ITANEITIXTHMIO KPHTHX
2 XOAH OETIKQN EITIXTHMQN
TMHMA EITIZTHMHYE YTIOAOTTEZTQN

Yy€010610¢ KOl VAOTTOINGN €vOg Ava-Pon
Awayeproti OvPAOV Y1 £va HETOY®YEN TOTOV ATM pe
ypnon teyxvoroyios FPGA

Anpntpilog X. Koydng

Metantuyiokn Epyocio

Hpdxelo, Deppovdprog 2002

[TANEITIZTHMIO KPHTHXE
2 XOAH OETIKQN EIMIXTHMON
TMHMA EIMIETHMHYE YTIOAOTIEZTOQN

2y €0100N0G KoL VAOTOIN G €vOg Ava-Pon
Aoy ePLoT] OVPAOV Yo £vo. peTay®yéa TOmov ATM pe
ypion texvoroyios FPGA
Epyacio mov vrofAnOnke amo tov
AHMHTPIO X. KAYAAH
®G UEPIKT] EKTANPOOT TOV OTAULTCEDV

YL TV OmOKTNOoN
METAIITYXIAKOY AIITAQMATOZX EIAIKEYZHE

2UYYpPOQENS:

Anuntprog X. Kowyding
Tunuoa Emotung Yroloyiotov
[Mavemomuo Kpntng

E&etaotikn Emtponn:

Mavaoing Katepaivng, Kabnyntmg
Enomng

Amndotorog Tpayavitng, Avaminpotg Kabnyntg
Méhog

Evdyyehog Mapkdrog, Avarminpotig Kabnyntig
Mélog

Agktn):

[Téavog Kovotavtémovrog, Kabnyntg
[Tp6edpoc Emtpomng Metontuylokdv Xrovdmv

DOeBpovdprog 2002

2y €0100N0G KOl VAOTOIN G €vOg Ava-Pon
Awayeproti OvPp@OV Yia £vo. pETOY®YEQ TOTOV ATM pe
ypion texvoroyios FPGA

Anpitprog X. Kayding
Merantouoxn Epyocia

Tpqpo Emotiung Yroloyiotdv
Havemotipio Kpitng

[Mepiinyn

Ov mpoyopnuévor Metaywyeic kot Apoporoyntés ommpilovioar kvpiowg oty
teyvoroyia Avvapikig RAM yia v mopoyn HeyaAov, yauniod KOGTOuS YMPov, Tov
etvar amapaitmrog AOY® TG ekpnKTIKOTNTOS TS Atadiktvakng kivnong. [Towdmra
Ymnpeoioag (Quality of Service) eivar eniong embBount. Katd cvvéneion n Ava-Pon
Amobrikevon oe Ovpég (Per-Flow Queueing) cuvyvd vAiomoieitar. Meletdue tov
oyxedopo evog Awayeprot Ovpov mov vrootnpilel Ava-Pon Amobnkevon oe ovpég
YMadec podv kivnong tomov ABR vy éva petayoyéo ATM. 'Eva peyddro
orokAnpouévo tomov FPGA ypnowomoteital yio ypryopn avdamrtuén kot ekteveig
JoKEG Tave oty TAateopua. TIpog amoeuyn g ¥pNoNg OAOKANP®OUEVOY UVAUNG
tomov SRAM ko peimon g xpnons pin Kot cuppdtwv, ovo pio. Lovado [viung
tonov SDRAM DIMM ypnowonoteitor yio v omodnKevon KeAM®V Kot T
dwtpnon oswtadv. [potymoape ™ Avvapikr Ilapayodpnon Mviung (Dynamic
Memory Allocation), TPOKEWEVOL VA OVTIHETOTIGTOVY Ol POEC LYNANG Kivnomg.
[Ipomapaydpnon omobnkevtikov yopwv (Buffer Preallocation) wot ITapdxopym
Afotag ElevBépwv yopwv (Free List bypassing) ypnoworomdnkav yio v peioon
TOV TPOCTELAC®V UVAUNG KOl TNV A0ENCT TNG AmoONKELTIKNG OlopeTay®YNS. AvTég
Ol TEYVIKEG OMOOEIKVOOVTOL OOPOATNTEG YOl TNV IKOVOTOINGN TV OVOYK®OV
amofnkevong tov Metaymyéa. Xapakmmpiotik@ EA&yyov Pong tomov ATM (ATM
Flow Control), 6mwg Mapkapiopa tvrov EFCI (EFCI Marking) kot Mapkdpiopoe RM
oxetikov pvOuod (RM Relative rate marking) mopéyetar yio ka0e vrootnpilopevn
pon. XpNCIUOTOMGAUE TO GUVOESIHO VITOGVUVOAO TNG YADGCOOG TEPLYPOUPNS VLALKOD
Verilog yio mpocopoiwon kot oyediacud g oapyrrektovikng, ovti e ALTERA
AHDL, yw cvoppatomta peta&d dtapopetik®dv mhatpopumv. To epyoreio ALTERA
MaxPlusll ypnowyoromOnke yio cvvheon ko mpoypappatiopd e FPGA. Ietdyaue
35 MHz cvuyvétmrag poroytod mov petappdletor oe 800 Mbps péyiotn cuvdlacuévn,
eloepyopevn Kal eEgpyOpevn olapetoymyn yio tov Atayelpiot Ovpodv kabmg Kot po
noAvmhokotnta 2500 Aoywkov otoyeiov FPGA (FPGA Logic Elements) kot 2000
SRAM bit yia 64 y1A1édeg poéc.

Endémng

Movoing Katefaivng
Kabnynmg
Tunuo Emomung Yroloyiotdv
[Mavemotuo Kpnng

Design and Implementation of a Per-Flow Queue
Manager for an ATM Switch using FPGA technology

Dimitrios S. Kapsalis
Master of Science Thesis

Department of Computer Science
University of Crete
Greece

Abstract

Advanced Switches and routers rely mostly on Dynamic RAM technology for
providing large, low-cost buffer space needed due to the burstiness of Internet traffic.
Quality of Service is also desirable, therefore, per flow queueing of traffic is often
implemented.

We designed and implemented a queue manager that supports per flow queueing of
thousands of flows of ABR traffic for an ATM Switch. A large FPGA chip was used
for fast development and extensive on-board testing. To avoid SRAM chip usage and
lower the pin and trace count, a single SDRAM DIMM is used for storing both cells
and pointers. We implemented dynamic memory allocation.

Buffer preallocation and free list bypassing were used to reduce memory accesses
and increase buffer bandwidth. These techniques proved essential for satisfying the
switch buffer requirements. ATM Flow Control features such as EFCI and RM
Relative Rate Marking has been provided for each supported flow. We used
synthesizable Verilog for simulation and of the architecture instead of ALTERA
AHDL, so as to achieve cross-platform compatibility.

The ALTERA MaxPlus II tool has been used for synthesis and FPGA programming.
We achieved a clock frequency of 35 MHz; this translates to a peak of 800 Mbps of
combined incoming and outgoing throughput for the Queue Manager; the queue
manager occupies 2500 FPGA Logic Elements and 2000 SRAM bits for 64K flows.

Advisor
Manolis Katevenis
Professor

Department of Computer Science

University of Crete
Greece

Evyoprotisg

H epyoacio avt amotelel 1o emiotéyacpo twv omovd®mv pov oto Ilavemotmuo
Kpnmg. T'e v emitevén avtod tov otdyov ipor Pabid vwodypeog e OAOLG TOVG
avOpOTOVG OV UE EMPENCOV KOL HOV €VETVELGOAV TNV emBupio Yoo omovdr| Kot
onuovpyia. X’owtd to onpeio Ba NBeAE va gvyaploTHo® TOVS aVOPOTOVE OV ElYAV
KOplaL GLUPOAN GTNV OAOKANP®GT AVTAG TG EPYOTTIOG.

Tov emdmtn Ko akadnuoikd coupfovro, kabnynm Mavoin Kotefaivn, yo
v KaBodnynon kot v vrootnpiEn KaBOAn TV SUPKE TOV UETATTUYIOKOV
OTOVOMY LoV, OAAG KOl TNV GLVEIGPOPE TOL otV aval®oydvnon g MoTNG LoV
GTNV EMGTNHOVIKT YVAOON Kol £pgvva. MG TPOTov kol 6tdomn Lone. Tov apyikd emdm
KOl OKOONUOAKO avoamAnpot kobnynt) ovpPovio Anuntpn XZepmbvo 1y v
KaBo0yNoN 0AAG KOl TNV EUTIGTOGUVI] KOl TV GUVEIGQOPE TOv otnV £vopén Tov
HETOTTTUYOKOV Hov omovd®mv. Tovg kabfyntég tov tunuatoc KOplovg Andotoro
Tpayavit kot BayyéAn Mapkdto yio TNV GUUUETOYY TOVG TNV €EETACTIKY EMTPOTN
g epyaciog.

To Epyaotipro Apyitektovikng kot VLSI tov Idpopatog Teyvoloyiag kot
‘Epevvag (CARV-ICS) yia v €uydpiot cuvepyasio Kot TNV TOALTIUN EUTELPiL.
Kvpiog tov Atovdon Ilvevpatikdto, tov INwpyo Korokapvd, kot tov Muiydn
Aryepdxn yio v KaBodnynomn Kot TNV TOAVTIUN KPLTIKT, Y10l TO TOL0TIKO TEPIPAALOV
epyaciag Kot TG OpopPeg oTIyHéES Tov Ba pov peivouv aééyaotes. Tov Xprioto AdAa
kol tov [opyo TMomaddkn yio v ocvvepyacia 10 KEPL Kol WAV o’ OAQ TNV
aAAnAeyyon oe OAn 10 €0OPOg TNG MAPAAANANG TOPEiOG HOG OV UEPIKES (POPES
QovoTtay atereimT.

To mpoconikd tov Tuquoatog Emotiung Ymoloyiotdv: tng kuvpieg Péva
KoiaitCaxn kot Mapio Ztavpakdkn yio v aueon fondeta kot v vrootmpién otnv
EKTTAPMOT] TV VITOYPEDGEDY LLOV.

Tnv Tevikn Tpappateio ‘Epgvuvag kot Texyvoloyiog mov ypnuotoddtoe to
épyo «AITTIOAO». To Topvpa Teyvoroyiag kot 'Epevvag kat to Tlavemomuio Kpnng
OV LTOGTHPIENY OKOVOUIKE TOGOV guéva Kol éva TANBOG GUVAOEAP®Y LoV TTOV
EPYOTNKOUE YOO TNV vAomoinon tov é€pyov. To mpocwmkd Tov IvoetitovTov
[Minpoopikng kot kuping v Mapia [Ipefeliovikn yio v vrootpin Kot v
TOAVTIUN QAL

Tovg cuvadehpovc pov oty ISD, tov Kdota [Mamadd, tov Zmvpo Avumépn,
Y10 TV VTOGTNPIEN, TIC YVAOGCELS Kol TNV gvkopia yia €va véo Eexivnua.

Tovg @ilovg pov, 6e Gha Ta YpdHVIN TOV GTOLVOMV LOV TOL Ta YEUioAV LE TO
napoandve. Tov Mavoin, ty Katepiva, Tov Eevopdvta Kot ToAA0VS GALOVG. . ..

Tnv Apyvpd mov ftav 1660 pakpvd, 0AAGL TOGO KOVTA.

[Tave am’6Aa otovg yovelg pov, Xtépavo kot Bactikn kot v adeder| pov
Yopio. Z’avtovg opeilm v Vvmapén pov Kot TV vrdctacn pov. EAmilom va ovd
avta&log Tmv BuoidV TOVg KoL TNG olyamng Tovg.

10

IHivakog Ilepreyopévov

EYXAPIZTIEZ

MINAKAZ NMEPIEXOM'ENQN

NIZTA ZXHMATQN

NIZTA NINAKQN

1 EIZArQrH
1.1 Kivtpa
1.2 Mepreydpeva avTig ™S EPYUCiNS 6TO TANLGLO TOV TPoYpopupatos AINMTOAO.
1.3 H apyrrektoviki Tov petayoyio AIMIOAO
14 Apyrektovikn Tov gEvmnpetnt) ABR kiviiong
1.4.1 To otoygio peToywyng
1.4.2 Ecwtepkdc enekepyaotng eAéyyov
1.4.3 H povdada e&umnpémg kivnong ABR
1.4.4 H povada pviung SDRAM (256 MB) [19]
1.4.5 Mnyaviopog Flow Control Kaptoag E&uanpett) ABR [23]
1.5 H apyprekrovikng g Movadag EEvanpenti ABR (ABRSU)
1.5.1 H Aenaon Eneepyaoct (CPU Interface)
1.5.2 Movéda diemapng CPU — diemaen pe Alayeipioty Ovpav
1.5.3 Movéda diemapng CPU - Semapn pe Cell Scheduler
1.54 H vmopovada Cell Demultiplexor
1.5.5 Aertapég UTOPIA
1.5.6 O Ipoypappoatiotg Cells (Cell Scheduler) [23]
1.5.7 O Awyepromc Ovpov (Queue Manager)
2 H MONAAA AIAXEIPIZTH OYPQN (QUEUE MANAGER)
2.1 H apyrrektoviki] Tov Alayeipiotiy Ovpav
2.2 Poég
2.3 Opaodeg Powv (Flow Groups)
2.4 O1 gvT0AEG TOV ALOYELPLOTI] OVPOV
2.5 Mopon g Eyypogiic Porig
2.6 Mopon Eyypaoeng opddoag podv (Flow Group Record)
2.7 Mopon ko gvBvypamon kehMov ot pvijun SDRAM
2.8 Opyavoon g pvijpng SDRAM
2.9 Mnyovéig Kataotaoewv (State Machines)

11

11

14

15

17
17
19
20
21
22
23
23
24
24
26
27
28
29
30
30

31
31

32
33
34
36
37
39
40
42
42

44

12

2.10 Hoapdxapyn Aictag ehevdépav (Free List Bypassing) [13]
2.11 MpoavdBeon Xopov kelw@v (Cell Buffer Pre-allocation) [10]
2.12 Oépata ypovicpov

2.12.1 To pordot UTOPIA cg oyeon e to porot tov Atayeipiot ovpodv (ABRSU).

2.12.2 Amoteléopata ohvBeons, GLUVEIGPOPE TG Tapdkapyn Aiotog eEAevBEp@V KoL TNg

Tpoavafeons yOpoV KEALOV.

3 ZYMMNEPAZMATA KAI MEAAONTIK'EZ EMNEKTAZEIZ

NMAPAPTHMATA — ATTAIKH META®PAZH

4 INTRODUCTION

4.1 Motivation

4.2 This thesis and the DIPOLO Switch

4.3 Switch/Router Generations and Queueing Architectures
43.1 First Generation Switches/Routers
432 Second Generation Switches/Routers
433 Third Generation of Switches/Routers
4.4 Queueing Architectures in general
4.4.1 Output Queueing
4.4.2 Input queueing
443 Variations
4.4.4 Per-Flow Queueing Vs Single FIFO Queueing in Output Queueing

5 THE DIPOLO ATM SWITCH
5.1 The DIPOLO Architecture

5.2 The ATM 155Mbps Card

5.2.1 The switching device (Transwitch Cubit Pro) [18]
522 The Cell Processing device (Motorola MC92501 Cell Processor) [17]
523 The local CPU (MPC860 by Motorola) [17]
5.2.4 The Physical level device (PM5350 S/UNI-155-ULTRA) [20]
53 The CPU Card
5.3.1 Motorola MPC869SAR (PowerQUICC)
532 The CubitPro Device
533 Memories

54 The ATM Line Card

5.4.1 Framer part - PMC-Sierra PM7344 [20]
542 Line interface circuit part - PMC-Sierra PM4314 [20]
5.5 The ABR Server Card
5.5.1 The Switching device (Transwitch Cubit Pro)
552 The ABR Server Unit (ABRSU) (EPF10K200EBC600-1 FPGA by Altera) [16]
553 The Memory module (256 MB of SDRAM) [19]
5.5.4 The local processor (MPC860 by Motorola)

6 THE ABR SERVER UNIT (ABRSU)

46
47

48
48

49

51

53

53
53
54

55
55
56
57

58
58
59
60
61

63
63

64
64
65
65
65

65
66
67
67

67
68
68

68
69
70
70
70

71

13

6.1 The ABR Server Architecture 71
6.2 The CPU Interface 72
6.2.1 MPC 860 Interface Block - Queue Manager Block Interface 73
6.2.2 MPC 860 Interface Block - Cell Scheduler Block interconnection 74
6.3 The Cell Demultiplexor 74
6.4 The UTOPIA Interfaces 75
6.4.1 UTOPIA Input Interface 76
6.4.2 UTOPIA Output Interface 77
6.4.3 The Pulse Synchronizer 78
6.5 The Queue Manager 78
6.6 The Cell Scheduler 78
7 THE QUEUE MANAGER IP 80
71 The Queue Manager IP Architecture 81
7.2 Functional Implementation 82
7.2.1 Interfaces 82
7.2.1.1 The Interface with the CPU 83
7.2.1.2 The Cell Demux Interface (Incoming cells) 83
7.2.1.3 The Cell Scheduler — Queue Manager Interface 84
7.2.14 The SDRAM — Queue Manager Interface 85

7.2.2 Flows 86
7.2.3 Flow Groups 88
7.2.4 Queue Manager Commands 88
7.2.5 EFCI and RM marking [21] 90
7.3 Design Implementation 91
7.3.1 Flow Record Format 91
7.3.2 Flow Group Record Format 92
7.3.3 Cell Format and Alignment 93
7.3.4 SDRAM Memory Organization 94
7.3.5 State Machines 95
7.3.6 The SDRAM Controller 97
7.3.7 Free List Bypassing [13] 98
7.3.8 Cell Buffer Pre-allocation [10] 100
7.4 Timing Issues 100
7.4.1 UTOPIA clock Vs Queue Manager (ABRSU) clock. 100
7.4.2 Worst case of Enqueue and Dequeue 101
7.4.3 Normal case of Enqueue and Dequeue 102
7.4.4 Synthesis Results, Free-list bypassing and Cell Buffer Pre-allocation contribution 104

8 CONCLUSIONS AND FUTURE WORK 105

9 REFERENCES 107

14

Figure 1-1:
Figure 1-2:

Figure 1-3

Figure 1-4:
Figure 1-5:
Figure 1-6:
Figure 2-1:
Figure 2-2:

AloTta oynudatov

Ievuc] apyrrektovikin tov petayoyéa AIMIOAO
Ecotepiko owaypoppa g kaproag EEvmnpetnti ABR

:Mnyaviepdég Flow Control Képrag EEumnpetnti ABR

Ecotepiko ordypoppa tov ABRSU

Avdypappa g owenagprs CPU

Ecotepiko ordypappa tov Cell Demultiplexor

To e6(TEPLKO OLAYPOPNLE TOV SLOYEIPLETY] OVPAOV

H dopn TV po®v Kot 1 0ALaYEG 6€ 0VTI PETA 0TO pio EVTOAY enqueue Kot pio

gvtol dequeue.

Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 2-6:
Figure 2-7:
Figure 2-8:
Figure 2-9:

O1 64 KVKMKEG MOTES TOV OPAI MV POV

Ta nedio kon 1 evOVYpappIoN TS EYYPAPNS POTNG

Opyavoon g pvijung opdomv podV Kol TOV EYYPLPAY OPAIOV POOV.
Mopoen ko gvBuypapren kemov otn pvijun SDRAM

Korapepiopoc ko opydvoon y@dpov g pvijung SDRAM

Al@ypOpIE KOTUCTAGE®V TOV PNYUVAOV KATUGTATCEWOV

AlGypoppe KOTAOTAGE®Y TNG PNYOVIIS KOTAGTAGE®Y TN €vTOAS Enqueue

Figure 2-10: Yiomoinon tg mopaxapyng AMotag eAev0Epmv 6TOV S10EPLGTI] OVPAOV

Figure 4-1:
Figure 4-2:

First Generation Switch Routers
Second Generation Switch/Router

21
22
25
27
28
30
33

36
37
39
41
42
43
44
46
47
56
57

Figure 4-3: Left: Third generation Switch/Router, Top-Right: A crossbar, Bottom-Right: An 8x8
Banyan Fabric made of small 2x2 Switch blocks.

Figure 4-4: Left: Output Queueing with a Switching Fabric and multiple buffers Right: Input

Queueing with a Switching Fabric.

Figure 4-5:
Figure 4-6:
Figure 4-7:
Figure 4-8:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 5-5:
Figure 6-1:
Figure 6-2:
Figure 6-3:
Figure 6-4:
Figure 6-5:
Figure 6-6:
Figure 7-1:
Figure 7-2:
Figure 7-3:
Figure 7-4:
Figure 7-5:
Figure 7-6:
Figure 7-7:
Figure 7-8:
Figure 7-9:

Left : Head of Line Blocking Right: Advanced Input Queueing
Left: Internal Speed Up Switch, Right: Crosspoint Queueing Switch
Single FIFO queueing and two threshold congestion detection approach
Per-Flow queueing and two-threshold detection approach

General Architecture of DIPOLO ATM Switch

The ATM 155 Card block diagram

The CPU Card block diagram

The VDSL Line Card Block Diagram

ABR Server Card block diagram

The ABRSU internal block diagram

The CPU Interface sub-block diagram

The Cell Demultiplexor sub-block diagram

UTOPIA Input Interface block diagram

UTOPIA Output Interface sub-block diagram

The Pulse Synchronizer

The Queue Manager IP sub-block diagram

The Flow Structure and changes on it after an enqueue and a dequeue operation.

The 64 Flow Group cyclic lists

Flow Record Fields and alignment

Flow Group memory organization and Flow Group records.
Cell Format and alignment

SDRAM Memory-space division and organization

State Machine Top Level Diagram

Enqueue command FSM bubble diagram

Figure 7-10 : State Machine Diagram of the SDRAM controller

Figure 7-11: Free List Bypassing implementation in the Queue Manager IP
Figure 7-12: Worst case Enqueue-Dequeue timing Diagram

Figure 7-13: Normal case Enqueue-Dequeue timing diagram

58

59
60
60
61
62
63
64
66
67
69
72
73
75
76
77
78
81
87
88
91
93
94
94
95
97
98
929

102
103

Table 2-1:
Table 2-2 :
Table 2-3:
Table 2-4:
Table 7-1:
Table 7-2 :
Table 7-3:
Table 7-4:
Table 7-5:
Table 7-6 :
Table 7-7:

Table 7-8

AlGTO TIVAK®V

MMivaxag 6LV TV gvToA®V ToV Atayeiproti Ovpov
Ieda Tng eyypaei|g poNg Kot TEPLYPO.PT] TOVG
Ieprypopn TOV TEdiOV TOV EYYPUPAY ORAIOV PODV
IIpoTepardTNTEG TOV EVTOAMV TOV ALUYELPLOTH OVPOV
The Interface with the CPU

The Cell Demux Interface (Incoming cells)

The Cell Scheduler — Queue Manager Interface

The SDRAM — Queue Manager Interface

Table of all the Queue Manager commands

Flow Record Field bits and description

Flow Record Field description

: Queue Manager Command Priorities

15

38
39
41
45
83
83
84
86
89
91
93
96

16

17

1 Eicaywyn
1.1 Kivntpa

H eocayoyn tov epoppoydv pe HEYOAES OTOLTAOELS €DPOVS OLOUETAYMYNG OTIG
ETOPIKEG KO TEAATIOKEG EMKOWVOVIEG elvan o amd T Mo otafepéc Tdoelg oTov
OKTLOKO Y®OPo. O1 €QapUOYEG TOAVUEG®Y OV OKOoAOLOOVV 10 NoOpo tov Moore
Tapdyouv VIEPPOAMKEG TOCHTNTEG OEOOUEVOV EIKOVAG KOL NYOV TPOS OVOUETAO®MON
Thve omd TOo OOVKTIO, €V 1 poydoion avEavopevn OIKTLMOON EemyEipnong e
emyeipnomn (Business to Business networking) cuvelopépet pikpd aArd cuyva mokéta
0edoUEVOV O6TO OIKTVO OVAUECOH, OTIC KEVIPIKES £0pEG TOLG. AVTEG Ol OIKTLOKEG
arotoels ival fopd eoptio Yo TNV LTOSOUT TV GVYYXPOVAOV SIKTV®V TTov Paciletan
Kupimg oto mpotokoro IP ko ota KaAmola yarkoV. Eved ta devtepa elval 1o kvuplo
avTIKEIHEVO TOL TpoPAnpatog tedevtaiov pidiov (last-mile problem) wot omontel
oTOOKY OAAG yryavtioio €mEvonomn KeQaAoiov o€ TOyKOGUO €Mimedo, Yo TNV
EICOYMYN OTMTIKOV W@V, T0 TPp®TOKoALo [P elvar avikavo va dapopomomost Tig
OLLPOPETIKEG VANPESIEC TOL AmOUTOVVTOL OO TOVLG OIKTLOKOVS Ypnotes. To
TpmTOKoAL0 ATM Bo TPENEL GTASIAKA VO OVTIKOTAGTIGEL 1} VO GLUYYOVEVOEL L TIg
epapuoyég Tomov IP oty mopeia yio vynAng todTag, OTTIKA OVKTLOL.

Ta diktva ATM mpoceépovv eyyvnoelg modtnrag vanpeciov (Quality of
Service (QoS) guaranties) ota cVYxpovo OIKTLO HE TO VA SLPOPOTOLOLY TNV
OIKTLOKT KIvNoTn Gg SLopOPETIKA €101 [LE BACT TIG OAMALTNOEL TOV EPAPUOYDV TOL TNV
YEVVOUV KOl TAPEYEL EOTKO YEPICUO KoL XpEMOT Yo KOE €100G.

AvTég O omanTnoELS giva:

* Evpog Avupetaymyis (Bandwidth) — O pvOudc pe tov onoio 1o dikTvO TPEMEL VL
LETOQEPEL TNV KIVNOT HAG EPAPLOYTS.

* KaOvotépnon (Delay) — H xobvotépnon mov (o epappoyn pumopet vo vmootel
oTNV TOPAO®OT TWV OEOOUEVMVY TNG.

* Anéxinon (Jitter) — H diapopomoinon oty kabvctépnon.

* Anoieigg (Loss) — To 1060606TH TG 0modeKTNG OndAELNG SESOUEVOV.

Kabe pio amd v okoyéveln Tov €100V Kiviong mov vrootnpilovv ta diktva ATM
dtvel TOAD €upaom o€ KATOLES amd TIG TOPATAVE® OTOITHOELS KOl Ayn 6T VTOAOUTEG,.
Ta €idom ¢ kivinion ATM etva:

* CBR (Constant Bit Rate) — Avtd 1o €id0¢ g Kivnong ypnoyloroleital yio v
TPOocopoimon TG HeTaywyng kKAelotob kukhopatog (Circuit switching). To gvpog
petoymyng etvan otabepd oto ypdvo. Ot epappoyéc tomov CBR eivon gvaichnteg
omv omdxkinon (Jitter) oAAd Oyt TO6G0 TOAD OTNV AmOAEL OEOOUEVMV.
[Mapadeiypata tétolwv epoapuoydv eivar mn kivinon tiepoveiag, mn Prvteo-
oLVOLAGKEYT Kot 1] TNAEOPOGT) VYNANG EVKPIVELOC.

e VBR-NRT (Variable Bit Rate — Non Real Time) — Avtd to &€idog Kivnong
EMTPENEL GTOVG YPNOTEG VO GTEAVOLV Kivnon pe puBud mov Kupaiverol 6to ypovo
avAAOYO pE TNV JBEGILOTNTO NG TANPOPOPIaG TOV ¥PNoTH. XPNCIUOTOLEITOL 1)
OTOTIOTIKY] TOADTAEEN Y10 VoL KAVEL TNV BEATIOTN YpNON TV SIKTLOKAOV TOpwv. To
TOAVUEGIKO MAEKTPOVIKO Tayvdpopeio eivar €va mopdoetypo Qoproyns Tomov
VBR-NRT.

18

* VBR-RT (Variable Bit Rate — Real Time) — Avtd 1o €idog g xivnong eivar
napopoo pe to VBR-NRT oAdd eivor oyedoopévo yio epoppoyég mov eivot
evaiocntec ot dapopomoinon g amdkAnong g kabvotépnong keawv (Cell
delay variation). IMopadeiypota epappoydv tomov VBR-RT eivor Myog pe
evepyomoinon dpaotnpuotnrog (Voice with speech activity detection) wai
OAAEANAETIOPACTIKO GLUUTIECEVO PivTeo.

* ABR (Available Bit Rate) — H kivnon avtov tov €idovg mapéyetl Eeyyo pong ko
OTOYEVEL OTNV Kivnom 0edopévav Ommg eival 1 petapopd apyeiowv kot To e-mail.
[Topdro mov o1 TPOdYpPaPEG THG OEV OIOLTOVV 1 KOBLGTEPNON TNG HETASOONG
TOV KEMADOV Kol 0 AOYOG OMMAENG KEAMMV Vo eykvdTon 1) va meplopiletal, sivon
emBountd va elvar 6co mepopopéva yivetat. Avdioyo pe to emimedo NG
ocvueopnong oto oOiktvo, M myn eSoavaykdletalr vo meplopicel 0 pvhud
amOoTOMC TV dedopévev . Ot ypnoteg Okalovviol vo ONAMGOLY TOV
eMY16TO dLVATO PLOUO ATTOGTOANG, TTOV TOPEYETAL GTT] GUVOEST] ATt TO JIKTLO.

 UBR (Unspecified Bit Rate) — Avtd to €idog mapéyetor v OAeg TG GAAES
TEPIMTMOOELS EPOPUOYDOV TOV Ogv €YOLV Kopio Omoaitnon Kot ypnoiponoteiton
evputata onuepa yia petddoon TCP/IP.

Ta televtaio VO €idn kivnong elval Ta MO OTOPTOVVIOTIKA, MG Kol TEVOLV val
YPNOLOTOOVV TO TEPIGEVLOTO TOV OIKTVOKAOV TOPOV OV £XOVV deGUEVDEL Ao TIg
vdéAoute, Omote avtd eival epiktd. [Tapdia avtd, petapépovv to PAPog TOV O
TOPASOGLOKMOV SIKTVOKAOV epappoymdv onwg Hiextovikd Tayvdopopeio, FTP, HTML
mov gtvan M BAom ™S GVYXPOVNG LOPPNS OIKTO®V. AV Kal BETOVV KATOEG AMULTOELG
oto pubud dapetaymyng, moapapepifoviar oe mEPLOSOVE SIKTVAKNG CLUEOPTONG.
AvTd petappdleTon 6e EKTETAUEVN OMOONKELON AVTAOV TOV EWOMV GTOVE OKTLAKOVG
kopupovg mov Ppickovial, 6tav ot TeEAgvTaiol TAGKOLVY amd GLUEOPNON. YTApYEL Mo
OEPA MO TPOTEWVOUEVEG OPYITEKTOVIKES G€ OAN TNV €EEMEN TOV HETAYOYEWV, TOV
avTHeTOnilel To TPOPANUO TG ATOJOTIKYG amobnkevong g Kivnong o ovpéc. Ot
peydAol amofnkevtikol y®Pol amd HOVOL TOvg OgV UTOPOLV Vo LTOSTNPIEOLY T
ToKIMo TV €0GV kiviong Kot To TPOPANUOTE TV KOBVOTEPNOEWV KOl TOV
mpoPfiquatog HoL (Head of Line) mov epgaviCovatal. Ilpoxvmter ott m mapoyn
Eexyoplotg amobnkevong Yy kdBe pio pon kivnong (per-flow queueing)
EKUETAAAEVETOL TOV OYPTOUOTOINTO YDPO TOV avevepy®dv pomv [5]. Ot petaywmyeig
He TETOW YOPOKTNPLOTIKA UTOPOLV Vo, Vrootnpiovv kivnorn JKTOOV LYNA®V
TAYLTHTOV YPNCLOTOUDVTOG HOVAOES OLVOIKNG Uviung RAM yoauniod kO6GTOULG,
piyvotog 1O KOGTOG TNG UVAUNG OTO €AGYIOTO EMIMEDO OLTNAG €VOC TPOCHOTIKOD
VTOAOYLOTH.

