.2 provides an overview
of the approach, Section 4.3 describes Answer Type Prediction, Section 4.4 de-
scribes Entity Retrieval and Expansion Section 4.5 describes Answer Extraction,
Finally, Section 4.6 describes related work.

4.2 Overview of the Approach

We introduce and investigate a question answering pipeline, which can be sum-
marized as follows: we retrieve the top-k entities and their textual descriptions
(through search), then we get the triples only of these entities that have the pre-
dicted answer type, then from these triples we generate natural language sentences,
and finally we apply extractive question answering using neural networks.

Consequently the pipeline is supported by 3 main components: Answer Type
Prediction, Entity Retrieval and Expansion, and Answer Extraction, as illustrated
in Figure 4.1.

First we predict the answer by extending and improving a previous work on
Answer Type Prediction [46] (this step is described in §4.3).

We also retrieve a set of entities relevant to the question, from DBpedia, along
with a short description of each entity using the Elas4RDF search service [31].
Then we extend the description of each entity with information from RDF nodes

4.3. ANSWER TYPE PREDICTION 27

Figure 4.1: QA Pipeline

matching the predicted answer type by running SPARQL queries at real-time
(more in §4.4).

Finally, we use a RoBERTa [38] model fine-tuned on the SQuAD 2 dataset
[53] to perform extractive question answering for the question using the extended
description of each entity. Therefore, we obtain an answer from each retrieved
entity. Finally, we rank the answers using the score from the output of the model
and present them on the user interface of the Elas4RDF web application. (more
in §4.5).

The input of the task performed by this component is a set of top-K entities
returned by the search service, where each entity consists of a URI and a short
textual description. Using the Answer Type Prediction, Entity Expansion and An-
swer Extraction techniques that are described in more detail below, the component
produces a natural language answer extracted by the textual description.

4.3 Answer Type Prediction

4.3.1 Overview

Answer Type Prediction is the task of predicting the type of the answer to a natural
language question, given the question. Our approach for answer type prediction
is based on the work [46] which was submitted on the SMART Task [41] and
gained second place. The task is split in 2-stages: Category prediction and Type
prediction. In particular, the problem is modeled as a two-stage classification task:
in the first step the task is to predict the general category of the answer (resource,
literal, or boolean), while in the second step the task is to predict the particular
answer type (number, date, string, or a particular resource class from a target
ontology).

Two datasets are provided for this task, one using the DBpedia ontology and
the other using the Wikidata ontology. Both follow the below structure: Each

28 CHAPTER 4. QUESTION ANSWERING

question has a (a) question id, (b) question text in natural language, (c) an an-
swer category (resource/literal/boolean), and (d) answer type. If the category
is resource, answer types are ontology classes from either the DBpedia ontology
(∼760 classes) or the Wikidata ontology (∼ 50K classes). If the category is literal,
answer types are either number, date, or string. Finally, if the category is boolean,
answer type is always boolean.

An excerpt from this dataset is shown below:

[{

"id": "dbpedia_14427",

"question": "What is the name of the opera based on Twelfth Night?",

"category": "resource",

"type": ["dbo:Opera", "dbo:MusicalWork", "dbo:Work"]

},{

"id": "dbpedia_23480",

"question": "Do Prince Harry and Prince William have the same parents?",

"category": "boolean",

"type": ["boolean"]

}]

With respect to the size of the datasets, the DBpedia dataset contains 21,964
questions (train: 17,571, test: 4,393) and the Wikidata dataset contains 22,822
questions (train: 18,251, test: 4,571). The DBpedia training set consists of 9,584
resource, 2,799 boolean, and 5,188 literal questions. The Wikidata training set
consists of 11,683 resource, 2,139 boolean, and 4,429 literal questions.

For question category and type prediction we use 2 DistilBERT for sequence
classification models. We choose DistilBERT instead of BERT to reduce memory
footprint and time required to answer a question.

4.3.2 Question Category & Literal Type Prediction

A question can belong to one of the following three categories: (1) boolean, (2)
literal, (3) resource. Boolean questions (also referred to as Confirmation ques-
tions) only have ‘yes’ or ‘no’ as an answer (e.g. “Does the Owyhee river flow
into Oregon?”). Thus, there is no further classification for this category of ques-
tions. Resource questions have a specific fact as an answer (e.g. “What is the
highest mountain in Italy?”) that can be described by a class in an ontology (e.g.
http://dbpedia.org/ontology/Mountain). Literal questions have a literal value
as answer, which can be a number, string, or date (e.g. “Which is the cruise speed
of the airbus A340?”).

To detect question categories, we fine-tune a DistilBERT model using the Hug-
gingface PyTorch implementation1. We choose this model because we approach
answer type prediction as a classification problem where each question is a sequence
of words.

1https://huggingface.co/transformers/

4.3. ANSWER TYPE PREDICTION 29

Because we only use 3 types to classify literal questions, following the approach
of [56] we integrate literal type prediction into the same classifier with category
prediction. By doing this, we save computing requirements and reduce memory
footprint because we avoid using a different BERT classifier for literal type pre-
diction. Therefore, this model classifies each question in one of the following 5
classes: 1) boolean, 2) literal date, 3) literal number, 4) literal string, 5) resource

To fine tune the model we used the training datasets provided for the SMART
challenge (described in §4.3.1). Specifically, we used questions from both the DB-
pedia and the Wikidata dataset. Because the data is imbalanced for categories
(13.7% boolean, 26.6% literal, 59.4% resource) we randomly sampled questions for
each class so that all classes had the same number of samples.

As we will see below, this model achieves 97.7% accuracy on our test set in
this prediction task.

4.3.3 Resource Answer Type Prediction

The prediction of the answer type of questions in the resource category is a more
fine-grained (and thus more challenging) classification problem, because of the
large number of types a question can be classified to (∼760 classes on DBpedia
and ∼50K classes on Wikidata). Therefore, it is not effective to train a classifier
on all the ontology classes, especially for open-domain tasks.

To reduce the number of possible types for classification, we selected a subset
(C) of all ontology classes, based on the number of samples of each class in the
training set. This subset C contains classes that have at least k occurrences in
the training set. We set k = 10 as this number provides a good trade-off between
number of classes and performance. The choice of this parameter is described more
extensively in section 5.2.2.

The final number of classes in C is 88. Because we chose to train the system on
a subset of all the classes, our classifier cannot handle questions with labels that
are not included in this subset. To tackle this problem, we replace their labels with
the labels of super classes that belong in C. Then we fine tuned a DistilBERT
model on them.

Since most questions in the dataset have several answer types ordered by speci-
ficity, according to the semantic hierarchy formed in the ontology, in the fine tuning
stage we use these questions multiple times, one with each of the provided types
as the label. The goal is to find an answer type that is as specific as possible
for the question. However, the model may classify a question to a more gen-
eral answer type in the ontology. To tackle this problem, we ‘reward’ (inspired
by [13]), the predictions of the classes that lie below the top class. The reward
of a class c is measured by the depth of the class in the hierarchy, specifically,
reward(c) = depth(c)/depthMax, where depth(c) is the depth of c in its hierarchy,
while depthMax is the maximum depth of the ontology (6 for DBpedia). This
means that, after applying normalization and adding the rewards on the output
of the model, the top class can be a sub-class that was originally ranked below

30 CHAPTER 4. QUESTION ANSWERING

a more general class. For example, for the question “What is the television show
whose company is Playtone and written by Erik Jendresen?” the top 5 classes
that the classifier predicts are: 1) Work, 2) TelevisionShow, 3) Film, 4) Musical-
Work, 5) WrittenWork. Then rewards are applied to classes that are a subclass
of Work. After applying the rewards, the top 5 classes are: 1) TelevisionShow, 2)
Work, 3) Film, 4) Book, 5) MusicalWork. We can see that TelevisionShow, is now
the top prediction, which is both correct and more specific than the previous top
prediction (Work).

4.3.4 Tuning of the k Parameter

To find the optimal value for the parameter k, which is the minimum sample size
required to include a class in the subset of classes included in the classifier, we
evaluated our system using 4 different values: 5, 10, 30 and 50.

