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Abstract: 
The phase behavior of a suspension of monodisperse colloidal hard spheres is determined 

solely by its volume fraction. At low concentrations it is in a liquid state and at higher 

concentrations it forms an ordered crystal as a way to maximize entropy. At a transition 

volume fraction of 0.58 the system becomes mechanically trapped in a metastable glassy 

state. When put under oscillatory strain, hard spheres suspensions generally tend to order. 

When a high volume fraction hard sphere glass is under oscillatory shear it is given enough 

energy to order into the entropically favorable crystal structure. This study focuses on the 

rheological properties of the glassy state and the differences to its shear induced crystal.  

 

We have rheologically studied the crystallization process of the glass with increasing strain 

and probed the linear frequency dependence of both glass and shear induced crystal. The 

concentration dependence of the linear viscoelastic properties of the glass and crystal was 

compared. It shows a lower G’ and G’’ for the shear induced crystal. Additionally the 

comparison of the yield strains and Lissajous plots provided information on the shearing 

mechanisms of the crystal and the glass. The rheological aging was also probed, surprisingly 

revealing an increase of viscoelasticity not only for the glass, but also for the shear induced 

crystal. 

 

Light Scattering Echo experiments and Brownian Dynamics Simulations were also carried out 

in order to complement the rheology experiments by showing the microscopic 

rearrangements of the hard spheres under shear. Light scattering-Echo from a crystal at rest 

showed larger de-correlation compared to the glass, verified by the increased in cage Mean 

Squared Displacements (MSD) found by the BD simulations. The MSD of both the glass and 

the crystal under shear were extracted from the simulations giving more insight to the 

crystallization process. Additionally the simulations allowed the visualization of the crystal 

slipping layers under oscillatory strain.  
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1. Introduction 

1. Introduction 
 
A colloidal dispersion is a type of homogeneous mixture. A colloid consists of two phases: a 

dispersed phase in a continuous phase. In a colloid, the dispersed phase is made of tiny 

particles or droplets that are distributed evenly throughout the continuous phase. The size of 

the dispersed phase particles are between typically 10 nm and 1000 nm in at least one 

dimension. Many familiar substances, including butter, milk, cream, aerosols (fog, smog, 

smoke), asphalt, inks, paints, glues and foam are colloids. Milk is a liquid colloid (fat) 

suspended in a liquid medium (water). Fog is a colloid system of water particles suspended in 

air. In this work we examine the case of solid colloidal particles suspended in a liquid medium. 

 

Colloids interact with each other with van der Waals, electrostatic, excluded volume and steric 

forces. The interaction between two dipoles which are either permanent or induced can cause 

a force between two particles. Even if the particles do not have a permanent dipole, 

fluctuations of the electron density gives rise to a temporary dipole in a particle. This 

temporary dipole induces a dipole in particles nearby. This causes an attraction between the 

dipoles and is known as van der Waals force. It is always present, it is short range and 

attractive. When colloidal particles carry an electrical charge they can attract or repel each 

other. The charges of both the continuous and the dispersed phase, as well as the mobility of 

the phases are factors affecting this interaction. The excluded volume repulsion refers to the 

impossibility of any overlap between hard particles. Lastly, steric forces between polymer-

covered surfaces can modulate interparticle forces, producing an additional repulsive steric 

stabilization force. 

 

Stabilization serves to prevent colloids from aggregating due to attractive forces. Steric 

stabilization and electrostatic stabilization are the two main mechanisms for colloid 

stabilization. With steric stabilization the particles are coated with a layer of polymer that 

induces repulsion due to polymer chain excluded volume. Electrostatic stabilization is based 

on the mutual repulsion of same electrical charges. Small particle sizes lead to enormous 

surface areas, and this effect is greatly amplified in colloids. The particles used in this work 

have been sterically stabilized. 

 

Colloids are found in a wide range of consumer and industrial products such as paints and 

shampoos. A greater understanding of the underlying principles that govern the behavior and 

properties of these products is of great interest to manufacturers. Many products are sold in 

metastable states and consequently their study is of particular interest. 
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1. Introduction 

Added to the general interest surrounding colloids, shear induced colloidal crystals have an 

added technological interest, because the application of shear could be used to assemble 

colloidal crystals for use in photonic or other applications. 

 

In physics, colloids are an interesting model system for atoms Many of the forces that govern 

the structure and behavior of matter, such as excluded volume interactions or electrostatic 

forces govern the structure and behavior of colloidal suspensions. For example, the same 

techniques that can be used to model ideal gases can be used to model the behavior of a 

hard sphere colloidal suspension. The colloidal length scale is comparable to the wavelength 

of light making both light scattering and optical microscopy valuable research tools. The 

added possibility of tuning the size and interactions of colloidal particles combined with the 

accessibility of the particles to optical techniques make them a lucrative atomic modeling 

system. 

 
This thesis presents a study of the oscillatory shear response of hard sphere colloidal glasses 

and their shear induced crystal counterparts. It has been known that colloidal particles of this 

sort crystallize under shear, but no rheological measurements had been made that 

determined the mechanical properties of the crystal and compared them to the metastable 

glass. We also make comparison of glass and crystal by looking at the particle re-

arrangements during oscillatory shear by light scattering echo and computer simulations. 
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2. Background 

2. Background 
2.1 Hard Sphere Colloids 
The system studied in this work is ideally the simplest conceivable particle dispersion. 

Colloidal hard spheres are ideally microscopic particles moving within a medium with 

Brownian motion that interact with an infinite repulsive potential when they touch. Figure 2.1.1 

shows the potential V(r) as V(0<r<2R)=∞ and V(r>2R)=0, where R is the particle radius. Hard 

spheres have no energy scale (V(r) is independent of temperature) so we only need to 

consider entropy to determine phase behavior (Poon and Pusey 1995, Laird et al. 1987, 

Hoover et al. 1968). We can thus characterize this system by the number density of the 

particles alone. This is expressed in colloid volume fraction Φ, 
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Figure 2.1.1: The pair potential of hard sphere particles of uniform radius R and centre to 

centre separation r. 

 

As mentioned in the introduction, Van der Waals attractive forces may cause colloidal 

particles to aggregate irreversibly. This attraction is sufficiently long ranged (r-1 for r<R) to be 

able to affect particles in the size range of colloids. The resulting attractive potential has 

strength proportional to the refractive index mismatch between solvent and particle (Hamaker 

constant), that can be many times that of the thermal energy of the particles. This makes it 

important to stabilize the colloids to prevent aggregation. (Poon and Pusey 1995) 

 

The method used to stabilize the particles in this work is steric stabilization. Small polymer 

chains are densely grafted on the surface of the colloidal particles. When two particles 

approach the polymer layers interpenetrate resulting in the reduction of entropy of individual 

chains. This causes a strong repulsion between the two polymer layers preventing the 

particles from getting close enough for the Van der Waals forces to become significant. If the 

grafting density and length of the chains are properly tailored, the resulting potential for 

sterically stabilized particles is a good approximation of a hard sphere potential. 
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2. Background 

 

Another issue of the experimental implementation of hard spheres is polydispersity. Highly 

polydisperse hard sphere systems are unable to crystallize, but are still able to reach an 

arrested glassy state at φ=0.58. As polydispersity rises, crystallization dynamics become 

slower as different particles sizes are not easily accommodated in the crystal lattice. At about 

10% polydispersity, the distribution of sizes is too large and the crystal is not created at all 

(Poon and Pusey 1995, Schöpe et al. 2007).  

 
As mentioned before, there is no temperature/energy scale for hard spheres, so there is only 

one parameter which completely determines the phase behavior. This is the particle volume 

fraction Φ. Hard spheres exhibit a liquid phase at volume fractions beneath 0.494, where the 

particles are free to diffuse and explore the whole volume available. A liquid-crystal 

coexistence phase is observed at volume fractions ranging from 0.494 to 0.545 and a fully 

crystalline structure from 0.545 to 0.58. Due to the large particle sizes of these colloidal 

crystals, they are extremely weak compared to atomic crystals and can be destroyed by 

gently shaking the sample cell. As hard spheres cannot overlap, the maximum packing in an 

ordered state is . If the particles form an amorphous random close packed 

structure then the maximum packing fraction is

0.74MAXΦ ≈

0.64RCPΦ ≈  (Schaertl and Sillescu 1994). 

The liquid-crystal coexistence phase has a linear dependence of crystal volume to volume 

fraction that makes it possible from the relevant heights of the phases to accurately determine 

volume fraction (Ackerson 1990). 

 

Entropy is the driving force behind the crystallization of hard sphere colloids. It may seem 

counterintuitive that the increase of entropy leads to an ordered state, however the crystal 

structure gives freedom of movement to each particle around their lattice site by increasing 

individual free volume. Even though the particles are in an ordered state, the increase of 

entropy due to individual motion and free volume is greater than the reduction of the 

configurational entropy (Poon and Pusey 1995).  

 

By increasing the volume fraction further the hard sphere particles reach a metastable state. 

Over 0.58 the particles are unable to move into the entropically favorable crystal positions due 

to space restrictions and become trapped in a dynamically arrested glass phase (Pusey and 

van Megen 1986). Figure 2.1.2 shows the hard sphere phase diagram.  
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2. Background 

 0           0.494                        0.545                   0.58             ~0.64        0.74 
      Liquid          Liquid-Crystal             Crystal             Glass                              φ 

 
Figure 2.1.2 Phase behaviour of a suspension of monodisperse hard spheres 

 

The crystal structures in which hard spheres assemble to when left at rest are a mixture of 

face-centred cubic (FCC) and hexagonally close packed (HCP) regions that are randomly 

oriented (Pusey et al. 1989). As seen in figure 2.1.3 the FCC crystal (in the shearing plane, as 

will be shown later) is defined by hexagonal layers of spherical particles one on top of the 

other. The HCP crystal is similar, but instead of the three repeating layers of the FCC 

(ABCAB…), the HCP has two (ABABA…). If left for long periods of time, it was found that this 

mixture of random HCP and FCC structures will gradually age into a pure FCC crystal. (Kegel 

and Dhont 1999 & Martelozzo et al. 2002). Small mechanical perturbations also seemed to 

favour the FCC structure. 

 

BBAA    CC  
 

Figure 2.1.3: FCC crystal representation 
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2. Background 

2.2 Rheology  
Rheology is a science that deals with the flow and elasticity properties of materials. The name 

comes from the Greek word “ροή”, which means “flow”. It has been extensively used for 

characterizing polymers and aiding in the industrial processing of polymeric products. The 

macroscopic properties probed by rheology can be used to glimpse into the microscopic 

structure and yield important time and size scales. This information is extracted from the 

material through deformation and subsequent measurement of the force response.  

 

Linear Viscoelasticity 
Consider the deformation geometry of simple shear, sketched in Fig. 2.2.1. The material 

being sheared is between two flat rigid surfaces. The adhesion between the material and the 

surfaces is assumed to be strong enough that there is no slippage at either surface. The 

shear stress σxy (called here σ for short) in this simple shear is defined as the ratio of the 

applied force and the cross-sectional area of the surfaces A, which is also the area of any 

plane perpendicular to the y-direction within the material being sheared.  

A
F

=σ  (Eq. 2.2.2) 

The shear strain is defined as the displacement of the top plate ∆x relative to the thickness of 

the sample h (see Fig. 2.2.1).  

h
x∆

=γ  (Eq. 2.2.3) 

By defining the stress and strain in this fashion, each part of the entire sample being sheared 

has identical shear stress σ and shear strain γ, in simple shear, as long as the material 

shears uniformly.  

 

∆x 

h 
y 

x  
 

Figure 2.2.1: Deformation in simple shear requires application of equal and opposite forces to 

the two plates. The figure is a 2-dimensional representation.  

 

If the material between the surfaces is a perfectly elastic solid, the shear stress σ and shear 

strain γ are proportional, with the constant of proportionality defining the shear modulus G.  
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2. Background 

/G σ γ=  (Eq. 2.2.4) 

 

Since the stress has units of force/area and the strain is dimensionless, the modulus has units 

of force/ area. Equation 2.2.4 is Hooke's Law of Elasticity and it is valid for all solids at 

sufficiently small strains.  

 

On the other hand, if the material between the surfaces is a simple liquid, the stress is 

identically zero at any constant strain γ. In liquids, the stress is determined by deformation 

rate. The rate of change of shear strain with time is called the shear rate.  

 

d
dt
γγ =  (Eq. 2.2.5) 

 

If the top plate moves with a constant velocity v, as seen in figure 2.2.6, the shear rate is γ  = 

v / h. For simple liquids, the shear stress σ is linearly proportional to shear rateγ , with the 

constant of proportionality defining the shear viscosity η.  

 

/η σ γ=  (Eq. 2.2.7) 

 

0=v

v
y 

h 

x
 

Figure 2.2.6: Steady rate deformation in simple shear geometry. The top plate moves in the x 

direction with a constant speed, while the bottom plate remains stationary. 

  

This relation is Newton's Law of Viscosity and liquids that obey it are referred to as Newtonian 

liquids. Since the stress has units of force / area and the shear rate has units of reciprocal 

time, the viscosity has units of force time/area.  

 

Materials such as polymers and colloidal suspensions are viscoelastic, meaning that they 

have intermediate properties between Newtonian liquids and Hookean solids.  

 

Oscillatory Shear  
A simple viscoelastic measurement that has become very easy to implement with the advent 

of modern electronics is oscillatory shear. A sinusoidal strain with angular frequency ω is 

applied to a sample in the simple shear geometry.  
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2. Background 

 

0( ) sin( )t tγ γ ω=  (Eq. 2.2.8) 

 

The principle advantage of this technique is that the viscoelastic response of any material can 

be probed directly on different time scales (l/ω) of interest by simply varying the angular 

frequency ω. If the material studied is a perfectly elastic solid, then the stress in the sample 

will be related to the strain through Hooke's Law (Eq. 2.2.4).  

0( ) ( ) sin( )t G t G tσ γ γ= = ω  (Eq. 2.2.9) 

The stress is perfectly in-phase with the strain for a Hookean solid, as shown in Fig. 2.2.10. 

On the other hand, if the material being studied is a Newtonian liquid, the stress in the liquid 

will be related to the shear rate through Newton's Law (Eq. 2.2.7).  

 

0
( )( ) cos( )d tt t
dt
γσ η ηγ ω= = ω  (Eq. 2.2.11) 

 

 
Figure 2.2.10: Oscillatory strain (solid curve and left axis) and oscillatory stress (dashed curve 

and right axis) are in-phase for a Hookean solid.  

 

The stress in a Newtonian liquid still oscillates with the same angular frequency ω, but is out-

of-phase with the strain by π /2, as shown in Fig. 2.2.12. More generally, the linear response 

of a viscoelastic material always has the stress oscillate at the same frequency as the applied 

strain, but the stress leads the strain by a phase angle δ.  

 

0( ) sin( )t tσ σ ω= δ+  (Eq. 2.2.13) 

 

In general, δ can be frequency dependent, with any value in the range 0 < δ < π /2. The two 

simple cases already treated correspond to the limits allowed for the phase angle. Solids that 

obey Hooke's Law have δ = 0 at all frequencies, while liquids that obey Newton's Law have δ 

= π /2 at all frequencies. Since the stress is always a sinusoidal function with the same 
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2. Background 

frequency as the strain, we can separate the stress into two orthogonal functions that oscillate 

with the same frequency, one in-phase with the strain and the other out-of-phase with the 

strain by π /2.  

 
' ''

0( ) [ ( )sin( ) ( ) cos( )]t G t G tσ γ ω ω ω ω= +  (Eq. 2.2.14) 

 

 
Figure 2.2.12: Oscillatory strain (solid curve and left axis) and oscillatory stress (dashed curve 

and right axis) are out-of-phase for a Newtonian liquid. The stress leads the strain by phase 

angle δ == π /2.  

 

The above equation defines G’(ω) as the storage modulus and G”(ω) as the loss modulus. 

Equation 2.2.14 can be related to the previous equation for the stress in oscillatory shear 

using the trigonometric identity for the sine of a sum.  

 

sin( ) cos sin( ) sin cos( )t t tω δ δ ω δ+ = + ω  (Eq. 2.2.15) 

 

This suggests that the storage and loss moduli can be related to the phase angle and the 

modulus amplitude σ0/γ0 at each frequency ω.  