H dvvopukn Mviun PAM ocg 0leg T1g pop@ég g €xet va peydio €bpog amd
EPUPUOYEG OTO GUYYPOVO YMDPO TMV VITOAOYICTMOV Ko E01KA 01 GUYYPOVES SUVOAUIKES
pvnues (SDRAM) mov xpnoomolovvTol 6Yed0OV o€ KAOE VTOAOYIGTIKY] GUGKELY| TOL
ypeldleTon peydAo kol YoOUNAOD KOGTOLG OTOONKELTIKO YMPO, UE HEYOAO pLOUO
npoomélaons dedopévev. Ot kaAdtepeg emdooelg emtvyydvovior Otav peydio
TOKETA OEOOUEVOV TPOSTELAVVOVTOL, KATL TOL KAVEL QLTEG TIG LVILES 0AVIKES Yo
OIKTVOKEG OGLOKELEC TOV PPlroKoviol €d® Kol Kopd oI €MOYN TNG MUETOYWYNG
naxétov (Packet Switching). H gvpitatn epappoyn toug, 1 amdoikn Siemopr] Toug Kot
N Pounyovikn Tvronoinon Tovg piyvovyv T0 KOGTOG TOVG CNUAVTIKA, TPOPOSOTOVING
™G TPOGHEST EMUTAEOV SIKTLOK®MV TOPTOV OTIC OIKTLOKEG cVOoKEVEC [1,ke¢ 9], [12].

19

1.2 Mepiexdpeva AUTAG TNG EPYACiag OTO TTAAICIO TOU
mpoypauparog AIMOAO.

Xe o0t TV gpyacio meprypAPOVIE TNV APYLTEKTOVIKY] €VOG Aloyelpnot
Ovp®dV OV VITOGTNPIYEL TO XAPAKTNPLOTIKA TNG OVA-0VPE SOLVOUIKNG amodnKevoNg O
ovpd kivnong tomov ABR diktdv ATM. Avtdg 0 S1oEPIOTNHS OVPADOV GYEOACTIKE Y10l
T1G avaykeg Tov petaywyéa ATM AITIOAO, wavdtnrag dwopetoywyng 1 Gbps.

Xpnowonolgiton yoo v mopoyn oamodnkevong oe 64 yAboeg poég oG
Kevrpwomonpuévng kdptag mapoyns ABR. H kdpta ypnoyomotel o peydin FPGA
vy TV otéyaot tov Alayxepnot) Ovpodv kot po povadikn povada SDRAM DIMM
YL TNV OOONKEVOT TOV KEADV KOl TOV JEIKTAOV TOV OVP®V. AKOUN VLTAPYN Mo
OlEmaQn EMEEEPYNOTN TOL TPOYPUUUATICEL TOV ALOYEPIOTH OVPAOV UE TOPAUETPOVS
pong tomov ABR ®dote o televtaiog va pmopel va vmootnpifel yopoKTNPIOTIKA
eléyyov pong tomov ABR (ABR Flow Control), 6mwg popxapiopo RM ko EFCLL
AKOUN 0GYOAOVUOCTE HE TEXVIKEG TOV YPNOLULOTOMONKAY GTOV Sl0YEPLOTH Yo VO
avéfoovy v ypNon G UVAUNG, Omw¢ TtV mpooavdbeon pvnung (Buffer
Preallocation) xor v mapdkopymn eiebBepng Adotag (Free List Bypassing). O
Awyeplomg ovpdv vrootnpilel dtapopomoinon Kivione, HE TO VO OPYOAVAOVEL TIG
POEG GE OUAOEG POV Le BAOT TIG OVAYKES EELNPETNONG TOVG KoL TNV TOPTA €£00VL
TOVG, KATL TOL KAVEL €PIKTN TNV vrootPiEn kivnon tomov CBR kot VBR, otav
VILAPYEL EOIKN @OPOVTIdN 6TO0 VAKO ypovompoypappatiopoy (scheduler hardware).
Edwm gpovtida £xel Anebel dote o1 d1emapég Tov Aloyelplot e TIC GAAEG LOVADES
omwg o ypovompoypappatiotis (Scheduler) kot o Emelepyaotng, va eivor 6co 10
dvvatdv mo amAég kot omodotikés. H povadwkn povada pviung SDRAM odev
EMUTPENEL TOPAAANAES TPOOTEAACELS. AVT’ aVTOD Ol EVTOAEG TPOGOHNKNG KEAOD OF
ovpd (Enqueue command) kol agaipeong keAoh omd TNV KOpLeN UG OVPAG
(Dequeue) viomomOnkav eviaia, avti oe WKPEG AMAEG EVIOAES, MOTE Vo PeATibEL 1
ypnowonoinon ¢ pvaung. Iletoyape ovyvotmta poroywov 35 MHz mov
petappaletar oe 800 Mbps péylotng eloepyOUevG Kot eEEPYOUEVTNG SLOUETOYWYNC.
e vhomomoelg Tomov ASIC 6mov o1 GuYVOTNTEG poAOY10D TNG TdENG Twv 133 MHZ, 0
SlpeTay®yn mov mETOYape pmopel va avénbel kdvovtag TV opyYITEKTOVIKY HOG
KOTAAANAN Yoo ¥pNon ®¢ MHEPOG €VOG OKTLOKOL OAoKANpwpévov [7], [10]. O
dwyelptomg ovpmv ypnotpomotet 2500 Aoywd otoyeio g FPGA war 2000 bit
eowteptkng SRAM, yio 64000 yidiadeg ovpéc.

O petayoyéag AITTIOAO oyedidotnke amd Kowvod arnd to Ilavemotyuio Kprmg, to
EBvikdé Metadpio ITorvteyveio, To Topvpa Teyvoroyiag kot ‘Epevvag g Kpnmg kot
v Ivtpaxop ota miaicwa tov épyov EILE.T «Aiktva I1pdsPfacng OroxAnpouévaov
Ynrnpeoidv (AITIOAO)». Xkomdg TG KOwNg dpactnplotnTos NTav 1 oxedioon Kot n
Katookev €vog petayoyéa ATM pe wavoétmta owapetoyoyng 1 Gbit 1o
JELTEPOAETTO GE OIKIAKOVG ¥pNotes Ypouumv VDSL. Anapaitntm ftav n vrootpién
and tov petaywyéa, kivnong tonov CBR, VBR ka1t ABR. Akéun eayedncov vrodyy
TOPAUETPOL OM®G TO YOUNAO KOGTOC TOV GULUGTNUATOG, T YXPNOTN EUTOPIKAOV
OAOKANPOUEVOV Kot 0 BEATIOTOC KATAUEPIOUOG TMV OTAPOLTTOV EPYAUCIDOV OVALESO
GTOVG GUUUETEYOVTES OPYAVIGHLOVG,.

210 mAaiola tng oyediaong Tov petaywyéo AITTIOAO, o cuyypagéag gixe TV evkapia
va acyoindel pe v euoikn oyediaon g kaptag EEvmmpetnt) ABR.H kdpta avt
neprypdpetar oty Tapdypago 1.4. ITo cuykekpipuéva aoyoAndnke e tov Kabopiopd
™g opydveong g kdptag, v meptypar tov o€ eninedo CONCEPT. [Hapdiinio

20

kabopioe Vv ecmTEPIKN 0pYdveomn g povadoag ABRSU tomov FPGA g képtag. H
povada meprypdpeton oty moapdypago 1.5. Zyediace Tig Aertovpykéc povaoeg Cell
Demux (Agc mapdypaeo 1.5.4) tov Awyeiptot| ovpdv, kKOplo Béua avtig g
EPYNGLOG, TOL TEPLYPAPETAL EKTEVAOS GTO KEPAANLO 2, TNV OETAPT] OADV TOV HLOVAS®OV
LE TOV HUKPOEAEYYXTN TNG KApTag (Agg mapdypapo 1.5.1-3), kabdg Kot v dtemaen pe
v povada pviung e Kdaptag. Akdun ntav vrehBuvog yio v oAk odvleon g
LOVASOG Kol TNV oXe0l0oN Kol EKTEAECT] SOKILOGTIKMV TEPOUATOV Kol EMOEIEEDV
OMG TG KAPTOG YO0 TNV TEKUNPI®OT TV OpacTnpLOTTOV.

1.3 H apxitekTovikij Tou petaywyéa AINMOAO

H apyrtextovikn tov petayoyéa ATM AITIOAO mopovoialetar oto oynuo 1-1. Oro
T0 GUOTNUO. AOTEAETOL OO o oepd amd KApTeg ypappng tomov VDSL mov
GLVOEOLV TOVG YPNOTES LE TO LETAYMYEQ, pia 1| TeplocoTepeg kKapteg ATM 155 yia
o VLVOEST TOL HETAYMYEN LE TO KEVTPIKO dikTvo ATM pécw ypauung OC-3/STM-1,
po kapto Enelepyaot, po kdpta Atayxeipnot) ABR (oe avty vAomoteiton kot o
JLYEPIOTNG OLVPOV TTOV gival To KOHPLO BEUA VTS TG epyaciog) Kot dvo dlawiot
CellBus.

H axpipng Aettovpywcdtnta kdOe kdptag divetor TopaKiTm:

* Kowdg diowAog keM@V: Xe eminedo GLUGTNLATOG, 1) LETAPOPH TV SEGOUEVOV
0660 kol NG mAnpoopiag onuotodociog kot dlayeipnong yiveror péow
owvdéocewv ATM. H petayoyn tov Oedouévov avTtdV TOV GLVOEGEMV
TPOYUATOTOLEITON LEG® TNG XPNONG EVOG KO1voV dtdviov kelmv (Cellbus). T'a
AOYOUG acQOAEiOG T OPYITEKTOVIKY YPNOomolel ovo diowAovg, Evov
TPMTEHOVTO Kot £VO, OEVLTEPEVOVTA TTOL BaL YPMGIUOTTOLEITOL LOVO GE TEPIMTMOOT)
0GTOYI0G TOL TPWTELOVTOC.

* Kdpta ATMI155: Extelel Oleg TIC Ae1TOovpyieg MOV EUMEPIEXOVTIOL GTO TEAOG
TOV QUOIKOV EMTEGOL Kol 6€ OAOKANPO 10 emimedo ATM Onw¢ TepLOTIGUAC
TOV PLGIKOV EMTESOV, dpopordynon ATM, onuatodocio Q.2931, Aettovpyieg
OA&M, k.1.h. H o0vdeon molhav tétotmv Koptodv oe €va backplane oonyet
OTNV VAOTTOINGT EVOG LETAYMYEQL.

* Efummpemtm)c ABR kivnong: Extekel Oheg Tig amopaitnteg Asttovpyieg yuo
™V 0modoyn, amofnKELON Kol TPOMONON TOV KEMMOV TOL UETAPEPOLV TNV
kivinon ABR v onoia dev umopel va yepiotet n kdpta ATM yoti amontet
peydro amodnkevtikd ydpo. H Bacikdtepn and avtég T1g Aettovpyieg eivon m
dwayeipnon peydaiov aplfpoH ovp®V TOAAATAGY ETITEOWV.

o Kevipwodg emefepyaomne: Eyxert tqv ovvoAikt| emifieym/dlayeipnon tov
oLoTNHOTOG Kot Bo extedel Agttovpyiec vyniol emmédov Omwg to Call
Admission Control (CAC).

e Képto VDSL modem: YAomoiei tqv Aettovpywkodtnta tv modem TOTOV
VDSL y1a v 60vdeomn pe TOVG YPNOTES HECH TOV TNAEQPOVIKGOV KoAwdiov. H
opybvon g KApTag avTng gival ££® amd ToV OKOTO TNG aVOPOPAS OVTNG.

21

Ethernet or

RS-232 CPU

0C-3/STM-1e—» ATM155 Line

<eeees =)
.
: ABR
OC-3/STM-1l«—» ATM155 Line SERVER
{ 5 VDSL Line
<+—Pp
: CellBus A CellBus B

D < :
{ s VDSL Line | g
<+

Figure 1-1: I'evik1] apyrtektovikn Tov peraymyéa AIIIOAO

2TV opyavmon auty, 1 Kevipikorompévn eénanpéton g kivnong ABR emitpénet
TNV GLUYKEVTIPMOON TNG UVIUNG TPOCOPVIG amobrkevong twv dedouévov o pia
KAPTO, e GULVETEWD TNV KOADTEPT XPNOTM TNG UVAUNG VTG AKOUM EMITPEMEL TV
onuovpyia cvotnudTev pe 1 xopic evanpetn ABR, kot avEdver v eveMéia Tov
CLOGTNUOTOG OTNV amodoTIKN (0md TAEVPAS KOGTOLG) KAALYN UETOPAAOUEV®V
OVOLYK®OV.

1.4 ApXITEKTOVIKA TOoU £§utrnpeTnTr) ABR Kivhong

H ABR vmnpecio tov diktoov ATM épyetar va KOAOWEL TIS OVAYKEG TOV
napadoctok®v diktvmv LAN. Ta vroloyiotikd cvotiuota oe éva LAN 0€lovv va
oTelAOVV T OESOUEVO TOVC, TN GTIYUN OV OVTA YEVIOUVTOL KO LE TOYVLTNTO,AV OVTO
elval ovvato, avT TG YPAUUNG 0ALL Y®pic cuvooTiond (congestion) Tov TPOKAAET
anoAiela cells. Avtd oydet yoti ta dedopéva twv Hiektpovikdv Ymoroyiotdv givat
evaicONTo OTIG OMAOAEIEG, HUIOG KOl Ol OVOUETOOMGELS UTOPEL VO LELDGOLYV OPOCTIKA
™V ar0d001 GAOL TOV OIKTVOV.

Avti Aowdv va decpevovtal TOpot yio v eKpnKTikn kivnon (bursty traffic) tov LAN
SKTO®V, vt eEummpeteitat amd v vanpecsia ABR mov ypnowonoiet v dabéoiun
Kivnon mov 4ev YPNOLUOTOOVY 01 VTOAOITES, ELOICONTES GE YPOVICUO, VIINPEGIEG TOV
ATM dwtoov. Tlpokepévon dpmg va 0wbel GTOVG ¥PNOTEG 1 IKAVOTNTA VO GTEAVOLV
otL Béhovv Otav 1o BEAovV, pE pOVI amaiTnom VO UNV VTAPYOVV OMMAEES, T
eEumpétnon g xivnong ABR mpémel va yivetor amd €va petaywyéo mov dlobétel
HEYOAN OmOONKELTIKY] KOVOTNTO, OCTE VO UTOPOLV VO, 0moONKELTOVV Y10, KATO0
xpovikod odotnua to cells mov dev pmopovv va petadofodv AdYwm pun dabéciung
kivnonc.

IV avtd, 010 peTaymyéo mov oYed1dlOVUE, YPNOUOTOIOVUE £VO KEVTIPIKOTOUEVO
eEummpem kivnong ABR, dote vo pmopolpe va eKUETOAELTOVUE TKOVOTOUTIKA
TOVG TOPOLG UVAUNG pE YounAd kdotog. TTo ovykekpuéva 1 kapto e&vmnpétnong
ABR «ivnong owbétel wovotteg amobnikevons g cuvolkng kivinong ABR mov
oéyeton 0 petaywyéoc. Me avtd tov TpOTOo dev mopévoyieitar n e&vmnpétnon TV
ALV €0GV Kivnong Kot M UvAuUn TG KOPTOG XPNOLOTOLEiTal AMOKAEIGTIKA Yo

22

kivnon ABR, mov mpowBeitan dtav o diowdog Tov petaymyéa eivar ehevbepog (6tav
oniadn d0ev vIapyel AALOL €1d0VG Kivomng) amAOTOLMVTOG £TGL TV dlaXElpNoN ™G
kivnong otig kapteg ypauunc. ‘Etol n kevipuwonomuévn eumnpéton ABR peidvet
TO KOGTOG LVIAUNG WG Kot 0gV ToToBeTov e Pviun o€ KAOe KAPTa YPOUUNG.

Av ko 1 kevrpucomompévn e&vmmpétnon ABR diver povadikd onpeio amotuyiog, To
TpOPANUa pmopel va AvBel pe v ypnon devtepng Kaptag mov Ba mapéyel avoyr o€
OQAALOTO KOl LOTPOGLOL pOPTOV.

MPC860
RS- 485 I/F uP uP Flash
SDRAM EPROM
uPbus ! 1 ;l;
ABR Server Unit FPGA‘
Utopia A9
16bit =
» | Cubit Pro P:j
) O e — A 7]
S22 J>
< a ‘
0% o g‘ J— =@
< a <—|L> o
. | Cubit Pro —
B[&z
[64 bit Utopia ®
data 1 6b1t -
Cell Body
SDRAM

Figure 1-2: Ecotepiko owypappa g kaptog ESvanpetnt ABR
H kdpta eummpémong ABR amoteleitor amd to axdAovba otoryeio:

Tn Zvokevn Metayoyng (Transwitch Cubit Pro)

Tn Movada E&umnmpétng ABR (The ABR Server Unit (ABRSU))
Tov Eneéepyaoctng MPC860.

The Memory module (256 MB of SDRAM)

b s

H yevu apyrtektovikn ko n opydvoon g Kaptag gaivovtol 6to oynuo 1.2.

1.4.1 To oTOIXEIO METAYWYAS

To ortoyeio peroyoyng (Transwitch Cubit Pro) ovvoéetan pe v Movéoda
E&umpémong ABR (ABR Server Unit), uéoco piag ocvvoeong UTOPIA ko pe 1o
Backplane péow twv 37 ypappdv tov CellBus. Axoun cuvdéeton pe tov eneéepyaotn
MPC860, péow pag Swovvoeong emeepyaotn (Ue emMAEyYpévn TNV Kotdotoom
Motorolla). Kabe kapta eEummpétnong ABR dwabéter 2 Cubit Pro, pe v kébe po va

23

etvar ovvoedepévn oe éva amd to dvo CellBus. Mévo éva CubitPro eivor oe
Aettovpyio por d€dOUEVT) OTIYUN EVD TO GAAO €ivol GE OVOLOVY Yo TNV TTEPIMTOON
actoyiog Tov mpwtevovrog CellBus. Ze avtn ™ mepintwon 1o ev avapovr CubitPro
tifeton oe Aertovpyio evd awtd tov mpwrtevovtog CellBus amevepyomoleitan. To
Cubit-Pro oéyeton Cells and to CellBus kot ta mpowbei otn Movada E&uanpémmong
ABR péom pog ovpag FIFO 123 cells. Xy avtiBetn katebOvvon amodéyeton cells
am6 ™ o Movada E&ummpétmong ABR kot ta mpowbBel oto CellBus péow puog
ovpdg FIFO 4 cells. H cvokevn] CubitPro mopéyet popkdpiopo EvoeiEng LuvooTiGro
(Congestion indicator marking) kot métaypo cells (cell discarding) kdtw omod
OPLOUEVEC GLVOTKEC.

1.4.2 ECWTEPIKOG ETTESEPYAOTHG EAEYXOU

O ene&epyaoctic MPC860 Baciletar omnv apyrtektoviky PowerQUICC g Motorolla.
Eivar vevBuvog v v opbn Aettovpyia, apyucoroinon kot aviyvevon AaBov g
kaprtag e&ummpétong ABR. Zuvdoéetar pe 016popeg LOVASES TG KAPTAG HEGH EVOG
dtwvrov uPBus. Xpnowomotel v 01acHvOeo WKPOETEEEPYAGTH] TOV GLOKELMV
CubitPro ywo va oavrodddEer cells owyeipiong (Management Cells) pe tov
pikpoeneEepyaot mov Ppioketon ot kdpta CPU. To CubitPro mapéyetl (uéow polling
N interrupts), emiong, TANPOPOPIES Yoo TNV KIvNnom Kol GTATIGTIKGA, YPNOLUO YioL TNV
dwyeipnomn Tov OAOV GLOTAHOTOC. AKOUN GE TEPITTMON EAATMOUATIKNG Agttovpyiog
tov evepyov CellBus, o MPC860 givan vevBuvog yio v amevepyomoinomn tov Kot
TNV €VEPYOTOINGN TOL aVOTANP®UATIKOV. Akoun, o MPC860 dracuvdéetan pe v
ABRSU kot Aappaver QIDs yio qv apykomoinomn pog KANonG cOVOEoNS, VO GE
TEPIMTOON TEPLATICUOV 0G GVVOESTG EMGTPEPEL TO avtioTolyo QID [22].

O eneéepyaotic MPC860 Xpnowonotei pio povéodo Flash EPROM mov amoBnkedet
dedopéva Yoo TNV opykomoinon tov ocvotiuatog kot pioe SDRAM pviun vy
amofnjkevon oedopévov ko cells. Adyom tov woavotitowv eleykty pvnung (on-chip
memory controller), o MPC860 umopei va cuvoebet pe ta mapoamdve yopig emmiéov
AOyIKT.

Téhog, Yo TOV €Aeyy0o TOVL GLOTNUOTOG, cvvinpel por oHvdeon RS-232/423, mov
eMEYxeTOL Kol auT) UEC® €VOC CEIPLOKOD EAEYKTN MOV® OTO OAOKANPOUEVO TOV
MPC860.

1.4.3 H povdda egumrnpértng kKivnong ABR

H povada e&ummpemnt) xivnong ABR (ABR Server Unit — ABRSU)
arotedeiton amd 2 otoryeia, tov mpoypappartioty Cell (Cell Scheduler) kot tov
dwyeplom ovpav (Queue Manager). Xvvoéetan pe Tig ovokevég CubitPro pécm pog
apeidpoung owcHvoeong UTOPIA madtovg 16 bit data, pe tov enelepyaoty MPC860
kot pe tov Cell Processor pécm pog apeidpoung dtactvvoeong UTOPIA mAdtovg 8 bit
data. M povédoa SDRAM eivar ocvvoedepévn pe v ABRSU pe okond v
amofnjkevon Cells kob®OC Kol oDV 0£dOUEVOY TOL VAOTOOVV aVTEG TIG ovpés. H
Aertovpyio g ABRSU ovvictaton otn amodnkevon twv cells tomov ABR pe Baon
éva medlo 16 bit (eioepyopevn kotevbouvon) Ppioketar otov header kdéBe cell won
opilel povadikd v €KOVIKY] cHVOEST TOV OVTO GVIKEL, KOl GTOV TPOYPOUUATIGUO
petadoone tov cells (eepyduevn devbuvon). To civoro NG AOYIKNG TG HOVASOG
e&ummpétiong kivnong ABR viomomtot and pia FPGA ocuvogpévn pe pvqun SDRAM

24

YL TNV amofNKevoT TV JEO0UEVODV Kol TV gowteptkav doudv (head-tail pointers
Yl TIG 0VPEG, K.0L.)

H povada e&ummpémong kivnong ABR vrootnpiler 64K ovpéc (apov to medio
otov header eivon 16 bits), ®ote vo oamogevyBodv mpoPAquata «head-of-line
blockingy», ka1 vrootmpilel apketd amobdnkevtikd ¥dpo Yoo o dedopéva Tmv cells
(MOOTE VO UTOPEL VO 0mOPPOPE S10KLULAVGELS otV Otabeotpotnta bandwidth.

Av kot to ocvotnua mov Ba vAomomcovpe ce avtd 10 £pyo Ba e&umnpetet

OYETIKO LIKPO aplBUd ¥pNnot®dVv (To TOAD Alyeg 0ek(OEC) KoL QTN TNV TEPIMTMOON 1
VRTOGTNPIEN OKOUO KOl AMYy®mV EKOTOVIAS®MV 0OVP®OV Bo TaV 0PKETN Yol TV LAOTTOINGN
TOALOTADV GLVOEGE®V e Kivinon ABR avé ypriotn, tedikd, n povada e&umnpétnong
kivnong ABR 0o vmoompiler 64 yilddeg ovpéc, étol mote vo pmopel vo
ypnopomom el yopic aAlayEC Ko 6€ LEYOADTEPO GUGTILLOTOL.
Ao mAeVPAC YDPOL YL TNV ATOONKELON TOV OEOOUEVDV, OEOOUEVNG TG YPNONGS
ocuvdéoumV pe tayvtnta 155 Mbps, 1 yprion pviung peyébovg Alywv dexddmv Mbytes
apkel Yo ™V omoBNKELON TOL GLVOAOL TNG Kivomg Ylo. HEPKO OEVTEPOLETTOL.
Agdopévov ott pvAun Ba e&ummpetel poévo kivinon tomov ABR axopa kot Atyo
Mbytes Bo eivar wavd vo ovtomokpllodv Ge ONUOVTIKEG OLOKLUAVGES NG
dwbeopudttog tov bandwidth. H de yprion pvnuov tomov SDRAM emBdriel Eva
erdyioto péyebog 256 Mbytes, to omoio Ba givol VIEPUPKETO Yo TIC OVAYKES TNG
kivnong ABR.

1.4.4 H povada pviipng SDRAM (256 MB) [19]

Muw povédoa pviung tmov DIMM SDRAM ypnowyomombnke g eE@tepkog
amodnkevtikdg yopog ™S Movadag E&vmmpemnmy ABR (ABRSU), omov
amofnkevovtal KeAd o ovpéc KaOMG Kol GAAD OEOOUEVO OLPDY KOl TANPOPOPIES
eAéyyov ponc. Av kot Arydtepa amd 256 MB eival apketd yio v képto pog, to
DIMM peyéBovg 256 MB eivar apketd cuvinOn oty ayopd.

1.4.5 Mnxaviouég Flow Control Kaptag Eutrnpernti ABR [23]

Onwg avagépetar kot oto 5.2.1, to CellBus kot ta oAokAnpopéva CubitPro £yovv
dvvatdtrta va petapiépovyv tanpogopia Flow Control avapetald tov Kaptdv mov
ypnowonoovv 1o CellBus yuo petaywyn cells. Avtd yivetor péom €01K®V onuiTOv
tov CellBus mov 0¢étouv kot dwPdlovv ta CubitPro, ®dote pe ™ oepd tOoVC Vo
€100TOMGOLV TO. VTOAOITO OAOKANPOUEVO TNG KAPTOG TOLG Yoo TNV Vmoapén
congestion 6g KAmola omd TIG KAPTEG 1| TN Un opn Aqyn evog cell and o képto
TPOOPIGHOVD.

Tov mopamaveo pnyovicpd Flow Control ypnowomoliei ko m képto
E&ummpemt| ABR yia v opn petaymyn cells otig kdpteg mpoopiopod kabdg kot
v va, TAnpoopn el yia molég kdpteg oev dabETouy ydpo yioo Ayn evog cell thmov
ABR otv avtictoymn ovpd tov CubitPro tovc. 'Etot, 66eg cuvdéoelg mov eEumnpetel
N kapta otéAvouy cells oTig mapandve kapteg dev TepAafrdavovtal oTig mavEg yio
petdooon cvvdéoelc and tov Cell Scheduler.

O unyoaviopdg eaivetor oto oynuo 5. Onwg eaivetor oto oynuo. to CubitPro tng
Kkaptag E&umnpemt) ABR petadider Flow Control winpogopic pécm Tpiov
oNUATOV:

25

* CONGOUT : Ortav 10 onuo ovto ivar evepyd onuaivel 0Tt 6N KAPTO GTNV 0ol
otdAOnke to televtaio cell tomov ABR vmdpyer congestion. 'Etor o Cell
Scheduler too ABRSU 0a mpénetl vo oTtapatmost vo 6TEAVEL, Y10 KOTOL0 YPOVIKO
dtotnua, mwive ard to CellBus, cells mov mpoopiloviot YU’ avti ™ KAPTO, HOG
Kol etvon mhovo 1o TETOYUA TOV Ao TNV TEAELTAIO.

e ACK : To onua oavtd otov sivar evepyd ompaiver 6t to tehevtaio cell mov
oTaAONKE o€ KATOW KAPTO TPOOPIGHOL £yve OekTO amd TNV TeAgvtaio. Xe
ocvvdvacuo pe evepyd 1o CONGOUT, onpaiver ot to cell av kot €ywve dektd amd
NV KAPTA TPOOPIGHOV, TPOKAAEGE congestion otV terevtaio (GYedOV YEUATN
ovpah).

e NACK : To onuo avtd otav eival evepyd onuaiver 01t to terevtaio cell mov
oTAAONKE € KATOL0 KAPTU TPOOPIGHOD eV £YIVE OEKTO. L& GUVOLAGHO LE EVEPYO
10 CONGOUT, onuaiver ott dgv €ywve 0ektO AdYo VTapENG 1oyvpov congestion
GTNV KAPTO TPOOPIGLOV (YELATN OVPA).

Ta mapondve ofjpata ival petdepacn Tov onuatov apvntikng Aoyikng tov CellBus,
CBCONG-,ACK- ka1t NACK- avtictoya.

Y10 oynpa 1.3 @aivetanr n mepintwon petdowong tpuwv cells oe tpeilg kdpteg, o
oYEOOV YELATY, Mol KOVOVIKT KO U0 TANP®G YEUATN avTioTol 0, KOOMG Kot Ol TIES
v onudtov CONGOUT, ACK ka1t NACK mov petadidet to CubitPro otov ABRSU.
v npatn mepintwon 1o cell yivetatl dekto amd ™ kdpto wpoopicpod (ACK = 1)
0AAG MOy NG oxeddv yepdtng ovpdg 1o CONGOUT = 1. X1 devtepn mepintwon, 10
cell yiveton dextd (ACK = 1) xou a@od m ovpd dev KIVOLVELEL Vo YEUIGEL TO
CONGOUT = 0. TéAog, otV 1pitn nepintmon to cell metiétan (NACK = 1) Adym ¢
Tpwg yepdtng ovpac (CONGOUT = 1).

Almost Full I Normal I Full I
I= | I | I |
< < <
@) @) @]
2 8 2 e 2 o
S g & = - =
8 B B
F | B8 2 | OIS z | B8
< < 5

o
i)

<—
=

L L

CellBus
ABR Server Card
ACK [NACK CONGOUT ACK
Cell1 1 0 1 « NACK «—
Cel2 1 0 0 CONGOUT .
Cel3d 0 1 1 ABRSU Cubit
Pro
—»
Cells A 4

Figure 1-3 :Mnyaviopdg Flow Control Kaprac EEuvanpetnti ABR

26

1.5 H apyxitektovikn Tng Movadag E§utrnpetnTi ABR (ABRSU)

H Movdada E&ummpetnt ABR viomoteitan ot Képrta E&uanpemmt) ABR and pia
FPGA 1tbomov EPF 10K200EBC600-1 1tng Altera. Ilapéyer 11 mopokdto
Aertovpykdtreg oty Képra:

Amodoym eloepyopevng kivnong tomov ABR péow apiepopévng derapng UTOPIA
a6 ohoxkAnpopéva CubitPro g kdptag.

Avayvopion tov keMdv tomov RM, dote va pmopel vo epoppoctel pLopKApIGHa
tOnov RM mdve toug otV TEPINTOOoN TOL OV GLUPOVOLV LLE TOV TPEYOV EAEYYO
pong.

Amobrjkevon Tov eoepyopevov keMmv ot Mviun SDRAM, pe Bdon t por otnv
omoio. avnkovv (per flow queeueing). Ov deikteg Tv ovpwv (Tail Pointers)
EVILEPDOVOVTOL LLE TIG VEES OPIEELC.

Opadomoinon twv podv ce ouddec powv (Flow Groups). H opadomoinom eivar
e evBepn and khBe meplopiopd ko pmopei va ypnoomoindet yio v opodomroinon
elte pe Pdon v kdpto amocotoAng tov petdywyéo AIIIOAO, eite v mowdTa
VINPEGLAOV TOL TOVG TOPEYXETOL EITOL KO TIG 0VO.

XpOVOmPOYPOUUOTICUOG TNG OMTOCTOANG TOV OMOONKELUEVOV KEMOV TOL OVI)KOLV
oV KeQaAn KaBe ovpdg pong. H petdooon Paciletar otnv dabéonun dopetaymyn
tov olavAov CellBus. Tl avt) ™ Aettovpyia, pio LOVAOO YPOVOTPOYPUUUOTIGHLOD
(Scheduling block) éyer viomomBei, mov ypnoonolel TG TOPAUETPOVS Yo TNV
TOOTNTO VINPECIOV Yo KAOe pio amo Tig Oopdoeg podv Yoo vo {ntaer omd v
avlyvoor £vog KeEMOL Tpog PETAd®ON. Avtd To KeAl o avayveooth amd v pviun
SDRAM oamd tov Oloyelplot) ovpdv mov Oo evnuep®OT Kol TNV KEPOAN TNG
avtiotoyng ovpdg ponc. Otav 1 opb1 peTddoomn Tov KEAOD GTNV KAPTOG OTOGTOANG
emPBeParwbel 10TE 0 YOPOC 6T PVIUN TTov décpeve Be evtayBel otn Alota elevBEpmv
Kot TeAKA Ba EavaypnopomomBet amd dALo e16EpYOUEVO KEAL.