Table 5.5 shows the number of classes included in the classifier for each different
value of k and the corresponding performance. We notice that the best results are
obtained using k=10, while the results for all other cases are slightly worse.

Table 4.1: Results for different values of k

Value Classes NDCG@5 NDCG@10

5 180 0.775 0.765

10 151 0.786 0.778

30 79 0.785 0.772

50 55 0.785 0.748

4.3.5 Model Selection

DistilBERT[55] is a smaller general-purpose language representation model based
on BERT[14]. A distilbert model can be 40% smaller in size than an equivalent
BERT model, while retaining 97% of its language understanding capabilities and
being 60% faster. We chose this model for category classification and answer type
classification because the compromise in the language understanding capabilities
is not significant for us, since our models perform well enough for the required
tasks. At the same time we plan to make this system available through a web
application, therefore answer time speed, and memory footprint is important for
us.

4.4 Entities Retrieval and Expansion

4.4.1 Retrieval

We use the elas4rdf search service [31] to retrieve a set of entities that are relevant
to the query. We query this service with the input question after removing stop-
words. The output of this stage is a list of entities described by their URI and a
short textual description of the entity, extracted by the rdfs:comment property.

4.5. ANSWER EXTRACTION 31

The number of retrieved entities is set to 10, but it can be adjusted. A higher
number of entities could yield more useful answers, but will require more time to
be processed.

4.4.2 Expansion

For Resource and Literal questions, we use the dbpedia SPARQL endpoint to find
facts about the retrieved entities that match the answer type. Then, we generate
natural language sentences from these facts and append the sentences to the entity
description.

For Resource questions, for each entity, we retrieve all RDF triples where the
subject is the entity, and the object has an RDF type that matches the top type
returned by the answer type prediction component, or an equivalent class, using
the following query:

select distinct str(?pl) as ?pLabel ?a where {

<entity uri> ?p ?a .

?p rdfs:label ?pl .

<answer type> owl:equivalentClass ?eq .

?a rdf:type ?eq .

FILTER(lang(?pl) = ’en’ || lang(?pl) = ’’)

}

For Literal date questions we retrieve triples where the property that connects
the entity with the candidate answer has an rdfs:range equal to xsd:date.

For Literal number and string questions we retrieve all triples where the subject
is the entity and the object is a literal. Then we check programmatically if the
object is numeric or a string depending on the answer type. We follow this process
because not all literal RDF Nodes have an XSD Schema data type.

From the retrieved triples we use the label of the corresponding entity, the
object, which is a candidate answer and the label of the property that connects
the entity with this answer. Then we generate a sentence of the form ”entity label
+ property label + object” and append it to the textual description of the entity.

4.5 Answer Extraction

This stage receives a list of entity URIs and their expanded textual description. For
each entity in the list, we generate an answer from the expanded entity description
using a RoBERTa model for extractive question answering from the huggingface
transformers library2. Then, we sort the answers by their score and display them on
the Question Answering perspective of Elas4RDF, along with the answer catregory
and type.

The model that we use is fine-tuned on the SQuAD dataset by deepset.ai 3.

2https://huggingface.co/transformers/
3https://huggingface.co/deepset/roberta-base-squad2

32 CHAPTER 4. QUESTION ANSWERING

RoBERTa (Robustly optimized BERT approach), is a retraining of BERT with
improved training methodology, using 10 times more data and compute power.
We chose this model over BERT because it obtains higher scores, which is impor-
tant for us because of the increased difficulty of the task of extractive question
answering.

Figure 4.2: Elas4RDF user interface for Question Answering

A few successfully answered question examples are displayed below on table
4.2

Question Answer
Who did Mozart write his four horn concertos for? Joseph Leutgeb
What things did Martin Luther King do? human rights advocate and community activist
When did Charles Goodyear invented rubber? 1839

Table 4.2: Answer examples

4.6 Related Work

In comparison to related work, e.g. see [58] for a recent overview of QA approaches
over DBpedia, the most related works are:

[25] which converts the natural language question into two subquer-ies: SPARQL
query and keyword search. This work uses a keyword index for special keywords
rather than a whole knowledge graph for keyword search and produces the final
answer using an algorithm to combine SPARQL results and keyword search re-
sults. Based on out current knowledge, no other work has investigated the effect
of Answer Type Prediction in Question Answering.

Chapter 5

Evaluation

In section 5.1 we evaluate the multi-perspective keyword search and presentation
approach and report the results obtained from a task-based evaluation with users.
In section 5.2 we evaluate the answer type prediction component of the question
answering perspective and report results in the context of the SeMantic AnsweR
Type prediction task [41]. Finally, in section 5.3 we evaluate the question answering
component over popular benchmarks for both question answering and entity search
tasks.

5.1 User Survey

Below we evaluate the proposed approach by (a) comparing its functionality with
those of related systems, (b) proving its feasibility by discussing efficiency, (c)
discussing the retrieval effectiveness of the system, and (d) reporting the results
of a task-based evaluation with users that examines the usefulness of the proposed
multi-perspective approach, as well as some results by log analysis.

5.1.1 Comparing the Functionality with Related Systems

Since DBpedia is a core dataset of the Linked Open Data cloud [2], we decided to
compare with interactive systems (not just APIs) that offer a kind of access/search
facility over DBpedia. For this reason we considered the following systems: LO-
TUS [27], GraFa [42] (http://grafa.dcc.uchile.cl/), RelFinder [24] (http:
//www.visualdataweb.org/relfinder.php), DBpedia Search & Find (http://
dbpedia.org/fct/), SPARKLIS [22] (http://www.irisa.fr/LIS/ferre/sparklis/),
and our system Elas4RDF (https://demos.isl.ics.forth.gr/elas4rdf/).

The results are summarized in Table 5.1. The table has a column for each of
the following features: triple search, entity search, graph-view, faceted search, QA,
relation finder, SPARQL query support. The last column sums up the number
of features each system supports: we count each supported feature with 1, and
each partially supported feature with 0.5, as an indicator of the spectrum of the

33

34 CHAPTER 5. EVALUATION

provided access services. We can see that most systems focus on only one or two
access methods, while our system offers four, hence it provides a wider spectrum
of access services.

Table 5.1: Search Systems over DBpedia

System Triple
re-

trieval

Entity search Graph view Faceted
search

QA Relation
finder

SPARQL
support

SUM

LOTUS [27] (no
online demo)

Yes No No No No No No 1/7

GraFa [42] No No No Yes No No No 1/7

RelFinder [24] No Partial
(through auto
completion)

Partial (only
of related
entities)

No No Yes No 1/7

DBpedia Search
& Find

Yes (no
images)

No No Partial
(simple)

No No Partial
(query

display)

2/7

SPARKLIS [22] No No No Yes (Very
Expres-

sive)

No No Yes 2/7

Elas4RDF Yes Yes Yes No Yes No No 4/7

5.1.2 Efficiency

The efficiency of the back-end search service (i.e. of the ranking service) was eval-
uated in [31]. Here we focus on the cost for providing the multiple perspectives of
the search results. The key point is that the implementation of the perspectives
on top of the search service, described in Section 3.1.2, does not add significant
overhead, preserving the real-time interaction. Furthermore, the triples and en-
tities retrieved from the search service are cached, further improving load times
when the same query is issued on different perspectives.

In Table 5.2, the average load time of each perspective is displayed (with and
without caching), considering 10 queries of varying length from 1 to 8 words and
using an instance of the system that runs on a machine with 6 physical cores and
maximum memory allocation size set to 8GB. We can see that even without caching
all responses are returned in less than 3 seconds, while with caching enabled, the
average time is around 150 ms.

Table 5.2: Average load times for each perspective

Perspective Triples Entities Graph Schema QA

Without caching 980 ms 2,582 ms 1,018 ms 924 ms 2,869 ms
With caching 145 ms 124 ms 91 ms 175 ms 118 ms

5.1. USER SURVEY 35

5.1.3 Evaluation of Effectiveness

Another evaluation aspect is the effectiveness of the system, i.e. its capability to
fulfill the information needs of the user. Note here that, since one can use his own
retrieval, ranking or visualisation method in any of the fundamental perspectives,
evaluating the performance of the method used in each different tab is out of the
scope of this work. As regards the implementation of the tabs in our prototype
(described in Section 3.2), the ranking of the entities in the entities tab has been
extensively evaluated in [31], demonstrating a high performance. This provides a
very positive evidence about the quality of the triples that feed all tabs, in the
sense that if triple-ranking were not effective, then it would be hard for the entities
tab to be effective. More importantly, the results of the user study (that we shall
see in Section 5.1.4) validate the good quality of the results shown in each tab.
Specifically, the large majority of users managed to find correct answers for most
of the requested tasks. That would be impossible if the majority of the results in
the tabs were irrelevant (more about the user study below in Section 5.1.4).