 

' 0

0

cosG σ δ
γ

=  (Eq. 2.2.16) 

'' 0

0

sinG σ δ
γ

=  (Eq. 2.2.17) 

 

The ratio of storage and loss moduli is the tangent of the phase angle, called the loss tangent.  
'

''tan G
G

δ =  (Eq. 2.2.18) 

 

The storage and loss moduli are the real and imaginary parts of the complex modulus G*(ω).  
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2. Background 

 
* ' ''( ) ( ) ( )G G iGω ω= + ω  (Eq. 2.2.19) 

 

Peclet Number 
In order to quantify the effect of shear on a material, the Peclet number is introduced. It is 

mostly used for colloidal suspensions and is a measure of the relative importance of 

convective motion of shear flow to diffusive Brownian motion. It is a dimensionless number 

that is given by the shear rateγ  multiplied by the time needed for a particle to diffuse a 

distance equal to its radius. BPe γ τ= ⋅ , where  is the Brownian diffusion time. 

For the dilute regime 

2 /B a Dτ =

36 /B S BR K Tτ πη=  and  (Bare Peclet). At 

Pe<<1, the Brownian diffusion is more important than the shear rate and the system’s state 

closely resembles the system at rest (linear regime). If Pe>1, the shear rate becomes 

important compared to Brownian motion and the system moves out of equilibrium giving rise 

to non linear effects. 

36 /SPe R K Tπη γ= B

 

Experimental Geometries 
When working with commercial rheometers to produce experimental data, the geometries 

differ from the simple shear geometry shown previously. Although the simple shear geometry 

is easy to understand, it is very hard to implement experimentally. To solve various 

implementation issues, experimental rheologists turned to rotating geometries such as the 

parallel plate and cone plate geometries shown in figure 2.2.20 and also the couette 

geometry. 

 

 

Figure 2.2.20: Illustration of the 

parallel plate (left) and cone plate 

(right) geometries used in 

experimental rheology. 

 

The main difference between the two geometries is that the cone and plate has a 

homogenous strain field, whereas the parallel plates do not. This is especially important when 

doing non-linear measurements, as the validity of the response relies heavily on the 

assumption that the whole sample responds to applied strain in the same way. For linear 

measurements this assumption is true even in the case of parallel plates that apply non-

homogenous strain. The cone and plate geometry was mostly used in this work as we focus 

on non-linear rheology. 
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2.3 Shear induced Ordering 
Beyond the simplest system of hard spheres that is examined in this work, shear induced 

ordering has been witnessed in similar systems such as charged colloids (Chen et al. 1994), 

microgels (Paulin et al. 1996,1997, Stieger et al. 2004) and particles in aqueous medium 

(Panine et al. 2002). Paulin et al. (1996, 1997) studied the various forms of shear induced 

FCC structures in glassy PMMA microgels and found very different non-linear rheological 

properties as a function of strain (creep), but linear dynamic measurements showed small 

differences between changing structures. The study of concentrated PNiPAM microgels by 

Stieger et al. (JPCM, Langmuir 2004) showed the versatility of the system on the shear 

induced structures, while varying the temperature and changing interactions. Panine et al. 

(2002) were able to view the variations in the structure in hard sphere like particles and 

simultaneously monitor the elastic and loss moduli as the crystal was being formed. 

Experimental setups made to probe these systems included light (Paulin et al. 1996,1997), X-

ray (Panine et al. 2002) and neutron scattering (Chen et al. 1994, Stieger et al. 2004) coupled 

with rheology.  

 

Furthermore, simulations of crystallization on colloidal particles have been made for liquid 

charged particles (Blaak et al. 2004) and many jammed (Duff and Lacks 2007) systems. Duff 

and Lacks (2007) executed a range of different simulation techniques to examine the 

mechanism of shear induced ordering on jammed systems and deduced that ordering occurs 

as shear pushes the system to lower energy minima. A review of Vermant and Solomon 

(2005) summarizes and gives an overview of the more important work. 

 

Denneman et al. (1999) developed a frequency dependent theory on the elastic properties of 

a square cubic charged colloidal crystal. More applicable to this work, Laird (1992) developed 

a theory on the elastic constants of BCC and FCC crystals using the Modified Weighted 

Density Approach. 

 

There have also been indirect rheological measurements of a randomly oriented hard sphere 

crystal by Phan et al. (1999) showing an increase of elastic properties with volume fraction. 

Additionally, Schope et al. (1998) measured the elastic properties of the phase transition of 

BCC crystals to FCC crystals formed with charged latex spheres at rest. Vorst et al. (1995) 

made some dynamic linear measurements on charged crystals and developed a model that 

quantitatively fit their data. 

 

More specific to this work on hard sphere particles, there have been direct observations of 

shear induced crystallization of hard spheres with microscopy (Haw et al. 1998) and light 

scattering experiments (Ackerson 1988, 1990), which show the structures and geometric flow 

characteristics and will be discussed in detail further down the text. Figure 2.2.1 shows a 

phase diagram of oscillatory shear induced ordering in hard spheres from Ackerson (1990). 
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Amos et al. (2000) managed to fabricate hard sphere crystals with oscillatory shear in thin 

films giving rise to optical applications of shear induced crystallization. Derks et al. (2004) 

studied colloidal crystallization with a confocal microscope using a counter rotating cone plate 

shear cell and was able to image the shear behaviour of hard sphere crystals by looking at a 

stationary plane. Cohen et al. (2004) witnessed peculiar configurations under shear when 

colloidal spheres were confined to gaps of less than 11 particle diameters. Smith et al. (2007) 

developed a model to quantify under what application of shear a depletion hard sphere gel 

may crystallize. Even though this subject has been examined for many years, there still hasn’t 

been a comprehensive rheological study of the shear induced crystal structure from a hard 

sphere glass. 

 

 
Figure 2.2.1: Phase diagram taken from Ackerson (1990) showing shear structure with 

volume fraction versus oscillatory strain (3.5 Hz) in a hard sphere system. C – FCC crystal 

order, S – layer ordering and A – amorphous order. The first letter shows the predominant 

ordering.  
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2.4 Hard sphere Rheology 

Rheological measurements on hard spheres have been done in the past, mostly with 

polydisperse samples, as to not complicate results with shear ordering (Pusey 1987, Bartlett 

1997). Older dynamic measurements on PMMA spheres with approximate hard interactions 

were done by Frith et al. (1990) showing a qualitatively similar frequency dependence to this 

work. Mewis and Vermant (2000) made a sum of viscosity, yield stress and shear thickening 

measurements and produced scaling relations allowing prediction of properties in different 

sized spheres. Petekidis et al. (2002, 2003) did some creep and some dynamic 

measurements coupled with DLS echo of a polydisperse hard sphere glass and concluded 

that it can tolerate a high amount of strain (10%-15%) before yielding irreversibly. Rao et al. 

(2006) conducted experiments on nanoparticle spheres with approximated hard interactions 

and high polydispersity showing the similarity of the rheological properties to hard spheres. 

Mason and Weitz (1995) measured the viscoelastic frequency dependence of silica hard 

spheres near the glass transition and successfully applied the Mode Coupling Theory to the 

resulting rheology. Kobelev and Schweizer (2005) presented a complete microscopic theory 

of glassy colloidal suspension under stress giving values including elastic moduli, viscosity 

and yield strains.  
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2.5 Hard sphere Crystallization under Shear 
Work done by Haw et al. (1998) with a sliding parallel plate geometry (simple shear), shows 

that concentrated hard sphere systems tend to order under high enough oscillatory strains. If 

the volume fraction is over 0.545, a homogeneous crystal is created that remains stable. If the 

volume fraction is between 0.494 and 0.545 then the induced crystal appears in regions of the 

sheared sample, but still remains at the end of shear. In the case of volume fraction lower 

than 0.494 (liquid regime), ordering is seen during shear that dissolves after cessation of 

shear. If the hard spheres are in the glassy state (φ>0.58), the shear induced crystal does not 

revert to glass, but remains in the energetically preferable crystal state.  

 

When the system under shear is in the glass regime, the crystal is formed with two 

orientations depending on the amount of strain. Either with the close packed direction parallel 

to shear (γ>50%) or with the close packed direction perpendicular to shear (γ<50%). Figure 

2.3.1 shows a representation of the closed packed direction of the crystal at high and low 

strains. At low strains Haw would see that the crystal would have some sort of 

“polycrystallinity” as the sample would not be fully oriented in the perpendicular direction, but 

would have “grains” which had a preferred direction which was perpendicular to the shear 

direction. At high strains the sample would reorient parallel to shear and the “polycrystallinity” 

would disappear. 

 

PPaarraalllleell  PPeerrppeennddiiccuullaarr  
((LLooww SSttrraaiinn)) ((HHiigghh  SSttrraaiinn))  

SShheeaarr  DDiirreeccttiioonn  
 

Figure 2.3.1: Representation of close packed direction of crystal parallel and perpendicular to 

shear 
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2.6 Hard spheres and Aging 
As the volume fraction is increased, the motion of the particles slows down. The glass 

transition at 0.58, occurs when the system turns into a physically arrested state where each 

particle is trapped by its neighbours. In this metastable state, the system is far from the 

energetically preferred crystal structure and slowly explores the energetic landscape finding 

new minima with time (Bouchaud 1999, Cipelleti and Ramos 2005). This translates to the 

aging of the hard sphere system at volume fractions higher than the glass transition. 

 

Aging manifests itself in many properties of a glassy system including particle mean square 

displacement, relaxation times and viscoelasticity. Specifically for the aging processes of hard 

sphere systems there have been measurements of mean square displacements with 

microscopy (Courtland and Weeks 2003) and time evolution experiments with light scattering 

(Masri et al. 2005), but there seem to be no previous experiments on viscoelasticity. For other 

similar glassy colloidal systems it has been found that at rest, the linear viscoelastic 

properties tend to increase logarithmically or exponentially. Examples of these are systems of 

charged spheres (Derec et al. 2003), which are very similar to hard spheres and seem to age 

logarithmically and also Laponite systems, which were found to age exponentially (Bonn et al. 

2002, Abou et al. 2001).   

 
Under oscillatory shear glassy colloids exhibit three distinct regimes of strain. a) Very low 

strains in the linear regime that do not perturb the internal mechanics and do not change the 

way the sample ages at rest, b) Mid range strains above the linear regime that cause increase 

in aging compared to aging at rest (overaging) and c) High strains which cause decrease in 

aging (underaging) or even complete rejuvenation to the initial rheological state of the system. 

This behaviour has been seen experimentally in glassy systems of charged spheres (Viasnoff 

et al. 2002, 2003) and has been the theme of molecular simulations (Lacks and Osborne 

2004). Although overaging has not been seen in all cases (Kaloun et al. 2005), there is a 

clear picture of rejuvenation at high strains. The true nature of shear rejuvenation and 

whether it literally rejuvenates a glassy material is currently under debate (Isner and Lacks 

2006).  

 

There seems to be no previous literature on the rheological aging of shear induced crystal or 

any other shear induced colloidal crystal, but as previously mentioned, there have been 

experiments on the evolution of random hard sphere crystallites to pure FCC (Kegel and 

Dhont 1999 & Martelozzo et al. 2002). In addition, it has been seen in other systems 

(Mazoyer et al. 2006), that temperature fluctuations affect aging processes, possibly due to 

internal stresses introduced by temperature fluctuations that overage or underage the system 

depending on the shear rate as mentioned above. 
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3. Experimental Setup and Systems 
3.1 Sterically Stabilized PMMA Spheres 
The hard sphere particles used in this work consist of polymethylmethacrylate (PMMA) cores 

sterically stabilized by thin (≈10 nm) chemically grafted layers of poly-12-hydroxystearic acid 

(PHSA) chains. The particles were dissolved in cis-decahydronaphtalin (cis-decalin) making a 

good approximation of hard sphere particle interactions shown by Bryant et al. (2002). For 

long time aging experiments, particles were dissolved in octadecene, eliminating the effect of 

solvent evaporation. The radii of the particles used, which was measured by light scattering, 

are Rc=689 nm and Rc=267 nm in cis-decalin and Rc=288 nm in octadecene. Both particle 

suspensions had low enough polydispersities to be able to crystallize under shear (∼5%). Due 

to sedimentation issues, the larger spheres will not be presented for aging measurements and 

because of severe shear thickening at high strains, non linear measurements will generally be 

omitted.  

 

3.2 Sample Preparation 
In order to determine the volume fraction for a monodisperse hard sphere sample, the usual 

procedure is to reach the coexistence regime through dilution or evaporation and derive a 

value from the crystal to liquid ratio of the sample. Because of high refractive index mismatch 

in octadecene and rapid sedimentation when using the larger spheres, the coexistence region 

in those cases could not be found.  

 

In the case of the smaller spheres in cis-decalin, the coexistence region was found and we 

were able to calibrate the sample accordingly. Due to unknown reasons though, when the 

samples where submitted to centrifugation, the experimental random close packing fraction 

was close to the value of 0.70 which is very far from the value of 0.64 expected for 

monodisperse spheres. Details on how the volume fraction is calculated from the coexistence 

can be found in the paper of Ackerson (1990). 

 

Thus in order to have the same conditions for all the samples used, they were first centrifuged 

until all the excess solvent was expelled from the colloid and the sample was separated to a 

randomly close packed colloid and solvent. The volume fraction value of 0.660, which was 

derived from computer simulations (Schärtl and Sillescu 1994), was used to determine 

random close packing by centrifugation. The standard deviation of the volume fraction derived 

this way is σφ=±0.006. The rest of the sample concentrations were determined by successive 

dilutions of the same sample batch. This means that even though the absolute volume 

fraction of a sample may generally have a large deviation because of random close packing, 
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the error in the determination of the volume fractions in the same batch is small (of the order 

of the weight determination error, typically much less than 0.1% for each dilution). 

 

The following equation was used to calculate volume fractions when dilution or evaporation 

occurred: 

( )0
0

11 1 , where1
s c

c s

m
m a

χ ρχχ ρ
⎡ ⎤⎛ ⎞Φ −

Φ = Φ + + =⎢ ⎥⎜ ⎟+⎝ ⎠⎣ ⎦
 (Eq.3.2.1) 

with Φ as the new volume fraction, Φ0 the old volume fraction, ms the mass of the added 

solvent, mc the mass of the colloidal suspension, ρc the density of the dry colloid and ρs the 

density of the solvent. α is a parameter used to compensate for the fact that the spheres do 

not have the same density when in solvent, but have an increased radius due to the 

stabilizing layer. For the colloid ρc=1.188 gr/cm3 in all cases, and for the solvents 

ρdecalin=0.897 gr/cm3 and ρoctadecene=0.788 gr/cm3. For α we used a typical value of α=0.12. 

 

3.3 Rheometer Setup 
In order to observe crystallization a transparent geometry was needed. Although some tests 

were made using the simpler setup of parallel glass plates, inhomogeneous strain throughout 

the sample led to partial crystallization and consequently problematic measurements. To 

properly conduct rheology measurements on the crystal structure, it was decided that cone 

and plate geometry was essential. A homemade transparent Plexiglas cone was constructed 

which had a diameter of 38mm, an angle of 0.03 rad and was insoluble in the solvents used 

during these experiments. This cone was used as the bottom stationary part of the geometry, 

while a rotating parallel glass plate was used for the top. We tested the homemade geometry 

against a factory made 25mm titanium cone and it had satisfactory performance (Figure 

3.3.1). With a high viscosity oil standard the two geometries showed negligible differences, 

but with a viscoelastic standard there were differences in moduli up to 7%. This difference can 

easily be attributed to the loading procedure as the sample is very stiff. For this sample even 

between factory made geometries there are differences up to 12%. The gap distance was 

large enough to avoid confinement effects (Cohen et al. 2004). 
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Figure 3.3.1: Comparison between factory made and homemade Plexiglas cone with a high 

viscosity standard (left) and a highly viscoelastic standard (right). 

 

In order to view and quantify crystallization a laser beam was passed through the bottom of 

the sample and the scattered pattern appeared on a paper screen. This can be seen in figure 

3.3.2. With the scattered pattern we were able to see the amount of crystallization, but also 

the type and orientation of the crystal structure. If the dispersion was in the glass state 

(amorphous), a Debye-Scherrer ring could be seen on the screen, whereas if crystallized, 

Bragg peaks would appear, giving an insight on the induced structure. When the sample was 

semi-crystallized, a mixture of both scattering patterns could be seen. An example of the 

scattering patterns expected for parallel and perpendicular shear induced crystal is shown in 

the insets of figure 3.3.3, which are the Fourier transformations of the microscope images of a 

sample at φ=0.56 under shear. 

 

 

 

BBrraagggg  PPeeaakk  

θθ  GGllaassss  PPllaattee  

SSaammppllee  

PPlleexxiiggllaass  CCoonnee  

LLaasseerr  BBeeaamm  
 

Figure 3.3.2: Representation of the experimental setup used to view crystallization under 

shear. 
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Shear direction

Figure 3.3.3: Microscope images of shear induced crystal at low strain (left) and high strain 

(right). Insets show Fourier transformation of images (equivalent of Bragg peaks) (Haw et al. 