Metdooon tov eepyodpevov KeAdv ota ohokAnpouéva CubitPro g képta pécm
pog amokAelotikng oemapns e£6dov tomov UTOPIA. Ymdhpyer mopdAinio kot m
SVVATOTNTO ETOVAUETAO0CTG EVOG KEALOD GTNV TTEPITTMOT) TOL N TPATY LETAOOCT] TOV
KkeA100 v omd 1o CellBus and 1o CubitPro amotoyet.

[Tapoyn demapnc pikpoenelepyaot yia ™ dtacvvoeon g Aoykng e ABRSU pe
tov pikpoenegepyaotn MPC860 ¢ képtag. Méow avtig g demapng, o MPC860
umopel vo apywomolel M va teppatioel poég — ovvoéoel tomov ABR, mov
e&ummperodvton and v kdpta. ‘Exel, mapdiinio, tpoécfocn ot dOpES dEQOUEVMV
TOV OVPAOV KOONDC Kol oTIG 101EC TIG OVPEC TOV €ivol amoBnkevUEVES oV UV
SDRAM. O MPC860 umopei emiong vo TPOTOMOWGEL SVVOUIKA TG TOPAUETPOVES
ELéyyov Porg v k60e pia amd 115 poéc aAlAlovTog To 0Pl TOL YPTCLOTOLOVVTOL
Y To popkdpiopo kibe pong Eexwpiotd. Mmopel T€A0C Vo TPOTOTOWCEL KOl TOVG
YPOVOLS eEumnpETnong mov ypnoilponotel 1 Movada Xpovormpoypopiaticpold yio vo
{ntder v PETAS0OT KEMDV TOV OLAd®Y PODOV.

>10 oymua 1.4 paiveton n ecwtepikn opydvmon s ABRSU.

27

MPC 860
Interface
A A
Incoming Cells Cubit Pro 16
16/ Interface <+
Cell et v In
DeMux
ABR,RM Cells v
To4
B Cell
164 Scheduler
Cubit Pro
Interface 16
Out +>
vy 4 64
>
QUEUE < Outgoing
MANAGER ABR, RM Cells FPGA Unit

3

SDRAM DIMM
256 M B

Figure 1-4: Ecotepiké dwdypappa tov ABRSU

Ot ecwtepikég vropovades tng ABRSU mapovsialoviot oto mopakdt®m vrokepdioia,
eV éva EexmploTd KEPAANLO ival APIEPMUEVO GTOV SLUYELPLOTH OVPMV TOL Eivor Kot
10 KVPLo BEpa avtg TG epyaciog (Asg Kepdiowo 2).

1.5.1 H Aieragn EmegepyaoTtn (CPU Interface)

H vropovada demapng CPU, 6mwg avagépbnke mopandve, lval vredbovn yio v
EMKOVOVIO, 0pYIKOTOiNoT Kol SLVOUIKT TPOTOMOINGCT TOV VTOAOITMOV VTOUOVAS®V
g ABRSU and tov Emeéepyoomy g Kdptoc. Méow avtig g Oemagng o
Eneyepyaotig apyuconotel i 00pég OeS0UETOV TOV PODV TTOL £ivol amodnKevuéveg
omv pvnun SDRAM, 0étovtag ouykeKpluéveg €VTOAEG MOV EKTEAOVVIOL OO TO
dwelptot ovpwv. Av ypetdletal, o doyelptotig ovpdv Ba emoTpéyel dedopéva
otov MPC860 péow oavtmg g owemaens. O MPC860 pumopei, emiong, va
TPOTOTOMOEL TIC TOPOUETPOVS TOWOTNTOS VLANPESING TOV OUAd®V PoOdV GTNV
vropovada ypovompoypappoticpov (Cell Scheduler) [23],[23].

H ecotepucn opydvoon tov CPU Interface divetan oto oynpa 1.5. Muog kot o diowAog
tov MPC860 otnv kdpta d0vAeDEL GE GLYVOTNTEG POoAOYLOD Tov Kvuaivovtot amd 10
péypt 25 MHz evdd 1 FPGA pmopel va methyel vymAhdtepeg cuyxvoTnTeg £0OTEPIKOD
poAroyov, n Alemaen CPU mpémer va ypnowomotel Kot TG 600 Ol0POPETIKES
oLYVOTNTEG POAOYLOVL KAOMS KOl KATOL0 KUKAMLLO GUYYXPOVIGLOV.

A6 10 HEPOG TOV SLWAOV TOV EMEEEPYOASTN 1] LOVASQ OETOPTG YPNOLOTOLEL TOL pins
Tov SwwAov cav €160d0/éEodo. Avtd eivor 32 Yo ta dedopéva, 22 yuo
otevbuvolodotnon kot pepkd emmAéov onuata eAéyyov signals (chip select,

28

Read/Write etc). Méow aut®v TV pins 0 MiKpogAeyyTc UTopel va YpAQEL Kol GE
OVYKEKPIUEVOVG KATOYMPNTEG KOt £TGL VO OLOUOPPAOVEL SUVAUIKE TNV AEITOVpYia Kot
TG dopég tv vropovadwv Queue Manager Block xotr Cell Scheduler Block.
Avtiotoyo pmopel vo AdPel dedopéva EKTEADVTOC o TPAEN OVAYVOONG GCE
KOTo@pntn mov evnuepaveral amd v vropovada Cell Scheduler Block.

32

MPC Registers Sel,LRd/Wr Addr Data In/Out
STATUS Address Decode
COM_HI &
= Command Issue
COM_LOW A
INDATA_HI W MPC
INDATA_LOW Req 2
= Sched q /
Data[Ready
SCHED_CONFIG updatey v (mpclk)
Synchronizer Synchronizer
25 to 50 MHz 50 to 25 MHz
(clk)
X
64 MPC
25 Re DATA_OUT_HI
q Data|Ready
Sched
DATA_OUT _LOW
64 update = =
A\ Wr
v 64
To Scheduler
To Queue Manager From Queue Manager

vy

To Queue Manager

Figure 1-5: Avdypappa g demagpng CPU

YrebOvvn yio v €Yypoaen TOV KOTox®pnT®dV Le Bdon ta pins Tov dadAov givor Eva
KOMHOTL AOYIKNG oL oTo oyfua @aivetar pe 1o O6vopo Address Decode and
Command Issue. H Aertovpyia ¢ €ivar vo omokmOlKomolel To TEPLEXOUEVO TOV
Aoy d1evBlivoemV Kot va eKTEAEl avdyvoon 1 €yypoaer] 6€ avtovg pe Pdaon To
Rd/Wr. Axéun n eyypagn o€ £va GLYKEKPIUEVO KaToy®PNTn and tov MikpoeAeyyt
EXEL OOV OMOTEAEGHOL TNV €VEPYOTOiINGM ToL onuatog Mpc Req mov agpov mepdoet
and KOKA®po cvyypoviopov arnd ta 25 MHz ota 50 MHz 6o &domomoet v
vropovada Queue Manager 0Tl VEAPYEL O €VIOA] TOL MikpogAeyytn TPOG
extéleon. Avtiotoym Aertovpyia €xel kol to onuo. Sched Update mov agpov mepdoet
amd KOKA®UO cvyypovicpov ewomotel v vmopovada Cell Scheduler ot o
OVTIOTO0G KATOYMPNTNHG TOV TOPEXEL OEOOUEVA OLAUOPPMOONG TNG TEAELTAING £YEL
yepioet pe dedopéva.

1.5.2 Movdada dietra@nrng CPU — dietragni pe Alaxeipiotil Oupwv

H vropovada MPC 860 Interface Block pmopel vo dwapoppmdoer v Movada
amoOnkevong Cells ko Aopmv Ovpwdv (SDRAM) mov eAéyyetal amd v vropovado
Queue Manager ka0d¢ kot pe Tig doUEG ToL dlatnpel 1 TeAevTaio oV 10100 VRN e
™V 0é0M CLYKEKPIWEVOV EKTOAMV TOL TOL Topéyovtal. Kamoleg amd Tic €vioAég
ovvodgvovTol amd dedopéva eV GAAEG eV OAAEG OYl EVA KOTOIEG EMLOTPEPOLY
dedopéval.

29

Ov evtorég mov pmopei va Béoet 1 CPU omv Aenaery CPU mov agopodv tov
Ayepiomy Ovpdv Kol 01 KatoympnTég Tov ¥pnoipomolovvtal and kdbe pio givor ot

eeic:

1) Open Flow (Avoi&e Pon) : Amoutel eyypaon xatayopntov COM_ HI,
COM_LOW.

2) Close Flow (KAeioe Pon) : Amoutel eyypooen «atoyopntov COM_ HI,
COM_LOW.

3) Write (I'pdye) : Amautel eyypaon xatayopntov COM_HI, COM_LOW,
INDATA_HI, INDATA LOW.

4) Read (AwPace) : Amoutei eyypaoen kotayopntov COM_HI, COM_LOW.

5) Read Counter (AwdPace Metpnt)) : Amautel eyypaon katoyopntov COM HI,
COM_LOW

6) Change Parameters (AAloée IMapopétpovg) : Amoutel €yypagn KoTay®pnT®dV
COM_HI, COM_LOW.

Mo kabe o amo tTig mBavEG evioAég , TPEMEL Vo YPAPTOUV 2 TOVLAOLOTOV
katayopntés. Etvar arapaitmro o tedevtaiog kataywpng mov Ba eyypaest va etvon
o COM_LOW, wog kot n gyypaon tov 0étel to onuo Mpc_Req mov agod mepdoet
and KOKA®po cvyypoviopov arnd to 25 MHz ota 50 MHz 6o edomomoet v
vropovada Queue Manager OTL VEAPYEL O €VIOA] TOL MiKpogAeyytn TPOG
extéleoT).

O evtoréc Read xor Read Counter eivor €vioAég avayvoong kol ovopévouv
EMGTPOPN OedOUEV@V amd TV vopovdda Queue Manager. Otav ovT €TOYACEL TOL
oedopévo, toe omootéder otovg kotayopntéc DATA OUT HI kot
DATA OUT LOW. H gyypa¢n TV KoToy®pntdv ovtdv amd v vropovada Queue
Manager £yetl cav amoteAecpa v 0éon Tov onjpartog Data-Ready mov apov mepdoet
oo KOKAwpo cuyypovicpov and to. 50 MHz ota 25 MHz Ba 6écel avtiotoro bit
otov kotaywpnty STATUS. O Mpoegleyytig eEetalovtoc v T awtov Tov bit,
poBaivel ot T dedopéva etvar £Totpa Yo avayvoon).

1.5.3 Movdada dietraprng CPU - dietragn pe Cell Scheduler

H vropovada MPC 860 Interface diver v dvvatdtmra otov Mikpoeieyyt) vo
SLHOPPMCEL TNV TTOLOTNTA TNG eEVTNPETNONG TV 64 Opddwv Podv mov vtootnpilet
n Movada E&umnpétmong ABR péow tg vmopovadag Cell Scheduler . H
Stpdpemon yiveton pe v gyypoen tov katoympnt) SCHED CONFIG. Xg avtov o
Miukpogheyytig Ypaeel TYWEG OV B EVUEPOCOVY TNV UVAUN TOL dlaThpel Yo TNV
oot TO VANPEGiG TNG KAbe opadag pong 1 vopovada Cell Scheduler . H eyypaoen
aVTOV TOL KOTo®PNTN £XEL cav amotélecpa) BEon Tov onjpatog Sched Update mov
aeov mepdoel amd KOKA®po cvyypovicpod ond ta 25 MHz ota 50 MHz 6o
ewomomoet v vropovada Cell Scheduler 6Tt vdpyet vea Ty yroo kdmowe Opdda
Pomv mpog evnuépmon tov tedevtaiov.

30

1.5.4 H utropovada Cell Demultiplexor

H vmopovada Cell Demultiplexor eivar vmevBovn yio ™ ovykévipmon €vog
oAOKANpoL KeEMOD o 7 AéEelg Tov 64 bit 1 kaBe pio, dote vo amoctoAbovv 61O
SLYEPLOTN OLPOV Y10 ATOONKEVGT GTNV KOTAAANAT ovpd. AVTH 1 VTOpOVAdL Elval
OTOPOATNTN UG Kot To KEAMA TPp®TO, Uraivouv oty povada demaeng CubitPro kot
amoOnkevovtal o pia FIFO tov 16 bit kot mpénel va opyavwbovve oe pa fifo tov 64
bit ®ote 1 amobnkevon tovg oty SDRAM va yivel 6g aAhemaAnlovg KOKAOVS TV
64 bity onw¢ amortel) diemagn| pe tnv SDRAM.

H vropovéoa e&etdlel to onjua avail mov épyetor and ™ povdoa deraeng CubitPro
Yo va, 0gL av vItapyet dStabéoo ke oty ecmtepikn fifo g tedevtaiog. Av to onua
elval Oetikd mpoywpdiel 6To YEMGHO £vOg KaTaympnt) peyébovg 64 bit pe tig AéEelg
v 16 bit. Otav o kotayopn¢ yepioet pa eyypaen yivetoar amd v FSM oty fifo
Tov 64 bit pe Ta dedopéva Tov Kataywpnt. Avti n fifo eivan 7x64 . Otav yepioet,
éva keM elvan mAéov éroyo va oamoBnkevtel otmv SDRAM kot 1o onua fifo full
YPNOUOTOIEITOL GOV request 6TO JLYEPLOTH OLVP®V Vi arobnikevor| Tov. Kavéva véo
KeAl dev pmopel va eicayBet and v FSM av n fifo dev adeidoel mpdta. Avtd yiveton
pe oaAlendAAnAa dafdacpato amd to olayelpnot) ovpmv arnd t fifo. H mpot AéEn
Kd0e keAov mepiéyet kot To ID (tavtdTTa) TG PO TNV OToia AVIKEL OVTO.

H opydvmon g vropovadag Cell Demultiplexor gaiveton oto oyfua 1.6
64

|

! 7
| 16 | 16 |16 {‘ 6 From/To
Cubit Pro
| A 4 A 4 A 4 Load Enable Interface
ﬁ In
Read
CELL >
DEMUX Avail
4 FSM
Input te/Full
Cell Buffer Write/Fu
Read/Empty 8x64
1 cell
f“
From/To Queue Manager

Figure 1-6: Ecotepiko owdypappa tov Cell Demultiplexor

1.5.5 Aieragpég UTOPIA

Ynrdpyovv dvo vropovadeg demagpng UTOPIA, ko ot 600 tov 16 bit, péca oty
ABRSU. H npdt ovopdletar UTOPIA Input Interface kou ypnoylomoteital yio vo
elodyel kemd omd ta ohokAnpwpéva CubitPro otnv ABRSU. H devtepn ovoudleron
UTOPIA Output Interface kot ypnoiponoleitor yioo v omocToAn TV eEeyOUEVOV

31

a6 v ABRSU keMdv ota odokinpopéva Cubit Pro mpog petdadoon néve amnd 1o
CellBus mpog v Kdpta Tpoopisod Tovg,.

1.5.6 O MNpoypappatiotig Cells (Cell Scheduler) [23]

H Movada Cell Scheduler tov ABRSU egivar vmevbovn vy tov
YPOVOTIpOYpappaTIoNd NG HeTddmong, mhve ond to CellBus, towv cells mov
Bpiokovtor amodnkevpéva oTIG OVPEG TOV EIKOVIKMOV GLVOECEMV TTOV eSLMNPETEL 1
Kdéaprta E&ummpetnt) ABR. Avtdg o ypovompoypapplatiopds yivetor pe t€tolo Tpomo
®ote va popdaletor dikae 1o dwwbéoyo bandwidth, yio v Kdapto EEuanpem
ABR, bandwidth.

O Cell Scheduler paBaiver péow minpogopiag Flow Control mwov déyeton and
T1¢ Xvokevég Metaymyng CubitPro, moleg amd Tic kdpteC Tpoopiopov givor dtabéoipeg
v Aqyn Cell (dniadn dev vroeépovv amd cvuEopnon) Kot étol mepropilel 1o
mAN00¢ TV ovp®V oL UTopoHV Vo petadmoovy Eva cell oe avtég mov a) Exovv cell
vy va oteilovv kot B) n kdpta Tpoopiopol xel yopo Yo vo deybet to cell. v
OUVEXEWNL , OPOV EMAEYOVV Ol 1KAVEG (COLPOVO LE TO TOPOUTAV®) OVPES, OVTEG
eEummpetrodvtan pe moltikr] Round Robin, dote va polpaoctei dikowo to dobécio
bandwidth ko va vdpyet éva dvo dpro oty kabvotépnon kdbe cell oy ovpd pog
EIKOVIKNG GUVOEOTG TTOL dgV LETADIOEL TOPATAV® Ao TO emiTpentd throughput.

1.5.7 O Alaxeipiotig Oupwyv (Queue Manager)

O Awyepotg Ovpdv, tunua tov ABRSU, oéyeton cells, ommv eicepydpevn
katevBuvorn, amd Ta CubitPro. Ta cells mepiéyovv 10 medio twv 16 bit mov kabopilet
™V ovpd mov Ba amobnkevtovy kabmg Kot tovg headers mov kabopilovv ce moln
Képta mpoopiopov Bo otaAbel to cell Otav €pber m dpa va petadobel. Ta cell
amobnkevovtar otig avtiotolyeg ovpég pe molrtiky FIFO. M povéoo pviqung
SDRAM ypnoyonoteital €00 yio amodnkevon mAnpopopiec dayeipnong twv ovpmv
(head xon tail pointers),ka0dg kot yio TNV amodnkevon tov idiwv tov Cell.

O Queue Manager amavtd otig artoelg tov Cell Scheduler Bydaler amd tig
ovpég cells ya petddooon. Akdun anavtd otic artnoelg Tov enelepyaoti MPC860 yia
mv onuovpyio véwv ovpov VP/VC (CAC — Call Admission Control yio o véa
ovvdeon ABR) pe v déopevon evog and to menepacpuévo mAN0og eAevBEépv (un
YPNOUOTOIOVUEVMV a0 TIG 64 YIMAOES) OVPDV.

Téhog o Owayeplotng ovpdv dwuyepiletor kol tov elebBepo ydPO oMV UvAUN
amofnkevong oOedopévav HECH Ag ovpdg erevBepov ympov (free-list) ko
evnuepavel v doun avt kdbe popd mov éva cell amodnkevetar 1 petadidetar.

32

2 H povada Alaxeipiotri Oupwyv (Queue Manager)

Ye avto T0 KEPAAawo mapovctdlovpe Tov Atoyepioty Ovpmdv. Avti 1 AETOVPYIKN
povada vAomomonké pe m ypnon g yhoooag Verilog kot cuvOEdnke pe 1o epyareio
ouvBeoncg MaxPlus II, yuu va yopéoel oe pio FPGA tg Altera. Xpnowonowel pio
pévo povada pviung SDRAM DIMM yio v amoffKevon Tov 16EPYOUEVOV KEAMDV
tomov ABR, xaBd¢ kot yio ta dedopéva yioo TiG AOYIKEG ovpég TV KeMwv. ‘Etot
HEWOVETAL TO TANDOG T®V YPNOUYLOTOOVUEVOV pins KOl TOV GUPUATOV TOVED CTN
KOAPTOL KOL KOTA OUVEMEWL TO OLVOAIKO KOOTOC TG kaptoc. H apyrtektovikn
arofnkevong mov emA&yOnke eivor ovt) ™G avd-pong amobnkevong (per-flow
queueing). Kdbe Eexwprot pon oniadr| mov euanpeteital amd Ty KAPTo 0EGUEVEL
plo Egxymplotn ovpd yuoo TNV amobrkevon tov KeMav g To péyioto mAnbog tov
Voo TNPLOUEVDV 0VPOV KAOE oTiyur| eivon 64 yAladeg, aplBUdc VIEPAPKETOS Yo EVal
petayoyéo dkpng. Mio Aoto and eAevfepovg amobnKkevTIKONS YMPOLS dlaTnpEiTOL
emiong, yw va OTnpel OAOLG TOLG YDOPOVE KEAMV OTN HUVAUN 7OV OgV
ypnowonoovviat. Katd ovvénelo viomotgitor SuVOpIKY TOPOYOPNCT UVAUNG
(dynamic memory allocation), emtpénovtac ot poéc va Exovv UeTOPANTO HEYIGTO
péyebog yroo KoAOTEPT PN OoIoToinon e pvnung. Ot poég emiong opyavavovtal og
opdoeg powv (Flow Groups) pe tnv ypnon KUKAIKOV AGTOV. AESOUEVI QVTOV TMOV
KUKMKOV MotV Bpiokovial og o ecotepikn otnv FPGA pviun tomov SRAM. H
OPYIKOTOINOM TOV POdV Kol 0 KOOOPIGUAS TG OUAOOS PODV GTNV OTOi0 VKOV,
yiveton omd TovV HKPOEMEEEPYAOTN TNG KAPTOS KATA TNV £vopén TOV GUVOEGEMV, LE
€101KEG EVTOAEC apyKuToinong mov B€tel o televtaiog HEC® TNG HOVASAS OETAPNS
CPU. Ot mopdpetport 00 €AEYYOL poNg UmOpovv emiong vo teBodv amd Ttov
eneEepyaot, Le ToV KaBopiopd Tov péyiotov peyéboug yio kabe ovpd Eexwpiotd. Av
po ovpd Eemepdoet to 0p1d ¢ to papkdpioa tvmov RM ko EFCI, Eexwvaet, 0mmg
avto meprypagpetal 6to ATM Forum.

Muog Ko pdévo o ynun xpnoipomoteitonl yuo Tig avaykes tov Awoyeipioty Ovpav,
dev gtvar dvvatov va yivovtor mapdAinieg mpoomeldoelg oe puvnues. Etol pévo
OEIPLOKEC TPOOTEAACELS €lval dLVaTEG Kata TNV amobnikevon kol v €£0d0 evig
KEAOU Omd piot ovpd. AVTO TO YEYOVOS KAVEL TN UVIAUN TPOYOTESN OTNV KAVOTNTO
SlpeTaymyng tov ocvotnuotoc. Ilpokeyévovr va peiwboldv o1 TPoomeELAGES O
pvnun, viAomombnke mpo-avébeon yopov (buffer preallocation) oe kdBe pio amd TIc
64K ovpéc xabmg kol mapdkapyrn Alotag elevBépwv (free list bypassing) pe
BonBela eEmTePIKNG TOV AloYEPLOTH AOYIKNG (TOV YPOVOTPOYPOUUATIOTY] KEALDV). O
eleymg ™ SDRAM mov elval pHéPog Tov SaXEPLOT OVPAOV Yo va yewpiletal Tig
npooneldoel; oty SDRAM eivor eniong mpoceKTIKA GYESOGUEVOS DOTE VO KAVEL
OAAETAAANAEG TPOGPACELS YWPIC TNV ATOAELD KOKA®V poAoylov. Ot evioAég enqueue
(amoBnKevon keAo¥ oe po ovpd) kot dequeue (££000¢ £vOg KeEAOD omd G ovpad)
elval emiong oyedlacpéveg OGTE v PNy yovovior KOKAOL AOYO OAAETOAANA®V
npocPacewv oV pviun pe eEaptuéva dedopéva avopeTaSD TOVG.

Extoc amd v demapn pe tov eneEepyaoctn kot v SDRAM, o dwayeipiomg ovpav
dtnpel por SlemaP] Yoo TNV €16000 TOV KEAMMY TPOG amoHKELGN Kol [0l SIETOPT
LE TO DMKO YPOVOTPOYPOLLATIGHOV TOL {NTAEL TNV ££000 TOV KEAMMV GUYKEKPILEVDV
ouadmv pomv mpog petddoor. H aitmon efumnpeteiton amd 1oV Aloyelpnot Tov
SwPdalet éva kKeM H0G CLYKEKPIUEVIC OLAOOS POV KOl TO GTEAVEL GTN OETOPY| CE
Mg TV 64 bit.

33

2.1 H apyitektoviki Tou Alaxeipioti Oupwv

210 oynua 2.1 paiveron n ecmtePKn opydvmon tov Atayepiot) Ovpav.

2]
:
commands Statg Mem. Cntrl <
— Machine i em. nd[r 8
. ommands =t
(Registered Outputs) Addresses gi
O £1T
g Control s.ignals Status flags
— and LE signals SDRAM ctr
= signals
(RAS,CAS)
(Datapath) Pool of
«Arguments Temp Registers
data Muxes Data (64 bit)
wn
X =
Flow ID, DATA E
DATA <
Flow Group
Enqueue Mem Dequeue
Request Request
A
Cell Demux Cell Scheduler
(incoming cells) (outgoing cells)

Figure 2-1: To eé6®TEPIKO IAYPARNG TOV OLOYELPLETI] OVPAOV

Onwg paivetal oto oynpo o Atyelptotg Ovpdv amoteAeiTol Amd TO TOPAUKATM:

e Mnyoviy Kotaotdoeov (State Machine): Avt) n pnyovy nenepacpevov
KOTOOTACEWDV OVCLUOTIKA OmoTEAEiTOl omd TOAAEG pnyovég, Kabe pio amd Tig
omoleg eivon aglepouévn otov EAEYY0 TNG LOAOITNG AOYIKNG KATOYPNTOV Kol
LVAUNG TOVL SLXEPIOTH, MUE OKOTO TNV LAOTOINOM UG Omd TIG EVIOAEG TOV
Swyeplom). OAeg avtég o1 UNyavég KOTOOTAGEMY EVEPYOTOLOLVTOL ONO TNV
punyovn katootacewv TOP mov amogacilel mold evioAn mpémet va extedeotel pia
dedopévn oTLyun.

* Movorat dedopévev (Datapath): [Ipokeital yio Tpoocwmptvodg KaToympnTEG TOV
QPOPTMOVOVTOL UE OEOOUEVO TTOV TPOEPYOVTOL OO OAEG TIG AELTOVPYIKES LOVAOES
OV EMKOW®VOLV HE ToV Atayepiot) ovpmv. Doptdvovror pe Pdorn onuota
eEAEYYOL OV TPOEPYOVTOL OO TN UNYOVY] TEMEPACUEVOV KOATUOTAGEMV KOl
£MOVTOL KATO1V TOAVTAEKTMV OV EMAEYOVV TNV TPOEAELGT TOV OEGOUEVOV TOV
amoOnkévovtatl. H unyovn xotaotdoemv kot modl e Eyyel e CNUATO 0LTOVS TOVG
TOAVTAEKTEG. OVOUATO TETOLOV KATOY®PNTIY KOl TOV OVTICTO(®V TOAVTAEKTOV
tovg etvon : Flow ID, Head Pointer, Tail Pointer, Cell Counter, Hi Watermark,
Flow Group ID (deikteg puog 0edOpEVNG OLPAC TTOV EVNUEPDOVETOL OTO TNV

34

ekdotote €vioAn), Free List Head, Free List Tail, Free List Counter (ITAnpogopia
yio TN Alota eAevBEpV YOP®V TG LyNUNG kKeAmdv SDRAM) kA

Mvijpn Opddov Podv (Flow Group Memory) : Avt 1 pviun kpatd dedopéva
Y T 64 opddeg powv mov vmootnpilovtar and to Alayepiot) Powv. Eivou
pviun 64 Aégemv Kot amodnkevel TV KEQUAN TS KUKAMKNG MOTOg TV EVEPYDV
POMV TOL AVKOLV Gg KABE por, TNV ovpd NG AloTOC, KOl TNV KOTAGTACN NG
kéBe opddog (av m Opdoo podv €xel kamola evepyn pon M Oxv). Mia pon
Bewpeitar gvepyn Otav vIApYEL Eva KeAL 0VTNG AmoONKELUEVO GTN VAU KEMODV
SDRAM mov 0o mpémer vo petadobel kdmowo otiypr] oto péAlov. H pnyoavn
KOTOOTAGEWDV EAEYYEL QLTI TN LLVIL.

O gieyyts SDRAM (The SDRAM controller): Avti 1 vropovada vAOTOLEL Tig
npoomeldcels otnv pvniun SDRAM DIMM ek pépovg g unyovig KOTooTAGE®DV.
®¢tel ta pin eAEyyov ™ SDRAM DIMM ko v tpoypoppatilel va yphwel 1§ vo
dwpdoe 1,2,8 Aé€eig tav 64 bit. Ta dedopéva divovion amd v LILOAOITN AOYIKT
TOV SloYEPLoTH] Katevbeiay, 6€ GUYXPOVIGUO HE TO CNUOTO TOL EAEYYTNH. Agv
amorteiton ocvyypoviopog pog kot 1 FPGA mov vAomotel tov dlayepiot) ovpmv
ka1 11 SDRAM DIMM ypnoipomotovy to 110, TPOGEKTIKA KATAVEUNUEVO POADL.

O Ayelplotg ovpdV ST PEl SIETAPT LE TIG TOPUKAT® VTOUOVADES:

Tnv owena@n CPU (The CPU Interface): Avt 1 diemagn entpénet po CPU va
umopel va dtoapoppacel tov Awyelptoty Ovpdv , va apyLKOTOGEL POEG, Vo
SLLOPPMOEL TIG TOPAUETPOVS PONG KOl VO AVTANGEL d€d0EVA TTov fonBovv otnv
agaipeon Aab®V 6T0 GLGTNUA.

H owemagn pe tov Cell Demultiplexor) The Cell Demultiplexor Interface:
Méow avtg TG OlEmaPNS 0 SLKEPIOTNG Umopel va Tpoomeldoel TV fifo 8x64
OV TEPLEXEL TO EMOUEVO KEM Tov Tpémet va, eloayBel otn pvnqun. Av n fifo sivon
yepatn, to onua fifo full ypnolpomoleiton wg aitnomn enqueue otnv pnyovn
KOTOGTOGEWV.

H oweragn Xpovorpoypappoatiotry kem®@v (The Cell Scheduler interface) :
Avt gvan 1 SIETOPY] HE TNV HOVAIO YPOVOTPOYPOLUATICUOD TOV VAOTOEL TNV
YPOVOTPOYPOULUUATICTIKY OPYLTEKTOVIKY] TOL CLOTNHOTOC. Mid aitnon dequeue
umopeti vo 600ei 6to dtayeplot) péoa amd ovT TV SEToEN, Loll PE TOV K®OKO
™G OUAdag PONG amd TV omoio TPEMEL VO TPOEPYETOL TO KEAL OV TPEMEL VL
e&élBetl. O duyelplomg amavtd otéAvovtog to kel oe AéEelg Tov 64 bit pali pe
v oevbuvon oy pvnun SDRAM mov Bpioketar 1o keAl mov e&épyetan. Otoav
viomoteitar mopdkopyn Alotog eievbépov (Free list bypassing), ovtég ot
dtevBovoelg divovtar mOo® OTO OOYEPIOTH] OLPOV YL TNV amobdnkevon
VEOUPLYOEVTOV KEAMMDV.

H dwemapn pe v pvijun SDRAM DIIMM (The SDRAM DIMM interface):
Avt| 1 olemapn eAEYYETOL OTMWG TEPLYPAPETOL TOPOTAVEO OmO TOV EAEYYTNH
SDRAM «ot pévo o diowdog dedopévav g pviung erEyxetal omd v vedAouT
AOYIKT] TOVL OLOXELPLOTH OVPDV.

2.2 Poég

H Pon eivan 1 Pacwkn douny dedopévav mov vroompiletor and 10 Aloyelplom)
Ovpov. H onuocio g sivor avt) g pong Kiviong (oG CUYKEKPILEVIG OTKTIOKNG

35

ovvdeong mov e&umnpeteitor and Tov dluyePtoT ovpav. O dayeploTn vooTnpilet
64K tavtdypoveg ovvoéoels. [a va tig daympicel avopueTald tovg, o€ kabe pio amo
TG poég oavarteifetor €vag ovykekpiuévog apBpog tovtotnrog (ID number) mov
deopevetal and v CPU katd v apytkomoinomn g cvvdeons — pong. Miog kat to
péytoto mAnbog twv vrootnplopevov podv sivar 64K, to ID mpénet va givon évog
ap1Opog TAdatovg 16 bit.