5.1.4 Evaluation with Users

Since there is no dataset that could be used for evaluating the particular multi-
perspective interaction we decided to carry out a task-based evaluation with users.
Specifically, we wanted to understand how users would use such a system, whether
they find useful and/or like the multi-perspective approach, and for collecting
general and specific feedback.

5.1.4.1 Information Seeking Tasks

Since we are in keyword-search setting (and not in a structured query building
process), we selected a number of tasks that have IR nature, and at the same time
are not trivial (some of them are hard to answer, and/or DBpedia has related but
not exactly the requested information). We also tried to capture various kinds
of information needs, while keeping the list of tasks short for attracting more
participants. The selected 11 tasks are shown in Table 5.3. They include queries
of various kinds (entity property queries, entity relation queries, fact checking
queries, entity list queries). In total, answering these questions requires at least
30 minutes.

36 CHAPTER 5. EVALUATION

Table 5.3: Evaluation Tasks

ID Task

T1 Is there any person that is fisherman, writer and poet? Provide at least 3 related
names (or URIs).

T2 Is there any writer and astronaut from Russia? Provide related names or URIs.
T3 Find information that relates Albert Einstein with Stephen Hawking.
T4 Find if El Greco was influenced by Michelangelo.
T5 Is there any reference of Freud to the ancient Greece?
T6 How is Mars related to Crete?
T7 Find mathematicians related to Pisa.
T8 Find painters of the Ancient Greece.
T9 Are there drugs that contain aloe?
T10 Which cities does the Weser flow through?
T11 Find at least 5 rivers of Greece.

5.1.4.2 Participants, Questionnaire and Results

We invited by email various persons to participate in the evaluation voluntarily.
The users were asked to carry out the tasks and to fill (anonymously) the prepared
questionnaire. No training material was given to them, and the participation to
this evaluation was optional (invitation by email). Eventually, 25 persons partic-
ipated (from May 5, 2020 to May 18, 2020). The number was sufficient for our
purposes since, according to [21], 20 evaluators are enough for getting more than
95% of the usability problems of a user interface. In numbers, the participants
were 32% female and 68% male, with ages ranging from 20 to 54 years; the distri-
bution is almost uniform, only the age of 23 is the more frequent 20%, as shown
in Figure 5.1.

�
��
�
�
�

�
��
�
�
�

�
��
�
	
�
�

�
��
�
�
�

�
��
�
�
�

��
�
�
�
�

�
��
�
�
�

�
��
�
�
�

�
��
�
�
� �
��
�
�
�

�
��
�
�
�

�
��
�
�
� �
��
�
�
�

�
��
�
�
�

�
��
�
�
�

�

�

�

�

�� �� �� �� �� �� �� ��

Figure 5.1: Age distribution of participants

As regards occupation and skills, all have studied Computer Science, except one

5.1. USER SURVEY 37

Physicist. In detail, 20% were undergraduate students, 15% of them postgraduate
computer science students, and the rest computer engineers, professionals and
researchers. Students came from at least 3 different universities, while 40% of
all the participants have never used DBpedia before. The questionnaire is shown
below, enriched with the results of the survey in the form of percentages written
in bold:

E1 How would you rate the Triples tab?: Very Useful (40%), Useful (44%),
Little Useful (16%), Not Useful (0%)

E2 How would you rate the Entities tab?: Very Useful (44%), Useful (28%),
Little Useful (24%), Not Useful (4%)

E3 How would you rate the Graph tab?: Very Useful (32%), Useful (52%),
Little Useful (12%), Not Useful (4%)

E4 How would you rate the Schema tab?: Very Useful (16%), Useful (40%),
Little Useful (36%), Not Useful (8%)

E5 How would you rate the QA tab?: Very Useful (16%), Useful (36%), Little
Useful (40%), Not Useful (8%)

E6 Did you find it useful that the system offers multiple perspective of the search
results?: Very much (48%), Fair (48%), Not that Useful (4%), Not Useful
(0%)

E7 Mark the perspective(s) that you think are redundant: Triples Tab (0%),
Entities Tab (8%), Graph Tab (8%), Schema Tab (40%) QA Tab (16%)
All tabs are useful, none is redundant (44%)

E8 Have you used DBpedia before: Never (40%), Only a few times (without
using SPARQL) (16%), Quite a lot (I have used SPARQL to query it) (44%).

E9 How would you rate the entire system? Very Useful (32%), Useful (60%),
Little Useful (8%), Not Useful (0%)

E10 You can report here errors, problems, or recommendations. (free text of
unlimited length)

5.1.4.3 Results Analysis and Discussion

User Ratings. As regards ratings, most users appreciated the multi-perspective
approach (the positive options of E6, Very Much and Fair, sum to 96%). Moreover,
all tabs received positive results by some users. By adding the percentages of Very
Useful and Useful, the ranked list of more preferred tabs is:

〈 {GraphTab (84%), TriplesTab (84%)}, EntitiesTab (72%), SchemaTab
(56%), QATab(52%) 〉.

38 CHAPTER 5. EVALUATION

The less preferred tabs, according to the sum of Little Useful and Not Useful
percentages, is:

〈 QATab (48%), SchemaTab (44%), EntitiesTab (28%), {GraphTab
(16%), TriplesTab (16%)} 〉.

Note that these numbers correspond to the percentages of users that would not be
satisfied if only the corresponding perspective were provided to them.

It is also clear that different users have different preferences for perspectives:
there are persons that rated the Schema Tab as Very Useful, while others marked
is as Redundant. Probably this depends on the background of the participants: a
person with no knowledge of RDF would not be able to understand (and exploit)
the notion of schema, and we have seen that 20% of the participants were un-
dergraduate and 40% have never used DBpedia. This is also evident from Figure
5.2 that depicts the sum of Very Useful and Useful percentages per tab; the black
bars correspond to the users that had never used DBpedia, while the white bars
correspond to the users that had used DBpedia before.

��

���

���

���

���

����

�	
��� ���
�
� �	��� ����� ��

������������	
���� ������	
����

Figure 5.2: ‘Very Useful’ and ‘Useful’ preference percentages per tab and category
of users.

By looking at the responses of the questionnaire, we can see that the group
of users that had never used DBpedia, preferred the Triples Tab and the Graph
Tab (40% found them Very Useful, 50% Useful, and 10% Little Useful, for both
tabs), and the least useful tab for them was the Schema Tab (10% Very Useful,
40% Useful, and 50% Little Useful), because a basic understanding of the RDF
data model is required to use it. Regarding this user group’s opinion of the multi-
perspective approach, 30% found it to be Very Useful, and 60% found it Fair. Only
one user did not find the approach useful. Also, 50% of these users responded that
None of the perspectives are redundant.

Statistical Significance. As regards statistical significance, by assuming as pos-
itive the options Very Useful and Useful, and as negative the options Little Useful
and Not Useful, the lower bound of Wilson score confidence interval shows that

5.1. USER SURVEY 39

with 95% confidence, the percentage of users (of the entire community) that would
upvote each perspective would be:

〈 TriplesTab (65%), GraphTab (65%), EntitiesTab (52%), SchemaTab
(37%), QATab (33%) 〉

Now by considering all 4 options quantified as: Very Useful (4), Useful (3),
Little Useful (2), Not Useful (1), we can use Bayesian Approximation to compute
the expected average rating for each perspective, in the scale 1 (Worst) - 4 (Best),
in the entire community of users. These expected ratings are:

〈 TriplesTab (2.84), GraphTab (2.73), EntitiesTab (2.69), SchemaTab
(2.30), QATab (2.27) 〉

where a perspective with score X means that it will have an average rating greater
than X, with 95% confidence.