1998). 

 

A Rheometric Scientific stress controlled DSR Rheometer was used for all the measurements 

involving optical observations (Torque Range: 0.01-200 gr·cm). At the expense of optical 

feedback, a Rheometric Scientific strain controlled ARES Rheometer was also used in any 

case that constant strain, Peltier temperature stabilization or Echo measurements were 

needed (Torque Range: 0.004-10 gr·cm with one transducer and 0.04-100 gr·cm with the 

second). For the small spheres we used a green laser (λ=532nm) and for the larger spheres a 

red laser (λ=633nm). For samples in cis-decalin, sealing the area around the sample with 

water minimized solvent evaporation. Before every measurement the samples were 

thoroughly mixed and experiments started immediately after loading. All the measurements 

were made at a constant temperature of 20˚C and loading history was erased before starting 

measurements by applying a low rate steady shear for about 10 seconds so as to destroy any 

crystal induced by loading. The amorphous Debye-Scherrer ring on the scattering screen 

verified the absence of crystal. 
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4.  Rheology 
4.1 Creation of crystal 
The basic idea is to create the crystal and compare the rheology of this crystal to the glass at 

same volume fraction. To achieve this we start oscillatory shear at a specific frequency, from 

low stresses and keep increasing the stress until full crystallization occurs. After the crystal is 

created we then view the crystal’s response to strain with the same process for decreasing 

stress. This type of test is called a Dynamic Stress Sweep or for short DSS.  

 

In Figures 4.1.1 and 4.1.2 and 4.1.3 we show the DSS measurements of four different volume 

fractions in cis-decalin, in the glass regime (0.599, 0.608, 0.628. 0.644). The measurements 

were conducted at a frequency of 10 rad/sec and were plotted as a function of strain instead 

of stress, since yield strain is expected to depend on volume fraction much less than yield 

stress (Petekidis et al. 2002). A more detailed view of the process to be discussed is seen in 

figure 4.1.1. The measurements start out from the linear regime of the glass, which lasts until 

about 1% strain where shear thinning begins to appear (Regime a). At about 10-20% strain, 

around the G’, G’’ crossover, which may define the yield strain (b), Bragg spots begin to 

appear, indicating the onset of crystal creation. At this point, the Bragg spots are still faint and 

the underlying image of the Debye-Scherrer ring dominates. As the strain increases, the 

amorphous ring disappears as it is being replaced by more intense Bragg peaks. At a strain of 

about 100% full crystallization is achieved and only the high intensity Bragg peaks remain (c). 

The speed of crystal creation and stabilization was dependent on the amount of shearing 

time, so in order to approach equilibrium for each point the number of points and the shearing 

time of each point were large. Typical values were of 30 points per stress decade at 30 cycles 

per point. Applying higher strains (>150%) led to disruption of the crystal structure and an 

increasing reappearance of the amorphous ring (Regime d). Measurements at high volume 

fractions would additionally exhibit shear thickening at these high strains. This was more 

evident for the large spheres as expected (Maranzano and Wagner 2001) and was 

systematically avoided. 

 

The second graph of figure 4.1.1 depicts the DSS at decreasing strain in which we probe the 

crystal structure once it has been created. If upon increasing the strain, the crystal starts 

breaking when high strains are reached, on decreasing the strain, the crystal is reformed (e). 

This can be seen by the intensity of the Bragg peaks. Hence the sharp drop of G’ and G’’ 

when reducing strain seen in the second graph of figure 4.1.1. (and both graphs of figure 

4.1.2). If the crystal does not start dissolving during strain increase, the backward sweep 

probes the crystal structure in reverse as shown in figures 4.1.3a and 4.1.3b. In all these 

measurements the most obvious and interesting finding is the drop of both G’ and G’’ going 

from glass to crystal that increases with volume fraction and can be more than one order of 

magnitude. Performing a second increasing DSS reveals little hysteresis of the crystal 
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structure. In the third graph of figure 4.1.1 and in 4.1.2 the second forward DSS is also 

shown. At the point where G’ and G’’ of the first (glass) and third (crystal) forward DSS begin 

to merge (f), the crystal structure is optically observed to begin breaking. There is a mixture of 

Bragg peaks and an amorphous ring until the strain reaches point (d) where the crystal 

dissolves completely and the Bragg peaks disappear. 

 

There seems to be a small difference in the crystallization sweep of the spheres in 

octadecene. The whole process is identical, but the spheres in octadecene fully crystallize at 

a smaller strain. Instead of a strain of about 120% which the spheres in cis-decalin crystallize, 

the spheres in octadecene fully crystallize at a strain of 70%. This could be due to some small 

attractive interactions between particles, but this will be discussed further down in the text. 

 

An attempt was made to rheologically observe crystallization for the larger spheres in a 

similar fashion, but due to shear thickening complications, the system became too difficult to 

study. Shear thickening is caused by hydrodynamic effects at high shear rates that jam the 

particles and expunge the solvent from around the spheres creating a temporary solid. If this 

happens when the sample is being measured, it could be spilled out of the geometry, it could 

insert bubbles in the sample or at best, create a situation in which the sample needs a large 

amount of time to relax back to equilibrium. An example of a dynamic stress sweep for the 

larger spheres (R=689nm) similar to those presented before is seen in figure 4.1.4. The onset 

of shear thickening begins at 30% and Bragg spots are evident after 10% strain. Full 

crystallization is finally achieved at about 100% strain despite the onset of shear thickening 

and at even higher strains (>150%) the crystal brakes down. The jumps in stress caused by 

shear thickening make it difficult to interpret rheological behaviour and understand why 

crystallization occurs. 

 21



4. Rheology 

 

0.1 1 10 100 1000

1

10

(d)

(c)

(b)

(a)

G
',G

'' (
Pa

)

 G' (Pa)
 G" (Pa)

0.1 1 10 100 1000

1

10

(e)

G
',G

'' (
P

a)

 G' (Pa)
 G" (Pa)

0.1 1 10 100 1000

1

10

(d)(f)

Strain (%)

G
',G

'' (
Pa

)

 G' (Pa)
 G" (Pa)

 
Figure 4.1.1:  Dynamic strain sweeps of φ=0.599 in cis-decalin at a frequency of 10 rad/sec. 

The solid points are values of G’ and the hollow points of G’’. The three consecutive DSS are 

plotted in the order of execution as discussed in the text. The letter notations show critical 

strain points in the crystallization process and the scattered patterns for different stages of 

crystallization are shown in the inset photos. 
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Figure 4.1.2:  Dynamic strain sweeps of lower hard sphere glass volume fractions in cis-

decalin a) 0.599, b) 0.608 at a frequency of 10 rad/sec. The solid points are values of G’ and 

the hollow points of G’’. The arrows indicate the direction of changing strain and the letter 

notations show critical strain points in the crystallization process discussed further in the text. 

The scattered patterns for different stages of crystallization are again shown in the inset 

photos of subfigure a). 
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Figure 4.1.3: Dynamic strain sweeps of higher hard sphere glass volume fractions in cis-

decalin a) 0.628, b) 0.644 at a frequency of 10 rad/sec. The solid points are values of G’ and 

the hollow points of G’’.  The vertical arrows show the yielding and crossover points and the 

other arrows indicate the direction of changing strain.  
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Figure 4.1.4: Dynamic stress sweep of larger spheres (R=689nm) at φ=0.63 and ω=10 

rad/sec.  

 

The ARES strain controlled rheometer was also used for some measurements either for the 

better Peltier temperature stabilization system or for DWS-echo measurements. There were 

some difficulties with these measurements, first of all being shear thickening. As the 

instrument is strain controlled, shear thickening can occur without much warning and ruin the 

sample measurement, or even pose a serious threat to the integrity of the sensitive 

transducer. With a stress controlled instrument, shear thickening can occur, but the amount of 

resistance of the sample can never be larger than the stress the instrument is applying, thus 

shear thickening appears relatively smoothly with increasing stress/strain. In the case of 

controlled strain, a small change can create large differences in stress, possibly 

overwhelming the instrument. For example if a strain controlled rheometer was measuring the 

crystal in figure 4.1.4 and increased strain from 100% to 120% it measure a stress difference 

of 2 orders of magnitude. 
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Recent work of Cohen et al. (2006) shows that slip could be an important factor when 

observing shear induced crystallization under oscillatory shear. In order to check for slip, we 

used a cone-plate geometry coated with hard sphere particles, which has been seen to inhibit 

slip. In order to coat the cone and plate, a low volume fraction sample was prepared and by 

spinning the geometries at high speed a thin film of particles was deposited on the surface. 

The geometries were then shortly baked (10min) at temperatures slightly higher than the Tg 

of PMMA in order to partially melt the particles on the surface and make them resistant to 

detachment. After the geometry was coated we ran a DSS crystallizing loop and compared it 

to the same uncoated geometry. The results showed that there was no influence of slip on our 

measurements. We additionally made observations of the shear profile of our geometry with a 

CCD camera (figure 4.1.5) for various strains and revealed no evident slip. However the CCD 

camera experiments did reveal shear banding, confirming the observations of both Cohen et 

al. (2006) doing oscillatory shear and Derks et al. (2004) with steady shear.  

 

 
 

Figure 4.1.5: CCD photos of crystallization experiments (octadecene). The sample was 

painted with a marker to be able to visualize the shear profile and detect slip. The lines show 

the shear profile at two strain extremes of oscillation, revealing no slip (top moving plate). 
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Figure 4.1.6: Photos of the scattering 

patterns seen in the experiments (shear is 

horizontal to the page). Up-left: Debye-

Scherrer ring, Up-right: Beginning of 

crystallization with mixed amorphous ring 

and Bragg peaks, Down: Fully developed 

Bragg peaks indicating substantial 

crystallization (parallel to shear). 

 

 

 

 

 

Only one type of crystal structure was distinguished during the experimental procedures; that 

of an FCC structure with close packed direction parallel to the direction of shear. Relating to a 

specific crystallographic direction, this FCC crystal was on the (111) plane and the direction of 

shear coincided with the [110]  (or [1 10] )  direction. The scattering pattern of this crystal, the 

amorphous structure and an intermediate stage of crystallization can be seen in the insets of 

figures 4.1.1 and 4.1.2a and more clearly in figure 4.1.6. As they are, it was impossible to take 

these photos during measurements, as the top glass tool would hide about half the image. 

These images were taken with a sample of larger spheres, after removing the plates from the 

rheometer. 

 

As mentioned before in the work of Haw et al. (1998), low oscillatory strains (<50%) produced 

FCC crystallites with a preferred close packed direction perpendicular to shear, and high 

strains (>50%) produced a crystal structure with a close packed direction parallel to shear. 

This seems to contradict these experiments, but we verified this same behaviour with our 
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samples in a sliding parallel plate geometry (Petekidis et al. 2002) similar to theirs and have 

concluded that the rotating cone-plate geometry used here and well as the rotating plate-plate 

geometry somehow suppress the creation of crystals perpendicular to shear. Presumably, 

due to the rotational geometry, the crystallites are constrained in such a way that promotes 

growth only parallel to shear. It should be said that Derks et al. (2004) have also used a cone 

and plate geometry for studying hard sphere crystals. However they focus on steady shear 

and do not state whether they see any crystals perpendicular to shear when applying 

oscillatory strain. Ackerson and Pusey (1990) and Ackerson (1988) using a couette type 

rotating geometry also did not mention any crystallization perpendicular to shear. 

 

Based on these experimental findings a tentative, hand waving argument can be put forward. 

Figure 4.1.7 shows a sketch of how constriction of the crystal perpendicular to shear can 

occur on rotating geometry. The lines represent the path of the close packed direction of the 

crystal and the spheres represent the size of individual crystallites. In the case of the crystal 

parallel to shear (left), it is easier to create a monocrystal throughout the geometry as the 

close packed lines follow the direction of shear and are always parallel to one another. In the 

case of a crystal perpendicular to shear (right), the crystal’s close packed lines would collide 

with each other, creating inconsistencies and a polycrystalline material in the geometry. The 

red lines show the places were crystal cannot be created. Since the effect of the creation of 

the perpendicular crystal in sliding plates is not strong as there is a distribution of orientations, 

the constriction shown here could effectively create an energy barrier that does not allow any 

crystal other than parallel to shear to be created. All this of course is entirely speculative as at 

the moment there is no microstructural evidence to support it. A second possibility is that of 

normal forces, which may be different in rotational geometries and simple plate geometries 

affecting crystallization creation processes. 
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Figure 4.1.7: Representation of constriction of crystal perpendicular to shear on a rotating 

geometry. The solid lines represent the crystal’s closed packed direction Left: Close packed 

direction parallel to shear and Right: Close packed direction perpendicular to shear. 

 
On all the tested volume fractions and both sizes of spheres, the samples began to show 

crystallization at about 10%-20% strain, around the crossover point of G’ and G’’. This is 

related to the yield strain of the hard sphere glass (Petekidis et al. 2002, 2003). Furthermore, 

testing proved that low strains could not fully crystallize the sample even after long shearing 

times (1 hour) and that higher strains were needed. Haw et al. (1998) saw that low strains 

(<50%) produced crystallites all throughout the sample after a finite amount of time, but the 

crystallites were oriented mostly perpendicular to shear. Only much higher strains (>>50%) 

were able to produce crystals parallel to shear. The inability of our samples to fully crystallize 

at low strains (>10%), even after a long amount of time, must be due to the rotational 

geometry, which apparently suppresses creation of crystals perpendicular to shear. At around 

100% strain in our geometry, the glass would fully crystallize after a moderate amount of time. 

  

Frequency dependence of crystallization 
Besides depending on the level of strain, the speed of crystallization also depends on the size 

of the spheres. The crystal of the larger spheres could stabilize optically and rheologically 

considerably faster than the smaller one, due to the reduced contribution of Brownian motion 

to the kinetics of the particles. For the same reason DSS at low frequencies were unable to 

induce full crystallization (at an experimental time scale) and the frequency above which 

crystallization is experimentally viable for the smaller spheres is higher. More specifically the 

small spheres could not crystallize fully at a frequency of 1 rad/sec. Thus all DSS experiments 

were done on a frequency of 10 rad/sec in which both spheres could crystallize easily.  
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To quantify these observations we use the Peclet number, which is a measure of the relative 

importance of Brownian and shear induced motions and is given by the product of the shear 

strain rate γ  and the Brownian relaxation time (τB). For a dilute system τB=R2/2D, where R is 

the particle radius and D(=kBT/6πηR) is the Stokes-Einstein-Sutherland diffusivity of a non 

interacting particle in a medium of viscosity η. For shear rates much smaller than the 

Brownian relaxation rate (1/τB), (Pe<<1) the intrinsic dynamics of the system relax much 

faster than the rate at which shear disturbs the structure and thus in our case crystallization is 

not expected. If the shear rate is sufficiently high, then Pe>>1 and the structure of the system 

is altered before it can relax back to equilibrium and thus we can expect changes on the 

structure of the system. When dealing with glassy hard spheres though, the Peclet number is 

not enough to show the point at which the structure changes. At small strains, the particle 

cages do not allow particle rearrangements in the system even at high Peclet numbers. Thus 

in order to induce crystallization in our systems, both the induced strain must be higher than a 

critical strain (equal or related to the yield strain) and also the Peclet number greater than 

unity. 

 

On increase of strain or frequency there is also an increase in the maximum shear rate and 

subsequently the Peclet number, which indicates the reason why the rate of crystallization 

rises with increased strains and frequencies. We also see that the Peclet number is 

proportional to the cube of the particle radius, which in our case essentially means that larger 

particles need smaller rates to crystallize. Specifically for the sizes of our particles and for 

fixed values of strain and frequency we find that Pelarge/Pesmall~17.  If we approximate τB of the 

short time self diffusivity (before any collisions occur) in the glass regime to be 10 times larger 

than in the dilute regime (van Megen et al. 1998), use ω = 10 rad/sec and the yield strain of 

10%, we get a Peclet number equal to 1.5 for the smaller spheres. 

 

With an increase in volume fraction, τB is expected to rise and with it the Peclet number. This 

means that it should be easier to crystallize higher volume fraction glasses than lower ones. 

However, just by observing the crystallization time during the measurements there was no 

distinguishable difference of the speed of crystallization between examined volume fractions. 

Though we did observe that at volume fractions below the glass regime, the strain needed to 

fully crystallize the sample decreased. This seems to go against the Peclet number as τB 

should decrease with decreasing volume fraction, but as the glass cages become loose and 

cease to exist, the effect of yield strain should disappear, allowing crystallization at smaller 

strains. 