[Minpogopia yia kabe pon Ppioketor amobnkevuévn otic Eyypagés Powv (Flow
Records). Avtég ot eyypapég deopevovy mavta yopo péca oty SDRAM. H doun
O€dOUEVMV IOV AVTITPOCHOTEVEL il pon €ivar ovTH TG GEPLOKNG AOTOG HOVNG
dwovvdeong mov @aivetar oto oynuo 2.2. H eyypagpn «dbe pong mepiéyet
TANpoeopia yioo avth TN Aoto Omwc, Tov JElKTN KEPAANG, TO OgikTn TéAOoVg, TOV
petpnty peyéboug (oe keMd) g Motog, kamota bits KaTdoTaoT, Kot TS TOPAUETPOVS
eréyyov porig. Mia Aiota Bempeitat ypnoiponotodpuevn 6tav o eneepyaostng g £XEL
avabECEL 1oL EICEPYOUEVT] POT Kol evepyn OTOV VLTTAPYEL £0T® Kot £vo KEAL oTNG
arodnkevpévo péca otmv SDRAM. H eyypaon pong mapovcstdletal KTEVOG GTO
vrokePAiato 2.5.

Otav éva keAl mov avnkel oe pio pon (mov kaBopiler 10 ID mov wovParder m
EMKEPUAION TOV) PTAOEL 6TO AloyEPloTy oVPAYV, avTd Yivetan enqueue ot AMota. O
JLLYEPIOTNG TO KAVEL VTO, LLE TO VAL YPAPEL TO KEAL GTO €AEVBEPO YDPO GTO TEAOG TNG
avtioToymg AloTog Kot va ypagetl Tov dglytn next pointer ovtoh ToL YOPOL Vo, delyVeL
o€ €va véo erelBepo ydpo (Tpémel mavta va vIapyel Evag erehBepog YDdPOg otV
ovpd ¢ Motag, Yoo Adyovg mov eEnyovvtal oto vmokepdAoo 2.11). "EAevBepot
amodnkevTiKol Ydpot Yoo awtd To okomd maipvovion amo T Alota eAevBépwv (Free
List) mov dwotnpeiton and to Awayeipiomy Ovpov. O dgiktng ovpdg (Tail Pointer) tng
Eyypaeng Pong teifetar va deiyvel oto kovohpylo eEredBepo amobnkentikd ydpo, evod
Kol 0 LETPNTAG av&avetan emiong.

Otav éva keM g pong mpémer vo yiver dequeue kot vo otaABel oto
YPOVOTPOYPOULUUATIOT] KEMOV Y10 OTOCTOAN TAve omd Tto cellbus, o dlayeplotig
ovpaVv dtaPdlel To keAl oV glvar 1 KeQAAN ™G avtioTolyng Motog amd T Hviun Kot
0étel 1O OElKTN KOPLENG NG EYYPAPNG PONG VO OElYVEL GTOV ETOUEVO YDPO . AV 1)
LETAO®ON TOL KEAMOD €MITUYEL TOTE O OMOONKELTIKOG TOV YDPOG Umopel TAEOV va
eloayfel ot Mota elevBépov 1 va Eavaypnoyonombel og ovpd oe pia mpdén
enqueue (Aec mapakapyn Alotag ehevBépmv vrokepdiaio 2.10). To oyfua 2.2 divel
TNV OOUT| LOG ponG , Lo TpAn enqueue kot po dequeue.

36

Flow Record

Counter

Buffer

EMPTY Cell Cell Cell
BUFFER
Nxt Pointer < Nxt Pointer |«=—t= Nxt Pointer < Nxt Pointer

After an Enqueue operation:
Flow Record

Counter

Buffer

NEW EMPTY NEW CELL Cell Cell Cell
BUFFER
Nxt Pointer |<«=——— Nxt Pointer |« Nxt Pointer |«=——=— Nxt Pointer |« Nxt Pointer

After an Dequeue operation:
Flow Record

Counter

Buffer freed

NEW EMPTY NEW CELL Cell Cell Cell
BUFFER
Nxt Pointer |<«@=—== Nxt Pointer |@==t= Nxt Pointer |<=———t= Nxt Pointer Nxt Pointer

Figure 2-2: H dopunf TV po®v Kot 1 0ALaYES 6€ VT PETA 0O pic EVTOAY
enqueue kot pio evrorn dequeue.

2.3 Opadeg Powv (Flow Groups)

Ot 64 yiMadeg poég mov vrootnpilovtal and 10 Alayepioty OvpdOV 0PYOVOVOTOL CE
VYNAOTEPO eminedd oe opdoeg pomv. Olec ot poéc mov YPNOLOTOOVLVTOL O
oLVOEDEIC TPEMEL VL oviiKovy o€ pia opdda pone. To mAnbog twv opddwv podv mov
vrnootnpifovior oamd TO dwyepnoty ovpwv eivor 64. O Adyoc avtng NG
opadomoinong eivar 1 VROGTAPIEN TNG YPOVOTPOYPOUUUOTIOTIKNG OHAd0S OTO
YPOVOTPOYPAPUATIGHG TG €Eepyouevng kivnong tomov ABR. O ava pon
YPOVOTPOYPAUUATIOUOG HE Paon Tapapétpovg tototntag e&ummpétnong (QoS) esivar
TOAD dVOKOAOG GTNV LAOTOINGN TOV Yo peydAo aplfud pomv. I'a avtd 10 AOY0 ot
POEG OPYOVMDVOVTOL GE OUAOEG OO TO SLOYELPLOTY] OLPAV, KOl KAOE OLAd podV £xEl
TIG OéC ™G mopapéTpoug QoS mov S1TNPOVVTOL GTO XPOVOTPOYPULUATIOT] TOV
TapEXEL OTIC OUAOEG OlapeTaymyn pe Paon ovtég Tig mopapéTpovs. Ot poég kdbe
opdoag maipvovv idto dlapeToy®my HAG Kol 0 AlYEPIoTHG OVPOV TIG EELTNPETEL
KukAkd (Round Robin).

37

H doun dedopévav mov viomotet pd Opdoda Podv etvar ot g SimAd cuvdedepévng
KUKMKNG Alotag mov gaivetal oto oynua 2.3. H kepair kot n ovpd ¢ kébe Aiotag
(vmdpyovv 64 tétoteg AMoteg) elvan amodnkevpéves oty pvnun Ouddwv Podv (Flow
group memory). Movo gvepyég poég LITAPYOVV GE OVTEG TIG AloTeg. Av pia pon HeTa
amo o Tpaén dequeue yiver avevepyn tote agaipeiton amd TV KUKAIKNY Alota. Otav
éva véo KeM yivel OTAcEL 0T pon Kol Eovayivel EVEPYN, ETAVAEIGAYETAL OTN AMOTA BOG
ovpa.

Flow Group 0 Flow Group 63
Next Flow to be "\ Next Flow to be D\
served Flow Flow served Flow Flow
Nxt Prev » Nxt || Prev Nxt Prev > Nxt Prev
Flow Flow Flow Flow
Nxt | Prev Nxt | Prev Nxt | Prev Nxt | Prev

\\ooo// \\ooo//

Figure 2-3: Ot 64 kvkAMKEG MOTES TOV OPUAO®V poOV

Av o Xpovompoypappatioty keMmv {nmoet v wpaén dequeue omd por opddo
pPOMV, M PON TOL €ivol KEPOAT 0T KUKMKN AMota Bo emAeyel Yoo TNV OTOGTOAN TOL
TPMOTOL TNG KEAMOL kot 1 por Ba yivel amo ke@aAn ovpd TG AloTog evd 1 €mOUEVY
o1 oepd porn Ba yivel Kepan.

H wokhikn AMoto givor OumAdovvoedepévn UG Kol Hi. COVOECT) OV
AVTIPOCHOTEVETAL omd pio pon umopel vo KAgioel. Xe avtny TN mepintwon M pon
wpémel v apalpedel amd T Alota kot 1 tEAevTaio vo TopapeiveEl GUVOEdEUEV e
npaéeic ypovov O(1). Ou deikteg mPog TNV EMOUEVN Kol TN TPONYOVUEVT PO
KpOToHVTOL TNV £YYPAPN TNG KAOE por|G.

2.4 O1 evroAég TOU AlaxEIpIoTH OUPWV

O Awyepromg ovpav umopet va dexbel €va €0pog EVIOA®V KOl VO TIG EKTEAECEL
EVEPYOTOLMVTOG pio unyovn KoTaotdoewv Yio KaOe pio amd avtés, yio va eAéyEet Tig
dopEG OEdOUEVMV, TOVG KOTAX®PNTES Kot T UvApes. Ot o oNUOvVTIKEG EVTOAES glval
ot Enqueue ka1 Dequeue evtoréc mov Oétovron amd tov Cell Demux kar 1o Cell
Scheduler (Xpovorpoypappatiotg Keaidv) avtictoyya. H onuacio toug Ppioketon
010 0Tl T0 TANB0C TV KOKA®V Tov ekTeAEiTOn Yoo TNV ekTéleon tovg kabopilel
dwpetaywyn amobnikevons tov Atayepiot) ovpwv. O mivakog 2.1 mapovoidlel Tig
Ol0éo1Eg EVIOAEG TOVL OlOXELPLOTI] OLP®V TO OPICHOTE TOVG, TO OEOOUEVO TOV
EMOTPEPOLV Kot TO TANO0G TV KUKA®MV TTOL YPELALOVTOL Y10 TNV EKTEAEGT TOVG,.

38

Table 2-1: [Tivakag 6LOV TV £vTOLOV TOV Alayeproti] Ovpav

Ovopa

Ao

Opi-
CULATO

Agd.
EmoTtp.

Kv-
KAOL

Heprypagn

Read

CPU

Address

Mem
Data

5

AwPader pa AéEn 64 bit amd
v uvnun SDRAM

Write

CPU

Address,
Data

5

I'pboet o AéEn 64 bit and
otV pvnun SDRAM

OpenFl

CPU

FlowID,
FGID,
Hwmark,
LWmark

10

Apywomotel pia pon koTd
™MV évapén MG GUVOESTC.
Aeopéver éva Flow ID kot
avabétet ™ pon o pia
ouada podv. Oétel TIg
TOPAUETPOVG EAEYYOL POTNG
yu ot ovvdeon (Hwmark,
Lwmark).

CloseF1

CPU

FlowID

20

KAetver o pony katd 1
dllvon pg GVUVOESNG.
ElevBepiver 1o Flow ID kot
TO OQOIPEL AmO TNV KLKAIKY|
AMoto

ReadCnt

CPU

FlowID

Counter

AwPaler 10 petpnt| TOV
AmTOONKEVUEVOV KEMDV L1OG
pong amd TV Eyypaen g
oTNV Hviun

Enqueue

Cell
Demux

FlowID,
Cell

20,
40

Ewdyer éva eogpyopevo
KeM otV avtiotoymn ovpd
tov Flow ID mov gxet otnv
EMIKEQUAION TOV

Dequeue

Cell
Sched

FGID

Address,
Cell

20,
40

E&hyer éva kel amd Vv
kepoA ¢ Pong mov sivon
KEQPOAN TNG KLUKAKNG AloTog
g opadag pong FGID. To
otélvel otov Cell Scheduler
palt pe v oevbvvon tov
YOPOV 7OV OEGUEVEL OTNV
SDRAM.

RdCell

Cell
Sched

Address

12

AwPaler ta mepleyduevTa
evOg YOPOL KEAOL oTNV
SDRAM ypnoyonoldvog
v 01evBvvon mov divetal.

Free

Cell
Sched

Address

10

Baler tov yopo xelod g
dtevbuvong mov divetar o
Mota ehevBépmv.

ChParam

CPU

FlowID,
Hwmark,
LWmark

10

AAGLEL TIC TOPAUETPOVS TOV
EAéyxov pong tng ovvdeong
FlowID o©g oavtég mov
divovtat.

39

H evtol) Enqueue amottel 20 kOKAOVS Yoo TV €KTEAECT) TNG EKTOC TNG TEPUTTMOONG
TOL M PO NTAV OVEVEPYN. XE QLTI TNV EWIKN TEPITTOON 1 PON TPEMEL Vo Elc0ryOel
oV KUKMKN Aloto TG Oopadag pong mov avhkel. Ot gypagég g emOUEVNS Kot
TPONYOOUEVNG PONG O aVTY TN AloTta TPEMEL va evuepwBodv TpochEétovtog AALOVG
20 xOKAog 6to0 GUVOAOG TV KOKA®V ektédeong. 'Etotl to minbog tovg avéavetal oe
40.

H evtol Dequeue ypetdleton eniong 20 kOKAOLG Yoo TV eKTEAECN NG, €KTOC TNG
EI0KNG TEPUTTAOGEMS TTOV 1) pon yivetor avevepyn (to KeM mov eEdyOnke NTOV TO
tehevtaio g pong otn unun SDRAM). Ze avt) T mepintmon n pon TpENEL Vo
apopedel amd v KukAkn Alota TG opdoag podv mov avikel . Ot eyypaeés g
TPOTYOVLEVNC Kol ETOUEVNG PONG TTPETEL VAL EVUEP®OOVV, TpocBETovTag dAlovg 20
KOKAOVG 6T0 TAN00G TV KOKA®V gkTéAEOTG, TOV avePaivel otovg 40.

2.5 Mopon Tng Eyypagng Pong

210 oynuo 2.4 dlvetor 1 AEMTOUEPNG TEPLYPOPY] TOV EYYPAPDOV podv. YTapyovv 64
YMadeS eyypapég odv kat autr, pio yio kabe pio amd tig 64 ydoeg poés. Kdabe
eyypaen omotereital amd 2 AEEel Tv 64 bit. Avtég elvar 2 Aéfelg ™G pvaung
SDRAM. Ot gyypagég eivar tomoBetnuéveg ot pvipun SDRAM pe gubuypdppunon 2
AeEemv.

Flow Record Fields and Alignment

18 bits 18 bits 11 9 bits 6 bits
.0 Head Tail UlAM| Offset FGId
.1 Nxtld Prevld HiWmar Counter
16 bits 16 bits 11 bits 21 bits

Figure 2-4: Ta nedio ko 1 e00vYypappion ™S £YyYPOPS Pog
O mivaxag 2.2 divel v weprypapn kdbe mediov g eyypaeng pong:

Table 2-2 : [1ed1d TG eyypaONS pONS Kl TEPLYPAPT] TOVS

Iledio Bits Ieprypaen

Head 22 Agixtng Kepaing (Head Pointer): Tlepiéyet
dtevbuvon g KeQaAng TG MoTog TG poNng.

Tail 22 Agiktng Ovpdg (Tail Pointer): Tlepiéyer ™
devBvvon ¢ ovpdg TG AloTog TG PoNS.

Used 1 Xpnowonowvpevny Pony (Used Flow): ‘Otav
glvar 1 avt| m pon ypnowonoteitar omwod
Kémolo cvvoeon. Oia ta media TG €YypOENg
glvai Eyxopa.

40

Active 1 Evepyn Pon (Active Flow): Otav givatl 1 avt)
N pon €xel Kamowo keA amoBnkevpévo péca
otv SDRAM.

Mark 1 Mopxépiopo (Mark Bit): Otav givor 1 10

mnbog tov amodnkevuévov kKeEM®V ™S porg
omv SDRAM ¢éyet Eemepdoer 10 Hi
Watermark. Zta efepyduevo keAla yivetal
pnapkdpiopo. RM, EFCL To medio yiveron 0
o0tav o Counter méoer kdtw ond to Hi
Watermark - Off

HiWmH 6 Hi Watermark Most Significant bits: Ta mo
onpavtika bit tov mediov Hi Watermark.

HiwmL 12 Hi Watermark Least Significant bits: Ta
Myotepo onuavtikd bit tov mediov Hi
Watermark.

FGId 6 Flow Group ID: O apiBuodg tavtoéttoag g
OLLAdOG PODV TTOL OVIKEL 1] PON.

Off 5 Offset: Hi Watermark — Off &ivar ico pe to

Low Watermark.

NextID 16 Next Flow ID: To ID tng enduevng pong otnv
KUKMKN Mota g opuddog powv. Av Active =
0 ovt6 TO TEdIO £V AKLPO.

PrevID 16 Previous Flow ID: To ID g mponyoduevng
PONG GTNV KLUKAIKY| AloTo TG opddag pomv. Av
Active = 0 avt6 to medio elvar dxvpo.

Counter 20 To mnBog tOv KeEM®OV ™G poNg HEGH GTNV
pviun SDRAM.

"Eywve mpoomdbeia kKatd v oyxediaon, n eyypaer] pong vo givarl 2 AéEelg pvnung oe
puéyebog. Av Nrav 3 AéEeic Ba yarovoe v evBuypdupion Tov Aéemv oTtnV PUvHun
SDRAM. Av ntav 4 AéEewg Ba ypewldviovcav 2 emmAéov KOKAOL Yyl TNV
TPOOTELAGT, TOV, KATL TOL Oa Eprrve TNV OOUETOY®YY] TOL OlOYEPLOT ovpdv. Ot
deilkteg og ywpovg keMdv 6mwg Head and Tail givar svBuypoppiocpévor oto peyedoc
tou¢ (8x64) otnv SDRAM peyébovg 256 MB, opyavouévn og 225 AéEgic tov 64 bit.
Muog kot ke ydpog KeAoL givar 864, évag deiktng oe evBuypapicpévo buffer sivor
22 bit og péyebog.

Aev vrdpyer medio yio o Flow ID kd0e porg. Avtd yiveton yioti kaOe eyypaon pong
elvarl amoOnkevuévn oe 2 AéEeig n dtevbuvon tev omoimv €yl v Ty tov Flow ID.
"Eva emmAéov bit ypnoiponoteitat yio 1o Stoaympiopd tov 2 AéEemv g eyypaons. Me
avtn Vv opydvemon PBalovue T eyypageg otV apyn tov ydpov s SDRAM kot
YALTAOVOVE GE YDPO EYYPAUPDV.

2.6 Mopon Eyypagng opadag powv (Flow Group Record)

OM M amapaitntn TAnpoeopio Yo T1g opddeg podv gival amobnkevpévn oe pia
pviun SRAM 64x33. Kafe pio amo t1g 64 AEEE1GTNG LvAung avtig amodnkedel v

41

eyypaon opadag podv (Flow Group Record) pe tov apiBud tovtoétntog og dievbuvon
™mG. Alatnpet 0o T amopoitnTo dEdOUEVA Yo TV SOTHPNON TS KUVKAKNG AloTag
™m¢ avtiotoyng opddag podv. To oynua 2.5 mopovstdlelt v UvAuUn TOV Opadmv
POMV KOL TV LOPOT TOV OVTICTOL(®V EYYPOUPAOV OUAO®V PODV.

16 bits 16 bits 1

0 Head Flow Tail Flow A

Head Flow Tail Flow A

2 Head Flow Tail Flow A

3 Head Flow Tail Flow A

62 Head Flow Tail Flow A

63 Head Flow Tail Flow A

Figure 2-5: Opyavoon g pvijung opdomy pomv KoL TOV €YYPOIPAV ORdd®V
POOV.

O mivaxoag 2.3 divel) meprypaen Kot o péyefog TV eyypapav opdowy powv.

Table 2-3: [leprypo@n TOV TEGIOV TOV EYYPULOOV OPAIOV PODV

Ileodio Bits Ieprypaen

Head Flow 16 Head Flow ID: Ilepiéyel 1o FlowID tng porg
7oL Ba 066€L TO EMOUEVO KEAL, OTOV LIl EVTOAN
dequeue {nmBel amd v avtictoyn oudoa
POMV..

Tail 16 Tail Flow ID: Tlepiéyet 1o Flow ID 1tng pong
mov eEumnpeTONKe KT TNV TEAEVTOLO EVTOAN
dequeue amd TV avTIcTOY| OUAOA PODV.

Active 1 Active Flow: Otav givar 1 1 opdda podv €yet
EVEPYEG POES, OAMDG OAN M opdda pomV gival
OVEVEPYT).

Ta mepeydueva g pvqung opddag podv eivar opatd kot oto Cell Scheduler. O
terevtaiog ypeldleton va EEpel MOLEG OUAOEC POoMV &lval avevepyéC MOTE Vo TIG
SN PEL GTO YPOVOTPOYPUUUOTIOTIKO 0AyopBpo. H aitnon yia 5000 kehov amd pio
avevepyn opdoa powv Ba tpokaiovcse AAB0c 6To GHGTN L.

42

2.7 Mopon Kal euBuypduion KeAlou otn uviun SDRAM

Kd&Be xedl amobniedeton omnv pvqun SDRAM cg ydpovg peyébovg 8x64. O mpdteg
7 MéEerg (7x8=56 bytes) amobnievovy 10 keAl TOmov ABR pali pe v ecmtepikn 6to
petayoyéo emkeparido (CellBus, Tandem Routing Header yio tv mepintwon tov
petoyoyéo Aimoro). H televtaio AEEn amodnkevel Tov deiktn 6T0 £MOUEVO KEM TNG
ovpag g pong (next pointer). KdBe yodpog eivar gvbuypapucuévog otig 8 AéEeic (8
word alignment). To oynua 2.6 Tapovcstdlel TV Hopen Kol TV gvBvypdlppion evog
KeA0V pécsa otn pviun SDRAM.

...000 Cell 0
...001 Cell 1
...010 Cell 2
...011 Cell 3
...100 Cell 4
...101 Cell 5
...110 Cell 6
111 Next Ptr

Figure 2-6: Mop@1 kat gv@vypapion kemov ot pvijun SDRAM

2.8 Opydvwon Tng pvaung SDRAM

H povéda pviung SDRAM DIMM mov koAVmter NG avaykes HVAUNG TOL
Awyeprom Ovpav €xel yopntikodmrto peyébovg 256 MB. Méca oty pviun oot
amofnkevovtal ot 64 yAddeg eyypagéc poav. O vmoOlowmog ydpog ywpiletor og
YOPOVS KEMMV OV ovaTiBeTon SLVOUIKE GtV €16epXOLEVT] Kivnon Yo, amodnkevon
KeMov. Ot eyypapés podv gival otatikd ovodepévec. Avtd onpaivel ott OAeg ol 64
YMOdES £YYPOPEG elval TOPOVOES, AKOUN KoL 0V OEV XPNCILOTOLOVVTOL 0d KATOL0!
pon.

H CPU pmopel va apyuomomoet v mvijun SDRAM pe ™ ypron g evtoing Write.
AKOUN LTAPYEL MWL POV KOTOOTAGE®V TOL UETE oamd reset Umopel va
apywonomoset tnv pvnun SDRAM. Ta mepiexdpeva g pviung SDRAM petd amod
TNV aPYIKITOINo™M Gaivoviol 6To cynua 2.7.

43

Flow Rec 0
Flow Record Flow Rec 1
Space: 64K records
x 2 words x 8bytes
— 1 MBytes | ttotttotct
Flow Rec 64K
------------------------- Pre allocated T
buffer for
Flow ID 0
Flow Pre-allocated Pre allocated
buffer Space: 64K buffer for

Flow ID 1
records x 8 words x ow

8bytes = 4 M Bytes

Pre allocated
buffer for
Flow ID 64K

Free buffer

. Space

Free List buffer

Space: 256-5 =
251 MBytes

Figure 2-7: Katapgpiopdg kar opyavmon yopov s pvijuns SDRAM

Muog ko pviun eivan 256 MB = 2728 bytes, opyavouéva oe AéEelc tov 64 bit (8
bytes), To mANB0o¢ T@V cuvolk®dv AéEemv oty pviun eivar 2°25. Ou deikteg o¢
YDPOLG KEADV OV givart vBvYpapcéVol oTig 8 AéEelg etvan kaTd cuvémela 22 bits.
Onwg meprypdoetor otV Topdypa@o 2.5 TPOKEWEVOL Vo, PNV VITAPYEL TEGIO Yo TO
FlowID pwog eyypagng, to teievtaio ypnowwomoteitonr cov deiktng ot Oéom g
eyypaeng pong oty uvhiun. Ot eyypaeég tonobetovvtol oty apyn g pvnune. ‘Etot
n oevBvvon ¢ Tpod™S AENS ™¢ eyypaens pe FlowID Ob1111000111110001 (To
FlowID eivar peyéBovg 16 bit) eivor 0b{00000000,1111000111110001,0}, evéd
dtevBuvon g devtepng AEENG eivon 0b{00000000,1111000111110001,1}. Miag kot o
Awyepromg Ovpov vroomnpiler 2016 poég (64 yMddeg), oL eYYPOQES PO®V
deopgvovy cvvolkd to Tpmto 2716 Flows * 2 words/Flow = 2*17 words = 2720
bytes = 1 Mbyte ¢ pviung.

A@o¥ kdBe ovpd pong TpEmeL va £yl £val KEVO YOPO KEALOD 0TO TEAOG TNG (OKOUT Ko
av dgv ypnowonoteital, dec mapdypapo 2.11) Adym g mpoavabeons ydpov, Evog
dtvetan og KABe Lo ovpd Katd TNV apyKomoinon. Avtol ot ydpotl 0EGUELOVTIOL GTHV
pviun SDRAM petd tov yopo TV gyypoeav pomv. Metd tv ekkivinon Tov
OGLOTNLOTOG OWTOL Ol YDPOL YPNOLUOTOIOVVTAL OO EICEPYOUEVT] Kivnon aAAd GAlot
nEPVOLV TNV B€om ToVg cav AdE0L YDPOL 6TO TEAOG TV ovpdv. Etotl 1o minbog tov
adelwv mpoavatedelEvav Yopmv KeM®V givar otabepd kat ico pe 2416 (éva yio kKéOe
vroomplopevn pon). H mpoavabeon yopwv, dniadr, ypnoyomolel GAia 2716
buffers * 8 words/buffer = 2*19 words = 222 bytes = 4 MByte.

Ta vrdrowma 256 — (4+1) = 251 MByte ypnoiomolovvTal Y10, AmoONKEVOT KEMMDV.
Koatd v apyikomoinon g UVNUNG 0LTOL OL YMPOL OPYOVAOVOVIOL GE W0 UEYAAN
Mota edevBépwv povig ovvoeong (Free list). Avti n Alota ypnoiomoteitor yio vo
TaPEXEL YDPOVS GE EVTOAEG enqueue Kot Vo, OEXETAL YDPOLG LETA amd evtoAég dequeue
Ko free.

44

2.9 Mnxavég Kataotaoewyv (State Machines)

Onwg meprypdoetal oty mapdypoeo 2.1, n vropovado Unyovig KaTooTAGEDMY TOL
OLOYEPLOTN OLPDOV TEPLEYEL TIG UNYOVES KOTAGTACEWV OV EKTEAOVV TIG EVIOAEC TTOV
{nrovvtot amd GALEG LOVADEC.

To oyqua 2.8 deiyvel TV E6MTEPIKN 1EPAPYIN CVTMOV TOV UNYOVAOV KATUCTACEDV HECO
GTNV LITOLOVADOL.

Top FSM

Wait
Command

Refresh

Decode
Command

Enq FreeCell

e oo oo

End
Command

Figure 2-8: AvGdypoppo KaTaosTAGEOV TOV PN OEVAOV KOTAGTATCEOV

Avtég ot unyovég Bétovv ta onpata eAEyyov tov Datapath tov diayepiot) ovpdv.
®¢touv emiong kot Aapfavouy ofjpato eEAEYYOL Omd TIG OEMOPES TOV OLYEPLOTN UE
T1G GAheg povadeg kot (ntovv mpoomerdoelg oty SDRAM amd tov eheyyt) SDRAM.
Yrhpyet pio unyovi KatooTtdoemv Yo KAOE EVIOA TOL OXEIPIOTI] OLPDOV. XTNV
KopLOT TG tepapyiog Ppioketar n unyovn katactdcewv TOP FSM. Ot Aettovpyieg

VTG TG UNyavig etvon ot e&gic:

* Apywkomoinon katoympnto®v tTov Datapath petd andé reset Tov cvoTpATOC:
Mepwcoi katayopntés (Freelist Head) mpémer va apyuomolel®ovv pe o
ovyKeKPLEVN TN petd amd reset. H punyoavn B€tet to onpata eA&yyov yio avto .

* A7000y1] TOV OITIGEMV EVTOLDV a0 GALeg vTopovades: H unyavel mapapével
o€ adpAVEL TEPIUEVOVTOS ONUATO OLTHCEMV YO TNV EKTEAECT] EVIOADV Omd TIG
VTOUOVADES TTOV TIG YEVVOLV.

* At tevon TG EKTEAEON S TOV EVTOLAV ToL Aloyeproti] Ovpov: Yrdpyel 1
nePinTOON, Topandve omd pio Lovades va (NTovV TNV EKTEAECT LLOG EVTOANG, TNV
it otrypn. H pnyovi) TOP Sdroutntedet ma amd OAeg TIg TaVTOYPOVEG authoels Ha
wavomolelfel pe Paon kdmoleg mpotepadttes. Otov por eviodel mpdkeitan va
extedeotel ,m unyovny B€tel To onuo EAEYXOL TOV EVEPYOTOLEL TV avTioTOLN
U)oV KOTOGTAGE®V YLl OVTH TNV EVIOAN. ZTN GULVEXEW TEPLUEVEL TO OO
EAEYYOL a0 TNV UNYOVY TNG EVIOAN] TOL ONAMVEL OTL 1] EVIOAN OAOKANPpOONKE.
[MapdAinia, emPBePordvel TNV amodoyn TG EVIOANG 0T HOVASQ TTOV TN YEVVICE.

45

* Aimnon yw ¢peokapiopa (Refresh) tng pvijung SDRAM: Ot pvrjueg SDRAM
TPEMEL VO PPECKAPOVTOL TEPLOOKA. H punyovn €xel éva ecmTEPIKO PETPNTH OV
otav Taoel og o T, (ntdet amd tov edeyyt) SDRAM o eviodn refresh.

Table 2-4: IIpoTePOIOTNTES TOV EVTOLOV TOV ALOYEPLOTI] OVPOV

[potepard- | Ovopa Ao Yo
mrao
Refresh State H refresh mwpémer vo extedeiton
! Machine TEPLOOIKA OAMADG Ydvovior OedopEval
(highest) , ,
oo TN LVAUN.
Write, CPU Ot eviokéc g CPU vymAdtepm
Read, TPOTEPOLOTNTAL Omd OVTEG OV
OpenFl, yvevviovvtar omd toug Cell Demux, Cell
CloseFl, Scheduler ywati eivor ovvropeg ot
2 ReadCnt, SWHOPEOVOVY KOl €AEYYOLV M|
ChParam Aertovpyio. TOL OLYEPLOT] OLPOV KO
elvar avaykoaieg yw v dOpOwon
AaBov.
Enqueue, | Cell H evtolr enqueue (mov tibeton amd tov
Demux Cell Demux) £yet ion mpotepOOTNTA HE

TIG €vtoAéc mov tifevtor amd tov Cell
Scheduler. Otav vrdpyel AvVToy®OVIGHOG
OVOLESOH GTNV EVIOAN enqueue Kol Lo
evtoA tov cell Scheduler,

3 Dequeue, | Cell gvalldoovoa Swnthitevon yivetar amd
FRdCell, Scheduler | 1,y TOP pnyovi| katastécsov. Av n
ree

T TPOCEATN EKTEAECT] NMTAV TNG
€VTOANG enqueue tOte 1 evroin tov Cell
Scheduler, aAM®dg av 1 mo wpoOCEATH
ntav tov Scheduler t6te exteleiton 1M
EVIOAN enqueue.

O mivakag 2.4 divel TIg TPOTEPALOTNTES TOV EVIOA®V TOL Adpfdvovtol Loy otav
VILAPYEL AVAYOVIGUOC TOV TTPEMEL Vo, emAVOel amd v unyovn Kataotdoemv TOP. H
TPOTEPALOTNTO TV EVIOADV diveTOl omd TV peyoldTepT TPOg TN HkpdTEPT. EVvioAés
oTNV 1010 YPOUUN €0V TNV 1010 TPOTOPENTNTA.