Task Performance. As regards task performance, i.e., the responses to the 11
tasks, from the 11 x 25 = 275 responses, 46 (16.7%) reported failure to find the
requested information. The failure rate was 20.9% in the (10) users that had
never used DBpedia, and 13.9% in the rest (15) users. As shown in Figure 5.3,
the participants faced problems, mainly in T2, T4, T5: T2 is tricky (there is
such a space-engineer not astronaut), while T4 and T5 are hard to answer, due to
dataset issues (non existing information, wikiPageWikiLink with no explanation)
therefore these cannot be considered as failures of the system. Another interesting
observation is that for most tasks inexperienced users were almost as successful as
experienced ones.

��

���

���

���

���

����

�
�
�
�
��

�
�
�
�
��

�
�
�
�
��

�
�
�
�
�	

�
�
�
�
�

�
�
�
�
��

�
�
�
�
��

�
�
�
�
�

�
�
�
�
��

�
�
�
�
��
�

�
�
�
�
��
�

������������	
���� ������	
����

Figure 5.3: Success rates for experienced and inexperienced users.

Free form Feedback. With respect to the free form feedback, 18 of the 25 users
provided very interesting and lengthy comments. For reasons of space, here we
only summarize the main ones. In general, they (a) spotted problems related
to the DBpedia dataset (missing relationships, unexplained wikiPageWikiLink

relationships, duplicates), and (b) they made suggestions for improving the tabs:

40 CHAPTER 5. EVALUATION

Triples Tab (not score with 1.0 a triple if not all query terms are included in that
triple, addition of property filters), Schema Tab (add the more frequent labels in
the edges of the schema graph, highlight the query words in the hits), Graph Tab
(set the size so that all related entities are shown).

General Remarks. Overall, the rating and the feedback that users provided
was very positive. Of course, it is not hard to understand that the results depend
on the quality of each individual perspective (which in turn depends also on the
effectiveness of the underlying search service). Moreover the order of tabs affects
the results that concern user preferences: in information needs that the first tab(s)
provide a satisfying answer, the user will not visit the subsequent tabs (or just a
few for verification purposes). That means the harder an information need is, the
higher the probability the user visits all tabs. However, our main research hypoth-
esis is not related to the comparison of the individuals tabs, but on the usefulness
of the multi-perspective approach, and the results of the evaluation provide pos-
itive evidence about the value of the multi-perspective approach. Overall, they
key finding is that users not familiar with RDF (a) managed to complete the
information-seeking tasks (with performance very close to that of the experienced
users), and (b) they rated positively the approach.

5.1.4.4 Log Analysis

Since the system became public and was disseminated in social media on April
27, 2020, below we report some points related to the total traffic of the system;
not only from the task-based evaluation with users. More than half of the users
(102, in total) have interacted with at least 3 different tabs. The most visited tab
is the Triples Tab (35.7% of requests for a tab) which is expected since it is the
first tab presented to the user, followed by the Entities Tab (19.1%), the Schema
Tab (18.7%), the Graph Tab (16.8%), and the QA tab (9.7%). On average, a user
issued 4.6 requests per query (where a request involves: clicking a tab, changing
page, adjusting the number of shown triples, or clicking a class or property in
the schema tab). Also, a user in average performed 6.7 interactions per query
in the schema tab. This is expected since the Schema Tab allows for interactive
exploration of the data by clicking on classes and predicates, and adjusting the
number of retrieved triples.

5.1.4.5 Discussion: Related Systems

To our knowledge, the only system that is currently available and offers unre-
stricted free-text search (which is the focus of our work) is DBpedia Search &
Find (http://dbpedia.org/fct/). This system offers a single visualisation of
the results, in particular it returns entities, so it is like using only the Entities
Tab provided by our system. The objective of our evaluation is to investigate if a
single visualisation method is enough, what is answered by the user study; if the

5.2. ANSWER TYPE PREDICTION EVALUATION 41

Entities Tab were enough, this would be evident in the evaluation results, e.g., in
the answers of the questions E1-E7.

5.2 Answer Type Prediction Evaluation

5.2.1 Evaluation Metrics

We report results for the following metrics:

• Accuracy, for category prediction (the percentage of questions classified in
the correct category).

• Precision, for type prediction (the percentage of the questions for which the
top type found by the system was one of the types provided in the test
dataset, without considering type specificity).

• Lenient NDCG@k (with a Linear decay) [3], for resource type prediction.

Lenient NDCG@k, which has been introduced in [3], measures the distance
between the predicted type and the most specific type of the answer d(t, tq). Then
it converts this distance into a Gain measure, with a linear decay function. The
gain is calculated as: G(t) = 1 − d(t, tq)/6, where 6 is the maximum depth of
the hierarchy. For example, for the question “Which company founded by Fusajiro
Yamauchi gives service as Nintendo Network?”, the top 5 classes found as the an-
swer type by our system are: ‘dbo:Company’, ‘dbo:Organisation’, ‘dbo:University’,
‘dbo:Agent’, ‘dbo:RecordLabel’ (in this order). The true types specified on the
dataset are: ‘dbo:Company’, ‘dbo:Organisation’, ‘dbo:Agent’. The most specific
of these 3 classes is ‘dbo:Company’, so we calculate the gain for each type found
by our system using the distance from the class ‘dbo:Company’. Then we compute
DCG as: DCGp = gain1 +

∑p
i=2

gaini

log2 i
. We also compute the ideal DCG (iDCG)

using the gains of the correct types provided in the dataset, and normalized DCG
(nDCG) as DCG

iDCG . Finally we compute and report the average nDCG over all
questions in the test dataset.

5.2.2 Results on split of the DBpedia training set

Initially, we had no access to the final test dataset of the SMART challenge, so we
used 90% of the DBpedia training set1 as our training dataset and the remaining
10% as our test dataset. For category prediction and literal type prediction we
also use the questions from the training dataset for Wikidata for training the
classifiers. Our approach achieved the results shown in Table 5.4. We notice a
superior performance of category prediction (96.4% accuracy) and a very high
performance of type prediction (83% precision and 79% lenient NDCG@5).

1https://github.com/smart-task/smart-dataset/tree/master/datasets/DBpedia

42 CHAPTER 5. EVALUATION

Running the same experiments without the rewarding mechanism, we notice
an around 2% drop in the performance (Lenient NDCG) of literal/resource type
prediction.

Table 5.4: Evaluation results

Accuracy (category prediction) 0.964

Precision (literal/resource/boolean type prediction) 0.826

Lenient NDCG@5 with linear decay (literal/resource type pre-
diction)

0.786

Lenient NDCG@10 with linear decay (literal/resource type pre-
diction)

0.778

Tuning of the k parameter To find the optimal value for the parameter k,
which is the minimum sample size required to include a class in the subset of
classes included in the classifier, we evaluated our system using 4 different values:
5, 10, 30 and 50. Table 5.5 shows the number of classes included in the classifier
for each different value of k and the corresponding performance. We notice that
the best results are obtained using k=10, while the results for all other cases are
slightly worse.

Table 5.5: Results for different values of k

Value Classes NDCG@5 NDCG@10

5 180 0.775 0.765

10 151 0.786 0.778

30 79 0.785 0.772

50 55 0.785 0.748

Error analysis. To better understand the classification performance of cate-
gory prediction, literal type prediction, and resource type prediction, we inspected
their confusion matrices. The results are shown in Table 5.6. As regards category
prediction, we see that our system classifies in the correct category 99% of the
boolean questions, 92% of the literal questions, and 98% of the resource questions.
For literal type classification, our system classifies in the correct type 98.4% of
date questions, 99.5% of number questions, and 99.5% of string questions. We
notice that, for category prediction, most errors occur between the classes literal
and resource. For instance, 41 questions of literal type are misclassified as of
type resource. As regards resource type prediction, the table shows the confusion
matrix for the top-5 (most frequent) resource classes. We notice that there is sig-
nificant confusion between the classes City and Country, as well as between the
class Person and other classes.