 

Alternatively, shear induced crystallization can also be described from an energetic point of 

view. Throughout a glassy hard sphere system, there are high and low energy particle 

configurations. A system always prefers a lower energy configuration, but a glassy system is 

mechanically trapped and so remains at high energy configurations. If given enough time, the 
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particles cooperatively but slowly rearrange to lower energies, thus giving rise to aging. Even 

though the lowest energy configuration is a crystal structure, the system at rest is unable to 

get there. With increasing strain, the system is given enough energy so that the entropic 

barrier that keeps the particles trapped in their cages is slowly reduced and at some point 

disappears. At this point, the particles are allowed to rearrange themselves into their 

energetically preferred crystal structure. In the range where the barrier is reduced but not 

gone, the particles are given an increased possibility of escape from the cage, but not total 

freedom. Because the entropic barriers throughout the sample are of different height, low 

strains can only partially crystallize the sample. With increasing oscillation frequency, the 

particles are given more opportunities to escape, which means that the crystallization process 

will be more rapid. Rearrangement throughout the whole sample volume will only occur when 

the strain is high enough for all the barriers to disappear (Duff and Lacks 2007, Smith et al. 

2007). 

 

The created crystal could be dissolved either by applying an oscillatory shear with a high 

enough strain, or by applying a steady shear. Applying an oscillatory shear with high strain 

(>150%) led either to shear thickening or simply to the breaking of the crystal structure. 

Crystal breaking attributed to shear thickening was only observed for the larger particles. The 

smaller particles did not shear thicken easily except at high volume fractions and at very large 

strains (>250%) or frequencies as expected. A simpler way to break the crystal was to apply 

steady shear. Whenever there was need to go over from crystal to glass, a low rate steady 

shear was applied to avoid any possible complications that may stem from shear thickening 

and very large oscillatory strain (Maranzano and Wagner 2001).  
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4.2 Linear rheology - Frequency dependence 
In order to probe the linear properties of the glass and its crystal counterpart we impose an 

oscillatory strain in the linear viscoelastic regime and probe different frequencies. This test is 

called a dynamic frequency sweep or for short DFS. The linear regime of the glass and crystal 

can be found from the DSS. In all cases we can see that this is less than 1%. 

 

In figures 4.2.1 and 4.2.2 we show the linear viscoelastic data of the glass and shear induced 

crystal at different volume fractions. The dynamic frequency sweeps were performed in the 

linear regime with a strain of 0.5% for all the samples. As seen in these figures, the frequency 

dependence of crystal and glass are similar and as stated before, the values of G’, G’’ for the 

crystal are significantly lower by about one order of magnitude. In these figures we include fits 

from the mode coupling theory of Mason and Weitz (1995). 

 

In all volume fractions and both for glass and crystal, G’ has a slight increase with frequency 

and in most cases G’’ has a minimum. By examining the different volume fractions for glass 

and crystal, we see that the crystal exhibits a slightly larger slope of G’ vs frequency. This 

means that due to increased contribution of Brownian motion for the crystal structure, the 

elasticity of the system drops faster with decreasing frequency of oscillation as elastic energy 

is more easily dissipated by Brownian fluctuations.  

 

The fits used in the figures are derived by Mason and Weitz (1995) from the Mode Coupling 

Theory and follow these equations: 
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( )2with / and (2 , ) 0.78 / 0.64D Sa D g aτ φ= = φ− , where τD is the diffusion time of the short 

time self diffusion coefficient and g(2a,φ) is the approximated radial pair distribution function 

at contact. Γ(x) is the gamma function, a’=0.301, B=0.963 and b’=0.545 are parameters 

predicted for suspensions of hard spheres. η’∞ is the high frequency viscosity contribution, Gσ 

is a fit parameter and the plateau value of the elastic modulus is given by GP. The time tσ 

corresponds to the inverse frequency where the minimum of G’’ occurs. The G’D(ω) and 

G’’D(ω) components of the theory were not added in the fits, but even in the worst case (high 

frequencies), the deviation was less than 1% and thus would make no difference. 

 

This is a physical model that combines a description of the onset of the glass phase using 

mode-coupling formalism with the high frequency contribution of Brownian motion. The 
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authors use the model on a system approaching glass transition and not on a system that is 

in a metastable glassy state. Nevertheless, the proposed model is able to capture the shape 

of our glassy system in addition to the shear induced crystal and will be used to extract the 

time scale tσ that will be discussed further in the text. 

 

Figure 4.2.3 shows time associated with the free fit parameter of the G’’ minima versus the 

volume fraction. We believe that this time scale is coupled with the characteristic time that a 

particle needs to explore its neighbouring particles. Thus when one increases the volume 

fraction, the particle cages constrict and the characteristic time decreases. Similarly when 

probing the shear induced crystal, the interparticle distance becomes larger compared to the 

same volume fraction glass and the characteristic time is increased. This increase is larger as 

one goes up in volume fraction as the free volume distance for glass closes to zero faster 

than the free volume distance of crystal. 

 

The mode coupling theory proposed by Mason and Weitz (1995) for the rheology of hard 

sphere suspensions and the theory which it is based on, proposed by van Megen and 

Underwood (1994) for light scattering shows that the time scale corresponding to the 

minimum seen in G’’ increases as the volume fraction nears the glass transition of φ = 0.58, 

reaches a maximum and then decreases. In our measurements we see that as we increase 

concentration from liquid to glass, the time scale decreases steadily without any such 

maximum. Although the minimum is not apparent in the experimental data for lower volume 

fractions, by using the G’’ minimum as a free fit parameter for the theory, we find an 

increasing time scale as the volume fraction decreases. 
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Figures 4.2.1: Dynamic frequency sweeps of lower glass volume fractions a) 0.588, b) 0.599, 

c) 0.608 in the linear regime for smaller spheres in cis-decalin. The solid points are values of 

G’ and the hollow points of G’’. Note the lower G’ and G’’ for crystal (squares) compared to 

glass (circles). Added are fits to the data by the MCT theory of Mason and Weitz (1995). 
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Figures 4.2.2: Dynamic frequency sweeps of higher glass volume fractions a) 0.628 and b) 

0.644 in the linear regime for smaller spheres in cis-decalin. The solid points are values of G’ 

and the hollow points of G’’. Note the lower G’ and G’’ for crystal (squares) compared to glass 

(circles). Added are fits to the data by the MCT theory of Mason and Weitz (1995). 
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Figure 4.2.3: Values of time that correspond to the minimum of G’’ (from fits to DFS) as a 

function of volume fraction.  

 
In the next figure 4.2.4 we plot the same time as before but now against the inverse of the 

distance of the volume fraction from the maximum packing distance 1/φfree=1/(φmax-φ), 

equivalently the inverse of the free available volume. For crystal the maximum FCC packing is 

φmax=0.74 and for glass the random close packing is φmax=0.66 (Schärtl and Sillescu 1994). 

The graph chows a clear correlation between the free volume and the time associated with 

the minimum of G’’. As the free volume decreases there is a steady decrease in the time it 

takes for a particle to explore its neighbourhood (line is a guide to the eye). Note that the error 

of determining the minimum increases at lower frequencies (large time) due to low rheometer 

torque (and lack of points). Because of this, values of time larger than about 20 sec (0.3 

rad/sec) are uncertain at best.  
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Figure 4.2.4: Values of time that correspond to the minimum of G’’ from fits to DFS (solid)  

and results form simple calculations (open) as a function of the inverse of the distance from 

maximum packing. Maximum packing is 0.66 (RCP) for glass and 0.74 for FCC crystal.  

 

We can make a rudimentary calculation of the time (tb) needed for a particle to travel a 

distance ∆ equal to the mean distance between particles as following:  

 ∆ 
 

2
max3

0

, 2 1bt C R
D

φ
φ

⎛ ⎞∆
= ∆ = −⎜⎜

⎝ ⎠
⎟⎟     

 

with ∆ the distance as shown in the above sketch for crystal maximum packing and C an 

arbitrary co-efficient used to fit the data. In figure 4.2.4 we can see that the general slope of 

the calculated points agrees with the experimental points, but the co-efficient is of the order of 

104 which is discouraging.  
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A co-efficient of up to 100 could be explained by the effect of hydrodynamics on the diffusion 

co-efficient and also the idea that not just one, but many particles are moving, thus delaying 

the mean time needed to reach a neighbor. Cooperative effects have been observed by van 

Megen (1998) that lead to a less tight cage. It is also logical to assume that the tb we measure 

at the minimum of G’’ is not the beginning of the relaxation process, but the very end, where 

everything has relaxed. Thus if we add the motion of the particles, the hydrodynamic effect of 

the self diffusion and the fact that we are looking at the end of the process we could explain 

the large co-efficient. Perhaps there are additional effects that we are unaware of which 

contribute to the co-efficient. 

  

Previous theoretical work of Loose and Ackerson (1994) on the structure factor of FCC and 

HCP structures under shear shows that a crystal structure under shear has less frequent 

particle collisions than the same volume fraction glass. This may explain the significantly 

lower viscoelastic properties of crystal compared to glass, as particle collisions are directly 

proportional to elasticity. In addition, this can be also understood by looking at the mechanism 

from which crystal is created. Adding to the fact that the FCC crystal is the preferred energetic 

state, essentially the material assembles into the crystal structure as an effort to ease the 

imposed stress. This becomes obvious when looking at the fixed orientation and 

monocrystallinity (Amos et al. 2000) of the shear induced crystal, as opposed to the 

polycrystalline structure that hard spheres assemble to when left at rest. Recent studies 

(Solomon and Solomon 2006) have shown that the shear induced crystal made with high 

strains, similar to the crystal studied here, is not pure FCC, but has stacking faults, making it a 

mixture of FCC and HCP. 
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4.3 Linear rheology - Concentration dependence 
Figure 4.3.1 shows the elastic and viscous moduli at the glass and crystal state of the three 

systems, smaller spheres in cis-decalin, smaller spheres in octadecene and larger spheres in 

cis-decalin. The smaller spheres were measured at 1 rad/sec and the larger spheres at 10 

rad/sec. The values have been normalized with sphere size and thermal energy. In all three 

systems it is clear that the viscoelastic values of the crystal are always lower than that of 

glass and that the difference between them grows as the volume fraction increases. There 

seems to be a plateau value of the elasticity for the larger sphere crystal, but since the larger 

spheres have about 17 times less torque than the smaller spheres, these crystal values are 

subject to rheometer torque error (They are just out of rheometer torque). Since the viscous 

moduli generally follow the trend of the elastic moduli, only the elastic moduli will be 

discussed further in the text. 

 

Figure 4.3.2 shows the elastic modulus of glass and shear induced crystal for the smaller 

sphere samples examined, plotted against volume fraction. These values were taken at a 

frequency of 1 rad/sec and G’ has been again been normalized with sphere size and thermal 

energy. Figure 4.3.3 has the same values of the elastic modulus plotted against the inverse of 

the distance of the volume fraction from the maximum packing distance 1/φfree=1/(φmax-φ), as 

done before. Added to this figure are values from theory and simulation.  

 

The larger spheres were not added to the figure, as they needed to be in the same Peclet 

number in order to be comparable. This means that for smaller spheres at frequency 1 

rad/sec, the larger spheres should be at a frequency of 1/17 rad/sec. 

 

In figure 4.3.2, looking at the G’ of the crystal and the glass for different volume fractions we 

can see that crystal generally has both a lower absolute value as discussed above and seems 

to have a weaker volume fraction dependence than the glass. Also, looking at the differences 

of the smaller spheres dispersed in the two different solvents, we can see that the spheres in 

cis-decalin strangely have higher moduli than the spheres in octadecene. In defence of this, 

we take into account the statistical error of about 1% in determining volume fractions with 

random close packing and add the fact that evaporation during loading is an important factor 

for the high volume fractions used in these experiments. However as stated earlier, there is 

some doubt if the particles in octadecene have truly hard interactions or if there are added 

interactions present. Because of the large refractive index mismatch, there might be a small 

attraction due to van der Waals forces.  
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Figure 4.3.1: Elastic and viscous moduli at the glass and crystal state of the three systems 

used, normalized by thermal energy and sphere radius. The values of the smaller spheres 

were taken at a frequency of 1 rad/sec and the larger spheres at 10 rad/sec. 
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Figure 4.3.2: Graph of near-zero frequency (ω=1rad/sec) normalized linear values of G’ for 

glass and crystal plotted against volume fraction. Also included are lines from theory and 

simulation discussed further in the text. 
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Figure 4.3.3: Graph of near-zero frequency (ω=1rad/sec) normalized linear values of G’ for 

glass and crystal plotted against the inverse of the distance from maximum packing. 

Maximum packing is 0.66 (RCP) for glass and 0.74 for FCC crystal. Also included are lines of 

simulation and theory discussed further in the text. 
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According to Poon and Pusey (1995), from a simple model Van der Walls attractions between 

two particles are given by the following formula:  
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where r is the centre to centre separation, A is the Hamaker constant, n1 is the refractive 

index of the particle and n3 of the solvent, h is Plank’s constant and νe is the main electronic 

absorption frequency in the ultraviolet with νe≈3x1015 s-1. In this way the attraction for 

octadecene particles is calculated to be of the order of the less than half the thermal energy at 

a centre to centre distance equal to 2R, whereas for cis-decalin it’s 20 times less. Even 

though the attraction is small, it could account for the small drop in the viscoelastic properties 

at small frequencies (Pham et al. 2006) and maybe the difference in the crystallization strain 

noted earlier.  

 

We compare the experimental findings of the shear induced crystal with the modified weight 

density approximation theory (MWDA) of Laird (1992) and molecular dynamics simulations of 

Pronk and Frenkel (2003). The MWDA theory of Laird specifies the Helmholtz free energy as 

a function of particle density and calculates the elastic constants through minimization of 

Helmholtz energy. Pronk and Frenkel molecular dynamics simulations use the application of 

strain and measure the stress response on a FCC (and HCP) lattice to get the elastic 

constants. Comparing the theory and the simulation with the experimental values, we can see 

that even though we don’t have an exact match, we do have results of the same order of 

magnitude. Additionally, Phan et al. (1999) has some rheological measurements on a random 

crystal made at rest. They have generally lower values than our crystal measurements and 

show a power law increase with volume fraction. The measurements were not made with a 

rheometer, but by using a light scattering set-up combined with mechanical perturbations. In 

addition to this, the measurements were made at high frequencies and strains outside the 

linear regime, so in conclusion we are not able to compare them to our measurements. 

 
In Figure 4.3.3 it is worth noticing that the elastic modulus of the crystal is higher than the 

glass for the same distance from maximum packing. This is a reasonable result, as an 

ordered structure should have a higher elastic modulus than an amorphous structure that has 

the same free volume.  

 
A way of determining the interparticle potential of the particles is to perform a power law fit of 

G’~φm on the linear experimental values. Since the average distance between particles is 

related to the volume fraction and G’~(1/r)(∂2U/∂r2), with G’~φm there is a predicted potential 
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U~r-n for m=1+n/3 (Paulin et al. 1996). Our measurements (1 rad/sec) on glass for decalin 

yield an exponent of mdec=48 and for octadecene an exponent of moct=42. The hard sphere 

system examined by Petekidis et al. (2004) yields a similar exponent of mhard=41. Systems 

with softer interactions are known to exhibit smaller exponents. Star polymers examined by 

Ozon et al. (2006) have mstars=5.7 and soft core-shell particles of Deike et al. (2001) have 

mcore=4. Also the nanoparticles of Rao et al. (2006) which approach hard interactions are at 

mnano=17. The theoretical predictions on hard spheres by activated hopping MCT of Kobelev 

and Schweizer (2005) which can be seen in figures 4.3.2 and 4.3.3, yield a relatively small 

exponent of mtheo=15 but generally have higher values than our measurements. 
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Figure 4.3.4: Normalized values of G’ of glass and crystal versus volume fraction for smaller 

spheres in cis decalin at three different frequencies. 

 

As previously mentioned, the slopes of G’ vs ω for glass and crystal have a different 

dependence on volume fraction. This means that the slopes in Figures 4.3.1, 4.3.2 and 4.3.3 

change according to the frequency at which the points were taken. The next figure (4.3.4) 

shows the frequency dependence of the slopes for the smaller spheres in cis-decalin. Three 

frequencies are shown of 1, 10 and 100 rad/sec. For glass, the power law exponents are 48, 

47, 38 and for crystal 21, 19, 12 with increasing frequency. That means that the slope of the 

crystal can be equalized to the slope of the glass if we increase the frequency from which we 

take the values of G’. 
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Having said that, in Figure 4.3.2 the slope of the glass in both solvents used is approximately 

twice the slope of the shear induced crystal and in Figure 4.3.3, the slope of the shear 

induced crystal is about twice the slope of the glass. If we attempt to change the frequencies 

at which we take the points in order to equalize the slopes, in the case of Figure 4.3.2, we 

have to extrapolate the G’ values of glass at 200 rad/sec and keep crystal at 1 rad/sec and in 

the case of Figure 4.3.3, we can achieve equal slopes by extrapolating the crystal frequency 

of 200 rad/sec and leaving the glass at 1 rad/sec. The reversal of the slope change is 

understandable as the x-axis of the two figures is different, but the physical meaning behind 

the factor of 200 between the two slopes is still not clear. 