To oyqua 2.9 divet 10 amiomomuévo OlAypapo KOTOOTACE®V TNG UNYOVNIG
KOTOOTACEMV TOL EKTEAEL TN €VTOAN enqueue. Avti m pnyovy poll pe avt) g
evtoMg dequeue eival ol mo ovvOeteg Ko Mo ovyvéG otnv vropovada FSM. Ot
KOTOOTACELS OTIS omoieg yivetan pia aitmon yw mpoonéiaocn otmv SDRAM otov
eleyyt SDRAM, ¢aivovtol 6to oyfua pe HEYEAOLS KUKAOVS Kol TEPIEYOLV TO £100G
¢ tpooméraons. To péyioto mAn0og TV Kataotdoemv/KOKAmv avépyetal otovg 40.
Avt glvorl | Tepintoon mov 1 pon NTOV TPONYOLUEVAS avevepYT. Tote glvar mov 1
pon Ba Tpémetl vo emavoeicaydel oty KVKAIKN Alota g opddag pong mov aviket. Ot
EYYPOUPEG TNG TPONYOOUEVTNG Ko EMOUEVNC PONG OTN KLKAMKN Aloto mpémer va
evnuepwBodv Kot avtd kootilel 20 emmAéov KUKAOVG POAOYIOD GTNV EKTEAEOT TNG
evioMs. 'Etor 10 m\nBoc tov xixkAwv avépyetor otovg 40. AAdor 5 xvKAot

46

YALTOVOVTAL OTOV LAOTOLEITOL 1 mopakapyn Aotag eAevBépav (deg mapdyopopo
2.10). Ze avtn) mepintmon, o tpdsPocn otn Alota EAeVBEPOV amoPevyeTaL.

Ov mpoomeldoelg g puvAung SDRAM yivovtor pe Té€toln GEPd OOTE Vo
amo@edyovion o1 €EEPTNOELS OEOOUEVOV (TO OTOTEAECUO HIOG TPOCTEANCNG VO
YPNOLOTOIEITOL GOV SLELOVLVON TNG AUECMOG ETOUEVIG TPOCTELUGNC), EVA TAPUAANAL
N LWV (PNOYLOTOLEITOL GLVEYDG.

If lempty

Read
Rec

f Benq & lempty

Figure 2-9: AvGdypoppo KaTaosTacE®V TG PNYOVIS KATOGTACEMY TNG EVTOAING
Enqueue

210 Mapdkauywn Aiotag eAsuBépwyv (Free List Bypassing) [13]

H mopdxapyn g AMotag elevbfépwv givar pa teyvikn amodnkevong mov viomoteitot
Oamd TOV OlOYELPIOTH] OVPAV YO VO OTOPEVYEL KATOLEG TPOGPACGES GTNV UVIUN
SDRAM «katd v dudpkela piag enqueue kot dequeue evioAns. 'Etotl peidvovtat ot
OToUTOVEVOL KOKAOL Y10 TNV EKTEAECT] KO TOV OV0 KOt £TG1 ALEAVETAL 1) SIOUETOYMOYN
TOV OLOYEIPLOTH OVPDV.

Otav o evtoAr] enqueue ekteleital, £vo vEog PO KEMOV mpémel vo dobel otnv
ovpd mov AapPavel o keAl. O deikng KeEMOV OV OeiyveTOL OO TNV KEPOAN TNG
Motog elevBépov emAéyetor Yy autd to AOY0 oAAG avTO OMpOiveL OTL M KEQOAT
TPENEL TAEOV VoL OElYVEL GTO EMOUEVO Y®PO 0T Alota elevBépwv. H avdyvmon avtov
TOV O4IKTN OO TO YWPO MOV OlveTol otV enqueue KooTilel 5 KOKAOLG g Kot
Bpioketon otnv SDRAM.

Axoun, kotd v ektédeon pog evrong dequeue to eEepyduevo KeAl, av petadobet
owoTd , pmopel TAEOV VO AMOSECUEVGEL TO YDPO TOL GTNV UVIUN DGTE VO UTEL OTN
Mota 610 yOpo eAevBEP@V. AVTO YiVETOL GTOV SLOYEIPIOTY] OLPDOV UE TNV EKTEAEGN
™G eVvtoANg Free mov evnuepdvel tov deiktn Ke@aAng g AMotag eAevbépav pe v
dtevBuvon Tov vEou KEALOD Kot TNV €YYPOEN G6TOV next pointer avTov TOL YMOPOL TNV
d1evBuvvon Tov TPONYOVUEVOD YDPOL TTOL NTAV KEPOAN. AVt 1 €yypaen kootilel 5
KOKAOVG Yo KéBe €000 KeA00, pog ko yiveror otn pvnun SDRAM.

H napdxapym g AMotag eAevfépwv amopedyel Toug 5 KhKAovg Tov odegvovtat otV
€loodo kot €000 €vOg KEAOD 7OV TEPLYpAPNKOV 7O TAVE. Avti o1 Ydpol Tov
elevbepvovtal petd omd v €€0do evdg KeAov va Tomobetovvior oty Aota
elevBépmv, N devbouvon touvg pumaiver oe pa FIFO ecotepikn otov Cell Scheduler.
Ortav po emdpevn eVIoAn enqueue EEKIVIOT TNV EKTEAECT TNG, O VEOS YMOPOG KEAOD

47

nov (ntettar, divetan and avtny ™ FIFO kot étor 1 mpoécPfaocn ot Aota erevbépmv
OTTOPEVYETAL.

YuvoMKa M mopdkapymn g Alotog ehevBépmv pelmvel o TAN00¢ TV KOKA®V oG
evtoMg enqueue kot dequeue katd 10 kOkAovg poroyod. Midg kat ot 600 EVIOAEG
ypewalovtar 20 1 40 KOKAOLG Yo TNV EKTEAEGT TOVLG, OVTA M TEXVIKY PeEATIDVEL TNV
emidoomn tov dwyeprot ovpov katd 10/(20+20) = Y4 = 25% 1 10/(40+40) = 1/8 =
12,5%.

To oyqua 2.10 Ttapovcidlel v mapakopyn g AMotag eEAevBEpmv.

After a Dequeue operation:
Flow Record

Counter

Buffer freed

NEW EMPTY NEW CELL Cell Cell Cell
BUFFER
Nxt Pointer |<——— Nxt Pointer Nxt Pointer Nxt Pointer Nxt Pointer
»
Free Buffer
FIFO in
Cell
Scheduler
After the next Enqueue operation:
Flow Record
Counter Tail Head
v Buffer
NEW EMPTY NEW CELL Cell Cell Cell
BUFFER
Nxt Pointer < Nxt Pointer Nxt Pointer Nxt Pointer Nxt Pointer

Figure 2-10: YAomoinon g mapdkapyng AMotag eEAev0EPOV 6TOV OLOYEPLOTI
0VpAOV

211 MpoavdBeon Xwpou keAiwv (Cell Buffer Pre-allocation)
[10]

H mpoavaBeon yodpov keMdv eivor pio TeQVIK 7OV YPNollomoleitol omd 1o
SLYEPIOTN OLPOV TOV HE KOGTOG £VOG OYPNCLULOTOINTO YDOPO KEAD Yoo kabe pio
vrooTNPLopeEVN pon, LEWDVEL TO TAND0G TV KOKA®MV oG EVIOANG enqueue Katd S.

Onwg meprypbonke oTic TponyoOUeVES Tapaypdeovs, kabe pio amd Tig 64 yidiadeg
OVPEC TOL OLOYEPLOTH OVPMY EYEL TAVTO GTO TEAOG NG €va ddelo otoryeio. Avtod
oY0EL oKOUN Kot Yo TIG Adeteg (avevepyég) ovpéc. e auTn TN MEPIMTOON To TEdiN
Head xon Tail g avtictoymg eyypaeng delyvouv Kot ta 600 6Tov ddelo ydpo KeEAL0V.
Avtdég o0 yopog ovoudletalr TPoovobeUEVOS YDPOS. AV 0 YDpog Oev MrTov
npoavabepévog ko o dgiktng Tail €deyve 610 TEAELTOIO YPNOLUOTOLOVUEVO YDPO,
KOTA TNV SLApKEWNL PiaG enqueue, 10 vEo kel Ba Empene va ypa@tél o€ va VEO AOEL0
Y®OPO KeEAOV, amd TN Alota ehevBépmv (1 amd T0 UNYAVIGUO TOPAKAUYNG EAELOEPMV)
Kol 0 OglyTng ToL TPONYOVUETOL YDpoL Bo Empeme vo evnuepwBOel pe tn devbouvon
TOV VEOL Y®pov. Mg kot pe ovtd TO pnyoviopd, yivovtar mpoofdoelg oe 600

48

Eexymplotoug yopovg, ovo Eexwpiotés ypoupés ™™g SDRAM 6Oo mpémer va
Tpomomoinfovv.

Avrtifeta pe v mpoavabeon xdpov KEAM®V, TO KEAL ypdpetal 610 TPOoavaOEUEVO
Gdg0 YOpo KEAOV, OV €ivol TEAELTAO GTNV OLPA Kol O next pointer Tov YMPOL
yphopetor pe v d1evBuvorn Tov vEou AdE0L YOPOVL TOL deGUELETAL amd TN AloTo
elevBépov (M amd 10 UNYOVIGUO TapdKapyng EAeLBEP®V). MOVOo £vag y®POS KEAMOV
TPOCTEANVVETAL [LE OUTO TO UNYXOVIGUO YALTOVOVTOG 5 KOKAOL GE GYECT LE TOV
TPONYOVUEVO UNYOVIGUO.

YVVOMKA 1 TPoavABEST] YOPOV KEMDV HEIDMVEL TO TANOOC TOV KUKAWMV H0G EVIOAS
enqueue kot dequeue Katd 5 KOKAOVS pohoylov. Midg kot ot 000 evtoAég ypetdlovtal
20 M 40 KOKAOVG Yo TNV EKTEAECT TOVG, OLTN 1 TEXVIKY PEATIOVEL TNV EMIOOGN TOV
dwyeprot ovpav Katd 5/(20+20) = 1/8 = 12,5% 1 5/(40+40) = 1/16 = 6,25%.

To k6oTOg 08 PVAUN TNG TEYVIKNG elvar 4 Mbytes mov givor 4/256 = 1/64 =1,56% ¢
GUVOAIKNG LVAUNG.

2.12 Oéparta Xpoviouou

Ye aTd 10 VITOKEPAANO €EETALOVTOL Ol IKOVOTNTES OOUETOYMYNG TOV OLO(ELPLOTH
OVPAOV GE GLVAPTNON UE TIG OMOUTCES OlUpETAY®YEL €16000V €£OG60VL TG KAPT
eEumupetnm ABR. Ot mopdpetpotl ¥povicpod mov vrobEtovtol amodetkvhouy 0Tt M
epappoyn tov texvikov Free list bypassing pali pe v Cell Buffer pre-allocation
elval amopoitnTeg, av 0 OLOYEPIOTNG OVPOV BEAEL Vo EMTHYEL OTNV 1KAVOTOINGCT TV
OTOLTCE®V NG KAPTOG YPNOULOTOLOVTOS o povadiky] pviun SDRAM yua 6Aeg Tig
OVALYKEG TOV.

2.12.1 To poA61 UTOPIA og oxeon pe To poAOI TOU AlaxEIpIOTA
oupwyv (ABRSU).

[Tpoxeyévou 1N apYLTEKTOVIKT] 00O KEVONG TOV VAOTOLEITOL GTOV SLOYEIPIOTH OVPADV
va pumopel va. eEIGOPPOTNGEL TNV E10EPYOUEVN Kot eEepyOLLEVT Kivnon Tov PeTOywYEd,
TPEMEL VO WITOPEl var €104yEL 0T Ko vor eEAYEL oo TV LVNRuUn éva KeAl oto ypdvo
dp1Eng evog kelol (cell time). O ypdvog dpiEng keAlo0 givat o xpOvoS mov amarteiton
yio v Anpn €icodo evdg keAlol otig demapéc UTOPIA. Muogkonr ot evtolég
enqueue kot dequeue 0ev UTOPOVV VO EKTEAEGTOVV TOPAAANAC O SLOYEPLOTIG OVPDOV
TPEMEL VO YPNOYLOTOMGEL EMTAYLVOT] TOV POAOYIOD TOV GE OYECT] UE TO POAOL TNG
deraprg UTOPIA.

Eva keM yperaleton 28 kdkiovg poroyrod UTOPIA v va €16éA0el oty ABRSU
(d1emapn mAdTovg 16 bit). Ot evtodég enqueue kot dequeue ypetdlovtat:

80 (Worst case) 1 40 (Normal Case) KOkAovg poA0y100 TOL ALOYEPIGTY] OVPDOV.

Avtd onpaivel 6T M EXLTAYLVON TOV POAOYLOV Y10 TIG 2 TEPIMTMOELS Elval:

Worst case:

1 Cell arrival time = 1 Enq time + 1 Deq time=>

Tclk utopia * 28 utopia cycles = Tclk gm * (40+40) gm_cycles =>
Tclk utopia/ Tclk qm=80/28 =2,8 =>

Speed up worst =2,8

Normal case:

49

1 Cell arrival time = 1 Enq time + 1 Deq time=>

Tclk utopia * 28 utopia cycles = Tclk gm * (20+20) gm_cycles =>
Tclk utopia/ Tclk qm=40/28=1,4=>

Speed up normal = 1,4

H FPGA mov ypnowomoleiton amd 1N oyeodioon umopel vo meETOYEL cLYVOTITO
poroylov péypt ko 50 MHz. Apod ta pordyla twv Cubit tov petayoyéa AITIOAO
&xovv ovyvotnta 25 MHz, n péyiotn emrdyvvon 6to poAdL TOL JXEPLOT] OLPDV
nov pmopel va emrevydet etvan 2. Xg oot TV TEPinTOON:

QM_Clk =2 * UTOPIA_Clk.

Muog xou :
Speed up worst > Speed up sel =2 > Speed up normal

0 OlO(ELPLOTNG OVPMV ELVAL 1] TPOYOTEDT) TOL GLGTHIATOS OTAV Ol EVTOAEC enqueue Kol
dequeue yperdlovior to péyioto apBpd koxiwv ektédeong. Ov demapég UTOPIA
elval n TpoyomEdN 6TV TEPITT®OT oL 01 eVTOAEG enqueue kot dequeue yperdlovton
TOV EAGYIOTO aPlOUO KUKA®MV EKTEAEOTC.

2.12.2 AtroteAéopara ouvBeong, ocuvelIo@OPa TNG TTAPAKANYN
AioTag eAguBEépwv Kal TNG TTPOAVABEC TG XWPWYV KEAIOU.

Metd and) ovvBeon tov apyeiov g Verilog mov meptypd@ovy TIG HOVAOES TNG
ABRSU pe to gpyaieio ovvBeong MaxPlusll, apapie o mtapakdtom amoteléopota:

* Poror ABRSU (Awyeipiotiy ovp®dv) ota 35 MHz. Avtd 10 poldl amodidet
ouvolacuéVn sloepyopevn kol eEepyouevn dapetaywyn 400Mbps yioo evtoAég
enqueue kot dequeue 40 kokAwv Kot 800 Mbps yia evtoAég enqueue kKou dequeue
20 KoK AwV.

* Xpnowonoinon FPGA SRAM o710 95%

* Xpnowonoinon Loyik®v noi®@v FPGA 610 55%

Ocwpovtog 35 MHz cuyvétta poAoyod Tov SLXEPICT OVPDOV 1| EMTAYVVOY| Elval
1,4 avti 2 mov BewpnOnke oty mapdaypoeo 2.12.1
[Tpokelpévou va unv givat 0 SLAXEPIOTNS OLPOV TPOYXOTESN TOV GUGTILOTOC TPEMEL:

1 Cell arrival time >= 1 Enq time + 1 Deq time =>
Tclk utopia * 28 utopia cycles >= Tclk gm * (20+20) gqm_cycles =>
Tclk utopia/ Tclk qm>= 50/28=1,8 =>
40 ns/ 28ns >=14 =>
1,4>=14

Avtod onuaivel ot M emtevyBeica EmMTAYVVON HOAG OV KOVOTOLEL TIS OVAYKES
dwpetayoyng tov oetaeomv UTOPIA. Av n mopdxoapyn Alotag eAevBépov kot M
npoavadeon ydpov keM®dv Oev epappoldtav 1dte o1 KOHKAOlL poroyov mov Ha
YPEOLOVTOVCAVY Y10, TNV KOVOVIKT TEPIMTOON TNG EKTEAEGTC TMV EVIOAMY enqueue Kot
dequeue Ba frav 20+20 + 10 KOKAOLG TOL ATOPEVYOVUE WE TNV TOPAKAUYT AIGTOGC
elevBépov + 5 KOKAOLG OV ATOPEVYOVE HE TNV TPOUvVAOESN YDPWV KEADV = 55

50

KOKAOL. Zg auT TV TTEPITT®ON 1 GVYVOTHTO POAOYioL oL Ba fTav amapaitnTy givot
nepinov 50 MHz.

H Bektioon g ovvolaopévng emidoong Tov GLGTHUATOG YXAPM OTIG dV0 OLTEG
TeYVIKES etvon 15 koKAot / 55 kdkhor =27 %.

51

3 ZUMTTEPAOCMATA KOl HEAAOVTIKEG ETTEKTACEIG

Ye o0 TV €pYacia oyeddoape Kol VAOTOCAUE TNV APYLTEKTOVIKT £vog Ava-Pom
Sl EPIoT oVP®V pPE oKOomoO TNV amobnkevon g kivinong tomov ABR oce éva
petoyoyéo ATM oe katootdoet ocopueopnong tov. O JyePloTic ovpdV
viomomOnke oe pa peyddn FPGA mov tomoBetiOnke oe pio amd T1g KAPTEG TOL
petayoyéo. H ypnon e FPGA enétpeye 10 €KTEVEG TECTAPIGUO TOV GULGTHHOTOG
Katé TtV ovamtuéy] Tov Kol pog £0moe TV KovoTnTa Vo eMPERUOCOVUE TIG
VROOECELS LOG YO0 TV EPIKTN TAXVTNTO TOL GLGTNUOTOC, GTO OPYIKE KOO GTAdIN
™g oyediaonc.

Xpnowonomoope poe povadtkn pviun SDRAM DIMM ywo v amofnkevon tov
KEALDV KOl TOV JEIKTAOV TOV 0vpav. AVTd Heloe TNV ¥pNon pin Kot GUPUATOV TNG
Képta, omodidovtag Eva ovoTnua YounAov Koéotovg. O TPOGEKTIKOG
TPOYPOUUATIGHOG TOV TpooTeAdcemv ot pviun SDRAM amd 10 dtoyepiot ovpodv
amEDNEIEE OTL 1] TPOGEYYIOT TG LOVOOIKNG LVIUNG EIVOL EQIKTN.

[Mopdro mov 1 duvopky Tapay®pnon avéface to TAN0og Twv TposPioemv Yo kibe
€VIOAM] enqueue kot dequeue HEWOVOVTOC TNV OLOUETAY®YN TNG omodnkevong, ,Hog
EMETPEYE KOTA TO TECTAPICUO VO YPNOULOTOUCOVUE TO OLIYEPIOTH] OLPAV Yol
amofnkevon yIMadwv KeEM®V € o ovpa Porg Kol TAPEAANAL VO ST PT)COVLLE TNV
Kavotnta va xepiopaote 64 yiliodeg poés.

Ov oemapég tov dwyelptotn ovpwv pe v eEotepikn CPU pog emétpeye va
EKCQOALATMOCOVIE TO CUCTNUO OMOJOTIKA Kol Vo €lodyovpe Kivnon mov
emPePaiwon v opBotTTO TG PLOIKNG cVVdeon S TG FPGA pe v pviaun SDRAM
DIMM «ai ta. ohokAnpopéva CubitPro.

H yprion tov teyvikdv mapdkopyng Alotoag ehevBépmv kot mpoavdbeong xdpov
elevBépmv amodeiytnKe amopaitntn Yoo TV €Mitevén ToL GTOYOV TNG OUUETAYWYNG
amofnkevong kovid oto 1 Mbps and 10 chotud pog. H Beitioon g tédéng tov 26%
oTNV €mOOCN TOV GLOTNUOTOS TOV EMLPEPUV LE TNV EQUPUOYNTOOL OTOCPESE TNV
anmAela Tov 6tdYov TV 50 MHz otV apyn g oxediaong tov cvotiuotoc. Etol n
HEYIOTN EI0EPYOUEVT] KO EEEPYOUEVT] SLOUETAYM®YN TOV EMTEVYONKE avnABe ota 800
Mbps mov eivor apket| ywoo TG avlykeg amodnkevong kivnong tomov ABR evig
petayoyéa g taéng Gbps.

H mpooHnkn 610popmv GAL®V YopaKTNPIOTIKGOV HETAYOYEWDV, gival Eva evOlopEpoV
Oépa Yoo LEALOVTIKT aTOGYOANOT TAV® GTO dlEPLoTr] ovpdv. ['a mwapdderypa, n
peyévbvon g eyypagns pong amd 2 Aégeig tov 64 bit e 4 Aé€eig Ba pmopovoe va
emupéyel Vv mpocHnkn emmAéov medlov yi kdBe pio amd Tic 64 yAadeg
vrootpiopeveg poés. ‘Eva medio New ID Ba pmopovoe va mpootedel mov va ntov
npooPacyo and v CPU. Avtd to medio Ba avtikabiotoboe to Header ID tov
eloepyOUEVOV KEMOV oG pons. 'Etotl o dayepiotg ovpdv Ba pmopodce va mapéyet
kot petappoon VP/VC (VP/VC translation) mapdAAnia pe tnv ava-porn amodnkevon.
Eva dAlo medio mov Ba pmopovoe va mpootebel etvan éva medio Explicit Rate. H CPU
0o vroAdyle to KatdAinio pntd puOBUd TG ovvdeon kat Ba To YPMNCIUOTOOVSE Yo
va aAraéer To Explicit Rate péoa ota kemd RM g obhvoeong, av n mpovrdpyovca
T etvon peyodvtepn amd avt mov Bélel va emiPaier 1 CPU. Me avt6 to tpdmo Ba
vrootnplotav o €Aeyyog pong tomov RM explicit rate, pe 10 Aoylopikd va
avoAAUPAvEL TOV VTTOAOYICUO TV PLOUGV KOl TO DAMKO Vo, EVUEPOV Ta TEdio T®V
KeAv RM.

52

AlAo eVOLAPEPOVTO YOPOKTNPLOTIKE oL Ba umopovcav va vrootnpryodv eivol
UNYOVICUOT TTETAYLOTOG KEAIDV TWV PODV UE KOKT CUUTEPIPOPT.

53

ITAPAPTHMATA — Ayylki) petdopaon

4 Introduction
4.1 Motivation

The introduction of bandwidth hungry applications both in corporate and client
communications is one of the most consistent trends in the networking world.
Multimedia applications that ride the Moore’s Law on one hand, produce excessive
amounts of voice and video data to be relayed through the network, while booming
business to business networking contributes small but frequent chunks of data
between corporate headquarters. These network requirements are heavy burden to the
current network infrastructure that relies mostly on IP protocol and wire cables. While
the second is the subject of the last mile problem and requires gradual but enormous
investment of funds in a global scale with the introduction of fiber optics, the first will
still pose problems in efficient networking because IP is incapable of differentiating
among diverse services required by network users. ATM protocol should gradually
replace or merge with IP applications along the way to high speed, fiber optic
networking.

ATM offers generic Quality of Service (QoS) guaranties to existing networking
by differentiating network traffic into several types depending on the requirements of
the application that produces it and provides special handling and billing for each.
These requirements are:

* Bandwidth — The rate at which, the network must carry an application’s traffic.
* Latency — The delay that the application can withstand in the delivery of its data
e Jitter — The variation in latency

* Loss — The percentage of acceptable loss of data.

Each of the family of traffic types supported by ATM networks places most of its
interest over some of these requirements and less to the remaining. These types are:

* Constant bit rate (CBR) - This type is used for emulating circuit switching. The
bandwidth is constant with time. CBR applications are quite sensitive to jitter but
not no much to data loss. Examples of applications that can use CBR are
telephone traffic, videoconferencing, and television.

* Variable bit rate—non-real time (VBR-NRT) - This type allows users to send
traffic at a rate that varies with time depending on the availability of user
information. Statistical multiplexing is provided to make optimum use of network
resources. Multimedia e-mail is an example of VBR—-NRT.

e Variable bit rate—real time (VBR—RT) - This type is similar to VBR-NRT but is
designed for applications that are sensitive to cell-delay variation. Examples for
real-time VBR are voice with speech activity detection (SAD) and interactive
compressed video.

* Available bit rate (ABR) - This type of ATM services provides rate-based flow
control and is aimed at data traffic such as file transfer and e-mail. Although the
standard does not require the cell transfer delay and cell-loss ratio to be
guaranteed or minimized, it is desirable for switches to minimize delay and loss as
much as possible. Depending upon the state of congestion in the network, the

54

source is required to control its rate. The users are allowed to declare a minimum
cell rate, which is guaranteed to the connection by the network.

* Unspecified bit rate (UBR) - This type is the catch-all-other class and is widely
used today for TCP/IP.

The last two types of traffic are the most opportunistic of them all since they tend to
use the leftovers of the network resources reserved by the others whenever available,
thus increasing network efficiency. Still they carry the burden of the most traditional
of network applications such as E-mail, FTP, HTML that is the base of contemporary
networking. Although they pose some bandwidth requirements, they step aside in
times of network congestion. This is translated to extensive buffering (or queueing) of
these types of traffic at the network nodes they reside when the latter suffers from
congestion.

There are a number of architectures proposed throughout the evolution of
switches and routers that address the problem of effective traffic queueing. Large
buffers alone can not support the variety of traffic types and the problems of delays
and HoL (head of line) blocking that arise. It seems that providing separate queueing
for each flow of traffic (per flow queueing) gives the ability to the switch/router to
service more accurately the requirements of each one [5], [10], [11], [14], while the
provision of resizable buffer space (dynamic queueing) for each flow takes advantage
of unused, by dormant flows, buffer space [5]. Switch/router architectures with these
characteristics can accommodate high speed network traffic while using off-the-shelf,
inexpensive memory modules of Dynamic RAM dropping the memory cost to the
minimum of a standard PC.

Dynamic RAM memory modules in all their forms have a wide range of
usability in contemporary computing and especially SDRAM which is used almost in
any computing device that needs large cheap buffer space, with moderate to high
throughput. Best performance is achieved when large chunks of data are moved,
making these memories suitable for networking that is now well in its packet (~64
bytes) switching era. Their wide applicability, simple interface, and industry-wide
standardization drops their cost substantially, fuelling the addition of more ports to the
networking device [1,ch9], [12].

4.2 This thesis and the DIPOLO Switch

In this thesis, we describe the architecture of a Queue Manager IP that
supports the features of per flow, dynamic queueing of ABR traffic type of ATM
networks. This IP was designed for the purposes of a 1Gps ATM Switch called
Dipolo.

It is used to accommodate the queueing of a maximum of 64K flows for a
centralized ABR Server Card. The Card uses a large FPGA to host the IP and a single
SDRAM DIMM module to store cells and queue pointers. There is also a CPU
interface that programs the Queue Manager with parameters of each ABR flow so that
the IP can support ABR flow control features such as RM marking and EFCI. We also
discuss the general architecture of the DIPOLO Switch and the features of the IP
architecture that were used to increase Memory utilization, such as free buffer
preallocation [10] and free list bypassing [13]. The IP can also support traffic
differentiation, by organizing flows into Flow groups according to service needs and
output port, making it flexible even to support CBR or VBR traffic when special care

55

is taken by the scheduling hardware. Special care was also given to the interfaces of
the IP with other IPs such as the Scheduler and the CPU so that they are simple and
effective. The single SDRAM interface did not allow for any parallel accesses.
Instead Enqueue and Dequeue commands where implemented as a whole instead of
smaller atomic commands to increase Memory utilization. A clock speed of 35 MHz
was achieved for the FPGA implementation that is translated to a maximum 800
Mbps of combined incoming and outgoing throughput. In ASIC implementations
where clock speeds of 133 MHz are feasible this throughput could rise substantially
making this architecture suitable for use as part of a Networking Chip [7], [10]. A
total of 2,5K of FPGA Logic Elements was used as well as only 2K bits of on chip
(FPGA) SRAM.

DIPOLO Switch design was a joined project by the University of Crete, Greece,
the National Technical University of Athens, the Foundation of Research and
Technology of Crete and Intracom Company. The purpose of this project is the
design and manufacturing of ATM switch of 1 Gbps of throughput, for the provision
of broadband networking to domestic VDSL users. The main system requirements
were, the provision of CBR, VBR, ABR types of ATM traffic. Other factors that were
also taken into account were low system cost, use of commercial chips and the
optimum division of work between the conglomerates.

Under the scope of DIPOLO design, the writer had the chance to work on the
physical design of the ABR Server Card. This card is described in section 5.5. More
precicely, he worked on the definition of its organization, its description in concept
level. He also defined the internal organization of the ABRSU unit (FPGA) of the
card. This unit is decribed in chapter 6. He designed the Cell Demux (see section 6.3),
the Queue Manager, the main issue of this thesis that is described in chapter 7, the
interface of the ABRSU with the card’s cpu (see section 6.2) and the interface with
the SDRAM memory unit. He was also in charge of top level synthesis and
verification. He designed tests and demos that proved the feasibility of the design.

4.3 Switch/Router Generations and Queueing Architectures

In this section, a brief description of the switch/routers generations that evolved over
the years and the queueing architectures that were introduced with each one of them is
given.

4.3.1 First Generation Switches/Routers

The evolution of networking devices can be roughly separated into three generations
mainly by the hardware used and the level of integration. The first generation of
switches were devices that resembled to a general-purpose computer and consisted of
line cards interconnected by a I/O bus. There was also a CPU that hosted all the
routing software that decided were to forward the packet, a Main Memory, and an
optional DMA module to release the CPU of the burden of moving data packets
between line cards and Main Memory. A data packet would enter the device through
the ingress side of the Line Card by use of an Analog to Digital Converter. Then the
CPU would extract the header of the packet in order to route the packet over the Bus
to the appropriate queue in the Main Memory. Later the CPU would schedule the
packet to be routed over the BUS again, to the Line Card, through a Digital to Analog

56

converter and off to its destination. Figure 4-1 depicts the configuration of first
generation devices.

A Line Cards

—————————————————————————— I
|

|

1/O Bus \!/I I

Memory
Module

Figure 4-1: First Generation Switch Routers

There are three bottlenecks in this architecture:
e CPU Power

* Memory Throughput

e I/O Bus bandwidth

As the line speed rates increased the CPU would perform poorly, since it implemented
both routing and scheduling of packets for all line cards. As for Main Memory and
I/O Bus, both would scale badly with the introduction of additional cards especially
for the bus that relayed each packet twice through its course through the device. Still,
these devices were sufficient for low speed rates and the poor data production of
applications, during the first years of the Internet era.

4.3.2 Second Generation Switches/Routers

The second generation of switches eliminated the CPU and Memory bottlenecks of
the first by introducing redundancy to both of them. As seen in Figure 4-2, each line
card now owns a separate memory module and a small CPU. The main memory is,
now, not necessary. The local CPU implements routing and scheduling of packets,
while storing takes place in the local memory. Input Queueing or Output Queueing or
both can be implemented. The sole purpose of the central CPU is to arbitrate the
usage of the Bus, the exchange of routing information between the local cards and the
programming and maintenance of the whole system. Due to the redundancy, the only
bottleneck of these devices was I/O Bus bandwidth that failed to scale along with the
high speed line cards and the port count.

57

‘ A Line Cards ‘ A ‘ A
D/A A/D D/A A/D D/A

rera 4 rera 4 [er 4

I/0 Bus

CPU
as
arbiter

Figure 4-2: Second Generation Switch/Router

4.3.3 Third Generation of Switches/Routers

This generation introduced Switching fabrics to replace the I/O bus as the medium to
relay packets between cards. Buffering and routing of data packets is performed
inside the line cards while specialized hardware is provided to give to the line cards
access to the fabric. Switching fabric can accept multiple simultaneous transfers of
packet with a maximum of N transactions when N Line cards are connected to the
fabric. The current trend for network devices, that rides the ASIC large-scale
integration, is SoC (System on Chip) architectures. Except analog parts, all the line
hardware (buffers, routing) for all ports are stored inside the same chip along with a
crossbar (the most effective but less scalable of switching fabric), a scheduling unit
and a CPU. Such chips can accommodate up to 32 input/output ports and are
sufficient for a low-end switch/router. They can also be used as a building block of a
large high-end switch/router. It the latter case, they are organized in Switching Fabric
topologies such as Banyan, Benes, and Batcher-Banyan networks [1,chapter 8]. All
are depicted in figure 4-3.

58

-
&

Switching

-

' Fabric

|
LB B s o]

it

-
i

—.—}IP

'

OP

il

F F o B F R OB B
-
&

LA B S

& o #

'>IP

h 4
v

OP

—» [P

'

OP

Scheduler

Yl

Figure 4-3: Left: Third generation Switch/Router, Top-Right: A crossbar,
Bottom-Right: An 8x8 Banyan Fabric made of small 2x2 Switch blocks.