By manually inspecting several of the misclassification cases, we noticed that
some of these errors occur on questions where the correct category is very am-
biguous, such as the question “In what area is Fernandel buried at the Passy
Cemetery?” (labeled as a literal question with type ‘string’, while our system
classifies it as a resource question of type ‘dbo:Place’), or the type provided in the
dataset is wrong, e.g. the question “What did the pupil of Mencius die of?” is

5.2. ANSWER TYPE PREDICTION EVALUATION 43

Table 5.6: Confusion matrices for category (top left), literal (top right), and re-
source (bottom) type prediction.

Actual
Boolean Literal Resource Sum

P
re

d
ic

te
d Boolean 287 2 5 294

Literal 1 497 13 511
Resource 2 41 905 948

Sum 290 540 923 1753

Actual
Date Number String Sum

P
re

d
ic

te
d Date 120 0 0 120

Number 2 182 1 185
String 0 1 191 192
Sum 122 183 192 497

Actual
Person City Country Award Organisation Other

P
re

d
ic

te
d

Person 148 4 3 3 0 86
City 3 67 16 0 0 23

Country 4 2 42 0 0 17
Award 1 0 0 37 0 0

Organization 1 2 5 1 32 42
Other 15 1 8 3 6 351

labeled as a literal question with type ‘date’, while our system predicts that the
question category is resource and ‘dbo:Disease’ is one of the predicted classes.

5.2.3 Results over the final DBpedia test set

After the final test dataset was released, we evaluated our system again, using the
script provided by the challenge organizers. We obtain the results shown in Table
5.7 (using k=30). We notice that the results are very close to those reported for
the split on the training dataset (cf. Table 5.4).

Table 5.7: Evaluation results over the final test set

Accuracy (category prediction) 0.962

Lenient NDCG@5 with linear decay (literal/resource type pre-
diction)

0.777

Lenient NDCG@10 with linear decay (literal/resource type pre-
diction)

0.762

5.2.4 Efficiency

Fine-tuning. We fine-tuned the models on Google Colab2, a Jupyter notebook
environment that runs in the cloud and offers access to GPUs. With a batch

2https://colab.research.google.com/

44 CHAPTER 5. EVALUATION

size of 32, number of epochs set to 3 and using an Nvidia Tesla K80 GPU, the
time required for fine-tuning each classifier is: 49 mins and 25 secs for the resource
question type classifier, using 26,259 questions, 27 mins and 51 secs for the question
category classifier, using 14,814 questions, and 15 mins and 3 secs for the literal
question type classifier, using 8,025 questions.

Execution. To classify a question into a category and predict its answer type, we
execute the system locally on a machine with 2 cores and 8 GB of RAM, without
using a GPU. While the system is running, it requires approximately 2.3 GB of
RAM to load the 3 classifiers in memory.

This means that the proposed approach has low main memory requirements.

Moreover, this memory footprint can be further reduced if we use a smaller
and lighter language model, such as DistilBERT [55], while sacrificing a small
percentage of accuracy. The time required to classify a single question is less than
a second (0.17 seconds on average), which is important for the application context
that we have in mind (more below). To obtain the system output required to
evaluate our system for the SMART challenge, we classified each one of the 4,381
questions provided in the test set sequentially. The process took 12 minutes and
24 seconds.

5.3 Question Answering Evaluation

In Section 5.3.1 we evaluate our approach over WebQuestions, a benchmark col-
lection obtained from popular questions asked on the web that are answerable by
Freebase, a different knowledge base than DBpedia, which our system retrieves
information from, so essentially we evaluate how good our approach for open do-
main question answering is, while retrieving information from a different source
and without having been previously trained over this specific dataset.

In Section 5.3.2 we investigate how that task of Answer Type Prediction affects
the effectiveness of QA.

In Section 5.3.3 we evaluate how answers from our QA pipeline can contribute
to the entity retrieval task over DBpedia Entity dataset [23], and entity ranking
in general. In section 5.3.6 we discuss the efficiency of the system and in section
5.3.5 we provide a summary of the evaluation results.

In Section 5.3.4 we evaluate how our QA pipeline could affect entity search.

5.3.1 Experiment 1: Webquestions

WebQuestions [5] is a popular dataset for benchmarking QA engines, especially
ones that work on structured knowledge bases. It is a dataset of question-answer
pairs obtained from non-experts.

This dataset contains 6,642 questions collected using the Google Suggest API
to obtain questions that begin with a wh-word and contain exactly one entity.
Answers were generated using Amazon Mechanical Turk. The AMT task requested

5.3. QUESTION ANSWERING EVALUATION 45

that workers answer the question using only the Freebase page of the question’s
entity.

Question: "What countries are part of the UK?"

Answers: "Scotland","England","Wales","Northern Ireland"

To evaluate our approach over this benchmark, we obtained answers from our
system for all 2032 questions in the test collection. Then, we compute the following
metrics:

• Precision: The percentage of terms in the ground truth that are also terms
in the system output, averaged over all questions

• Recall: The percentage of terms in the ground truth that are also terms in
the system output, averaged over all questions

• F1: The harmonic mean of precision and recall

• Accuracy: The percentage of questions that received at least one correct
answer

For reasons of performance, we limit the number of facts returned by the SPARQL
endpoint to 20 (see section 5.3.6). We compute the evaluation scores for different
sets of answers of varying confidence by considering only answers that have a
score above a specific threshold t and trying different values for t. The results are
displayed in Table 5.8.

Threshold 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Precision 7.007 16.170 18.607 21.290 23.710 25.261 28.101 31.185 37.543 43.363
Recall 31.263 27.712 29.016 27.894 29.078 30.882 31.279 33.465 34.506 40.477
F1 9.710 16.957 19.074 19.695 21.664 23.224 25.039 28.356 31.443 39.200
Accuracy 53.759 47.597 47.570 46.893 47.697 48.031 47.867 48.765 52.380 52.174

Table 5.8: F1 and Exact scores over WebQuestions

We can see that a threshold value of 0.9 yields the best rewards for Precision,
Recall and F1 Accuracy is higher for a threshold value of 0 because including
all answers (score >= 0) leads to a higher probability that at least one correct
answer will be included. Our system performs well, similar to the highest scores
published in codalab3, even though our system has not been previously trained
on this specific dataset. The highest is 0.557 average F1 score obtained by [28].
However that system was based on freebase and it was trained on this specific
dataset, while our approach relies on a different knowledge base (DBpedia) and
does not require training on this dataset.

3https://worksheets.codalab.org/worksheets/0xba659fe363cb46e7a505c5b6a774dc8a

46 CHAPTER 5. EVALUATION

5.3.2 Without Answer Type Prediction

To examine the value that is added to this Question Answering pipeline by the an-
swer type prediction component, we evaluate our system over the same dataset and
metrics as section 5.3.1, but without using the answer type prediction component.

Therefore, in this case, the text provided to the extractive Question Answering
model is the textual description of each entity retrieved by the entity search system,
without being expanded with facts matching the answer type, as described in
sections 4.3 and 4.4.2. We report the following results using the best value for
the answer score threshold (0.9) determined in Experiment 1. Precision: 37.356,
Recall: 32.966, F1: 32.181 and Accuracy: 48.122. We can see that in this case
results are 4-8% lower.

5.3.3 Experiment 2: DBpedia Entity: QA

DBpedia-Entity is a standard test collection for entity search over the DBpedia
knowledge base. It is meant for evaluating retrieval systems that return a ranked
list of entities (DBpedia URIs) in response to a free text user query. This dataset
contains named entity queries, keyword queries, list queries and question answering
queries. We focus on the subset of question answering queries, which contains
140 queries from QALD-2 (Question Answering over Linked Data) challenge [39]
These are natural language questions that can be answered by DBpedia entities,
for example, ”Who is the mayor of Berlin?” Each entity/answer is accompanied
by a score in 3-point relevance scale:

• Highly relevant (2): The entity is a direct answer to the query

• Relevant (1): The entity can be shown as an answer to the query,but not
among the top results

• Irrelevant (0)

For our experiments we only use the relevant entities, i.e. those with score of 1 or
2.

Other systems that report results over this benchmark use the NDCG@10 and
NDCG@100 metrics because they focus on entity search. In our case, since we use
this benchmark for question answering, we also compute Precision scores, in order
to find out whether the top answers returned by our system are relevant to the
query.