 

As said before, the larger spheres need to be in the same Peclet number with the smaller 

spheres in order to be comparable and by this the smaller spheres should be measured at a 

frequency 17 times more than the larger ones. Figure 4.3.5 shows such a comparison, with 

the large spheres being at a frequency of 10 rad/sec (the bulk of data is at that frequency) 

and the smaller spheres extrapolated from the frequency sweeps to the value of 170 rad/sec. 

If points for the two sizes are taken at the same frequencies the absolute values and slopes 

are very different, but on this graph we can see that the values are comparable and have a 

similar slope showing that these analysis are very sensitive to frequency. 
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Figure 4.3.5: Graph of linear values of normalized G’ for glass and crystal in the two different 

sphere sizes plotted against volume fraction. The small spheres are plotted at ω=170 rad/sec 

and the larger ones at ω=10 rad/sec to compensate for frequency differences and be at the 

same Pe. 
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4.4 Yield Stress and Strain 
In Figure 4.4.1 and Figure 4.4.2 we can see the volume fraction dependence of the critical 

strain (maximum of G’’) and crossover strain taken from the DSS of the small spheres in cis-

decalin at a frequency of 10 rad/sec. The critical strain is the point where the system 

manifests a maximum viscous response (G’’) at the expense of elasticity and the crossover 

strain, where G’’ becomes equal to G’, is the point above which viscous behaviour dominates 

and strong irreversible rearrangements begin to occur.  
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Figure 4.4.1: Critical strains as a function of volume fraction for glass (filled) and crystal 

(hollow). The points were taken from DSS at ω=10 rad/sec as shown in figures 4.1.2 and 

4.1.3. 

 

In Figure 4.4.1 we can see the critical strain for both glass and crystal drop with increasing 

volume fraction. We believe this is because of the decreasing distance between neighbouring 

particles that makes it easier for fluidisation to begin. Particles will start hitting each other at 

lower strains as the cage becomes tighter, resulting in dissipation of energy that leads to an 

increase of G’’. The critical strain for crystal does not drop as fast as glass because of the 

larger distance from crystal maximum packing (0.74) as opposed to the glass random close 

packing (0.66) and the subsequent increase in the space available to each particle.  
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Figure 4.4.2: Critical strains as a function of the reciprocal of the free volume for glass (filled) 

and crystal (hollow). 

0.58 0.59 0.60 0.61 0.62 0.63 0.64 0.65
5

10

15

20

 Glass
 Crystal

 

γ cr
os

s (
%

)

φ

 
Figure 4.4.3: Crossover strains as a function of volume fraction for glass (filled) and crystal 

(hollow). The points were taken from DSS at ω=10rad/sec as shown in figures 4.1.2 and 

4.1.3. 
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This is more clearly shown in the next figure (4.4.2), where we plot the same points with 

1/Φfree. We see that the fluidization strain for the crystal remains high as it has a large 

distance from maximum packing, but the glass responds with a sharp drop as it comes close 

to its maximum packing.  

 

In Figure 4.4.3, we can see the crossover strain, again for both glass and crystal. Glass 

seems to generally have a higher crossover strain than crystal and there seems to be a clear 

peak in the crossover behaviour for glass. For a glass the crossover strain shows irreversible 

rearrangements and the ‘breaking’ of the hard sphere cages. For a crystal, the crossover 

strain again shows irreversible rearrangements and the point were the crystal flows because 

of crystal layers slipping one over the other (Ackerson 1990). The reason that the crystal has 

generally a lower crossover strain than the glass is probably because the slipping layers 

make it easier for a crystal to actually start flowing.  

 

The results on glass shown in Figure 4.4.3 are very similar to those presented by Petekidis et 

al. (2002, 2003, 2004) on irreversible rearrangements of a non-crystallizing polydisperse 

system of hard spheres measured by DLS Echo and creep and recovery experiments. We 

believe that the maximum in the crossover strain is the result of two competing processes. As 

one decreases the glass volume fraction the particles loosen their cages and the yield strain 

starts decreasing until the system becomes a liquid and no yield strain exists. As one keeps 

on increasing to higher volume fractions, stricter glass cages are formed making the material 

more brittle and decreasing the crossover strain. Kobelev and Schweizer (2005) have made 

theoretical predictions for yield strain on glassy systems that qualitatively agree with our 

experimental data. The crossover strain for the shear induced crystal isn’t affected by volume 

fraction changes as much as glass, again due to the increased free volume available for each 

particle and the larger distance from maximum packing. 

 

The frequency dependence of the crossover strain in polydisperse glass (Petekidis et al. 

2003) shows a weak increase with frequency and a qualitative agreement with our 

measurements. It seems that measurements of the crossover strain on monodisperse 

crystallizing glass are lower than the polydisperse glass, probably due to the added yielding 

mechanism of crystallization. 
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Figure 4.4.4: a) Crossover strains as a function of the reciprocal of the free volume for glass 

(filled) and crystal (hollow). The lines have slopes of 0.5 and -1. 

 

In figure (4.4.4) we plot the same crossover points as before, but now with 1/Φfree. Something 

interesting to note is that between glass and crystal, the two lines that follow the two 

competing processes discussed earlier have the same slope. For the first process, as the 

volume fraction is increased from the liquid regime and cages are formed, the slope is 0.5. 

For the second process, as the cages become tighter and the system becomes brittle, the 

slope is -1.  

 

If ∆ is solved for (1/Φfree) then we get the following expression: 

( ) ( )
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φ φ φ
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⎛ ⎞⎜ ⎟
⎜ ⎟∆ = − − ⇒ ∆⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠
⎝ ⎠

∼  

We see that the interparticle distance ∆ scales approximately with (1/Φfree)-1 and as such, 

could be the source of the -1 slope in the second process, but the source of the 0.5 slope in 

the first process remains an open question. 
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4.5 Lissajous Stress-Strain 
Stress vs strain Lissajous plots are shown in figure (4.5.1). In the linear regime, if the stress 

response is purely elastic, the Lissajous plot should show a straight line whose slope 

determines the elastic modulus. If a response is purely viscous, then an ellipse should 

appear, with axes of symmetry x and y. In the case of a viscoelastic behaviour, the shape 

should be a composition of the two, showing some sort of ellipsoid. If the sample gives non-

linear responses, the Lissajous plots can give details on stresses in the period and may 

elucidate the mechanisms involved (Lee and Wagner 2003). These measurements were 

made in the strain controlled ARES instrument during the DWS-Echo experiments discussed 

in the following chapter. The curves are in arbitrary torque and motor angle units that have a 

linear relation to stress and strain respectively. 
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Figure 4.5.1: Lissajous plots of various strains of glass (black) and crystal (red) in arbitrary 

strain and stress units.  
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With a first look the Lissajous plots show that the non-linearities associated with high strain 

come sooner for the glass (≥18%) than for the crystal (≥30%). This can also be seen in the 

DSS curves and critical strains, where the linear region for crystal is larger than that of glass. 

The non-linearities we see in figure 4.5.1 come into play as stress increases at the extremes 

of oscillation. Microscopically this means that at low strains particle cages are only slightly 

distorted and the stress remains proportional to the applied strain, although slightly out of 

phase. As the strain is increased past the yield strain, the particles experience increased 

collisions causing a type of periodic thickening at the extremes of oscillation (Le Grand and 

Petekidis 2007). For the crystal this thickening is less pronounced than the glass (seen clearly 

at 40%) and starts presenting itself at higher strains. This can be explained again with the 

notion of slipping layers as they lower particle collisions and allow the crystal particles to 

avoid collisions at higher strains. 

 

In addition, after analysis of the Lissajous plots with a Fourier transform, we found no even 

harmonics indicating the presence of a no slip condition (Wilhelm et al. 1998). 
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4.6 Aging 
Rheological aging is examined in figures 4.6.1 and 4.6.2 by showing the time dependence of 

G’ and G’’ respectively in the linear regime for a glass and the shear induced crystal sample. 

Even though continuous measurements showed minimal effects, to avoid unnecessary stress 

to the sample and perhaps cause stress induced structural aging, each point was measured 

for a relatively short time at an interval of 30 minutes. In this part, the smaller particles 

dissolved in octadecene were used, in order to exclude evaporation effects during the long 

periods of measurement. 
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Figure 4.6.1: G’ time dependence in glass and crystal states for three different volume 

fractions for the small spheres in octadecene: 0.639, 0.629, 0.618. The solid points are values 

taken from glass and the hollow points are values taken from crystal. The inset shows the 

same data plotted with a log-log scale. 
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Figure 4.6.2: G’’ time dependence in glass and crystal states for three different volume 

fractions for the small spheres in octadecene: 0.639, 0.629, 0.618. The solid points are values 

taken from glass and the hollow points are values taken from crystal. 

 

When submitted to small linear perturbations, we could see that a glass sample, as expected, 

would exhibit rheological aging with increasing values of G’ and G’’. Unfortunately G’’ values 

are mostly erratic due to rheometer torque limitations. Furthermore when the shear induced 

crystal was left at rest for long periods of time (>10 hours), it seemed to keep its structural 

integrity and not dissolve. But when the crystal was rheologically probed, we witnessed a 

similar aging behaviour to that of glass. The inset of figure 4.6.2 shows a rough power law 

increase of G’ for both crystal and glass, with the crystal having approximately twice the slope 

of glass. 

 

The aging of crystal may look counterintuitive since a thermodynamically preferred crystal 

structure should not age. Glass structure is metastable and the particles don’t have enough 

thermal energy to overcome the entropic barriers to the preferable crystal structure, which is 

the energetic minimum. By shearing the spheres, the entropic barriers drop and they are able 

to change to a more stable state in which they remain. Because of this stability, the hard 

sphere crystal might ideally be expected to show no aging compared to the same volume 

fraction glass. 

 

Taking the above into account, we conclude that either perhaps the shear induced crystal 

created in these experiments was not fully made, maybe it started breaking and turned into 

glass or that after the end of shear the crystal continued to evolve. It is possible that due to 
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the rotational nature of the geometry, the hard sphere crystal would slowly realign itself after 

cessation of shear into a more preferable non-rotational structure, similarly to how hard 

spheres rearrange from random HCP crystallites to pure FCC at rest (Martelozzo et al. 2002). 

It is also possible that parts of the sample were inadequately sheared during the induced 

crystallization process and may have created glassy patches. These areas could only have 

been in optically non-accessible areas such as around the tip cut-off point in centre of the 

cone and near the edge of the geometry. Although this may seem as a plausible reason for 

the aging of the crystal, in reality there would have to be a substantial amount of glass 

throughout the bulk of the sample in order to have the aging results seen in figure 4.6.1. If the 

crystal structure dissolved into glass it would be seen in the absence of Bragg peaks. There is 

also a chance that the small change of interactions in octadecene could also change the 

properties of the crystal with time, although how this would come about is unknown. Some 

experiments were conducted on Couette geometry, but the results were qualitatively the 

same, strengthening the argument of crystal structure time dependence due to rotational 

geometry.  

 

In order to experimentally solidify the argument that orientations other than parallel to shear 

have higher moduli, rheological observations of random crystallites were made. A sample of 

smaller spheres in cis-decalin was brought to a volume fraction of 0.57 and was observed. It 

was optically seen that random crystallites would form throughout the sample within 22 hours. 

The sample was then loaded into a Couette geometry and sealed with a solvent saturation 

trap. The sample was then measured for a small amount of time every 1 hour. After 22 hours 

had passed, the sample was sheared in order to create a crystal and then measured again. 

Figure 4.6.2 shows the results of this experiment. The sample evolves from an amorphous 

value of G’ of 4Pa to 3Pa as the random crystallites are created. The shear induced crystal 

has an even lower G’ which is 2Pa. 

 

This indeed shows that shear induced crystal has smaller viscoelastic quantities (G’ and G’’) 

than a randomly oriented crystal. It proves that if shear induced crystal does reorient, the time 

dependent measurements will rise. Unfortunately it does not prove that reorientation is the 

cause of the rise we see. In summary, it seems that crystal ages, but there still remains an 

open question on the effect of the rotational geometry on the aging of crystal and on the exact 

restructuring which happens. 
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Figure 4.6.2: Before the break the evolution of rheological properties during crystal formation 

at φ=0.57 is shown. During the break, crystallization was induced by shear and after the 

break we have the evolution of the shear induced crystal. 

 

In addition to this, we also saw a correlation between small changes in measured temperature 

(± 0.1 ºC) and the aging process. There were a series of rapid jumps in the time dependence 

of the viscoelastic properties of both glass and crystal. These jumps seemed to occur 

simultaneously with small but rapid changes in temperature. Both crystal and glass were 

subject to these anomalies. 

 

According to (Mazoyer et al. 2006), the jumps in the viscoelastic properties could be the result 

of internal flows caused by temperature differences throughout the sample similarly to the 

effect on the characteristic internal relaxation. Internal flows could shear the sample and 

possibly cause over or under aging. In order to avoid these fluctuations, aging experiments 

were also carried out on a Peltier temperature stabilized system (± 0.01 ºC) instead of the 

standard bath system. Results showed that the jumps were still present, although they were 

somewhat less in frequency and magnitude. This supports the idea that the temperature 

stabilization is not necessarily responsible for the erratic aging, but more that random external 

temperature fluctuations are the cause of internal shear. 
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5. Dynamic Light Scattering Echo 
5.1 Introduction 
To complement the rheological techniques and see what is happening on a microscopic level 

to the glass when it is sheared into crystal, we performed some Light Scattering Echo 

experiments. This technique, like classic light scattering, examines the degree of correlation 

of light between one moment in time to another. As this correlation in light is related with 

microscopic particle movement, it shows the correlation between particle positions. When a 

correlation function shows total de-correlation for a time τ, this means that the structure after 

time τ has changes compared to its initial structure over length scales which are determined 

by the scattering conditions. At rest this would mean that the system has rearranged itself in 

such a way that there is no correlation between the particles’ positions after time τ.  

 

When applying oscillatory shear, the sample de-correlates as the medium is distorted by flow 

and partially re-correlates at intervals multiple to the period of oscillation when the flow field 

has returned to its initial position. The amount of correlation which is recovered gives a 

measure of the amount of particles which returned to their initial position after one period of 

oscillation.  

 

In normal dynamic light scattering (DLS) experiments the dynamics of the sample are 

examined through the measurement of the time autocorrelation function 
2(2) ( ) ( ) ( ) ( )g I t I t I tτ τ≡ + of the scattered intensity, ( )I t (Berne and Pecora 1976). In 

the case of transparent samples, the single scattering limit, the scattering at a particular 

wavevector are determined with (4 / ) sin( / 2)q nπ λ θ= as the wavevector, where λ is the 

wavelength, θ the scattering angle and n the refractive index. The length scale probed in this 

case is 2π/q. On the other hand for opaque samples as in our case, the technique of Diffusing 

Wave Spectroscopy (DWS) is used in the limit of strong multiple scattering. In this case the 

dependence on the scattering wavevector is lost and the measured correlation and relaxation 

times depend on the scattering geometry (transmission or backscattering), as well as the 

number of scattering events N, the geometry of the incident beam and the intrinsic dynamics 

of the sample (Weitz and Pine 1993). The length scale probed by DWS is smaller than classic 

DLS and is of the order of λ Ν . 

 

As mentioned, the autocorrelation function g(2)(τ) decays with the application of oscillatory 

shear. If after one period of oscillation T (or mT), the scatterers return to their original 

positions, meaning a purely reversible deformation, the light speckle pattern reverts to its 

original configuration and ( )(2) 1 1g mT − = . This is seen on the top scheme of figure 5.1.1 as 

an echo experiment that was performed on a sample of hard spheres near the random close 
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packing where essentially no Brownian motion is present. The correlation function reveals 

‘echoes’ of amplitude 1 at delay times equal to integer multiples m of the period of oscillation 

T. However, if the shear and/or the intrinsic motion induce some irreversible re-arrangements 

and the particles are not at their original positions, the echoes will have amplitudes that are 

smaller that 1. This can be seen in the bottom scheme of figure 5.1.1, where the Brownian 

motion causes the echoes to decay. We can decouple the shear induced from the Brownian 

re-arrangements by comparing the decay of the correlation function at rest to the echoes, 

again shown in the figure.
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Figure 5.1.1: Echoes in the linear regime of random closed packed spheres (top) showing 

purely elastic response with no decay and a lower volume fraction (bottom) where we see 

decay due to Brownian motion (Petekidis et al. 2003). 