4.4 Queueing Architectures in general

In this section, we describe the main queueing architectures that are implemented in
the spectrum of networking device generations described in the previous section.
Advantages and disadvantages are also given. Finally per flow queueing is described.

4.4.1 Output Queueing

There are two queueing architecture families: Input queueing and Output queueing
architectures. The output queueing families place the buffering memory that stores the
queues near the outputs of the device as shown in figure. The interconnecting medium
can be either a shared medium (like an I/O Bus) or a switching fabric (like a cross
bar). One single module (a shared buffer architecture) or separate ones, one for each
output port can serve all the link output queues. The first case with a shared medium
is the first generation of switches/routers. Both of them can accept all the available
throughput but place heavy requirements on the rate of interconnecting medium and
the memories. In the case of N input ports and N output ports with a dedicated
memory module for each output port the module must have a throughput of N+1,
when input throughput for each port is 1. In the case of a single memory module for
all output ports, the module must provide a throughput of Nx(N+1). Both
configurations, shown in figure 4-4, are not scalable so output queueing is generally
not used.

59

Switching Switching
Fabric Fabric
1 N 1 1 1 1
e N LT e B BT e N
& 1 N 1 2, 2 1 1 1 2
D G I R e
z 3|z 3
1 N 1 Z 1 1 1 Z
s/ NS | Sl N

{ {

Scheduler Scheduler

Output Queueing (with Sw. Fabric) Input Queueing

Figure 4-4: Left: Qutput Queueing with a Switching Fabric and multiple buffers
Right: Input Queueing with a Switching Fabric.

4.4.2 Input queueing

When the buffering memory is placed at the inlet side of each port of the switch we
describe this scheme as input queueing. Each time a packet arrives it is placed in a
queue at this memory and when it gets to the head of the queue it waits for the
scheduler to forward it to the output port of destination. The architectures that fall into
input queueing are more scalable than the ones that fall into output queueing since
their memories must provide twice the input port throughput. Still, they fail to accept
all the input rate, due to Head of Line blocking at each input port that decreases by
one third of the optimum the switch throughput. Head of Line blocking can be seen in
Figure 4-5. When two inlet queues have at their head position a packet destined to the
same output port, the fabric can accept only one of them. The other queue remains
idle, although there are other packets behind the head that are destined to other output
ports and could be served at the same time. To overcome HoL blocking an alternate
scheme is often used depicted in figure 4-5. Each packet that arrives at an input port is
stored in a separate queue, according to the output port of destination. This scheme is
called Advanced Input Queueing or Virtual Output Queueing and theoretically can
achieve 100% utilization but requires fast scheduling hardware to find the optimum
schedule from inputs to outputs [2].

60

- -A >
// ERN
I“"'/'/ T3 LB /ﬂ_>
“|// —| A Ve
| ueT

Red could pass
instead

Figure 4-5: Left : Head of Line Blocking Right: Advanced Input Queueing

4.4.3 Variations

Input queueing and Output Queueing can also be used in combination for better
performance. In that scheme usually some internal speed-up is used in the switching
fabric [3], [4], [S], [6]. The fabric inputs are able to receive packets at a higher rate
than the port rate. This resembles to normal Input queueing working at relatively low
rates. Additionally, the fabric transmits to the output queues at a higher rate than the
output line rate in order to accommodate for the accumulation of packets when most
of the traffic at a given time is destined to the same output. Figure 4-6 depicts Internal
Speed-Up. Another variation, shown in the figure, is Cross-point or Distributed
queueing. It achieves top performance like output queueing by storing packets at the
cross-points of a crossbar. This scheme though, requires extensive (NxN) usage of
buffers that is costly either on chip or off-chip and is not scalable for large number of
ports. Recent advances in embedded DRAM technology (DRAM memory on the
same silicon chip as common logic gates) could promote such schemes.

Switching
I
1 S>1 S>1 :I:I:I:l 1 :I:I:I:l9 :|:|:|:|9 :I:I:I]%
—> [[]] > —> > P
£ 5 2
5} > i EFG-- I L Lo
= [> > [>z £ == >l =l
= =S Z
o
Z
1 S>1 S>1 1 4
AP o e
3 M= =1l
v v v
Scheduler N Output ports
. Crosspoint Queueing Switch
Internal Speed Up switch

Figure 4-6: Left: Internal Speed Up Switch, Right: Crosspoint Queueing Switch

61

4.4.4 Per-Flow Queueing Vs Single FIFO Queueing in Output
Queueing

In the theory of Queueing there is also the matter of buffer management to be
addressed. The buffer size is a limited resource and is heavily contended. The heavy
contention over a period of time may lead to congestion, possible loss and extensive
delay of packets. Therefore in order to provide Quality of Service, a switch must take
care of the buffering and scheduling techniques it uses.

In Output Queueing with a dedicated memory module at each Output, or a shared
buffer, the arriving packets could be stored in a single FIFO, or in dedicated queue for
each flow of Traffic. In ATM networks where a flow is a VP/VC the latter scheme is
called Per-VC queueing.

In the Single queueing approach, a centralized memory is completely shared by a
single queue, where all the packets from different sources or input ports enter. Then
they are scheduled in a FIFO manner. This discipline is the simplest, most economical
and commonly implemented queueing discipline. If the queue length exceeds the
available buffer space, the incoming cells are discarded. To minimize cell loss,
congestion must be detected by use of two queue thresholds. When the queue length
is above the high-threshold level, a congestion indication flag is set initiating marking
of packets that will eventually drop the incoming packet rate. It remains set until the
queue length drops below the low-threshold level. Single queueing with two
thresholds is illustrated in Figure 4-7. Single FIFO queueing, because of its simple
nature is easily implemented, particularly at very high-speed ports. It does not,
however, provide any local mechanisms to enforce a fair access to buffers and
bandwidth, and it leaves such resources open to abuses by malicious flows. In that
case, the marking mechanism described suffers in terms of fairness. The problem can
be overcome by using processing power to calculate the fair share of bandwidth for
each flow and communicate it to its source as in Explicit Rate technique of ABR
traffic of ATM. The same external to queueing mechanism must also impose a
policing function to punish the malicious sources.

Incoming > Scheduler To output >
packets link

High Low
threshold threshold

Figure 4-7: Single FIFO queueing and two threshold congestion detection
approach

Unlike the first approach, where all flows are queued in one single queue, in the per-
Flow approach, cells from different flows (or VCs in ATM networks) are queued in

62

separate queues and buffer space is allocated in a per-flow basis. Multiple classes of
traffic, with different priorities and QoS requirements can be fairly served, with the
per-Flow implementation in conjunction with a proper scheduling policy. The output
—port buffer space could be divided among all flows in a fixed manner or dynamically
shared among them. In the fixed buffer allocation method (static), each VC is only
allowed to occupy its own VC buffer share, but in dynamic buffer management, VCs
can take more than their share. The state of congestion is determined similarly using
the two-threshold approach described earlier. Still two thresholds can be maintained
for each of the flows, as seen in Figure 4-8, so that ill-behaved flows can be
identified. The isolation provided by the separate queues ensures fair access to buffer
space and bandwidth. This also allows the delay and loss behavior of individual flows
to be isolated from each other. This per-flow information can be used for congestion
control, either by marking of packets (EFCI marking of ATM cells for example), or
Explicit rate mechanisms. It can also help identify and police misbehaving sources
effectively. In the static buffer management variation, where flows are given a fixed
buffer share, the policing can be completely eliminated. This happens because in the
static buffer scheme, if a flow is misbehaving, only its queue will grow and overflow.
The dynamic buffer scheme, on the other hand, must utilize some intelligent
mechanism to achieve policing.

Generally per-VC queueing offers some advantages over single FIFO queueing.
These become critical when QoS must be implemented, since the latter when used
broadly achieves the most efficient usage of network capacity. Still, per-flow
implementation suffers considerably in terms of implementation and scheduling
complexity. Since per VC queueing is proportional to the number of maximum VCs
that can be served, it doesn’t scale well for million of VCs. In addition complex
scheduling policies must be implemented on a per-flow basis. When the number of
Vs is relatively low (like 64K flows in our IP) buffering complexity is low but the
scheduling complexity is still high [1, chapter 9], [8], [9], [10,] [11].

HRNRRERI RRRRERNRRE QY
/v HRRRERRINENARERER
ARIRERRINERANERER
IncomingI / o To output
.packets [@ n
° /
IRRINRNRRNNANERER

High Low
threshold threshold

Figure 4-8: Per-Flow queueing and two-threshold detection approach

63

5 The DIPOLO ATM Switch

5.1 The DIPOLO Architecture

The general architecture of the DIPOLO ATM Switch is depicted in figure 5-1. Based
on a Second Generation architecture, this system is made of a number of VDSL Line
Cards that connect the End Users with the Switch, one or more ATM 155 cards for
the interconnection of the Switch with the central ATM Network through OC-3/STM-
1 lines, a CPU Card, an ABR Server Card and a shared Cell Bus.

The exact functionality of each card is given below:

Shared Cell Bus: At system level, the exchange of data and management and
signaling information is done by ATM connections. The transmission of such data
is done through the use of a shared Cell Bus (CellBus). For redundancy the system
uses two such busses. One main and one redundant that it is used in case of
failure by the main one

ATM 155 Card: It executes all the functionality of the physical level of ATM, like
physical level ending, ATM routing, signaling Q.2931, OAM function etch. The
connection of many cards over a backplane incorporates the switch.

ABR Server Card: It executes all the necessary functionality for the acceptance,
storage and forwarding of cells that carry ABR traffic. The ATM 155 cards can
not handle such traffic because it requires extensive buffering. The core of the
functionality is the maintenance of a large number of multiple level queues.

CPU Card: It provides top system maintenance and performs functions like Call
Admission Control (CAC).

VDSL Line Card: It implements the interconnection of end users with VDSL
modems through wire cables.

Ethernet or

RS-232 CPU | ——

0C-3/STM-14—>»| ATM155 Line

i

0C-3/STM-1e—»| ATM155 Line

ABR
< > SERVER

{ . VDSL Line) .
<>
. CellBus A CellBus B

{ - VDSL LinE | g

Figure 5-1: General Architecture of DIPOLO ATM Switch

64

With this organization, the centralized approach of handling the ABR Traffic (by the
centralized ABR Server Card), allows the concentration of temporary memory in one
card, increases memory utilization and drops the system cost. It also allows the
creation of systems with or without ABR support and increases the flexibility of the
system in terms of needs and development by the contractors.

5.2 The ATM 155Mbps Card

The ATM 155 Card’s architecture is composed by 4 subsystems shown in figure 5-2

e The switching device

* The Cell processing device

* The local control processor

* The local physical level device

In the next subsections we give a description of these subsystems and the commercial
products that were used for their implementation.

ATM155 LC schematic

: |
uP FLASH SDRAM | | SDRAM ;

WC 860 512 kbytes 4 Mbytes i 4 Mbytes !

) ¢onboardulev ¢ ¢ ¢ -
< ¢ R y ¢ rd
¥

Y

Y

m====7T= ====1
I b Cell Pl I
Flspxa1ss|[€] PMs350] < Fro oot [€—F——T>CUBIT Pro
< T 7>
H = L |MC92501 |«
1 | v
1 |
| | > CUBIT Pro
I glue
|
1 osse —— |
| clock distribution E | 16 Mb Eovyer-regu,tlatior;l&
I | ot-swap controller
i | Physical Layer Subsystem SDRAM
Bl o e e = o

Figure 5-2: The ATM 155 Card block diagram

5.2.1 The switching device (Transwitch Cubit Pro) [18]

The switching device is connected with the cell-processing device through a UTOPIA
interface and it comprises the interconnection of the card with the Cell Bus. The latter
is located on a separate backplane box that holds together all the cards.

65

5.2.2 The Cell Processing device (Motorola MC92501 Cell
Processor) [17]

For the implementation of the cell-processing device we use the MC92501 Cell
Processor by Motorola, that is a well-known and standard processor. It is connected
with the physical device and the CubitPro device through a UTOPIA interface. It also
connects with the local processor by use of a special processor interface.

The Cell Processor executes all the OAM functions in hardware, and inserts in the
system cells that carry signaling and managing information through the local CPU
interface. It also executes address translation (VPI/VCI) translation and inserts in the
incoming cells routing headers that notify the CubitPro with the card of destination of
the cell. The address translation table is located in an external dedicated SRAM that is
updated by the local CPU. The MC92501 also performs per flow policing (UPC/NPC)
by using a leaky bucket algorithm.

5.2.3 The local CPU (MPC860 by Motorola) [17]

For the local control of the ATM 155 Card, the MPC860 processor by Motorola was
used. This processor is responsible for the initialization and normal function of the
card. It interfaces with all the devices on the card. The function of the CPU is
supported by a DRAM that is used for storing data and an EPROM for storing code.
By interfacing with the other devices the MPC860 can extract information relative to
their functionality. It also polls them to get a view of the ATM traffic that passes
through the card and collects statistic for system management. It performs signaling
while detecting and correcting faults. Special ATM cells that are transmitted over the
CellBus through dedicated VP/VC connections do the communication between this
CPU and the central CPU card of the switch. Finally the MPC860 uses an RS485
interface for external communication and supervision.

5.2.4 The Physical level device (PM5350 S/UNI-155-ULTRA) [20]

For the STM-1 physical connection the PM5350 S/UNI-155-ULTRA device by PMC
Sierra was used. This is a device that interfaces with the MC92501 through a
UTOPIA interface and implements the ATM transmission convergence for the
SONET/SDH 155.52 Mbit/sec. The PM5350 is used for the implementation of basic
functions of the physical level for an ATM UNI (User Network Interface) interface. In
a typical STM-1 application, the device performs clock and data recovery at the
reception side and clock generation at the transmission side. For the optical
transmission of data an SDX2155 simple rate optical transceiver is used for SDH
STM-1. It can support a connection length longer that 15 km and is manufactured
with 155 Mbit/s standards set by the ATM Forum. Finally the SDX2155 has as PECL
interface for communication with the PM5350 device.

5.3 The CPU Card

The basic functions performed by the CPU Card are:

66

* Central administration and monitoring of the DIPOLO Switch
e (Call Admission Control (CAC)
* Interface with external management systems (support for SNMP and/or CMIP)

In figure 5-3, the block diagram of the CPU Card is given.
The basic parts of the Card are described in the following subsections.

CPU Board schematic

VE 4—I—) CUBIT #2
MC68160 MPC 860 > gluc
EI (—) Ethernet S AR (—|
Controller

A

A
Y

CUBIT #1
A
7 mP bus
\ 4 Y

o7, HE]

1 Mbyte i1 Mbyte: 0 i

| ' 16 Mbyte 116 Mbyte!

FLASH 1FLASH ! ! i

EPROM i EPROM | SDRAM :SDRAM :

OSCs & P .

R power-regulation & | &
clock distribution E hot-swap controller |

Figure 5-3: The CPU Card block diagram

5.3.1 Motorola MPC869SAR (PowerQUICC)

The MPC860SAR is advanced version of the Motorola’s MPC860 processor, based
on the PowerPC architecture. It executes additional ATM and SAR (Segmentation
and Re-assembly) functions. One of its basic advances, in terms of system design, is
that it provides interfaces to memories, serial transceivers and bus buffers. The

MPC860SAR provides the following interfaces:

* Interface with SRAM, DRAM, EPROM, Flash and other peripherals.

e Seven serial interfaces controlled by an integrated communication subsystem

processor that can support a number of different communication protocols.

* Half-duplex UTOPIA interface at 155 Mbps that can support multi-PHY function

and extended ATM cell size.

The processor performance reaches 52 MIPS at 40 MHz, with cell processing

(incoming and outgoing) rate of over 60Mbps.

67

5.3.2 The CubitPro Device

Like on the ATM 155 Card, the Cubit Pros provide the interface of the CPU Card
with the double Cellbus, allowing the communication of the CPU (MPC860SAR) of
the CPU Card with the local CPUs of the other cards, with the use of Control Cells.

5.3.3 Memories

Memories used are:

* SDRAM: 16Mbytes for the storage of code and data
« ROM: 2MB
* Flash EPROM for the storage of code for the Central and the local CPUs.

5.4 The ATM Line Card

The E1 Physical Layer part terminates 16 E1 cell-based lines. All terminated data are
interchanged with the MC92501 cell-processor over a UTOPIA 1II bus. As shown in
figure 5-4, the E1 physical layer sub-system consists of the following components:

* 4 PM7344 QUAD E1/T1 Framers
e 4 PM4314 QUAD E1/T1 Line interface components

In figure 5-4, the block diagram of the VDSL Line Card is given.

E1 LC schematic

[
|
|

Yvyyy

e

RS-485
I/F
A

_|MPC 860 FLASH | |SDRAM ESDRAME

4 > e 512 kbytes| |4 Mbytes 54 Mbytesi

¢ on board uP bus ¢ ¢ ¢ =~
A N Ll
optional glue optional glue

A

¢ v
—> <>

PM4314|€» PM7344 Cell processorl) 3 ~URIT pro| Jo_CellBus
> Line UF IC[€®] FRAMER | €] glue [! € 10
> © —_ MC92501 |«

x4 ¢ v
> CUBIT Pro
16 Mb

0SCs & -

clock distribution —E RIS) power-regulation &

hot-swap controller

Figure 5-4: The VDSL Line Card Block Diagram

68

The incorporated parts are described below.

5.4.1 Framer part - PMC-Sierra PM7344 [20]

The PMC-Sierra PM7344 is a 4 port (input and output) Framer device. It accepts raw
line data (RZ encoded) from the Line interface circuit (PMC-Sierra PM4314), and
provides cells to the ATM Board through a UTOPIA 2 like interfacing (SCI-PHY).
Some glue logic (FPGA) is required to convert the SCI-PHY signals to pure UTOPIA
2 signals. The PM7344 provides cell scrambling (from UTOPIA to PM4314), de-
scrambling (from PM4314 to UTOPIA), and cell delineation (according to G.804). It
inserts/extracts idle-unassigned cells to/from the data stream. Rate de-coupling of the
UTOPIA interface is achieved by a 4-cell input FIFO and a 4-cell output FIFO. The
PM7344 is connected to the Motorola MPC860 with an 8-bit CPU interface and the
appropriate glue logic. The MPC860 assign values to the internal registers of the
PM7344 in order to program it, and gets information about the line status by reading
the appropriate registers. The PM7344 can also generate interrupts to the MPC860
under certain line conditions.

5.4.2 Line interface circuit part - PMC-Sierra PM4314 [20]

The PMC-Sierra PM4314 integrates 4 duplex E1 (G.703) compatible line interface
circuits. It accepts E1 (G.703) bipolar line signal from the electrical components, and
provides digital (RZ encoded) pulses to the Framer part (PM7344). The PM4314
provides clock recovery and performance monitoring in the receiver. It is also
equipped with a generic microprocessor interface (connected to the MPC860 with the
appropriate glue logic) for initial configuration, ongoing control and status
monitoring. The microprocessor interface utilizes an 8-bit data, and a separate 8-bit
address bus, and is able to generate interrupts upon detection of various alarms,
events, or changes in status.

5.5 The ABR Server Card

The ABR ATM Traffic covers the needs of traditional LAN networks. Computational
systems on a LAN want to send data, the minute these are generated, at the highest
possible rate, but without congestion that causes cell loss. The reason behind this is
that computer data are sensitive to loss (as opposed to multimedia data like voice and
video where loss can be tolerated to a point), and retransmissions can seriously
degrade the network performance.

Instead of reserving network resources for the bursty traffic of LANS, it can be served
by the ABR service that uses the available bandwidth, left unused by other sensitive
to delay and jitter, traffic services of ATM networks, like CBR and VBR. In order
though to allow for end-users to send whatever they want whenever they want without
loss, switches with extensive buffering capabilities should do the service of ABR
traffic. In that way, cells that can not be transmitted during time of congestion can be
stored for some time.

For this reasoning, the DIPOLO Switch utilizes a centralized ABR Server card, in
order to efficiently utilize the memory resources available at the lowest of costs. The

69

ABR Server Card can provide for the buffering of all the ABR traffic of the Switch.
In that way, supplying memories to all the card thus increasing complexity and cost, is
avoided. Memory utilization is also the highest. The downside is that some CellBus
bandwidth is lost since each ABR traffic cell traverses the bus twice (once from card
of entry to ABR Server card and once from ABR Server card to card of exit) and that
one ABR Server card is a single point of entry. Since though the switch is designed
for low-end home application, where multimedia data are the core rather than
computer data, and cost matters for a the highest possible market penetration,
centralized buffering of ABR Traffic is justified.

The architecture of the ABR Server Card is given in figure 5-5. The card is made out
of the following devices:

* The Switching device (Transwitch Cubit Pro)

* The ABR Server Unit (ABRSU) (EPF10K200EBC600-1 by Altera)
* The Memory module (256 MB of SDRAM)

* The local processor (MPC860 by Motorola)

MPC860
RS- 485 1/F uP uP Flash
SDRAM EPROM
uPbus ! 1 ;[
ABR Server Unit F PGA‘
Utopia A9
16bit =
> | Cubit Pro E
e e A > | @
HAPRE-AS J>
= a ‘
£ & = O o
. | Cubit Pro -
B &2
. w2
[64 bit Utopia ©
data 1 6b1t -
Cell Body
SDRAM

Figure 5-5: ABR Server Card block diagram

5.5.1 The Switching device (Transwitch Cubit Pro)

See Section 5.2.1.

70

5.5.2 The ABR Server Unit (ABRSU) (EPF10K200EBC600-1 FPGA
by Altera) [16]

The ABR Server unit (ABRSU) is composed by two main blocks, one for
buffering incoming cells, the Queue Manager and one for scheduling their departure,
the Cell Scheduler. The ABRSU interconnects with the CubitPro Switching devices
through a two way UTOPIA interface 16 bit wide. It also has a CPU Interface to
communicate with the MPC860 local processor. Finally it has an SDRAM controller
to access the buffer space of the SDRAM memory module that stores the Cell Queues
and the queuing data (head tail pointers for the queues and other).

The purpose of the ABRSU is to store ABR cells according to the 16bit field
that is in the header of every cell and defines uniquely the Virtual flow (VP/VC) that
it belongs. The ABRSU must also schedule the transmission of each cell. The whole
logic of the ABRSU is implemented by an EPF10K200EBC600-1 FPGA by Altera.
The ABRSU can support up to 64K flows of ABR traffic, since the routing ID is 16
bit wide.

5.5.3 The Memory module (256 MB of SDRAM) [19]

A 256MB DIMM of SDRAM was used as the dedicated buffer of the ABRSU, where
cells where stored in queues as well as other queue data (head and tail pointers for the
queues) and per flow information. Although less than 256 bytes could suffice for the
application, 256Mbytes of SDRAM are common DIMMs on the market.

5.5.4 The local processor (MPC860 by Motorola)

See Section 5.2.3

71

6 The ABR Server Unit (ABRSU)

In this chapter we give a presentation of the ABRSU that includes the subject of this
thesis, the Queue Manager. It also includes additional blocks that interface with the
Queue Manager in order for the latter to implement the Queueing function for the
ABR Server card of the DIPOLO Switch. The most important is scheduling block, the
Cell Scheduler that is subject of this thesis.

6.1 The ABR Server Architecture

The ABR Server Unit is implemented on the ABR Server Card by Altera’s EPF
10K200EBC600-1 FPGA. It provides the following functions to the Card:

Acceptance of Incoming ABR traffic cells through a dedicated UTOPIA input
interface with the CubitPro devices of the card.

Recognition of RM cells so that RM marking can be performed on them in case
they do not conform to their qyality of service.

Storage of ABR,RM cells in the dediceted cell memory (SDRAM DIMM) based
on the flow they belong. (per flow queeueing). Tail pointers of the queues are also
enumerated with the new arrivals.

Grouping of the flows into group of flows (Flow Groups). The grouping is free of
any constraint and can be used to group flows either by the Dipolo Switch
port/card of destination or the Quality of Service they have assigned with or both.
Scheduling of the transmitions of stored cells that lay on the head of the flow
queues from the ABR Server Card. The transmition is based on the available
bandwidth of the CellBus. For this function, a Scheduling block has been
implemented that uses the information of the quality of service parameters for
each flow group to request the dequeing of one cell from a group of flows to be
transmited. That cell will then be dequeued from the SDRAM by the Queue
Manager block that will enumerate the head pointer of that flows queue and send
the cell for transmition. When the correct transmition to the card of destination is
acknoeledged then the memory block that the cell was kept will enter a free list
and will eventually be used by another incoming cell [23].

Transmition of the dequeued cells to the CubitPro devices of the card through a
dedicated UTOPIA output interface. There is also the capability of retransmition
of the cell in case the first transmition over the CellBus by the Cubit fails.
Provision of a CPU Interface block that is used for interconnection of the ABRSU
logic with the MPC860 local processor. Through this interface the MPC860 can
initialize or terminate the ABR flows that are served by the card. It can also have
access to the data structures of queues and the queues themselves that are stored in
the SDRAM. The MPC 860 can also access the Flow Control parameters of each
Queue dynamicaly by providing the thresholds that are used for marking of flows
individually. It also can access the service times used by the Scheduling device to
request the service of Flow Groups.

In figure 6-1 the block diagram of the ABRSU is given:

72

MPC 860
Interface
A A
Incoming Cells Cubit Pro 16
16/ Interface <+
Cell ¢ v In
DeMux
ABR,RM Cells v
164
B Cell
o4 Scheduler
Cubit Pro
Interface 16
Out +>
A 4 v 64/
7 -
QUEUE < Outgoing
MANAGER ABR,RM Cells FPGA Unit

3

SDRAM DIMM
256 M B

Figure 6-1: The ABRSU internal block diagram

The internal sub-blocks of the ABRSU are presented in the following chapters, while
a separate chapter is dedicated for the Queue Manager IP that is the subject of this
thesis (See Chapter 7).

6.2 The CPU Interface

The CPU Interface subblock, as mentioned previously, is responsible for the
communication, initialization, and dynamic configuration of the rest subblocks of the
ABRSU. Through this subblock the CPU initializes the Flow Data Structures stored in
SDRAM by issuing special commands executed by the Queue Manager sublock. If
needed the Queue Manager will reteurn data to the CPU through this sub-block.. The
CPU can also dynamically configure QoS service parameters at the Cell Scheduler
[22],[23].
The internal organization of MPC 860 Interface Block is given at Figure 6-2.

Since the MPC860 bus on the ABR Server Card works at clock speeds ranging from
10 to 25 MHz while the FPGA can achieve a higher rate internal clock, the MPC860
Interface subblock must resign on both these clock domains and use some kind of
synchronization.

From the CPU side the MPC Inreface Subblock uses the CPU bus pins as
input/output. These bits is a 32 bit wide data bus, plus some control signals (chip
select,Read/Write etc).Through these pins the CPU writes at special configuration
registers and configures the Queue Manager and the Cell Scheduler. Méocw ovtdv
TV pins 0 MikpoeLeyytTg LTOPEL Vo YPAPEL KOl GE GUYKEKPIULEVOUS KOTAYWOPNTES KO

73

£TOL VO SLALOPPDVEL QLVOUIKE TNV AgrTovpyio Kot TIG SOUES TV VITopovAdwv Queue
Manager Block ka1 Cell Scheduler Block. It can also receive data by reading daticated
for this purpose registers.

32

MPC Registers Sel,LRd/Wr Addr Data In/Out
STATUS Address Decode
&
COM_HI
= — “ommand Issue
COM_LOW iA
INDATA_HI W MPC
- Req 32
INDATA_LOW Sched] 7
Data|Ready
SCHED_CONFIG updatey ¥ (mpclk)
Synchronizer Synchronizer
25 to 50 MHz 50 to 25 MHz
(clk)
X
o4 MPC
25 Re DATA_OUT _HI
Sched q Data [Ready
DATA_OUT_LOW
64 update
A\ Wr
v 64
To Scheduler
To Queue Manager From Queue Manager

vy

To Queue Manager
Figure 6-2: The CPU Interface sub-block diagram

The subblock seen in figure 6-2 that is responsible for the access of the CPU
dedicated registers is Address Decode block and Command Issue. Its purpose is to
decode the data of the CPU address bus and execute a Read or Write Operation
according to the address. When special registers used for command request are writen
by the CPU, a signal named Command Request is generated by the subblock to notify
(after synchronization) the Queue Manager that a command has been issued by the
CPU , that must be executed by the Queue Manager.The same function has the signal
Sched Update that is generated each time the CPU writes the dedicated QoS register.
This signal after synchronization notifies the Cell Scheduller of the change.

6.2.1 MPC 860 Interface Block - Queue Manager Block Interface

The MPC 860 Interface Block can configure the Cell and Queue data Memory unit
that lies in the SDRAM. The SDRAM fully controlled by the Queue Manager and
CPU can access it by placing certain commands to the latter. Some command include
data to enumarate the Queue and flow structures, others aren’t, while others return
data to the CPU.

The commands that the CPU can place at the MPC860 Interface block concerning the
Queue Manager and the registers used for each (Refer to figure 6-2) are the following:

7) Open Flow: Initilizes flow, requires write access of registers COM _HI,
COM_LOW.

8) Close Flow: Terminates a flow, , requires write access of registers COM_HI,
COM_LOW.

74

9) Write: Writes a 64-bit word to SDRAM. It requires write access of registers
COM_HI, COM_LOW, INDATA_HI and INDATA_ LOW.

10) Read: Reads a 64-bit word to SDRAM. It requires write access of registers
COM_HI, COM_LOW.

11) Read Counter: Reads the counter of cells queued for a certain flow. It requires
write access of registers COM_HI, COM_LOW

12) Change Parameters: Change the High and low thresholds used for cell marking
of misbehaving flows. It requires write access of registers COM_HI, COM_LOW.

For each of the commands to be issued, at least two registers must be written. It is
also necessary, that the last register to be written should be COM_LOW, since it sets
signal Mpc Req. The latter after passing synchronization from 25MHz of MPC 860
Interface Block to 50 MHz of FPGA logic, notifies the Queue Manager sub-block,
that there is a new Microprocessor command to be executed.

Read and Read Counter Commands request data to be returned to the CPU by the
Queue Manager IP. When the latter creates these data, stores them in registers
DATA _OUT HIand DATA OUT LOW. The two 32 bit are necessary since the data
are 64 bits long and the MPC860 Interface is only 32 bits long. DATA OUT HI
stores the 32 most significant bits while DATA OUT LOW the least significant.
Writing of these two registers sets the signal Data Ready that after passing
syncronization from 50 MHz to 25 MHz it set the corresponding bit in the STATUS
register. Thr CPU polls the status register and learns that the data are ready for
accessing. The STATUS register also informs the CPU that it is able to issue a new
command by another bit.

The command arguments and their execution by the Queue Manager is presented in
detail in subsection 7.2.4.

6.2.2 MPC 860 Interface Block - Cell Scheduler Block
interconnection

The MPC860 Interface Sub-block allows the MPC860 to shape the Quality of Service
given to each one of the 64 Flow Groups that can exist at any time at the ABRSU, by
programming the Cell Scheduler. Writing QoS parameters to the SCHED CONFIG
register does this. In this register the CPU writes the minimum service interval which
is the minimum time between two successive dequeues from flows in that Flow
Group- and the id of the respective Flow Group. When this register is written by the
CPU, the pulse signal, Sched update, is set and after passing from the
synchronization logic it is used as a write enable for the Service Interval Memory that
exist in the Cell Scheduler.

6.3 The Cell Demultiplexor

The Cell De-multiplexor block is responsible for the accumulation of a hole cell in 7
words of 64 bits each, in order to be sent to the Queue Manager sub-block for
enqueueing in the appropriate queue. This block is necessary because first enters in
the Cubit Interface block and stored in a 16-bit fifo and must be restored in 64-bity
fifo so that when enqueue operation is performed succesive 64-bit word should be
provided to the SDRAM Interface on eack clock cycle.

75

The Cell Demux FSM polls the avail signal coming from the Cubit Interface sub-
block to see if there is a cell for enqueue. If this signal is one then a whole cell is
waiting in the Cubit Interface blocks FIFO. The FSM then proceeds in filling a 64-bit
register with 16 words read with the appropriate signal from the Cubit Interface block.
Each time the register fills a write operation is done by the FSM to the Input cell
buffer with the data of the 64-bit register. The Input Cell Buffer is a 7x64 show ahead
FIFO (show ahead FIFO is the one that outputs immediately the first datum after a
write). When this FIFO is full a cell is ready to be enqueued and actually the fifo full
signal of this FIFO is used as an enqueue request to the Queue Manager. No new cell
import can begin by the FSM until the FIFO becomes empty again. This is done by
the successive reads by the Queue Manager from this FIFO. The first datum of each
cell contains the Flow ID that the Queue Manager uses for enqueueing the cell to the
respective queue (This is the reason that the FIFO is show-ahead). After the Input cell
buffer empties, a new cell can be loaded into it and wait for its enqueue operation.