We evaluate the performance of our approach as a standalone QA system for
the task of entity search. To do this we compute the Precision scores at the values
1, 3 and 5. The results obtained for varying values of answer score threshold are
given in Table 5.9.

The results are good in the sense that more than 69% of answers are relevant
to their corresponding questions.

5.3. QUESTION ANSWERING EVALUATION 47

Table 5.9: Precision @1, @3, @5 for varying answer score threshold over DBpedia
Entity

Threshold 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
P@1 33.573 49.331 55.432 55.641 55.938 56.190 58.857 57.241 57.273 69.444
P@3 27.840 42.006 48.265 47.951 46.595 50.813 52.905 51.207 52.348 69.444
P@5 24.543 41.008 47.147 46.836 45.768 49.716 51.905 51.207 52.348 69.444

Below (in §5.3.4) we shall also explore how this component can improve the
performance of a dedicated Entity Search system by adding the set of answers to
the set of entities retrieved by the search system.

5.3.4 Experiment 3: DBpedia Entity: QA+RANKING

We use the DBpedia Entity dataset [23] to evaluate the performance of Elas4RDF
as an entity retrieval system for Question Answering. Our goal for this experiment
is to find out how the answers retrieved using this work affect the performance of
Elas4RDF for Natural Question Answering tasks. Therefore, we use the group of
queries from the DBpedia Entity collection that are Natural Language Questions
(e.g. ”Who is the mayor of Berlin?”). This group contains 140 of the 467 total
queries in the benchmark. Over this group of queries, we compute the NDCG
scores (@10 and @100) for:

• Entities retrieved by the Elas4RDF search service [31]

• Entities retrieved by the Elas4RDF search service combined with high scoring
answers from the QA tab

To fuse the set of answers from the QA tab with the set of entities from the
search service, we retrieve all entities from the search service, then we select a
number (a) of answers from the QA tab and add them to the list of entities.
Each entity has a score computed by the search service and each answer a score
computed by the QA component. All scores are in the range scale of 0 to 1. We
try two approaches to compute these scores:

I Keep the score from each entity and answer as computed by the entity search
system and question answering component.

II Sum scores for entities in both rankings.

Finally, we sort the list of combined entities and answers by these scores, and we
keep the top 10 or 100 results, depending on the NDCG metric that we wish to
compute.

The results are displayed on Tables 5.10,5.11. The row baseline corresponds to
results for the entities returned by the QA component when no additional answers
have been added. The other rows correspond to results for varying number of top
answers from the QA component added to the baseline. We can see that including

48 CHAPTER 5. EVALUATION

answers from the QA tab to the list of entities improves the NDCG score in all
cases. The highest improvement occurs for the NDCG@100 metric when the 5 top
answers are added to the list of entities.

NDCG@100 NDCG@10
Answers added Score Difference Score Difference
0 (baseline) 0.325 0 0.325 0
1 0.352 0.027 0.352 0.027
3 0.372 0.047 0.353 0.028
5 0.384 0.059 0.354 0.029
10 0.382 0.057 0.353 0.028

Table 5.10: NDCG scores over Natural Language Questions of the DBpedia Entity
collection for approach I: Keep Initial Scores

NDCG@100 NDCG@10
Answers added Score Difference Score Difference
0 (baseline) 0.325 0 0.325 0
1 0.355 0.03 0.355 0.03
3 0.375 0.05 0.358 0.033
5 0.387 0.062 0.357 0.032
10 0.386 0.061 0.356 0.031

Table 5.11: NDCG scores over Natural Language Questions of the DBpedia Entity
collection for approach II: Sum Scores

As regards the comparison of approaches I and II, we can see that approach II
obtains better results with a small difference (0.003 improvement of NDCG@100
using 5 answers). The reason for this is that approach II handles cases were an
answer is returned by both the entity search system and the QA component.

Overall we can say that our QA pipeline could be considered as a method for
ranking entities in the context of entity search. In comparison to a “plain” entity
search, our pipeline is computationally more expensive because of the memory
and time requirements added by the answer type prediction, entity expansion and
answer extraction components (see section 5.3.6), but it can give better results in
certain cases. Specifically, it improves NDCG@100 by 6.2%

5.3.5 Executive Summary

We can summarize the evaluation results as follows:
We have shown that our approach for open domain Question Answering can

obtain satisfactory results 54% accuracy, 39% F1 over popular question answering
benchmarks, similar to other state of the art approaches, something that is very
interesting since it has not been trained on specific datasets and it has used dif-
ferent information sources than the ones intended by the benchmarks. We have
also showed how the answer type prediction and entity expansion stages improve

5.3. QUESTION ANSWERING EVALUATION 49

Precision by 6%, Recall by 7% and F1 score by 7% (over WebQuestions). In addi-
tion we have shown that our approach can be used in combination with an entity
search system to improve entity search tasks by 6% NDCG@100 (over DBpedia
Entity dataset).

5.3.6 Efficiency

While running, the system’s memory footprint is approximately 1.4 GB, and it
takes up 511 MB of space to store all required models. To evaluate the time re-
quired to answer a question, we record times for each step of the pipeline as well as
the overall time required to provide the final answers for all (2032) questions in the
webquestions dataset (section 5.3.1) and compute their average. This experiment
was performed on a machine on a machine with 6 physical cores running Debian
Linux. We found that the average time for the Answer Type Prediction stage is
0.1 seconds, for the Entity Expansion stage 3.9 seconds, for the Answer Extraction
stage 4.3 seconds and the overall average time required to provide the final answers
is 8.3 seconds. We can see that answer type prediction is the fastest stage, because
it uses a lighter language model (DistilBERT) while the other 2 stages are quite
slower, because of the response time of the SPARQL queries for Entity Expansion
and the larger language model used for Answer Extraction.

Table 5.12: Average time cost for each stage of the pipeline

Answer Type Prediction Entity Expansion Answer Extraction
0.1 sec (1.2%) 3.9 sec (47%) 4.3 sec (51.8%)

To improve efficiency, one could use a locally hosted triple store that would
provide a faster response time. Moreover one could speed up the answer extraction
stage by using the RoBERTa model on a GPU.

The number of returned facts could also be limited by setting a maximum
response size, or using more strict SPARQL queries (e.g. by ignoring the equivalent
classes), or using equivalence-aware indexes like those described in [45].

50 CHAPTER 5. EVALUATION

Chapter 6

Conclusion & Future Work

Keyword search over RDF datasets is a challenging task. To help the user find
and explore the requested information, we have investigated a multi-perspective
approach for keyword search in which multiple perspectives (tabs) are used for the
presentation of the search results, each tab stressing a different aspect of the hits.
The user can easily inspect all tabs and get a better overview and understanding of
the search results. We have focused on five fundamental (i.e. KB and task agnostic)
perspectives (triples, entities, graph, schema and QA) and we have implemented
this approach over a general keyword search engine over DBpedia.

With respect to related systems that provide keyword access over DBpedia,
we could say that the proposed approach is probably the more complete with
respect to the access methods that it offers. The task-based evaluation with users
has shown that (a) 96% of the users liked the multi-perspective approach (48%
Very much, 48% Fair), (b) the success rate of all users was very high (even of
those not familiar with RDF), (c) users seem to have quite different preferences
on perspectives.

There are several issues that are worth further work and research. We plan to
improve the Graph Tab, and to add additional tabs. Moreover we would like to
investigate how to exploit the equivalence (owl:sameAs) relationships.

Regarding Question Answering, since this task in vague or complex informa-
tion needs is hard to be adequate, satisfying and pleasing for end users, in this
thesis we have investigated an approach where QA complements a general purpose
interactive keyword search system over RDF. We detailed a pipeline for QA in that
context, that involves search services, SPARQL, and pre-trained neural networks.

We have evaluated our approach over two different datasets and showcased the
value it provides for question answering ad entity search tasks.