 

In the simple case of a non-sheared dilute suspension of particles undergoing Brownian 

motion, in the strong multiple scattering limit, it is shown (Weitz and Pine 1993) that the 

correlation function approximately decays as an exponential according to: 
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( )(2) 2 211 exp ( )
6

g Nk rτ τ⎛ ⎞− ≈ − ∆⎜ ⎟
⎝ ⎠

(Eq. 5.1.2) 

where N is the average number of times a photon is scattered, 2 /k nπ λ=  is the 

propagation vector of light and 2 ( )r τ∆  is the particle’s mean square displacement. Even 

though light scattering generally measures the collective motion of particles, it has been 

argued for large particles that DWS largely measures the self diffusion (Weitz and Pine 1993). 

Thus we will assume that the above equation applies to our experimental system. 

 

If we apply oscillatory shear to the sample, we induce displacements additional to those due 

to Brownian motion, thus for the echo measurement we can write: 

( )(2) 2 2 211 exp ( ) ( ) ,
6 B S

g Nk r rτ τ τ⎛ ⎞⎡ ⎤− ≈ − ∆ + ∆ =⎜ ⎟⎣ ⎦⎝ ⎠
mTτ  (Eq. 5.1.3) 

where 2 ( )
B

r τ∆ is the displacement attributed to Brownian motion and 2 ( )
S

r τ∆ the 

displacement associated with the additional shear induced diffusion. 

 

Since the length scale probed by DWS is proportional to λ Ν , small motions will cause  

( )(2) 1g τ −  to decay to zero if the scattering events N are too many. For this we are forced to 

work with a small number of scattering events, where Eq. 5.1.2 may not be valid. Even though 

working between the limit of single scattering and strong multiple scattering is difficult, there 

has been work on double scattering (Sorensen et al. 1976). For the transmission geometry 

and our particular spheres, the dynamics are very similar to those measured by DWS at an 

approximated N=2. Thus by eliminating single scattering with a polarizer we can give a 

reasonable description of ( )(2)g τ . 
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5.2 Experimental Setup 
The echo experiments were carried out on the ARES strain controlled rheometer in the 

backscattering setup shown in figure 5.2.1, able to carry out rheological and scattering 

experiments simultaneously. A similar Plexiglas cone and glass plate where used as for the 

rheological experiments on the DSC stress controlled rheometer. The green laser (λ=532nm) 

shines from the top and the scattered light intensity is measured at backscattering. A photon 

multiplier tube is used for short times and echo measurements and an 8-bit monochrome 

CCD camera for longer times at rest. In order to cut off reflections and single scattering 

events, a crossed polarizer is put between the sample and the detector. Since the camera 

can image multiple light speckles through time, it is able to ensemble average as well as time 

average the intensity autocorrelation function. 

 

IInnccoommiinngg  LLaasseerr  

GGllaassss  PPllaattee  

DDeetteeccttoorr  

SSaammppllee  

PPlleexxiiggllaass  CCoonnee  
 

Figure 5.2.1: Representation of echo experimental setup. 
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5.3 Results - Discussion 
Only the smaller spheres in octadecene were studied with the technique of light scattering 

echo. Before any measurements started, the glass was rejuvenated with a steady shear of 

small rate to break any crystal made by loading. Consecutive dynamic time sweeps at a 

frequency of 10 rad/sec (or 1.6 Hz) were made in order to measure the scattering response at 

different strains. Increasing strain amplitudes were examined as the crystal was being formed 

and then decreasing amplitudes after it was formed in order to probe the crystal structure. 

The crystallization strain of the sample was found by examining the rheological data and also 

by looking at the formation and disappearance of iridescence on the sample surface, which is 

indicative of crystallization. 

 

The next figure (5.3.1) shows the correlation function taken with no strain applied, of a glass 

and a crystal, at a volume fraction of 0.602. The first part of the curves is taken with the 

photon multiplier tube and the second part with the CCD camera. The oscillations seen with 

the PM tube are possibly due to mechanical vibrations.  

 

Something that is immediately clear by looking at the graph is that the crystal de-correlates 

more than the glass. This is can be explained by the ability of the particles when arranged into 

a crystal to move larger distances in their cage than the glass particles at small times, 

because of increased free space for each individual particle. At longer times, as the crystal is 

spatially arrested in its lattice, it would be expected that the crystal correlation function would 

remain stable, whereas that one from a glass would de-correlate due to the slow modes. The 

glass aging related with these slow modes that may be related to dynamic heterogeneities, 

seen in several experiments (Weeks et al. 2000, 2002, Kegel and van Blaaderen 2000, 

Conrad et al. 2006). Due to instabilities of the scattering setup, longer times were not to be 

trusted and as such the experimental verification of this has not been possible at this time. 
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Figure 5.3.1: Normalised DWS response of smaller spheres in octadecene at φ=0.602 

comparing glass and shear induced crystal. 

 

As the strain is increased (and consequently the strain rate), the correlation functions (figure 

5.3.2) and the echoes (figure 5.3.3) decay increasingly faster. This is due to the faster shift in 

the particle positions by the shear deformation. The echoes become increasingly thinner 

because of the shear rate, but also reduce in height because of the occurrence of irreversible 

re-arrangements.  
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Figure 5.3.2: Normalized initial decay of correlation function with increasing strain (left) and 

decreasing strain (right). 
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Figure 5.3.3: The first echo of the correlation functions for several strains at 1.6 Hz. 

 

The reciprocal of the half width at half height taken from the first echoes can give us the 

decay rate Γ (Figure 5.3.4). We find that the decay rate increases linearly with the strain as 

also seen in the work of Petekidis et al. (2003). It seems that the decay rate is only a function 

of strain rate and does not depend on the structure of the measured sample. This is 

acceptable as a homogeneous strain field should cause a linear increase in the decay rate of 
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the echoes, independently of the structure of the material (with small deviations) as long as 

there is no slip (Hébraud et al. 1997). 
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Figure 5.3.4: The decay rate Γ, taken from the half width at half height of the first echoes at 

different strains. The line shows the linear increase of Γ with γ0. 

 

If we extract the height of the echoes at the multiples of the period at different strains we get 

figure 5.3.5. We can see that at low (linear) strains the echoes generally follow the correlation 

function at rest, but at higher strains, there are more rearrangements and thus the echoes 

become smaller. At longer times there are larger deviations as the statistics become poorer. 
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Figure 5.3.5: The normalized peaks of the echoes at multiples of the period nT at different 

strains. Both increasing (top) and decreasing (bottom) strains are shown.  

 

By taking the heights of the first echoes at different strains we get figure 5.3.6. We start in the 

glassy regime and as the strain is increased, the echoes drop showing increasing irreversible 

re-arrangements. When the echo value reaches zero (γ=40%), none of the particles return to 

their initial positions (within a length scale of λ/2) after one period of shear and the crystal is 

formed. As we decrease the strain, the amplitudes of the echoes of the shear induce crystal 

follow a different path leading to a smaller value than the glass at strain 1%. These small 

strains are linear and no shear induced diffusion is seen. The situation is identical as when 

the sample is at rest (linear regime), and the correlation function has decayed more due to the 

increased in cage diffusion of each particle in the case of the crystal structure. As the strain 

becomes non-linear the echo height from glass continues to be higher than the crystal, but at 

some strain becomes equal. This of course means that the shear induced diffusion of the 
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glass at high strains is similar to that of crystal. The reason for this is not obvious, but the 

simulations which will be discussed in the next chapter, were able to give us some insight.  

 

In the simulations we saw that, because of the crystal sliding layers, the shear induced 

displacements were large in the direction of shear, but very small in the other directions. For 

the glass structure on the other hand, particles were displaced similarly in all directions due to 

shear, although slightly more in the shear direction. Thus if the shear rate (or oscillatory strain 

at a given frequency) exceeds a certain value, the Brownian diffusion advantage the crystal 

had at small strains will be overshadowed by the increased shear diffusion of the glass at 

larger strains. If the simulations are correct, then for our experiments, at 30-40% strain the 

crystal Brownian diffusion advantage is diminished as the glass shear diffusion is increased 

when it is being reconfigured to a crystal. 

 

1 10
2

4

6

8

10

12

14

0.1

 

γ0 (%)

      Glass
      Crystal

G
',G

'' (Pa) g
(n

=1
)

 
Figure 5.3.6: Height of first echo with strain for glass with increasing strain and shear induced 

crystal structure for decreasing strain. The horizontal lines show the height of the correlation 

at rest at the point of the echo for glass (black) and crystal (red). The overlapping graph is the 

increasing and decreasing DSS of the same sample. Note the higher echo heights of the 

crystal compared to the glass at high strains (30%-40%). 
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6. Brownian Dynamics Simulations 
6.1 Introduction 
In addition to rheology and light scattering echo, a number of Brownian dynamics simulations 

were conducted on hard sphere systems under oscillatory shear to complement the findings 

of the experimental techniques. The original code for these simulations was written by Andy 

Downard working in John Brady’s group at the California Institute of Technology. The 

motivation to begin these simulations was to try and use the advantages of numerical 

computation to elucidate some issues on shear crystallization creation and destruction and to 

view the microscopic differences between glass and crystal structure. The code used here 

assumes Brownian diffusion of particles with hard sphere interactions. Hydrodynamic effects 

are ignored as the computational cost is high and the effect on structure at low Peclet 

numbers maybe negligible (Foss and Brady 2000, JFM).  

 

A simple description of how the algorithm works is as follows: The algorithm positions a 

predetermined number of particles in a three dimensional box either randomly, or in 

preassigned positions. It then displaces them sequentially in a random Brownian step and 

applies a predetermined deformation. The Brownian step and the deformation, which is 

nothing more than a strain displacement in the velocity direction, change in magnitude 

according to the size of the predetermined time step. If any two particles’ radiuses overlap 

after the end of these displacements, they are pulled back equally across the line that 

connects their centres so their distance becomes 2R and the force needed to push the 

particles away is calculated. This force corresponds to the calculated shear stress when the 

system is sheared. The algorithm then repeats the displacements and overlap checks, 

creating a repeating cycle. The positions of the particles are saved in predetermined intervals 

for further analysis. 

 

In order to avoid wall effects in the simulated system, periodic boundary conditions are 

applied. When periodic boundary conditions are applied in a box, a particle can move freely to 

the edge and if it passes the edge boundary, it then appears on the opposite side of the box. 

Similarly, a particle on the edge of the box feels the particles on the opposite side of the box 

and interacts with them without knowing that they are actually ghost images. To the studied 

particles this should feel like an infinitely large system with an infinite amount of particles and 

as such, resembling a real system. Figure 6.1.1 shows a representation of the periodic 

boundary conditions. In the case of shear, the imaginary particles’ shear velocity changes as 

compared to their real images as shown in figure 6.1.2 to keep the periodicity in order.   
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Figure 6.1.1: 2-D Representation of periodic boundary conditions. The surrounding boxes are 

copies of the centre box, the darker particles in the centre box are ‘real’ and the lighter ones 

on the outside boxes are ‘imaginary’. The ‘real’ particles on the edge of the box can feel the 

‘imaginary’ particles next to them and act accordingly. 

 

 

 

 

 

 

Figure 6.1.2: In the event of shear, the imaginary particles in 

the top and bottom boxes are sped up or slowed down as 

shown by the shear profile to keep the periodic boundary 

conditions in order. 
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6.2 Algorithm Details 
Displacement equations 
The details of the simulation algorithm are discussed nicely by Foss and Brady (2000, JOR), 

but a short description follows. Brownian dynamics can be described as a simplification of 

Stokesian dynamics, where hydrodynamic interactions between particles are neglected. For N 

rigid particles of radius R in a medium moving with velocity U of viscosity η, where the 

Reynolds number is Re<<1 and Stokes number St<<1, the motion of the particles is 

described by the N-body Langevin equation: 

H Bd
dt

= + +
Um F F PF  (Eq. 6.2.1) 

where m is the generalized mass/moment tensor, U is the particle translational/rotational 

velocity vector, HF is the hydrodynamic force vector, is the stochastic force vector that 

gives rise to Brownian motion, and 

BF
PF  is the deterministic non-hydrodynamic force vector. 

For negligible hydrodynamic interactions the hydrodynamic force reduces to Stokes drag 

6H Rπη= −F U .  

The form of the stochastic or Brownian force  that arises from the thermal fluctuations in 

the fluid is given by the fluctuation-dissipation theorem: 

BF

( ) 0B t =F  

( ) ( ) 2 (6 ) ( )B Bt t kT R tτ πη δ+ =F F I  (Eq. 6.2.2) 

The overbars denote an ensemble average over the thermal fluctuations in the fluid, kT is the 

thermal energy, and δ(t) is the Dirac delta function.  

 

The particle evolution equation is obtained by integrating equation 6.2.1 twice over a time 

step ∆x to finally get the random Brownian displacement vector: 

( ) ( )

and 0, ( ) ( ) 2 ,
6

P HSx Pe t t F t Pe t t
kTt t D t D
aπη

∆ = ∆ + ∆ + ∆ = ∆ + ∆ + ∆

= ∆ ∆ = ∆ =

U X U X x

X X X I
 (Eq.6.2.3) 

This equation shows that at each time step the displacement is equal to the sum of the 

displacement from the imposed velocity <U> (shear), the random Brownian displacement 

(X(∆t)) and the displacement due to interparticle forces (∆xHS). To get the equation, it was 

assumed that there are no hydrodynamic interactions and as such rotational and translational 

motions are decoupled. X is non-dimensionalised by R, t by R2/D and <U> by D/R. 

If we assume that Ψ is a random vector and each element of the vector is selected from a 

uniform distribution of random numbers ranging from -1 to 1 with a mean value of zero, 

then ( ) 2 3t D t∆ = ∆X Ψ . 
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If we make all the equations non-dimensional, then for every time step each particle moves: 
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∆ = ∆ Ψ

=

t

(Eq.6.2.4) 

where γ0 is the peak amplitude of shear, ω is the frequency of oscillation, Ψ is a random 

number ranging from -1 to 1 with a mean value of zero, x is the velocity direction and y is the 

velocity gradient direction. The Peclet number defined in the simulation (Pe’) is different than 

the Peclet number used in the experiments (Pe), as the former relates to a specific frequency 

of oscillation and the latter to a shear rate. The relation between the two is Pe=γPe’. 

 

Stress calculation 
According to Foss and Brady (2000, JOR). in order to calculate the stress, the algorithm 

directly calculates the pairwise interparticle forces that would have resulted in the hard sphere 

displacements during the course of a time step. By examining Eq.6.2.3 and equating the 

contribution due to interparticle force with the hard sphere displacement we get in 

dimensional form: 

6
HS

P xa
t

πη ∆
=

∆
F  (Eq.6.2.5) 

This is simply the average Stokes drag on the particle during the course of the hard-sphere 

displacement. Once the interparticle forces from each collision are known, they can be used 

to calculate the stress. The bulk stress, which is defined as the average stress over the 

volume V containing n particles is given by: 

5
22 (1 ) P

f
p nkTη φ= − + + − −Σ I Ε I xFn  (Eq.6.2.6) 

f
p is the average fluid pressure, nkT− I  is the isotropic stress associated with the 

Brownian thermal motion and 5
22 (1 )η φ+ Ε  is  the hydrodynamic contribution to the stress 

that reduces to the single particle Newtonian Einstein correction. All the rheologically 

interesting behaviour is contained in the PxF  contribution. In the case of simple shear and 

these simulations, only one of the tensor values is needed. To calculate the contribution of 

each particle to the stress we use this non-dimensional equation (normalized with kBT/R3): 

12

HS
xr y
V t
∆

Σ = −
∆

 (Eq.6.2.7) 
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6.3 Simulation runs - Results 
Initial configurations – Crystallization at rest 
We began our simulations trying to recreate the conditions at rest of hard sphere 

suspensions. Ideally the simulation should show that at volume fractions below 0.494 the 

system is a fluid, at 0.494<φ<0.545 a mixed amorphous and crystal state, at 0.545<φ<0.58 a 

full crystal and for φ>0.58 an arrested amorphous glass. Since the simulation is run with non-

dimensional parameters, distances are in particle radii and time is in Brownian time tB.   