The Cell Demultiplexor sub-block can be seen in Figure 6-3.

64
o o . . |
!
6 6 6 6 From/To
Cubit Pro
| ﬁLoad Enable

Interface
In

Read
CELL >
DEMUX Avail
4 FSM
Input ite/Full
Cell Buffer Write/Fu
Read/Empty 8x64
1 cell
f4
From/To Queue Manager

Figure 6-3: The Cell Demultiplexor sub-block diagram

6.4 The UTOPIA Interfaces

There are two UTOPIA interfaces, both of 16 bits, incorporated in the ABRSU. The
first is called UTOPIA Input Interface and is used to import the cells from the Cubits
of the ABR Server Card into the ABRSU in order to be enqueued. The second is
called UTOPIA Output Interface and is used to sent the dequeued cells from the
ABRSU to the Cubit devices of the ABR Server card for transmission over the
CellBus to the card of destination. A brief description of these two interfaces is given
in the following two subsections.

76

6.4.1 UTOPIA Input Interface

A simple block diagram of this 16-bit interface is given in figure 6-4. The Cubit
Devices send data to the FPGA (ABRSU) through a 16 bit Utopia interface. This
block has a controller that recognizes and responds to Utopia signals. It can therefore
be notified of the beginning of a cell and store its 16-bit words in an elastic FIFO,
with the use of the utopia clock provided by the Cubit. This FIFO is 8 cells long. A
separate counter exists to count the numbers of cells that exist in the FIFO. Note that a
cell is considered to be inside the FIFO (Counter ++) only when the whole cell has
entered the FIFO. This is done, in order to allow the Cubits to send a cell
inconsecutively and the rest of the ABRSU to receive it consecutively. If the FIFO is
full then the controller notifies with the avail signal to send no other cell. On the other
side the Cell Demultiplexor see an avail signal that notifies it (After passing
synchronization from the Cubit Clock to the FPGA Internal Clock) that there is a cell
inside the FIFO. The Cell Demultiplexor then proceeds in reading the cell out of the
FIFO and into the Input Buffer FIFO, by use of the read port of the FIFO that has
different clocking than the write port. The port clock is FPGA internal clock. Cell
Counter is decreased when the whole cell has been read out of the FIFO.

control

1]

|

|

1

cell_increase cell_decrease !
|

|

1

- !

aclr sclr i i
1

i

|

|

1

|

|

cell_cnt aclr i d word cnt

counter modulo
4 5 counter
/l\ A
coclk coclk
-------------- T
- coenb coclk
{ cell_available
L cell_cnt coclav

synchro word cnt

aclr

clk _, T |_ coclk

reset

cosoc

coenb*
synchro

pulse cell_decrease

cellav
-
A_aclr A word_cnt cosoc

i ck 1T T T coclk

celldec |

reset l
PR —
‘ synchro l
socerr | Y . aclr 1d
pulse soc_error
le _

e [v v

y — E—
clk | aclr aclr2 w
e clk] T [coclk
reset " wrreq

codata

reset reset coclk
clk

A

77

6.4.2 UTOPIA Output Interface

The UTOPIA Output Interface is responsible for forwarding the dequeued cells from
the ABRSU to the Cubits for transmission over the Cellbus. From the side of the
Cubits it operates on the UTOPIA clock, produced by the Cubit Devices. A Controller
sub-block uses this clock along with the UTOPIA handshake signals to transmit 16-bit
word of a cell stored inside an elastic FIFO. This FIFO 8 cells long. If the Cubit
internal FIFOs are full then the controller stops transmitting new cells. On the Side of
the ABRSU, the Cell Scheduler that receives a cell after dequeueing uses the write
port of the FIFO that operates on the FPGA clock to fill it. If the cubit accept no cells
then the FIFO becomes full and the Cell Scheduler receives an no apace available
signal. The scheduler then stops scheduling any new transmissions. An external to the
FIFO counter is used to count the number of cells inside the FIFO. Signals that
increase this counter, as well as avail signals, pass from synchronizing logic that lies
between the clock domains.

A block diagram of the UTOPIA Output Interface is given in figure 6-5.

cell_decrease cell increase

reset

reset

1
1]
1 1
by I
cell_cnt aclr i d
counter - ®1 modulo
4 /l\ 5 counter A
ciclk coclk

|
|
i
i
|
|
|
i
word cnt aclr i i
|
|
|
i
i
|
|

ciclk

i
cell_available :

| .
<+— cell ent —» : ciclav
Il space — control |
synchro Q- space 1§ word cnt —
A

A aclr A
ok] T T ciclk

|

|

|

i

reset reset i

dly_cienb* aclr | cienb*

synchro - I
i

|

|

| cisoc

i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
| T coenb*
i
i
i
i
i
i
i
i
i
i
i
i
i
i

pulse cell increase
A_aclr A " |
i idat
cellspe clk _, T |_ ciclk A cie &»
ciclav i
- reset
| |
cellinc ! @ !
_________ control !
I i I
‘ iwordiaccept i
clk]]
- a 1
word cnt :
! rdreq !
reset ! clk reset rdempty !
I
| 16 | l 16 I
data | V i
| |
wrreq ! A !
‘ | .
I wrreq ciclk i
| |

Figure 6-5: UTOPIA Output Interface sub-block diagram

78

6.4.3 The Pulse Synchronizer

Figure 6-6 gives the internal organization of Synchronizing block that is used to pass
signals between the UTOPIA interface clock domain and the rest of the ABRSU clock
domain.

Lead_edge toggle

D
Q +—e

In_Pulse

o)
In_Clk

In_reset

b D Out_Pulse
—— Q — Q —
~
Out_Clk Q
¢ > >
©

Figure 6-6: The Pulse Synchronizer

The main features of this synchronizer are:

e Itrequires the following to be true:
Cycles between in pulses > 2 * Tout / Tin

* it guaranties that there is more than two output clocks between changes of
lead_edge toggle

* no conditions on clock relation, frequencies duty cycles and pulse widths

6.5 The Queue Manager

This block is the main subject of this work and is described in detail in Chapter 7.

6.6 The Cell Scheduler

The Cell Scheduler is, along with the Queue Manager, one the two most important
sub-blocks of the ABRSU. While the Queue Manager implements the queueing
architecture of the ABRSU and the ABR Server Card in general, the Cell Scheduler
implements the scheduling policy. This block can distinguish 64 separate flow groups
each with different QoS characteristics and services them by requesting by the Queue
Manager to dequeue a cell from a flow belonging to the group for transmission over
the CellBus. Flows in each of the Flow groups are serviced equally with a Round
Robin mechanism. Maintaining the structure of each Flow Group is a responsibility of
the Queue Manager. The main functionality of the block is:

79

Maintain a memory with Service Intervals for each of the 64 Flow Groups. These
service intervals give the minimum time between subsequent dequeue operations
on a Flow Group. The CPU, through the MPC860 Interface register
SCHED CONFIG writes these service intervals to the Service Interval Memory.
Schedule the next request for a dequeue operation from a specific Flow Group and
send it to the Queue Manager

Receive the cell from the Queue Manager along with the address of the block
inside the SDRAM where the cell is stored.

Forward the cell to the CUBIT Output Interface for transmission over the Cellbus.
Wait for an acknowledgement from the Cubits that the cell was transmitted
successfully.

If a negative acknowledgement arrives (the cell was transmitted with an error) log
the reason in a special memory that notes which Flow Groups have congestion on
their destination Cards and perform exponential back off on the retransmission of
the failing cell. When the time of retransmission arrives, request from the Queue
manager to read again the cell from the SDRAM, by providing the first with the
address of the cell inside SDRAM memory, kept from the first dequeue.

If a positive acknowledgement arrives then schedule the next request from the
Queue Manager and place the address of the cell just transmitted to a FIFO of free
cells that can be reused. This FIFO is read by the Queue Manager when is not
empty, to get a pointer to a free block that can be used by the first to enqueue a
new arriving cell. This saves the Queue Manager from an access to its list of free
pointers and thus an access to the SDRAM. The whole procedure is called free list
bypassing.

The cell scheduler is not discussed further since it is not the subject of this work but
more can be found on [23]

80

7 The Queue Manager IP

In this chapter, the Queue Manager IP is presented. The IP was implemented with the
use of Verilog Hardware Description language and synthesized by MaxPlus II
synthesis tool, to fit in an Altera FPGA. This IP uses only one SDRAM DIMM as the
only memory module to store the incoming ABR cells, as well as metadata for the
logical queues of cells, thus dropping the pin count and costs of the design. Per-flow
queueing is implemented as the queueing architecture. This means that each separate
flow of traffic served by the switch reserves a special FIFO queue for storing its cells.
The number of maximum flows of traffic that can be served is 64K at any time that is
more than enough for the needs of an edge switch. A list of free buffers is also
maintained, to keep all the free buffers that are not used and provide them for storing
incoming cells. Thus dynamic memory allocation is implemented allowing specific
flows to have queues of arbitrary size and for better memory utilization. Flows of
traffic are also organized in Flow Groups by using cyclic lists. Metadata for these
flow groups lists is kept in SRAM memories internal to the FPGA. Initialization of
flows and definition of the flow group that they belong is being done by the card
micro-controller at connection setup, with set up commands issued through the CPU
interface of the IP. Flow Control parameters can also be set during flow initialization
by the CPU. It does this, by setting information on the maximum queue size allowed
to the respective flow. Beyond this size, EFCI and RM marking as described by the
ATM forum is performed.

Since only one memory module is used for the needs of the IP, no parallel accesses
can be made. Only sequential accesses are possible during the enqueueing or
dequeueing of a cell. This fact makes the memory the bottleneck of the queueing
bandwidth. In order to reduce memory accesses buffer pre-allocation to each of the
64K queues is implemented, as well as free-list bypassing with the help of logic
external to the IP (the Cell Scheduler in the ABRSU environment). The SDRAM
controller that is incorporated in the IP to handle the accesses with the SDRAM
module is also carefully designed to handle consecutive accesses without loss of clock
cycles. The enqueue and dequeue operations are designed in a way that avoids data
dependencies (the result of a read operation is used as the address of the next read or
write access) that can induce idle clock cycles during the execution.

Except the interface with the CPU and the SDRAM module, the IP keeps an interface
for receipt of cell to be enqueued and an interface with the scheduling module (the
Cell Scheduler in the DIPOLO environment) that makes requests for dequeueing cells
from a specific flow group. The request is served by the IP dequeueing a cell from
that flow group and sending it to the interface in 64 bit data words.

81

7.1 The Queue Manager IP Architecture

In Figure 7-1 a sub-block diagram of the Queue Manager IP is given.

2]
=)
commands State E
Machine Igem- Cngl g
. ommands =t
(Registered Outputs) Addresses gi
O £1T
g Control s.ignals Status flags
— and LE signals SDRAM ctr
= signals
(RAS,CAS)
Pool of
Arguments Temp Registers
data Muxes Data (64 bit)
wn
X =
Flow ID, DATA E
DATA <
Flow Group
Mem
Enqueue Dequeue
Request Request
A
Cell Demux Cell Scheduler
(incoming cells) (outgoing cells)

Figure 7-1: The Queue Manager IP sub-block diagram

As seen on the figure the Queue Manager IP is composed by:

* A Large State Machine: This state machine is actually composed of many state
machines each dedicated to controlling the rest of the logic and memory of the IP
in order to implement a specific command. All of these State machines are
initiated by a TOP state machine that arbitrates which command should be
executed at a given time.

* A Pool Of Temp Registers and Muxes (Datapath): These temporary registers
are loaded with data coming from all the blocks that interface with the IP. They
are loaded with load enable signals produced by the State Machines and they are
preceded by muxes that select the origin of the data stored. Again, the State
Machines sets the select signals of these muxes. Names of these registers and their
respective muxes, to name a few, are: Flow ID, Head Pointer, Tail Pointer, Cell
Counter, Hi Watermark, Flow Group ID (of a certain queue accessed at a given
command), Free List Head, Free List Tail, Free List Counter (Queue information
for the list of Free Buffers of the Cell Memory (SDRAM)) etc.

* Flow Group Memory: This Memory keeps data for the 64 Flow Groups
supported by the Queue Managers. It is a 64 word memory that stores the Head of

82

the list of active flows that belong in the Group, the tail of the list, and the status
of the Flow Group (if the Flow Group has any active Flows or not). A Flow is
considered active when a cell of this flow exists in the Cell Memory (SDRAM)
and must be dequeued in the future. The State Machines are doing control of this
memory.

e The SDRAM controller: This block implements the accesses of the SDRAM
DIMM on behalf of the State Machines. It sets the SDRAM DIMM control pins
and programs it to read/write bursts of 1,2,8 words of 64 bits each. Data are given
directly by the rest of the IP in synchronization with the control signals of the sub-
block. No synchronization is implemented since the FPGA that implements the IP
and the SDRAM DIMM use the same carefully distributed clock.

The Queue Manager IP interfaces with the following blocks:

* The CPU Interface: This interface allows a given CPU the ability to configure
the IP, initialize flows, configure the flow control attributes of flows and the QoS
parameters of Flow Groups and extract debug information.

* The Cell Demultiplexor Interface: By this Interface the IP accesses a 64-bit
FIFO that contains a cell to be enqueued. If the FIFO is full a cell exists and the
full signal is used as an enqueue request to the State Machines.

* The Cell Scheduler: This is the interface with the scheduling block that
implements the scheduling architecture. A dequeue request can be given to the IP
through this interface along with the ID of the Flow Group that the dequeued cell
must come from. The IP responds by sending the cell in 64-bit words, along with
the ID of the Flow it belonged to and the address of its respective buffer in the
SDRAM DIMM. When free-list bypassing is implemented, such addresses are
given back to the Queue Manager for restoring newly arrived cells.

e The SDRAM DIMM interface: This Interface is controlled as described above
by the SDRAM Controller and only data are given by the rest of the logic.

A detailed description of the Interfaces of the IP is given in Subsection 7.2.1.

7.2 Functional Implementation

In this section, the functionality of the Queue Manager is described thoroughly. First,
the Interfaces of the IP are given in detail, and a description is provided for all the
buses and signals. Then, the main data structures of the IP are presented. The
commands that are accepted by the Queue Manager are given afterwards as well as a
description of their arguments. Finally the Flow Control provisions of the IP are
examined.

7.2.1 Interfaces

In the following sections a detailed description of the interfaces of the Queue
Manager IP is given.

83

7.2.1.1 The Interface with the CPU

In table 7-1 the buses and signals of the CPU — Queue Manager Interface are given.
Through this interface the CPU can place commands to the Queue Manager and
receive the results when necessary.

Table 7-1: The Interface with the CPU

Command [63:0] Input | This Input bus is used by the CPU to give a
command to the Queue Manager for execution.
In_Data [63:0] Input | If the command requested by the CPU is a

Write operation to a 64-bit word in SDRAM,
then this bus is used to give the data that are
written.

Out Data[63:0] Output | If the command requested by the CPU is a
Read operation from a 64 bit word in SDRAM,
or any other command that requires data to be
returned to the CPU, then this bus is used to
give to the CPU the data.

CPU req Input | When the CPU requests a command from the
Queue Manager this signal is used as a flag of
the request. Command[63:0] and other buses
must be valid.

Com_Acc Output | When the Queue Manager starts the processing
of a CPU command this flag signal is set to
notify the CPU that it can prepare a new
command since the previous command
attributes have been latched in the IP.
Com_ready Output | When a CPU command has been executed and
resulting data are valid on Out_Data[63:0] then
this signal is set to notify the CPU.

CPU lock Input | For debugging reasons, the CPU can set this
signal that orders the Queue Manager to
process only CPU commands and stop any
enqueueing or dequeueing of cells.

7.2.1.2 The Cell Demux Interface (Incoming cells)

In table 7-2 the buses and signals of the Cell Demux — Queue Manager Interface are
given. This interface can be used to give to the Queue Manager the incoming cells
that must be enqueued. The Queue Manager is the master of the Interface and decides
when the cells can be read in.

Table 7-2 : The Cell Demux Interface (Incoming cells)

Enq Req Input | When a cell is available in the 7x64 Input
buffer of Cell Demultiplexor then this signal is
set to notify the Queue Manager that a cell

84

needs enqueueing. This signal is the fifo full
signal of the buffer.

Cell Dataln[63:0]

Input

When Enq Req = 1 then this bus gives the 7
64-bit words of the cell. The first word of the
cell is valid on the first cycle the Enq Req =1
and contains the Flow ID that the cell belongs
to

Read En

Output

The Read En that notifies the Buffer that acell
word has been latched and it must produce the
next in the next cycle.

Cell Read

Output

When a whole cell has been read, this signal is
set by the Queue Manager to notify the buffer
that it can be loaded with a new cell.

7.2.1.3 The Cell Scheduler — Queue Manager Interface

In table 7-3 the buses and signals of the Cell Demux — Queue Manager Interface are
given. This interface can be used by the Scheduling logic to request cells of specific
Flow Groups to be dequeued and given to it. If subsequent transmission of the cells
fails re-read of the cells can be requested also. A FIFO of free buffers from
successfully transmitted cells can be kept in the Cell Scheduler, and its elements can
be given to the Queue Manager through this interface, to assist the latter in free-list

bypassing.

Table 7-3: The Cell Scheduler — Queue Manager Interface

Deq Req

Input

When the Cell Scheduler wants to make a
request to the Queue Manager, to dequeue a
cell from a specific Flow Group, it sets this
signal.

Flow_Group[5:0]

Input

When the Cell Scheduler wants to make a
request to the Queue Manager, to dequeue a
cell from a specific Flow Group, it puts the
Flow Group ID on this bus (from 0 to 63)

Cell_DataOut[63:0]

Output

The Queue Manager uses this bus to give the
dequeued cell to the Cell Scheduler in 7 64-bit
words.

Write En

Output

The Queue Manager uses this signal to write
the in 7 64-bit words into the Cell Scheduler.
This signal is used as a write enable in an
internal cell buffer kept in the Cell Scheduler.

Flow_Id_Out[15:0]

Output

During the cycle of first word of the outgoing
cell, this bus contains the ID of the Flow that
the cell belongs to.

Cell_Addr_Out[21:0]

Output

During the transmission of the outgoing cell,
this bus contains its buffer address inside the
SDRAM memory module. The Cell Scheduler
will store this address in case the transmission

85

of the dequeued cell fails. In that case it will
request from the Queue Manager to read again
the cell from the SDRAM, by providing this
address.

Read Cell Req Input | If the transmission of a previously cell fails,
then the Cell Scheduler uses this signal to
request from the Queue Manager to read again
the cell from the SDRAM

Cell_Addr In[21:0] Input | If the transmission of a previously cell fails,
then the Cell Scheduler uses this bus to give
the address of the cell that must be read again
from the SDRAM The address was given to
Cell Scheduler during the first dequeue,
through Cell Addr Out[21:0] bus.

Free Cell Empty Input | In case a cell is transmitted without error its
address in the SDRAM memory is kept in a
FIFO that is read by the Queue Manager. This
FIFO provides free buffers to the latter for free
list bypassing (See Subsection 7.3.7). This
signal when set notifies the Queue Manager
that this FIFO is empty and no free list by-
passing can be done.

Free Req Output | If the FIFO of freed buffers inside the Cell
Scheduler is almost full, the latter requests
with this signal from the Queue Manager to
dequeue one free buffer.

Free Cell Ptr[21:0] Input | This bus carries to the Queue Manager the
head of the list of free buffers inside the Cell
Scheduler (when not empty). The Queue
Manager uses this buffer for free list bypassing
or to add it to the free list inside the IP, in case
the FIFO is almost full (Free req =1).

Free Cell Ld Output | After reading the Free Cell Ptr[21:0], the
Queue Manager uses this signal as a read
enable of the FIFO to dequeue the buffer and
output the next.

Deq Ack Output | When a request by the Cell Scheduler
(Deq Req = 1, Read Cell Req = 1, or
Free Req = 1) has been accepted by the Queue
Manager, the latter sets this signal to 1 for 1
cycle.

Cell_Ready Output | When a whole cell has been written into the
Cell Scheduler (after a Dequeue or a Read Cell
request) this signal is set to 1 for 1 cycle.

7.2.1.4 The SDRAM - Queue Manager Interface

The last interface of the Queue Manager presented here, is the only one that is
external to the FPGA that hosts it. It is the pin interface of the Queue Manager with

86

the SDRAM DIMM memory module. Through this interface, the IP makes its
memory accesses, in order to enqueue or dequeued cells, or to enumerate the data
structures kept there. The control signals and address of this Memory interface is set
by the SDRAM Controller sub-block of the IP while the data are given or taken
directly by the Queue Manager Datapath. The interface is the SDARM DIMM
standard and any commercial SDRAM can be used. Table 7-4 gives the control and
data signals-busses of this interface.

Table 7-4: The SDRAM — Queue Manager Interface

MemData[63:0] InOut | The bi-directional Data Bus of the Interface,
used to read/write 64-bit words from/to the
Memory

SDRAMaddr[11:0] Output | The address bus, used by the Queue Manager
to give the row address and the column address
of an access

BnkEn[1:0] Output | The signals that select the internal banks of the
SDRAM chips on the DIMM

CIKEn[1:0] Output | These Clock Enable signals activate or
deactivate the DIMM

Cs[3:0] Output | These Chip Select signals select or deselect
half of the SDRAM chips on the DIMM.

We Output | Write Enable signal. When low, a write access
is performed.

RAS Output | Row Access Strobe, low when row address is
given.

CAS Output | Column Access Strobe, low when column
address is given.

DQM]7:0] Output | Mask bits for each of the 8 bytes of the 64 bits
words. Not used by Queue Manager.

7.2.2 Flows

The Flow is the main data structure that is supported by the Queue Manager. Its
meaning is that of a flow of connection traffic that is served (its cells are enqueued or
dequeued) by the Queue Manager. The Queue Manager can support up to 64K flows
of traffic. To distinguish between them its Flow has a specific ID (Flow ID) number
that is reserved by the CPU during connection-flow set up. Since the maximum
number of supported flows is 64K the Flow ID is a 16-bit binary number. Information
for each of the flow is kept in Flow Records. These Records have always reserved
space inside the SDRAM memory. The Data Structure that implements the Flow is
that of the unidirectional list seen in figure. The Record of each flow maintains
information for that list like, the head pointer (address of the first element’s buffer),
tail pointer (address of the last element’s buffer), counter (number of cells in the list),
status bits (if the flow ID is used by a connection, or if the Flow ID is active) and
Quality of Service parameters. Note that a flow is considered used when the CPU has
reserved it for a connection during connection setup and active when it has a cell

87

stored inside the SDRAM. A detailed description of the Flow Record is given in
Subsection 7.3.1.

When a cell that belongs to a certain flow (this is determined by the Flow ID that it
carries in its header) arrives at the Queue Manager, it is enqueued in the list. The
Queue Manager does this, by writing the cell into the free buffer that is always at the
end of the list, and setting the next pointer of this buffer to point to a new empty
buffer (There must always be an empty pointer at the end of the list. This is due to
reasons explained in Subsection 7.3.8). Empty buffers for this purpose are taken from
a list (Free List) that is kept by the Queue Manager. The Tail Pointer of the Flow
Record is set to point to that empty buffer also and the counter is increased.

When a cell from that flow must be dequeued, and send to the Cell Scheduler for
transmission over the Cell Bus, then the Queue Manager reads the cell that is the head
of the list and sets the head pointer to point at the next buffer. If the transmission of
the cell succeeds then the buffer that was read can be put to the Free list or reused as
the empty tail buffer of an enqueue operation (Free List bypassing. See Section 7.3.7).
Figure 7-2 depicts the Flow structure, the enqueue operation and the dequeue
operation.

Flow Record

Counter

Buffer

EMPTY Cell Cell Cell
BUFFER

Nxt Pointer |@==t= Nxt Pointer |«@m=t= Nxt Pointer |€== Nxt Pointer

After an Enqueue operation:
Flow Record

Counter

Buffer

NEW EMPTY NEW CELL Cell Cell Cell
BUFFER
Nxt Pointer |<@m=t= Nxt Pointer |@f==t= Nxt Pointer |« Nxt Pointer |€==t= Nxt Pointer

After an Dequeue operation:
Flow Record

Counter

Buffer freed

NEW EMPTY NEW CELL Cell Cell Cell
BUFFER
Nxt Pointer |<@=t= Nxt Pointer |« Nxt Pointer |«mt= Nxt Pointer Nxt Pointer

Figure 7-2: The Flow Structure and changes on it after an enqueue and a
dequeue operation.

88

7.2.3 Flow Groups

The 64K flows supported by the Queue Manager are organized in a higher level to
Flow Groups. All the flows that are used by connections must belong to a flow group.
The number of Flow Groups supported by the Queue Manager is 64. The reason of
this grouping is to assist the Scheduling block in the schedule of outgoing ABR
traffic. Per flow scheduling according to QoS parameters is impossible for a very
large number of flows. For that reason flows are organized in flow groups by the
Queue Manager, each Flow Group has its own QoS parameters kept in the Cell
Scheduler and the latter has to schedule traffic by providing bandwidth to these 64
Flow Groups. It does this by requesting from the Queue Manager to dequeue cells
from specific Flow Groups. The Flows in each Flow Group each get equal amount of
bandwidth, since the Queue Manager serves them in a round robin manner.

The data structure that implements a Flow Group is that of a cyclic list depicted in
Figure 7-3. Heads and tails of this list (there are 64 of them) are stored in the Flow
Group Memory. Only active flows exist in these lists. If a flow after dequeueing its
last cell in SDRAM memory becomes empty then it is removed from the cyclic list.
When a new cell arrives for that flow, it is then reintroduced in the list by being
placed as the tail of the list.

Flow Group 0 Flow Group 63
Next Flow to be "\ Next Flow to be D\
served Flow Flow served Flow Flow
Nxt Prev » Nxt | Prev Nxt Prev > Nxt Prev
Flow Flow Flow Flow
Nxt | Prev Nxt | Prev Nxt | Prev Nxt | Prev

\\ooo// \\ooo//

Figure 7-3: The 64 Flow Group cyclic lists

If a the Cell Scheduler requests a dequeue operation for a specific Flow Group, the
Flow that is head of the cyclic list will be selected to dequeue a cell and the Tail
Pointer will be set to point to that Flow. Then the Head pointer of the cyclic list will
point to the next Flow.

The cyclic list is unidirectional since the connection represented by a Flow may
close. In that case the flow must be removed from the list while the list must remain
connected in a O(1) operation. Pointers to the next and the previous flow for a specific
flow are kept in that flow’s Record.

7.2.4 Queue Manager Commands

The Queue Manager can accept a range of commands and execute them using one
State Machine for each one of them, to control data structures, registers and memory

89

for each one of them. The most important commands are the Enqueue and Dequeue
Commands, issued by the Cell Demultiplexor and Cell Scheduler respectively. Their
importance lies in that the number of cycles that spent for their execution defines the
Queueing bandwidth of the Queue Manager. Table 7-5 lists the available commands
of the Queue Manager, their arguments, their return data and the number of cycles
needed for their execution.

Table 7-5: Table of all the Queue Manager commands

NAME Issued | Args Return Clks | Description
by Data
Read CPU Address | Mem 5 Read a 64-bit word from the
Data SDRAM Memory.
Write CPU Address, 5 Write a 64-bit word to the
Data SDRAM Memory.
OpenFl CPU FlowlID, 10 Initialize a Flow at
FGID, connection set-up. Reserves
Hwmark, a Flow ID, and assigns it to a
LWmark Flow Group. Sets the Flow
Control parameters(Hwmark,
Lwmark)
CloseFl CPU FlowID 20 Closes a flow at connection

shutdown. Releases the Flow
ID removes it from Flow
Group cyclic list and adds all
used buffers to free list.

ReadCnt | CPU FlowID Counter |5 Read the counter of buffered
cells of a Flow from its
record in the SDRAM

Memory.
Enqueue | Cell FlowID, 20, Enqueue of an incoming cell
Demux | Cell 40 to its respective Flow ID
Queue.
Dequeue | Cell FGID Address, | 20, | Dequeue a cell from the
Sched Cell 40 Flow that is Head to the

cyclic list of the given Flow
Group ID. Send it to Cell
Scheduler alng with its

buffer address.
RdCell Cell Address 12 Read the contents of the
Sched buffer with the given
address.
Free Cell Address 10 Add the buffer with the
Sched given address to the Free
List.
ChParam | CPU FlowlD, 10 Change the Flow Control
Hwmark, parameters of the Flow ID to

LWmark the given.

90

The Enqueue requires 20 clock cycles to be executed, except in the special case that
the flow was inactive. In that case the Flow must enter into the cyclic list of its
respective Flow Group. The records of its previous and next flows in that list must be
enumerated adding another 20 cycles in the execution cycles. Thus the number
increases to 40.

The Dequeue also requires 20 clock cycles to be executed, except in the special case
that the flow becomes inactive (the cell dequeued was the last in SDRAM memory).
In that case the Flow must be removed from the cyclic list of its respective Flow
Group. The records of its previous and next flows in that list must be enumerated
adding another 20 cycles in the execution cycles. Thus the number increases to 40.

7.2.5 EFCI and RM marking [21]

One of the features of the Queue Manager IP is the provision of generic ATM
FORUM Flow Control mechanisms. There are two ways that misbehaved flow can be
ordered to drop its traffic flow, according to the ATM FORUM specifications.

The first is EFCI (Explicit Forward Congestion Indication). EFCI is a bit included in
the header of each ATM cell. When congestion exists or is about to exist in a network
node, the latter can set this bit to one, ordering thus the traffic destination to decrease
its request of data.

The second is RM (Resource Management) cell marking. RM cells are regularly sent
by the source of ABR traffic to the destination node. The destination U turns these
cells back to the destination. These cells contain information about traffic resources of
the intermediate nodes. Two bits inside this cell, CI (Congestion Indication) and NI
(No Increase) can be set to drop or stop the increase of the traffic flow respectively.
The Queue Manager uses both of these mechanisms to instruct a misbehaved flow to
decrease its cell rate. A misbehaved rate is determined by a Hi Watermark — Low
Watermark mechanism. At the time of initialization of a Flow Record during
connection set-up, the CPU set the highest number of cells (Hi Watermark) that the
Flow is allowed to use in the SDRAM memory. This Hi Watermark is stored inside
the Flow Record. When the Flow Counter during an enqueue operation on that Flow
surpasses this Hi Watermark, a bit inside the Flow Record (Mark bit) is set, and the
cells that are dequeued from that time and on are EFCI marked. If the cells are RM
their CI, NI bits are also marked. Cells are marked at the output in order for the
congestion information to reach its target faster. This saves us the time of waiting the
number of unmarked cells to leave the Flow Queue.

The cells will stop being marked when the Flow Counter becomes less that Low
Water Mark that is also set during the time of Flow initialization. Resetting the Mark
bit in the Flow Record does this.

The ChParam command issued by the CPU and described in subsection 7.2.4 changes
the Hi Watermark — Low Watermark fields in the Flow Record, thus dynamically
affecting the Flow Control mechanism. This means that a well-behaved flow, after the
execution of this command can become misbehaved and the marking of its dequeued
cells will commence. A detailed description of the fields in the Flow Record, relative
to the flow control mechanism of the Queue Manager is given in subsection 7.3.1.

91

7.3 Design Implementation

7.3.1 Flow Record Format

In figure 7-4 the detailed description of the Flow Record is given. There are 64K
records of like this, one for each of the 64K Flows. Each record is 2 words of 64 bits
long. This is 2 SDRAM memory words. They are stored inside the SDRAM memory
in 2 word alignment.

Flow Record Fields and Alignment

18 bits 18 bits 1 1 1 9 bits 6 bits
) Head Tail UlAM Offset FGId
.1 Nxtld Prevld HiWmar Counter
16 bits 16 bits 11 bits 21 bits

Figure 7-4: Flow Record Fields and alignment
Table 7-6 gives a description of each field in the Flow Record.

Table 7-6 : Flow Record Field bits and description

Field Bits Description

Head 22 Head Pointer: It contains the address of the
head of the queue of the respective flow.