We have shown that our approach for open domain Question Answering can
obtain satisfactory results 54% accuracy, 39% F1 over a popular question answering
benchmark (WebQuestions), similar to other state of the art approaches, even if
no training has been performed over this particular benchmark, moreover, it has
used different information sources (i.e. DBpedia) than the ones intended by the

51

52 CHAPTER 6. CONCLUSION & FUTURE WORK

benchmark (FreeBase). We have also showed how the Answer Type Prediction
and Entity Expansion stages, do improve Precision by 6%, Recall by 7% and F1
score by 7% (over WebQuestions). In addition we have shown that our approach
can be used in combination with an entity search system to improve entity search
tasks by 6% NDCG@100 (over DBpedia Entity dataset).

As regards future research, it is worth investigating methods for improving
efficiency. In addition one could use more questions from the DBpedia Entity
dataset (not only QA-related), to see whether the entity ranking is improved in
all cases. The system is available to all at https://demos.isl.ics.forth.gr/

elas4rdf/.

Bibliography

[1] Zahra Abbasiantaeb and Saeedeh Momtazi. Text-based question answering
from information retrieval and deep neural network perspectives: A survey,
2020.

[2] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cy-
ganiak, and Zachary Ives. Dbpedia: A nucleus for a web of open data. In The
semantic web, pages 722–735. Springer, 2007.

[3] Krisztian Balog and Robert Neumayer. Hierarchical target type identification
for entity-oriented queries. In Proceedings of the 21st ACM international con-
ference on Information and knowledge management, pages 2391–2394, 2012.

[4] Caleb Belth, Xinyi Zheng, Jilles Vreeken, and Danai Koutra. What is Nor-
mal, What is Strange, and What is Missing in a Knowledge Graph: Unified
Characterization via Inductive Summarization. In Proceedings of The Web
Conference, pages 1115–1126, 2020.

[5] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Seman-
tic parsing on Freebase from question-answer pairs. In Proceedings of the
2013 Conference on Empirical Methods in Natural Language Processing, pages
1533–1544, Seattle, Washington, USA, October 2013. Association for Com-
putational Linguistics.

[6] Nikos Bikakis and Timos Sellis. Exploration and visualization in the web of big
linked data: A survey of the state of the art. arXiv preprint arXiv:1601.08059,
2016.

[7] Roi Blanco, Peter Mika, and Sebastiano Vigna. Effective and efficient entity
search in rdf data. In International Semantic Web Conference, pages 83–97.
Springer, 2011.

[8] Gong Cheng and Yuzhong Qu. Searching linked objects with falcons: Ap-
proach, implementation and evaluation. International Journal on Semantic
Web and Information Systems (IJSWIS), 5(3):49–70, 2009.

[9] Wanyun Cui, Yanghua Xiao, Haixun Wang, Yangqiu Song, Seung-won Hwang,
and Wei Wang. KBQA: Learning Question Answering over QA Corpora and
Knowledge Bases. Proc. VLDB Endow., 10(5):565–576, 2017.

53

54 BIBLIOGRAPHY

[10] Aba-Sah Dadzie and Emmanuel Pietriga. Visualisation of linked data–reprise.
Semantic Web, 8(1):1–21, 2017.

[11] Renaud Delbru, Stephane Campinas, and Giovanni Tummarello. Searching
web data: An entity retrieval and high-performance indexing model. Journal
of Web Semantics, 10:33–58, 2012. Web-Scale Semantic Information Process-
ing.

[12] Renaud Delbru, Nur Aini Rakhmawati, and Giovanni Tummarello. Sindice
at semsearch 2010. In WWW. Citeseer, 2010.

[13] Jia Deng, Jonathan Krause, Alexander C Berg, and Li Fei-Fei. Hedging your
bets: Optimizing accuracy-specificity trade-offs in large scale visual recogni-
tion. In 2012 IEEE Conference on Computer Vision and Pattern Recognition,
pages 3450–3457. IEEE, 2012.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding,
2018.

[15] Eleftherios Dimitrakis, Konstantinos Sgontzos, and Yannis Tzitzikas. A sur-
vey on question answering systems over linked data and documents. Journal
of Intelligent Information Systems, pages 1–27, 2019.

[16] Dimitar Dimitrov, Erdal Baran, Pavlos Fafalios, Ran Yu, Xiaofei Zhu,
Matthäus Zloch, and Stefan Dietze. Tweetscov19–a knowledge base of se-
mantically annotated tweets about the covid-19 pandemic. In 29th ACM In-
ternational Conference on Information and Knowledge Management (CIKM
2020), 2020.

[17] Dennis Dosso and Gianmaria Silvello. A scalable virtual document-based
keyword search system for RDF datasets. In Proceedings of the 42nd Interna-
tional ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 965–968, 2019.

[18] Dennis Dosso and Gianmaria Silvello. Search Text to Retrieve Graphs: A
Scalable RDF Keyword-Based Search System. IEEE Access, 8:14089–14111,
2020.

[19] Shady Elbassuoni and Roi Blanco. Keyword search over rdf graphs. In Pro-
ceedings of the 20th ACM international conference on Information and knowl-
edge management, pages 237–242. ACM, 2011.

[20] Shady Elbassuoni, Maya Ramanath, Ralf Schenkel, and Gerhard Weikum.
Searching rdf graphs with sparql and keywords. IEEE Data Eng. Bull.,
33(1):16–24, 2010.

BIBLIOGRAPHY 55

[21] Laura Faulkner. Beyond the five-user assumption: Benefits of increased sam-
ple sizes in usability testing. Behavior Research Methods, Instruments, &
Computers, 35(3):379–383, 2003.

[22] Sébastien Ferré. Sparklis: an expressive query builder for SPARQL endpoints
with guidance in natural language. Semantic Web, 8(3):405–418, 2017.

[23] Faegheh Hasibi, Fedor Nikolaev, Chenyan Xiong, Krisztian Balog, Svein Erik
Bratsberg, Alexander Kotov, and Jamie Callan. Dbpedia-entity v2: A test
collection for entity search. In SIGIR, pages 1265–1268. ACM, 2017.

[24] Philipp Heim, Sebastian Hellmann, Jens Lehmann, Steffen Lohmann, and
Timo Stegemann. RelFinder: Revealing Relationships in RDF Knowledge
Bases. In Semantic Multimedia, volume 5887, pages 182–187. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2009.

[25] Xin hu, Jiangli Duan, and Depeng Dang. Natural language question answering
over knowledge graph: the marriage of sparql query and keyword search.
Knowledge and Information Systems, 01 2021.

[26] Filip Ilievski, Wouter Beek, Marieke Van Erp, Laurens Rietveld, and Stefan
Schlobach. LOTUS: Linked open text unleashed. In COLD, 2015.

[27] Filip Ilievski, Wouter Beek, Marieke van Erp, Laurens Rietveld, and Stefan
Schlobach. LOTUS: Adaptive text search for big linked data. In ESWC, pages
470–485. Springer, 2016.

[28] Sarthak Jain. Question answering over knowledge base using factual memory
networks. In Proceedings of the NAACL Student Research Workshop, pages
109–115, San Diego, California, June 2016. Association for Computational
Linguistics.

[29] Mohamad Yaser Jaradeh, Allard Oelen, Kheir Eddine Farfar, Manuel Prinz,
Jennifer D’Souza, Gábor Kismihók, Markus Stocker, and Sören Auer. Open
research knowledge graph: Next generation infrastructure for semantic schol-
arly knowledge. In Proceedings of the 10th International Conference on
Knowledge Capture, pages 243–246, 2019.

[30] Thomas Johnson. Indexing linked bibliographic data with JSON-LD, BibJ-
SON and Elasticsearch. Code4lib Journal, 19:1–11, 2013.

[31] Giorgos Kadilierakis, Pavlos Fafalios, Panagiotis Papadakos, and Yannis Tz-
itzikas. Keyword Search over RDF using Document-centric Information Re-
trieval Systems. In Extended Semantic Web Conference (ESWC’2020), 2020.

[32] Giorgos Kadilierakis, Christos Nikas, Pavlos Fafalios, Panagiotis Papadakos,
and Yannis Tzitzikas. Elas4RDF: Multi-perspective triple-centered keyword
search over RDF using elasticsearch. Extended Semantic Web Conference
(ESWC) – Posters & Demonstrations Track, 2020.