 

To begin with, simulations of 105, 501 and 1005 particles were conducted at φ=0.40, 0.56, 

0.60, 0.62 and 0.63 in a cubic box. The time step used was ∆t = 2π 10-4 tB and the full 

simulation time was 106 ∆t = 2π 100 tB. An additional algorithm for creating the initial 

configurations was used for φ=0.60 (Donev et al. 2005). The simulations of 0.40 showed no 

crystallization (as expected). The following table (6.3.1) shows the approximate time of 

crystallization for different particle numbers and volume fractions. Full simulation time was 

about 200π tB. All simulations that resulted in crystallization, created a monocrystal 

throughout the cubic cell in a seemingly random orientation. (as opposed to real systems that 

make small randomly oriented crystallites). 

 

Φ 

N 
0,56 0,60 

0,60  

(Donev et al 2005) 
0,62 0,63 

105 31 13 25 6 126 

501 226 106 188 Almost? No crystal 

1005 565 113 163 / 400 No crystal No crystal 

 

Table 6.3.1: Table of crystallization times at rest for different volume fractions and number of 

particles. All times are in τβ units. 

 

The created crystal in any case looks like an FCC crystal, but is slightly distorted. Although 

the system at φ ≥ 0.60 should be in an arrested state and not exhibit crystallization, we can 

see from the above table that it does. The crystallization time seems to depend on the 

number of particles in the simulation and also on the initial conditions. When more particles 

are involved in the simulation and when better initial configurations are imposed (Donev’s et 

al. 2005) the crystallization is delayed. We also discovered that if the Donev algorithm is used 

to create a packing of 0.64 and then is normalized to 0.60 for use with the simulation, the 

delay of crystallization reaches about 400 τβ for 1005 particles. 

 

The built in algorithm of the simulation creates an initial configuration by randomly placing the 

centers of the particles in the box and then imposing the hard sphere potential. This means 

that spheres are placed in a volume with no constrictions on their positions and suddenly a 
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hard potential is imposed, consecutively displacing every sphere until there are no more 

overlapping particles. Donev’s algorithm creates configurations by starting with a low volume 

fraction of particles and then increasing particle radius while moving them in a ballistic 

trajectory and simultaneously enforcing the hard potential. In this way, by slowly increasing 

the volume fraction to the desired value, Donev’s algorithm simulates a more realistic 

situation (evaporation). 

 

Since the number of particles can influence the speed for which crystallization occurs, we can 

deduce that crystallization in volume fractions higher than that of 0.58 in this simulation occur 

primarily due to periodic boundary conditions. Although higher degrees of initial randomness 

in the system delay crystallization, an arrested glassy state should not be able to crystallize 

whatever the initial conditions. 

 

The periodic boundary conditions can inflict undesired effects to the system if the individual 

particle can affect other particles over the distance of the box size. A particle in a low volume 

fraction diffuses freely around the simulation space and doesn’t come into contact with any 

other particles. This means that the motion of each particle can only affect itself. As the 

volume fraction rises, particles will increasingly collide with each other and each particle will 

affect more of its neighbouring particles as each collision will cause other successive 

collisions. Essentially this means than the motion of each individual particle in the simulation 

is influenced by other particles in a distance increasing with volume fraction causing 

cooperative motion. At low volume fractions, particle collisions dissipate at a short distance, 

whereas at high volume fractions a much larger distance is needed due to larger propagation 

of collisions. At volume fractions close to maximum packing examined here, these distances 

may grow beyond the size of the box. If the box size is smaller than this distance, then the 

particle motions are impacted by periodic effects. If the system begins as non ordered, it may 

be forced to conform to the periodicity of the box, thus turning a glassy system to a distorted 

crystal. If the examined system is periodic in nature, as the hard sphere FCC crystal 

structures, then effects should be negligible as long as the box is tailored to the periodicity of 

the system. 

 

In figure 6.3.2 we show the pair distribution function g(r) plotted against r, averaged from the 

amorphous part of the 1005 particle simulations. g(r) is a measure of the probability to find a 

particle at a certain distance from another. First of all it seems that the two initial 

configurations make little difference in the g(r) at φ=0.60. Besides this it is interesting to note 

the sharp peak at r=4 for the amorphous structures of φ=0.56 and higher. The peak remains 

exactly at r=4 for 0.56, 0.60 and 0.62. This means that there is a statistically significant 

amount of pairs of three particles that touch each other and are in a straight line. This peak is 

seen in all the initial configurations of the simulation program and also Donev’s algorithm and 

the amount of frames averaged didn’t make a difference. These statistically significant three 
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particles in a row could act as nucleation points for the crystal to grow and coupled with the 

periodicity can create crystallization within the simulation time. A similar double peak was 

seen experimentally by Smith (2004) in dense crystallizing hard sphere depletion gels under 

oscillatory shear. 
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Figure 6.3.2: Pair distribution function g(r) for the initial configuration of the simulations 

averaged over the initial frames 

.

2 3 4 5 6 7 8
0

2

4

 0.60
 0.60 (Donev)
 0.56

 

 

g(
r)

r/R

 

Figure 6.3.3: Pair distribution functions for crystallized frames of simulation. Vertical dashed 

lines correspond to the expected distances of the FCC crystal for the two volume fractions, 

0.60 (red) and 0.56 (green). 
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In figure 6.3.3 again we have the g(r) plotted against r for the simulation with 1005 particles, 

but now it is averaged through the frames that have crystallized. Due to the distorted FCC 

crystal, the peaks do not appear in the distances expected for a normal FCC crystal structure 

(In our case these are 2√2, 2√3, 2√4, …) and this is especially true for the higher volume 

fraction were the particles are more constricted. 

 
Crystallization under shear 
At 0.62 and for 1005 particles the particles did not crystallize in the given simulation time at 

rest. We decided to begin oscillatory shear simulations at this φ and this number of particles 

and compare with experiments.  

 

As mentioned before, in the simple experimental flow between parallel plates a disordered 

glassy system at low strains (10%-20%) begins crystallizing with the closed packed direction 

of the FCC crystal perpendicular to shear and then orients the crystal parallel to shear at 

40%-50% strain. The system becomes disordered at higher strains.  

 

We performed simulations at 10%, 30%, 40%, 50% and 80% with Pe’=ωR2/D=1 (at γ0=100% 

this would correspond to Pe’=1 for the maximum shear rate in a period). The first three 

simulations did exhibit crystallization, but the 50% and 80% did not show any ordering. Not 

seeing crystallization at 50% and 80% strain was not expected as the experiments show 

crystallization up to 100% strain. This does not mean that a sheared crystal is unstable at 

these strains, as will be discussed further in the text. There are indications that the strain of 

crystallization is also a function of the Pe’ number, but the limited number of runs on Pe’≠1 

make this far from conclusive. 

 

  

y 

x
z 

Figure 6.3.4: Tilting of sheared crystallized system in cubic box to accommodate straggling 

particles. Before accommodation (left) and after (right).  

 

The orientation of the observed crystal was neither parallel, nor perpendicular to shear, but at 

an arbitrary angle. There were also some wandering particles that were unable to enter the 
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crystal structure and in one case that they were eventually accommodated (10%), the whole 

system tilted on the Z axis. (X - the shear direction, Y - the velocity gradient direction). The 

images in figure 6.3.4 illustrate this effect. The particle centers are shown as points and the 

colors show the distance from the centre of the box at the first simulation frame (changing 

from red to white and then to blue as the distance increases). 

 

It seems that the FCC crystal in the orientation we are examining is anisotropic. This means 

that in order for the crystal to be properly accommodated in the simulation, the periodic 

boundary conditions need to be similarly anisotropic. This explains why the crystal is distorted 

when created at rest and why it has a different orientation than expected with the application 

of shear. To investigate this possibility we conducted simulations of amorphous structures on 

an anisotropic box which can accommodate a crystal parallel to shear. The created crystal 

was again not oriented parallel to shear, but in a random direction again having some 

particles out of the structure. When we attempted to run some of the same simulations (10%, 

30%) at lower Peclet numbers (Pe’=0.2) we saw something different for 30% strain. An 

ordered structure was created, but in this case it seemed to randomly change orientations 

every few periods until the end of the simulation.  

 

We assume that the periodicity of the system is still interfering with the crystallization process. 

Even though the simulation box makes a crystal parallel to shear preferable, the periodicity 

causes the system to get trapped in the first low energy configuration it stumbles on. In all 

observed cases this configuration was some sort of ordered structure, but it was never the 

experimental FCC crystal parallel or even perpendicular to shear. The changing structures at 

low Pe’ show us that if the simulation time restrictions were not in effect, a crystal parallel to 

shear could possibly form. 

 

Crystal under shear – Zig-zag motion and slipping layers 
A crystal parallel as well as a crystal perpendicular to shear were simulated in anisotropic 

boxes again at Pe’=1 with 5%,10%, 30%, 50% and 80% strain. The particle positions of these 

crystal lattices were calculated, set as the initial configurations and subsequently sheared in 

the simulation. Strains of 120% and 200% were additionally made for the crystal parallel to 

shear. The volume fraction remained at 0.62, but the particle number changed to 1440 in 

order to create a crystal that fits perfectly in the box. Both crystals remained stable during 

shear at all of the above strains, which contradicts experiments as crystal dissolves at high 

strains (>100%). This is most probably due to the constrictions of the periodic box and 

possible mechanisms which could lead to the dissolving of the crystal will be discussed 

further down the text. The images below (figure 6.3.5) illustrate the crystal with the close 

packed direction parallel to shear on the left and the crystal with the close packed direction 

perpendicular to shear on the right at t=0. (Always X - the shear direction, Y - the velocity 

gradient direction) 
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Figure 6.3.5: Illustration of crystal parallel to shear on the left and perpendicular to shear on 

the right. The plane shown is the (111) FCC plane. 

 

Figure 6.3.6a shows the crystal parallel to shear at 30% strain at a time which is a multiple of 

the period of oscillation. During the oscillatory shearing motion something interesting to note 

is the small jiggling motion on the Z axis of particles on the crystal XZ planes (Seen as a left-

right jiggle on the second image of all particles that are on the same Y height). This jiggle is 

what allows layers of particles to slide one past the other and make the shearing process 

easier. Of course there are more jiggles per period as the strain is increased. This jiggle is the 

zig-zag motion proposed by Ackerson (1990) and it is illustrated in figure 6.3.6b. 

 

  

y 

x
z 

Figure 6.3.6a: Image of zig-zag motion seen in the right image as a jiggle on the Z-axis for 

particles on the same Y height. (Crystal parallel to shear) 

 

Figure 6.3.6b: Representation of zig-zag motion 

seen in simulations and proposed by Ackerson 

(1990). The crystal moves in layers making a small 

zig-zag motion in the Z direction. 
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The colors on the image show the distance of each particle from the center of the box at their 

initial configuration (t=0). Red particles are closer to the center, white are intermediate and 

blue are farthest. The distribution of the colors in this later image can give a measure of the 

displacement of the particles. What the above images show us is that particles don’t displace 

much in the Z and Y direction (second image), but they do displace significantly in the X 

direction (first image) with the help of the zig-zag motion. This displacement in the X direction 

is more evident when the strains are over 30%. (The two images are in the same time step. 

The color distribution in the second image is more or less what you see in the initial 

configuration. So since this has not changed much as no red particles are away from the 

center, it means that dispersion in the Y and Z direction is small, whereas in the first image, 

we can see that the image has changed considerably!) 

 

In order to quantify these observations, we need to measure the mean square displacement 

(MSD) of the particles. Typically in order to do this we would calculate for example in the x 

direction: 

2 2

1

1 [ ( ) ( )]
N

i i
i

x x t x t ττ
τ

=

∆ =< + − >
Ν∑ (Eq. 6.3.7) 

 

But because of the periodic boundary conditions and the very high density of the system, the 

MSD calculation needs a correction. The random Brownian displacement at every step 

coupled with the periodic boundary conditions and finite amount of particles cause the MSD 

measured with equation 6.3.7 to deviate from the correct value. As we can see from Figure 

6.3.8, the averaged MSD of the individual particles is somehow coupled with the MSD of the 

centre of mass of the assembly of all the particles. As each particle diffuses randomly with a 

diffusion co-efficient of Ds, the centre of mass of the assembly of particles also diffuses with a 

co-efficient of Ds/N. In the case of Figure 6.3.8 there are 1005 particles so the centre of mass 

diffuses 1005 times slower. As N approaches infinity this motion should diminish.  

 

In order to correct for this, we use the following formula for calculation: 

( )

2

1

1

( ) ( )
1 ( ) ( )

N

i iN
i

i i
i

x t x t
x t x t τ

τ
τ =

=

⎡ ⎤
+ −⎢ ⎥

⎢ ⎥< + − −
Ν Ν⎢ ⎥

⎢ ⎥⎣ ⎦

∑
∑ >  (Eq 6.3.9) 

which subtracts the centre of mass displacement at each time interval from the displacement 

of the individual particles. Essentially this calculates the displacement of each particle at time 

τ in a coordinate system moving with the centre of mass of the assembly of particles. As can 

be seen from figure 6.3.8, this results in a smoother curve. 
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Figure 6.3.8: Erroneous calculation and correction of MSD in the x direction (φ=0.63, N=1005 

at rest) 
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Figure 6.3.10: MSD of sheared crystal (φ=0.62) with close packed direction parallel to shear 

for 30% strain and Pe’=1. 

 

Returning to the displacement in discussion, from figure 6.3.6, we applied the preceding 

algorithm to the data and came up with figure 6.3.10. Here we can quantify our previous 

observations and see that indeed in the x direction there is a significant displacement, much 

larger than in the y or z directions. The slope of unity for the x direction points to diffusive 

behaviour, although this seems not to be of individual particles, but of whole layers as can be 

seen in the images. We can also see a plateau of the z direction MSD at a time roughly 

corresponding to one period. The height of the plateau shows that the jiggles are confined to 
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about a distance of 0.38 R throughout the simulation. The absence of displacement in the 

velocity gradient direction and the plateau in the vorticity direction is an important finding as it 

shows that the zig-zag motion is in the vorticity direction as discussed by Ackerson (1990) 

and that there is very little particle motion in the velocity gradient direction. 

 

Figure 6.3.11a shows the crystal perpendicular to shear at 80% strain at a time which is a 

multiple of the period of oscillation. During the oscillatory shearing motion of the crystal 

perpendicular to shear, there is no zig-zag motion to accommodate the shear as for the 

crystal parallel to shear. Instead there is a sudden jolt in the positions of the crystal planes on 

the X axis (Seen as a left-right jolt on the first image, of all particles that are on the same Y 

height, with some adjacent layers jolting together). This jolting is what allows the layers of 

particles to slide one past the other and looks more violent than the previous zig-zag motion. 

This slipping mechanism was proposed by Ackerson (1990) and is shown in figure 6.3.11b. 

The crystal is able to alternate between twin FCC structures and in time result in a random 

FCC structure. 

 

 In addition to this, at higher strains (50% and 80%) there are big jolts in the Z direction (seen 

as violent left-right movements in the second image of 6.3.11a). These seem to threaten to 

destroy the crystal structure, because with every occurrence (once or more in each period), 

particles break off the crystal and re-attach.  In figure 6.3.12, we can see the MSDs for this 

crystal at 30% and 80% strain. For the 30% strain, the plateau for the X direction quantifies 

that the slipping motion has now increased to 0.53 R compared to the parallel crystal’s 0.38 R 

and is indeed more violent. For the 80% strain, the MSDs for X and Z display a linear 

increase with time showing some sort of diffusive behaviour. The displacement in the X 

direction can be attributed to multiple slipping of layers as compared to just one slipping at 

30% (Seen in the motion of the particles). The displacement in the Z direction can be 

attributed to the crystal breaking and particle rearranging and the subsequent instantaneous 

restructuring. As the particles do not return to their initial positions within the crystal after 

restructuring, the MSD graph shows diffusive behaviour in the Z axis. 
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Figure 6.3.11a: Images of crystal with close packed direction perpendicular to shear at a 

strain of 80% and Pe’=1. 
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Figure 6.3.11b: Representation of alternating slipping layers in crystal perpendicular to shear. 

The crystal is able to alternate between twin FCC structures as proposed by Ackerson (1990), 

which in time results in a random FCC structure. 
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Figure 6.3.12: MSD for crystal perpendicular to shear at 30% (solid lines) and 80% (dotted 

lines) with X,Y and Z components at Pe’=1. 

 

Stress vs Strain 
The next figures show the stress-strain Lissajous plots within a period, extracted from the 

simulation. In the graphs that will be presented, the instantaneous stress and strain are 

divided with the maximum strain in order to be able compare different strains.  
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Figure 6.3.13: Lissajous plots of parallel and perpendicular crystal normalized by maximum 

applied strain for different strain amplitudes. Inset in left figure is from experimental results at 

40% strain. 