Tail 22 Tail Pointer: It contains the address of the tail
of the queue of the respective flow.

Used 1 Used Flow: When 1 this Flow ID is used by a
connection. All the record fields are valid.

Active 1 Active Flow: When 1 this Flow ID has not

empty queue. Some cells belonging to the flow
are stored in the SDRAM memory.

Mark 1 Mark Bit: The cell count for the respective
queue has surpassed the Hi Watermark.
Dequeued cells are RM, EFCI marked. Will
reset to 0 when Cell Counter drops below Hi
Watermark - Off

HiWmH 6 Hi Watermark Most Significant bits: The Most
significant bits of the Hi Watermark.
HiWwmL 12 Hi Watermark Least Significant bits: The

Least significant bits of the Hi Watermark.

92

FGId 6 Flow Group ID: The Flow Group that this
Flow is assigned.

Off 5 Offset: Hi Watermark — Off is equal to the
Low Watermark

NextID 16 Next Flow ID: The next flow in the cyclic list

of this flow’s Flow Group. If Active = 0 this
field is invalid.

PrevID 16 Previous Flow ID: The previous flow in the
cyclic list of this flow’s Flow Group. If Active
= 0 this field is invalid.

Counter 20 The number of cells of the flow inside the
SDRAM memory.

An effort was made during the design so that the Flow record would be 2 words long.
If it was 3 words long it would mess the 2 word alignment of the SDRAM memory. If
4 words it would require 2 extra cycles to access it, dropping the queueing bandwidth.

Buffer pointers such as Head and Tail are buffer aligned in a 256 MByte Memory
organized in 225 words of 64 bits. A buffer is 8x64bit words, thus a buffer aligned
pointer is 22 bits long.

Notice that there is no field for the Flow ID of the Flow that the Record belongs to.
This is done because each Flow Records is stored in 2 word whose address is that of
the Flow ID. An additional least significant bit is used in the addressing of the record
to distinguish between the 2 words of the record. In that organization, we put the
records at the beginning of the SDRAM memory (See Sub-Section 7.3.4) and save
field space in the record.

7.3.2 Flow Group Record Format

All the Flow Group information is stored in a 64x33 memory, the Flow Group
memory. Each of the 64 words of this memory stores the Flow Group record with ID
that of its address and keeps all the data necessary for the maintenance of the Flow
Group cyclic list. Figure 7-5 depicts the Flow Group memory and the Flow Group
records.

93

16 bits 16 bits |

0 Head Flow Tail Flow A
Head Flow Tail Flow A

2 Head Flow Tail Flow A
3 Head Flow Tail Flow A
62 Head Flow Tail Flow A
63 Head Flow Tail Flow A

Figure 7-5: Flow Group memory organization and Flow Group records.

Table 7-7 gives the description of the Flow Group Record fields.

Table 7-7: Flow Record Field description

Field Bits Description

Head Flow 16 Head Flow ID: It contains the Flow ID of the
Flow that will give the next dequeued cell,
when a dequeueing operation is requested for
the respective Flow Group.

Tail 16 Tail Flow ID: It contains the Flow ID of the
Flow that was served in the previous
dequeueing operation for that flow group.
Active 1 Active Flow: When 1 this Flow Group has
Active Flows, else no Flow assigned to this
Flow Group has any cells inside the SDRAM
memory

The contents of the Flow Group memory are visible to the Cell Scheduler. The latter
needs to know which of the Flow Groups are active so that it will keep them in the
scheduling loop. Request for dequeueing of an inactive Flow Group would cause an
error.

7.3.3 Cell Format and Alignment

Each cell is stored inside the SDRAM memory in 8x64 buffers. The 7 first words
(7x8=56) store the ABR cell plus the internal Switch header (Cell Bus, Tandem
Routing headers in the DIPOLO environment. The last word of the buffer stores the
next pointer. This points to the buffer that stores the next cell of the flow queue. Each

94

buffer is 8 word aligned. Figure 7-6 depicts the Cell Format and Alignment in the
SDRAM Memory.

...000 Cell 0
...001 Cell 1
...010 Cell 2
...011 Cell 3
...100 Cell 4
...101 Cell 5
...110 Cell 6
111 Next Ptr

Figure 7-6: Cell Format and alignment

7.3.4 SDRAM Memory Organization

The SDRAM DIMM module that supports the memory needs of the Queue Manager
has a capacity of 256 Mbytes. Inside this memory space the Flow Records for each of
the 64K flows is stored. The rest is divided in cell buffers that are dynamically
allocated to the incoming traffic. The Flow Records are statically allocated. This
means that all of the 64K Records are present, even if they are not used.

The CPU is capable of initializing the SDRAM memory by using the Write command.
Still, there is an FSM inside the State Machine that after reset can initialize the
SDRAM memory. The contents of the SDRAM memory after proper initialization are
shown in Figure 7-7.

Flow Rec 0
Flow Record Flow Rec 1
Space: 64K records
x 2 words x 8bytes
—1 MBytes | tctotctctotct
Flow Rec 64K
------------------------- Pre allocated T
buffer for
Flow ID 0
Flow Pre-allocated Pre allocated
buffer Space: 64K buffer for
Flow ID 1
records x 8 words x
8bytes = 4 M Bytes
Pre allocated
buffer for
Flow ID 64K

Free buffer

. Space

Free List buffer

Space: 256-5 =
251 MBytes

Figure 7-7: SDRAM Memory-space division and organization

95

Since the memory is 256 Mbytes = 228 bytes, organized in 64-bit (8 bytes) words,
the number of word addresses in the memory is 2°25. Pointers to a buffer that is 8
words and aligned need to be 22 bits.

As described in subsection 7.3.1, in order not to have a field for the Flow ID of each
Record, the ID is used as a pointer to the position of its Flow Record in the Memory
and the Records are placed in the beginning of the Memory. Thus, the address of the
first word of the Flow Record of Flow ID 0Ob1111000111110001 (Flow Id is 16 bits)
is 0b{00000000,1111000111110001,0}, while the address of the second word is
0b{00000000,1111000111110001,1}. Since the Queue manager supports 216 Flows
(64K) then the Flow Record use the first 216 Flows * 2 words/Flow = 2*17 words =
2720 bytes = 1 MByte of Memory.

Since each Flow Queue must always have an empty buffer (even if not used, see sub-
section 7.3.8) due to buffer pre-allocation, one is given to each during initialization.
These buffers are positioned in the SDRAM memory, after the Flow Records. After
some time of system operation these buffers are used for cell storing, but others take
their place as empty buffers. Thus the number of empty pre-allocated buffers is
constant and equal to 2*16 (one for each Flow). So buffer pre-allocation uses up
another 2”16 buffers * 8 words/buffer = 219 words = 222 bytes = 4 MBytes.

The remaining 256 — (4+1) = 251 MBytes can be used for cell buffering. During
Memory Initialization, this free space is organized in a large FIFO unidirectional list
of free buffers, the Free List. This Free List is used to provide the enqueue operation
with free buffers for storing and accept the freed buffers after the dequeue operations.

7.3.5 State Machines

As described in section 7.1, the State Machine sub-block of the Queue Manager
contains the State Machines that execute the commands requested by the other blocks.
Figure 7-8 shows the internal hierarchy of the FSMs inside this sub-block.

Top FSM

Wait
Command

Refresh

Decode
Command

Enq\\

FreeCell

End
Command

Figure 7-8: State Machine Top Level Diagram

These FSMs set the control signals of the Datapath of the Queue Manager, they also
set and accept the control signals of its Interfaces and the make requests for SDRAM
memory accesses to the SDRAM controller block. There is one FSM for each one of
the commands of the Queue Manager IP. At the top of the hierarchy of these FSMs
lies the TOP FSM. The purposes of this FSM are:

Initialize the Datapath Registers after System Reset: Some registers like (Free
List Head) need to be initialized in a specific value after reset. The TOP Fsm sets
the control signals to do that.

Accept the Command Requests by other blocks: The TOP FSM remains idle,
and pools the request signals from the command issuing blocks.

Arbitrate Queue Manager Command issue: There is the case that more than
several blocks can request one command, at the same time. The TOP Fsm
arbitrates which one will use the Queue Manager, according to some priorities.
Initiate a command FSM: When a command is to be executed, the Top Fsm sets
the control signal that initiates its respective State Machine. It waits for the control
signal from that State Machine that notifies that the execution has finished. It also
acknowledges the command acceptance to the issuing block.

Request for a SDRAM Memory refresh: SDRAM Memories must be refreshed
periodically. The TOP Fsm has an internal counter that when it reaches zero,
issues SDRAM Memory refresh command to the SDRAM controller.

Table 7-8: Queue Manager Command Priorities

PRIORITY | NAME Issued by | Comments

1 Refresh State Needs to be executed periodically or
(highest) Machine else data in SDRAM may be lost.
Write, CpPU CPU Commands have the same priority
Read, for the reason, that only one can be
OpenkFl, requested at any time. They have higher
CloseFl, priority than the ones issued by Cell
2 ReadCnt, Demux, Cell Scheduler because they are
ChParam sort, they configure and control the

Queue Manager operation and are
necessary for debugging purposes.

Enqueue, | Cell Enqueue command (issued by Cell
Demux Demux) has equal priority with the
commands issued by Cell Scheduler.
When there is a contention between
Enqueue and one Cell Scheduler
3 command, an alternative arbitration is
Dequeue, | Cell made by TOP FSM. If most recent.
RdCell, Scheduler | command execution was Enqueue, the
Free Sched command will be selected, else if
most recent was Sched Command then
Enqueue executes

97

Table 7-8 gives the prioritization of Commands that is taken into account when there
is a contention that must be resolved by the TOP Fsm arbitration. The command
priority is given from highest to lowest. Commands in the same row have the same
priority.

Figure 7-9 shows a simplified state diagram of the FSM that executes the Enqueue
Command. This FSM along with the Dequeue FSM are the most complex in the State
Machine Sub-block. The states where an access to the SDRAM is requested to the
SDRAM controller are shown with big bubbles that contain the type of access. The
maximum number of states/cycles needed is 40. This is the case when the flow was
previously inactive. In that case the Flow must enter into the cyclic list of its
respective Flow Group. The records of its previous and next flows in that list must be
enumerated adding another 20 cycles in the execution cycles. Thus the number
increases to 40. Some 5 cycles can be saved when Free-List bypassing is being
implemented (See Sub-section 7.3.7). In that case an access to get a new free buffer
pointer is avoided.

The SDRAM memory accesses are being made in such an order that data
dependencies are avoided (the result of a read operation is used as the address of the
next read or write access immediately), while the SDRAM is used continuously.

If lempty

Figure 7-9: Enqueue command FSM bubble diagram

7.3.6 The SDRAM Controller

The SDRAM controller is the sub-block of the Queue Manager that is responsible for
controlling the SDRAM memory. It accepts simple burst commands from the State
Machines of the Queue Manager and issues these to the memory. The addresses
needed are received by the Queue Manager datapath and are used to set Chip Select
Signals, Bank Enable signals, as well as to provide the Row and Column addresses for
the burst access. The mode register that configures the operation of the SDRAM
DIMM is also written during initialization by the sub-block.

The Queue Manager uses the SDRAM Controller for the following operations:

* Load the Mode Register: This is done after Reset of the system

* Auto Refresh: The TOP Fsm periodically requests the refreshing of one SDRAM
TOW.

* Read burst of 1 64-bit word: Read access to half of a Flow Record.

98

* Read burst of 2 64-bit words: Read access to a Flow Record.

* Read burst of 8 64-bit words: Read access to Cell Buffer plus its next pointer.
e Write burst of 1 64-bit word: Write access to half of a Flow Record.

e Write burst of 2 64-bit words: Write access to a Flow Record.

* Write burst of 8 64-bit words: Write access to Cell Buffer plus its next pointer.

Figure 7-10 gives the State machine diagram of the SDRAM Controller block:

& ’

& Sy,
i '
'3 AddeValid
qa.l- { 1Y Al rl._l_.-::r‘
Hefrosh Active | LMED
_ :I.I::I|J| i Erd
il |||
RS Emd
Read Write 7 LMR1
-|':|,:|'\-I-"|||| - Flairsi E el
Wast - WiHPCntEnd

T LRI srmmared

Figure 7-10 : State Machine Diagram of the SDRAM controller

The Controller is in idle state until, a read or a write command is requested by the
State Machines. Then it activate the accessed row to be accessed and makes the burst
access (stays in Read, Write states for as many cycles as the burst size), waits one
cycle and pre-charges the used raw. If a consecutive command has already been
requested, the state machine enters to the Active state again, or else in moves to the
idle state.

The SDRAM controller doesn’t handle the data to/from the SDRAM DIMM. This is
done by the Queue Manager datapath, which places them to, or reads them from, the
SDRAM 64-bit data bus, in sync with the SDARM Controller State.

7.3.7 Free List Bypassing [13]

The Free-List Bypassing is a Queueing technique implemented by the Queue
Manager IP that avoids an additional access to SDRAM memory during an Enqueue
or a Dequeue Operation. This decreases the number of cycles needed for both to
finish execution and thus increases the Enqueueing/Dequeueing Bandwidth.

99

When an Enqueue operation is being done a new cell Buffer must be given to the
Queue that receives the cell. The Cell Buffer that is pointed by the Free List Head
pointer is selected for this purpose but now the Free List Head pointer must be set to
point to the next free cell buffer of the Free List. Reading the Next Pointer of the cell
buffer taken from the Free List does this. This Next Pointer lies in the External
SDRAM Memory and that read access will cost an additional 5 cycles to the Enqueue
process.

Moreover, when a Dequeue operation is executed and the dequeued cell is transmitted
correctly, its cell buffer is no longer used and must be added to the Free List. This is
done in the Queue Manager with the execution of the Free Command that enumerates
the Free List Head pointer with the address of the newly added cell and write in the
Next Pointer of the latter the address of the previous Free List Head cell. This Write
access is done to the SDRAM Memory and cost 5 cycles.

Free list bypassing avoids the cost of the extra 5 cycles spent on Enqueueing and on
Dequeueing, as described above. Instead of placing the newly freed cell buffer in the
Free List (5 cycles of Free Command), the pointer is placed in a SRAM FIFO inside
the Cell Scheduler. When a subsequent Enqueue operation begins, the cell new cell
buffer requested, is taken from that SRAM FIFO, thus the extra access to the Free List
is also avoided.

In total the Free List Bypassing decreases the number of cycles for enqueueing and
dequeueing of a cell by 10 cycles. Since Enqueueing as dequeueing takes 20 or 40
cycles (See subsection 7.3.5), the technique improves the Queue Manager
Performance by a factor of 10/(20+20) = V4 = 25% or 10/(40+40) = 1/8 = 12,5%.
Figure 7-11 depicts the Free-List Bypassing technique

After a Dequeue operation:
Flow Record

Counter

Buffer freed

NEW EMPTY NEW CELL Cell Cell Cell
BUFFER
Nxt Pointer |=t= Nxt Pointer |« Nxt Pointer < Nxt Pointer Nxt Pointer
»
Free Buffer
FIFO in

Cell
Scheduler

After the next Enqueue operation:
Flow Record

Counter Tail Head

Buffer

v
NEW EMPTY NEW CELL Cell Cell Cell
BUFFER

Nxt Pointer < Nxt Pointer Nxt Pointer Nxt Pointer Nxt Pointer

Figure 7-11: Free List Bypassing implementation in the Queue Manager IP

100

7.3.8 Cell Buffer Pre-allocation [10]

The Cell Buffer Pre-allocation is a technique implemented in the Queue Manager that
with the cost of one unused cell buffer per supported Flow, decreases the number of
cycles for an enqueue operation by 5.

As described in previous sections, each one of the 64K queues of the Queue Manager
has an empty cell buffer as its tail element. This is true even for queues that are empty
(inactive). In this case both the Head and the Tail pointer field of the respective Flow
Record point to that empty cell buffer (this buffer is called the pre-allocated buffer). If
this buffer wasn’t pre-allocated and the tail pointer of the Flow Record pointed to the
last used cell buffer, then during enqueueing, the newly arrived would have to be
written on a new empty cell, taken from the free-list (or the Free-List Bypassing
mechanism), and the next pointer of the previously last cell should be set to point to
the newly arrived cell. These are two memory accesses in different buffers in
memory. Since these two buffers can be in different SDRAM lines, two separate
bursts would be necessary.

Instead, with Cell Buffer Pre-allocation, the cell is written to the pre-allocated empty
cell buffer that is tail element and the next pointer of the same buffer is set to point to
the new pre-allocated buffer taken from the free-list (or the Free-List By-passing
mechanism). Only one buffer is accessed in this way, and only one write burst is
needed. The extra pointers write access in the non pre-allocating implementation that
is avoided costs 5 cycles.

In total, the Free List Bypassing decreases the number of cycles of enqueueing and
dequeueing of a cell by 5 cycles. Since Enqueueing as well as dequeueing take 20 or
40 cycles (See sub-section 7.3.5), the technique improves the Queue Manager
Performance by a factor of 5/(20+20) = 1/8 = 12,5% or 5/(40+40) = 1/16 = 6,25%.
Memory cost of this technique is 4 Mbytes which is 4/256 = 1/64 =1,56% percent of
the total memory.

7.4 Timing Issues

In this subsection the bandwidth capabilities of the Queue Manager IP are examined
in conjunction with the input/output bandwidth requirements of the ABR Server
Cards. The timing parameters assumed and the timing examples that are given prove
that the implementation of Free-List Bypassing, along with Cell Buffer pre-allocation
are essential if the Queue Manager is to succeed in complying with the Switch
requirements, while using only one SDRAM memory module for all necessary
memory accesses.

7.4.1 UTOPIA clock Vs Queue Manager (ABRSU) clock.

In order for the Queuing Architecture implemented to be able to balance the incoming
and outgoing capabilities of the Switch (DIPOLO), it must be able both to enqueue
and dequeue a cell during a cell time. A cell time is the time needed for a cell to arrive
or to depart in full in or out of the UTOPIA interfaces. These interfaces are slaves to
the switching hardware. Since enqueue and dequeue operations can’t be performed in
any parallel way and they both need the same number of cycles, the Queue Manager

101

(and the ABRSU) must be use internal speed up in relation to the UTOPIA Interfaces
clock.

A cell needs 28 UTOPIA clock cycles to enter the ABRSU (16-bit interface). On the
other hand, both one enqueue and one dequeue operation need:

80 (Worst case) or 40 (Normal Case) Queue Manager clock cycles.

This means that the clock speed up needed for both cases is:

Worst case:

1 Cell arrival time = 1 Enq time + 1 Deq time=>

Tclk utopia * 28 utopia cycles = Tclk gm * (40+40) gm_cycles =>
Tclk utopia/ Tclk qm=80/28 =2,8 =>

Speed up worst =2,8

Normal case:

1 Cell arrival time = 1 Enq time + 1 Deq time=>

Tclk utopia * 28 utopia cycles = Tclk gm * (20+20) gm_cycles =>
Tclk utopia/ Tclk qm=40/28=1,4=>

Speed up normal = 1,4

The FPGA selected during the design face to host the Queue Manager can reach clock
frequencies of up to 50 MHz. Since the Cubit Clocks are used in the DIPOLO Switch
reach 25 MHz of Frequency a maximum speed up value of 2 can be selected. In that
case

QM _Clk =2 * UTOPIA_CIk.

Since:

Speed up worst > Speed up sel =2 > Speed up normal

The next subsections will show that the Queue Manager is the bottleneck of the
system when both enqueue and dequeue take the worst case number of cycles and that
the UTOPIA interfaces are the bottleneck system when both enqueue and dequeue
take the normal number of cycles.

7.4.2 Worst case of Enqueue and Dequeue

Figure 7-12 gives the timing diagram cells entering and leaving the ABRSU when
Enqueue and dequeue commands need 40 cycles each to execute.

102

Time in Queue Manager Clock cycles
0 50 100 150 200 250 300 350

| | | l | l

v

UTOPIA il iy
Inlet - [T | I |
. 1 2 1 2 12 1i2 1i2
Input 64-bit
Buffer - | = —
1 1 01 01
Eng CI—1 LI [==
P [] =] L]
. 1 0 1 0 i 0
Output 64-bi H H [H
Buffer] [.
1 0 1 Y !
UTOPIA il : ’ il
Outlet I
< < >
F outgoing = 80 cycles T incoming = 80 cycles

Figure 7-12: Worst case Enqueue-Dequeue timing Diagram

The following parameters have been assumed on this diagram:

e 2 Cell FIFOs in the UTOPIA interfaces. (inlet & outlet) : The FIFOs inside the
UTOPIA interfaces are assumed to be 2 cells long for simplicity. They are 8 cells
long - Single buffering on each Cell Buffer

e Speed-up = 2: The ABRSU speed up is 2. This means that
QM_Clk =2 * UTOPIA_CIk

* Full throttle Traffic: Incoming cells arrive consecutively, Cell Scheduler
requests outgoing cells consecutively.

* Mixed Enq & Deq Commands: Enqueue and dequeue commands are executed
alternately.

* 40 cycle Enqueue and Dequeue Commands: Each Enqueue and Dequeue
Command takes 40 cycles to complete.

* 15 Cycles access of Input/Output 64-bit Buffers: The Enqueue command uses
its first 15 cycles to empty the Input 64-bit Buffer. The buffer can begin to fill
immediately. The Dequeue command uses its first 15 cycles to fill the Output 64-
bit Buffer. The buffer can begin to empty immediately.

* 56 QM _clk cycles for UTOPIA I/Fs: A cell takes 56 QM clock cycles to enter
since speed up is 2.

In the diagram, we can see that after 2,3 cell times the UTOPIA inlet is unable to
receive the cells consecutively and the UTOPIA outlet to send the cells consecutively.
Instead of 56 QM _clk cycles, cells need 80 cycles to enter or leave the ABRSU. This
means that the 80 cycles needed by the Queue Manager to Enqueue and dequeue a
cell is the bottleneck of the system and sets the cell time to 80 QM _ clk cycles.

7.4.3 Normal case of Enqueue and Dequeue

Figure 7-13 gives the timing diagram cells entering and leaving the ABRSU when
Enqueue and dequeue commands need 20 cycles each to execute.

103

Time in Queue Manager Clock cycles

0 50 100 150 200 250 300 350
1 | | L | | L,
UTOPIA B (- s
Inlet _ I I Im I ; - |
. 1 2 2
Input 64-bit
Buffer [=
1 0 1 0
Enq O -
Deq
Output 64-bit 1 1
Buffer L= !
; ; 12 12
UTOPIA ’ T i T H
Outlet (... KR

T outgoing =56 *
cycles

>
»

T incoming = 56
cycles

Figure 7-13: Normal case Enqueue-Dequeue timing diagram

The following parameters have been assumed on this diagram:

e 2 Cell FIFOs in the UTOPIA interfaces. (Inlet & outlet) : The FIFOs inside the
UTOPIA interfaces are assumed to be 2 cells long for simplicity. They are 8 cells
long - Single buffering on each Cell Buffer

* Speed-up =2: The ABRSU speed up is 2. This means that
QM _Clk =2 * UTOPIA_Clk

e Full throttle Traffic: Incoming cells arrive consecutively, Cell Scheduler
requests outgoing cells consecutively.

* Mixed Enq & Deq Commands: Enqueue and dequeue commands are executed
alternately.

e 20 cycle Enqueue and Dequeue Commands: Each Enqueue and Dequeue
Command takes 40 cycles to complete.

* 15 Cycles access of Input/Output 64-bit Buffers: The Enqueue command uses
its first 15 cycles to empty the Input 64-bit Buffer. The buffer can begin to fill
immediately. The Dequeue command uses its first 15 cycles to fill the Output 64-
bit Buffer. The buffer can begin to empty immediately.

* 56 QM _clk cycles for UTOPIA I/Fs: A cell takes 56 QM clock cycles to enter
since speed up is 2.

In the diagram, we can see that after 5 cell times the UTOPIA inlet is able to receive
the cells consecutively and the UTOPIA outlet to send the cells consecutively. Cells
need 56 cycles to enter or leave the ABRSU. This means that the 40 cycles needed by
the Queue Manager to Enqueue and dequeue a cell is not the bottleneck of the system
rather than the 56 cycles cell time of the UTOPIA interfaces.

104

7.4.4 Synthesis Results, Free-list bypassing and Cell Buffer Pre-
allocation contribution

After synthesis of the Verilog HDL files, that described the ABRSU blocks with the
MaxPlusllI synthesis tool, the following results where received.

* ABRSU (Queue Manager) Clock at 35 MHz. This clock speed yields a combine
incoming and outgoing throughput of 400Mbps for 40cc Enq, Deq commands and
800 Mbps for 20cc Enq, Deq commands.

* FPGA SRAM Utilization at 95%

* FPGA Logic gate Utilization 55%

Assuming 35MHz as the Queue Manager clock the ABRSU Speed up is 1,4 instead of
2, that was assumed in subsections 7.4.1 - 7.4.3.
In order for the Queue Manager not to be the bottleneck of the system it must be that:

1 Cell arrival time >= 1 Enq time + 1 Deq time =>
Tclk utopia * 28 utopia cycles >= Tclk gm * (20+20) gqm_cycles =>
Tclk utopia/ Tclk qm>= 50/28=1,8 =>
40 ns/ 28ns >=14 =>
1,4>=14

This means that the succeeded speed up barely satisfies the Bandwidth needs of the
UTOPIA interfaces. If Free-list bypassing and Cell Buffer Pre-allocation where not
implemented then the cycles needed for the normal case of enqueue and dequeue
would be 20+20 + 10 cycles avoided by Free-list bypassing + 5 cycles avoided by
Cell Buffer Pre-allocation = 55 cycles. In that case an ABRSU clock of ~50 MHz of
frequency would be necessary.

The combined system performance improvement due to these 2 techniques is 15
cycles / 55 cycles = 27%.

105

8 Conclusions and Future Work

In this thesis, we studied the architecture of a Per-Flow Queue Manager for the
purpose of queueing the ABR traffic of an ATM switch in times of congestion. The
Queue Manager was implemented in a large FPGA that was placed on one of the
Cards of the Switch. The use of FPGA allowed extensive on board testing of the
design during its development and gave us the ability to confirm speed and feasibility
assumptions early in the design face.

We used a single SDRAM DIMM memory module for storing of cells and cell
pointers. This significantly reduced the pin and trace count of the physical design,
yielding a low cost system. The careful scheduling of memory accesses to the
SDRAM module by the Queue Manager proved that this single-buffer approach is
feasible.

Although dynamic memory allocation increased the number of accesses for each
enqueue or dequeue operation and lowered the buffering bandwidth, it allowed us,
during testing, to use the Queue Manager for queueing thousands of cells of one flow
and maintain the ability to handle the other 64K flows.

The interfacing of the Queue Manager with the external CPU allowed us to both
debug the design effectively, insert test traffic that confirmed the correctness of the
physical interface of the FPGA with the SDRAM DIMM and the Cubit Pros.

The use of the Free-List bypassing and Cell-Buffer preallocation techniques was
proven essential in reaching the goal of near Gbps queueing bandwidth of our design.
The 26% improvement of performance they induced with their use compensated for
the loss of our clock speed goal (35 MHz instead of the 50 MHz clock that we
targeted at the beginning of the design phase). Thus a maximum of 800 Mbps of
combined incoming and outgoing ABR throughput was achieved that is sufficient for
the ABR traffic needs of a Gbps Switch.

Adding various other switch features to our design is an interesting issue for future
work. For instance, the enlargement of the Flow Record from 2 64-bit words to 4
words, could allow the addition of extra fields for each of the 64K supported flows. A
New ID field could be added that would be accessible by the external CPU. This field
would substitute the Header ID of incoming cells of a Flow. Thus the Queue Manager
would offer VP/VC translation along with per-flow queueing.

Another field that could be added, is an Explicit Rate Field. The CPU would compute
this appropriate explicit rate and use it to set the Explicit Rate Field inside the RM
cells of a given flow, if it is smaller than the RM explicit rate. In that way, the RM
explicit rate flow control could be supported, with the software taking care of the rate
calculation and the hardware making the RM field enumeration.

Other interesting features that could be supported with extra fields are cell-dropping
mechanisms for ill-behaved flows.

106

107

9 References

[1] S. Keshav: “An Engineering Approach to Computer Networking”, Addison-
Wesley, 1997, ISBN 0-201-63442-2

[2] R. Lamaire, D. Serpanos: A 2-Dimensional Round-Robin Scheduling Mechanism
for Switches with Multiple Input Queues , In IEEE/ACM Transactions on
Networking, pages 471-482, 2(5), Oct 1994.

[3] Y. Oie, M. Murata, K. Kubota and H. Miyahara: «Effect of speedup in non-
blocking packet switch,» Proc. ICC "89, Boston, MA, June 1989, pp. 410-414.

[4] J. G. Jim: «The throughput of data switches with and without speedup», Dai
Schools of Industrial and Systems Engineering, and Mathematics Georgia Institute of
Technology Balaji Prabhakar.

[5] A. Charny: «Providing QoS Guarantees in Input Buffered Crossbar Switches with
Speedup», PhD Thesis, MIT, 1998.

[6] P. Prabhakar and N. McKeown: «On the speedup required for combined input-
and output-queued switchingy, to appear in Automatica.

[7] G. Kornaros, C. Kozyrakis, P. Vatsolaki, M. Katevenis: “Pipelined Multi-Queue
Management in a VLSI ATM Switch Chip with Credit-Based Flow Control”, in Proc.
ARVLSI’97 (17 th Conference on Advanced Research in VLSI), Univ. of Michigan at
Ann Arbor, MI USA, Sept. 1997, IEEE Computer Soc. Press, ISBN 0-8186-7913-1,
pp- 127-144.

[8] Ioannis Mavroidis: “Heap Management in Hardware”, Technical Report 222, ICS-
FORTH,July 1998

[9] A. Toannou, M. Katevenis: "Pipelined Heap (Priority Queue) Management for
Advanced Scheduling in High Speed Networks", Proc. IEEE Int. Conf. on
Communications (ICC2001), Helsinki, Finland, June 2001, pp. 2043-2047,
http://archvlsi.ics.forth.gr/mugpro/heapMgt.html

[10] A. Nikologiannis, M. Katevenis: “Efficient Per-Flow Queueing in DRAM at OC-
192 Line Rate using Out-of-Order Execution Techniques”, Proc. IEEE Int. Conf. on
Communications (ICC2001), Helsinki, Finland, June 2001, pp. 2048-2052;
http://archvlsi.ics.forth.gr/mugpro/queueMgt.html

[11] M. Katevenis, D. Serpanos, E. Markatos: “Multi-queue management and
scheduling for improved QoS in communication networks”, Proceedings of
EMMSEC’97 (European Multimedia Microprocessor Systems and Electronic
Commerce Conference), Florence, Italy, Nov. 1997, pp. 906-913;
http://archvlsi.ics.forth.gr/html papers/ EMM-SEC97/paper.html

[12] Tzi-cker Chiueh, Varadarajan, S.: “Design and evaluation of a DRAM-based
shared memory ATM”, 1997 ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS 97) Seattle, WA, USA 15-18, June
1997

[13] P. Andersson, C. Svensson (Lund Univ., Sweden):”A VLSI Architecture for an
80 Gb/s ATM Switch Core”, IEEE Innovative Systems in Silicon Conference, Oct.
1996.

[14] V. Kumar, T. Lakshman, D. Stiliadis: “Beyond Best Effort: Router Architectures
for the Differentiated Services of Tomorrow's Internet”, IEEE Communications
Magazine, May 1998, pp152-164.

[15] B. Suter, T.V. Lakshman, D. Stiliadis, A.K. Choudhury: “Buffer Management
Schemes for Supporting TCP in Gigabit Routers with Per-Flow Queueing”, IEEE
Journal in Selected Areas in Communications, August 1999.

108

[16] http://www.altera.com

[17] http://www.motorola.com

[18] http://www.transwitch.com

[19] http://www.micron.com

[20] http://www.pmc-sierra.com

[21] ATM Forum: “Traffic Management Specification, Version 4.17, AF-TM-
0121.000, March 1999.

[22] Ch. Lolas: “Design and Implementation of Low-Level software for high-speed
packet switches”, Master of Science Thesis, Computer Science Department,
University of Crete, Greece, November 2001.

[23] G. Papadakis: “Design and Implementation in FPGA of an ABR Traffic
Scheduler for an ATM Switch”, Master of Science Thesis, Computer Science
Department, University of Crete, Greece, November 2001.