56 BIBLIOGRAPHY

[33] Kalliopi Kontiza and Antonis Bikakis. Web search results visualization: Eval-
uation of two semantic search engines. In International Conference on Web
Intelligence, Mining and Semantics (WIMS’14), pages 1–12, 2014.

[34] Vangelis Kritsotakis, Yannis Roussakis, Theodore Patkos, and Maria
Theodoridou. Assistive query building for semantic data. In SEMANTICS
Posters&Demos, 2018.

[35] Petri Leskinen, Goki Miyakita, Mikko Koho, Eero Hyvönen, et al. Combining
faceted search with data-analytic visualizations on top of a sparql endpoint.
In VOILA@ ISWC, pages 53–63, 2018.

[36] Xiaoqing Lin, Fu Zhang, and Danling Wang. Rdf keyword search using mul-
tiple indexes. Filomat, 32(5):1861–1873, 2018.

[37] Xitong Liu and Hui Fang. A study of entity search in semantic search work-
shop. In Proc. of the 3rd Intl. Semantic Search Workshop, 2010.

[38] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,
Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta:
A robustly optimized bert pretraining approach, 2019.

[39] Vanessa Lopez, Christina Unger, Philipp Cimiano, and Enrico Motta. Eval-
uating question answering over linked data. Web Semant., 21:3–13, August
2013.

[40] Xiaolu Lu, Soumajit Pramanik, Rishiraj Saha Roy, Abdalghani Abujabal,
Yafang Wang, and Gerhard Weikum. Answering Complex Questions by Join-
ing Multi-Document Evidence with Quasi Knowledge Graphs. In ACM SI-
GIR, pages 105–114, 2019.

[41] Nandana Mihindukulasooriya, Mohnish Dubey, Alfio Gliozzo, Jens Lehmann,
Axel-Cyrille Ngonga Ngomo, and Ricardo Usbeck. SeMantic AnsweR
Type prediction task (SMART) at ISWC 2020 Semantic Web Challenge.
CoRR/arXiv, abs/2012.00555, 2020.

[42] José Moreno-Vega and Aidan Hogan. Grafa: Scalable faceted browsing for rdf
graphs. In International Semantic Web Conference, pages 301–317. Springer,
2018.

[43] Michalis Mountantonakis and Yannis Tzitzikas. LODsyndesis: global scale
knowledge services. Heritage, 1(2):335–348, 2018.

[44] Michalis Mountantonakis and Yannis Tzitzikas. Large-scale Semantic Integra-
tion of Linked Data: A Survey. ACM Computing Surveys (CSUR), 52(5):103,
2019.

BIBLIOGRAPHY 57

[45] Michalis Mountantonakis and Yannis Tzitzikas. Content-based union and
complement metrics for dataset search over rdf knowledge graphs. Journal of
Data and Information Quality (JDIQ), 12(2):1–31, 2020.

[46] Christos Nikas, Pavlos Fafalios, and Yannis Tzitzikas. Two-stage semantic an-
swer type prediction for question answering using BERT and class-specificity
rewarding. In Nandana Mihindukulasooriya, Mohnish Dubey, Alfio Gliozzo,
Jens Lehmann, Axel-Cyrille Ngonga Ngomo, and Ricardo Usbeck, editors,
Proceedings of the SeMantic AnsweR Type prediction task (SMART) at ISWC
2020 Semantic Web Challenge co-located with the 19th International Seman-
tic Web Conference (ISWC 2020), Virtual Conference, November 5th, 2020,
volume 2774 of CEUR Workshop Proceedings, pages 19–28. CEUR-WS.org,
2020.

[47] Christos Nikas, Giorgos Kadilierakis, Pavlos Fafalios, and Yannis Tzitzikas.
Keyword Search over RDF: Is a Single Perspective Enough? Big Data and
Cognitive Computing, 4(3):22, August 2020.

[48] Natasha Noy, Yuqing Gao, Anshu Jain, Anant Narayanan, Alan Patterson,
and Jamie Taylor. Industry-scale knowledge graphs: lessons and challenges.
Queue, 17(2):48–75, 2019.

[49] Dominic Oldman and Diana Tanase. Reshaping the knowledge graph by
connecting researchers, data and practices in researchspace. In International
Semantic Web Conference, pages 325–340. Springer, 2018.

[50] Hanane Ouksili, Zoubida Kedad, Stéphane Lopes, and Sylvaine Nugier. Using
patterns for keyword search in rdf graphs. In EDBT/ICDT Workshops, 2017.

[51] Maria-Evangelia Papadaki, Yannis Tzitzikas, and Nicolas Spyratos. Analytics
over rdf graphs. In International Workshop on Information Search, Integra-
tion, and Personalization, pages 37–52. Springer, 2019.

[52] José R Pérez-Agüera, Javier Arroyo, Jane Greenberg, Joaquin Perez Iglesias,
and Victor Fresno. Using bm25f for semantic search. In Proceedings of the
3rd international semantic search workshop, page 2. ACM, 2010.

[53] Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know:
Unanswerable questions for SQuAD, 2018.

[54] Mohamad Rihany, Zoubida Kedad, and Stéphane Lopes. Keyword Search
Over RDF Graphs Using WordNet. In BDCSIntell, pages 75–82, 2018.

[55] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distil-
bert, a distilled version of bert: smaller, faster, cheaper and lighter, 2019.

[56] Vinay Setty and Krisztian Balog. Semantic answer type prediction using
BERT IAI at the ISWC SMART task 2020. In Nandana Mihindukulasooriya,

58 BIBLIOGRAPHY

Mohnish Dubey, Alfio Gliozzo, Jens Lehmann, Axel-Cyrille Ngonga Ngomo,
and Ricardo Usbeck, editors, Proceedings of the SeMantic AnsweR Type pre-
diction task (SMART) at ISWC 2020 Semantic Web Challenge co-located with
the 19th International Semantic Web Conference (ISWC 2020), Virtual Con-
ference, November 5th, 2020, volume 2774 of CEUR Workshop Proceedings,
pages 10–18. CEUR-WS.org, 2020.

[57] Saeedeh Shekarpour, Edgard Marx, Axel-Cyrille Ngonga Ngomo, and Sören
Auer. Sina: Semantic interpretation of user queries for question answering
on interlinked data. Journal of Web Semantics, 30:39–51, 2015. Semantic
Search.

[58] Kuldeep Singh, Ioanna Lytra, Arun Sethupat Radhakrishna, Saeedeh Shekar-
pour, Maria-Esther Vidal, and Jens Lehmann. No one is perfect: Analysing
the performance of question answering components over the dbpedia knowl-
edge graph, 2020.

[59] Martin G Skjæveland. Sgvizler: A javascript wrapper for easy visualization
of sparql result sets. In Extended Semantic Web Conference, pages 361–365.
Springer, 2012.

[60] Christian Stab, Kawa Nazemi, Matthias Breyer, Dirk Burkhardt, and Jörn
Kohlhammer. Semantics visualization for fostering search result comprehen-
sion. In Extended Semantic Web Conference, pages 633–646. Springer, 2012.

[61] Yannis Tzitzikas, Nikos Manolis, and Panagiotis Papadakos. Faceted explo-
ration of RDF/S datasets: a survey. Journal of Intelligent Information Sys-
tems, 48(2):329–364, 2017.

[62] Hernán Vargas, Carlos Buil-Aranda, Aidan Hogan, and Claudia López. RDF
Explorer: A Visual SPARQL Query Builder. In ISWC, pages 647–663.
Springer, 2019.

[63] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In Advances in neural information processing systems, pages 5998–6008,
2017.

[64] David S Wishart, Yannick D Feunang, An C Guo, Elvis J Lo, Ana Marcu,
Jason R Grant, Tanvir Sajed, Daniel Johnson, Carin Li, Zinat Sayeeda, et al.
Drugbank 5.0: a major update to the drugbank database for 2018. Nucleic
acids research, 46(D1):D1074–D1082, 2018.

[65] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite,
Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame,

BIBLIOGRAPHY 59

Quentin Lhoest, and Alexander M. Rush. Huggingface’s transformers: State-
of-the-art natural language processing, 2020.

[66] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhut-
dinov, and Quoc V. Le. Xlnet: Generalized autoregressive pretraining for
language understanding, 2019.