 

Figure 6.3.13 shows Lissajous plots for the two different crystal orientations at various probed 

oscillatory strains. The black curve, which is at 10% strain (non-linear), shows very different 

properties for parallel and perpendicular orientations. The jiggling motion for the crystal 
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parallel to shear and the jolting motion for the crystal perpendicular to shear should cause the 

sharp drop in stress during one period. The different shapes of the plots should correspond to 

the different mechanisms of sliding during shear. 

 

With increasing strains the crystal parallel to shear creates similar patterns and seems to 

shear thin as the σ/γ0 becomes smaller. The crystal perpendicular to shear behaves similarly 

for 10% and 30%. It becomes more interesting for 50% and 80% (where we see the violent 

jolting in the Z direction) as large stress peaks are formed. These seem to be indicators of 

instantaneous shear thickening and agree with the idea that the shearing motion is violently 

trying to break the crystal structure.  

 

The inset is a Lissajous plot of experimental data of glass (Black) and crystal parallel to shear 

(Red) under oscillatory shear at a strain amplitude of 40%. The comparison with the 

experimental results, seen in the inset of the left figure reveals quantitative differences, but 

qualitative similarities with 10% strain in the simulation and 40% strain in the experiments. It is 

not apparent why the experimental glass curve is more similar to the simulation crystal curve 

than the experimental crystal. 

 

An interesting discovery is that at 10% the parallel crystal exhibits a larger stress in a period 

than the perpendicular crystal. The reason for this is not obvious and experiments suggest the 

exact opposite. In the experimental setup we have found that a crystal made of randomly 

oriented crystallites has a higher elastic modulus than a crystal oriented parallel to shear. This 

suggests that a crystal perpendicular to shear should have higher stress in a period than a 

crystal parallel to shear. What it surely tells us is that at least some orientations different than 

parallel to shear have higher elastic moduli. 

 

In order to elucidate this discovery, we performed some simulations at a strain of 5%, roughly 

in the linear regime, to actually measure the stress response of crystals parallel and 

perpendicular to shear. Figure 6.3.14 shows this response which turns out to be an interesting 

problem. The response of the crystal perpendicular to shear is distorted and asymmetric.  

 

This is quite puzzling until one realizes that the FCC crystal in this orientation is actually 

asymmetric. Figure 6.3.15 shows a side image ( (110) plane) of a perfect FCC structure in 

perpendicular orientation used to initiate the simulations. If one looks carefully it is indeed 

asymmetric in the velocity and velocity gradient directions. From this side view we can see 

the ABC stacking that is the cause of the asymmetry. In order to correct this we need to 

perform a simulation with the twin FCC stacking of CBA and take the average stress of both, 

as real experiments show a mix of twin FCC structures. An equivalent to a second simulation 

would be to simply reverse the sign of the applied stress and received strain. The average of 

the two, gives a curve which is identical to the crystal parallel to shear.  
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Figure 6.3.14: Lissajous plot of crystals parallel and perpendicular to shear in the linear 

regime. 

 

         
Figure 6.3.15: Image of initial perfect FCC structure in perpendicular orientation used in the 

simulations (left) and representation of the asymmetry seen in the image (right). As seen in 

the representation, when under oscillatory shear a layer will need a different amount of stress 

in the two directions of shear.  

 

This means that the linear elastic modulus derived from the slope of the Lissajous plot is 

identical for a crystal parallel to shear and a crystal perpendicular to shear. Our assumption 

that a crystal perpendicular to shear has a higher elastic modulus than a crystal parallel to 

shear seems to be false, but since experiment shows that a random crystal has a higher 

modulus than a crystal parallel to shear, this would mean that orientations other that 

perpendicular to shear have higher elastic moduli. Figure (6.3.16) compares the Lissajous 
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plot of a crystal parallel / perpendicular to shear to a FCC crystal sheared at the [110] 

direction. Indeed from the slope we can see that the elastic modulus is about 60% higher than 

that of a crystal parallel to shear.  
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Figure 6.3.16: Lissajous plot in the linear regime of crystal parallel / perpendicular to shear 

and FCC crystal sheared at the [110] direction. 

 

The findings that the stress for a crystal perpendicular to shear has the same value with that 

of parallel to shear at linear strain values, less stress at intermediate non linear strains and 

larger catastrophic stresses at high non-linear strains, could explain why at low strains 

crystals are formed with a direction perpendicular to shear, while at high strains they are 

oriented parallel to shear. When the crystal is being created at low strains it naturally 

stabilizes in the configuration of less stress; so in choosing between parallel and 

perpendicular orientations, it chooses perpendicular. As strains become higher, the 

perpendicular crystal cannot be accommodated due to the interparticle collisions which 

significantly increase stress and so turns to the easier zig-zag parallel structure. Going back 

to lower strains, the crystal is already formed in a minimum energy configuration and so 

prefers to remain as such, as no imposing restrictions are enforced upon it to return to 

perpendicular orientation. As discussed in the experimental section, the rotational geometry 

probably inflicts some spatial restriction to the crystal perpendicular to shear and thus 

crystallisation perpendicular to shear is inhibited as crystal parallel to shear is favoured. 

 

The comparison between the Lissajous plots of glass and crystal configurations is seen in 

figure 6.3.17. The glass response is very noisy, but this is both due to low strain and short 

sampling time as the system quickly crystallizes. Firstly, even though it looks like we are not 

in the linear regime for the glass at 2%, it does seem that the glass is more elastic and has a 

higher stress response than the crystal at 5%. This finding is verified in the experiments. At 
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higher strains we also witness shear thinning behaviour for the glass, as the maximum stress 

drops and the shape shifts to a circle indicating increased viscous dissipation. In all cases, the 

elastic moduli (G’) are less for the crystal than for the glass. 
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Figure 6.3.17: Lissajous plot of φ=0.62 for glass and crystal at different strains.  

 

The values of the elastic and viscous moduli cannot be directly compared to experiment, as 

shown by Foss and Brady (2000, JFM), because the hydrodynamic interactions missing from 

this code substantially contribute to the stress. Thus the values extracted from this simulation 

are an order of magnitude smaller than the experimental ones.  

 

MSD of glass and crystal 
In the next figure (6.3.18) we have the MSDs of different volume fractions of amorphous and 

crystal systems at rest. For the crystal we can see that the MSD quickly reaches a plateau, 

which is understandable, as the particles remain in fixed positions in the crystal structure just 

moving around a central position. If ∆ is the average distance between particles with regard to 

maximum packing and volume fraction, then: 

∆  

 

max32R φ
φ

⎛ ⎞
∆ = −⎜⎜

⎝ ⎠
1⎟⎟     (Eq. 6.3.19) 
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Figure 6.3.18: MSD in the X axis for amorphous and crystal at rest (X,Y and Z are identical) 

 

∆ should be comparable in size to the MSD from the previous figure. For the glass structure, 

∆ is smaller than that of crystal and yet its MSD goes quite higher that that of crystal. This is 

explained if one examines the motion of the particles when in a glassy state.  

Even though the particles are jammed and most particles have less space than their crystal 

counterparts, there are some particles in the glassy state that have more space. These few 

particles are able to jump between cages and add to the MSD of the ensemble average 

causing the irregularities and big differences between crystal and glass. Dynamic 

heterogeneities such as these have also been seen in experiments conducted on 

concentrated systems. (Weeks et al. 2000, 2002, Kegel and van Blaaderen 2000, Conrad et 

al. 2006) 

 

The next figures (6.3.20, 6.3.21) show the MSD of glass and parallel crystal under shear. For 

these graphs the main difference between glass and crystal is that there is shear induced 

diffusion for glass that spans all three axis and is approximately the same for all the axis, 

whereas for crystal as discussed before, there is only diffusion in the axis parallel to shear. 

This gives us a glimpse of the mechanism behind shear induced crystallization for glass. 

Although the system is trapped and each particle cannot pass the boundaries of its cage, 

shear gives it the ability to diffuse within the sample and find the crystal energetic minimum. 

As seen in figure 6.3.22, shear induced diffusion for glass goes up linearly with strain 

(Petekidis et al. 2002, 2003). We see that displacements are slightly higher in the velocity 

direction (X), a little lower in the velocity gradient direction (Y) and even lower for the vorticity 

direction (Z). At some point, we believe that with increasing strain, the diffusion coefficient 

becomes too high and begins to inhibit crystallization. This is perhaps why crystallization was 

not seen in simulated strains greater than 50% when starting with an amorphous sample.  
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From figure 6.3.22 we can also see that shear induced diffusion does not increase linearly 

with strain for the crystal, but reaches a plateau for strains over 50%. This alone could point to 

a potential mechanism for destroying the crystal as it cannot accommodate the shear induced 

diffusion applied to it, possibly increasing stresses and leading to instabilities. Indeed a crystal 

parallel to shear is experimentally seen to dissolve at these high strains. At even higher 

strains (200%) this is verified as the crystal in the simulation behaves more erratically, 

showing particle scattering and rearrangements in the Y direction at each period, similar to 

the crystal perpendicular to shear at lower strains, again pointing to this mechanism for 

destroying the crystal. The inset of figure 6.3.20 shows the odd behavior of 200% strain as 

compared to 50% strain. The plateau value of the Y direction increases and we see an erratic 

displacement in the shear direction (X) not consistent with lower values of strain. 
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Figure 6.3.20: Graph of MSD for the different axis of glass and crystal under shear for Pe’=1 

and strains of 0%,10%,30%,50% and 80%. Each colour represents a different strain, with the 

lighter colours being for glass and the darker ones for crystal. Crystal and glass are both at 

φ=0.62. The inset shows 200% (black) and 50% (red) of the crystal parallel to shear. 
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Figure 6.3.21: Graph of MSD for the different axis of glass and crystal under shear for Pe’=1 

and strains of 0%,10%,30%,50% and 80% concentrating on smaller times.  

 

Figure 6.3.22 shows the MSDs at a time of 2tB that approximately corresponds the 1st echo in 

the experiments as the experimental Brownian time is tB≈0.3 sec and shearing is at 1.6 Hz 

with T=0.625 sec. The inset has a graph of -ln(g(T))/3 vs strain giving a qualitative picture of 

the MSD taken from the 1st echo in the experiments. We can see that with increasing strains 

the experiments show a crossover were the glass starts to have larger displacements than 

the crystal. The simulation shows qualitatively different results with no crossover point. We 

believe that this happens because there is no implementation of hydrodynamics in the 

simulation. In a real concentrated system, hydrodynamics cause the short time self diffusion 

co-efficient to decrease with volume fraction, as with each particle’s individual Brownian 

motion influences neighbouring particles with hydrodynamic interactions. For the volume 

fractions we have studied this would mean a reduction of approximately 10 times (van Megen 

et al. 1998) in the short time self diffusion co-efficient.  
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Figure 6.3.22: XYZ and average values of the different axis of MSD at a Brownian time equal 

to 2 (approximate time of 1st echo in experiments) for the glass (black) and crystal (red) at 

φ=0.62 at different strains, shown as an arrow in figure 6.3.20. The inset gives a qualitative 

picture of the experimental MSD at the 1st echo. 

 

If we attempt to take the average values of the MSD at a Brownian time 10 times smaller than 

in the previous figure at 0.2 tB, we get figure 6.3.23. Again the inset gives a qualitative picture 

of the MSD taken from the first echoes in the experiment. Comparing this figure to the inset, 

we see that it gives results that are qualitatively similar to the echo experiments. At low strains 

in the crystal, particles are able to displace themselves more than in the glass as they have 

more space available. As the strain is increased the sheared particles diffuse more due to 

shear induced displacements. Unlike the glass, in the crystal displacements for directions 

other than that of shear are diminished due to ordering. Thus at high strains the glass is able 

to diffuse more than the crystal. 
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Figure 6.3.23: Average values of the different axis of MSD at a Brownian time equal to 0.2 for 

the glass (black) and crystal (red) at φ=0.62 at different strains. The inset gives a qualitative 

picture of the experimental MSD at the 1st echo. 
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7. Conclusions 
 

To conclude, we have experimentally verified that shear induced crystallization in a hard 

sphere glass has the effect of significantly dropping the values of the elastic and viscous 

moduli. Ordering is a mechanism of reducing the stress on the sheared glass material. The 

crystallization process begins at the crossover strain (~10%) with faint Bragg peaks that 

become more intense as the strain increases, making a perfect crystal at about 100% strain. 

At higher strains (~150%) the crystal is destroyed and the structure becomes amorphous. The 

crystal which is created is a random FCC with the (111) plane parallel to the plates and the 

close packing direction parallel to shear. Contrary to older experimental studies (Haw et al. 

1998), there was no observation of a crystal perpendicular to shear, probably due to 

geometrical constrictions of the rotational geometry used. Also when comparing the two hard 

sphere particle sizes we observed that when creating the crystal, rheological stabilization 

takes longer with smaller particles due to Brownian motion working against the imposed 

shear. Moreover, the time scale associated with the minimum of the loss modulus in the 

frequency dependence of both glass and crystal at different volume fractions seems to relate 

to the mean interparticle distance. It also seems that the crystal’s storage and loss moduli are 

dependent on the glass volume fraction, but in the low frequencies that we probed, the 

dependence is weaker than that of amorphous glass. When examining the dependence of the 

elastic modulus to the free volume we discovered that the crystal is more elastic at the same 

distance from maximum packing than the glass. We also found that the crossover strain of 

glass is generally higher than its crystal counterpart probably due to slipping layers that make 

yielding easier. For both glass and crystal the crossover strain is related with two 

mechanisms. One is associated with the formation of cages, which makes the crossover 

strain to increase with volume fraction, while the other comes into effect near close packing 

and is due to a tighter cage formation decreasing the yield strain with volume fraction. 

Additionally, both the yield and crossover strain of the crystal structure are less affected by 

volume fraction changes compared to glass due to the increased crystal distance from 

maximum packing. In the stress-strain Lissajous plots we observed that non-linearities and 

thickening at the extremes of oscillation at high strains are more apparent for the glass than 

for the crystal possibly because of less particle collisions due to the crystal slipping layers. It 

also seems that contrary to intuition, shear induced crystal structure formed from hard sphere 

glass seems to rheologically age much like the glass itself, whether this is an aging similar to 

glass or some sort of reorientation is still under question. Lastly, it is evident that small 

temperature fluctuations throughout the sample create changes in the viscoelastic aging 

process on both glass and crystal structures. 
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In the DWS-Echo experiments we found that the correlation function decay rate increases 

linearly with strain and it is not a function of glass or crystal structure which verifies the 

absence of slip. We also saw that the crystal correlation function at rest decays more than the 

one from the glass due to larger in cage motions. Once the first echo shows a full de-

correlation, thus fully irreversible rearrangements (over the length scale of λ/2), we have the 

creation of the shear induced crystal. 

 

From the Brownian Dynamics simulations we conducted, we came to various conclusions. At 

rest, we were able to see a similar phase diagram as that of the experiments, with a liquid, a 

crystal and an arrested state, but we discovered that the simulated system and the 

crystallization were strongly influenced by the amount of particles and initial configuration. We 

were also able to produce a shear induced configuration from a glass, although it did not have 

the anticipated orientation. Because of this all simulations on crystals were conducted on a 

constructed perfect FCC crystal. We believe that both of these findings are due to the periodic 

boundary conditions that constrict the crystal and accelerate nucleation dynamics. Any 

attempt to destroy the crystal structure failed as the box size constrictions impose crystal 

distances and don’t allow it to break. However, at high strains (50% for perpendicular and 

200% for parallel) there were instabilities indicating possible destruction mechanisms. We 

were also able to analyse how the slipping layers work on both parallel and perpendicular 

crystal structures and verify Ackerson’s (1990) predictions. Additionally, the Lissajous stress-

strain curves of the simulation verified that the stress response for glass is larger than for 

crystal as seen in the experiments. We also saw that crystals parallel and perpendicular to 

shear for a random FCC have the same linear stresses, whereas other orientations could 

have higher/different stresses. These Lissajous plots also helped show that experimental 

particles crystallize perpendicular to shear at low strains because of lower stresses and then 

reorient parallel to shear at larger strains because of crystal geometry. From the mean square 

displacement analysis of particle trajectories we were able to show that crystal MSDs reach a 

fast and stable plateau as the crystal structure has frozen long time dynamics. Under shear, 

the MSD increases linearly with strain as seen in echo experiments for glass (Petekidis et al. 

2003). Moreover, the crystal has lower long time MSDs than the glass with increasing strain 

suggesting that irreversible rearrangements in the glass allow the system to reach the 

preferable crystal structure where they are minimal. Such minimization of irreversible 

rearrangements may be viewed as the origin of shear induced crystallization. 
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